WorldWideScience

Sample records for stabilized soil road

  1. Enzyme based soil stabilization for unpaved road construction

    Directory of Open Access Journals (Sweden)

    Renjith Rintu

    2017-01-01

    Full Text Available Enzymes as soil stabilizers have been successfully used in road construction in several countries for the past 30 years. However, research has shown that the successful application of these enzymes is case specific, emphasizing that enzyme performance is dependent on subgrade soil type, condition and the type of enzyme used as the stabilizer. A universal standard or a tool for road engineers to assess the performance of stabilized unbound pavements using well-established enzymes is not available to date. The research aims to produce a validated assessment tool which can be used to predict strength enhancement within a generalized statistical framework. The objective of the present study is to identify new materials for developing the assessment tool which supports enzyme based stabilization, as well as to identify the correct construction sequence for such new materials. A series of characterization tests were conducted on several soil types obtained from proposed construction sites. Having identified the suitable soil type to mix with the enzyme, a trial road construction has been performed to investigate the efficiency of the enzyme stabilization along with the correct construction sequence. The enzyme stabilization has showed significant improvement of the road performance as was evidenced from the test results which were based on site soil obtained before and after stabilization. The research will substantially benefit the road construction industry by not only replacing traditional construction methods with economical/reliable approaches, but also eliminating site specific tests required in current practice of enzyme based road construction.

  2. Soil Stabilization with Lime for the Construction of Forest Roads

    Directory of Open Access Journals (Sweden)

    Reginaldo Sérgio Pereira

    2018-02-01

    Full Text Available ABSTRACT The mechanical performance of soil stabilization using lime to improve forest roads was assessed. This study was conducted with lateritic soil (LVAd30 using lime content of 2% in the municipality of Niquelândia, Goiás state, Brazil. Geotechnical tests of soil characterization, compaction, and mechanical strength were performed applying different compaction efforts and curing periods. The results showed that lime content significantly changed the mechanical performance of natural soil, increasing its mechanical strength and load-carrying capacity. Compaction effort and curing time provided different responses in the unconfined compressive strength (UCS and California Bearing Ratio (CBR tests. The best UCS value (786.59 kPa for the soil-lime mixture was achieved with modified compaction effort and curing time of 28 days. In the CBR test, soil-lime mixtures compacted at intermediate and modified efforts and cured for 28 days were considered for application as subbase material of flexible road pavements, being a promising alternative for use in layers of forest roads.

  3. Preparation of Sandy Soil Stabilizer for Roads Based on Radiation Modified Polymer Composite

    International Nuclear Information System (INIS)

    Elnahas, H.H.

    2016-01-01

    Radiation modified polymer composite (RMPC) was studied to build an extremely durable sandy road, construct a trail or bath, or control dust and erosion. A dilute solution of composite binds sandy soil fines through a coagulation bonding process. The result is a dense soil structure that has superior resistance to cracks and water penetration and can also solve erosion control problems. In erosion control applications, diluted composite is merely sprayed into sandy soil without compaction, effectively sealing the surface to prevent air-born dust or deterioration from erosion. The prepared composite has an elastic and melt-able film formation that imparts thermal compacting to the stabilized sandy soil after full dryness for sandy road leveling, repairing and restoration processes. The prepared composite is environmentally economical when compared with traditional sandy soil stabilizing (SSS) or sealing methods.

  4. Simplified methods for evaluating road prism stability

    Science.gov (United States)

    William J. Elliot; Mark Ballerini; David Hall

    2003-01-01

    Mass failure is one of the most common failures of low-volume roads in mountainous terrain. Current methods for evaluating stability of these roads require a geotechnical specialist. A stability analysis program, XSTABL, was used to estimate the stability of 3,696 combinations of road geometry, soil, and groundwater conditions. A sensitivity analysis was carried out to...

  5. Computer aided modeling of soil mix designs to predict characteristics and properties of stabilized road bases.

    Science.gov (United States)

    2009-07-01

    "Considerable data exists for soils that were tested and documented, both for native properties and : properties with pozzolan stabilization. While the data exists there was no database for the Nebraska : Department of Roads to retrieve this data for...

  6. Stabilization of marly soils with portland cement

    Science.gov (United States)

    Piskunov, Maksim; Karzin, Evgeny; Lukina, Valentina; Lukinov, Vitaly; Kholkin, Anatolii

    2017-10-01

    Stabilization of marlous soils with Portland cement will increase the service life of motor roads in areas where marl is used as a local road construction material. The result of the conducted research is the conclusion about the principal possibility of stabilization of marlous soils with Portland cement, and about the optimal percentage of the mineral part and the binding agent. When planning the experiment, a simplex-lattice plan was implemented, which makes it possible to obtain a mathematical model for changing the properties of a material in the form of polynomials of incomplete third order. Brands were determined for compressive strength according to GOST 23558-94 and variants of stabilized soils were proposed for road construction.

  7. Road Maintenance Experience Using Polyurethane (PU) Foam Injection System and Geocrete Soil Stabilization as Ground Rehabilitation

    Science.gov (United States)

    Fakhar, A. M. M.; Asmaniza, A.

    2016-07-01

    There are many types of ground rehabilation and improvement that can be consider and implement in engineering construction works for soil improvement in order to prevent road profile deformation in later stage. However, when comes to road maintenance especially on operated expressways, not all method can be apply directly as it must comply to opreation's working window and lane closure basis. Key factors that considering ideal proposal for ground rehabilitation are time, cost, quality and most importantly practicality. It should provide long lifespan structure in order to reduce continuous cycle of maintenance. Thus, this paper will present two approaches for ground rehabilitation, namely Polyurethane (PU) Foam Injection System and Geocrete Soil Stabilization. The first approach is an injection system which consists two-parts chemical grout of Isocynate and Polyol when mixed together within soil structure through injection will polymerized with volume expansion. The strong expansion of grouting causes significant compression and compacting of the surrounding soil and subsequently improve ground properties and uplift sunken structure. The later is a cold in-place recyclying whereby mixture process that combines in-situ soil materials, cement, white powder (alkaline) additive and water to produce hard yet flexible and durable ground layer that act as solid foundation with improved bearing capacity. The improvement of the mechanical behaviour of soil through these two systems is investigated by an extensive testing programme which includes in-situ and laboratory test in determining properties such as strength, stiffness, compressibility, bearing capacity, differential settlement and etc.

  8. Towards sustainability: artificial intelligent based approach for soil stabilization using various pozzolans

    KAUST Repository

    Ouf, M. S.

    2012-07-03

    Due to the gradual depletion in the conventional resources, searching for a more rational road construction approach aimed at reducing the dependence on imported materials while improving the quality and durability of the roads is necessary. A previous study carried out on a sample of Egyptian soil aimed at reducing the road construction cost, protect the environment and achieving sustainability. RoadCem, ground granulated blast furnace slag (GGBS), lime and ordinary Portland cement (OPC) were employed to stabilise the Egyptian clayey soil. The results revealed that the unconfined compressive strength (UCS) of the test soil increased while the free swelling percent (FSP) decreased with an increase in the total stabiliser and the curing period. This paper discusses attempts to reach optimum stabilization through: (1) Recognizing the relationship between the UCS/FSP of stabilized soil and the stabilization parameters using artificial neural network (ANN); and (2) Performing a backward optimization on the developed (ANN) model using general algorithm (GA) to meet practical design preferences. © 2012 WIT Press.

  9. Stabilization of soft clayey soils with sawdust ashes

    Directory of Open Access Journals (Sweden)

    Karim Hussein

    2018-01-01

    Full Text Available The problems of soft clayey soils are taken in considerations by many Iraqi geologists and civil engineers, because about 35% of the Iraqi clay soils (especially southern Iraq are weak. Thus, it is necessary to improve the properties of such soils for road construction by means of using of various stabilizers such as sawdust ash. The main goal of the present study is to stabilize soft clay models with sawdust ash (SDA additive using different percentages (0, 2, 4, 6, 8 and 10% by dry weight of soil. The results revealed that the additive has adverse effects on the property of soil indices by increasing its liquid limit and plasticity index due to clay content. The mixture of sawdust ashes with soft clay soils improves most other physical and mechanical properties of the soil, as expressed by a general reduction in specific gravity and maximum dry density (MDD, as well as a reduction in the compression coefficients (Cc and Cr with an increase in SDA content. While increasing the optimum moisture content (OMC and the undrained shear strength (cu with the increase in SDA content. The stabilized soils (with 4 and 10% ash content resulted in low CBR values (1.6-1.2% which can be used as sub-base. The SDA can be considered as a cheap and acceptable stabilizing agent in road construction for improving most of the geotechnical properties of the soft clayey soil.

  10. Stabilization of Horseshoe Lake Road using Geofibers and Soil-Sement

    Science.gov (United States)

    2012-04-03

    One solution to reducing the cost of importing gravel in areas where available soils are predominately silts and : sands is to stabilize the local soils with geofibers and synthetic fluids. There have been several studies which : have evaluated impro...

  11. The Development of Mathematical Prediction Model to Predict Resilient Modulus for Natural Soil Stabilized by Pofa-Opc Additive for the Use in Unpaved Road Design

    Science.gov (United States)

    Gamil, Y. M. R.; Bakar, I. H.

    2016-07-01

    Resilient Modulus (Mr) is considered one of the most important parameters in the design of road structure. This paper describes the development of the mathematical model to predict resilient modulus of organic soil stabilized by the mix of Palm Oil Fuel Ash - Ordinary Portland Cement (POFA-OPC) soil stabilization additives. It aims to optimize the use of the use of POFA in soil stabilization. The optimization models enable to eliminate the arbitrary selection and its associated disadvantages in determination of the optimum additive proportion. The model was developed based on Scheffe regression theory. The mix proportions of the samples in the experiment were adopted from similar studies reported in the literature Twenty five samples were designed, prepared and then characterized for each mix proportion based on the MR in 28 days curing. The results are used to develop the mathematical prediction model. The model was statistically analyzed and verified for its adequacy and validity using F-test.

  12. Induced polarization for characterizing and monitoring soil stabilization processes

    Science.gov (United States)

    Saneiyan, S.; Ntarlagiannis, D.; Werkema, D. D., Jr.

    2017-12-01

    Soil stabilization is critical in addressing engineering problems related to building foundation support, road construction and soil erosion among others. To increase soil strength, the stiffness of the soil is enhanced through injection/precipitation of a chemical agents or minerals. Methods such as cement injection and microbial induced carbonate precipitation (MICP) are commonly applied. Verification of a successful soil stabilization project is often challenging as treatment areas are spatially extensive and invasive sampling is expensive, time consuming and limited to sporadic points at discrete times. The geophysical method, complex conductivity (CC), is sensitive to mineral surface properties, hence a promising method to monitor soil stabilization projects. Previous laboratory work has established the sensitivity of CC on MICP processes. We performed a MICP soil stabilization projects and collected CC data for the duration of the treatment (15 days). Subsurface images show small, but very clear changes, in the area of MICP treatment; the changes observed fully agree with the bio-geochemical monitoring, and previous laboratory experiments. Our results strongly suggest that CC is sensitive to field MICP treatments. Finally, our results show that good quality data alone are not adequate for the correct interpretation of field CC data, at least when the signals are low. Informed data processing routines and the inverse modeling parameters are required to produce optimal results.

  13. Soil carbon storage following road removal and timber harvesting in redwood forests

    Science.gov (United States)

    Seney, Joseph; Madej, Mary Ann

    2015-01-01

    Soil carbon storage plays a key role in the global carbon cycle and is important for sustaining forest productivity. Removal of unpaved forest roads has the potential for increasing carbon storage in soils on forested terrain as treated sites revegetate and soil properties improve on the previously compacted road surfaces. We compared soil organic carbon (SOC) content at several depths on treated roads to SOC in adjacent second-growth forests and old-growth redwood forests in California, determined whether SOC in the upper 50 cm of soil varies with the type of road treatment, and assessed the relative importance of site-scale and landscape-scale variables in predicting SOC accumulation in treated road prisms and second-growth redwood forests. Soils were sampled at 5, 20, and 50 cm depths on roads treated by two methods (decommissioning and full recontouring), and in adjacent second-growth and old-growth forests in north coastal California. Road treatments spanned a period of 32 years, and covered a range of geomorphic and vegetative conditions. SOC decreased with depth at all sites. Treated roads on convex sites exhibited higher SOC than on concave sites, and north aspect sites had higher SOC than south aspect sites. SOC at 5, 20, and 50 cm depths did not differ significantly between decommissioned roads (treated 18–32 years previous) and fully recontoured roads (treated 2–12 years previous). Nevertheless, stepwise multiple regression models project higher SOC developing on fully recontoured roads in the next few decades. The best predictors for SOC on treated roads and in second-growth forest incorporated aspect, vegetation type, soil depth, lithology, distance from the ocean, years since road treatment (for the road model) and years since harvest (for the forest model). The road model explained 48% of the variation in SOC in the upper 50 cm of mineral soils and the forest model, 54%

  14. Heavy metals in garden soils along roads in Szeged, Hungary

    Science.gov (United States)

    Szolnoki, Zsuzsanna; Farsang, Andrea

    2010-05-01

    The soils of the urban environment, owing to the various anthropogenic activities, can be contaminated by heavy metals. The traffic is well-known for more decades to be main source of heavy metals mostly in cities. The accumulation of these elements can have different effects, either directly endangering the natural soil functions, or indirectly endangering the biosphere by bio-accumulation and inclusion in the food chain. The hobby gardens and the vegetable gardens directly along roads can be potential risky for people since unknown amount of heavy metals can be accumulated into organization of local residents due to consumption of vegetables and fruits grown in their own garden. The aim of this study was to determine the heavy metal content of garden soils directly along roads with heavy traffic in order to assess possible risk for human health. The total content and the mobile content of Cd, Co, Cr, Cu, Ni, Pb and Zn have been determined in samples from garden soils along 5 busy roads of Szeged, South Hungary. Enrichment factor has been calculated with the help of control soil samples far from roads. The soil properties basically influencing on metal mobility have also been examined. Finally, the human health risk of these garden soils has been modelled by determination of health risk quotient (HRQ). As a result of our investigations, it can be claimed that mostly Cu, Zn and to a lesser degree the Ni, Cr and Pb accumulated in garden soils along roads depending on the traffic density. In general, the topsoils (0-10 cm) had higher amount of these metals rather than the subsoils (40-50 cm). Ni of these metals has approached; Cu has exceeded limit value while Pb is under it. Cd is very high in both soils along roads and control ones far from roads. Garden soils along the roads have such basic soil parameters (pH, mechanical soil type, humus content) that prove fairly high metal-binding capacity for these soils. Total risk of usage of these gardens (ingestion of soil

  15. Efficacy of road bond and condor as soil stabilizers : final report.

    Science.gov (United States)

    2013-08-01

    The Oklahoma Department of Transportation (ODOT) uses lime-based stabilizers including quick lime, hydrated lime, Class C fly ash (CFA) and cement kiln dust (CKD) to increase bearing capacity of fine-grained subgrade soils within the state of Oklahom...

  16. Fly-ash and Green liquor as binder in gravel road stabilization. Pilot study at Iggesund; Flygaska-Groenlutslamstabiliserad skogsbilvaeg. Fallstudie Iggesund

    Energy Technology Data Exchange (ETDEWEB)

    Macsik, Josef; Erlandsson, Aasa; Wexell, Bengt-Arne

    2009-03-15

    The quality of gravel roads is of importance for public and the forestry industry. Frost damages lead to the closure of roads due to reduced bearing capacity, settlements and tracks made by wheel. Lately these frost damages have worsened due to milder winter temperatures. The need to improve the quality of these roads and to minimize the periods when the roads are closed is ever increasing. Several Swedish and Finnish projects have shown that rest materials from the paper industry can improve bearing capacity of roads. Both green liquor and fly ash was used successfully in an earlier project as pelletized mineral nutrient in forest soil. In this project fly ash and green liquor from Iggesund Paperboard was used as a binder during stabilization of a gravel road. The aim was to improve bearing capacity of a gravel road, mainly during the thawing period. The target group of the project was local road associations, forestry industry, which have a need to improve road quality, the paper industry which produce suitable rest materials and local environmental agencies. During an initial laboratory investigation proper binder recipe, based on fly ash, green liquor and cement was chosen. The laboratory investigation and earlier studies indicate in order to increase resistance to frost damage cement should be included in the binder. The aim was to stabilize ballast and improve the stabilized road materials shear strength, frost susceptibility. Total elemental content and Leachability was also investigated. Based on the results the local environmental agency was notified. During spring of 2008 two road sections, about 2 km was stabilized. The stabilized road was investigated during autumn 2008 regarding bearing capacity and environmental impact. The stabilization of the road section was estimated to cause minor impact on the recipient. The local environmental agency approved the stabilization of the road section, however increased the follow up effort with more analyses

  17. Rapid stabilization of thawing soils For enhanced vehicle mobility: a field demonstration project

    Science.gov (United States)

    1999-02-01

    Thawing soil presents a formidable challenge for vehicle operations cross-country and on unsurfaced roads. To mitigate the problem, a variety of stabilization techniques were evaluated for their suitability for rapid employment to enhance military ve...

  18. Soil geohazard mapping for improved asset management of UK local roads

    Science.gov (United States)

    Pritchard, O. G.; Hallett, S. H.; Farewell, T. S.

    2015-09-01

    Unclassified roads comprise 60 % of the road network in the United Kingdom (UK). The resilience of this locally important network is declining. It is considered by the Institution of Civil Engineers to be "at risk" and is ranked 26th in the world. Many factors contribute to the degradation and ultimate failure of particular road sections. However, several UK local authorities have identified that in drought conditions, road sections founded upon shrink-swell susceptible clay soils undergo significant deterioration compared with sections on non-susceptible soils. This arises from the local road network having little, if any, structural foundations. Consequently, droughts in East Anglia have resulted in millions of pounds of damage, leading authorities to seek emergency governmental funding. This paper assesses the use of soil-related geohazard assessments in providing soil-informed maintenance strategies for the asset management of the locally important road network of the UK. A case study draws upon the UK administrative county of Lincolnshire, where road assessment data have been analysed against mapped clay-subsidence risk. This reveals a statistically significant relationship between road condition and susceptible clay soils. Furthermore, incorporation of UKCP09 future climate projections within the geohazard models has highlighted roads likely to be at future risk of clay-related subsidence.

  19. Effect of curing time on selected properties of soil stabilized with fly ash, marble dust and waste sand for road sub-base materials.

    Science.gov (United States)

    Firat, Seyhan; Khatib, Jamal M; Yilmaz, Gulgun; Comert, A T

    2017-07-01

    The properties of sub-base filling materials in highway construction are essential, as they can determine the performance of the road in service. Normally, the existing materials are removed and replaced with new materials that have adequate load-bearing capacity. Rising environmental concern and new environmental legislations have made construction professionals consider other methods. These methods include stabilizing the existing materials with other additives to improve their performance. Additives can be waste materials generated by different industries. In this work, the existing excavated soil is stabilized with waste materials. The wastes consisted of fly ash, marble dust and waste sand. The percentage addition of waste materials was 5%, 10%, 15% and 20% (by mass) of the existing soil. The soil/waste specimens were cured for 1, 7, 28, 56, 90 and 112 days before testing. Testing included the dry unit weight and unconfined compressive strength ( q u ) as well as X-ray diffraction analysis and scanning electron microscopy observation. Also, the California Bearing Ratio values were obtained and are reported in this investigation. The results showed that the q u values increased with the increase in waste materials content. Also, there is tendency for the dry unit weight to increase with the increase in waste materials.

  20. Reduction of soil erosion on forest roads

    Science.gov (United States)

    Edward R. Burroughs; John G. King

    1989-01-01

    Presents the expected reduction in surface erosion from selected treatments applied to forest road traveledways, cutslopes, fillslopes, and ditches. Estimated erosion reduction is expressed as functions of ground cover, slope gradient, and soil properties whenever possible. A procedure is provided to select rock riprap size for protection of the road ditch.

  1. Soil stabilization 1982

    Science.gov (United States)

    Barenberg, E. J.; Thompson, M. R.; Tayabji, S. D.; Nussbaum, P. J.; Ciolko, A. T.

    Seven papers cover the following areas: design, construction and performance of lime, fly ash, and slag pavement; evaluation of heavily loaded cement stabilized bases; coal refuse and fly ash compositions; potential highway base course materials; lime soil mixture design considerations for soils of southeastern United States; short term active soil property changes caused by injection of lime and fly ash; soil cement for use in stream channel grade stabilization structures; and reaction products of lime treated southeastern soils.

  2. Determining soil erosion from roads in coastal plain of Alabama

    Science.gov (United States)

    McFero Grace; W.J. Elliot

    2008-01-01

    This paper reports soil losses and observed sediment deposition for 16 randomly selected forest road sections in the National Forests of Alabama. Visible sediment deposition zones were tracked along the stormwater flow path to the most remote location as a means of quantifying soil loss from road sections. Volumes of sediment in deposition zones were determined by...

  3. Soil-related geohazard assessments for maintaining the UK's minor road network

    Science.gov (United States)

    Pritchard, Oliver; Hallett, Stephen; Farewell, Timothy

    2015-04-01

    The minor road network of the UK (United Kingdom) encompasses 98% of the overall road network. In recent years the UK's roads have been deteriorating, currently rated 26th in the world and considered at risk and declining by the Institution of Civil Engineers (ICE). Many factors contribute to the degradation and ultimately, to the failure of particular road sections. However, several UK local authorities have identified that during drought conditions, road sections founded upon clay soils which are susceptible to volumetric shrinkage and swelling undergo significant deterioration compared to those sections on non-susceptible soils. Droughts in East Anglia recently resulted in estimated damages of £26 million, leading several local authorities to apply to Central Government for emergency funding. The minor or evolved road network is most at risk due to them having often little, if any, structural foundations. This paper addresses the use of soil-related geohazard assessments and GIS (Geographical Information Systems) in helping to provide a soil-informed maintenance strategy for the asset management of the important (both socially and commercially) local road network of the UK. Furthermore, to establish future subsidence risk, UKCP09 climate projections have been used to model the likely potential soil moisture deficit (PSMD) for baseline (1961-1990), 2030 (2020-2049) and 2050 (2040-2069) scenarios. The incorporation of probabilistic PSMD data into clay-related subsidence models has allowed an assessment of potential subsidence risk, with a range of uncertainties, for these scenarios. Intersection of road networks with future projections of subsidence risk has enabled metrics of potential vulnerability to be established. This will aid prioritisation of areas which require further maintenance to make them more climate resilient, avoiding emergency funding situations. Subsequently, this approach can then be extrapolated to the entire UK minor road network, on a local

  4. Forest soil erosion prediction as influenced by wildfire and roads

    Science.gov (United States)

    Cao, L.; Brooks, E. S.; Elliot, W.

    2017-12-01

    Following a wildfire, the risk of erosion is greatly increased. Forest road networks may change the underlying topography and alter natural flow paths. Flow accumulation and energy can be redistributed by roads and alter soil erosion processes. A LiDAR (Light Detection and Ranging) DEM makes it possible to quantify road topography, and estimate how roads influence surface runoff and sediment transport in a fire-disturbed watershed. With GIS technology and a soil erosion model, this study was carried out to evaluate the effect of roads on erosion and sediment yield following the Emerald Fire southwest of Lake Tahoe. The GeoWEPP model was used to estimate onsite erosion and offsite sediment delivery from each hillslope polygon and channel segment before and after fire disturbance in part of the burned area. The GeoWEPP flow path method was used to estimate the post-fire erosion rate of each GIS pixel. A 2-m resolution LiDAR DEM was used as the terrain layer. The Emerald Fire greatly increased onsite soil loss and sediment yields within the fire boundary. Following the fire, 78.71% of the burned area had predicted sediment yields greater than 4 Mg/ha/yr, compared to the preburn condition when 65.3% of the study area was estimated to generate a sediment yield less than 0.25 Mg/ha/yr. Roads had a remarkable influence on the flow path simulation and sub-catchments delineation, affecting sediment transport process spatially. Road segments acted as barriers that intercepted overland runoff and reduced downslope flow energy accumulation, therefore reducing onsite soil loss downslope of the road. Roads also changed the boundary of sub-catchment and defined new hydrological units. Road segments can transport sediment from one sub-catchment to another. This in turn leads to the redistribution of sediment and alters sediment yield for some sub-catchments. Culverts and road drain systems are of vital importance in rerouting runoff and sediment. Conservation structures can be

  5. Bio fuel ash in a road construction: impact on soil solution chemistry.

    Science.gov (United States)

    Thurdin, R T; van Hees, P A W; Bylund, D; Lundström, U S

    2006-01-01

    Limited natural resources and landfill space, as well as increasing amounts of ash produced from incineration of bio fuel and municipal solid waste, have created a demand for useful applications of ash, of which road construction is one application. Along national road 90, situated about 20 km west of Sollefteå in the middle of Sweden, an experiment road was constructed with a 40 cm bio fuel ash layer. The environmental impact of the ash layer was evaluated from soil solutions obtained by centrifugation of soil samples taken on four occasions during 2001-2003. Soil samples were taken in the ash layer, below the ash layer at two depths in the road and in the ditch. In the soil solutions, pH, conductivity, dissolved organic carbon (DOC) and the total concentration of cations (metals) and anions were determined. Two years after the application of the ash layers in the test road, the concentrations in the ash layer of K, SO4, Zn, and Hg had increased significantly while the concentration of Se, Mo and Cd had decreased significantly. Below the ash layer in the road an initial increase of pH was observed and the concentrations of K, SO4, Se, Mo and Cd increased significantly, while the concentrations of Cu and Hg decreased significantly in the road and also in the ditch. Cd was the element showing a potential risk of contamination of the groundwater. The concentrations of Ca in the ash layer indicated an ongoing hardening, which is important for the leaching rate and the strength of the road construction.

  6. Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils

    International Nuclear Information System (INIS)

    Green, Sophie M.; Machin, Robert; Cresser, Malcolm S.

    2008-01-01

    Of several impacts of road salting on roadside soils, the potential disruption of the nitrogen cycle has been largely ignored. Therefore the fates of low-level ammonium-N and nitrate-N inputs to roadside soils impacted by salting over an extended period (decades) in the field have been studied. The use of road salts disrupts the proportional contributions of nitrate-N and ammonium-N to the mineral inorganic fraction of roadside soils. It is highly probable that the degree of salt exposure of the soil, in the longer term, controls the rates of key microbial N transformation processes, primarily by increasing soil pH. Additional influxes of ammonium-N to salt-impacted soils are rapidly nitrified therefore and, thereafter, increased leaching of nitrate-N to the local waterways occurs, which has particular relevance to the Water Framework Directive. The results reported are important when assessing the fate of inputs of ammonia to soils from atmospheric pollution. - Road salting effects ammonification and nitrification in roadside soils

  7. Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils

    Energy Technology Data Exchange (ETDEWEB)

    Green, Sophie M. [Environment Department, University of York, Heslington, York Y010 5DD (United Kingdom)], E-mail: sg507@york.ac.uk; Machin, Robert; Cresser, Malcolm S. [Environment Department, University of York, Heslington, York Y010 5DD (United Kingdom)

    2008-03-15

    Of several impacts of road salting on roadside soils, the potential disruption of the nitrogen cycle has been largely ignored. Therefore the fates of low-level ammonium-N and nitrate-N inputs to roadside soils impacted by salting over an extended period (decades) in the field have been studied. The use of road salts disrupts the proportional contributions of nitrate-N and ammonium-N to the mineral inorganic fraction of roadside soils. It is highly probable that the degree of salt exposure of the soil, in the longer term, controls the rates of key microbial N transformation processes, primarily by increasing soil pH. Additional influxes of ammonium-N to salt-impacted soils are rapidly nitrified therefore and, thereafter, increased leaching of nitrate-N to the local waterways occurs, which has particular relevance to the Water Framework Directive. The results reported are important when assessing the fate of inputs of ammonia to soils from atmospheric pollution. - Road salting effects ammonification and nitrification in roadside soils.

  8. Durabilidade de solos estabilizados quimicamente com vistas á aplicação em estradas florestais Durability of chemically stabilized soils for forest road applications

    Directory of Open Access Journals (Sweden)

    Carlos Cardoso Machado

    2006-12-01

    Full Text Available Este artigo é direcionado à caracterização do parâmetro durabilidade de dois solos típicos da microrregião de Viçosa, Minas Gerais, para fins de aplicação em estradas florestais, considerando-se, para tanto, as seguintes condições: (a solos estabilizados com o resíduo industrial "grits"; (b solos melhorados com cal ou cimento; e (c solos estabilizados com grits e melhorados com cal ou cimento, a partir de resultados de ensaios de durabilidade por molhagem e secagem. Trabalhou-se com um solo residual maduro (solo 1 e um solo residual jovem de gnaisse (solo 2 da Zona da Mata Norte de Minas Gerais, Brasil. O programa de ensaios de laboratório envolveu: (a teor de grits: 24% calculado em relação ao peso de solo seco; (b teor de cal ou cimento: 10 e 20%, calculados em relação ao peso de grits seco; (c energias de compactação: referentes aos ensaios Proctor normal e modificado; e (d período de cura: sete dias em câmara úmida. Os resultados do programa de ensaios indicaram que: (a as misturas solo-cal, solo-cimento, solo-grits-cal e solo-grits-cimento, em ambas as energias empregadas, resistiram a todos os ciclos do ensaio de durabilidade por molhagem e secagem; (b a mistura solo 1 + grits + cal apresentou o melhor resultado, quando compactada na energia modificada, com perdas da ordem de 7%; com relação ao solo 2, o melhor resultado foi obtido quando se trabalhou com grits mais cimento, na energia modificada, com perdas da ordem de 9%; e (c sob o aspecto durabilidade, as misturas solo-grits só apresentam potencial para emprego como material de construção rodoviária quando melhoradas com cal ou cimento.This paper addresses the assessment of the durability properties of mixtures of two soils using laboratory wetting and drying durability tests for forest road applications, as follows: (a soils stabilization with the industrial waste grits; (b soil improvement using lime or cement; (c soil stabilization using grits, and soil

  9. Stabilization of soil using plastic waste

    International Nuclear Information System (INIS)

    Khan, S.A.

    2005-01-01

    The economy in a soil stabilization project depends on the cost of the stabilizing material. Cheaper the stabilizing material, lesser will be the project cost. Specially manufactured geotextiles are successfully being used for soil stabilization, but the cost is higher. In this study, the cuttings of the waste polyethylene shopper bags have been used to stabilize the soil. The polyethylene shopper bags are transformed to cuttings for easy mixing with the soil by conventional methods. The plastic cuttings acted similar to the non-woven geotextile fibers. Different quantities of the shopper bag cuttings were mixed with the soil. The soil was compacted in the California Bearing Ratio (CBR) test molds according to the British Standards. CBR values of the soil with varying quantities of the plastic cuttings were determined both for the un-soaked and soaked conditions. The tests showed significant increase in the CBR values of the stabilized soil under un-soaked conditions. However, the improvement in the CBR values under the soaked condition was comparatively lesser than that of the un-soaked condition. This method of stabilization proved economical due to low cost of the waste shopper bags. (author)

  10. Study of chemical-mineralogical properties of modified soils with polymers addition

    Directory of Open Access Journals (Sweden)

    Patricio Jonny

    2016-01-01

    Full Text Available On highways, the soil is considered a supported material and compound pavements layers. For this, they must have such characteristics that confer stability and mechanical resistance to traffic internal forces during the pavement life. When soils do not have required characteristics by the project can be used stabilization techniques that make the natural soil adequately to roads requirement. Based on this assumption, this study aimed to evaluate the efficacy of polymer association in soil stabilization for use in roads pavements. Were evaluated chemical and mineralogical properties on two (2 different soils with sample of pure soil and with the addition of the polymer association. Based on the obtained results, polymer association changes was observed on X-ray fluorescent spectrometry (XRF; X-ray diffraction (XRD; scanning electron microscopy (SEM and Methylene blue. In general, the polymeric association studied in this research was effective in chemical and mineralogical analyzes for use on stabilized soils, making this technique efficient for use in layers of road pavements.

  11. Access road reclamation

    International Nuclear Information System (INIS)

    Manson, T.; Blok, M.

    1997-01-01

    A general review of the measures involved in restoring abandoned access road sites in British Columbia was presented. Permits and licences are needed for the use of crown land for roads used by the petroleum and natural gas industry for exploration activities. However, the regulatory framework for road site reclamation is not well developed. The nature of access road reclamation is very site-specific. Some of the issues that are considered for all reclamation projects include slope stability, water control, revegetation, soil rehabilitation, access management and monitoring. The primary objective of reclaiming access road sites is to return the site to conditions that are equal or better than pre-disturbance conditions. Restoration measures must be approved by BC Environment and by the Department of Fisheries and Oceans where federal fisheries responsibilities are involved. 54 refs., 5 tabs., 3 figs

  12. PHYSICO-CHEMICAL PHENOMENA IN SOIL STABILIZATION FOR ROADS OR HIGHWAYS INFRASTRUCTURES

    Directory of Open Access Journals (Sweden)

    Anghel STANCIU

    2013-11-01

    Full Text Available Reducing the impact on the environment of constructing transportation infrastructures can be achieved through reusing or recycling certain materials. In this context, the current trend is to use materials that do not have a negative impact on the environment and provide a long term solution. Such local materials for the construction of transportation infrastructure are the active clays. This paper presents the physicochemical and mineralogical structure of clays and their behavior regarding the interaction with water. A negative effect of this interaction is the swelling, the contraction and, respectively, the swell pressure. These produce effects (fissures, cracks in the structure of roads, highways and, respectively, airport runways. The authors analyze the possibility to reduce these effects by clay stabilization with mineral binders (cement, lime. Results on lime mixtures testing are presented in terms of physical and mechanical properties, and optimum percentages of the mixtures are presented. It is also concluded that this solution is more cost-effective than the classical one as replacing the clay layer from the roadbed with other filling materials transported from other areas.

  13. Heavy metal stabilization in contaminated road-derived sediments.

    Science.gov (United States)

    Rijkenberg, Micha J A; Depree, Craig V

    2010-02-01

    There is increasing interest in the stabilization of heavy metals in road-derived sediments (RDS), to enable environmentally responsible reuse applications and circumvent the need for costly landfill disposal. To reduce the mobility of heavy metals (i.e. Cu, Pb and Zn) the effectiveness of amendments using phosphate, compost and fly ash addition were investigated using batch leaching experiments. In general, phosphate amendments of RDS were found to be ineffective at stabilizing heavy metals, despite being used successfully in soils. Phosphate amendment resulted in enhanced concentrations of dissolved organic carbon (DOC), which increased the solubilisation of heavy metals via complexation. Amendment with humified organic matter (compost) successfully stabilized Cu and Pb in high DOC leaching RDS with an optimum loading of 15-20% (w/w). Compost, however, was ineffective at stabilizing Zn. Increasing the pH by amending RDS/compost blends with 2.5-15% (w/w) coal fly ash resulted in the stabilization of Zn, Cu and Pb. However, above a pH of approximately 7.5 and 8 enhanced leaching of organic matter resulted in an increase in leached Cu and Pb, respectively. Accordingly, the optimum level of fly ash amendment for the RDS/compost blends was estimated to be ca. 10%. Boosted regression trees analysis (BRT) of the data revealed that DOC accounted for 56% and 65% of the Cu and Pb leaching, respectively, whereas pH only accounted for ca. 18% of Cu and Pb leaching. RDS sample characteristics (i.e. metal concentrations, size fractionation and organic matter content) were more important at reconciling the leaching concentrations of copper Cu (27%) than Pb (16%). The most important parameter explaining Zn leaching was pH. Overall, the choice of a suitable stabilization agent/s depends on the composition of RDS with respect to the amount of organic matter present, and the sorption chemistry of the heavy metal of interest. Copyright 2009 Elsevier B.V. All rights reserved.

  14. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    the stabilization of soil will ensure economy in road construction, while providing an effective way of disposing calcium carbide waste. KEYWORDS: Cement, Calcium carbide waste, Stabilization, Ikpayongo laterite, Pavement material. INTRODUCTION. Road building in the developing nations has been a major challenge to ...

  15. Soil erosion on road and railways embankments in the Canyoles river Basin. Eastern Spain.

    Science.gov (United States)

    Cerdà, Artemi; Antonio, Giménez-Morera; Félix Ángel, González-Peñaloza; María, Burguet; Paulo, Pereira; José Reyes, Ruiz

    2013-04-01

    Mediterranean landscapes are man-made. Its human ecosystems are characterized by a high population density, a long history of human settlement and an intense exchange of goods and people (Cerdà et al., 2010). This was possible due to a dense road network, most of it created during the Roman Empire. Modern roads and railways increased drastically during the last 30 years in the Mediterranean. Spain is a clear example of the acceleration of the road and railway infrastructures (Bel, 2005), especially during the 1960s as the tourism started to become a big issue in this part of the World. The increase in road and railways during the last 30 years resulted in a new transport system in Spain, which is based on high-speed railways and motorways. The characteristic of these infrastructures is that they were built by means of embankments, and little is now about the erosional response of those embankments to rainfall. The objective of this research is to assess the soil losses measured in road and railway embankments. The Canyoles River watershed was selected as an example of a region with a dense and recently developed modern network of roads, motorways and railway. The Canyoles river watershed is the natural path between the Mediterranean coast and Central Spain, the capital of the country and the touristic regions. Two motorways and two railways were built or re-built during the last two years and this paper assesses their impact on soil and water losses. As soil erosion rates are dependent on the high intensity - low frequency rainfall events, rainfall simulation experiments (40 experiments) were conducted (1 m2 plots; 60 minutes duration; 78 mm h-1 intensity) were carried out over plots on 2 railway (n=10 + 10) and motorway (n=10 + 10) research sites in August 2011, under very dry conditions. Soil moisture was below 5 % in the top 2 cm soil layer. The vegetation cover was very low in the two road and two railway embankments as the average cover was 4.2 % ranging from

  16. Effects of forest road amelioration techniques on soil bulk density, surface runoff, sediment transport, soil moisture and seedling growth

    Science.gov (United States)

    Randy K. Kolka; Mathew F. Smidt

    2004-01-01

    Although numerous methods have been used to retire roads, new technologies have evolved that can potentially ameliorate soil damage, lessen ,the generation of nonpoint source pollution and increase tree productivity on forest roads. In this study we investigated the effects of three forest road amelioration techniques, subsoiling, recontouring and traditional...

  17. Use of soil stabilizers on highway shoulders.

    Science.gov (United States)

    2005-01-01

    This study evaluated soil additives as stabilizers for aggregate and topsoil shoulders. Its purpose was to determine (1) the effect soil stabilizers have on the strength and stability of soil shoulders, and (2) the costs and benefits of using stabili...

  18. Experimental study of collapsing properties of the compacted soil foundation of auto-road embankment

    Directory of Open Access Journals (Sweden)

    Yushkov Boris Semenovich

    2014-06-01

    Full Text Available The loess collapsing soils are practically ubiquitously distributed in the Perm region. They occupy about 30% of the region area. The mass construction of buildings and structures of different purposes is conducted there. Design and construction of auto-roads on the collapsing soils by ensuring their strength and normal operation is one of the most important and difficult problems of the modern construction. It is recommended to eliminate collapsing properties of soils within the entire collapsing strata with the use of deep compaction by rammers and presoaking of foundation soils, including that with deepwater explosions, chemical or thermal fixing. Multi-year practice of construction on the collapsing soils in the regions of our country showed that during erection of the various structures the removal of the powerful loess soil collapsibility is achieved with the help of methods described above, each of which is selected on the basis of the conditions and possibilities of application. This article describes the following tasks: 1. Study and generalization of the available experience of road construction on the loess soils; 2. Zoning and classification (typing of the loess strata; 3. Selection of the engineering-geological factors influencing the choice of method for compacting collapsing soils; 4. General provisions for road construction on the collapsing soils.

  19. Evaluation of Carbonation Effects on Cement-Solidified Contaminated Soil Used in Road Subgrade

    Directory of Open Access Journals (Sweden)

    Yundong Zhou

    2018-01-01

    Full Text Available Cement solidification/stabilization is widely used towards contaminated soil since it has a low price and significant improvement for the structural capacity of soil. To increase the usage of the solidified matrix, cement-solidified contaminated soil was used as road subgrade material. In this study, carbonation effect that reflected the durability on strength characteristics of cement-solidified contaminated soil and the settlement of pavement were evaluated through experimental and numerical analysis, respectively. According to results, compressive strengths of specimens with 1% Pb(II under carbonation and standard curing range from 0.44 MPa to 1.17 MPa and 0.14 MPa to 2.67 MPa, respectively. The relatively low strengths were attributed to immobilization of heavy metal, which consumed part of SiO2, Al2O3, and CaO components in the cement or kaolin and reduced the hydration and pozzolanic reaction materials. This phenomenon further decreased the strength of solidified soils. The carbonation depth of 1% Cu(II or Zn(II contaminated soils was 18 mm, which significantly increased with the increase of curing time and contamination concentration. Furthermore, the finite element calculation results showed that surface settlements decreased with the increase of modulus of subgrade and the distance away from the center. At the center, the pavement settlement was proportional to the level of traffic load.

  20. Use of wood ash for road stabilisation

    International Nuclear Information System (INIS)

    Lagerkvist, A.; Lind, B.

    2009-01-01

    Due to warmer winters in Sweden, the bearing capacity of forestry roads has become increasingly problematic in recent years. Road stabilization is needed in order to get timber out from the forests. This usually involves the addition of cement to the road body. However, wood ash is a possible substitute for cement because it has similar properties. Using wood ash has the added advantage of saving landfill space. This paper presented an ongoing laboratory study on leaching and mechanical stability, as well as frost-sensitivity using a 30 per cent ash addition to natural soils for reinforcing a forestry road near Timra in central Sweden. The road was being monitored with regard to environmental impact and mechanical properties. The paper discussed the potential of biofuel ashes and the increasing need to reinforce infrastructure due to climate change. The environmental impact from ash use in road constructions was then addressed. It was concluded that the application of ash in road construction would help to strengthen forest roads, make them more resistant to climatic change and render them accessible year-round. 32 refs., 3 tabs., 2 figs.

  1. Metal accumulation in roadside soil in Melbourne, Australia: Effect of road age, traffic density and vehicular speed

    International Nuclear Information System (INIS)

    De Silva, Shamali; Ball, Andrew S.; Huynh, Trang; Reichman, Suzie M.

    2016-01-01

    Concentrations of vehicular emitted heavy metals in roadside soils result in long term environmental damage. This study assessed the relationships between traffic characteristics (traffic density, road age and vehicular speed) and roadside soil heavy metals. Significant levels were recorded for Cd (0.06–0.59 mg/kg), Cr (18–29 mg/kg), Cu (4–12 mg/kg), Ni (7–20 mg/kg), Mn (92–599 mg/kg), Pb (16–144 mg/kg) and Zn (10.36–88.75 mg/kg), with Mn concentrations exceeding the Ecological Investigation Level. Significant correlations were found between roadside soil metal concentration and vehicular speed (R = 0.90), road age (R = 0.82) and traffic density (R = 0.68). Recently introduced metals in automotive technology (e.g. Mn and Sb) were higher in younger roads, while the metals present for many years (e.g. Cd, Cu, Pb, Zn) were higher in medium and old age roads confirming the risk of significant metal deposition and soil metal retention in roadside soils. - Highlights: • Elevated metal concentrations were recorded from Melbourne roadside soils. • Mn and Sb tended to be higher in younger roads. • Cd, Cu, Pb and Zn were particularly elevated in medium and old age roads. • Accumulation of Ag, Co and Sb were identified as potential emerging risks. • Mn concentrations exceeded Australian ecological investigation levels. - Investigating relationships between road age, traffic density and vehicular speed on the concentrations of metals in roadside soils.

  2. Effect of Rice Husk Ash on Soil Stabilization

    OpenAIRE

    Muhammad Qasim; Aroj Bashir; Mubashar Tanvir; Malik Muhammad Anees

    2015-01-01

    The soil frequently is fragile and has low stability in heavy loading. The objective of this study is to review the stabilization of soil using sustainable methods. Some strengthening approaches are available for stabilization of expansive soils. These methods consist of stabilization with soil replacement, chemical additives, moisture control, rewetting, surcharge loading, compaction control and thermal methods. The disadvantages may be associated with all these methods due to ineffectivenes...

  3. Runoff and windblown vehicle spray from road surfaces, risks and measures for soil and water.

    NARCIS (Netherlands)

    Schipper, P.N.M.; Comans, R.N.J.; Dijkstra, J.J.; Vergouwen, L.

    2007-01-01

    Soil and surface water along roads are exposed to pollution from motorways. The main pollutants are polycyclic aromatic hydrocarbons (PAH), mineral oil, heavy metals and salt. These pollutants originate from vehicles (fuel, wires, leakage), wear and degradation of road surfaces and road furniture

  4. Assessment of trace element stabilization in soil

    OpenAIRE

    Kumpiene, Jurate

    2005-01-01

    The thesis deals with the remediation of trace element contaminated soil by the chemical stabilization technique. The objective is to complement the knowledge about possibilities of applying the stabilization either (1) as an alternate soil remediation method to excavation and landfilling or (2) for a pre-treatment of contaminated soil before landfilling. The work is based on two case studies of the stabilization of 1) Cr, Cu, As, and Zn contaminated soil using metallic iron and 2) Pb and Cu ...

  5. Soil aggregation and slope stability related to soil density, root length, and mycorrhiza

    Science.gov (United States)

    Graf, Frank; Frei, Martin

    2013-04-01

    Eco-engineering measures combine the use of living plants and inert mechanical constructions to protect slopes against erosion and shallow mass movement. Whereas in geotechnical engineering several performance standards and guidelines for structural safety and serviceability of construction exist, there is a lack of comparable tools in the field of ecological restoration. Various indicators have been proposed, including the fractal dimension of soil particle size distribution, microbiological parameters, and soil aggregate stability. We present results of an soil aggregate stability investigation and compare them with literature data of the angle of internal friction ?' which is conventionally used in slope stability analysis and soil failure calculation. Aggregate stability tests were performed with samples of differently treated moraine, including soil at low (~15.5 kN/m³) and high (~19.0 kN/m³) dry unit weight, soil planted with Alnus incana (White Alder) as well as the combination of soil planted with alder and inoculated with the mycorrhizal fungus Melanogaster variegatus s.l. After a 20 weeks growth period in a greenhouse, a total of 100 samples was tested and evaluated. Positive correlations were found between the soil aggregate stability and the three variables dry unit weight, root length per soil volume, and degree of mycorrhization. Based on robust statistics it turned out that dry unit weight and mycorrhization degree were strongest correlated with soil aggregate stability. Compared to the non-inoculated control plants, mycorrhized White Alder produced significantly more roots and higher soil aggregate stability. Furthermore, the combined biological effect of plant roots and mycorrhizal mycelia on aggregate stability on soil with low density (~15.5 kN/m³) was comparable to the compaction effect of the pure soil from 15.5 to ~19.0 kN/m³. Literature data on the effect of vegetation on the angle of internal friction ?' of the same moraine showed

  6. Exploring the temporal stability of global road safety statistics.

    Science.gov (United States)

    Dimitriou, Loukas; Nikolaou, Paraskevas; Antoniou, Constantinos

    2018-02-08

    Given the importance of rigorous quantitative reasoning in supporting national, regional or global road safety policies, data quality, reliability, and stability are of the upmost importance. This study focuses on macroscopic properties of road safety statistics and the temporal stability of these statistics at a global level. A thorough investigation of two years of measurements was conducted to identify any unexpected gaps that could highlight the existence of inconsistent measurements. The database used in this research includes 121 member countries of the United Nation (UN-121) with a population of at least one million (smaller country data shows higher instability) and includes road safety and socioeconomic variables collected from a number of international databases (e.g. WHO and World Bank) for the years 2010 and 2013. For the fulfillment of the earlier stated goal, a number of data visualization and exploratory analyses (Hierarchical Clustering and Principal Component Analysis) were conducted. Furthermore, in order to provide a richer analysis of the data, we developed and compared the specification of a number of Structural Equation Models for the years 2010 and 2013. Different scenarios have been developed, with different endogenous variables (indicators of mortality rate and fatality risk) and structural forms. The findings of the current research indicate inconsistency phenomena in global statistics of different instances/years. Finally, the results of this research provide evidence on the importance of careful and systematic data collection for developing advanced statistical and econometric techniques and furthermore for developing road safety policies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Lead Concentrations in Soils and Some Wild Plant Species Along Two Busy Roads in Pakistan.

    Science.gov (United States)

    Khalid, Noreen; Hussain, Mumtaz; Young, Hillary S; Ashraf, Muhammad; Hameed, Mansoor; Ahmad, Rashid

    2018-02-01

    This study assessed the level of Pb in soil and five wild plant species (Calotropis procera, Datura alba, Parthenium hysterophorus, Cenchrus ciliaris and Ricinus communis) during all the four seasons. Two busy roads varying in age and traffic volume were selected i.e., Faisalabad-Sargodha road (FSR) and Pindi Bhattian to Lillah (M-2) in the Punjab, Pakistan. Results showed raised levels of Pb in both plants and soil samples along both roads. The range of Pb concentration in plants was 0.08-3.98 and 1.95-4.74 mg kg - 1 for soil. Higher Pb contamination was recorded along FSR road as compared to M-2. Among seasons, the higher Pb concentration was found during summer, probably due to very high temperature. Among all the plants studied, Calotropis procera accumulated the highest level (3.98 mg kg - 1 dry wt.) of Pb; Thus, it can be used as good biomonitor/phytoremediator at Pb contaminated areas.

  8. The Effect of Paved Roads on Organic Carbon Content of Soil in Taham Dam Basin

    Directory of Open Access Journals (Sweden)

    Mazyar Peyda

    2016-09-01

    Full Text Available Background: Contamination of water and soil through non-point sources such as road runoff causes environmental concern. The aim of this study is to determine the effect of Zanjan – Chavarzagh road on the total organic carbon (TOC content of sediments in tributaries and the river that lead to Taham Lake. Methods: In tributaries and the river 69 soil and sediment samples were taken and the Total organic carbon (TOC was measured according to Walkely-Black method. Also, Taham Dam Basin area and its hydrologic properties were calculated by Global Information System (GIS software. Results: Results showed that, TOC concentration has a significant negative relationship with the distance from the lake. TOC in soil samples taken from hillside of the road had significantly lower mean and median concentration ( median= 3262 , mean = 4083 ± 3461 mg/kg than the valley side ( median = 5324 , mean = 6178 ± 3980 mg/kg. The check dams across the tributaries and the river have not been effective in the reduction of TOC in sediments. Conclusion: Roads in the Taham Dam Basin, increases TOC content of soil and sediments in Taham dam basin. TOC moves toward Taham dam lake.

  9. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    Science.gov (United States)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  10. Use of additive material to stabilize the soil swelling

    Science.gov (United States)

    Parsaee, B.; Estabragh, A. R.; Bordbar, A. T.; Eskandari, G. H.

    2009-04-01

    Change volume increasing of soil, because of increase in its humidity content causes appearing of swelling phenomenon in the soil. This phenomenon has created a lot of damages in the building which is constructed on this kind of soils. Usage the additive materials which stabilize the swelling, has been the subject of many researches. In this research the Potential expansibility of the expansive soils, which were stabilized by additive materials such as Lime, cement and coal ash, was investigated. To get this purpose, by preparing soil samples mixed with upper additive material, changes of potential swelling of stabilized soils were compared. The results revealed that usage of these stabilizing materials caused the decrease in destructive effects due to swelling of soils to some extent. Keywords: swelling, soil stabilizing, additive material, coal ash

  11. Heavy metals in soils along unpaved roads in south west Cameroon: Contamination levels and health risks.

    Science.gov (United States)

    Ngole-Jeme, Veronica M

    2016-04-01

    Soils enriched with heavy metals from vehicular emission present a significant exposure route of heavy metals to individuals using unpaved roads. This study assessed the extent of Cd, Cr, Co, Cu, Ni, Pb and Zn contamination of soils along unpaved roads in Cameroon, and the health risks presented by incidental ingestion and dermal contact with the soils using metal contamination factor (CF) pollution load index, hazard quotients (HQ) and chronic hazard index (CHI). CF values obtained (0.9-12.2) indicate moderate to high contamination levels. HQ values for Cr, Cd and Pb exceeded the reference doses. Moderate health hazard exists for road users in the areas with intense anthropogenic activities and high average daily traffic (ADT) volume according to CHI values (1-4) obtained. The economy and quality of life in cities with unpaved roads could be threatened by health challenges resulting from long-term exposure to heavy metal derived from high ADT volumes.

  12. Response of soil aggregate stability to storage time of soil samples

    International Nuclear Information System (INIS)

    Gerzabek, M.H.; Roessner, H.

    1993-04-01

    The aim of the present study was to investigate the well known phenomenon of changing aggregate stability values as result of soil sample storage. In order to evaluate the impact of soil microbial activity, the soil sample was split into three subsamples. Two samples were sterilized by means of chloroform fumigation and gamma irradiation, respectively. However, the aggregate stability measurements at three different dates were not correlated with the microbial activity (dehydrogenase activity). The moisture content of the aggregate samples seems to be of higher significance. Samples with lower moisture content (range: 0.4 to 1.9%) exhibited higher aggregate stabilities. Thus, airdried aggregate samples without further treatment don't seem to be suitable for standardized stability measurements. (authors)

  13. Performance of Low-Volume Roads with Wearing Course Layer of Silty Sandy Soil Modified with Rice Husk Ash and Lime

    Energy Technology Data Exchange (ETDEWEB)

    Behak Katz, L.; Musso Laespiga, M.

    2016-07-01

    Rice husk ash (RHA) is a by-product of rice milling. Its use as soil stabilizer is a way to replace the final disposal with environmental benefit. However, RHA is not cementitious itself but when mixed with lime forms cements which improve the soil properties. A research of performance of a silty sandy soil modified with RHA and lime as wearing course layer of low-volume roads was conducted through two full-scale test sections with different pavements built in Artigas, northern Uruguay. The alkaline reactivity of RHA is low because the husk burning is not controlled. The soil-RHA-lime mix design was conducted according to the Thompson’s Method. The pavement test sections were monitored through deflection measures by Benkelman beam and observations of surface condition. The deflections decreased over time in both test sections due to the development of cementation of the study materials. After one year, the dust emission was reduced, the wet skid resistance of pavement surfaces improved and there was not rutting. The researched pavements have had a good performance under the existing traffic and environmental conditions, demonstrating that wearing course layer of silty sand modified with RHA and lime is an alternative to improve the condition of low-volume roads and to replace the final disposal of RHA, with environmental, social and economic benefits. (Author)

  14. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    Science.gov (United States)

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  15. Stabilization of dredged spoils for pavement construction in the ...

    African Journals Online (AJOL)

    Natural soils underlying the East-West road are mainly clay and silt of poor quality ... on the dredged soils included particle size distribution, compaction and California Bearing Ratio. Cement stabilization was performed on the dredged spoil.

  16. PAEs occurrence and sources in road dust and soil in/around parks in May in Tianjin, China.

    Science.gov (United States)

    Zhao, Jie; Ji, Yaqin; Zhu, Zhenyu; Zhang, Wei; Zhang, Lei; Zhao, Jingbo

    2018-01-01

    This is the first study reporting the presence of six phthalic acid esters (PAEs) in 45 composite soil and road dust samples collected in the urban zone of Tianjin, China. Three sample types (one soil and two road dust) were collected from the city parks. Soil samples (SI) were obtained from inside the park, road dust samples (RDI) were gathered from inside the park roads and the others (RDA) from roads surrounding parks. The range of concentrations of ∑ 6 PAEs in SI, RDI and RDA were 0.07-0.92μgg -1 , 0.42-6.32μgg -1 and 0.40-7.54μgg -1 , respectively. The highest SI ∑ 6 PAEs concentration (0.92μgg -1 in The People's Park) was 13 times higher than that of the lowest content (0.07μgg -1 in XiLiu Park). Furthermore, the spatial distribution of PAEs in RDI showed higher contents in the Nankai and Hexi districts. PAEs concentrations in different types of roads displayed significant differences (P roads such as arterial road > sub-arterial road > branch road. The results of nonparametric tests on ∑ 6 PAEs revealed significant differences between every two different sample types (P < 0.05). The analysis of the six PAEs types indicated DnBP and DEHP were the primary contaminating compounds in all sample types. The PCA results showed cosmetics and personal care products were important sources of PAEs in SI, and plasticizers were the key sources of PAEs in RDI and RDA. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Aggregate stability and soil degradation in the tropics

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    2004-01-01

    Aggregate stability is a measure of the structural stability of soils. Factors that influence aggregate stability are important in evaluating the ease with which soils erode by water and/or wind, the potential of soils to crust and/or seal, soil permeability, quasi-steady state infiltration rates and seedling emergence and in predicting the capacity of soils to sustain long-term crop production. Aggregate stability of soils can be measured by the wet-sieving or raindrop techniques. A reduction in soil aggregate stability implies an increase in soil degradation. Hence aggregate stability and soil degradation are interwoven. The measures used can either be preventive or remedial. Preventive practices minimize the chances of soil degradation occurring or the magnitude or severity of the damage when the degradation manifests. These include in Nigeria, (i) manuring and mulching, (ii) planted fallows and cover crops, (iii) sustainable farming systems, (iv) adequate rotations, (v) home gardens or compound farms, (vi) alley cropping and related agro forestry systems, and (vii) chemical fertilizers which are mainly remedial measures. Because of alterations in soil properties that affect particular land uses, soils may degrade for one crop (maize rather sorghum). As long as some land use is possible soil degradation is not always an absolute concept. Decline in agricultural productivity should be evaluated in terms of inputs such as fertilizer use, water management and tillage methods. We can alleviate some types of soil degradation by use of micronutrients, inorganic fertilizers and organic residues. Soil that responds to management practices cannot be said to be degraded. Since crop growth depends on weather, degraded soils may be more sensitive to harsh weather (e.g. drought, temperature) than undegraded soils. A soil is degraded if its productivity falls below the economic threshold even under favourable weather conditions or with judicious inputs. All human

  18. Improvement of Expansive Soils Using Chemical Stabilizers

    Science.gov (United States)

    Ikizler, S. B.; Senol, A.; Khosrowshahi, S. K.; Hatipoğlu, M.

    2014-12-01

    The aim of this study is to investigate the effect of two chemical stabilizers on the swelling potential of expansive soil. A high plasticity sodium bentonite was used as the expansive soil. The additive materials including fly ash (FA) and lime (L) were evaluated as potential stabilizers to decrease the swelling pressure of bentonite. Depending on the type of additive materials, they were blended with bentonite in different percentages to assess the optimum state and approch the maximum swell pressure reduction. According to the results of swell pressure test, both fly ash and lime reduce the swelling potential of bentonite but the maximum improvement occurs using bentonite-lime mixture while the swelling pressure reduction approaches to 49%. The results reveal a significant reduction of swelling potential of expansive soil using chemical stabilizers. Keywords: Expansive soil; swell pressure; chemical stabilization; fly ash; lime

  19. stabilized lateritic soil

    African Journals Online (AJOL)

    user

    this work to optimize the amount of bagasse ash content in cement-stabilized lateritic soil. Geometric .... can handle or consider all the properties involved at the same time to ...... Bearig Ratio of Used oil contaminated Lateritic soils” Nigerian ...

  20. stabilization of dredged spoils for pavement construction in the niger

    African Journals Online (AJOL)

    Dr. Tse

    Natural soils underlying the East-West road are mainly clay and silt of poor quality ... on the dredged soils included particle size distribution, compaction and California ... KEYWORDS: Stabilization, dredge spoil, pavement, Niger Delta, cement.

  1. Multiple evaluations of the removal of pollutants in road runoff by soil infiltration.

    Science.gov (United States)

    Murakami, Michio; Sato, Nobuyuki; Anegawa, Aya; Nakada, Norihide; Harada, Arata; Komatsu, Toshiya; Takada, Hideshige; Tanaka, Hiroaki; Ono, Yoshiro; Furumai, Hiroaki

    2008-05-01

    Groundwater replenishment by infiltration of road runoff is expected to be a promising option for ensuring a sustainable urban water cycle. In this study, we performed a soil infiltration column test using artificial road runoff equivalent to approximately 11-12 years of rainfall to evaluate the removal of pollutants by using various chemical analyses and bioassay tests. These results indicated that soil infiltration treatment works effectively to remove most of the pollutants such as organic matter (chemical oxygen demand (CODMn) and dissolved organic carbon (DOC)), P species, polycyclic aromatic hydrocarbons (PAHs), numerous heavy metals and oestrogenic activities. Bioassay tests, including algal growth inhibition test, Microtox and mutagen formation potential (MFP) test, also revealed effective removal of toxicities by the soils. However, limited amounts of NO3, Mn, Ni, alkaline earth metals, perfluorooctane sulphonate (PFOS) and perfluorooctane sulphonamide (FOSA) were removed by the soils and they possibly reach the groundwater and cause contamination.

  2. Untangling the biological contributions to soil stability in semiarid shrublands

    Science.gov (United States)

    Chaudhary, V. Bala; Bowker, Matthew A.; O'Dell, Thomas E.; Grace, James B.; Redman, Andrea E.; Rillig, Matthias C.; Johnson, Nancy C.

    2009-01-01

    Communities of plants, biological soil crusts (BSCs), and arbuscular mycorrhizal (AM) fungi are known to influence soil stability individually, but their relative contributions, interactions, and combined effects are not well understood, particularly in arid and semiarid ecosystems. In a landscape-scale field study we quantified plant, BSC, and AM fungal communities at 216 locations along a gradient of soil stability levels in southern Utah, USA. We used multivariate modeling to examine the relative influences of plants, BSCs, and AM fungi on surface and subsurface stability in a semiarid shrubland landscape. Models were found to be congruent with the data and explained 35% of the variation in surface stability and 54% of the variation in subsurface stability. The results support several tentative conclusions. While BSCs, plants, and AM fungi all contribute to surface stability, only plants and AM fungi contribute to subsurface stability. In both surface and subsurface models, the strongest contributions to soil stability are made by biological components of the system. Biological soil crust cover was found to have the strongest direct effect on surface soil stability (0.60; controlling for other factors). Surprisingly, AM fungi appeared to influence surface soil stability (0.37), even though they are not generally considered to exist in the top few millimeters of the soil. In the subsurface model, plant cover appeared to have the strongest direct influence on soil stability (0.42); in both models, results indicate that plant cover influences soil stability both directly (controlling for other factors) and indirectly through influences on other organisms. Soil organic matter was not found to have a direct contribution to surface or subsurface stability in this system. The relative influence of AM fungi on soil stability in these semiarid shrublands was similar to that reported for a mesic tallgrass prairie. Estimates of effects that BSCs, plants, and AM fungi have

  3. Analysis on soil compressibility changes of samples stabilized with lime

    Directory of Open Access Journals (Sweden)

    Elena-Andreea CALARASU

    2016-12-01

    Full Text Available In order to manage and control the stability of buildings located on difficult foundation soils, several techniques of soil stabilization were developed and applied worldwide. Taking into account the major significance of soil compressibility on construction durability and safety, the soil stabilization with a binder like lime is considered one of the most used and traditional methods. The present paper aims to assess the effect of lime content on soil geotechnical parameters, especially on compressibility ones, based on laboratory experimental tests, for several soil categories in admixture with different lime dosages. The results of this study indicate a significant improvement of stabilized soil parameters, such as compressibility and plasticity, in comparison with natural samples. The effect of lime stabilization is related to an increase of soil structure stability by increasing the bearing capacity.

  4. Soil moisture storage and hillslope stability

    Directory of Open Access Journals (Sweden)

    A. Talebi

    2007-09-01

    Full Text Available Recently, we presented a steady-state analytical hillslope stability model to study rain-induced shallow landslides. This model is based on kinematic wave dynamics of saturated subsurface storage and the infinite slope stability assumption. Here we apply the model to investigate the effect of neglecting the unsaturated storage on the assessment of slope stability in the steady-state hydrology. For that purpose we extend the hydrological model to compute the soil pore pressure distribution over the entire flow domain. We also apply this model for hillslopes with non-constant soil depth to compare the stability of different hillslopes and to find the critical slip surface in hillslopes with different geometric characteristics. In order to do this, we incorporate more complex approaches to compute slope stability (Janbu's non-circular method and Bishop's simplified method in the steady-state analytical hillslope stability model. We compare the safety factor (FS derived from the infinite slope stability method and the more complex approach for two cases: with and without the soil moisture profile in the unsaturated zone. We apply this extended hillslope stability model to nine characteristic hillslope types with three different profile curvatures (concave, straight, convex and three different plan shapes (convergent, parallel, divergent. Overall, we find that unsaturated zone storage does not play a critical role in determining the factor of safety for shallow and deep landslides. As a result, the effect of the unsaturated zone storage on slope stability can be neglected in the steady-state hydrology and one can assume the same bulk specific weight below and above the water table. We find that steep slopes with concave profile and convergent plan shape have the least stability. We also demonstrate that in hillslopes with non-constant soil depth (possible deep landslides, the ones with convex profiles and convergent plan shapes have

  5. Dust emissions from unpaved roads on the Colorado Plateau

    Science.gov (United States)

    Duniway, M.; Flagg, C.; Belnap, J.

    2013-12-01

    On the Colorado Plateau, elevated levels of aeolian dust have become a major land management and policy concern due to its influence on climate, weather, terrestrial ecosystem dynamics, landscape development and fertility, melting of snow and ice, air quality, and human health. Most desert soil surfaces are stabilized by plants, rocks, and/or physical or biological soil crusts, but once disturbed, sediment production from these surfaces can increase dramatically. Road development and use is a common surface disturbing activity in the region. The extent and density of roads and road networks is rapidly increasing due to continued energy exploration, infrastructure development, and off-highway recreation activities. Though it is well known that unpaved roads produce dust, the relative contribution of dust from existing roads or the implications of future road development to regional dust loading is unknown. To address this need, we have initiated a multifaceted research effort to evaluating dust emissions from unpaved roads regionally. At 34 sites arranged across various road surfaces and soil textures in southeastern Utah, we are: 1) monitoring dust emissions, local wind conditions, and vehicle traffic and 2) evaluating fugitive dust potential using a portable wind tunnel and measuring road characteristics that affect dust production. We will then 3) develop a GIS-based model that integrates results from 1 & 2 to estimate potential dust contributions from current and future scenarios of regional road development. Passive, horizontal sediment traps were installed at three distances downwind from the road edge. One control trap was placed upwind of the samplers to account for local, non-road dust emissions. An electronic vehicle counter and anemometer were also installed at monitoring sites. Dust samples were collected every three months at fixed heights, 15 cm up to 100 cm above the soil surface, from March 2010 to the present. Threshold friction velocities (TFV

  6. Geological Aspect of Slope Failure and Mitigation Approach in Bireun - Takengon Main Road, Aceh Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Ibnu Rusydy

    2016-04-01

    Full Text Available A soil and rock slope assessment survey was conducted along Bireun – Takengon main road in Aceh Province, Indonesia. The slope assessment survey was carried out to determine the geological condition, verify and identify the potential areas of slope failure and to study what type of slope stability and protection method could be applied to the road. Several research methodologies were conducted in the field such as rock and soil identification, and slope assessment. The survey was conducted in four selected areas along Bireun – Takengon main road. In study area I, soil creep occurred because of a presence of montmorillonite clay. The mitigation methods to reduce soil creeping in this area are building a retaining wall and pile. The shotcrete, wire mesh, net rock bolting, and rock removal method is suitable to apply in study area II. The shotcrete and soil nails were used because the type of rocks in those areas is sedimentary rock such as shale, sandstone, siltstone, and a boulder of a volcanic rock. The same approach shall be applied in study area IV. study area III was the best spot to learn about the mitigation approach for slope stability and provides many lessons learned. Aceh Province experience active tectonic movement, high intensity of rain, geological structures, a high degree of weathering, and high intensity of earthquake,as primary factors which trigger landslides. The techonology of slope stabilizing and protection methods can be applied to mitigate landslides.

  7. Use of chemical soil additives to stabilize off-road vehicle trails

    Science.gov (United States)

    J.N. Davis; J.E. Baier; J.P. Fulton; D.A. Brown; T.P. McDonald

    2007-01-01

    Off‐road vehicle (ORV) use is an increasingly popular form of outdoor recreation throughout the United States. This form of motorized recreation, however, can sometimes lead to serious erosion of trail running surfaces, with resulting export of sediment into forested ecosystems causing environmental degradation. This project was conducted to determine the...

  8. Geophysical methods for monitoring soil stabilization processes

    Science.gov (United States)

    Saneiyan, Sina; Ntarlagiannis, Dimitrios; Werkema, D. Dale; Ustra, Andréa

    2018-01-01

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety of available methods carbonate precipitation is a very promising one, especially when it is being induced through common soil borne microbes (MICP - microbial induced carbonate precipitation). Such microbial mediated precipitation has the added benefit of not harming the environment as other methods can be environmentally detrimental. Carbonate precipitation, typically in the form of calcite, is a naturally occurring process that can be manipulated to deliver the expected soil strengthening results or permeability changes. This study investigates the ability of spectral induced polarization and shear-wave velocity for monitoring calcite driven soil strengthening processes. The results support the use of these geophysical methods as soil strengthening characterization and long term monitoring tools, which is a requirement for viable soil stabilization projects. Both tested methods are sensitive to calcite precipitation, with SIP offering additional information related to long term stability of precipitated carbonate. Carbonate precipitation has been confirmed with direct methods, such as direct sampling and scanning electron microscopy (SEM). This study advances our understanding of soil strengthening processes and permeability alterations, and is a crucial step for the use of geophysical methods as monitoring tools in microbial induced soil alterations through carbonate precipitation.

  9. Industrial Wastes as Auxiliary Additives to Cement/Lime Stabilization of Soils

    OpenAIRE

    James, Jijo; Pandian, P. Kasinatha

    2016-01-01

    Chemical stabilization involves the use of chemical agents for initiating reactions within the soil for modification of its geotechnical properties. Cement and lime stabilization have been the most common stabilization methods adopted for soil treatment. Cement stabilization results in good compressive strengths and is preferred for cohesionless to moderately cohesive soil but loses effectiveness when the soil is highly plastic. Lime stabilization is the most preferred method for plastic clay...

  10. Environmental impact assessment of wood ash utilization in forest road construction and maintenance--A field study.

    Science.gov (United States)

    Oburger, Eva; Jäger, Anna; Pasch, Alexander; Dellantonio, Alex; Stampfer, Karl; Wenzel, Walter W

    2016-02-15

    The ever increasing use of wood material as fuel for green energy production requires innovative, environmentally safe strategies for recycling of the remaining wood ash. Utilizing wood ash in forest road construction and maintenance to improve mechanical stability has been suggested as a feasible recycling option. To investigate the environmental impact of wood ash application in forest road maintenance, a two-year field experiment was conducted at two Austrian forest sites (Kobernausserwald (KO) (soil pH 5.5) and Weyregg (WE) (pH 7.7)) differing in their soil chemical properties. Two different ashes, one produced by grate incineration (GA) and the other by fluidized bed incineration in a mixture with 15 vol% burnt lime (FBA), were incorporated in repeated road sections at a 15:85% (V/V) ash-to-soil rate. Leaching waters from the road body were collected and analyzed for 32 environmentally relevant parameters over two years. Upon termination of the experiment, sub-road soil samples were collected and analyzed for ash-related changes in soil chemistry. Even though a larger number of parameters was affected by the ash application at the alkaline site (WE), we observed the most pronounced initial increases of pH as well as Al, As, Fe, Mn, Ni, Co, Cu, Mo, and NO2(−) concentrations in leachates beneath GA-treated road bodies at Kobernausserwald due to the lower soil buffer capacity at this site. Despite the observed effects our results indicate that, when specific requirements are met (i.e. appropriate ash quality, sufficient soil buffer capacity below the road body, and single time-point ash incorporation within several decades), wood ash application in forest road construction is generally environmentally acceptable.

  11. ENVIRONMENTAL EVALUATION FOR UTILIZATION OF ASH IN SOIL STABILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Hassett; Loreal V. Heebink

    2001-08-01

    The Minnesota Pollution Control Agency (MPCA) approved the use of coal ash in soil stabilization, indicating that environmental data needed to be generated. The overall project goal is to evaluate the potential for release of constituents into the environment from ash used in soil stabilization projects. Supporting objectives are: (1) To ensure sample integrity through implementation of a sample collection, preservation, and storage protocol to avoid analyte concentration or loss. (2) To evaluate the potential of each component (ash, soil, water) of the stabilized soil to contribute to environmental release of analytes of interest. (3) To use laboratory leaching methods to evaluate the potential for release of constituents to the environment. (4) To facilitate collection of and to evaluate samples from a field runoff demonstration effort. The results of this study indicated limited mobility of the coal combustion fly ash constituents in laboratory tests and the field runoff samples. The results presented support previous work showing little to negligible impact on water quality. This and past work indicates that soil stabilization is an environmentally beneficial CCB utilization application as encouraged by the U.S. Environmental Protection Agency. This project addressed the regulatory-driven environmental aspect of fly ash use for soil stabilization, but the demonstrated engineering performance and economic advantages also indicate that the use of CCBs in soil stabilization can and should become an accepted engineering option.

  12. Seasonal variability of soil aggregate stability

    Czech Academy of Sciences Publication Activity Database

    Rohošková, M.; Kodešová, R.; Jirků, V.; Žigová, Anna; Kozák, J.

    2009-01-01

    Roč. 11, - (2009), , , EGU2009-6341-3-EGU2009-6341-3 ISSN 1029-7006. [European Geosciences Union General Assembly. 19.04.2009-24.04.2009, Vienna] R&D Projects: GA ČR GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : seasonal variability * soil aggregate stability * soil types Subject RIV: DF - Soil Science

  13. Evolution of the Stability Work from Classic Retaining Walls to Mechanically Stabilized Earth Walls

    Directory of Open Access Journals (Sweden)

    Anghel Stanciu

    2008-01-01

    Full Text Available For the consolidation of soil mass and the construction of the stability works for roads infrastructure it was studied the evolution of these kinds of works from classical retaining walls - common concrete retaining walls, to the utilization in our days of the modern and competitive methods - mechanically stabilized earth walls. Like type of execution the variety of the reinforced soil is given by the utilization of different types of reinforcing inclusions (steel strips, geosynthetics, geogrids or facing (precast concrete panels, dry cast modular blocks, metal sheets and plates, gabions, and wrapped sheets of geosynthetics.

  14. Peat Soil Stabilization using Lime and Cement

    Directory of Open Access Journals (Sweden)

    Mohd Zambri Nadhirah

    2018-01-01

    Full Text Available This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  15. Peat Soil Stabilization using Lime and Cement

    Science.gov (United States)

    Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.

    2018-03-01

    This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  16. Solidification/stabilization of dredged marine sediments for road construction.

    Science.gov (United States)

    Wang, Dong Xing; Abriak, Nor Edine; Zentar, Rachid; Xu, WeiYa

    2012-01-01

    Cement/lime-based solidification is an environmentally sound solution for the management of dredged marine sediments, instead of traditional solutions such as immersion. Based on the mineralogical composition and physical characteristics of Dunkirk sediments, the effects of cement and lime are assessed through Atterberg limits, modified Proctor compaction, unconfined compressive strength and indirect tensile strength tests. The variation of Atterberg limits and the improvement in strength are discussed at different binder contents. The potential of sediments solidified with cement or lime for road construction is evaluated through a proposed methodology from two aspects: I-CBR value and material classification. The test results show the feasibility of solidified dredged sediments for beneficial use as a material in road construction. Cement is superior to lime in terms of strength improvement, and adding 6% cement is an economic and reasonable method to stabilize fine sediments.

  17. Assessment of soil-gas, seep, and soil contamination at the North Range Road Landfill, Fort Gordon, Georgia, 2008-2009

    Science.gov (United States)

    Landmeyer, James E.; Falls, W. Fred; Ratliff, W. Hagan; Wellborn, John B.

    2011-01-01

    Soil gas, seeps, and soil were assessed for contaminants at the North Range Road Landfill at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineating organic contaminants present in soil-gas samples beneath the area estimated to be the landfill and in water samples collected from three seeps at the base of the landfill. Inorganic contaminants were determined in three seep samples and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process.

  18. Reassessment of problems affecting stabilized layers in roads in South Africa

    CSIR Research Space (South Africa)

    Paige-Green, P

    2009-11-01

    Full Text Available of stabilization problems. It is concluded that, although there is indubitable proven field and laboratory evidence for carbonation of stabilized layers, there is no solid scientific evidence for the occurrence of the “water driven reactions” in soil stabilization...

  19. Soil manganese redox cycling in suboxic zones: Effects on soil carbon stability

    Science.gov (United States)

    Suboxic soil environments contain a disproportionately higher concentration of highly reactive free radicals relative to the surrounding soil matrix, which may have significant implications for soil organic matter cycling and stabilization. This study investigated how Mn-ozidizin...

  20. Soil treatment in flood areas: case of the road RP4209, in the province of Kenitra (Morocco

    Directory of Open Access Journals (Sweden)

    Sebbar N.

    2018-01-01

    Full Text Available The Moroccan road network has a linear of more than 57,000 km divided into national, regional, provincial and unclassified roads. Population growth, the transport of goods and the mobility of people require the construction of new links between regions and the maintenance of existing ones. Indeed, several factors, such as rainfall and floods, can cause enormous damage to existing infrastructure. Among the most at-risk areas is the GHARB region, especially the province of Kénitra, represented in this study by Provincial Road RP4209, which includes flood-prone areas with abundant watercourses, associated with poor type of soil. To mitigate these phenomena and to try to reduce their impacts, in particular on the components of a road, one of the appropriate solutions remains the treatment of soils. This process is increasingly practiced in the construction industry, improves the geotechnical and mechanical characteristics of soils without having to go through the contribution of materials from other regions, all for the purpose of a valuation of materials in place by treatment with lime, different hydraulic binders, or industrial products, which will provide an economic and environmental gain

  1. Use of stabilized bottom ash for bound layers of road pavements.

    Science.gov (United States)

    Toraldo, Emanuele; Saponaro, Sabrina; Careghini, Alessandro; Mariani, Edoardo

    2013-05-30

    This paper reports about the lab scale results obtained by using stabilized bottom ash (SBA) from an Italian municipal solid waste incinerator as aggregates in cement-bound mixes and asphalt concretes for road pavements. The investigation focused on SBA content. From the road construction point of view, performance related to compaction, volumetric and mechanical properties were assessed. The environmental aspects were investigated performing leaching tests. The results suggested that SBA satisfied the environmental Italian law for reuse of non-hazardous waste but affected significantly the stress-strain behavior of the final products. Therefore a maximum percentage of 10% was suggested. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Scanning electronic microscopy on clays in soils used as road foundations

    International Nuclear Information System (INIS)

    Barelli, N.

    1982-01-01

    The scanning electron microscope (SEM) proves to be ideally suited for studying the morphology, texture and fabric of clays in soils used as road foundation. It is also seen that certain samples are easier to examine by SEM because of their larger crystallite sizes, better crystallinities and open textures. (C.L.B.) [pt

  3. Natural, low cost road construction materials: their occurrence and stabilization

    CSIR Research Space (South Africa)

    Clauss, KA

    2009-02-20

    Full Text Available The book brings together the results of research spread over a number of reports and papers during the past 27 years and to create a guide for soil stabilization work. Its aim is to provide sufficient knowledge of soil/lime reactions to make...

  4. Soil aggregate stability within the morphologically diverse area

    Science.gov (United States)

    Jaksik, Ondrej; Kodesova, Radka; Kubis, Adam; Klement, Ales; Fer, Miroslav

    2013-04-01

    This study evaluates the effect of soil erosion on properties of topsoil especially on soil aggregate stability. Study was performed on morphologically diverse study site (6 ha area) in loess region of Southern Moravia, Czech Republic. The region has been under uninterrupted agricultural use since the middle of the Holocene. Haplic Chernozem is an original dominant soil unit in the area, nowadays progressively transformed into different soil units along with intensive soil erosion. There are eroded phases of Chernozem, Regosol (the steepest and heavily eroded parts of the study area), colluvial Chernozem and Colluvial soil (base slope). Sampling spots were selected in order to represent diverse soil units and morphological units. Soil samples were taken from the topsoil, carefully transported to the laboratory and consequently air dried. Following soil properties were measured: pH_KCl, pH_CaCl2, soil organic matter content (SOM), carbonate content (CO3), content of iron and manganese (in ammonium oxalate extract, Feo and Mn_o, and dithionite-citrate extract, Fed and Mn_d), and stability of soil aggregates using two different methods. The indexes of water stable aggregates (WSA) were determined using the procedure presented by Nimmo and Perkins (2002). The three methods proposed by Le Bissonnais (1996) were also used to study various destruction mechanisms. The fast wetting test (KV1) was applied to study aggregate slaking due to the compression of the entrapped air (mechanism similar to the WSA test). The slow wetting test (KV2) was used to evaluate aggregate disintegration caused by the micro cracking due to the different swelling, and physico-chemical dispersion due to the osmotic stress. The shaking after prewetting test (KV3) was utilized to study the mechanical aggregate breakdown. Terrain attributes were evaluated from digital terrain model. In general the lowest soil aggregate stability was observed on steep slopes, which were highly impacted by soil erosion

  5. Spatial and temporal variations in Pb concentrations and isotopic composition in road dust, farmland soil and vegetation in proximity to roads since cessation of use of leaded petrol in the UK

    International Nuclear Information System (INIS)

    MacKinnon, G.; MacKenzie, A.B.; Cook, G.T.; Pulford, I.D.; Duncan, H.J.; Scott, E.M.

    2011-01-01

    Results are presented for a study of spatial distributions and temporal trends in concentrations of lead (Pb) from different sources in soil and vegetation of an arable farm in central Scotland in the decade since the use of leaded petrol was terminated. Isotopic analyses revealed that in all of the samples analysed, the Pb conformed to a binary mixture of petrol Pb and Pb from industrial or indigenous geological sources and that locally enhanced levels of petrol Pb were restricted to within 10 m of a motorway and 3 m of a minor road. Overall, the dominant source of Pb was historical emissions from nearby industrial areas. There was no discernible change in concentration or isotopic composition of Pb in surface soil or vegetation over the decade since the ban on the sale of leaded petrol. There was an order of magnitude decrease in Pb concentrations in road dust over the study period, but petrol Pb persisted at up to 43% of the total Pb concentration in 2010. Similar concentrations and spatial distributions of petrol Pb and non petrol Pb in vegetation in both 2001 and 2010, with enhanced concentrations near roads, suggested that redistribution of previously deposited material has operated continuously over that period, maintaining a transfer pathway of Pb into the biosphere. The results for vegetation and soil transects near minor roads provided evidence of a non petrol Pb source associated with roads/traffic, but surface soil samples from the vicinity of a motorway failed to show evidence of such a source. - Highlights: → A 10 year study of Pb concentrations and isotopic compositions in farmland. → Soil and vegetation showed no systematic decrease in Pb concentrations over 10 years. → Road dust Pb concentrations fell from 117 mg kg -1 in 2001 to 14.2 mg kg -1 in 2010. → Enhancement of petrol Pb only within 10m of a motorway and 3m of a minor road.

  6. IMPACTS OF ROAD DE-ICING SALTS ON MANGANESE TRANSPORT TO GROUNDWATER IN ROADSIDE SOILS

    OpenAIRE

    Wen, Yingrong

    2012-01-01

    Manganese (Mn) is an important element in soil, it occur natural in minerals and precipitated as Mn-oxides. Several factors could decide the solubility and mobility of Mn in soil water. In this study, the impact of road de-icing salts (NaCl) on manganese mobilization and transport to groundwater in roadside soils has been investigated by leaching tests. Generally, in the salt solution leachates, the water-soluble concentrations of Mn tended to increase with elevated salt concentrations, sugge...

  7. Effect of cement injection on sandy soil slope stability, case study: slope in Petang district, Badung regency

    Science.gov (United States)

    Arya, I. W.; Wiraga, I. W.; GAG Suryanegara, I.

    2018-01-01

    Slope is a part of soil topography formed due to elevation difference from two soil surface. Landslides is frequently occur in natural slope, it is because shear force is greater than shear strength in the soil. There are some factor that influence slope stability such as: rain dissipation, vibration from earthquake, construction and crack in the soil. Slope instability can cause risk in human activity or even threaten human lives. Every years in rainy season, landslides always occur in Indonesia. In 2016, there was some landslide occurred in Bali. One of the most damaging is landslide in Petang district, Badung regency. This landslide caused main road closed entirely. In order to overcome and prevent landslide, a lot of method have been practiced and still looking for more sophisticated method for forecasting slope stability. One of the method to strengthen soil stability is filling the soil pores with some certain material. Cement is one of the material that can be used to fill the soil pores because when it is in liquid form, it can infiltrate into soil pores and fill the gap between soil particles. And after it dry, it can formed a bond with soil particle so that soil become stronger and the slope as well. In this study, it will use experimental method, slope model in laboratory to simulate a real slope behavior in the field. The first model is the slope without any addition of cement. This model will be become a benchmark for the other models. The second model is a slope with improved soil that injects the slope with cement. Injection of cement is done with varying interval distance of injection point is 5 cm and 10 cm. Each slope model will be given a load until the slope collapses. The slope model will also be analyzed with slope stability program. The test results on the improved slope models will be compared with unimproved slope. In the initial test will consist of 3 model. First model is soil without improvement or cement injection, second model is soil

  8. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads.

    Science.gov (United States)

    Yan, Geng; Mao, Lingchen; Liu, Shuoxun; Mao, Yu; Ye, Hua; Huang, Tianshu; Li, Feipeng; Chen, Ling

    2018-08-01

    The road traffic has become one of the main sources of urban pollution and could directly affect roadside soils. To understand the level of contamination and potential sources of trace metals in roadside soils of Shanghai, 10 trace metals (Sb, Cr, Co, Ni, Cu, Cd, Pb, Hg, Mn and Zn) from two urban/rural roads (Hutai Road and Wunign-Caoan Road) were analyzed in this study. Antimony, Ni, Cu, Cd, Pb, Hg and Zn concentrations were higher than that of soil background values of Shanghai, whereas accumulation of Cr, Co and Mn were minimal. Significantly higher Sb, Cd, Pb contents were found in samples from urban areas than those from suburban area, suggesting the impact from urbanization. The concentrations of Sb and Cd in older road (Hutai) were higher than that in younger road (Wunign-Caoan). Multivariate statistical analysis revealed that Sb, Cu, Cd, Pb and Zn were mainly controlled by traffic activities (e.g. brake wear, tire wear, automobile exhaust) with high contamination levels found near traffic-intensive areas; Cr, Co, Ni and Mn derived primarily from soil parent materials; Hg was related to industrial activities. Besides, the enrichment of Sb, Cd, Cu, Pb and Zn showed a decreasing trend with distance to the road edges. According to the enrichment factors (EF s ), 78.5% of Sb, Cu, Cd, Pb and Zn were in moderate or significant pollution, indicating considerable traffic contribution. In particular, recently introduced in automotive technology, accumulation of Sb has been recognized in 42.9% samples of both roads. The accumulation of these traffic-derived metals causes potential negative impact to human health and ecological environment and should be concerned, especially the emerging trace elements like Sb. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Overview of JGC soil washing and site stabilization (SWSS) concept

    International Nuclear Information System (INIS)

    Goetsch, S.; Fujimura, Y.; Sauda, K.; Yagi, T.; Suzuki, K.

    1991-01-01

    The JGC Soil Washing and Site Stabilization (SWSS) concept is to wash heavy metal and uranium-contaminated soils using well demonstrated techniques, and to follow that process with its innovative stabilization process, to fix the remaining contaminates within a stable matrix. In addition, the solution used to wash the soil is stripped of contaminates, so that it can be reused. This process reduces the total amount of wastes generated from washing the soil, since not only can the solution be reused, but often the extracted contaminates can be recovered for industrial use. The stabilization portion of the concept is based on a family of proprietary fixing agents which can render the remaining contaminates insoluble. These agents are significantly different from other (generally silicate) agents used for stabilizing contaminated soils in that they appear to bond more strongly to heavy metal contaminants than the silicate-based reagents, resulting in improved leach-rate performance when combined with bentonite or portland cement stabilization

  10. Uso de resíduos em pavimentos de estradas florestais: caracterização de solos e misturas solo-grits Application of waste in forest road pavements: characterization of soils and soil-grits mixtures

    Directory of Open Access Journals (Sweden)

    Reginaldo Sérgio Pereira

    2006-08-01

    Full Text Available Este artigo aborda uma etapa preliminar de um estudo direcionado às propriedades de engenharia de misturas de solos e aditivos químicos, para fins de aplicação em estradas florestais. Trabalhou-se com amostras de dois solos da Zona da Mata Norte de Minas Gerais, Brasil, de texturas arenosa e argilosa, estabilizadas com o resíduo industrial denominado "grits" proveniente de indústria de celulose. Foram realizados ensaios geotécnicos nos solos e nas misturas solo-aditivo químico, como se segue: análise granulométrica, peso específico dos sólidos, limites de Atterberg e compactação. Os resultados encontrados dos ensaios de laboratório revelaram que o resíduo apresentou bom desempenho como agente estabilizante, alterando significativamente a plasticidade e os parâmetros de compactação dos solos analisados.This paper addresses data from a research program in development on engineering properties of soil-chemical stabilizer mixtures for forest road application. Soil samples from sandy and clayey soils from the Zona da Mata Norte of Minas Gerais, Brazil, stabilized with grits (waste from cellulose industries were used throughout the study. The laboratory-testing program comprised the following geotechnical tests: sieve analysis, density of solid particles, Atterberg limits and compaction. Data supported the good behavior of waste as stabilizer agent changing significantly soil plasticity and compaction parameters.

  11. Geophysical Methods for Monitoring Soil Stabilization Processes

    Science.gov (United States)

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety...

  12. Use of coal fly ash and other waste products in soil stabilization and road construction-including non-destructive testing of roadways.

    Science.gov (United States)

    2012-02-01

    An extensive laboratory testing program was performed on subgrade soils stabilized using fly ash and lime kiln dust. The laboratory : program included measurements of: compaction curves, small strain elastic moduli, resilient modulus (Mr), Briaud Com...

  13. Use of coal fly ash and other waste products in soil stabilization and road construction including non-destructive testing of roadways.

    Science.gov (United States)

    2012-06-01

    An extensive laboratory testing program was performed on subgrade soils stabilized using fly ash and : lime kiln dust. The laboratory program included measurements of: compaction curves, small strain elastic moduli, : resilient modulus (Mr), Briaud C...

  14. Cost of and soil loss on "minimum-standard" forest truck roads constructed in the central Appalachians

    Science.gov (United States)

    J. N. Kochenderfer; G. W. Wendel; H. Clay Smith

    1984-01-01

    A "minimum-standard" forest truck road that provides efficient and environmentally acceptable access for several forest activities is described. Cost data are presented for eight of these roads constructed in the central Appalachians. The average cost per mile excluding gravel was $8,119. The range was $5,048 to $14,424. Soil loss was measured from several...

  15. experimental characterization of clay soils behavior stabilized

    African Journals Online (AJOL)

    S. Rehab Bekkouche, G. Boukhatem

    2016-09-01

    Sep 1, 2016 ... California Bearing Ratio (CBR) ... the globe. Clay soils have the curious property of seeing their consistency changes according ... The use of building materials had been popularly applied to soil stabilization, such as cement.

  16. Test procedure for determining organic matter content in soils : UV-VIS method.

    Science.gov (United States)

    2010-11-01

    The Texas Department of Transportation has been having problems with organic matter in soils that they : stabilize for use as subgrade layers in road construction. The organic matter reduces the effectiveness of : common soil additives (lime/cement) ...

  17. Formation and Stability of Microbially Derived Soil Organic Matter

    Science.gov (United States)

    Waldrop, M. P.; Creamer, C.; Foster, A. L.; Lawrence, C. R.; Mcfarland, J. W.; Schulz, M. S.

    2017-12-01

    Soil carbon is vital to soil health, food security, and climate change mitigation, but the underlying mechanisms controlling the stabilization and destabilization of soil carbon are still poorly understood. There has been a conceptual paradigm shift in how soil organic matter is formed which now emphasizes the importance of microbial activity to build stable (i.e. long-lived) and mineral-associated soil organic matter. In this conceptual model, the consumption of plant carbon by microorganisms, followed by subsequent turnover of microbial bodies closely associated with mineral particles, produces a layering of amino acid and lipid residues on the surfaces of soil minerals that remains protected from destabilization by mineral-association and aggregation processes. We tested this new model by examining how isotopically labeled plant and microbial C differ in their fundamental stabilization and destabilization processes on soil minerals through a soil profile. We used a combination of laboratory and field-based approaches to bridge multiple spatial scales, and used soil depth as well as synthetic minerals to create gradients of soil mineralogy. We used Raman microscopy as a tool to probe organic matter association with mineral surfaces, as it allows for the simultaneous quantification and identification of living microbes, carbon, minerals, and isotopes through time. As expected, we found that the type of minerals present had a strong influence on the amount of C retained, but the stabilization of new C critically depends on growth, death, and turnover of microbial cells. Additionally, the destabilization of microbial residue C on mineral surfaces was little affected by flushes of DOC relative to wet-dry cycles alone. We believe this new insight into microbial mechanisms of C stabilization in soils will eventually lead to new avenues for measuring and modeling SOM dynamics in soils, and aid in the management of soil C to mediate global challenges.

  18. Potential of Using Nanocarbons to Stabilize Weak Soils

    Directory of Open Access Journals (Sweden)

    Jamal M. A. Alsharef

    2016-01-01

    Full Text Available Soil stabilization, using a variety of stabilizers, is a common method used by engineers and designers to enhance the properties of soil. The use of nanomaterials for soil stabilization is one of the most active research areas that also encompass a number of disciplines, including civil engineering and construction materials. Soils improved by nanomaterials could provide a novel, smart, and eco- and environment-friendly construction material for sustainability. In this case, carbon nanomaterials (CNMs have become candidates for numerous applications in civil engineering. The main objective of this paper is to explore improvements in the physical properties of UKM residual soil using small amounts (0.05, 0.075, 0.1, and 0.2% of nanocarbons, that is, carbon nanotube (multiwall carbon nanotube (MWCNTs and carbon nanofibers (CNFs. The parameters investigated in this study include Atterberg’s limits, optimum water content, maximum dry density, specific gravity, pH, and hydraulic conductivity. Nanocarbons increased the pH values from 3.93 to 4.16. Furthermore, the hydraulic conductivity values of the stabilized fine-grained soil samples containing MWCNTs decreased from 2.16E-09 m/s to 9.46E-10 m/s and, in the reinforcement sample by CNFs, the hydraulic conductivity value decreased to 7.44E-10 m/s. Small amount of nanocarbons (MWCNTs and CNFs decreased the optimum moisture content, increased maximum dry density, reduced the plasticity index, and also had a significant effect on its hydraulic conductivity.

  19. Water-stability of soil aggregates in relation to selected properties

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.; Bazzoffi, P.; Unamba Oparah, I.

    1995-03-01

    The stability of soil aggregates in water is an important soil physical property for evaluating the potential of agricultural soils to erode and elucidating the mechanisms of soil erosion. In this study we used aggregates from 15 surface soil samples in Italy to evaluate the influence of intrinsic soil physical, chemical and mineralogical properties on aggregates stability (AS). The aim was to develop a model for predicting AS from a subset of these soil properties. The index of stability used is the mean-weight diameter of water-stable aggregates (MWD). The model developed with soil physical properties alone explained just 42% of variance in MWD and predicted AS in only 20% of test soils. The model developed with mineralogical properties alone explained 70% of variance in MWD and predicted AS in 60% of the test soils. The chemical properties - based model explained 90% of variance in MWD and predicted AS in 80% of the test soils. The best-fit model was developed with soil properties from the physical, chemical and mineralogical subsets. It explained 98% of variance in MWD and predicted AS in 100% of the test soils. This model shows that the most important soil properties which influence the AS of these soils include ratio of total sand to clay, concentrations of iron oxide, magnesium oxide, organic matter, silica/alumina ratio, chlorite, feldspar and muscovite. This indicates that fairly good estimates of the relative stability of these aggregates in water and hence of their potential to erode, requires a knowledge of the physico-chemical and mineralogical properties. (author). 40 refs, 4 tabs

  20. [Stabilization and long-term effect of chromium contaminated soil].

    Science.gov (United States)

    Wang, Jing; Luo, Qi-Shi; Zhang, Chang-Bo; Tan, Liang; Li, Xu

    2013-10-01

    Short-term (3 d and 28 d) and long-term (1 a) stabilization effects of Cr contaminated soil were investigated through nature curing, using four amendments including ferrous sulfide, ferrous sulfate, zero-valent iron and sodium dithionite. The results indicated that ferrous sulfide and zero-valent iron were not helpful for the stabilization of Cr(VI) when directly used because of their poor solubility and immobility. Ferrous sulfate could effectively and rapidly decrease total leaching Cr and Cr(VI) content. The stabilization effect was further promoted by the generation of iron hydroxides after long-term curing. Sodium dithionite also had positive effect on soil stabilization. Appropriate addition ratio of the two chemicals could help maintain the soil pH in range of 6-8.

  1. Industrial Wastes as Auxiliary Additives to Cement/Lime Stabilization of Soils

    Directory of Open Access Journals (Sweden)

    Jijo James

    2016-01-01

    Full Text Available Chemical stabilization involves the use of chemical agents for initiating reactions within the soil for modification of its geotechnical properties. Cement and lime stabilization have been the most common stabilization methods adopted for soil treatment. Cement stabilization results in good compressive strengths and is preferred for cohesionless to moderately cohesive soil but loses effectiveness when the soil is highly plastic. Lime stabilization is the most preferred method for plastic clays; however, it proves to be ineffective in sulphate rich clays and performs poorly under extreme conditions. With such drawbacks, lots of researches have been undertaken to address the issues faced with each stabilization method, in particular, the use of solid wastes for soil stabilization. Solid waste reuse has gained high momentum for achieving sustainable waste management in recent times. Research has shown that the use of solid wastes as additives with and replacement for conventional stabilizers has resulted in better results than the performance of either individually. This review provides insight into some of the works done by earlier researchers on lime/cement stabilization with industrial wastes as additives and helps to form a sound platform for further research on industrial wastes as additives to conventional stabilizers.

  2. Predicting risk of trace element pollution from municipal roads using site-specific soil samples and remotely sensed data.

    Science.gov (United States)

    Reeves, Mari Kathryn; Perdue, Margaret; Munk, Lee Ann; Hagedorn, Birgit

    2018-07-15

    Studies of environmental processes exhibit spatial variation within data sets. The ability to derive predictions of risk from field data is a critical path forward in understanding the data and applying the information to land and resource management. Thanks to recent advances in predictive modeling, open source software, and computing, the power to do this is within grasp. This article provides an example of how we predicted relative trace element pollution risk from roads across a region by combining site specific trace element data in soils with regional land cover and planning information in a predictive model framework. In the Kenai Peninsula of Alaska, we sampled 36 sites (191 soil samples) adjacent to roads for trace elements. We then combined this site specific data with freely-available land cover and urban planning data to derive a predictive model of landscape scale environmental risk. We used six different model algorithms to analyze the dataset, comparing these in terms of their predictive abilities and the variables identified as important. Based on comparable predictive abilities (mean R 2 from 30 to 35% and mean root mean square error from 65 to 68%), we averaged all six model outputs to predict relative levels of trace element deposition in soils-given the road surface, traffic volume, sample distance from the road, land cover category, and impervious surface percentage. Mapped predictions of environmental risk from toxic trace element pollution can show land managers and transportation planners where to prioritize road renewal or maintenance by each road segment's relative environmental and human health risk. Published by Elsevier B.V.

  3. Effects of corn cob ash on lime stabilized lateritic soil

    Science.gov (United States)

    Nnochiri, Emeka Segun

    2018-03-01

    This study assesses the effects of Corn Cob Ash (CCA) on lime-stabilized lateritic soil. Preliminary tests were carried out on the natural soil sample for purpose of identification and classification. Lime being the main stabilizing material was thoroughly mixed with the soil sample to determine the optimum lime requirement of the sample as a basis for evaluating the effects of the CCA. The optimum lime requirement was 10%. The CCA was thereafter added to the lime stabilized soil in varying proportions of 2, 4, 6, 8 and 10%. Unsoaked CBR increased from 83% at 0% CCA to highest value of 94% at 4% CCA. Unconfined Compressive Strength (UCS) values increased from 1123kN/m2 at 0% CCA to highest value of 1180kN/m2 at 4% CCA. It was therefore concluded that CCA can serve as a good complement for lime stabilization in lateritic soil.

  4. The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents.

    Science.gov (United States)

    Zhu, Hao; Wu, Chunfa; Wang, Jun; Zhang, Xumei

    2018-04-16

    Stabilization technology is one of widely used remediation technologies for cadmium (Cd)-contaminated agricultural soils, but stabilized Cd in soil may be activated again when external conditions such as acid rain occurred. Therefore, it is necessary to study the effect of acid rain on the performance of different stabilizing agents on Cd-polluted agriculture soils. In this study, Cd-contaminated soils were treated with mono-calcium phosphate (MCP), mono-ammonium phosphate (MAP), and artificial zeolite (AZ) respectively and incubated 3 months. These treatments were followed by two types of simulated acid rain (sulfuric acid rain and mixed acid rain) with three levels of acidity (pH = 3.0, 4.0, and 5.6). The chemical forms of Cd in the soils were determined by Tessier's sequential extraction procedure, and the leaching toxicities of Cd in the soils were assessed by toxicity characteristic leaching procedure (TCLP). The results show that the three stabilizing agents could decrease the mobility of Cd in soil to some degree with or without simulated acid rain (SAR) treatment. The stabilization performances followed the order of AZ stabilized soil, and both anion composition and pH of acid rain were two important factors that influenced the stabilization effect of Cd.

  5. Plasticity, Swell-Shrink, and Microstructure of Phosphogypsum Admixed Lime Stabilized Expansive Soil

    OpenAIRE

    James, Jijo; Pandian, P. Kasinatha

    2016-01-01

    The study involved utilization of an industrial waste, Phosphogypsum (PG), as an additive to lime stabilization of an expansive soil. Three lime dosages, namely, initial consumption of lime (ICL), optimum lime content (OLC), and less than ICL (LICL), were identified for the soil under study for stabilizing the soil. Along with lime, varying doses of PG were added to the soil for stabilization. The effect of stabilization was studied by performing index tests, namely, liquid limit, plastic lim...

  6. Cement Stabilized Soil Blocks Admixed with Sugarcane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Jijo James

    2016-01-01

    Full Text Available The study involved investigating the performance of ordinary Portland cement (OPC stabilized soil blocks amended with sugarcane bagasse ash (SBA. Locally available soil was tested for its properties and characterized as clay of medium plasticity. This soil was stabilized using 4% and 10% OPC for manufacture of blocks of size 19 cm × 9 cm × 9 cm. The blocks were admixed with 4%, 6%, and 8% SBA by weight of dry soil during casting, with plain OPC stabilized blocks acting as control. All blocks were cast to one target density and water content followed by moist curing for a period of 28 days. They were then subjected to compressive strength, water absorption, and efflorescence tests in accordance with Bureau of Indian standards (BIS specifications. The results of the tests indicated that OPC stabilization resulted in blocks that met the specifications of BIS. Addition of SBA increased the compressive strength of the blocks and slightly increased the water absorption but still met the standard requirement of BIS code. It is concluded that addition of SBA to OPC in stabilized block manufacture was capable of producing stabilized blocks at reduced OPC content that met the minimum required standards.

  7. Soil aggregate stability as an indicator for eco-engineering effectiveness?

    Science.gov (United States)

    Graf, Frank

    2015-04-01

    Eco-engineering aims at stabilising soil and slopes by applying technical and biological measures. Engineering structures are commonly well defined, immediately usable and operative, and their stability effects quantifiable and verifiable. Differently, the use of plants requires more restrictive boundary conditions and the protection potential is rarely easily calculable and develop-ing as a function of growth rate. Although the use of vegetation is widely appreciated and their stabilising effect recognised, there is an increasing demand on sound facts on its efficiency, in particular, in relation to time. Conclusively, a certain necessity has been recognised to monitor, assess and quantify the effectiveness of ecological restora-tion measures in order to facilitate the transfer of technology and knowledge. Recent theoretical models emphasize the im-portance of taking an integrated monitoring approach that considers multiple variables. However, limited financial and time resources often prevent such comprehensive assessments. A solution to this problem may be to use integrated indicators that reflect multiple aspects and, therefore, allow extensive information on ecosystem status to be gathered in a relatively short time. Among various other indicators, such as fractal dimension of soil particle size distribution or microbiological parameters, soil aggregate stability seems the most appropriate indicator with regard to protecting slopes from superficial soil failure as it is critical to both plant growth and soil structure. Soil aggregation processes play a crucial role in re-establishing soil structure and function and, conclusively, for successful and sustainable re-colonisation. Whereas the key role of soil aggregate stability in ecosystem functioning is well known concerning water, gas, and nutrient fluxes, only limited information is available with regard to soil mechanical and geotechnical aspects. Correspondingly, in the last couple of years several studies

  8. The Content of Heavy Metals (Cu, Zn, Cr, Ni, Pb in The Soil Near The Arterial Roads in Wroclaw (Poland

    Directory of Open Access Journals (Sweden)

    Sobczyk Karolina

    2017-01-01

    Full Text Available The concentrations of heavy metals in soils along the motorway bypass of Wroclaw (AOW and the Eastern Ring Road of Wroclaw (WOW, Poland, have been determined. The soil samples were collected from the levels of 0-25 cm within 2 m from the edge of the road. The mineralizates were prepared in HNO3, 60%, using the Microwave Digestion System. The content of Cu, Zn, Cr, Ni and Pb in soils were determined using FAAS method. The physicochemical parameters, the conductivity and pH of the soil solutions were measured to evaluate the salinity of the soils and their active and exchangeable acidity. The pollution indexes (WN showing the enrichment of soils in metals have been determined. Excess of metal concentrations in soils compared to the geochemical background in uncontaminated soils of Poland has been observed. Permissible concentrations of heavy metals relative to the standard for soils, according to the Polish Ministry of Environment Regulation from September 1st, 2016, have not been exceeded.

  9. Preliminary Experimental Analysis of Soil Stabilizers for Contamination Control

    International Nuclear Information System (INIS)

    Lagos, L.; Varona, J.; Zidan, A.; Gudavalli, R.; Wu, Kuang-His

    2006-01-01

    A major focus of Department of Energy's (DOE's) environmental management mission at the Hanford site involves characterizing and remediating contaminated soil and groundwater; stabilizing contaminated soil; remediating disposal sites; decontaminating and decommissioning structures, and demolishing former plutonium production process buildings, nuclear reactors, and separation plants; maintaining inactive waste sites; transitioning facilities into the surveillance and maintenance program; and mitigating effects to biological and cultural resources from site development and environmental cleanup and restoration activities. For example, a total of 470,914 metric tons of contaminated soil from 100 Areas remediation activities were disposed at the Environmental Restoration Disposal Facility (ERDF) during 2004. The Applied Research Center (ARC) at Florida International University (FIU) is supporting the Hanford's site remediation program by analyzing the effectiveness of several soil stabilizers (fixatives) for contamination control during excavation activities. The study is focusing on determining the effects of varying soil conditions, temperature, humidity and wind velocity on the effectiveness of the candidate stabilizers. The test matrix consists of a soil penetration-depth study, wind tunnel experiments for determination of threshold velocity, and temperature and moisture-controlled drying/curing experiments. These three set of experiments are designed to verify performance metrics, as well as provide insight into what fundamental forces are altered by the use of the stabilizer. This paper only presents the preliminary results obtained during wind tunnel experiments using dry Hanford soil samples (with 2.7% moisture by weight). These dry soil samples were exposed to varying wind speeds from 2.22 m/sec to 8.88 m/sec. Furthermore, airborne particulate data was collected for the dry Hanford soil experiments using an aerosol analyzer instrument. (authors)

  10. Utilization of Agricultural Wastes in Stabilization of Landfill Soil

    Directory of Open Access Journals (Sweden)

    Nidzam Rahmat Mohamad

    2014-01-01

    Full Text Available Palm Oil Fuel Ash (POFA and Rice Husk Ash (RHA are local agricultural waste material from Palm Oil Industry and from Paddy Industry in Malaysia. Currently, the disposal of these ashes from a burning process is a problem to both industries, and hence leads to environmental pollution. The main aim of this research was to investigate the potential of utilizing POFA and RHA as sustainable stabilizer material as partial replacement of traditional one which is lime and Portland Cement (PC. Laboratory investigations were carried out to establish the potential utilization of Malaysian Agricultural wastes POFA and RHA in stabilizing Teluk Kapas Landfill soil. Landfill soil on its own and combination with laterite clay soil were stabilized using POFA or RHA either on its own or in combination with Lime or Portland Cement (PC. The traditional stabilizers of lime or Portland Cement (PC were used as controls. Compacted cylinder test specimens were made at typical stabilizer contents and moist cured for up to 60 days prior to testing for compressive and water absorption tests. The results obtained showed that landfill soil combined with laterite clay (50:50 stabilized with 20% RHA:PC (50:50and POFA: PC (50:50 recorded the highest values of compressive strength compared to the other compositions of stabilizers and soils. However, when the amount of POFA and RHA increased in the system the compressive strength values of the samples tends to increase. These results suggest technological, economic as well as environmental advantages of using POFA and RHA and similar industrial by-products to achieve sustainable infrastructure development with near zero industrial waste.

  11. Physical soil properties and slope treatments effects on hydraulic excavator productivity for forest road construction.

    Science.gov (United States)

    Parsakho, Aidin; Hosseini, Seyed Ataollah; Jalilvand, Hamid; Lotfalian, Majid

    2008-06-01

    Effects of moisture, porosity and soil bulk density properties, grubbing time and terrain side slopes on pc 220 komatsu hydraulic excavator productivity were investigated in Miana forests road construction project which located in the northern forest of Iran. Soil moisture and porosity determined by samples were taken from undisturbed soil. The elements of daily works were measured with a digital stop watch and video camera in 14 observations (days). The road length and cross section profiles after each 20 m were selected to estimate earthworks volume. Results showed that the mean production rates for the pc 220 komatsu excavators were 60.13 m3 h(-1) and earthwork 14.76 m h(-1) when the mean depth of excavation or cutting was 4.27 m3 m(-1), respectively. There was no significant effects (p = 0.5288) from the slope classes' treatments on productivity, whereas grubbing time, soil moisture, bulk density and porosity had significantly affected on excavator earthworks volume (p < 0.0001). Clear difference was showed between the earthwork length by slope classes (p = 0.0060). Grubbing time (p = 0.2180), soil moisture (p = 0.1622), bulk density (p = 0.2490) and porosity (p = 0.2159) had no significant effect on the excavator earthworks length.

  12. Aggregate stability in soils cultivated with eucalyptus

    Science.gov (United States)

    Eucalyptus cultivation has increased in many Brazilian regions. In order to recommend good management practices, it is necessary to understand changes in soil properties where eucalyptus is planted. Aggregate stability analyses have proved to be a useful tool to measure soil effects caused by change...

  13. Linking soil permeability and soil aggregate stability with root development: a pots experiment (preliminary results)

    Science.gov (United States)

    Vergani, Chiara; Graf, Frank; Gerber, Werner

    2015-04-01

    Quantifying and monitoring the contribution of vegetation to the stability of the slopes is a key issue for implementing effective soil bioengineering measures. This topic is being widely investigated both from the hydrological and mechanical point of view. Nevertheless, due to the high variability of the biological components, we are still far from a comprehensive understanding of the role of plants in slope stabilization, especially if the different succession phases and the temporal development of vegetation is considered. Graf et al., 2014, found within the scope of aggregate stability investigations that the root length per soil volume of alder specimen grown for 20 weeks under laboratory conditions is comparable to the one of 20 years old vegetation in the field. This means that already relatively short time scales can provide meaningful information at least for the first stage of colonization of soil bioengineering measures, which is also the most critical. In the present study we analyzed the effect of root growth on two soil properties critical to evaluate the performance of vegetation in restoring and re-stabilizing slopes: permeability and soil aggregate stability. We set up a laboratory experiment in order to work under controlled conditions and limit as much as possible the natural variability. Alnus incana was selected as the study species as it is widely used in restoration projects in the Alps, also because of its capacity to fix nitrogen and its symbiosis with both ecto and arbuscular mycorrhizal fungi. After the first month of growth in germination pots, we planted one specimen each in big quasi cylindrical pots of 34 cm diameter and 35 cm height. The pots were filled with the soil fraction smaller than 10 mm coming from an oven dried moraine collected in a subalpine landslide area (Hexenrübi catchment, central Switzerland). The targeted dry unit weight was 16 kN/m3. The plants have been maintained at a daily temperature of 25°C and relative

  14. Insights into the chemical partitioning of trace metals in roadside and off-road agricultural soils along two major highways in Attica's region, Greece.

    Science.gov (United States)

    Botsou, Fotini; Sungur, Ali; Kelepertzis, Efstratios; Soylak, Mustafa

    2016-10-01

    We report in this study the magnetic properties and partitioning patterns of selected trace metals (Pb, Zn, Cu, Cd, Ni) in roadside and off-road (>200m distance from the road edge) agricultural soils collected along two major highways in Greece. Sequential extractions revealed that the examined trace metals for the entire data set were predominantly found in the residual fraction, averaging 37% for Cd up to 80% for Cu. Due to the strong influence of lithogenic factors, trace metal pseudototal contents of the roadside soils did not differ significantly to those of the off-road soils. Magnetic susceptibility and frequency dependent magnetic susceptibility determinations showed a magnetic enhancement of soils; however, it was primarily related to geogenic factors and not to traffic-derived magnetic particles. These results highlight that in areas characterized by strong geogenic backgrounds, neither pseudototal trace metal contents nor magnetic properties determinations effectively capture traffic-related contamination of topsoils. The vehicular emission signal was traced by the increased acid-soluble and reducible trace metal contents of the roadside soils compared to their off-road counterparts. In the case of Cu and Zn, changes in the partitioning patterns were also observed between the roadside and off-road soils. Environmental risks associated with agricultural lands extending at the margins of the studied highways may arise from the elevated Ni contents (both pseudototal and potentially mobile), and future studies should investigate Ni levels in the edible parts of plants grown on these agricultural soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Peat soils stabilization using Effective Microorganisms (EM)

    Science.gov (United States)

    Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.

    2018-04-01

    Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.

  16. Calcium Stabilized And Geogrid Reinforced Soil Structures In Seismic Areas

    International Nuclear Information System (INIS)

    Rimoldi, Pietro; Intra, Edoardo

    2008-01-01

    In many areas of Italy, and particularly in high seismic areas, there is no or very little availability of granular soils: hence embankments and retaining structures are often built using the locally available fine soil. For improving the geotechnical characteristics of such soils and/or for building steep faced structures, there are three possible techniques: calcium stabilization, geogrid reinforcement, and the combination of both ones, that is calcium stabilized and reinforced soil. The present paper aims to evaluate these three techniques in terms of performance, design and construction, by carrying out FEM modeling and stability analyses of the same reference embankments, made up of soil improved with each one of the three techniques, both in static and dynamic conditions. Finally two case histories are illustrated, showing the practical application of the above outlined techniques

  17. The potential of arbuscular mycorrhizal fungi application on aggregrate stability in alfisol soil

    Science.gov (United States)

    Syamsiyah, J.; Herawati, A.; Mujiyo

    2018-03-01

    The aim of this study was to determine the soil aggregate stability and its relationship with another variable in alfisol. The research used completely randomized design with four treatments: two sterilization levels (no sterilization and with sterilization) and two levels of mycorrhizal inoculation (no mycorrhizal and with mycorrhizal). Mycorrhizal (5 grams/pot) was inoculated before planting rice seeds. The soil aggregate stability was measured by wet-sieving and turbidimetric measurements. The results showed that soil aggregate stability was higher in mycorrhizal inoculated than non-mycorrhizal inoculated treatment, by 5% in sterilization soil and 3.2% in non-sterilization soil. The correlation analysis indicated that soil aggregate stability has a tight relationship with spore population, total glomalin, available glomalin, dry weight, tiller number of plant, and soil organic C. Inoculation of mycorrhizal contributed to stabilize soil aggregates in alfisol

  18. Leaching of Contamination from Stabilization/Solidification Remediated Soils of Different Texture

    Science.gov (United States)

    Burlakovs, Juris; Kasparinskis, Raimonds; Klavins, Maris

    2012-09-01

    Development of soil and groundwater remediation technologies is a matter of great importance to eliminate historically and currently contaminated sites. Stabilization/solidification (S/S) refers to binding of waste contaminants to a more chemically stable form and thus diminishing leaching of contamination. It can be performed using cement with or without additives in order to stabilize and solidify soil with the contamination in matrix. A series of experiments were done to determine leaching properties of spiked soils of different texture bound with cement. Results of experiments showed, that soil texture (content of sand, silt and clay particles) affects the leaching of heavy metals from stabilized soils.

  19. Soil density and moisture content on two unused forest roads during first 30 months after construction

    Science.gov (United States)

    J.D. Helvey; J.N. Kochenderfer; J.N. Kochenderfer

    1990-01-01

    Reports results of soil density and soil moisture measurements on two roads in the central Appalachians over a 30-month period. Density increased slightly during the measurement period at most locations. Almost all of the density changes occurred during the first few months after construction. Moisture content decreased during the first few months after construction,...

  20. Experimental study on the solidification and influence factors of MSW stabilized soil

    Directory of Open Access Journals (Sweden)

    Wang Zhiping

    2015-01-01

    Full Text Available The effect of kinds and dosage of curing agent on the curing effect and strength characteristics of municipal solid waste (MSW stabilized soil is very obvious. In order to reveal these effects, this paper uses cement, fly ash, lime and gypsum as main curing agent and additives to make MSW stabilized soil samples of different components and contents and its strength is obtained using unconfined compressive strength test. The results showed that the curing age, dosage of cement, fly ash, lime and gypsum have effect on the strengths of stabilized MSW soil. The bigger the content of cement and fly ash, the higher the strength of stabilized soil. But the amount of lime and gypsum has a critical value. Within the critical value, the strength of the stabilized soil increases with the increasing of the content of the additives, and decreases with the increase of the additives content if the content of the additives exceeds the critical value. The curing age has much effect on the strength of the stabilized soil. The strength of the samples for 7 days is far less than that for 28 days. This can be explained that: when the curing agent is added into the stabilized soil, the connection among the particles of the MSW soil is changed from weak connection to bond connection, and therefore the strength of the curing MSW soil is improved.

  1. Sediment deposition from forest roads at stream crossings as influenced by road characteristics

    Science.gov (United States)

    A.J. Lang; W.M. Aust; M.C. Bolding; K.J. McGuire

    2015-01-01

    Recent controversies associated with ditched forest roads and stream crossings in the Pacific Northwest have focused national attention on sediment production and best management practices (BMPs) at stream crossings. Few studies have quantified soil erosion rates at stream crossings as influenced by road characteristics and compared them to modeled rates. Soil erosion...

  2. Characterization of wet aggregate stability of soils by ¹H-NMR relaxometry.

    Science.gov (United States)

    Buchmann, C; Meyer, M; Schaumann, G E

    2015-09-01

    For the assessment of soil structural stability against hydraulic stress, wet sieving or constant head permeability tests are typically used but rather limited in their intrinsic information value. The multiple applications of several tests is the only possibility to assess important processes and mechanisms during soil aggregate breakdown, e.g. the influences of soil fragment release or differential swelling on the porous systems of soils or soil aggregate columns. Consequently, the development of new techniques for a faster and more detailed wet aggregate stability assessment is required. (1)H nuclear magnetic resonance relaxometry ((1)H-NMR relaxometry) might provide these requirements because it has already been successfully applied on soils. We evaluated the potential of (1)H-NMR relaxometry for the assessment of wet aggregate stability of soils, with more detailed information on occurring mechanisms at the same time. Therefore, we conducted single wet sieving and constant head permeability tests on untreated and 1% polyacrylic acid-treated soil aggregates of different textures and organic matter contents, subsequently measured by (1)H-NMR relaxometry after percolation. The stability of the soil aggregates were mainly depending on their organic matter contents and the type of aggregate stabilization, whereby additional effects of clay swelling on the measured wet aggregate stability were identified by the transverse relaxation time (T2) distributions. Regression analyses showed that only the percentage of water stable aggregates could be determined accurately from percolated soil aggregate columns by (1)H-NMR relaxometry measurements. (1)H-NMR relaxometry seems a promising technique for wet aggregate stability measurements but should be further developed for nonpercolated aggregate columns and real soil samples. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Polybrominated diphenyl ethers in road and farmland soils from an e-waste recycling region in Southern China: Concentrations, source profiles, and potential dispersion and deposition

    International Nuclear Information System (INIS)

    Luo Yong; Luo Xiaojun; Lin Zhen; Chen Shejun; Liu Juan; Mai Bixian; Yang Zhongyi

    2009-01-01

    The present study analyzed road soils collected near the dismantling workshops of an e-waste recycling region in South China to determine the PBDE profiles. Farmland soils at a distance of about 2 km from the dismantling workshops were also collected to evaluate the potential dispersion and deposition of PBDEs in the surrounding environment. Total PBDE concentrations ranged from 191 to 9156 ng/g dry weight in road soils and from 2.9 to 207 ng/g dry weight in farmland soils, respectively. Three PBDE source profiles were observed from the road soils by principal component analysis, and were compared with the congener patterns in different technical products. Elevated abundances of octa- and nona-congeners were found in the 'deca-' derived PBDEs as compared with the deca-BDE products. The results in this study suggest that debromination of BDE 209 may have occurred during the use of electric and electronic equipment and/or another technical formulation (Bromkal 79-8DE) was also likely the source of octa- and nona-congeners in e-wastes. Comparison of the PBDE patterns in road and farmland soils implied that the PBDEs in farmland soils have been subject to complex environmental processes

  4. Analysis on the Long Term Effect of Trial Test Road Constructed on Batu Pahat Soft Clay (BPSC) at Recess UTHM

    Science.gov (United States)

    Idrus, M. M. M.; Edayu, A. E.; Adnan, Z.; Ismail, B.

    2016-07-01

    The reinforcement used in soil for construction of roads on the soft clay is very important as it will determine the level of service of the road after it was built. Damage or defects on the road surface to be an indicator of the level of the road has dropped and shows the deformation of the road. For this research, an analysis has carried out on the long-term effect of trial test road constructed on Batu Pahat Soft Clay (BPSC) at RECESS UTHM. Through this research, the reinforcement using Rawell Geosynthetic Clay Liner (RGCL) was the best with the stability is 14964 N, a low flow is 2.69mm, stiffness modulus is 1766 MPa, the peak load is 739.4 N and a lower horizontal deformation which is 1.71 µm compared Woven Geotextile section and section without geotextile [1] [9]. In terms of deformation can be seen clearly from physical observations that section without geotextile suffered significant damage than others. Settlement of road can also be analyzed by a longitudinal section that plotted based on the result of leveling work. After that, settlements are more visible way on the right side of the road trial. Through lab tests conducted, it indicate that the coring samples obtained from sites of each section meets the specifications set by the Jabatan Kerja Raya (JKR) in terms of stability, flow and stiffness [1]. Through this study, a trial road built on soft soil can be used as a test site because of the uniqueness of these roads which has three different types of reinforcements.

  5. Factors of influencing dissolved organic carbon stabilization in two cambic forest soils with contrasting soil-forming processes

    Science.gov (United States)

    Kawasaki, M.; Ohte, N.; Asano, Y.; Uchida, T.; Kabeya, N.; Kim, S.

    2004-05-01

    Stabilization of Dissolved Organic Carbon (DOC) in forest soil is a major process of soil organic carbon formation. However, the factors influencing DOC stabilization are poorly understood. To clarify the factors that affect the stabilization of DOC in forest soil mantle, we measured DOC concentrations and soil properties which were DOC adsorption efficiency at two adjacent cambic forest soils with contrasting forest management histories in Tanakami Mountains, central Japan. Matsuzawa was devastated about 1,200 years ago by excessive timber use and remained denuded for a long period. Hillside restoration and reforestation work have been carried out over the last 100 years and soil loss has been reduced. Fudoji is covered with undisturbed forest (mixed stands of cypress and oaks) with developed forest soils (more than 2,600 years old). There was no apparent seasonal variation in DOC concentration in the soil solution in either catchment. In addition, there were no significant relationships between the DOC concentration, soil temperature, and new water ratio. These results indicate that temporal variation in biological activity and rainfall-runoff process have little effect on temporal variation in DOC. The vertical variation in the DOC adsorption efficiency and DOC concentration differed between Matsuzawa and Fudoji, and the highest DOC removal rate occurred at the lowest DOC adsorption efficiency in the 0 to 10-cm soil layer at Fudoji. These results suggest that DOC removal rate is independent of DOC adsorption efficiency. Below 60 cm soil depth, DOC fluxes were constant and dissolved organic Al concentrations were little or zero in either catchment. These results suggest that abiotic precipitation of DOC is a major mechanism for stabilization of DOC. Therefore, DOC content which is able to form metal complexes may be the most important factor of influencing DOC stabilization in cambic forest soil.

  6. Implementation of the UV-VIS method to measure organic content in clay soils : technical report.

    Science.gov (United States)

    2011-05-01

    The Texas Department of Transportation has been having problems with organic matter in soils that they : stabilize for use as subgrade layers in road construction. The organic matter reduces the effectiveness of : common soil additives (lime/cement) ...

  7. Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient

    Science.gov (United States)

    Tian, Qiuxiang; He, Hongbo; Cheng, Weixin; Bai, Zhen; Wang, Yang; Zhang, Xudong

    2016-01-01

    Changes in soil organic carbon (SOC) stability may alter carbon release from the soil and, consequently, atmospheric CO2 concentration. The mean annual temperature (MAT) can change the soil physico-chemical characteristics and alter the quality and quantity of litter input into the soil that regulate SOC stability. However, the relationship between climate and SOC stability remains unclear. A 500-day incubation experiment was carried out on soils from an 11 °C-gradient mountainous system on Changbai Mountain in northeast China. Soil respiration during the incubation fitted well to a three-pool (labile, intermediate and stable) SOC decomposition model. A correlation analysis revealed that the MAT only influenced the labile carbon pool size and not the SOC stability. The intermediate carbon pool contributed dominantly to cumulative carbon release. The size of the intermediate pool was strongly related to the percentage of sand particle. The decomposition rate of the intermediate pool was negatively related to soil nitrogen availability. Because both soil texture and nitrogen availability are temperature independent, the stability of SOC was not associated with the MAT, but was heavily influenced by the intrinsic processes of SOC formation and the nutrient status. PMID:26733344

  8. [Effects of soil properties on the stabilization process of cadmium in Cd alone and Cd-Pb contaminated soils].

    Science.gov (United States)

    Wu, Man; Xu, Ming-Gang; Zhang, Wen-Ju; Wu, Hai-Wen

    2012-07-01

    In order to clarify the effects of soil properties on the stabilization process of the cadmium (Cd) added, 11 different soils were collected and incubated under a moisture content of 65%-70% at 25 degrees C. The changes of available Cd contents with incubation time (in 360 days) in Cd and Cd-Pb contaminated treatments were determined. The stabilization process was simulated using dynamic equations. The results showed that after 1.0 mg x kg(-1) Cd or 500 mg x kg(-1) Pb + 1.0 mg x kg(-1) Cd were added into the soil, the available Cd content decreased rapidly during the first 15 days, and then the decreasing rate slowed down, with an equilibrium content reached after 60 days' incubation. In Cd-Pb contaminated soils, the presence of Pb increased the content of available Cd. The stabilization process of Cd could be well described by the second-order equation and the first order exponential decay; meanwhile, dynamic parameters including equilibrium content and stabilization velocity were used to characterize the stabilization process of Cd. These two key dynamic parameters were significantly affected by soil properties. Correlation analysis and stepwise regression suggested that high pH and high cation exchange capacity (CEC) significantly retarded the availability of Cd. High pH had the paramount effect on the equilibrium content. The stabilization velocity of Cd was influenced by the soil texture. It took shorter time for Cd to get stabilized in sandy soil than in the clay.

  9. Lime-Stabilized Black Cotton Soil and Brick Powder Mixture as Subbase Material

    Directory of Open Access Journals (Sweden)

    S. Srikanth Reddy

    2018-01-01

    Full Text Available Various researchers, for the past few decades, had tried to stabilize black cotton soil using lime for improving its shrinkage and swelling characteristics. But these days, the cost of lime has increased resulting in increase in need for alternative and cost effective waste materials such as fly ash and rice husk ash. Brick powder, one among the alternative materials, is a fine powdered waste that contains higher proportions of silica and is found near brick kilns in rural areas. The objective of the study is to investigate the use of lime-stabilized black cotton soil and brick powder mixture as subbase material in flexible pavements. Black cotton soil procured from the local area, tested for suitability as subbase material, turned out to be unsuitable as it resulted in very less CBR value. Even lime stabilization of black cotton soil under study has not showed up the required CBR value specified for the subbase material of flexible pavement by MORTH. Hence the lime-stabilized black cotton soil is proportioned with brick powder to obtain optimum mixture that yields a better CBR value. The mixture of 20% brick powder and 80% lime-stabilized black cotton soil under study resulted in increase in the CBR value by about 135% in comparison with lime-stabilized black cotton soil. Thus it is promising to use the mixture of brick powder and lime-stabilized black cotton soil as subbase material in flexible pavements.

  10. Plasticity, Swell-Shrink, and Microstructure of Phosphogypsum Admixed Lime Stabilized Expansive Soil

    Directory of Open Access Journals (Sweden)

    Jijo James

    2016-01-01

    Full Text Available The study involved utilization of an industrial waste, Phosphogypsum (PG, as an additive to lime stabilization of an expansive soil. Three lime dosages, namely, initial consumption of lime (ICL, optimum lime content (OLC, and less than ICL (LICL, were identified for the soil under study for stabilizing the soil. Along with lime, varying doses of PG were added to the soil for stabilization. The effect of stabilization was studied by performing index tests, namely, liquid limit, plastic limit, shrinkage limit, and free swell test, on pulverized remains of failed unconfined compression test specimens. The samples were also subjected to a microstructural study by means of scanning electron microscope. Addition of PG to lime resulted in improvement in the plasticity and swell-shrink characteristics. The microstructural study revealed the formation of a dense compact mass of stabilized soil.

  11. [Composition and stability of soil aggregates in hedgerow-crop slope land].

    Science.gov (United States)

    Pu, Yu-Lin; Lin, Chao-Wen; Xie, De-Ti; Wei, Chao-Fu; Ni, Jiu-Pai

    2013-01-01

    Based on a long-term experiment of using hedgerow to control soil and water loss, this paper studied the composition and stability of soil aggregates in a hedgerow-crop slope land. Compared with those under routine contour cropping, the contents of > 0.25 mm soil mechanical-stable and water-stable aggregates under the complex mode hedgerow-crop increased significantly by 13.3%-16.1% and 37.8% -55.6%, respectively. Under the complex mode, the contents of > 0.25 mm soil water-stable aggregates on each slope position increased obviously, and the status of > 0.25 mm soil water-stable aggregates being relatively rich at low slope and poor at top slope was improved. Planting hedgerow could significantly increase the mean mass diameter and geometric mean diameter of soil aggregates, decrease the fractal dimension of soil aggregates and the destruction rate of > 0.25 mm soil aggregates, and thus, increase the stability and erosion-resistance of soil aggregates in slope cropland. No significant effects of slope and hedgerow types were observed on the composition, stability and distribution of soil aggregates.

  12. An approach to locate and map swelling soils around Sohag – Safaga road, Eastern Desert, Egypt using remote sensing techniques for urban development

    Directory of Open Access Journals (Sweden)

    Salwa F. Elbeih

    2015-10-01

    Full Text Available The detrimental consequences of swelling soils are most apparent in arid and semi-arid regions. Sedimentary clays are mixtures of illite, kaolinite and some montmorillonite. There are various soil types liable to swell such as shale, mudstone, siltstone and marl due to the presence of Smectite group in these soils. Large volume changes of these types of soils can cause extensive damages to civil engineering infrastructures; roads, airport pavements, pipelines and shallow foundations. A number of localities in Egypt are well-known by the presence of swelling soils. Sohag – Safaga highway in the Eastern Desert of Egypt is considered to be an investable transportation road and one of the most important lateral connections between Upper Egypt and the Red Sea area. The study area is located in a buffer zone of 25 km from both sides of the highway. This area is believed to be more influenced by the road and could be fully utilized to share in developing areas in the road vicinity. The research objectives are to use recent ASTER satellite imageries with the aid of field samples to map different swelling clay minerals and compare between the different sensors accuracy in locating them within the buffer zone. Certain engineering measures should be considered to enable construction over these types of swelling soils. The results confirmed the presence of montmorillonite in this buffer zone and in the 5 km buffer around the road which represents a hazard especially for the future planned projects within this area.

  13. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    Science.gov (United States)

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  14. [Study on composite stabilization of arsenic (As) contaminated soil].

    Science.gov (United States)

    Wang, Hao; Pan, Li-xiang; Zhang, Xiang-yu; Li, Meng; Song, Bao-hua

    2013-09-01

    Since the contaminated soil may contain various kinds of heavy metals, use of single chemical reagent leads to poor remediation and high cost. In this study, soil containing As, Zn, Cd was sampled, and different reagents were selected to carry out the rapid stabilization of contaminated soil. The TCLP (toxicity characteristic leaching procedure) was used to evaluate the leachate toxicity of heavy metals and the results indicated that calcium-containing, sulphur-containing and iron-containing reagents had good performance in reducing the metal mobility. The stabilization efficiency of the six reagents tested ranked in the order of CaO > Na2S > organic sulfur > Chitosan > FeSO4 > (C2H5)2NCS2Na. Two types of reagents (six reagents) were combined based on the target properties of different reagents and the stabilization efficiency was evaluated and analyzed. The results indicated that the composite reagents had higher stabilization efficiency: the efficiency of 3% FeSO4 + 5% CaO was 81.7%, 97.2% and 68.2% for As, Cd and Zn, respectively, and the efficiency of 3% CaO + 5% organic sulfur was 76.6%, 95.7% and 93.8% for these three metals, respectively. Speciation analysis was carried out in this study and the results suggested that it was the change of metals from the exchangeable state to the reduction (for inorganic reagent) or oxidation state (for organic reagent) that caused the soil stabilization and the degree of change determined the stabilization efficiency.

  15. Assessment of Heavy Metals Concentration in Soils at Selected Points on Roads and Sites Around Nairobi Using EDXRF Spectrometer

    International Nuclear Information System (INIS)

    Wanjala, O. F.; Rathore, I.V.S.; Murungi, J.

    2016-01-01

    Increased exhaust emissions (gaseous and particulate), fuel leakage, damping and wear and tear of vehicle parts have resulted in environmental pollution by heavy metals especially along major roads with high traffic. This calls for constant monitoring to make sure that the levels of heavy metals do not go above the threshold limits recommended due to their adverse health effects on human beings, plants and animals. This research project focused on determining the present concentrations of heavy metals (Pb, Zn, Cu, and Ni) in soils at selected points on roads around Nairobi and some selected sites with respect to distance off-road and depth. The soil samples collected were ground into fine particles of size less than 100m and prepared into pellet form for analysis using Energy Dispersive X-ray fluorescence spectrometry. This analytic technique is fast, non-destructive and enables simultaneous determination of the concentrations of many elements in a sample with high sensitivity. It consists of a Si(Li) detector with energy resolution between 170eV to 190eV at 5.9KeV, MnKα-lines and a radioisotope source 109Cd (T1/2 =461.4 days) for sample excitation leading to emission of characteristic X-rays. Quantitative analysis was done using a software program called Quantitative X-ray Analysis System with a sub-routine program called Quantitative Analysis of Environmental Samples to finally obtain the concentrations of the different elements in the samples. The levels of the heavy metals obtained from the selected sampling sites C.Gar, K. Gar, K.R, G.B.P and Nai were 82.2±7.6, g/g to 236.1±9.2, g/g Pb, 273±9.2, g/g to 794±26, g/gZn, 32.4±4.8, g/g to 221.8±6.8, g/g Cu, and 10.72.7, g/g to 33±4.8, g/g Ni. From the results, it was found that the concentrations of Pb, Zn, Cu, and Ni were very high at the garages followed by parking places for buses and heavy commercial vehicles and lastly at roundabouts. The concentrations of heavy metals on the selected roads at Roy, Cab

  16. Influence of Rice Husk Ash and Clay in Stabilization of Silty Soils Using Cement

    Directory of Open Access Journals (Sweden)

    Widjajakusuma Jack

    2017-01-01

    Full Text Available Soil stabilization is needed to enhance the strength of the soil. One popular method of soil stabilization is using cement. Due to the environmental issue, it is a need to reduce the application of cement and/or to replace partially the cement with other environmental-friendly compounds. One of these compounds is rice husk ash (RSA, which is agricultural wastes. The objective of this paper is to study the influence of RSA and clay as partial replacement to cement in soil stabilization of silt soil with high plasticity (MH using cement. The cement used was ordinary Portland cement, while the RHA was obtained by burning rice husk at temperature of 250°C. The MH soil is stabilized with 4% cement, 4% cement and 3% rice husk ash and 4% cement, 3 % RHA and 3 % clay. The various tests were conducted on the pure and stabilized soils. Results have indicated that application of 4% cement, 3 % RHA and 3 % clay as silt soil stabilization is more favorable in increasing soil strength and reducing brittle behaviour of soil.

  17. Expansive soil stabilization with coir waste and lime for flexible pavement subgrade

    Science.gov (United States)

    Narendra Goud, G.; Hyma, A.; Shiva Chandra, V.; Sandhya Rani, R.

    2018-03-01

    Expansive soil properties can be improved by various methods to make it suitable for construction of flexible pavement. The coir pith is the by-product (bio-waste) generated from coir industry during extraction of coir fiber from coconut husk. Openly disposed coir pith can make the surrounding areas unhygienic. This bio-waste can be one of the potential materials to stabilize the expansive soils. In the present study coir pith and lime are used as stabilizers. Different combinations of coir pith contents (1%, 2% and 3%) and lime contents (2%, 3% and 4%)are used to study the behavior of expansive soil. Unconfined compressive strength (UCS) of unstabilized and stabilized soils was determined. Optimum content of coir pith and lime are determined based on UCS of the soil. California bearing ratio of soil determined at optimum contents of coir pith and lime. Flexible pavement layer compositions for two levels of traffic using stabilized soil subgrade.

  18. Stabilization of Highway Expansive Soils with High Loss on Ignition ...

    African Journals Online (AJOL)

    This study was carried out to evaluate the effect of high loss on ignition content cement kiln dust on the stabilization of highway expansive soils. Laboratory tests were performed on the natural and stabilized soil samples in accordance with BS 1377 (1990) and BS 1924 (1990), respectively. The preliminary investigation ...

  19. Stabilization of expansive soil using bagasse ash & lime | Wubshet ...

    African Journals Online (AJOL)

    7-5 soil on the AASHTO classification was stabilized using 3% lime, 15% bagasse ash and 15% bagasse ash in combination with 3% lime by dry weight of the soil. The effect of the additives on the soil was investigated with respect to plastcity, ...

  20. Bioengineering Techniques for Soil Erosion Protection and Slope Stabilization

    OpenAIRE

    Julia Georgi; Ioannis Stathakopoulos

    2006-01-01

    The use of bio-engineering methods for soil erosion protection and slope stabilization has a long tradition. Old methods with rocks and plants, structures of timber have been used over the past centuries. Recently these old soil conservation and stabilization techniques have been rediscovered and improved. Biotechnical engineering methods have become part of geotechnical and hydraulic engineering and have helped bridge the gap between classical engineering disciplines, land use management, la...

  1. FUD - SALA. Stabilization of unbound layers on a road section; FUD - SALA. Provstraecka med stabilisering av obundna lager

    Energy Technology Data Exchange (ETDEWEB)

    Svedberg, Bo; Ekdahl, Peter; Macsik, Josef; Maijala, Aino; Lahtinen, Pentti; Hermansson, Aake; Knutsson, Sven; Edeskaer, Tommy

    2008-06-15

    Stabilization of unbound layers is a method that enables the properties of road structures to be improved, for example the layer modulus of the sub base, by addition of binders. Traditional binders are cement, Merit 5000 (fine ground slag cement), lime and bitumen. The method is commonly in practice in Europe and has been also used occasionally for public roads in Sweden. Today there are examples where fly ashes (bio and coal based) have been used as binders in smaller roads for example in the counties of Uppsala, Soedermanland and also for other paved areas for heavy vehicles in the county of Vaestmanland and in Finland. These examples have mainly been carried out using an empirical approach. The objective of the project is to develop two applications as a base for full scale demonstration. One of them is a paved road and the other one is a private road with gravel as wearing course. The binders used are cement, Merit and fly-ash. Two sections of a road were used a reference. The work indicates that stabilization of unbound layers will improve the bearing capacity of the road construction significantly although the total depth of the structure is reduced. The design of the road structure was carried out in a conservative manner as there were no basis for a precise determination of the layer modulus. The developed applications are not frost lifting although their insulating properties are low and about the same as fine grained silt. The durability against frost and thaw cycles has been assessed and is expected to be acceptable. The fly ashes used will need addition of cement and Merit to perform well in frost and thaw tests. Applying both applications will result in a reduced depth of the structure and the sub-base layers can nearly be excluded. Life cycle cost calculations indicate that the cost of investment for a road construction using a stabilized layer are slightly higher than the cost of investment for the reference construction. This is probably due to the

  2. Characterization of the influence of building a road on the stability of the tunnel lining in a Banska Bystrica railway tunnel

    Directory of Open Access Journals (Sweden)

    Vavrek Pavol

    2001-06-01

    Full Text Available This paper deals with solving the problem of tunnel lining stability in a railway tunnel. The road cut was made into the overburden of the tunnel. I investigated the effect of the road cut on the stability of tunnel lining. The FLAC3D mathematical modelling technique was used for this purpose. The solution consist of: - - - - - - - - - - - -modelling the initial situation before building the intervention,Determing the internal characteristics of the tunnel lining in its original state,modelling the situation after making the road cut,Determing the internal characteristics of the tunnel lining after the building intervention,Comparison of the internal characteristics of the tunnel lining before and after the building intervention.In the model, I used these general geotechnical properties of the rock environment and the tunnel lining:Material Youngus modulus [MPa] Poissons RatioClay 8 0,42Weakly wheathered calcite 3 000 0,25Hard wheathered calcite 600 0,30Fill 300 0,25Lining 20 000 0,20The arbitration of the tunnel lining stability was executed on the basis of the Mohr – Coulomb limit of the state. Building the road cut does not lead to loss of stability in the tunnel a at Station 1.225 00 or at Station 1.300 00.

  3. Soil Organic Matter Stabilization via Mineral Interactions in Forest Soils with Varying Saturation Frequency

    Science.gov (United States)

    Possinger, A. R.; Inagaki, T.; Bailey, S. W.; Kogel-Knabner, I.; Lehmann, J.

    2017-12-01

    Soil carbon (C) interaction with minerals and metals through surface adsorption and co-precipitation processes is important for soil organic C (SOC) stabilization. Co-precipitation (i.e., the incorporation of C as an "impurity" in metal precipitates as they form) may increase the potential quantity of mineral-associated C per unit mineral surface compared to surface adsorption: a potentially important and as yet unaccounted for mechanism of C stabilization in soil. However, chemical, physical, and biological characterization of co-precipitated SOM as such in natural soils is limited, and the relative persistence of co-precipitated C is unknown, particularly under dynamic environmental conditions. To better understand the relationships between SOM stabilization via organometallic co-precipitation and environmental variables, this study compares mineral-SOM characteristics across a forest soil (Spodosol) hydrological gradient with expected differences in co-precipitation of SOM with iron (Fe) and aluminum (Al) due to variable saturation frequency. Soils were collected from a steep, well-drained forest soil transect with low, medium, and high frequency of water table intrusion into surface soils (Hubbard Brook Experimental Forest, Woodstock, NH). Lower saturation frequency soils generally had higher C content, C/Fe, C/Al, and other indicators of co-precipitation interactions resulting from SOM complexation, transport, and precipitation, an important process of Spodosol formation. Preliminary Fe X-ray Absorption Spectroscopic (XAS) characterization of SOM and metal chemistry in low frequency profiles suggest co-precipitation of SOM in the fine fraction (soils showed greater SOC mineralization per unit soil C for low saturation frequency (i.e., higher co-precipitation) soils; however, increased mineralization may be attributed to non-mineral associated fractions of SOM. Further work to identify the component of SOM contributing to rapid mineralization using 13C

  4. Stability of embankments over cement deep soil mixing columns

    International Nuclear Information System (INIS)

    Morilla Moar, P.; Melentijevic, S.

    2014-01-01

    The deep soil mixing (DSM) is one of the ground improvement methods used for the construction of embankments over soft soils. DSM column-supported embankments are constructed over soft soils to accelerate its construction, improve embankment stability, increase bearing capacity and control of total and differential settlements. There are two traditional design methods, the Japanese (rigid columns) and the scandinavian (soft and semi-rigid columns). Based on Laboratory analysis and numerical analysis these traditional approaches have been questioned by several authors due to its overestimation of the embankment stability considering that the most common failures types are not assumed. This paper presents a brief review of traditional design methods for embankments on DSM columns constructed in soft soils, studies carried out determine the most likely failure types of DSM columns, methods to decrease the overestimation when using limit equilibrium methods and numerical analysis methods that permit detect appropriate failure modes in DSM columns. Finally a case study was assessed using both limited equilibrium and finite element methods which confirmed the overestimation in the factors of safety on embankment stability over DSM columns. (Author)

  5. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    Science.gov (United States)

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000–250 μm; 250–53 μm; and soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000–250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  6. Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells.

    Science.gov (United States)

    Ok, Yong Sik; Lim, Jung Eun; Moon, Deok Hyun

    2011-02-01

    Large amounts of oyster shells are produced as a by-product of shellfish farming in coastal regions without beneficial use options. Accordingly, this study was conducted to evaluate the potential for the use of waste oyster shells (WOS) containing a high amount of CaCO₃ to improve soil quality and to stabilize heavy metals in soil. To accomplish this, an incubation experiment was conducted to evaluate the ability of the addition of 1-5 wt% WOS to stabilize the Pb (total 1,246 mg/kg) and Cd (total 17 mg/kg) in a contaminated soil. The effectiveness of the WOS treatments was evaluated using various single extraction techniques. Soil amended with WOS was cured for 30 days complied with the Korean Standard Test method (0.1 M·HCl extraction). The Pb and Cd concentrations were less than the Korean warning and countermeasure standards following treatment with 5 wt% WOS. Moreover, the concentrations of Cd were greatly reduced in response to WOS treatment following extraction using 0.01 M·CaCl₂, which is strongly associated with phytoavailability. Furthermore, the soil pH and exchangeable Ca increased significantly in response to WOS treatment. Taken together, the results of this study indicated that WOS amendments improved soil quality and stabilized Pb and Cd in contaminated soil. However, extraction with 0.43 M·CH₃ COOH revealed that remobilization of heavy metals can occur when the soil reaches an acidic condition.

  7. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil

    International Nuclear Information System (INIS)

    Kumpiene, Jurate; Ore, Solvita; Renella, Giancarlo; Mench, Michel; Lagerkvist, Anders; Maurice, Christian

    2006-01-01

    Stabilization of soil contaminated with trace elements is a remediation practice that does not reduce the total content of contaminants, but lowers the amounts of mobile and bioavailable fractions. This study evaluated the efficiency of Fe to reduce the mobility and bioavailability of Cr, Cu, As and Zn in a chromated copper arsenate (CCA)-contaminated soil using chemical, biochemical and biotoxicity tests. Contaminated soil was stabilized with 1% iron grit. This treatment decreased As and Cr concentrations in leachates (by 98% and 45%, respectively), in soil pore water (by 99% and 94%, respectively) and in plant shoots (by 84% and 95%, respectively). The stabilization technique also restored most of analyzed soil enzyme activities and reduced microbial toxicity, as evaluated by the BioTox TM test. After stabilization, exchangeable and bioaccessible fractions of Cu remained high, causing some residual toxicity in the treated soil. - Zerovalent iron effectively reduces mobility and bioavailability of As and Cr, but does not adequately stabilize Cu

  8. Pollution of soils (Pb, Cd, Cr, Zn, Cu, Ni) along the ring road of Wrocław (Poland)

    Science.gov (United States)

    Hołtra, Anna; Zamorska-Wojdyła, Dorota

    2017-11-01

    The concentrations of metallic pollution in soils and plants along the ring road of Wrocław, Poland, have been determined. Environmental samples were collected from the surface layer of the profile within 2-3 m from the edge of the road. The analysis of metals (Pb, Cd, Cr, Zn, Cu and Ni) has been carried out through FAAS and GFAAS methods. The mineralizates of soils and plants were prepared in HNO3, 65% supra pure, using the Microwave Digestion System. The pH and conductivity of the soil solutions were measured to evaluate their active and exchangeable acidity and the salinity of the soils. The index of the enrichment of soils in metals (Wn) and the bioaccumulation coefficient (WB) have been determined. Also, histograms of the frequency of the occurrence of metals in the environmental samples and the Pearson's correlation coefficients were presented. The results of metal concentrations in soils were compared to the geochemical background in uncontaminated soils of Poland. The assessment of the results in the soils was also made relative to the standard, according to the Polish Ministry of Environment Regulation from September 1st, 2016. During the assessment of the bioaccumulation coefficients of metals in plants a reference was made to the content of undesirable substances in feed in agreement with the Polish Ministry of Agriculture and Rural Development Regulation from January 23rd, 2007.

  9. Investigation of Stabilised Batu Pahat Soft Soil Pertaining on its CBR and Permeability Properties for Road Construction

    Science.gov (United States)

    Mohd Idrus, M. M.; Singh, J. S. M.; Musbah, A. L. A.; Wijeyesekera, D. C.

    2016-07-01

    Soil stabilization by adding materials such as cement, lime and bitumen is one of the effective methods for improving the geotechnical properties of soils [11] Nano-particle is one of the newest additives and many studies about using nano-particle in soil improvement has been done but it was given less attention when soft clay soils stabilization is concerned. To evaluate the strength characteristics of stabilized Batu Pahat soft clay, laboratory investigation on early strength gained by the stabilized soil must be conducted to formulate a suitable and economical mix design [10]. To achieve such purpose, the study examined the effect of NanoClay on the California Bearing Ratio and the Permeability of soft clay. The results gained shows that the Nano-Clay is able to increase the strength of the soft clay [9]. The California Bearing Ratio of the soil is increase significantly where the results for the highest percentage of admixture is 14.4% while the permeability of the soil decreases significantly with increasing Nano-Clay whereby the results of the highest percentage of admixture is 2.0187x10-11 m/s. After doing this research, it is proven that Nano-clay can contribute towards better soil stabilization and enhance the quality of soil as subgrade and foundation at large.

  10. Biomimetic Hydrogel Composites for Soil Stabilization and Contaminant Mitigation.

    Science.gov (United States)

    Zhao, Zhi; Hamdan, Nasser; Shen, Li; Nan, Hanqing; Almajed, Abdullah; Kavazanjian, Edward; He, Ximin

    2016-11-15

    We have developed a novel method to synthesize a hyper-branched biomimetic hydrogel network across a soil matrix to improve the mechanical strength of the loose soil and simultaneously mitigate potential contamination due to excessive ammonium. This method successfully yielded a hierarchical structure that possesses the water retention, ion absorption, and soil aggregation capabilities of plant root systems in a chemically controllable manner. Inspired by the robust organic-inorganic composites found in many living organisms, we have combined this hydrogel network with a calcite biomineralization process to stabilize soil. Our experiments demonstrate that poly(acrylic acid) (PAA) can work synergistically with enzyme-induced carbonate precipitation (EICP) to render a versatile, high-performance soil stabilization method. PAA-enhanced EICP provides multiple benefits including lengthening of water supply time, localization of cementation reactions, reduction of harmful byproduct ammonium, and achievement of ultrahigh soil strength. Soil crusts we have obtained can sustain up to 4.8 × 10 3 kPa pressure, a level comparable to cementitious materials. An ammonium removal rate of 96% has also been achieved. These results demonstrate the potential for hydrogel-assisted EICP to provide effective soil improvement and ammonium mitigation for wind erosion control and other applications.

  11. Stabilization of bottom sediments from Rzeszowski Reservoir

    Directory of Open Access Journals (Sweden)

    Koś Karolina

    2015-06-01

    Full Text Available The paper presents results of stabilization of bottom sediments from Rzeszowski Reservoir. Based on the geotechnical characteristics of the tested sediments it was stated they do not fulfill all the criteria set for soils in earth embankments. Therefore, an attempt to improve their parameters was made by using two additives – cement and lime. An unconfined compressive strength, shear strength, bearing ratio and pH reaction were determined on samples after different time of curing. Based on the carried out tests it was stated that the obtained values of unconfined compressive strength of sediments stabilized with cement were relatively low and they did not fulfill the requirements set by the Polish standard, which concerns materials in road engineering. In case of lime stabilization it was stated that the tested sediments with 6% addition of the additive can be used for the bottom layers of the improved road base.

  12. classical optimization of bagasse ash content in cement-stabilized

    African Journals Online (AJOL)

    Optimization of construction materials with laboratory data is a very possible way of minimizing waste of resources (materials and cost). There had been several successful attempts of optimization of construction materials. However, optimization in soil stabilization for road-work has been very rare because of its complexities ...

  13. Gamma radiation fields from activity deposited on road and soil surfaces

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1993-12-01

    Radioactive material deposited in the environment after an accidental release would cause exposure of the population living in the affected areas. The radiation field will depend on many factors such as radionuclide composition, surface contamination density, removal of activity by weathering and migration, and protective measures like decontamination, ploughing and covering by asphalt. Methods are described for calculation of air kerma rate from deposited activity on road and soil surfaces, both from the initially deposited activity and from activity distributed in the upper layer of soil as well as from activity covered by asphalt or soil. Air kerma rates are calculated for different source geometries and the results are fitted to a power-exponential function of photon energy, depth distributions in soil and horizontal dimensions. Based on this function calculations of air kerma rate can easily be made on a personal computer or programmable pocket calculator for specific radionuclide compositions and different horizontal and vertical distributions of the deposited activity. The calculations are compared to results from other methods like the Monte Carlo method and good agreement is found between the results. (au) (7 tabs., 12 ills., 8 refs.)

  14. [Application of simulated annealing method and neural network on optimizing soil sampling schemes based on road distribution].

    Science.gov (United States)

    Han, Zong-wei; Huang, Wei; Luo, Yun; Zhang, Chun-di; Qi, Da-cheng

    2015-03-01

    Taking the soil organic matter in eastern Zhongxiang County, Hubei Province, as a research object, thirteen sample sets from different regions were arranged surrounding the road network, the spatial configuration of which was optimized by the simulated annealing approach. The topographic factors of these thirteen sample sets, including slope, plane curvature, profile curvature, topographic wetness index, stream power index and sediment transport index, were extracted by the terrain analysis. Based on the results of optimization, a multiple linear regression model with topographic factors as independent variables was built. At the same time, a multilayer perception model on the basis of neural network approach was implemented. The comparison between these two models was carried out then. The results revealed that the proposed approach was practicable in optimizing soil sampling scheme. The optimal configuration was capable of gaining soil-landscape knowledge exactly, and the accuracy of optimal configuration was better than that of original samples. This study designed a sampling configuration to study the soil attribute distribution by referring to the spatial layout of road network, historical samples, and digital elevation data, which provided an effective means as well as a theoretical basis for determining the sampling configuration and displaying spatial distribution of soil organic matter with low cost and high efficiency.

  15. Developing a Soil Aggregate Stability Standard For Use in Laboratory Proficiency Testing

    OpenAIRE

    Smith, Mackenzie

    2018-01-01

    Soil health is an important part of agriculture and is becoming an issue to which more and more people are paying attention. In evaluating soil health there are many factors proposed to determine healthy soils, and one of the most reliable indicators, as identified by both academic and soil testing industry experts, is macro-aggregate stability. There is a great need for a method to make standard macro-aggregate stability soil samples for commercial and public labs and other facilities to use...

  16. Calcium-based stabilizer induced heave in Oklahoma sulfate-bearing soils.

    Science.gov (United States)

    2011-06-01

    The addition of lime stabilizers can create problems in soils containing sulfates. In most cases, lime is mixed with expansive soils rendering them non-expansive; however, when a certain amount of sulfate is present naturally in expansive soils, the ...

  17. Soil Stabilization Methods with Potential for Application at the Nevada National Security Site: A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Shillito, Rose [DRI; Fenstermaker, Lynn [DRI

    2014-01-01

    Nuclear testing at the Nevada National Security Site (NNSS) has resulted in large areas of surficial radionuclide-contaminated soils. Much of the radionuclide contamination is found at or near the soil surface, and due to the dry climate setting, and the long half-life of radioactive isotopes, soil erosion poses a long-term health risk at the NNSS. The objective of this literature review is to present a survey of current stabilization methods used for minimizing soil erosion, both by water and wind. The review focuses on in situ uses of fundamental chemical and physical mechanisms for soil stabilization. A basic overview of the physical and chemical properties of soil is also presented to provide a basis for assessing stabilization methods. Some criteria for stabilization evaluation are identified based on previous studies at the NNSS. Although no specific recommendations are presented as no stabilization method, alone or in combination, will be appropriate in all circumstances, discussions of past and current stabilization procedures and specific soil tests that may aid in current or future soil stabilization activities at the NNSS are presented. However, not all Soils Corrective Action Sites (CASs) or Corrective Action Units (CAUs) will require stabilization of surficial radionuclide-contaminated soils. Each Soils CAS or CAU should be evaluated for site-specific conditions to determine if soil stabilization is necessary or practical for a given specific site closure alternative. If stabilization is necessary, then a determination will be made as to which stabilization technique is the most appropriate for that specific site.

  18. Shear Strength of Stabilized Kaolin Soil Using Liquid Polymer

    Science.gov (United States)

    Azhar, A. T. S.; Fazlina, M. I. S.; Nizam, Z. M.; Fairus, Y. M.; Hakimi, M. N. A.; Riduan, Y.; Faizal, P.

    2017-08-01

    The purpose of this research is to investigate the suitability of polymer in soil stabilization by examining its strength to withstand compressive strength. Throughout this research study, manufactured polymer was used as a chemical liquid soil stabilizer. The liquid polymer was diluted using a proposed dilution factor of 1 : 3 (1 part polymer: 3 parts distilled water) to preserve the workability of the polymer in kaolin mixture. A mold with a diameter of 50 mm and a height of 100 mm was prepared. Kaolin soil was mixed with different percentages of polymer from 10%, 15%, 20%, 25%, 30% and 35% of the mass of the kaolin clay sample. Kaolin mixtures were tested after a curing period of 3 days, 7 days, 14 days and 28 days respectively. The physical properties were determined by conducting a moisture content test and Atterberg limit test which comprise of liquid limit, plastic limit and shrinkage limit. Meanwhile, the mechanical properties of the soil shear strength were identified through an unconfined compressive strength (UCS) test. Stabilized kaolin soil showed the highest compressive strength value when it was mixed with 35% of polymer compared to other percentages that marked an increment in strength which are 45.72% (3 days), 67.57% (7 days), 81.73% (14 days) and 77.84% (28 days). Hence, the most effective percentage of liquid polymer which should be used to increase the strength of kaolin soil is 35%.

  19. Overload road damage model

    CSIR Research Space (South Africa)

    Roux, MP

    2005-03-01

    Full Text Available Not only do overloaded vehicles pose an increased safety risk on the road (reduced stability and braking efficiency etc.), but they also accelerate the rate of deterioration of the road network and increase road maintenance costs, which in turn...

  20. [Effects of loess soil stabilization on Lolium perenne L. growth and root activity].

    Science.gov (United States)

    Liu, Yue-mei; Zhang, Xing-chang; Wang, Dan-dan

    2011-10-01

    Taking the loess soils with bulk density 1.2 g cm(-3), 1.3 g cm(-3), and 1.4 g cm(-3) from Ansai, Shaanxi Province as test objects, a pot experiment was conducted to study the effects of different amendment amount of soil stabilizer (EN-1 stabilizer) on the growth and root activity of ryegrass (Lolium perenne L.). Within the range of the bulk densities, the leaf chlorophyll content, root activity, root/shoot ratio, root biomass, and plant biomass of L. perenne all decreased with increasing soil bulk density, and were higher under the amendment of EN-1 stabilizer, as compared with the control. With increasing amendment amount of EN-1 stabilizer, the leaf chlorophyll content, root activity, root/shoot ratio, root biomass, and plant biomass had a trend of increased first and decreased then. Soil bulk density and stabilizer amendment amount had significant interactive effect on the root biomass and plant biomass. Overall, the values of the test indices were the highest under 1.3 g cm(-3) soil bulk density and 0.15% EN-1 stabilizer amendment amount.

  1. Soil Aggregate Stability and Grassland Productivity Associations in a Northern Mixed-Grass Prairie.

    Directory of Open Access Journals (Sweden)

    Kurt O Reinhart

    Full Text Available Soil aggregate stability data are often predicted to be positively associated with measures of plant productivity, rangeland health, and ecosystem functioning. Here we revisit the hypothesis that soil aggregate stability is positively associated with plant productivity. We measured local (plot-to-plot variation in grassland community composition, plant (aboveground biomass, root biomass, % water-stable soil aggregates, and topography. After accounting for spatial autocorrelation, we observed a negative association between % water-stable soil aggregates (0.25-1 and 1-2 mm size classes of macroaggregates and dominant graminoid biomass, and negative associations between the % water-stable aggregates and the root biomass of a dominant sedge (Carex filifolia. However, variation in total root biomass (0-10 or 0-30 cm depths was either negatively or not appreciably associated with soil aggregate stabilities. Overall, regression slope coefficients were consistently negative thereby indicating the general absence of a positive association between measures of plant productivity and soil aggregate stability for the study area. The predicted positive association between factors was likely confounded by variation in plant species composition. Specifically, sampling spanned a local gradient in plant community composition which was likely driven by niche partitioning along a subtle gradient in elevation. Our results suggest an apparent trade-off between some measures of plant biomass production and soil aggregate stability, both known to affect the land's capacity to resist erosion. These findings further highlight the uncertainty of plant biomass-soil stability associations.

  2. Seismic Stability of Reinforced Soil Slopes

    DEFF Research Database (Denmark)

    Tzavara, I.; Zania, Varvara; Tsompanakis, Y.

    2012-01-01

    Over recent decades increased research interest has been observed on the dynamic response and stability issues of earth walls and reinforced soil structures. The current study aims to provide an insight into the dynamic response of reinforced soil structures and the potential of the geosynthetics...... to prevent the development of slope instability taking advantage of their reinforcing effect. For this purpose, a onedimensional (SDOF) model, based on Newmark’s sliding block model as well as a two-dimensional (plane-strain) dynamic finite-element analyses are conducted in order to investigate the impact...

  3. Transport roads on peatland

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, G

    1984-01-01

    Laboratory tests have given good experiences to develop the technology of building transport roads for truck on peat bogs. The experiences can be summarized in the following points: The bearing capacity can be increased 15-20 times by mixing down, to the depth of 0,5 m, a mixture of gypsum and T-lime. high bearing surface capacity has been achieved at laboratory tests by mixing sulfonated lignin/sodiumbichromate or cement into peat. These mixtures can take a load of 610 kPa will be tested in the field. An ordinary base machine can be used with some modifications for the new technique. Costs for building roads and stores with the new technique can save 6 MSEK/year in Sweden. Remainig problems at full scale tests are: Testroads should be built to get knowledge of settlement, bearing capacity cost of maintenance etc. Heavy metals pollution. Machinery for transportation and admixture of the stabilizing agents must be deloped. By experience a good mixture between firm soil and peat is difficult to achieve. Technique and dimensioning to make a soft mixture ought to be studied.

  4. Soil Infrastructure, Interfaces & Translocation Processes in Inner Space ("Soil-it-is": towards a road map for the constraints and crossroads of soil architecture and biophysical processes

    Directory of Open Access Journals (Sweden)

    L. W. de Jonge

    2009-08-01

    , we show the Dexter et al. (2008 threshold may also apply to hydrological and physical-chemical interface phenomena including soil-water repellency and sorption of volatile organic vapors (gas-water-solids interfaces as well as polycyclic aromatic hydrocarbons (water-solids interfaces. However, data for differently-managed soils imply that energy input, soil-moisture status, and vegetation (quality of eluded organic matter may be equally important constraints together with the complexation and degradation of organic carbon in deciding functional soil architecture and interface processes. Finally, we envision a road map to soil inner space where we search for the main controls of particle and pore network changes and structure build-up and resilience at each crossroad of biophysical parameters, where, for example, complexation between organic matter and clay, and moisture-induced changes from hydrophilic to hydrophobic surface conditions can play a role. We hypothesize that each crossroad (e.g. between organic carbon/clay ratio and matric potential may control how soil self-organization will manifest itself at a given time as affected by gradients in energy and moisture from soil use and climate. The road map may serve as inspiration for renewed and multi-disciplinary focus on functional soil architecture.

  5. Use of oil shale ash in road construction: results of follow-up environmental monitoring.

    Science.gov (United States)

    Reinik, Janek; Irha, Natalya; Koroljova, Arina; Meriste, Tõnis

    2018-01-05

    Oil shale ash (OSA) was used for road construction in a pristine swamp area in East-Estonia during 2013-2014. OSA was used as a binder both in mass stabilization of soft peat soil and in the upper layer. Use of OSA in civil engineering always raises questions about the environmental safety of such activities. Post-construction environmental monitoring of the pilot section was carried out in 2014 and 2015. The monitoring program involved surface water and soil sampling campaigns. Samples were analyzed for selected constituents and parameters of environmental concern. The paper gives data for assessing the environmental impact and evaluation of potential risks associated with construction of roads using OSA. Leaching of hazardous compounds from the pilot section to surrounding aqueous environment was not observed during the monitoring program. Still, the road construction affected the concentration of sulfates in surrounding surface water. Also, the water-soluble content of barium in surface water correlated significantly with the concentrations of chloride and sulfate ion and electric conductivity of the surface water. Therefore, it is recommended to monitor the electric conductivity, concentrations of sulfates, chlorides, and barium in nearby surface water when OSA is used in road construction.

  6. Superfund Innovative Technology Evaluation - Demonstration Bulletin: In-Situ Soil Stabilization

    Science.gov (United States)

    In-situ stabilization technology immobilizes organics and inorganic compounds in wet or dry soils by using reagents (additives) to polymerize with the soils and sludges producing a cement-like mass. Two basic components of this technology are the Geo-Con/DSM Deep Soil Mixing Sy...

  7. APPLICATION OF ZEOLITE AND BENTONITE FOR STABILIZING LEAD IN A CONTAMINATED SOIL

    Directory of Open Access Journals (Sweden)

    Agnieszka Andrzejewska

    2017-08-01

    The study evaluated the properties of zeolite and bentonite for stabilizing lead (Pb in a contaminated soil. Sorbents were applied at different rates 0, 0.25, 0.5, 1.0, 2.0, and 3.0% to the contaminated soil and incubated for four months. Soil reaction (pH was measured as well as the electrical conductivity (EC. The total content of Pb was determined in the soil samples as did the reactive forms (extracted by 0.11 mol CH3HCOOH dm-3. The evaluation of the efficiency of the stabilization of Pb was performed on the basis of the fractions of the reactive lead. It was found, that the addition of both zeolite and bentonite resulted in a decrease in the concentrations of the active forms of lead in soils. Thus, the two sorbents exerted a good stability and can be used for efficiently immobilizing lead in soil contaminated anthropogenically.

  8. Water stability of soil aggregates in different systems of Chernozem tillage

    Directory of Open Access Journals (Sweden)

    Jaroslava Bartlová

    2011-01-01

    Full Text Available Effects of various agrotechnical measures on macrostructural changes in the ploughing layer and subsoil were studied within the period of 2008–2010. Soil macrostructure was evaluated on the base of water stability of soil aggregates. Altogether three variants of soil tillage were established, viz. ploughing to the depth of 0.22 m (Variant 1, deep soil loosening to the depth of 0.35–0.40 m (Variant 2, and shallow tillage to the depth of 0.15 m (Variant 3. Experiments were established on a field with Modal Chernozem in the locality Hrušovany nad Jevišovkou (maize-growing region, altitude of 210 m, average annual sum of precipitation 461 mm. In the first experimental year, winter rape was the cultivated crop and it was followed by winter wheat, maize and spring wheat in subsequent years. The aim of this study was to evaluate effects of different methods of tillage on water stability of soil aggregates and on yields of individual crops. An overall analysis of results revealed a positive effect of cultivation without ploughing on water stability of soil aggregates. In the variant with ploughing was found out a statistically significant decrease of this stability. At the same time it was also found out that both minimum tillage and deep soil loosening showed a positive effect on yields of crops under study (above all of maize and winter wheat.

  9. Microflora and structural stability of soils

    International Nuclear Information System (INIS)

    Guckert, A.; Chone, Therese; Jacquin, F.; Institut National Polytechnique, 54 - Nancy; Centre National de la Recherche Scientifique, 54 - Vandoeuvre-les-Nancy

    1975-01-01

    Water stable aggregates produced during the incubation of a loamy soil amended with glucose 14 C show a quite differing evolution of their physical properties and their organic matter according to the time of incubation after which they have been isolated from the soil by water sieving. The aggregates, built up during the first week of incubation, therefore during the maximal activity stage of the microflora of the soil, present the highest stability against biodegradation induced by a second incubation process, even if this one has reached six weeks. This evolution of the physical properties of the aggregates, is essentially in relationship with the microbially synthetized organic matter and especially the polysaccharides preferentially incorporated into the humine fraction. This relatively labile microbial humine has a high aggregating effect, the polysaccharide chains forming several bonds between the neighbouring clay surfaces and building up stable structural units. The mechanical strength of these aggregates is related to the stabilization of the humine produced previously and whose evolution towards a relatively stable form seems to be the result of two mechanisms: a secundary biodegradation parallel to a higher humification process of the organic matter and a increase of the bonds between polysaccharides and clay surfaces favoured by the alternation of wetting and drying [fr

  10. Carbon stabilization mechanisms in soils in the Andes

    Science.gov (United States)

    Jansen, Boris; Cammeraat, Erik

    2015-04-01

    The volcanic ash soils of the Andes contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute significant potential sources or sinks of the greenhouse gas CO2. Climate and/or land use change potentially have a strong effect on these large SOM stocks. To clarify the role of chemical and physical stabilisation mechanisms in volcanic ash soils in the montane tropics, we investigated carbon stocks and stabilization mechanisms in the top- and subsoil along an altitudinal transect in the Ecuadorian Andes. The transect encompassed a sequence of paleosols under forest and grassland (páramo), including a site where vegetation cover changed in the last century. We applied selective extraction techniques, performed X-ray diffraction analyses of the clay fraction and estimated pore size distributions at various depths in the top- and subsoil along the transect. In addition, from several soils the molecular composition of SOM was further characterized with depth in the current soil as well as the entire first and the top of the second paleosol using GC/MS analyses of extractable lipids and Pyrolysis-GC/MS analyses of bulk organic matter. Our results show that organic carbon stocks in the mineral soil under forest a páramo vegetation were roughly twice as large as global averages for volcanic ash soils, regardless of whether the first 30cm, 100cm or 200cm were considered. We found the carbon stabilization mechanisms involved to be: i) direct stabilization of SOM in organo-metallic (Al-OM) complexes; ii) indirect protection of SOM through low soil pH and toxic levels of Al; and iii) physical protection of SOM due to a very high microporosity of the soil (Tonneijck et al., 2010; Jansen et al. 2011). When examining the organic carbon at a molecular level, interestingly we found extensive degradation of lignin in the topsoil while extractable lipids were preferentially preserved in the subsoil (Nierop and Jansen, 2009). Both vegetation

  11. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    Science.gov (United States)

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals.

  12. Soil stability and plant diversity in eco-engineering

    Science.gov (United States)

    Böll, Albert; Gerber, Werner; Rickli, Christian; Graf, Frank

    2010-05-01

    Slopes affected by superficial sliding and subsequently re-stabilised with eco-engineering measures were investigated, particularly related to soil stability and plant diversity. The sites are situated in three different areas of beech-fir-spruce forest associations of the higher montane zone of Switzerland. Climatic and site characteristics, in paraticular soil properties after the sliding event, of the three investigation areas are very similar. However, the number of species (shrubs and trees) used for the initial planting as well as the year of application of the eco-engineering measures differ substantially. In the investigation area Dallenwil-Wirzweli the biological measures taken in 1981 were restricted to one tree species, namely White Alder (Alnus incana). In Klosters, where measures were taken in 1983 as well as in the Arieschbach valley, where eco-engineering was applied in 1998, the initial planting consisted of 15 species either. Investigations in 2005/2006 revealed neither obvious differences among the three areas nor distinct correlations related to the diversity of the initial planting on the on hand and the development of the vegetation cover and soil stability on the other hand. During the available time of development, the soil aggregate stability increased by 30 to 39%. Compared to the corresponding climax association, the relative values of soil aggregate stability varied between 90 and 120%. Concurrently, the dry unit weight decreased between 1.1 and 3.1 kN/m3. The cumulative vegetation cover varied from 110 to 150%. Due to processes of soil development a distinct shift in the grain size distribution was noticed, from a well sorted gravel with clay and sand (GW-GC) to a silty gravel with sand (GM) in Dallenwil-Wirzweli and a silty to clayey gravel with sand (GC-GM) in Klosters and the Arieschbach valley. Furthermore, in all three investigation areas succession processes were observed that are comparable to average rates of natural secondary

  13. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept.

    Science.gov (United States)

    Castellano, Michael J; Mueller, Kevin E; Olk, Daniel C; Sawyer, John E; Six, Johan

    2015-09-01

    Labile, 'high-quality', plant litters are hypothesized to promote soil organic matter (SOM) stabilization in mineral soil fractions that are physicochemically protected from rapid mineralization. However, the effect of litter quality on SOM stabilization is inconsistent. High-quality litters, characterized by high N concentrations, low C/N ratios, and low phenol/lignin concentrations, are not consistently stabilized in SOM with greater efficiency than 'low-quality' litters characterized by low N concentrations, high C/N ratios, and high phenol/lignin concentrations. Here, we attempt to resolve these inconsistent results by developing a new conceptual model that links litter quality to the soil C saturation concept. Our model builds on the Microbial Efficiency-Matrix Stabilization framework (Cotrufo et al., 2013) by suggesting the effect of litter quality on SOM stabilization is modulated by the extent of soil C saturation such that high-quality litters are not always stabilized in SOM with greater efficiency than low-quality litters. © 2015 John Wiley & Sons Ltd.

  14. Testing the effect of a microbial-based soil amendment on aggregate stability and erodibility

    DEFF Research Database (Denmark)

    Malozo, Mponda; Iversen, Bo Vangsø; Heckrath, Goswin Johann

    to the rainfall-runoff experiment where the microbial-based product had a clear effect on soil erodibility. In relation to measurement of aggregate stability as well as clay dispersion, the picture was less clear. Especially for the sandy Tanzania soil with a low content of organic matter, a clear effect was seen...... aggregate stability and erodibility. Two commercial products, gypsum and a microbial-based solution were used for the experiment and were tested on two Danish sandy loamy soils as well on a sandy soil from Tanzania. The carrier of the microbial-based product, a glycerol solution, was tested as well....... In the laboratory, soils were treated with the soil amendments in a two-step procedure at controlled water contents following aerobic incubation in closed containers. Water-aggregate stability and clay dispersion were measured on soil aggregates less than 8 mm in diameter. Aggregate stability was measured...

  15. Interfacial stability of soil covers on lined surface impoundments

    International Nuclear Information System (INIS)

    Mitchell, D.H.; Gates, T.E.

    1986-04-01

    The factors affecting the interfacial stability of soil covers on geomembranes were examined to determine the maximum stable slopes for soil cover/geomembrane systems. Several instances of instability of soil covers on geomembranes have occurred at tailings ponds, leaving exposed geomembranes with the potential for physical ddamage and possibly chemical and ultraviolet degradation. From an operator's viewpoint, it is desirable to maximize the slope of lined facilities in order to maximize the volume-to-area ratio; however, the likelihood for instability also increases with increasing slope. Frictional data obtained from direct shear tests are compared with stability data obtained using a nine-square-meter (m 2 ) engineering-scale test stand to verify that direct shear test data are valid in slope design calculations. Interfacial frictional data from direct shear tests using high-density polyethylene and a poorly graded sand cover agree within several degrees with the engineering-scale tests. Additional tests with other soils and geomembranes are planned. The instability of soil covers is not always an interfacial problem; soil erosion and limited drainage capacity are additional factors that must be considered in the design of covered slopes. 7 refs., 5 figs., 2 tabs

  16. Effect of soil stabilized by cement on dynamic response of machine foundations

    Directory of Open Access Journals (Sweden)

    Al-Wakel Saad

    2018-01-01

    Full Text Available Machine foundations require significant attention from designers. The main goal of the design of machine foundation is to limit the amplitude displacement and not disturb the people who work near the machine. In some cases, if the design of machine foundations does not satisfy the acceptable value of the dynamic response (such as maximum amplitude of displacement, the stabilization of soil under the machine foundation may be used to decrease the amplitude of displacement. This paper outlines effect of stabilized soil under the foundation by cement on the displacement response of machine foundations. Three-dimensional analyses by using finite element method are carried out to investigate the effect of depth of stabilized layer with different percentage of cement content on the dynamic response of the machine foundation. In addition, the effect of area stabilized by cement material on the dynamic response of machine foundation is investigated. The results shown that, the dynamic response of machine foundations generally decreases with increasing the depth of soil layer stabilized with cement. A significant decrease in the displacement of machine foundations is occurred for the stabilized soil layer with a depth of two times of the width of foundation, and the optimum percentage of cement for stabilizing is 6%.

  17. Determination of Required Ion Exchange Solution for Stabilizing Clayey Soils with Various PI

    OpenAIRE

    R. Ziaie Moayed; F. Allahyari

    2012-01-01

    Soil stabilization has been widely used to improve soil strength and durability or to prevent erosion and dust generation. Generally to reduce problems of clayey soils in engineering work and to stabilize these soils additional materials are used. The most common materials are lime, fly ash and cement. Using this materials, although improve soil property , but in some cases due to financial problems and the need to use special equipment are limited .One of the best method...

  18. The use of lightweight aggregate saturated with PCM as a temperature stabilizing material for road surfaces

    International Nuclear Information System (INIS)

    Ryms, Michał; Lewandowski, Witold M.; Klugmann-Radziemska, Ewa; Denda, Hubert; Wcisło, Patrycja

    2015-01-01

    This paper presents the possibility of adding lightweight building aggregates to increase the stability – mechanical as well as thermal – of constructions and road objects. This stability can be achieved through saturating the porous granules of aggregate with a phase-change material (PCM) that allows the accumulation of solar heat. Intense solar radiation, especially during the summer, can cause the asphalt on road surfaces, bridges and parking lots to melt, thus protecting the structure from further overheating. The absence of asphalt layers results in thermal stress and strain conditions causes accelerated wear of road surface. Lightweight aggregate, previously used to reduce the weight of the structures, while maintaining the bearing capacity similar to that offered by conventional concrete structures, thereby gains a new functionality, as a temperature stabilizing material. The paper contains a review of several phase-change materials as well as a study justifying the choice of ceresin, a product of crude oil distillation, as a suitable material for such applications. Information about the aggregate and its possible applications, and a proposed method of saturating the aggregate with ceresin has also been collected and presented. With the help of quantitative research conducted through the use of differential scanning calorimetry, the characteristic of thermodynamic parameters of pure ceresin and expanded clay aggregate (Pollytag) saturated with ceresin was determined. Simulation tests conducted under real conditions on two asphalt surfaces (0.32 × 0.22 × 0.15 m), one of which contained the PCM while the other did not, have shown that even a small addition of ceresin (3% mass relative to the weight of the ground) causes a reduction in surface temperature of about 5 K within the tested temperature range of 318.15–338.15 K. - Highlights: • Road surface overheating on summer days may reach up to 344 K. • Solution against overheating through

  19. Lime stabilization of expansive soil from Sergipe - Brazil

    Directory of Open Access Journals (Sweden)

    Leite Rafaella

    2016-01-01

    Full Text Available Expansive soils are characterized by volumetric changes caused by variations in moisture. They can cause several damages to civil constructions, especially to lightweight structures, including cracks and fissures. Chemical stabilization through addition of lime is one of the most effective techniques used to treat this type of soil. Due to cationic exchanges, lime can significantly reduce swell potential. This research studied a disturbed sample of expansive soil collected in Nossa Senhora do Socorro – Sergipe, Brazil, through the following laboratory tests: sieve and hydrometer tests, Atterberg Limits, compaction, free swell and swell pressure. All direct and indirect methods mentioned in this paper indicated that the natural soil presented high to very high degree of expansion, which reached approximately 20% of free swell and nearly 200 kPa of swell pressure. In order to evaluate the effect of lime, the same tests were conducted in soil-lime mixtures, using lime contents of 3%, 6% and 9%. The results confirmed the efficiency of lime stabilization. It was noted that, as lime content increased, there was reduction of clay fraction and increment of silt fraction; plasticity index decreased to nearly its half; compaction curve was displaced; and free swell and swell pressure reduced significantly.

  20. Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road.

    Science.gov (United States)

    Mleczek, Patrycja; Borowiak, Klaudia; Budka, Anna; Niedzielski, Przemysław

    2018-06-05

    Rare earth elements (REEs) are a group of elements whose concentration in numerous environmental matrices continues to increase; therefore, the use of biological methods for their removal from soil would seem to be a safe and reasonable approach. The aim of this study was to estimate the phytoextraction efficiency and distribution of light and heavy (LREEs and HREEs) rare earth elements by three herbaceous plant species: Artemisia vulgaris L., Taraxacum officinale F.H. Wigg. and Trifolium repens L., growing at a distance of 1, 10, and 25 m from the edge of a frequented road in Poland. The concentration of REEs in soil and plants was highly correlated (r > 0.9300), which indicates the high potential of the studied plant species to phytoextraction of these elements. The largest proportion of REEs was from the group of LREEs, whereas HREEs comprised only an inconsiderable portion of the REEs group. The dominant elements in the group of LREEs were Nd and Ce, while Er was dominant in the HREEs group. Differences in the amounts of these elements influenced the total concentration of LREEs, HREEs, and finally REEs and their quantities which decreased with distance from the road. According to the Friedman rank sum test, significant differences in REEs concentration, mainly between A. vulgaris L., and T. repens L. were observed for plants growing at all three distances from the road. The same relation between A. vulgaris L. and T. officinale was observed. The efficiency of LREEs and REEs phytoextraction in the whole biomass of plants growing at all distances from the road was A. vulgaris L. > T. officinale L. > T. repens L. For HREEs, the same relationship was recorded only for plants growing at the distance 1 m from the road. Bioconcentration factor (BCF) values for LREEs and HREEs were respectively higher and lower than 1 for all studied plant species regardless of the distance from the road. The studied herbaceous plant species were able to effectively phytoextract

  1. Integrating plant-microbe interactions to understand soil C stabilization with the MIcrobial-MIneral Carbon Stabilization model (MIMICS)

    Science.gov (United States)

    Grandy, Stuart; Wieder, Will; Kallenbach, Cynthia; Tiemann, Lisa

    2014-05-01

    If soil organic matter is predominantly microbial biomass, plant inputs that build biomass should also increase SOM. This seems obvious, but the implications fundamentally change how we think about the relationships between plants, microbes and SOM. Plant residues that build microbial biomass are typically characterized by low C/N ratios and high lignin contents. However, plants with high lignin contents and high C/N ratios are believed to increase SOM, an entrenched idea that still strongly motivates agricultural soil management practices. Here we use a combination of meta-analysis with a new microbial-explicit soil biogeochemistry model to explore the relationships between plant litter chemistry, microbial communities, and SOM stabilization in different soil types. We use the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, newly built upon the Community Land Model (CLM) platform, to enhance our understanding of biology in earth system processes. The turnover of litter and SOM in MIMICS are governed by the activity of r- and k-selected microbial groups and temperature sensitive Michaelis-Menten kinetics. Plant and microbial residues are stabilized short-term by chemical recalcitrance or long-term by physical protection. Fast-turnover litter inputs increase SOM by >10% depending on temperature in clay soils, and it's only in sandy soils devoid of physical protection mechanisms that recalcitrant inputs build SOM. These results challenge centuries of lay knowledge as well as conventional ideas of SOM formation, but are they realistic? To test this, we conducted a meta-analysis of the relationships between the chemistry of plant liter inputs and SOM concentrations. We find globally that the highest SOM concentrations are associated with plant inputs containing low C/N ratios. These results are confirmed by individual tracer studies pointing to greater stabilization of low C/N ratio inputs, particularly in clay soils. Our model and meta-analysis results suggest

  2. Metals in European roadside soils and soil solution – A review

    International Nuclear Information System (INIS)

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-01-01

    This review provides a summary of studies analysing metal concentrations in soils and soil solution at European roadsides. The data collected during 27 studies covering a total of 64 sites across a number of European countries were summarised. Highest median values of Cr, Cu, Ni, Pb, and Zn were determined in the top soil layer at the first 5 m beside the road. Generally, the influence of traffic on soil contamination decreased with increasing soil depth and distance to the road. The concentration patterns of metals in soil solution were independent from concentrations in the soil matrix. At 10-m distance, elevated soil metal concentrations, low pH, and low percolation rates led to high solute concentrations. Directly beside the road, high percolation rates lead to high annual loadings although solute concentrations are comparatively low. These loadings might be problematic, especially in regions with acidic sandy soils and a high groundwater table. - Highlights: • Summary of studies analysing metals in soils and soil solution at European roadsides. • Metal concentrations in topsoil 5 m beside the road are influenced strongly by traffic. • Solute concentrations of metals are mostly independent from soil concentrations. • High percolation rates lead to high annual loadings directly beside the road. - Summarised data showed typical distance related metal patterns of European roadside soils; solute concentrations are mostly independent from soil matrix concentrations

  3. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration

    Directory of Open Access Journals (Sweden)

    Sonia Chamizo

    2018-06-01

    Full Text Available Cyanobacteria are ubiquitous components of biocrust communities and the first colonizers of terrestrial ecosystems. They play multiple roles in the soil by fixing C and N and synthesizing exopolysaccharides, which increase soil fertility and water retention and improve soil structure and stability. Application of cyanobacteria as inoculants to promote biocrust development has been proposed as a novel biotechnological technique for restoring barren degraded areas and combating desertification processes in arid lands. However, previous to their widespread application under field conditions, research is needed to ensure the selection of the most suitable species. In this study, we inoculated two cyanobacterial species, Phormidium ambiguum (non N-fixing and Scytonema javanicum (N-fixing, on different textured soils (from silt loam to sandy, and analyzed cyanobacteria biocrust development and evolution of physicochemical soil properties for 3 months under laboratory conditions. Cyanobacteria inoculation led to biocrust formation in all soil types. Scanning electron microscope (SEM images showed contrasting structure of the biocrust induced by the two cyanobacteria. The one from P. ambiguum was characterized by thin filaments that enveloped soil particles and created a dense, entangled network, while the one from S. javanicum consisted of thicker filaments that grouped as bunches in between soil particles. Biocrust development, assessed by chlorophyll a content and crust spectral properties, was higher in S. javanicum-inoculated soils compared to P. ambiguum-inoculated soils. Either cyanobacteria inoculation did not increase soil hydrophobicity. S. javanicum promoted a higher increase in total organic C and total N content, while P. ambiguum was more effective in increasing total exopolysaccharide (EPS content and soil penetration resistance. The effects of cyanobacteria inoculation also differed among soil types and the highest improvement in soil

  4. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    Science.gov (United States)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  5. Off-road vehicle dynamics analysis, modelling and optimization

    CERN Document Server

    Taghavifar, Hamid

    2017-01-01

    This book deals with the analysis of off-road vehicle dynamics from kinetics and kinematics perspectives and the performance of vehicle traversing over rough and irregular terrain. The authors consider the wheel performance, soil-tire interactions and their interface, tractive performance of the vehicle, ride comfort, stability over maneuvering, transient and steady state conditions of the vehicle traversing, modeling the aforementioned aspects and optimization from energetic and vehicle mobility perspectives. This book brings novel figures for the transient dynamics and original wheel terrain dynamics at on-the-go condition.

  6. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    Science.gov (United States)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond

  7. Influence of Rice Husk Ash and Clay in Stabilization of Silty Soils Using Cement

    OpenAIRE

    Widjajakusuma Jack; Winata Hendo

    2017-01-01

    Soil stabilization is needed to enhance the strength of the soil. One popular method of soil stabilization is using cement. Due to the environmental issue, it is a need to reduce the application of cement and/or to replace partially the cement with other environmental-friendly compounds. One of these compounds is rice husk ash (RSA), which is agricultural wastes. The objective of this paper is to study the influence of RSA and clay as partial replacement to cement in soil stabilization of sil...

  8. experimental characterization of clay soils behavior stabilized

    African Journals Online (AJOL)

    S. Rehab Bekkouche, G. Boukhatem

    2016-09-01

    Sep 1, 2016 ... their influence on the physical and mechanical properties of soil-po .... 1/2. Vitreous transition temperature. 300 (K). Softening temperature. 390 (K) .... f the piston is measured as a function of time until its stabilization. Th.

  9. Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress.

    Science.gov (United States)

    Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A

    2016-01-01

    Stabilizing extracellular enzymes may maintain enzymatic activity while protecting enzymes from proteolysis and denaturation. A study determined whether a fast pyrolysis hardwood biochar (CQuest™) would reduce evaporative losses, subsequently stabilizing soil extracellular enzymes and prohibiting potential enzymatic activity loss following a denaturing stress (microwaving). Soil was incubated in the presence of biochar (0%, 1%, 2%, 5%, or 10% by wt.) for 36 days and then exposed to microwave energies (0, 400, 800, 1600, or 3200 J g(-1) soil). Soil enzymes (β-glucosidase, β-d-cellobiosidase, N-acetyl-β-glucosaminidase, phosphatase, leucine aminopeptidase, β-xylosidase) were analyzed by fluorescence-based assays. Biochar amendment reduced leucine aminopeptidase and β-xylosidase potential activity after the incubation period and prior to stress exposure. The 10% biochar rate reduced soil water loss at the lowest stress level (400 J microwave energy g(-1) soil). Enzyme stabilization was demonstrated for β-xylosidase; intermediate biochar application rates prevented a complete loss of this enzyme's potential activity after soil was exposed to 400 (1% biochar treatment) or 1600 (5% biochar treatment) J microwave energy g(-1) soil. Remaining enzyme potential activities were not affected by biochar, and activities decreased with increasing stress levels. We concluded that biochar has the potential to reduce evaporative soil water losses and stabilize certain extracellular enzymes where activity is maintained after a denaturing stress; this effect was biochar rate and enzyme dependent. While biochar may reduce the potential activity of certain soil extracellular enzymes, this phenomenon was not universal as the majority of enzymes assayed in this study were unaffected by exposure to biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of freeze-thaw on characteristics of new KMP binder stabilized Zn- and Pb-contaminated soils.

    Science.gov (United States)

    Wei, Ming-Li; Du, Yan-Jun; Reddy, Krishna R; Wu, Hao-Liang

    2015-12-01

    For viable and sustainable reuse of solidified/stabilized heavy metal-contaminated soils as roadway subgrade materials, long-term durability of these soils should be ensured. A new binder, KMP, has been developed for solidifying/stabilizing soils contaminated with high concentrations of heavy metals. However, the effects of long-term extreme weather conditions including freeze and thaw on the leachability and strength of the KMP stabilized contaminated soils have not been investigated. This study presents a systematic investigation on the impacts of freeze-thaw cycle on leachability, strength, and microstructural characteristics of the KMP stabilized soils spiked with Zn and Pb individually and together. For comparison purpose, Portland cement is also tested as a conventional binder. Several series of tests are conducted including the toxicity characteristic leaching procedure (TCLP), modified European Community Bureau of Reference (BCR) sequential extraction procedure, unconfined compression test (UCT), and mercury intrusion porosimetry (MIP). The results demonstrate that the freeze-thaw cycles have much less impact on the leachability and strength of the KMP stabilized soils as compared to the PC stabilized soils. After the freeze-thaw cycle tests, the KMP stabilized soils display much lower leachability, mass loss, and strength loss. These results are assessed based on the chemical speciation of Zn and Pb, and pore size distribution of the soils. Overall, this study demonstrates that the KMP stabilized heavy metal-contaminated soils perform well under the freeze-thaw conditions.

  11. Organomineral Complexation at the Nanoscale: Iron Speciation and Soil Carbon Stabilization

    Science.gov (United States)

    Coward, E.; Thompson, A.; Plante, A. F.

    2016-12-01

    Much of the uncertainty in the biogeochemical behavior of soil carbon (C) in tropical ecosystems derives from an incomplete understanding of soil C stabilization processes. The 2:1 phyllosilicate clays often associated with temperate organomineral complexation are largely absent in tropical soils due to extensive weathering. In contrast, these soils contain an abundance of Fe- and Al-containing short-range-order (SRO) mineral phases capable of C stabilization through sorption or co-precipitation, largely enabled by high specific surface area (SSA). SRO-mediated organomineral associations may thus prove a critical, yet matrix-selective, driver of the long-term C stabilization capacity observed in tropical soils. Characterizing the interactions between inherently heterogeneous organic matter and amorphous mineralogy presses the limits of current analytical techniques. This work pairs inorganic selective dissolution with high-resolution assessment of Fe speciation to determine the contribution of extracted mineral phases to the mineral matrix, and to C stabilization capacity. Surface (0-20 cm) samples were taken from 20 quantitative soil pits within the Luquillo Critical Zone Observatory in northeast Puerto Rico stratified across granodioritic and volcaniclastic parent materials. 57Fe-Mössbauer spectroscopy (MBS) and x-ray diffraction (XRD) before and after Fe-SOM extraction were used to assess changes in the mineralogical matrix associated with SOM dissolution, while N2-BET sorption was used to determine the contributions of the extractable phases to SSA. Results indicate (1) selective extraction of soil C produces significant shifts in Fe phase distribution, (2) SRO minerals contribute substantially to SSA, and (3) SRO minerals appear protected by more crystalline phases via physical mechanisms, rather than dissolution-dependent chemical bonds. This nanoscale characterization of Fe-C complexes thus provides evidence for both anticipated mineral-organic and

  12. Effect of Alkaline Activator to Fly Ash Ratio for Geopolymer Stabilized Soil

    Directory of Open Access Journals (Sweden)

    Abdullah Muhammad Sofian

    2017-01-01

    Full Text Available Geopolymer technology have been developed and explored especially in the construction material field. However, lack of research related to geopolymer stabilized soil. In this research, the utilization of geopolymer has been investigated to stabilize the soil including the factors that affecting the geopolymerization process. Unconfined compressive test (UCT used as indicator to the strength development and hence evaluating the performance of geopolymer stabilized soil. This paper focusing on the effect of fly ash/alkaline activator ratio, Na2SiO3/NaOH ratio and curing time on geopolymer stabilized soil. A various mix design at different fly ash/alkaline activator ratio, Na2SiO3/NaOH ratio were prepared and cured for 7 and 28 days. Molarity and the percentage of geopolymer to soil were fixed at 10 molar and 8 percent respectively. Then, the UCT tests were carried out on 38mm diameter x 76mm height specimens. The highest strength obtained at the fly ash/alkaline activator ratio 2.5 and Na2SiO3/NaOH ratio 2.0 at 28 days curing time.

  13. Soil organic matter stabilization in buried paleosols of the Great Plains

    Science.gov (United States)

    Chaopricha, N. T.; Marin-Spiotta, E.; Mason, J. A.; Mueller, C. W.

    2010-12-01

    Understanding the mechanisms that control soil organic matter (SOM) stabilization is important for understanding how soil carbon is sequestered over millennia, and for predicting how future disturbances may affect soil carbon stocks. We are studying the mechanisms controlling SOM stabilization in the Brady Soil, a buried paleosol in Holocene loess deposits spanning much of the central Great Plains of the United States. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying that resulted in a shift from C3 to C4 dominated plants. The Brady soil is unusual in that it has very dark coloring, although it contains less than separate particulate organic matter associated with minerals from that within and outside of soil aggregates. We found the largest and darkest amounts of organic C in aggregate-protected SOM greater than 20 µm in diameter. Density and textural fractionation revealed that much of the SOM is bound within aggregates, indicating that protection within aggregates is a major contributor to SOM- stabilization in the Brady Soil. We are conducting a long-term lab soil incubation with soils collected from the modern A horizon and the Brady Soil to determine if the buried SOM becomes microbially available when exposed to the modern atmosphere. We are measuring potential rates of respiration and production of CH4 and N2O. Results so far show respiration rates at field moisture for both modern and buried horizons are limited by water, suggesting dry environmental conditions may have helped to preserve SOM in the Brady Soil. We are investigating the potential for chemical stabilization of the dark SOM preserved in the buried paleosol by characterizing C chemistry using solid-state 13C-NMR spectroscopy. Furthermore, we plan to use lipid analyses and pyrolysis GC/MS to determine likely sources for the SOM: microbial vs plant. Combining information on the physical location of SOM in the soil, its chemical composition, decomposability

  14. Strength Improvement of Clay Soil by Using Stone Powder

    OpenAIRE

    Ahmed Sameer Abdulrasool

    2015-01-01

    Soil stabilization with stone powder is a good solution for the construction of subgrade for road way and railway lines, especially under the platforms and mostly in transition zones between embankments and rigid structures, where the mechanical properties of supporting soils are very influential. Stone powder often has a unique composition which justifies the need for research to study the feasibility of using this stone powder type for ground improvement applications. This paper presents re...

  15. Quantifying the contribution of the root system of alpine vegetation in the soil aggregate stability of moraine

    Directory of Open Access Journals (Sweden)

    Csilla Hudek

    2017-03-01

    Full Text Available One fifth of the world's population is living in mountains or in their surrounding areas. This anthropogenic pressure continues to grow with the increasing number of settlements, especially in areas connected to touristic activities, such as the Italian Alps. The process of soil formation on high mountains is particularly slow and these soils are particularly vulnerable to soil degradation. In alpine regions, extreme meteorological events are increasingly frequent due to climate change, speeding up the process of soil degradation and increasing the number of severe erosion processes, shallow landslides and debris flows. Vegetation cover plays a crucial role in the stabilization of mountain soils thereby reducing the risk of natural hazards effecting downslope areas. Soil aggregate stability is one of the main soil properties that can be linked to soil loss processes. Soils developed on moraines in recently deglaciated areas typically have low levels of soil aggregation, and a limited or discontinuous vegetation cover making them more susceptible to degradation. However, soil structure can be influenced by the root system of the vegetation. Roots are actively involved in the formation of water-stable soil aggregation, increasing the stability of the soil and its nutrient content. In the present study, we aim to quantify the effect of the root system of alpine vegetation on the soil aggregate stability of the forefield of the Lys glacier, in the Aosta Valley (NW-Italy. This proglacial area provides the opportunity to study how the root system of ten pioneer alpine species from different successional stages can contribute to soil development and soil stabilization. To quantify the aggregate stability of root permeated soils, a modified wet sieving method was employed. The root length per soil volume of the different species was also determined and later correlated with the aggregate stability results. The results showed that soil aggregate

  16. [Stabilization Treatment of Pb and Zn in Contaminated Soils and Mechanism Studies].

    Science.gov (United States)

    Xie, Wei-qiang; Li, Xiao-mingi; Chen, Can; Chen, Xun-feng; Zhong, Yu; Zhong, Zhen-yu; Wan, Yong; Wang, Yan

    2015-12-01

    In the present work, the combined application of potassium dihydrogen phosphate, quick lime and potassium chloride was used to immobilize the Pb and Zn in contaminated soils. The efficiency of the process was evaluated through leaching tests and Tessier sequential extraction procedure. The mechanism of stabilization was analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to reveal the mechanism of stabilization. The results showed that the stabilizing efficiency of Pb contaminated soils was above 80% and the leaching concentrations of Pb, Zn were far below the threshold when the ratio of exogenous P and soil (mol · mol⁻¹) was 2:1-4: 1, the dosing ratio of CaO was 0.1%-0.5% ( mass fraction) and the dosage of potassium chloride was 0.02-0. 04 mol. Meanwhile, Pb and Zn in soil were transformed from the exchangeable fraction into residual fraction, which implied that the migration of Pb, Zn in soil could be confined by the stabilization treatment. XRD and SEM analysis revealed that Ca-P-Pb precipitation, lead orthophosphate [PbHP0₄, Pb₃ (PO₄)₂], pyromorphite (Pb-PO₄-Cl/OH) and mixed heavy metal deposits (Fe-PO₄- Ca-Pb-Zn-OH) could be formed after solidification/stabilization in which Pb and Zn could be wrapped up to form a solidified composition and to prevent leaching.

  17. Plant stimulation of soil microbial community succession: how sequential expression mediates soil carbon stabilization and turnover

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, Mary [Univ. of California, Berkeley, CA (United States)

    2015-03-31

    It is now understood that most plant C is utilized or transformed by soil microorganisms en route to stabilization. Hence the composition of microbial communities that mediate decomposition and transformation of root C is critical, as are the metabolic capabilities of these communities. The change in composition and function of the C-transforming microbial communities over time in effect defines the biological component of soil C stabilization. Our research was designed to test 2 general hypotheses; the first two hypotheses are discussed first; H1: Root-exudate interactions with soil microbial populations results in the expression of enzymatic capacities for macromolecular, complex carbon decomposition; and H2: Microbial communities surrounding roots undergo taxonomic succession linked to functional gene activities as roots grow, mature, and decompose in soil. Over the term of the project we made significant progress in 1) quantifying the temporal pattern of root interactions with the soil decomposing community and 2) characterizing the role of root exudates in mediating these interactions.

  18. Lead residues in plants and soils along Austrian motor roads

    International Nuclear Information System (INIS)

    Horak, O.; Rebler, R.; Schmidt, J.

    1977-01-01

    Plant samples from 63 roadside locations were collected monthly, with the exception of January and February, beginning in July 1972 and ending in June 1973. Lead contents were determined after wet digestion by techniques of atomic absorption spectroscopy. The results, calculated by analysis of variance, show, that the contamination of plants with airborne lead residues from motor car exhausts depends not only on the density of traffic and the distance from the road, but also on the season. In spring, when the vegetative plant growth starts, lead levels of the vegetation are decreasing and remain nearly constant from May to July. From August onwards a gradual increase in the lead content of plants occurs, which becomes more distinctly at the end of the season when the plant growth stops. The highest lead contents (up to 500 ppm) were found in plant matter collected during the winter months. Lead was determined in a number of roadside soils. Extremely high amounts (up to nearly 800 ppm) were found in uncultivated soils near busy highways. (author)

  19. Is it real or apparent increased aggregate stability sometimes found in burned soils?

    Directory of Open Access Journals (Sweden)

    V. Arcenegui

    2013-05-01

    Full Text Available The increase in soil aggregate stability observed in many cases after burning is discussed in this paper. Soil samples under pine forest from two Mediterranean areas were collected for this experiment: acid soils from El Algibe Range (Los Alcornocales Natural Park, Cádiz, Southern Spain and calcareous soils of Sierra de la Grana (Alicante, Eastern Spain. In each case, soil aggregates (2 to 0.25 mm were selected and exposed to temperatures of 200, 250, 300, 500 and 700 oC during a 20-minutes period. In both cases weight loss after volatilization of substances and a significant destruction of aggregates with increasing temperature were observed. For acid soils, where organic matter is the main cementing agent, destruction of aggregates with temperature was more intense. Water repellency induced by combustion increased between 200 and 250 oC, also the remaining aggregates remaining increased within the initial size fraction after heating, increasing its stability. For temperatures above 300 oC, water repellency disappeared, although an increase in aggregate stability was observed, possibly due to changes in the mineral soil fraction. Therefore, it is concluded that burning may destroy part of the aggregates by combustion of organic matter, so selecting stable aggregates. Water repellency and transformations of soil minerals contribute to increased stability in selected aggregates.

  20. Stabilize lead and cadmium in contaminated soils using hydroxyapatite and potassium chloride.

    Science.gov (United States)

    Wang, Li; Li, Yonghua; Li, Hairong; Liao, Xiaoyong; Wei, Binggan; Ye, Bixiong; Zhang, Fengying; Yang, Linsheng; Wang, Wuyi; Krafft, Thomas

    2014-12-01

    Combination of hydroxyapatite (HAP) and potassium chloride (KCl) was used to stabilize lead and cadmium in contaminated mining soils. Pot experiments of chilli (Capsicum annuum) and rape (Brassica rapachinensis) were used to evaluate the stabilization efficiency. The results were the following: (1) the optimal combination decreased the leachable lead by 83.3 and 97.27 %, and decreased leachable cadmium by 57.82 and 35.96% for soil HF1 and soil HF2, respectively; (2) the total lead and cadmium concentrations in both plants decreased 69 and 44 %, respectively; (3) The total lead and cadmium concentrations in the edible parts of both vegetables also decreased significantly. This study reflected that potassium chloride can improve the stabilization efficiency of hydroxyapatite, and the combination of hydroxyapatite and potassium chloride can be effectively used to remediate lead and cadmium contaminated mining soil.

  1. Aggregate Stability in Soil with Humic and Histic Horizons in a Toposequence under Araucaria Forest

    Directory of Open Access Journals (Sweden)

    Daniel Hanke

    Full Text Available ABSTRACT Aggregate stability is one of the most important factors in soil conservation and maintenance of soil environmental functions. The objective of this study was to investigate the aggregate stability mechanisms related to chemical composition of organic matter in soil profiles with humic and histic horizons in a toposequence under Araucaria moist forest in southern Brazil. The soils sampled were classified as Humic Hapludox (highest position, Fluvaquentic Humaquepts (lowest slope position, and Typic Haplosaprists (floodplain. The C and N contents were determined in bulk soil samples. The chemical composition of soil organic matter was evaluated by infrared spectroscopy. Aggregate stability was determined by applying increasing levels of ultrasound energy. Carbon content increased from the top of the slope to the alluvial plain. Higher ultrasonic energy values for clay dispersion were observed in the C-rich soils in the lower landscape positions, indicating that organic compounds play an important role in the structural stabilization of these profiles. Both aliphatic and carbohydrate-like structures were pertinent to aggregate stability. In the Oxisol, organo-mineral interaction between carbohydrates and the clay mineral surface was the most important mechanism affecting aggregation. In soils with a higher C content (Humaquepts and Haplosaprists, stabilization is predominantly conferred by the aliphatic groups, which is probably due to the structural protection offered by these hydrophobic organic groups.

  2. Ecological and Bioengineering Studies for Stabilizing the Wad Medani-Sennar Roadside Slope Linking the Gezira and Sennar States

    Directory of Open Access Journals (Sweden)

    Altaeb Mohammed

    2018-01-01

    Full Text Available The erosion of the highway embankment slope's soil along the Wad Medani-Sennar road is a significant issue, as there are many traffic accidents on this road, with an average of 15 to 25 fatalities per annum. It was thus decided to investigate this issue to find a method to protect slope from erosion on this road and to provide new approaches to slope erosion knowledge gap in Sudan. An engineering survey was carried out, followed by geotechnical studies, experimental work and interviews with academic experts regarding native vegetation in the survey area. These include measuring the eroded parts of the road; studying cross- sections of the road; soil experiments to check the strength, compaction and particle size distribution; and a native vegetation survey to check for suitable plants that could be used to control the slope erosion. It was found that an appropriate bio-engineering method to stabilize the slope soil against erosion due to rainfall was to cultivate the grasses Cynodon Dactylon and Vetiver on the slopes. In conclusion, that using native vegetation for eco -protection, was an excellent solution to the problem based on the climate, native vegetation, and type of soil in Sudan and it reduces the accidents.

  3. Chemical stabilization of subgrade soil for the strategic expeditionary landing field

    Science.gov (United States)

    Conaway, M. H.

    1983-06-01

    The Strategic Expeditionary Landing Field (SELF) is a military expeditionary-type airfield with an aluminum matted surface that is designed for sustained tactical and cargo airlift operations in an amphibious objective area. Because of the operational traffic parameters such as loads of the various types of aircraft, tire pressures and volume of traffic, a base layer must be constructed over subgrade soil support conditions which may be only marginal. The base layer could be constructed with conventional soil construction techniques (compaction) and yield the required strength. It would be difficult, however, to maintain this strength for the required one-year service life under many climatic conditions due to the degrading effects of water on the support capacity of many soils. Chemical soil stabilization with lime, portland cement and asphalt stabilizing agents could be used to treat the soil. These additives, when properly mixed with certain types of soils, initiate reactions which will increase soil support strength and enhance durability (resistance to the degrading effects of water). Technically, this procedure is quite viable but logistically, it may not be feasible.

  4. Geotechnical Properties of Clayey Soil Stabilized with Cement ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-31

    Dec 31, 2017 ... ... to investigate the different effects of cement-sawdust ash and cement on a ... Keywords: Cement, Saw dust, strength test subgrade material, highway construction ... characteristics of lateritic soil stabilized with sawdust ash.

  5. A LQR-Based Controller with Estimation of Road Bank for Improving Vehicle Lateral and Rollover Stability via Active Suspension

    Directory of Open Access Journals (Sweden)

    Andres Riofrio

    2017-10-01

    Full Text Available In this article, a Linear Quadratic Regulator (LQR lateral stability and rollover controller has been developed including as the main novelty taking into account the road bank angle and using exclusively active suspension for both lateral stability and rollover control. The main problem regarding the road bank is that it cannot be measured by means of on-board sensors. The solution proposed in this article is performing an estimation of this variable using a Kalman filter. In this way, it is possible to distinguish between the road disturbance component and the vehicle’s roll angle. The controller’s effectiveness has been tested by means of simulations carried out in TruckSim, using an experimentally-validated vehicle model. Lateral load transfer, roll angle, yaw rate and sideslip angle have been analyzed in order to quantify the improvements achieved on the behavior of the vehicle. For that purpose, these variables have been compared with the results obtained from both a vehicle that uses passive suspension and a vehicle using a fuzzy logic controller.

  6. A LQR-Based Controller with Estimation of Road Bank for Improving Vehicle Lateral and Rollover Stability via Active Suspension.

    Science.gov (United States)

    Riofrio, Andres; Sanz, Susana; Boada, Maria Jesus L; Boada, Beatriz L

    2017-10-13

    In this article, a Linear Quadratic Regulator (LQR) lateral stability and rollover controller has been developed including as the main novelty taking into account the road bank angle and using exclusively active suspension for both lateral stability and rollover control. The main problem regarding the road bank is that it cannot be measured by means of on-board sensors. The solution proposed in this article is performing an estimation of this variable using a Kalman filter. In this way, it is possible to distinguish between the road disturbance component and the vehicle's roll angle. The controller's effectiveness has been tested by means of simulations carried out in TruckSim, using an experimentally-validated vehicle model. Lateral load transfer, roll angle, yaw rate and sideslip angle have been analyzed in order to quantify the improvements achieved on the behavior of the vehicle. For that purpose, these variables have been compared with the results obtained from both a vehicle that uses passive suspension and a vehicle using a fuzzy logic controller.

  7. Stability charts for uniform slopes in soils with nonlinear failure envelopes

    OpenAIRE

    Eid, Hisham T.

    2014-01-01

    Based on the results of an extensive parametric study, charts were developed for assessment of the stability of uniform slopes in soils with nonlinear shear strength failure envelopes. The study was conducted using envelopes formed to represent the realistic shapes of soil nonlinear drained strength envelopes and the associated different degrees of nonlinearity. The introduction of a simple methodology to describe the nonlinear envelopes and a stability parameter, the value of which depends o...

  8. Leaching of Contamination from Stabilization/Solidification Remediated Soils of Different Texture

    OpenAIRE

    Burlakovs, J; Kasparinskis, R; Klavins, M

    2012-01-01

    Development of soil and groundwater remediation technologies is a matter of great importance to eliminate historically and currently contaminated sites. Stabilization/solidification (S/S) refers to binding of waste contaminants to a more chemically stable form and thus diminishing leaching of contamination. It can be performed using cement with or without additives in order to stabilize and solidify soil with the contamination in matrix. A series of experiments were done to determine leaching...

  9. Testing road surface treatments to reduce erosion in forest roads in Honduras [Tratamientos de la superficie de rodadura para reducir la erosion en caminos forestales en Honduras

    Science.gov (United States)

    Rivera, Samuel; Kershner, Jeffrey L.; Keller, Gordon R.

    2009-01-01

    Testing road surface treatments to reduce erosion in forest roads in Honduras. Cien. Inv. Agr. 36(3):425-432. Using forest roads produces more erosion and sedimentation than any other forest or agricultural activity. This study evaluated soil losses from a forest road in central Honduras over two consecutive years. We divided a 400-m segment of road into 8 experimental units, each 50 m in length. Four units were treated with Best Management Practices (BMPs) and four were left untreated. The BMP treatments included reshaping the road prism, installing culverts and reshaping of road ditches, compacting 20-cm layers of the road tread, crowning the road surface (3% slope, double drainage), longitudinal sloping (less than 12%), and adding a 10-cm layer of gravel (crush size = 0.63 cm). Soil movement was measured daily during the rainy seasons. The highest soil loss occurred in the control road, around 500 m3 km-1 per year, while the road treated with BMP lost approximately 225 m3km-1 per year. These results show that road surface erosion can be reduced up to 50% with the implementation of surface treatments.

  10. Constitutive and Stability Behavior of Soils in Microgravity Environment

    Science.gov (United States)

    Alshibli, Khalid A.; Sture, Stein; Costes, Nicholas

    2000-01-01

    All aspects of soil stability, bearing capacity, slope stability, the supporting capacity of deep foundations, and penetration resistance depend on soil strength. The stress-deformation and stress-deformation-time behavior of soils are of importance in any problem where ground movements are of interest. In most engineering materials, the strength is derived from internal chemical and physico-chemical forces of interaction, which bond the atoms, molecules, and particles together. In soils, the constitutive relations are mainly derived from interparticle friction between particles and particle groups and dilatancy, and to a lesser extent from particle bonding by weak electrostatic, physico-chemical, and coulomb forces. For engineering purposes, soils are classified as cohesive (clays and silts; typical particle sizes range from 10 nm to 10 micrometers) and cohesionless (sand and gravel; typical particle sizes range from 10 micrometers to 75 mm). The mechanical or constitutive properties of cohesionless soils or granular materials are highly fabric-dependent, highly non-linear, and non-conservative with engineering properties primarily depending on the effects of gravity through self-weight and on the tractions or forces applied to the soil mass. Under moderate-to-high stress levels, the influence of gravity on the behavior of laboratory test specimens may not be pronounced and, therefore, the test results in terrestrial (1-g) environment may be sufficiently conclusive. However at low interparticle stresses, which can result either from low applied (confining) stresses or from excess pore fluid pressures developed within the soil mass without corresponding changes in the applied stresses, the presence of gravitational body forces acting on solid particles and interstitial fluids exerts a pronounced influence on movement of individual particles or particle groups. Such motions, in turn, cause changes in soil fabric which results in significant changes in the

  11. Stabilization of arsenic and chromium polluted soils using water treatment residues

    DEFF Research Database (Denmark)

    Nielsen, Sanne Skov

    water and can be used as a soil amendment to decrease the mobility of CCA in contaminated soil. Stabilization with Fe-WTR was tested at the Collstrop site in Hillerød, Denmark. The site has been polluted with a wide range of wood impregnation agents including CCA during 40 years of wood impregnating...... of contaminants. Arsenic, chromium and copper cannot be degraded and existing methods for cleaning the soil are rarely used as they are expensive and technically demanding. Chemical stabilization of polluted soil is an alternative method for soil remediation, especially metal contamination, and consists in adding...... or other sorbents. Iron water treatment residues mainly consist of ferrihydrite, an oxidized iron oxy-hydroxide with a high reactivity and a large specific surface area with a high capacity for adsorption. Iron water treatment residues (Fe-WTR) are a by-product from treatment of groundwater to drinking...

  12. The Strength Behaviour of Lime Stabilized Organic Clay Soil Modified by Catalyst Additeives

    Directory of Open Access Journals (Sweden)

    Khitam Abdulhussein Saeed

    2016-12-01

    Full Text Available The organic clay soil can be found in many large size reclaimed lands. These soils present enormously high settlement potential and low strength that needs to be improved by means of effective ground improvement techniques. One of the low cost techniques is to modify the soil with lime in-situ to make it suitable for construction and allow it to increase in strength by pozzolanic reactions between lime and clay minerals. Lime is known to be an effective stabilization material for clayey soil. Nevertheless, its effectiveness may be less with organic clay due to low effective strength properties. Thus, this study concerns the addition of catalyst i.e. zeolite which may improve the performance of lime stabilization to accelerate lime-organic clay reactions. The unconfined compressive test (UCT is conducted on remoulded samples (38mm x 80mm for 0, 7, 14 , 28, and 90 days of curing period. The addition of synthetic zeolite in lime-organic stabilized soil has increased the soil strength by 185% at 90 days curing period at the design mix of organic clay + 10% lime +10% zeolite. The higher value of UCS indicates that zeolite is an effective catalyst to enhance lime stabilization.

  13. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns

    International Nuclear Information System (INIS)

    Fang Jing; Shan Xiaoquan; Wen Bei; Lin Jinming; Owens, Gary

    2009-01-01

    The stability of TiO 2 nanoparticles in soil suspensions and their transport behavior through saturated homogeneous soil columns were studied. The results showed that TiO 2 could remain suspended in soil suspensions even after settling for 10 days. The suspended TiO 2 contents in soil suspensions after 24 h were positively correlated with the dissolved organic carbon and clay content of the soils, but were negatively correlated with ionic strength, pH and zeta potential. In soils containing soil particles of relatively large diameters and lower solution ionic strengths, a significant portion of the TiO 2 (18.8-83.0%) readily passed through the soils columns, while TiO 2 was significantly retained by soils with higher clay contents and salinity. TiO 2 aggregate sizes in the column outflow significantly increased after passing through the soil columns. The estimated transport distances of TiO 2 in some soils ranged from 41.3 to 370 cm, indicating potential environmental risk of TiO 2 nanoparticles to deep soil layers. - TiO 2 nanoparticles could efficiently suspend in soil suspensions and potentially transport to deeper soil layers

  14. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Fang Jing [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Shan Xiaoquan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: xiaoquan@rcees.ac.cn; Wen Bei [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: bwen@rcees.ac.cn; Lin Jinming [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Owens, Gary [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2009-04-15

    The stability of TiO{sub 2} nanoparticles in soil suspensions and their transport behavior through saturated homogeneous soil columns were studied. The results showed that TiO{sub 2} could remain suspended in soil suspensions even after settling for 10 days. The suspended TiO{sub 2} contents in soil suspensions after 24 h were positively correlated with the dissolved organic carbon and clay content of the soils, but were negatively correlated with ionic strength, pH and zeta potential. In soils containing soil particles of relatively large diameters and lower solution ionic strengths, a significant portion of the TiO{sub 2} (18.8-83.0%) readily passed through the soils columns, while TiO{sub 2} was significantly retained by soils with higher clay contents and salinity. TiO{sub 2} aggregate sizes in the column outflow significantly increased after passing through the soil columns. The estimated transport distances of TiO{sub 2} in some soils ranged from 41.3 to 370 cm, indicating potential environmental risk of TiO{sub 2} nanoparticles to deep soil layers. - TiO{sub 2} nanoparticles could efficiently suspend in soil suspensions and potentially transport to deeper soil layers.

  15. A new design equation for drained stability of conical slopes in cohesive-frictional soils

    Directory of Open Access Journals (Sweden)

    Boonchai Ukritchon

    2018-04-01

    Full Text Available New plasticity solutions to the drained stability of conical slopes in homogeneous cohesive-frictional soils were investigated by axisymmetric finite element limit analysis. Three parameters were studied, i.e. excavated height ratios, slope inclination angles, and soil friction angles. The influences of these parameters on the stability factor and predicted failure mechanism of conical slopes were discussed. A new design equation developed from a nonlinear regression of the lower bound solution was proposed for drained stability analyses of a conical slope in practice. Numerical examples were given to demonstrate a practical application of the proposed equation to stability evaluations of conical slopes with both associated and non-associated flow rules. Keywords: Limit analysis, Slope stability, Conical slope, Unsupported excavation, Cohesive-frictional soils

  16. The stability of soil aggregates in tilled fallow areas in Hyderabad district, Pakistan

    Directory of Open Access Journals (Sweden)

    Tagar Ahmed

    2015-12-01

    Full Text Available Arid areas are particularly susceptible to soil erosion due to long dry periods and sudden heavy downpours. This study investigates the aggregate size distribution and aggregate stability of twelve tilled fallow areas of Hyderabad district, Sindh, Pakistan. This study determined aggregate size distribution by dry sieving to evaluate the seedbed condition and aggregate stability using wet sieving to assess the susceptibility of tilled fallow areas to soil erosion. The aggregate size distribution of the soils of the selected areas was highly variable. Gulistan-e-Sarmast had the largest number of clods (51.0% followed by Kohsar (49.0%, Latifabad # 10 (41.10% and Daman-e-Kohsar (39.0%. Fazal Sun City, the left side of the Indus River, the Village Nooral Detha and the left side of the Abdullah Sports city had a greater number of large (>8.0 mm and small aggregates (<0.5 mm. The optimum aggregate size distribution was found in the left side of the channel, which had the largest number of aggregates (50.50% in the 0.5–8.0 mm sieve size range. Maximum aggregate stability (AS was found in Gulistan-e-Sarmast (46%, Kohsar (42% and Latifabad # 10 (34%, while all other soils had minimum aggregate stability (<14%. The minimum aggregate stabilities demonstrate that the tilled fallow areas of Hyderabad district are highly susceptible to erosion. Therefore, the present study suggests investigating potential ways to enhance the aggregate stabilities of soils.

  17. Improvement of vehicle stability in cornering on uneven road; Akuro senkaiji ni okeru sharyo no anzensei kojo

    Energy Technology Data Exchange (ETDEWEB)

    Tobimatsu, K; Harada, M; Harada, H [National Defense Academy, Kanagawa (Japan)

    1997-10-01

    The active control of vehicle suspensions and rear wheel steering systems in turning on uneven roads is analyzed by means of LQR control theory, assuming that cornering forces depend on tire normal loads in addition to tire slip angles. The authors quantitatively investigated the effectiveness of the integrated control of the active suspension and the rear wheel steering, comparing the contributions of each individual system. Furthermore, in this paper, the role of the chassis control and driver control are studied in order to improve the stability of vehicle motion disturbed by the road surface. 4 refs., 9 figs.

  18. Towards sustainability: artificial intelligent based approach for soil stabilization using various pozzolans

    KAUST Repository

    Ouf, M. S.

    2012-01-01

    . This paper discusses attempts to reach optimum stabilization through: (1) Recognizing the relationship between the UCS/FSP of stabilized soil and the stabilization parameters using artificial neural network (ANN); and (2) Performing a backward optimization

  19. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility

    Energy Technology Data Exchange (ETDEWEB)

    Bolan, N.S., E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Kunhikrishnan, A. [Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science, Suwon-si, Gyeonggi-do 441-707 (Korea, Republic of); Choppala, G.K.; Thangarajan, R. [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Chung, J.W. [Department of Environmental Engineering, Gyeongnam National University of Science and Technology, Dongjin-ro 33, Jinju, Gyeongnam, 660-758 (Korea, Republic of)

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t{sub 1/2}) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. - Graphical abstract: Stabilization of compost using clay materials (e.g. allophane) enhances carbon sequestration in soils. Highlights: Black

  20. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility

    International Nuclear Information System (INIS)

    Bolan, N.S.; Kunhikrishnan, A.; Choppala, G.K.; Thangarajan, R.; Chung, J.W.

    2012-01-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t 1/2 ) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. - Graphical abstract: Stabilization of compost using clay materials (e.g. allophane) enhances carbon sequestration in soils. Highlights: ► Comparison of decomposition rate

  1. Aggregate Stability of Tropical Soils Under Long-Term Eucalyptus Cultivation

    Science.gov (United States)

    Eucalyptus cultivation has increased in all Brazilian regions. Despite the large amount of cultivated area, little is known about how this kind of management system affects soil properties, mainly the aggregate stability. Aggregate stability analyses have proved to be a sensitive tool to measure soi...

  2. Time series models for prediction the total and dissolved heavy metals concentration in road runoff and soil solution of roadside embankments

    Science.gov (United States)

    Aljoumani, Basem; Kluge, Björn; sanchez, Josep; Wessolek, Gerd

    2017-04-01

    Highways and main roads are potential sources of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Prediction of heavy metals transfer near the roadside into deeper soil layers are very important to prevent the groundwater pollution. This study was carried out on data of a number of lysimeters which were installed along the A115 highway (Germany) with a mean daily traffic of 90.000 vehicles per day. Three polyethylene (PE) lysimeters were installed at the A115 highway. They have the following dimensions: length 150 cm, width 100 cm, height 60 cm. The lysimeters were filled with different soil materials, which were recently used for embankment construction in Germany. With the obtained data, we will develop a time series analysis model to predict total and dissolved metal concentration in road runoff and in soil solution of the roadside embankments. The time series consisted of monthly measurements of heavy metals and was transformed to a stationary situation. Subsequently, the transformed data will be used to conduct analyses in the time domain in order to obtain the parameters of a seasonal autoregressive integrated moving average (ARIMA) model. Four phase approaches for identifying and fitting ARIMA models will be used: identification, parameter estimation, diagnostic checking, and forecasting. An automatic selection criterion, such as the Akaike information criterion, will use to enhance this flexible approach to model building

  3. Stability of volatile organics in environmental soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

    1992-11-01

    This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

  4. geometric models for lateritic soil stabilized with cement

    African Journals Online (AJOL)

    user

    stabilized lateritic soil and also to develop geometric models. The compaction, California .... on how effective limited field data are put to use in decision-making. ..... silicates was described as the most important phase of cement and the ...

  5. Soil stabilization linked to plant diversity and environmental context in coastal wetlands.

    Science.gov (United States)

    Ford, Hilary; Garbutt, Angus; Ladd, Cai; Malarkey, Jonathan; Skov, Martin W

    2016-03-01

    Plants play a pivotal role in soil stabilization, with above-ground vegetation and roots combining to physically protect soil against erosion. It is possible that diverse plant communities boost root biomass, with knock-on positive effects for soil stability, but these relationships are yet to be disentangled. We hypothesize that soil erosion rates fall with increased plant species richness, and test explicitly how closely root biomass is associated with plant diversity. We tested this hypothesis in salt marsh grasslands, dynamic ecosystems with a key role in flood protection. Using step-wise regression, the influences of biotic (e.g. plant diversity) and abiotic variables on root biomass and soil stability were determined for salt marshes with two contrasting soil types: erosion-resistant clay (Essex, southeast UK) and erosion-prone sand (Morecambe Bay, northwest UK). A total of 132 (30-cm depth) cores of natural marsh were extracted and exposed to lateral erosion by water in a re-circulating flume. Soil erosion rates fell with increased plant species richness ( R 2  = 0.55), when richness was modelled as a single explanatory variable, but was more important in erosion-prone ( R 2  = 0.44) than erosion-resistant ( R 2  = 0.18) regions. As plant species richness increased from two to nine species·m -2 , the coefficient of variation in soil erosion rate decreased significantly ( R 2  = 0.92). Plant species richness was a significant predictor of root biomass ( R 2  = 0.22). Step-wise regression showed that five key variables accounted for 80% of variation in soil erosion rate across regions. Clay-silt fraction and soil carbon stock were linked to lower rates, contributing 24% and 31%, respectively, to variation in erosion rate. In regional analysis, abiotic factors declined in importance, with root biomass explaining 25% of variation. Plant diversity explained 12% of variation in the erosion-prone sandy region. Our study indicates that soil stabilization

  6. Improving the clean-up efficiency of field soil contaminated with diesel oil by the application of stabilizers.

    Science.gov (United States)

    Chang, Yoon-Young; Roh, Hoon; Yang, Jae-Kyu

    2013-01-01

    Fenton-like oxidation in the presence of stabilizers has been applied in batch and column reactors to treat field soils contaminated with diesel oil. Citrates, ethylene diamine tetra-acetic acid (EDTA), ethylene diamine disuccinic acid (EDDS) and phosphates were assessed as stabilizers. The stability of hydrogen peroxide in the soil was evaluated by varying the concentration of each stabilizer and hydrogen peroxide. In a batch test, the residual concentration of hydrogen peroxide was shown to be directly related to the concentration of these stabilizers. Citrate showed the greatest stabilizing effect of the four stabilizers for hydrogen peroxide and 0.05 M was selected as the optimum dosage. In order to investigate the effect of stabilizer on the efficiency of removal of total petroleum hydrocarbons (TPH) in a column reactor, 30 mL of each stabilizer solution at pH 3 and containing 15% hydrogen peroxide was injected. The batch result confirmed that the greatest TPH removal took place in the presence of citrate in a column reactor. The order of TPH removal in the presence of stabilizers was: citrate > H3PO4 > EDDS > EDTA. TPH removal was affected by the concentration of stabilizer and the initial concentration of TPH. When 0.05 M citrate solution containing 15% hydrogen peroxide was applied to four field soils and an artificially contaminated soil, similar or better TPH removal was observed in the field soils compared to the artificially contaminated soil. This result suggests that Fenton-like oxidation with stabilizer can be effective in restoring field soils contaminated with diesel oil.

  7. A review of geotechnical behavior of stabilized soils:Design and analysis considerations

    OpenAIRE

    Makusa, Gregory Paul

    2013-01-01

    Utilization of stabilization technology for improving the engineering properties of soft soils and sediments for structural backfill, such as land reclamation is increasing. Mass stabilization solidification provides a comprehensive technology for improving the geotechnical properties of the problematic soils for civil engineering applications; hence, solving the problem of scarcity of natural resources, meanwhile, providing a sustainable solution for management of contaminated sediments.In g...

  8. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    Science.gov (United States)

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Concurrent temporal stability of the apparent electrical conductivity and soil water content

    Science.gov (United States)

    Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...

  10. Metals in European roadside soils and soil solution--a review.

    Science.gov (United States)

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-06-01

    This review provides a summary of studies analysing metal concentrations in soils and soil solution at European roadsides. The data collected during 27 studies covering a total of 64 sites across a number of European countries were summarised. Highest median values of Cr, Cu, Ni, Pb, and Zn were determined in the top soil layer at the first 5 m beside the road. Generally, the influence of traffic on soil contamination decreased with increasing soil depth and distance to the road. The concentration patterns of metals in soil solution were independent from concentrations in the soil matrix. At 10-m distance, elevated soil metal concentrations, low pH, and low percolation rates led to high solute concentrations. Directly beside the road, high percolation rates lead to high annual loadings although solute concentrations are comparatively low. These loadings might be problematic, especially in regions with acidic sandy soils and a high groundwater table. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. THE ANALYSIS OF CONSOLIDATION PROCESS OF CLAY SOILS FROM CAUSED BY THE DUTY PROCESS IN ERECTIONS THE ROAD BED OF HIGHWAYS

    Directory of Open Access Journals (Sweden)

    L. M. Timofeeva

    2010-04-01

    Full Text Available The analysis of consolidation process of condensed water-saturated clay soils of the floodable bridge-approach fill to the bridge across Kama River, erected by method called «Intensive technology», is presented. The method consists in the arrangement of drainage longitudinal and cross-section cuts for acceleration of consolidation of soils of the road bad and the base composed from the weak, strongly compressible water-saturated clay soils of different consistency.

  12. Soil retention of hexavalent chromium released from construction and demolition waste in a road-base-application scenario.

    Science.gov (United States)

    Butera, Stefania; Trapp, Stefan; Astrup, Thomas F; Christensen, Thomas H

    2015-11-15

    We investigated the retention of Cr(VI) in three subsoils with low organic matter content in laboratory experiments at concentration levels relevant to represent leachates from construction and demolition waste (C&DW) reused as unbound material in road construction. The retention mechanism appeared to be reduction and subsequent precipitation as Cr(III) on the soil. The reduction process was slow and in several experiments it was still proceeding at the end of the six-month experimental period. The overall retention reaction fit well with a second-order reaction governed by actual Cr(VI) concentration and reduction capacity of the soil. The experimentally determined reduction capacities and second-order kinetic parameters were used to model, for a 100-year period, the one-dimensional migration of Cr(VI) in the subsoil under a layer of C&DW. The resulting Cr(VI) concentration would be negligible below 7-70 cm depth. However, in rigid climates and with high water infiltration through the road pavement, the reduction reaction could be so slow that Cr(VI) might migrate as deep as 200 cm under the road. The reaction parameters and the model can form the basis for systematically assessing under which scenarios Cr(VI) from C&DW could lead to an environmental issue for ground- and receiving surface waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Stability of a novel synthetic amorphous manganese oxide in contrasting soils

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Knytl, V.; Komárek, M.; Della Puppa, L.; Bordas, F.; Mihaljevič, M.; Klementová, Mariana; Šebek, O.

    2014-01-01

    Roč. 214, FEB (2014), s. 2-9 ISSN 0016-7061 Institutional support: RVO:61388980 Keywords : Amorphous manganese oxide * Stability * Soils * Chemical stabilization * Pollution Subject RIV: CA - Inorganic Chemistry Impact factor: 2.772, year: 2014

  14. Rapid Soil Stabilization of Soft Clay Soils for Contingency Airfields

    Science.gov (United States)

    2006-12-01

    quicklime or calcium carbide, could possibly crosslink the polymers of sodium or potassium polyacrylic acid together to form a harder material. Very...LiquiBlock 40K and 41K are both potassium salts of crosslinked polyacrylic acids/polyacrylamide copolymers in granular form that also gel in the presence...communication, 2006), soil could possibly be stabilized with calcium and super absorbent polymers, such as sodium or potassium polyacrylic acids. This

  15. AN INVESTIGATION ON THE FOREST ROAD PLANNING AND ROAD GROUND

    Directory of Open Access Journals (Sweden)

    Hafız Hulusi ACAR

    2001-01-01

    Full Text Available It is required that the capital used for construction of road must be technical, economical and used in its location. For this reason, the projects must be prepared for forest roads and all operations belong to roads must be guided according to these projects. In this investigation, available forest road network plan and constructed forest roads were investigated at the point of view technical and forest transportation. After this, it were studied to reach the highest exploitation rate as can as possible. Available forest road density were found as 11.9 m/ha in forest areas for Yesiltepe District. In this condition, exploitation rate was 78 %. After that, optimum forest road network were planned and road density were reached to 22 m/ha and exploitation rate to 86 %. Directed sample method were used from taking soil sample methods and samples were took in mixed system. According to results of the experiments, available forest roads were found in a good degree at the point of view endurance, pressing and transportation capacity. With these results, it is aimed to reach higher exploitation rate with given attention to landslide areas during planning of forest roads on the mountain areas such as Black Sea Region. For this reason, required importance must be given to planning of truck and logging roads. Ground analysis must be done and took care before during planning process of forest road network.

  16. Evaluation of the effectiveness of olive cake residue as an expansive soil stabilizer

    Science.gov (United States)

    Nalbantoglu, Zalihe; Tawfiq, Salma

    2006-08-01

    The quantity of the by-product olive cake residue generated in most parts of the Mediterranean countries continues to increase and expected to double in amount within 10 15 years. This increase intensifies the problems associated with the disposal of this by-product. Olive cake residue has a potential for use as a soil stabilizer and large volumes can be beneficially used. This study is directed toward determining if olive cake residue can be utilized to increase the strength and stability of expansive soils which constitute a costly natural hazard to lightweight structures on shallow foundations. A series of laboratory tests using engineering properties, such as Atterberg limits, moisture-density relationship (compaction), swell, unconfined compressive strength were undertaken to evaluate the effectiveness and performance of the olive cake residue as a soil stabilizer. Test results indicate that an addition of only 3% burned olive waste into the soil causes a reduction in plasticity, volume change and an increase in the unconfined compressive strength. However, it was observed that the presence of burned olive waste in the soil greater than 3% caused an increase in the compressibility and a decrease in the unconfined compressive strength. Test results indicate that the use of olive waste in soil stabilization gives greater benefits to the environment than simply disposing of the by-product, olive cake residue.

  17. The role of curing period on the engineering characteristics of a cement-stabilized soil

    Directory of Open Access Journals (Sweden)

    Athanasopoulou Antonia

    2016-07-01

    Full Text Available Very often, pavements constructed in an economical manner or matching surface elevations of adjacent lanes cannot be designed for the soil conditions of the existing subgrade. Therefore, there is a need to stabilize the soil with an appropriate chemical substance in order to increase its strength to a satisfactory level. For the enhancement of subgrade soil strength characteristics, lime and cement are the most commonly used stabilizers. An experimental program was directed to the evaluation of a clayey soil and its mixtures with different cement contents performing tests on the index properties, the moisture-density relation, the unconfined compressive strength, and linear shrinkage. There is a definite improvement in strength. The time interval used to cure the prepared specimens affected positively both strength and plasticity features of the mixtures. A comparison with mixtures of the same soil with lime has been made, because of the wide use of lime in clay soil stabilization projects.

  18. Changes of Soil Aggregate Stability as a Result of the Effect of Freeze-thaw Cycles

    Directory of Open Access Journals (Sweden)

    Aneta Žabenská

    2015-01-01

    Full Text Available The objective of the present research was to assess the changes in soil erodibility during the non-vegetation period as one of the factors affecting the snowmelt erosion. The temperature fluctuation was simulated with the use of a climatic chamber ex situ. The soil surface was for simplicity reasons considered without any plant or snow cover. The paper deals with the rate of soil erodibility determination – the soil erodibility should increase due to the decrease of soil aggregate stability depending on the number of freeze-thaw cycles and initial soil moisture. Soil samples (taken from three sites were subjected to freeze-thaw cycles under laboratory conditions. Changes in soil agreggate stability were monitored as one of the main soil characteristics which determine the soil erodibility. Two methods were used to determine the soil macroaggregate stability (soil aggregate fraction 1–2 mm: standard single-sieve method of wet sieving (Kemper and Rosenau, 1986, and dry aggregate analysis using a set of flat sieves with a diameter of 1 mm and 0.5 mm. The results of each method are controversial. Intended hypothesis has not been clearly confirmed.

  19. Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability

    Science.gov (United States)

    Jimenez, Aguilar A.; Huber-Sannwald, E.; Belnap, J.; Smart, D.R.; Arredondo, Moreno J.T.

    2009-01-01

    In Northern Mexico, long-term grazing has substantially degraded semiarid landscapes. In semiarid systems, ecological and hydrological processes are strongly coupled by patchy plant distribution and biological soil crust (BSC) cover in plant-free interspaces. In this study, we asked: 1) how responsive are BSC cover/composition to a drying/wetting cycle and two-year grazing removal, and 2) what are the implications for soil erosion? We characterized BSC morphotypes and their influence on soil stability under grazed/non-grazed conditions during a dry and wet season. Light- and dark-colored cyanobacteria were dominant at the plant tussock and community level. Cover changes in these two groups differed after a rainy season and in response to grazing removal. Lichens with continuous thalli were more vulnerable to grazing than those with semi-continuous/discontinuous thalli after the dry season. Microsites around tussocks facilitated BSC colonization compared to interspaces. Lichen and cyanobacteria morphotypes differentially enhanced resistance to soil erosion; consequently, surface soil stability depends on the spatial distribution of BSC morphotypes, suggesting soil stability may be as dynamic as changes in the type of BSC cover. Longer-term spatially detailed studies are necessary to elicit spatiotemporal dynamics of BSC communities and their functional role in biotically and abiotically variable environments. ?? 2009 Elsevier Ltd.

  20. Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils

    International Nuclear Information System (INIS)

    Pan Gang; Li Lei; Zhao Dongye; Chen Hao

    2010-01-01

    Laboratory batch and column experiments were conducted to investigate the immobilization of phosphorus (P) in soils using synthetic magnetite nanoparticles stabilized with sodium carboxymethyl cellulose (CMC-NP). Although CMC-stabilized magnetite particles were at the nanoscale, phosphorus removal by the nanoparticles was less than that of microparticles (MP) without the stabilizer due to the reduced P reactivity caused by the coating. The P reactivity of CMC-NP was effectively recovered when cellulase was added to degrade the coating. For subsurface non-point P pollution control for a water pond, it is possible to inject CMC-NP to form an enclosed protection wall in the surrounding soils. Non-stabilized 'nanomagnetite' could not pass through the soil column under gravity because it quickly agglomerated into microparticles. The immobilized P was 30% in the control soil column, 33% when treated by non-stabilized MP, 45% when treated by CMC-NP, and 73% when treated by both CMC-NP and cellulase. - CMC-stabilized magnetite nanoparticles can effectively penetrate soil columns and immobilize phosphate in situ.

  1. Incorporation of bitumen and calcium silicate in cement and lime stabilized soil blocks

    Science.gov (United States)

    Kwan, W. H.; Cheah, C. B.; Ramli, M.; Al-Sakkaf, Y. K.

    2017-04-01

    Providing affordable housing is the most critical problem in many of the developing countries. Using earth materials in building construction is one of the feasible methods to address this issue and it can be a way towards sustainable construction as well. However, the published information on the stabilized soil blocks is limited. Therefore, the present study is conducted to examine the characterization of the soils and engineering properties of the stabilized soil blocks. Four types of stabilizer were used in the study, namely; cement, slaked lime, bitumen emulsion and calcium silicate. Cement and slaked lime were added at different percentages in the range of 5% to 15%, with interval of 2.5%. The percentage was determined based on weight of soil. Meanwhile, bitumen emulsion and calcium silicate were incorporated at various percentages together with 10% of cement. Dosage of bitumen emulsion is in the range of 2% to 10% at interval of 2% while calcium silicate was incorporated at 0.50%, 0.75%, 1.00%, 1.25%, 1.50% and 2.00%. Results show that cement is the most viable stabilizer for the soil block among all stabilizers in this study. The bulk density, optimum moisture content and compressive strengths were increased with the increasing cement content. The most suitable cement content was 10% added at moisture content of 12%. Lime, bitumen and calcium contents were recommended at 5.0%, 6.0% and 1.25%, respectively.

  2. Stabilization of the As-contaminated soil from the metal mining areas in Korea.

    Science.gov (United States)

    Ko, Myoung-Soo; Kim, Ju-Yong; Bang, Sunbeak; Lee, Jin-Soo; Ko, Ju-In; Kim, Kyoung-Woong

    2012-01-01

    The stabilization efficiencies of arsenic (As) in contaminated soil were evaluated using various additives such as limestone, steel mill slag, granular ferric hydroxide (GFH), and mine sludge collected from an acid mine drainage treatment system. The soil samples were collected from the Chungyang area, where abandoned Au-Ag mines are located. Toxicity characteristic leaching procedure, synthetic precipitation leaching procedure, sequential extraction analysis, aqua regia digestion, cation exchange capacity, loss on ignition, and particle size distribution were conducted to assess the physical and chemical characteristics of highly arsenic-contaminated soils. The total concentrations of arsenic in the Chungyang area soil ranged up to 145 mg/kg. After the stabilization tests, the removal percentages of dissolved As(III) and As(V) were found to differ from the additives employed. Approximately 80 and 40% of the As(V) and As(III), respectively, were removed with the use of steel mill slag. The addition of limestone had a lesser effect on the removal of arsenic from solution. However, more than 99% of arsenic was removed from solution within 24 h when using GFH and mine sludge, with similar results observed when the contaminated soils were stabilized using GFH and mine sludge. These results suggested that GFH and mine sludge may play a significant role on the arsenic stabilization. Moreover, this result showed that mine sludge can be used as a suitable additive for the stabilization of arsenic.

  3. Assessing Soil Organic C Stability at the Continental Scale: An Analysis of Soil C and Radiocarbon Profiles Across the NEON Sites

    Science.gov (United States)

    Heckman, K. A.; Gallo, A.; Hatten, J. A.; Swanston, C.; McKnight, D. M.; Strahm, B. D.; Sanclements, M.

    2017-12-01

    Soil carbon stocks have become recognized as increasingly important in the context of climate change and global C cycle modeling. As modelers seek to identify key parameters affecting the size and stability of belowground C stocks, attention has been drawn to the mineral matrix and the soil physiochemical factors influenced by it. Though clay content has often been utilized as a convenient and key explanatory variable for soil C dynamics, its utility has recently come under scrutiny as new paradigms of soil organic matter stabilization have been developed. We utilized soil cores from a range of National Ecological Observatory Network (NEON) experimental plots to examine the influence of physicochemical parameters on soil C stocks and turnover, and their relative importance in comparison to climatic variables. Soils were cored at NEON sites, sampled by genetic horizon, and density separated into light fractions (particulate organics neither occluded within aggregates nor associated with mineral surfaces), occluded fractions (particulate organics occluded within aggregates), and heavy fractions (organics associated with mineral surfaces). Bulk soils and density fractions were measured for % C and radiocarbon abundance (as a measure of C stability). Carbon and radiocarbon abundances were examined among fractions and in the context of climatic variables (temperature, precipitation, elevation) and soil physiochemical variables (% clay and pH). No direct relationships between temperature and soil C or radiocarbon abundances were found. As a whole, soil radiocarbon abundance in density fractions decreased in the order of light>heavy>occluded, highlighting the importance of both surface sorption and aggregation to the preservation of organics. Radiocarbon abundance was correlated with pH, with variance also grouping by dominate vegetation type. Soil order was also identified as an important proxy variable for C and radiocarbon abundance. Preliminary results suggest that

  4. The Stabilization of Weathered Dolerite Aggregates with Cement, Lime, and Lime Fly Ash for Pavement Construction

    Directory of Open Access Journals (Sweden)

    Felix N. Okonta

    2014-01-01

    Full Text Available An experimental program was performed on weathered dolerite specimens stabilized by adding varying percentages of cement (4, 8, 12, and 16 % and lime (6 and 12 % and a combination of lime and fly ash (6% lime + 12% Fly ash and 12% lime + 12% Fly ash % by dry weight of soil. The strength was examined under three different curing methods, namely, membrane curing (MBC, alternate moist-air curing (MAC, and water curing (WAC, by conducting unconfined compressive strength (UCS tests. Simple polynomial and linear functions (regression models were used to define the relationships between the variables investigated. Membrane curing (MBC gave results close enough to the water curing (WAC to indicate that it can be confidently used on the field during pavement construction. From the results obtained, for class B (interurban collector and major rural roads pavement construction, addition of 8% cement was recommended for road base construction with stabilized WDA. Also the addition of 12 + 12% Lime and Fly Ash was recommended for road subbase construction with stabilized WDA. Stabilized WDA against the prejudiced myths would perform satisfactorily for base and subbase construction in both heavily trafficked and low volume roads with economic quantities of cement, lime, and fly ash in South Africa.

  5. Effects of Palm Kernel Shell Ash on Lime-Stabilized Lateritic Soil

    Science.gov (United States)

    Nnochiri, Emeka Segun; Ogundipe, Olumide M.; Oluwatuyi, Opeyemi E.

    2017-09-01

    The research investigated the effects of palm kernel shell ash (PKSA) on lime-stabilized lateritic soil. Preliminary tests were performed on three soil samples, i.e., L1, L2 and L3 for identification; the results showed that L1 was A-7-6, L2 was A-7-6, and L3 was A-7-6. The optimum amount of lime for each of the soil samples was achieved. The optimum amount for L1 was 10%, for L2, 8% and for L3, 10%; at these values they recorded the lowest plasticity indexes. The further addition of PKSA was performed by varying the amount of PKSA and lime added to each of the soil samples. The addition of 4% PKSA+ 6% lime, the addition of 4% PKSA + 4% lime, and the addition of 4% PKSA + 6% lime increased the California Bearing Ratio (CBR) to the highest values for L1, L2 and L3 from 8.20%. It was concluded that PKSA can be a suitable complement for lime stabilization in lateritic soil.

  6. Effect of Lime Stabilization on Vertical Deformation of Laterite Halmahera Soil

    Science.gov (United States)

    Saing, Zubair; Djainal, Herry

    2018-04-01

    In this paper, the study was conducted to determine the lime effect on vertical deformation of road base physical model of laterite Halmahera soil. The samples of laterite soil were obtained from Halmahera Island, North Maluku Province, Indonesia. Soil characteristics were obtained from laboratory testing, according to American Standard for Testing and Materials (ASTM), consists of physical, mechanical, minerals, and chemical. The base layer of physical model testing with the dimension; 2m of length, 2m of width, and 1.5m of height. The addition of lime with variations of 3, 5, 7, an 10%, based on maximum dry density of standard Proctor test results and cured for 28 days. The model of lime treated laterite Halmahera soil with 0,1m thickness placed on subgrade layer with 1,5m thickness. Furthermore, the physical model was given static vertical loading. Some dial gauge is placed on the lime treated soil surface with distance interval 20cm, to read the vertical deformation that occurs during loading. The experimentals data was analyzed and validated with numerical analysis using finite element method. The results showed that the vertical deformation reduced significantly on 10% lime content (three times less than untreated soil), and qualify for maximum deflection (standard requirement L/240) on 7-10% lime content.

  7. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    Science.gov (United States)

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  8. GEOTECHNICAL CHARACTERISTICS OF LATERITIC SOIL STABILIZED WITH SAWDUST ASH-LIME MIXTURES

    Directory of Open Access Journals (Sweden)

    Emeka Segun Nnochiri

    2017-04-01

    Full Text Available This study assesses the geotechnical characteristics of lateritic soil and sawdust ash lime (SDAL mixtures. Preliminary tests were carried out on the natural soil sample for identification and classification purposes. The sawdust was mixed with lime for stabilization in the ratio 2:1. This mixture was thereafter added to the lateritic soil in varying proportions of 2, 4, 6, 8 and 10% by weight of soil. Addition of SDAL increased values of Optimum Moisture Content (OMC from 17.0% at 0% SDAL to 26.5% at 10% SDAL by weight of soil, also, values of Maximum Dry Density (MDD decreased from 2040 kg/m3 at 0% SDAL to 1415 kg/m3 at 10% SDAL. Values of Unconfined Compressive Strength (UCS increased from 38.58 kN/m2 at 0% SDAL to highest value of 129.63 kN/m2 at 6% SDAL. The values of liquid limits and plasticity index of the soil were effectively reduced with the addition of the SDAL, from 54.0% at 0% SDAL to 49.0% at 10% SDAL and from 13.7% at 0% SDAL to 12.5% at 10% SDAL respectively. It was therefore concluded that the sawdust ash lime (SDAL mixture can serve as a cheap soil stabilizing agent for poor lateritic soil.

  9. Short-term stability test for thorium soil candidate a reference material

    Energy Technology Data Exchange (ETDEWEB)

    Clain, Almir F.; Fonseca, Adelaide M.G.; Dantas, Vanessa V.D.B.; Braganca, Maura J.C.; Souza, Poliana S., E-mail: almir@ird.gov.br, E-mail: adelaide@ird.gov.br, E-mail: vanessa@ird.gov.br, E-mail: maura@ird.gov.br, E-mail: poliana@bolsista.ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This work describes a methodology to determine the soil short-term stability after the steps of production in laboratory. The short-term stability of the soil is an essential property to be determined in order to producing a reference material. The soil is a candidate of reference material for chemical analysis of thorium with metrological traceability to be used in environmental analysis, equipment calibration, validation methods, and quality control. A material is considered stable in a certain temperature if the property of interest does not change with time, considering the analytical random fluctuations. Due to this, the angular coefficient from the graphic of Th concentration versus elapsed time must be near to zero. The analytical determinations of thorium concentration were performed by Instrumental Neutron activation Analysis. The slopes and their uncertainties were obtained from the regression lines at temperatures of 20 deg C and 60 deg C, with control temperature of -20 deg C. From the obtained data a t-test was applied. In both temperatures the calculated t-value was lower than the critical value, so we can conclude with 95% confidence level that no significant changes happened during the period studied concerning thorium concentration in soil at temperatures of 20 deg C and 60 deg C, showing stability at these temperatures. (author)

  10. Short-term stability test for thorium soil candidate a reference material

    International Nuclear Information System (INIS)

    Clain, Almir F.; Fonseca, Adelaide M.G.; Dantas, Vanessa V.D.B.; Braganca, Maura J.C.; Souza, Poliana S.

    2015-01-01

    This work describes a methodology to determine the soil short-term stability after the steps of production in laboratory. The short-term stability of the soil is an essential property to be determined in order to producing a reference material. The soil is a candidate of reference material for chemical analysis of thorium with metrological traceability to be used in environmental analysis, equipment calibration, validation methods, and quality control. A material is considered stable in a certain temperature if the property of interest does not change with time, considering the analytical random fluctuations. Due to this, the angular coefficient from the graphic of Th concentration versus elapsed time must be near to zero. The analytical determinations of thorium concentration were performed by Instrumental Neutron activation Analysis. The slopes and their uncertainties were obtained from the regression lines at temperatures of 20 deg C and 60 deg C, with control temperature of -20 deg C. From the obtained data a t-test was applied. In both temperatures the calculated t-value was lower than the critical value, so we can conclude with 95% confidence level that no significant changes happened during the period studied concerning thorium concentration in soil at temperatures of 20 deg C and 60 deg C, showing stability at these temperatures. (author)

  11. Effect of class F fly ash on fine sand compaction through soil stabilization.

    Science.gov (United States)

    Mahvash, Siavash; López-Querol, Susana; Bahadori-Jahromi, Ali

    2017-03-01

    This paper presents the results of an experimental investigation carried out to evaluate the effect of fly ash (FA) on fine sand compaction and its suitability as a material for embankments. The literature review demonstrates the lack of research on stabilization of sandy material using FA. The study is concerned with the role of FA content in stabilized soil physical characteristics. The main aim of this paper is to determine the optimum quantity of FA content for stabilization of this type of soil. This is achieved through particle size distribution and compaction (standard proctor) tests. The sand was stabilized with three proportions of FA (5%, 10% and 15%) and constant cement content of 3% was used as an activator. For better comparison, the sand was also stabilized by 3% cement only so that the effect of FA could be observed more clearly. The results were in line with the literature for other types of soil, i.e. as the % of FA increases, reduction in maximum dry density and higher optimum moisture content were observed.

  12. Effect of class F fly ash on fine sand compaction through soil stabilization

    Directory of Open Access Journals (Sweden)

    Siavash Mahvash

    2017-03-01

    Full Text Available This paper presents the results of an experimental investigation carried out to evaluate the effect of fly ash (FA on fine sand compaction and its suitability as a material for embankments. The literature review demonstrates the lack of research on stabilization of sandy material using FA. The study is concerned with the role of FA content in stabilized soil physical characteristics. The main aim of this paper is to determine the optimum quantity of FA content for stabilization of this type of soil. This is achieved through particle size distribution and compaction (standard proctor tests. The sand was stabilized with three proportions of FA (5%, 10% and 15% and constant cement content of 3% was used as an activator. For better comparison, the sand was also stabilized by 3% cement only so that the effect of FA could be observed more clearly. The results were in line with the literature for other types of soil, i.e. as the % of FA increases, reduction in maximum dry density and higher optimum moisture content were observed.

  13. Organic matter composition and stabilization in a polygonal tundra soil of the Lena Delta

    Directory of Open Access Journals (Sweden)

    S. Höfle

    2013-05-01

    Full Text Available This study investigated soil organic matter (OM composition of differently stabilized soil OM fractions in the active layer of a polygonal tundra soil in the Lena Delta, Russia, by applying density and particle size fractionation combined with qualitative OM analysis using solid state 13C nuclear magnetic resonance spectroscopy, and lipid analysis combined with 14C analysis. Bulk soil OM was mainly composed of plant-derived, little-decomposed material with surprisingly high and strongly increasing apparent 14C ages with active layer depth suggesting slow microbial OM transformation in cold climate. Most soil organic carbon was stored in clay and fine-silt fractions (n-alkane and n-fatty acid compounds and low alkyl/O-alkyl C ratios. Organo-mineral associations, which are suggested to be a key mechanism of OM stabilization in temperate soils, seem to be less important in the active layer as the mainly plant-derived clay- and fine-silt-sized OM was surprisingly "young", with 14C contents similar to the bulk soil values. Furthermore, these fractions contained less organic carbon compared to density fractionated OM occluded in soil aggregates – a further important OM stabilization mechanism in temperate soils restricting accessibility of microorganisms. This process seems to be important at greater active layer depth where particulate OM, occluded in soil aggregates, was "older" than free particulate OM.

  14. Relationships between stability, maturity, water-extractable organic matter of municipal sewage sludge composts and soil functionality.

    Science.gov (United States)

    Sciubba, Luigi; Cavani, Luciano; Grigatti, Marco; Ciavatta, Claudio; Marzadori, Claudio

    2015-09-01

    Compost capability of restoring or enhancing soil quality depends on several parameters, such as soil characteristics, compost carbon, nitrogen and other nutrient content, heavy metal occurrence, stability and maturity. This study investigated the possibility of relating compost stability and maturity to water-extractable organic matter (WEOM) properties and amendment effect on soil quality. Three composts from municipal sewage sludge and rice husk (AN, from anaerobic wastewater treatment plants; AE, from aerobic ones; MIX, from both anaerobic and aerobic ones) have been analysed and compared to a traditional green waste compost (GM, from green manure, solid waste and urban sewage sludge). To this aim, WEOMs were characterized through chemical analysis; furthermore, compost stability was evaluated through oxygen uptake rate calculation and maturity was estimated through germination index determination, whereas compost impact on soil fertility was studied, in a lab-scale experiment, through indicators as inorganic nitrogen release, soil microbial biomass carbon, basal respiration rate and fluorescein di-acetate hydrolysis. The obtained results indicated that WEOM characterization could be useful to investigate compost stability (which is related to protein and phenol concentrations) and maturity (related to nitrate/ammonium ratio and degree of aromaticity) and then compost impact on soil functionality. Indeed, compost stability resulted inversely related to soil microbial biomass, basal respiration rate and fluorescein di-acetate hydrolysis when the products were applied to the soil.

  15. Stabilization of Black Cotton Soil Using Micro-fine Slag

    Science.gov (United States)

    Shukla, Rajesh Prasad; Parihar, Niraj Singh

    2016-09-01

    This work presents the results of laboratory tests conducted on black cotton soil mixed with micro-fine slag. Different proportions of micro-fine slag, i.e., 3, 6, 9, 12 and 15 % were mixed with the black cotton soil to improve soil characteristics. The improvement in the characteristics of stabilized soil was assessed by evaluating the changes in the physical and strength parameters of the soil, namely, the Atterberg limits, free swell, the California Bearing Ratio (CBR), compaction parameters and Unconfined Compressive Strength (UCS). The mixing of micro-fine slag decreases the liquid limit, plasticity index and Optimum Moisture Contents (OMC) of the soil. Micro-fine slag significantly increases the plastic limit, UCS and CBR of the soil up to 6-7 % mixing, but mixing of more slag led to decrease in the UCS and CBR of the soil. The unsoaked CBR increased by a substantial amount unlike soaked CBR value. The swell potential of the soil is reduced from medium to very low. The optimum amount of micro-fine slag is found to be approximately 6-7 % by the weight of the soil.

  16. Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils

    International Nuclear Information System (INIS)

    Thawornchaisit, Usarat; Polprasert, Chongrak

    2009-01-01

    The efficiency of three phosphate fertilizers including triple superphosphate (TSP), diammonium phosphate (DAP), and phosphate rock (PR) as stabilizing agents of cadmium-contaminated soils has been assessed in this study. Two types of assessment criteria, (a) the reduction of leachable cadmium concentration; and (b) the changes in Cd association with specific operational soil fraction based on the sequential extraction data, are used in the evaluation of stabilization performance of each fertilizer. Results of the study showed that after the 60-day stabilization, the leachable concentrations of Cd in PR-, DAP- and TSP- treated soils reduced from 306 mg/kg (the control) to 140, 34, and 12 mg/kg with the stabilization efficiency as TSP>DAP>PR. Results from the assessment of Cd speciation via sequential extraction procedure revealed that the soluble-exchangeable fraction and the surface adsorption fraction of Cd in the soils treated with PO 4 fertilizers, especially with TSP, have been reduced considerably. In addition, it is found that the reduction was correspondingly related with the increase of more stable forms of cadmium: the metal bound to manganese oxides and the metal bound to crystalline iron oxides. Treatment efficiency increased as the phosphate dose (based on the molar ratio of PO 4 /Cd) increased. In addition, it was observed that stabilization was most effective when using the molar ratio of PO 4 /Cd at 2:1 and at least 21-day and 28-day stabilization time for TSP and DAP, respectively.

  17. Cohesive Soil Stabilized Using Sewage Sludge Ash/Cement and Nano Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Huan-Lin Luo

    2012-03-01

    Full Text Available In order to improve soft soil strength, a mixture of incinerated sewage sludge ash (SSA and cement was applied as a soil stabilizer. The intended mix ratio for SSA and cement was 3:1. A-6 clay was selected as the untreated soil. In this study, 15% of clay soil was replaced by SSA/cement to produce the treated soil specimens. Then, four different volumes, namely 0, 1, 2, and 3%, of nano-Al2O3 were mixed with the treated soil as an additive. Tests such as compaction, pH values, Atterberg limits, unconfined compressive strength (UCS, swell potential, California bearing ratio (CBR, and permeability were performed. The results indicate that both UCSs and CBR values of untreated soil were greatly improved by the use of 15% SSA/cement. Moreover, a 1% addition of nano-Al2O3 enhanced the treated soil in terms of both UCS and CBR values. Furthermore, the swell potential was effectively reduced by the use of 15% SSA/cement as compared with untreated soil and the 1% nano-Al2O3 additive fraction offered the best performance. From this study, we conclude that 15% of SSA/cement replacement could effectively stabilize A-6 clay soil, and 1% of nano-Al2O3 additive may be the optimum amount to add to the soil.

  18. Assessment of soil stabilization by chemical extraction and bioaccumulation using earthworm, Eisenia fetida

    Science.gov (United States)

    Lee, Byung-Tae; Abd Aziz, Azilah; Han, Heop Jo; Kim, Kyoung-Woong

    2014-05-01

    Soil stabilization does not remove heavy metals from contaminated soil, but lowers their exposures to ecosystem. Thus, it should be evaluated by measuring the fractions of heavy metals which are mobile and/or bioavailable in soils. The study compared several chemical extractions which intended to quantify the mobile or bioaccessible fractions with uptake and bioaccumulation by earthworm, Eisenia fetida. Soil samples were taken from the abandoned mine area contaminated with As, Cd, Cu, Pb and/or Zn. To stabilize heavy metals, the soils were amended with limestone and steel slag at 5% and 2% (w/w), respectively. All chemical extractions and earthworm tests were applied to both the contaminated and the stabilized soils with triplicates. The chemical extractions consisted of six single extractions which were 0.01M CaCl2 (unbufferred), EDTA or DTPA (chelating), TCLP (acidic), Mehlich 3 (mixture), and aqua regia (peudo-total). Sequential extractions were also applied to fractionate heavy metals in soils. In earthworm tests, worms were exposed to the soils for uptake of heavy metals. After 28 days of exposure to soils, worms were transferred to clean soils for elimination. During the tests, three worms were randomly collected at proper sampling events. Worms were rinsed with DI water and placed on moist filter paper for 48 h for depuration. Filter paper was renewed at 24 h to prevent coprophagy. The worms were killed with liquid nitrogen, dried in the oven, and digested with aqua regia for ICP-MS analysis. In addition to the bioaccumulation, several toxicity endpoints were observed such as burrowing time, mortality, cocoon production, and body weight changes. Toxicokinetics was applied to determine the uptake and elimination heavy metals by the earthworms. Bioaccumulation factor (BAF) was estimated using total metal concentrations and body burdens. Pearson correlation and simple linear regression were applied to evaluate the relationship between metal fractions by single

  19. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material.

    Science.gov (United States)

    Phummiphan, Itthikorn; Horpibulsuk, Suksun; Rachan, Runglawan; Arulrajah, Arul; Shen, Shui-Long; Chindaprasirt, Prinya

    2018-01-05

    Granulated Blast Furnace Slag (GBFS) was used as a replacement material in marginal lateritic soil (LS) while class C Fly Ash (FA) was used as a precursor for the geopolymerization process to develop a low-carbon pavement base material at ambient temperature. Unconfined Compression Strength (UCS) tests were performed to investigate the strength development of geopolymer stabilized LS/GBFS blends. Scanning Electron Microscopy and X-ray Diffraction analysis were undertaken to examine the role of the various influencing factors on UCS development. The influencing factors studied included GBFS content, Na 2 SiO 3 :NaOH ratio (NS:NH) and curing time. The 7-day soaked UCS of FA geopolymer stabilized LS/GBFS blends at various NS:NH ratios tested was found to satisfy the specifications of the Thailand national road authorities. The GBFS replacement was found to be insignificant for the improvement of the UCS of FA geopolymer stabilized LS/GBFS blends at low NS:NH ratio of 50:50. Microstructural analysis indicated the coexistence of Calcium Silicate Hydrate (CSH) and Sodium Alumino Silicate Hydrate products in FA geopolymer stabilized LS/GBFS blends. This research enables GBFS, which is traditionally considered as a waste material, to be used as a replacement and partially reactive material in FA geopolymer pavement applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust

    Science.gov (United States)

    Al-Amoudi, Omar S. Baghabra; Al-Homidy, Abdullah A.; Maslehuddin, Mohammed; Saleh, Tawfik A.

    2017-04-01

    This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined compressive strength (UCS), soaked California Bearing Ratio (CBR) and durability. The risk of leaching of toxic heavy metals, such as lead and cadmium, from the stabilized soils to the groundwater was also investigated. The mechanisms of stabilization of the selected soils due to the use of EAFD along with a small quantity of cement are also elucidated. The usage of 20 to 30% EAFD with 2% cement was noted to considerably improve the mechanical properties and durability of both marl and sand.

  1. The study of stress-strain state of stabilized layered soil foundations

    Directory of Open Access Journals (Sweden)

    Sokolov Mikhail V.

    2017-01-01

    Full Text Available Herein presented are the results of modeling and analysis of stress-strain state of layered inhomogeneous foundation soil when it is stabilised by injection to different depths. Produced qualitative and quantitative analysis of the components of the field of isolines of stresses, strains, stress concentration and the difference between the strain at the boundary of different elastic horizontal layers. Recommendations are given for the location of stabilised zones in relation to the border of different elastic layers. In particular, it found that stabilization of soil within the weak layer is inappropriate, since it practically provides no increase in the stability of the soil foundation, and when performing stabilisation of soil foundations, it is recommended to place the lower border of the stabilisation zone below the border of a stronger layer, at this the distribution of stresses and strains occurs more evenly, and load-bearing capacity of this layer is used to the maximum.

  2. Peroxidase-catalyzed stabilization of 2,4-dichlorophenol in alkali-extracted soils.

    Science.gov (United States)

    Palomo, Mónica; Bhandari, Alok

    2011-01-01

    Horseradish peroxidase- (HRP) mediated stabilization of phenolic contaminants is a topic of interest due to its potential for remediation of contaminated soils. This study evaluated the sorption of 2,4-dichlorophenol (DCP) and its HRP-mediated stabilization in two alkali-extracted soils. Alkali extraction reduced the soil organic matter (SOM) contents of the geomaterials and enriched the residual SOM with humin C. Sorption of DCP on these sorbents was complete within 1 d. However, most of the sorbed DCP was removed from the geomaterials by water and methanol, suggesting weak solute-sorbent interactions. The addition of HRP resulted in the generation of DCP polymerization products (DPP), which partitioned between the aqueous and solid phases. The DPP phase distribution was rapid and complete within 24 h. Between 70 and 90% of the added DCP was converted to DPP and up to 43% of the initial aqueous phase contaminant was transformed into a residue that was resistant to extraction with methanol. Bound residues of DPP increased with initial aqueous phase solute concentration and remained fairly constant after 7 d of contact. Contaminant stabilization was noted to be high in the humin-mineral geomaterial. Results illustrate that HRP may be effective in stabilizing phenolic contaminants in subsoils that are likely to contain SOM enriched in humin C.

  3. Stabilization of enzymatically polymerized phenolic chemicals in a model soil organic matter-free geomaterial.

    Science.gov (United States)

    Palomo, Mónica; Bhandari, Alok

    2012-01-01

    A variety of remediation methods, including contaminant transformation by peroxidase-mediated oxidative polymerization, have been proposed to manage soils and groundwater contaminated with chlorinated phenols. Phenol stabilization has been successfully observed during cross polymerization between phenolic polymers and soil organic matter (SOM) for soils with SOM >3%. This study evaluates peroxidase-mediated transformation and removal of 2,4-dichlorophenol (DCP) from an aqueous phase in contact with a natural geomaterial modified to contain negligible (soils with higher SOM. The SOM-free sorbent was generated by removing SOM using a NaOCl oxidation. When horseradish peroxidase (HRP) was used to induce polymerization of DCP, the soil-water phase distribution relationship (PDR) of DCP polymerization products (DPP) was complete within 1 d and PDRs did not significantly change over the 28 d of study. The conversion of DCP to DPP was close to 95% efficient. Extractable solute consisted entirely of DPP with 5% or less of unreacted DCP. The aqueous extractability of DPP from SOM-free geomaterial decreased at longer contact times and at smaller residual aqueous concentrations of DPP. DCP stabilization appeared to have resulted from a combination of sorption, precipitation, and ligand exchange between oligomeric products and the exposed mineral surfaces. Modification of the mineral surface through coverage with DPP enhanced the time-dependent retention of the oligomers. DPP stabilization in SOM-free geomaterial was comparable with that reported in the literature with soil containing SOM contents >1%. Results from this study suggest that the effectiveness of HRP-mediated stabilization of phenolic compounds not only depends on the cross-coupling with SOM, but also on the modification of the surface of the sorbent that can augment affinity with oligomers and enhance stabilization. Coverage of the mineral surface by phenolic oligomers may be analogous to SOM that can potentially

  4. Select geotechnical properties of a lime stabilized expansive soil amended with bagasse ash and coconut shell powder

    Directory of Open Access Journals (Sweden)

    James Jijo

    2018-03-01

    Full Text Available Lime stabilization has been and still is one of the most preferred methods for stabilization of expansive soils. However, in the recent times, utilization of solid waste materials in soil stabilization has gained prominence as an effective means to manage wastes generated from various sources. In this work, an attempt has been made to utilize waste materials from two sources as auxiliary additives to lime in the stabilization of an expansive soil. Bagasse ash (BA, a waste by-product from the sugar industry and Coconut shell powder (CSP, a processed waste obtained from left over coconut shells of oil extraction industry were used as auxiliary additives. An expansive soil obtained from a local field was subjected to chemical, mineral, microstructural and geotechnical characterization in the laboratory and stabilized using 3% lime. The waste materials were subjected to chemical, mineral and microstructural characterization. The stabilization process was amended with four different contents viz. 0.25%, 0.5%, 1% and 2% of BA and CSP separately and the effect of the amendment was studied on the unconfined compressive strength (UCS, plasticity, swell-shrink and microstructural characteristics of the expansive soil. The results of the study indicated that BA amendment of lime stabilization performed better than CSP in improving the UCS, plasticity, swell-shrink and microstructure of the lime stabilized expansive soil.

  5. Select geotechnical properties of a lime stabilized expansive soil amended with bagasse ash and coconut shell powder

    Science.gov (United States)

    James, Jijo; Pandian, P. Kasinatha

    2018-03-01

    Lime stabilization has been and still is one of the most preferred methods for stabilization of expansive soils. However, in the recent times, utilization of solid waste materials in soil stabilization has gained prominence as an effective means to manage wastes generated from various sources. In this work, an attempt has been made to utilize waste materials from two sources as auxiliary additives to lime in the stabilization of an expansive soil. Bagasse ash (BA), a waste by-product from the sugar industry and Coconut shell powder (CSP), a processed waste obtained from left over coconut shells of oil extraction industry were used as auxiliary additives. An expansive soil obtained from a local field was subjected to chemical, mineral, microstructural and geotechnical characterization in the laboratory and stabilized using 3% lime. The waste materials were subjected to chemical, mineral and microstructural characterization. The stabilization process was amended with four different contents viz. 0.25%, 0.5%, 1% and 2% of BA and CSP separately and the effect of the amendment was studied on the unconfined compressive strength (UCS), plasticity, swell-shrink and microstructural characteristics of the expansive soil. The results of the study indicated that BA amendment of lime stabilization performed better than CSP in improving the UCS, plasticity, swell-shrink and microstructure of the lime stabilized expansive soil.

  6. STUDY OF THE EFFECT OF SOIL CEMENT ELEMENTS WHEN STABILIZING ROADBED MODEL IN LABORATORY CONDITIONS

    Directory of Open Access Journals (Sweden)

    V. D Petrenko

    2017-12-01

    Full Text Available Purpose.Experimental studies allow determining th estress-strain state or bearing capacity of the tested soil body. A preliminary study of the results of model testing and experimental research allows us to find the optimal solutions and to justify the parameters of the chosen technology. The purpose of this work is to determine the effect of soil cement elements when stabilizing the roadbed on a weak subgrade using the soil tests in laboratory conditions. Methodology. During the development of measures for the reconstruction and consolidation of soil bodies, their strength is tested using many methods. In all cases, we take into account the physical and mechanical characteristics of soils obtained as a result of research, as well as the existing regulatory documents. We performed the experimental studies by model testing in laboratory conditions. The model testing was based on the corresponding relationships between geometric sizes, mechanical properties of materials, loads and other factors on which the stress-strain state depends. During testing, the model was loaded gradually. We maintained each load level up to conditional stabilization of the soil deformation. We took the readings from measuring devices at each stage of loading after achievement of stabilization of soil mass deformations. We fixed the readings in the test journal. Findings. During stabilization with soil cement piles there is an improvement in mechanical properties, which leads to a decrease in deformations by 2…3.5 times. Each test is accompanied with graphs of relative deformations-stress dependence, as well as deformation curves and compression curves. According to the results of experimental stu-dies, it can be seen that when testing a model with cement piles, compared with a model without soil cement piles, the relative deformations of the samples taken prior to the experiment and after the experiment almost coincide, indicating a decrease in deformability under

  7. An alternative soil nailing system for slope stabilization: Akarpiles

    Science.gov (United States)

    Lim, Chun-Lan; Chan, Chee-Ming

    2017-11-01

    This research proposes an innovative solution for slope stabilization with less environmental footprint: AKARPILES. In Malaysia, landslide has become common civil and environmental problems that cause impacts to the economy, safety and environment. Therefore, effective slope stabilization method helps to improve the safety of public and protect the environment. This study focused on stabilizing surfacial slope failure. The idea of AKARPILES was generated from the tree roots system in slope stabilization. After the piles are installed in the slope and intercepting the slip plane, grout was pumped in and discharged through holes on the piles. The grout then filled the pores in the soil with random flow within the slip zone. SKW mixture was used to simulate the soil slope. There were two designs being proposed in this study and the prototypes were produced by a 3D printer. Trial mix of the grout was carried out to obtain the optimum mixing ratio of bentonite: cement: water. A series of tests were conducted on the single-pile-reinforced slope under vertical slope crest loading condition considering different slope gradients and nail designs. Parameters such as ultimate load, failure time and failure strain were recorded and compared. As comparison with the unreinforced slope, both designs of AKARPILES showed better but different performances in the model tests.

  8. Iron Redox Dynamics in Humid Tropical Forest Soils: Carbon Stabilization vs. Degradation?

    Science.gov (United States)

    Hall, S. J.; Silver, W. L.; Hammel, K.

    2015-12-01

    Most terrestrial soils exhibit a patchwork of oxygen (O2) availability that varies over spatial scales of microsites to catenas to landscapes, and over temporal scales of minutes to seasons. Oxygen fluctuations often drive microbial iron (Fe) reduction and abiotic/biotic Fe oxidation at the microsite scale, contributing to anaerobic carbon (C) mineralization and changes in soil physical and chemical characteristics, especially the dissolution and precipitation of short-range ordered Fe phases thought to stabilize C. Thus, O2 fluctuations and Fe redox cycling may have multiple nuanced and opposing impacts on different soil C pools, illustrated by recent findings from Fe-rich Oxisols and Ultisols in the Luquillo Experimental Forest, Puerto Rico. Spatial patterns in surface soil C stocks at the landscape scale correlated strongly (R2 = 0.98) with concentrations of reduced Fe (Fe(II)), reflecting constitutive differences in reducing conditions within and among sites that promote C accumulation in mineral soil horizons. Similarly, turnover times of a decadal-cycling pool of mineral-associated organic matter increased with Fe(II) across a catena, possibly reflecting the role of anaerobic microsites in long-term C stabilization. However, two different indices of short-range order Fe showed highly significant opposing relationships (positive and negative) with spatial variation in soil C concentrations, possibly reflecting a dual role of Fe in driving C stabilization via co-precipitation, and C solubilization and loss following dissimilatory Fe reduction. Consistent with the field data, laboratory incubations demonstrated that redox fluctuations can increase the contribution of biochemically recalcitrant C (lignin) to soil respiration, whereas addition of short-range order Fe dramatically suppressed lignin mineralization but had no impact on bulk soil respiration. Thus, understanding spatial and temporal patterns of Fe redox cycling may provide insight into explaining the

  9. Spatial Resolution Effect on Forest Road Gradient Calculation and Erosion Modelling

    Science.gov (United States)

    Cao, L.; Elliot, W.

    2017-12-01

    Road erosion is one of the main sediment sources in a forest watershed and should be properly evaluated. With the help of GIS technology, road topography can be determined and soil loss can be predicted at a watershed scale. As a vector geographical feature, the road gradient should be calculated following road direction rather than hillslope direction. This calculation might be difficult with a coarse (30-m) DEM which only provides the underlying topography information. This study was designed to explore the effect of road segmentation and DEM resolution on the road gradient calculation and erosion prediction at a watershed scale. The Water Erosion Prediction Project (WEPP) model was run on road segments of 9 lengths ranging from 40m to 200m. Road gradient was calculated from three DEM data sets: 1m LiDAR, and 10m and 30m USGS DEMs. The 1m LiDAR DEM calculated gradients were very close to the field observed road gradients, so we assumed the 1m LiDAR DEM predicted the true road gradient. The results revealed that longer road segments skipped detail topographical undulations and resulted in lower road gradients. Coarser DEMs computed steeper road gradients as larger grid cells covered more adjacent areas outside road resulting in larger elevation differences. Field surveyed results also revealed that coarser DEM might result in more gradient deviation in a curved road segment when it passes through a convex or concave slope. As road segment length increased, the gradient difference between three DEMs was reduced. There were no significant differences between road gradients of different segment lengths and DEM resolution when segments were longer than 100m. For long segments, the 10m DEM calculated road gradient was similar to the 1m LiDAR gradient. When evaluating the effects of road segment length, the predicted erosion rate decreased with increasing length when road gradient was less than 3%. In cases where the road gradients exceed 3% and rill erosion dominates

  10. Use of photoacoustic mid-infrared spectroscopy to characterize soil properties and soil organic matter stability

    Science.gov (United States)

    Peltre, Clement; Bruun, Sander; Du, Changwen; Stoumann Jensen, Lars

    2014-05-01

    The persistence of soil organic matter (SOM) is recognized as a major ecosystem property due to its key role in earth carbon cycling, soil quality and ecosystem services. SOM stability is typically studied using biological methods such as measuring CO2-C evolution from microbial decomposition of SOM during laboratory incubation or by physical or chemical fractionation methods, allowing the separation of a labile fraction of SOM. However these methods are time consuming and there is still a need for developing reliable techniques to characterize SOM stability, providing both quantitative measurements and qualitative information, in order to improve our understanding of the mechanisms controlling SOM persistence. Several spectroscopic techniques have been used to characterize and predict SOM stability, such as near infrared reflectance spectroscopy (NIRS) and diffuse reflectance mid-infrared spectroscopy (DRIFT). The latter allows a proper identification of spectral regions corresponding to vibrations of specific molecular or functional groups associated with SOM lability. However, reflectance spectroscopy for soil analyses raises some difficulties related to the low reflectance of soils, and to the high influence of particle size. In the last three decades, the progresses in microphone sensitivity dramatically increased the performance of photoacoustic Fourier transform mid-infrared spectroscopy (FTIR-PAS). This technique offers benefits over reflectance spectroscopy techniques, because particle size and the level of sample reflectance have little effect of on the PAS signal, since FTIR-PAS is a direct absorption technique. Despite its high potential for soil analysis, only a limited number of studies have so far applied FTIR-PAS for soil characterization and its potential for determining SOM degradability still needs to be investigated. The objective of this study was to assess the potential of FTIR-PAS for the characterization of SOM decomposability during

  11. Performance of soft clay stabilized with sand columns treated by silica fume

    Directory of Open Access Journals (Sweden)

    Samueel Zeena

    2018-01-01

    Full Text Available In many road construction projects, if weak soil exists, then uncontrollable settlement and critical load carrying capacity are major difficult problems to the safety and serviceability of roads in these areas. Thus ground improvement is essential to achieve the required level of performance. The paper presents results of the tests of four categories. First category was performed on saturated soft bed of clay without any treatment, the second category shed light on the improvement achieved in loading carrying capacity and settlement as a result of reinforcing with conventional sand columns at area replacement ratio = 0.196. The third set investigates the bed reinforced by sand columns stabilized with dry silica fume at different percentages (3, 5 and 7% and the fourth set investigates the behavior of sand columns treated with slurry silica fume at two percentages (10 and 12%. All sand columns models were constructed at (R.D= 60%. Model tests were performed on bed of saturated soil prepared at undrained shear strength between 16-20 kPa for all models. For all cases, the model test was loaded gradually by stress increments up to failure. Stress deformation measurements are recorded and analyzed in terms of bearing improvement ratio and settlement reduction ratio. Optimum results were indicated from soil treated with sand columns stabilized with 7% dry silica fume at medium state reflecting the highest bearing improvement ratio (3.04 and the settlement reduction ratio (0.09 after 7 days curing. While soil treated with sand columns stabilized with 10% slurry silica fume provided higher bearing improvement ratio 3.13 with lower settlement reduction ratio of 0.57 after 7-days curing.

  12. Reliability estimate of unconfined compressive strength of black cotton soil stabilized with cement and quarry dust

    Directory of Open Access Journals (Sweden)

    Dayo Oluwatoyin AKANBI

    2017-06-01

    Full Text Available Reliability estimates of unconfined compressive strength values from laboratory results for specimens compacted at British Standard Light (BSLfor compacted quarry dust treated black cotton soil using cement for road sub – base material was developed by incorporating data obtained from Unconfined compressive strength (UCS test gotten from the laboratory test to produce a predictive model. Data obtained were incorporated into a FORTRAN-based first-order reliability program to obtain reliability index values. Variable factors such as water content relative to optimum (WRO, hydraulic modulus (HM, quarry dust (QD, cement (C, Tri-Calcium silicate (C3S, Di-calcium silicate (C2S, Tri-Calcium Aluminate (C3A, and maximum dry density (MDD produced acceptable safety index value of1.0and they were achieved at coefficient of variation (COV ranges of 10-100%. Observed trends indicate that WRO, C3S, C2S and MDD are greatly influenced by the COV and therefore must be strictly controlled in QD/C treated black cotton soil for use as sub-base material in road pavements. Stochastically, British Standard light (BSL can be used to model the 7 days unconfined compressive strength of compacted quarry dust/cement treated black cotton soil as a sub-base material for road pavement at all coefficient of variation (COV range 10 – 100% because the safety index obtained are higher than the acceptable 1.0 value.

  13. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.

    Science.gov (United States)

    Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun

    2015-07-01

    In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs.

  14. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soil

    NARCIS (Netherlands)

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Residue retention and reduced tillage are both conservation agricultural management options that may enhance soil organic carbon (SOC) stabilization in tropical soils. Therefore, we evaluated the effects of long-term tillage and residue management on SOC dynamics in a Chromic Luvisol (red clay soil)

  15. Stabilization of contaminated soil and wastewater with chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    At Argonne National Laboratory, we have developed chemically Bonded phosphate ceramic (CBPC) technology to stabilize the U.S. Department of Energy's problem mixed waste streams, for which no other stabilization technology is suitable. In this technology, solid waste is mixed with MgO and reacted with aqueous solutions of phosphoric acid or acid phosphates at room temperature to form a slurry that sets in ∼2 h into a hard and dense ceramic waste form. Initial studies involved stabilizing the surrogate waste streams and then testing the waste forms for leaching of contaminants. After achieving satisfactory performance of the waste forms, we next incorporated actual waste streams at bench scale and produced waste forms that were then tested with the Toxicity Characteristic Leaching Procedure (TCLP). This presentation deals with stabilization of soil contaminated with Cd, Cr, Pb, Ag, Ba, and Hg, and of low-level radioactive wastewater. To enhance the contaminant levels in the soil, we further spiked the soil with additional amounts of Cd, Cr, Pb, and Hg. Both the soil and the wastewater were incorporated in the same waste form by stabilizing them with the CBPC process. The waste forms had a total waste loading of ∼77 wt.% and were dense with an open porosity of 2.7 vol.% and a density of 2.17 g/cm 3 . Compression strength was 4910 psi. The TCLP results showed excellent immobilization of all the RCRA metals, and radioactive contaminant levels were below the detection limit of 0.2 pCi/mL. Long-term leaching studies using the ANS 16.1 procedure showed that the retention of contaminants is excellent and comparable to or better than most of other stabilization processes. These results demonstrate that the CBPC process is a very superior process for treatment of low level mixed wastes; we therefore conclude that the CBPC process is well suited to the treatment of low-level mixed waste streams with high waste loading

  16. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability.

    Science.gov (United States)

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention.

  17. Evaluation of the effects of enzyme-based liquid chemical stabilizers on subgrade soils

    CSIR Research Space (South Africa)

    Mgangira, Martin B

    2009-07-01

    Full Text Available The purpose of this study was to asses the strength of enzyme treated soil material. Thus the aim of the paper is to present laboratory results on the effects of two enzyme-based liquid chemicals as soil stabilizers. Soil samples were prepared...

  18. SAND-LATERITE MIXTURES FOR ROAD CONSTRUCTION (A ...

    African Journals Online (AJOL)

    Dr Obe

    costs in the construction of roads carrying medium density traffic and in the ... East Asia (1) but for reasons given later, their results ... that laterites are good materials for road and air-field ... countries like South Africa, this method of soil-.

  19. Effect of carbonation on leachability, strength and microstructural characteristics of KMP binder stabilized Zn and Pb contaminated soils.

    Science.gov (United States)

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Wu, Hao-liang

    2016-02-01

    This study presents a systematic investigation of effects of carbonation on the contaminant leachability and unconfined compressive strength of KMP stabilized contaminated soils. A field soil spiked with Zn and Pb individually and together is stabilized using a new KMP additive under standard curing conditions and also with carbonation. The KMP additive is composed of oxalic acid-activated phosphate rock, monopotassium phosphate and reactive magnesia. The stabilized soils are tested for acid neutralization capacity, toxic characteristics leaching characteristics, contaminant speciation and unconfined compression strength. X-ray diffraction, scanning electron microscope and energy dispersive spectroscopy analyses are performed to assess reaction products. The results demonstrate that carbonation increases both acid buffer capacity index and unconfined compressive strength, but decreases leachability of KMP stabilized soils. These results are interpreted based on the changes in chemical speciation of Zn and Pb and also stability and solubility of the reaction products (metal phosphates and carbonates) formed in the soils. Overall, this study demonstrates that carbonation has positive effects on leachability and strength of the KMP stabilized soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Modeling of Soil Aggregate Stability using Support Vector Machines and Multiple Linear Regression

    Directory of Open Access Journals (Sweden)

    Ali Asghar Besalatpour

    2016-02-01

    Full Text Available Introduction: Soil aggregate stability is a key factor in soil resistivity to mechanical stresses, including the impacts of rainfall and surface runoff, and thus to water erosion (Canasveras et al., 2010. Various indicators have been proposed to characterize and quantify soil aggregate stability, for example percentage of water-stable aggregates (WSA, mean weight diameter (MWD, geometric mean diameter (GMD of aggregates, and water-dispersible clay (WDC content (Calero et al., 2008. Unfortunately, the experimental methods available to determine these indicators are laborious, time-consuming and difficult to standardize (Canasveras et al., 2010. Therefore, it would be advantageous if aggregate stability could be predicted indirectly from more easily available data (Besalatpour et al., 2014. The main objective of this study is to investigate the potential use of support vector machines (SVMs method for estimating soil aggregate stability (as quantified by GMD as compared to multiple linear regression approach. Materials and Methods: The study area was part of the Bazoft watershed (31° 37′ to 32° 39′ N and 49° 34′ to 50° 32′ E, which is located in the Northern part of the Karun river basin in central Iran. A total of 160 soil samples were collected from the top 5 cm of soil surface. Some easily available characteristics including topographic, vegetation, and soil properties were used as inputs. Soil organic matter (SOM content was determined by the Walkley-Black method (Nelson & Sommers, 1986. Particle size distribution in the soil samples (clay, silt, sand, fine sand, and very fine sand were measured using the procedure described by Gee & Bauder (1986 and calcium carbonate equivalent (CCE content was determined by the back-titration method (Nelson, 1982. The modified Kemper & Rosenau (1986 method was used to determine wet-aggregate stability (GMD. The topographic attributes of elevation, slope, and aspect were characterized using a 20-m

  1. Stabilization techniques for reactive aggregate in soil-cement base course : technical summary.

    Science.gov (United States)

    2003-01-01

    The objectives of this research are 1) to identify the mineralogical properties of soil-cement bases which have heaved or can potentially heave, 2) to simulate expansion of cement-stabilized soil in the laboratory, 3) to correlate expansion with the ...

  2. Stability of Soil Organic Matter in Alpine Ecosystems: No Relationship with Vegetation

    Science.gov (United States)

    Matteodo, M.; Sebag, D.; Vittoz, P.; Verrecchia, E. P.

    2016-12-01

    There is an emerging understanding of mechanisms governing soil organic matter (SOM) stability, which is challenging the historical view of carbon persistence1. According to this alternative vision, SOM stability is not directly regulated by the molecular structure of plant inputs (i.e. the historical view), but the biotic and abiotic conditions of the surrounding environment which play a major role and mediate the influence of compound chemistry. The persistence of SOM is thus influenced by ecological conditions, controlling the access and activity of decomposers' enzymes and being ecosystem-dependent. In this study, we investigated differences of (1) carbon content, and (2) stability of organic matter in litter and organomineral layers from the most widespread plant communities at the subalpine-alpine level of the Swiss Alps. For this purpose, 230 samples from 47 soil profiles have been analysed across seven plant communities, along a subalpine-alpine elevation gradient. Both calcareous and siliceous grasslands were studied, as well as snowbed and ridge communities. Aboveground litter and A horizons were sampled and analysed using Rock-Eval Pyrolysis, a proxy-technique commonly used for the investigation of organic matter composition and stability2,3. Results show that the litter layers of the seven plant communities are significantly different in terms of total organic carbon (TOC) content, but slightly variable in terms of stability. The situation is radically different in the organomineral horizons where the amount of organic carbon is interestingly homogeneous, as well as the SOM stability. In mineral horizons, the amount and stability of SOM are mainly driven by the geological settings, and therefore vary in the different plant communities. These results show a clear disconnection between organic, organomineral, and mineral horizons in terms of factors governing soil organic matter stability. Consistent with the recent view of the carbon balance, plant input

  3. Effects of road decommissioning on carbon stocks, losses, and emissions in north coastal California

    Science.gov (United States)

    Madej, Mary Ann; Seney, Joseph; van Mantgem, Philip

    2013-01-01

    During the last 3 decades, many road removal projects have been implemented on public and private lands in the United States to reduce erosion and other impacts from abandoned or unmaintained forest roads. Although effective in decreasing sediment production from roads, such activities have a carbon (C) cost as well as representing a carbon savings for an ecosystem. We assessed the carbon budget implications of 30 years of road decommissioning in Redwood National Park in north coastal California. Road restoration techniques, which evolved during the program, were associated with various carbon costs and savings. Treatment of 425 km of logging roads from 1979 to 2009 saved 72,000 megagrams (Mg) C through on-site soil erosion prevention, revegetation, and soil development on formerly compacted roads. Carbon sequestration will increase in time as forests and soils develop more fully on the restored sites. The carbon cost for this road decommissioning work, based on heavy equipment and vehicle fuel emissions, short-term soil loss, and clearing of vegetation, was 23,000 Mg C, resulting in a net carbon savings of 49,000 Mg C to date. Nevertheless, the degree to which soil loss is a carbon sink or source in steep mountainous watersheds needs to be further examined. The ratio of carbon costs to savings will differ by ecosystem and road removal methodology, but the procedure outlined here to assess carbon budgets on restoration sites should be transferable to other systems.

  4. Heavy metal stabilization in contaminated soil by treatment with calcined cockle shell.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Taki, Golam; Nguyen, Xuan Phuc; Jo, Young-Tae; Kim, Jun; Park, Jeong-Hun

    2017-03-01

    In several previous studies, the efficacy of various liming waste materials on the immobilization of heavy metals has been tested and it was found that soils contaminated with heavy metals can be stabilized using this technique. Since lime (CaO) has been identified as the main phase of calcined cockle shell (CCS), it was hypothesized that CCS could be used as a soil amendment to immobilize heavy metals in soil. However, to date, no studies have been conducted using CCS. In this study, the effectiveness of CCS powder on the immobilization of Cd, Pb, and Zn in mine tailing soil was evaluated. After 28 days of incubation, the treated soil samples were exposed to weathering (four cycles of freezing-thawing and four cycles of wetting-drying) for 8 days before being subjected to a leaching test. The results of this study revealed that the soil pH increased from 7.5 to 12.2 with the addition of 5% CCS. A similar soil pH was obtained when the soil was amended with 5% pure CaO. By leaching with 0.1 M HCl, extracted Cd, Pb, and Zn were reduced by up to 85, 85, and 91%, respectively. Therefore, CCS is suggested as a low-cost lime-based soil amendment for stabilizing heavy metals in abandoned mining sites.

  5. Time-dependent performance of soil mix technology stabilized/solidified contaminated site soils.

    Science.gov (United States)

    Wang, Fei; Wang, Hailing; Al-Tabbaa, Abir

    2015-04-09

    This paper presents the strength and leaching performance of stabilized/solidified organic and inorganic contaminated site soil as a function of time and the effectiveness of modified clays applied in this project. Field trials of deep soil mixing application of stabilization/solidification (S/S) were performed at a site in Castleford in 2011. A number of binders and addictives were applied in this project including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and modified clays. Field trial samples were subjected to unconfined compressive strength (UCS), BS CN 12457 batch leaching test and the extraction of total organics at 28 days and 1.5 years after treatment. The results of UCS test show that the average strength values of mixes increased from 0-3250 kPa at 28 days to 250-4250 kPa at 1.5 years curing time. The BS EN 12457 leachate concentrations of all metals were well below their drinking water standard, except Ni in some mixes exceed its drinking water standard at 0.02 mg/l, suggesting that due to varied nature of binders, not all of them have the same efficiency in treating contaminated soil. The average leachate concentrations of total organics were in the range of 20-160 mg/l at 28 days after treatment and reduced to 18-140 mg/l at 1.5 years. In addition, organo clay (OC)/inorgano-organo clay (IOC) slurries used in this field trial were found to have a negative effect on the strength development, but were very effective in immobilizing heavy metals. The study also illustrates that the surfactants used to modify bentonite in this field trail were not suitable for the major organic pollutants exist in the site soil in this project. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. New phosphate-based binder for stabilization of soils contaminated with heavy metals: leaching, strength and microstructure characterization.

    Science.gov (United States)

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Jin, Fei; Wu, Hao-Liang; Liu, Zhi-Bin

    2014-12-15

    Cement stabilization is used extensively to remediate soils contaminated with heavy metals. However, previous studies suggest that the elevated zinc (Zn) and lead (Pb) concentrations in the contaminated soils would substantially retard the cement hydration, leading to the deterioration of the performance of cement stabilized soils. This study presents a new binder, KMP, composed of oxalic acid-activated phosphate rock, monopotassium phosphate and reactive magnesia. The effectiveness of stabilization using this binder is investigated on soils spiked with Zn and Pb, individually and together. Several series of tests are conducted including toxicity characteristic leaching (TCLP), ecotoxicity in terms of luminescent bacteria test and unconfined compressive strength. The leachability of a field Zn- and Pb- contaminated soil stabilized with KMP is also evaluated by TCLP leaching test. The results show that the leached Zn concentrations are lower than the China MEP regulatory limit except when Zn and Pb coexist and for the curing time of 7 days. On the other hand, the leached Pb concentrations for stabilized soils with Pb alone or mixed Zn and Pb contamination are much lower than the China MEP or USEPA regulatory limit, irrespective of the curing time. The luminescent bacteria test results show that the toxicity of the stabilized soils has been reduced considerably and is classified as slightly toxic class. The unconfined compressive strength of the soils decrease with the increase in the Zn concentration. The stabilized soils with mixed Zn and Pb contaminants exhibit notably higher leached Zn concentration, while there is lower unconfined compressive strength relative to the soils when contaminated with Zn alone. The X-ray diffraction and scanning electron microscope analyses reveal the presence of bobierrite (Mg3(PO4)2·8H2O) and K-struvite (MgKPO4·6H2O) as the main products formed in the KMP stabilized uncontaminated soils; the formation of hopeite (Zn3(PO4)2·4H2O

  7. Soil Organic Matter Stability and Soil Carbon Storage with Changes in Land Use Intensity in Uganda

    Science.gov (United States)

    Tiemann, L. K.; Grandy, S.; Hartter, J.

    2014-12-01

    As the foundation of soil fertility, soil organic matter (SOM) formation and break-down is a critical factor of agroecosystem sustainability. In tropical systems where soils are quickly weathered, the link between SOM and soil fertility is particularly strong; however, the mechanisms controlling the stabilization and destabilization of SOM are not well characterized in tropical soils. In western Uganda, we collected soil samples under different levels of land use intensity including maize fields, banana plantations and inside an un-cultivated native tropical forest, Kibale National Park (KNP). To better understand the link between land use intensity and SOM stability we measured total soil C and N, and respiration rates during a 369 d soil incubation. In addition, we separated soils into particle size fractions, and mineral adsorbed SOM in the silt (2-50 μm ) and clay (fractions was dissociated, purified and chemically characterized via pyrolysis-GC/MS. Cultivated soil C and N have declined by 22 and 48%, respectively, in comparison to uncultivated KNP soils. Incubation data indicate that over the last decade, relatively accessible and labile soil organic carbon (SOC) pools have been depleted by 55-59% in cultivated soils. As a result of this depletion, the chemical composition of SOM has been altered such that clay and silt associated SOM differed significantly between agricultural fields and KNP. In particular, nitrogen containing compounds were in lower abundance in agricultural compared to KNP soils. This suggests that N depletion due to agriculture has advanced to pools of mineral associated organic N that are typically protected from break-down. In areas where land use intensity is relatively greater, increases in polysaccharides and lipids in maize fields compared to KNP indicate increases in microbial residues and decomposition by-products as microbes mine SOM for organic N. Chemical characterization of post-incubation SOM will help us better understand

  8. Carbon stabilization and microbial growth in acidic mine soils after addition of different amendments for soil reclamation

    Science.gov (United States)

    Zornoza, Raúl; Acosta, Jose; Ángeles Muñoz, María; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2016-04-01

    The extreme soil conditions in metalliferous mine soils have a negative influence on soil biological activity and therefore on soil carbon estabilization. Therefore, amendments are used to increase organic carbon content and activate microbial communities. In order to elucidate some of the factors controlling soil organic carbon stabilization in reclaimed acidic mine soils and its interrelationship with microbial growth and community structure, we performed an incubation experiment with four amendments: pig slurry (PS), pig manure (PM) and biochar (BC), applied with and without marble waste (MW; CaCO3). Results showed that PM and BC (alone or together with MW) contributed to an important increment in recalcitrant organic C, C/N ratio and aggregate stability. Bacterial and fungal growths were highly dependent on pH and labile organic C. PS supported the highest microbial growth; applied alone it stimulated fungal growth, and applied with MW it stimulated bacterial growth. BC promoted the lowest microbial growth, especially for fungi, with no significant increase in fungal biomass. MW+BC increased bacterial growth up to values similar to PM and MW+PM, suggesting that part of the biochar was degraded, at least in short-term mainly by bacteria rather than fungi. PM, MW+PS and MW+PM supported the highest microbial biomass and a similar community structure, related with the presence of high organic C and high pH, with immobilization of metals and increased soil quality. BC contributed to improved soil structure, increased recalcitrant organic C, and decreased metal mobility, with low stimulation of microbial growth.

  9. Effects of Periwinkle Shell Ash on Lime-Stabilized Lateritic Soil ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Keywords: atterberg limits, lateritic soil, lime stabilization, periwinkle shell ash .... specimen were prepared by carefully and completely ..... Fourth Edition. Canada: CENGAGE Learning. Holtz, RD; Kovacs, WD (1981). ... Potentials of Sugar cane.

  10. Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization.

    Science.gov (United States)

    He, Ruo; Wang, Jing; Xia, Fang-Fang; Mao, Li-Juan; Shen, Dong-Sheng

    2012-10-01

    Biocover soil has been demonstrated to have high CH(4) oxidation capacity and is considered as a good alternative cover material to mitigate CH(4) emission from landfills, yet the response of CH(4) oxidation activity of biocover soils to the variation of CH(4) loading during landfill stabilization is poorly understood. Compared with a landfill cover soil (LCS) collected from Hangzhou Tianziling landfill cell, the development of CH(4) oxidation activity of waste biocover soil (WBS) was investigated using simulated landfill systems in this study. Although a fluctuation of influent CH(4) flux occurred during landfill stabilization, the WBS covers showed a high CH(4) removal efficiency of 94-96% during the entire experiment. In the LCS covers, the CH(4) removal efficiencies varied with the fluctuation of CH(4) influent flux, even negative ones occurred due to the storage of CH(4) in the soil porosities after the high CH(4) influent flux of ~137 gm(-2) d(-1). The lower concentrations of O(2) and CH(4) as well as the higher concentration of CO(2) were observed in the WBS covers than those in the LCS covers. The highest CH(4) oxidation rates of the two types of soil covers both occurred in the bottom layer (20-30 cm). Compared to the LCS, the WBS showed higher CH(4) oxidation activity and methane monooxygenase activity over the course of the experiment. Overall, this study indicated the WBS worked well for the fluctuation of CH(4) influent flux during landfill stabilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Spatial distribution of metals in soils in Baltimore, Maryland: Role of native parent material, proximity to major roads, housing age and screening guidelines

    International Nuclear Information System (INIS)

    Yesilonis, I.D.; Pouyat, R.V.; Neerchal, N.K.

    2008-01-01

    We investigated the spatial distribution of heavy metal above-background (anthropic) contents of Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Ti, V, and Zn in Baltimore City surface soils and related these levels to potential contaminating sources. Composite soil samples (0-10 cm depth) were digested using a nitric and hydrochloric extraction technique. Slightly more than 10% of plots exceeded United States Environmental Protection Agency screening guidelines for Pb. In a principal component analysis, the first component corresponded to Co, Cr, and Fe, which are constituents of local mafic rocks. The second component corresponded to Cu, Pb, and Zn which were significantly higher within than beyond a 100 m buffer of the major roads within the city; furthermore, Pb and Zn were higher in older residential lots. - Spatial distribution of metals in soils of an older US city (Baltimore) was affected by parent material, proximity to major roads, and housing age

  12. Stability performance and interface shear strength of geocomposite drain/soil systems

    Science.gov (United States)

    Othman, Maidiana; Frost, Matthew; Dixon, Neil

    2018-02-01

    Landfill covers are designed as impermeable caps on top of waste containment facilities after the completion of landfill operations. Geocomposite drain (GD) materials consist of a geonet or geospacer (as a drainage core) sandwiched between non-woven geotextiles that act as separators and filters. GD provides a drainage function as part of the cover system. The stability performance of landfill cover system is largely controlled by the interface shear strength mobilized between the elements of the cover. If a GD is used, the interface shear strength properties between the upper surface of the GD and the overlying soil may govern stability of the system. It is not uncommon for fine grained materials to be used as cover soils. In these cases, understanding soil softening issues at the soil interface with the non-woven geotextile is important. Such softening can be caused by capillary break behaviour and build-up of water pressures from the toe of the drain upwards into the cover soil. The interaction processes to allow water flow into a GD core through the soil-geotextile interface is very complex. This paper reports the main behaviour of in-situ interface shear strength of soil-GD using field measurements on the trial landfill cover at Bletchley, UK. The soil softening at the interface due to soaked behaviour show a reduction in interface shear strength and this aspect should be emphasized in design specifications and construction control. The results also help to increase confidence in the understanding of the implications for design of cover systems.

  13. Compound soil-tyre chips modified by cement as a road construction material

    Directory of Open Access Journals (Sweden)

    Panu Promputthangkoon

    2013-10-01

    Full Text Available This research attempts to overcome the two problems of low-quality soil and a growing number of discarded tyres bymixing low-CBR soil with recycled tyre chips. The compound soil-tyre chips was then stabilised by Portland cement with theaim of using them as a new material in road construction in order to reduce the occurrence of shrinkage cracks. To achievethe purposes of this research three standard geotechnical testing programmes were employed: (1 modified compaction tests,(2 California Bearing Ratio tests (CBR, and (3 unconfined compression tests. The modified compaction test results provedthat for the mixtures having very low tyre chips and cement content, the behaviour is very complex. It was also observed thatthe greater the percentage of rubber added the lower the global density. However, this is predictable as the specific gravityof the rubber is much lower than that of the soil. For the relationship between the optimum moisture content (OMC and thecement content, it was observed that there is no clear pattern.For the specimens having no cement added, the CBR for unsoaked specimens was observed to be greater than that forsoaked specimens. However, when the cement was introduced the CBR test showed that the resistance to penetration for thesoaked specimens was significantly greater, indicating the effects of cement added on the strength. In addition, it was foundthat the CBR values for both soaked and unsoaked specimens gradually increased with the increase of cement content.Lastly, the unconfined compressive strength progressively increased with the increased percentage of cement.

  14. Assessment of the PCDD/F fate from MSWI residue used in road construction in France.

    Science.gov (United States)

    Badreddine, R; François, D

    2009-01-01

    MSWI fly ash is susceptible to contain high amount of polychlorinated dibenzo-dioxins and polychlorinated dibenzo-furans. However, the use of MSWI residue for road construction started in France at a period when MSWI Bottom Ash and MSWI fly ash were not separated. From four old road sites, MSWI residue, road soils, reference soils and geo-textiles were sampled and their PCDD/F contents were analyzed. MSWI residue show a great heterogeneity but also high amounts of PCDD/F (14-2960 ng I-TEQ kg(-1)dm). Soils underlying the road show less heterogeneity and PCDD/F contents between 0.57 and 7.23 ng I-TEQ kg(-1)dm, lower than ordinary soils. Moreover, the specific analysis of the 17 toxic PCDD/F congeners (notably the 2,3,7,8-TetraCDD) indicates the very low harmfulness of road soils. The study also allows to assert the relation between the MSWI residue particle size and the PCDD/F content.

  15. Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils

    International Nuclear Information System (INIS)

    Clarke, Lorraine Weller; Jenerette, G. Darrel; Bain, Daniel J.

    2015-01-01

    Heavy metals in urban soils can compromise human health, especially in urban gardens, where gardeners may ingest contaminated dust or crops. To identify patterns of urban garden metal contamination, we measured concentrations and bioavailability of Pb, As, and Cd in soils associated with twelve community gardens in Los Angeles County, CA. This included sequential extractions to partition metals among exchangeable, reducible, organic, or residual fractions. Proximity to road increased all metal concentrations, suggesting vehicle emissions sources. Reducible Pb increased with neighborhood age, suggesting leaded paint as a likely pollutant source. Exchangeable Cd and As both increased with road proximity. Only cultivated soils showed an increase in exchangeable As with road proximity, potentially due to reducing humic acid interactions while Cd bioavailability was mitigated by organic matter. Understanding the geochemical phases and metal bioavailability allows incorporation of contamination patterns into urban planning. - Highlights: • Road proximity, legacies, and management affect garden soil metal concentrations. • Soil near old houses had high reducible Pb, likely due to lead paint. • Pb, As, and Cd all increased with proximity to road. • As and Cd reacted with organic matter to become more or less bioavailable to crops. - Road proximity, legacies, and management affect garden soil metal concentrations. Soil near old houses had high reducible Pb due to lead paint, while all metals increased near the road

  16. Interactions of two novel stabilizing amendments with sunflower plants grown in a contaminated soil.

    Science.gov (United States)

    Michálková, Zuzana; Martínez-Fernández, Domingo; Komárek, Michael

    2017-11-01

    Several efficient stabilizing amendments have been recently proposed for the remediation of metal(loid)-contaminated soils. However, information on their interactions with plants, which is a crucial factor in soil environments, are still scarce. An amorphous manganese oxide (AMO) synthesized from organic compounds and nano zerovalent iron (nZVI) have been previously tested as promising stabilizing agents usable both for the stabilization of metals and As. Experiments with rhizoboxes were performed in order to evaluate their influence on the mobility of metal(loid)s in the bulk soil and rhizosphere of sunflower (Helianthus annuus L.) together with their impact on metal uptake and biomass yield. Generally, AMO proved more efficient than nZVI in all stages of experiment. Furthermore, the AMO effectively reduced water- and 0.01 M CaCl 2 -extractable fractions of Cd, Pb and Zn. The decreased bioavailability of contaminating metal(loid)s resulted in significant increase of microbial activity in AMO-amended soil. Together with metal(loid) extractability, the AMO was also able to significantly reduce the uptake of metals and ameliorate plant growth, especially in the case of Zn, since this metal was taken up in excessive amounts from the control soil causing strong phytotoxicity and even death of young seedlings. On the other hand, AMO application lead to significant release of Mn that was readily taken up by plants. Resulting Mn concentrations in biomass exceeded toxicity thresholds while plants were showing emergent Mn phytotoxicity symptoms. We highlight the need of such complex studies involving plants and soil biota when evaluating the efficiency of stabilizing amendments in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Nitrogen stabilization in organo-mineral fractions from soils with different land uses

    Science.gov (United States)

    Giannetta, Beatrice; Zaccone, Claudio; Rovira, Pere; Vischetti, Costantino; Plaza, César

    2017-04-01

    Understanding the processes that control quantity and quality of soil organic matter (SOM) interacting with mineral surfaces is of paramount importance. Although several physical fractionation methods have been proposed to date to obtain fractions that mirror SOM degree of stability and protection, a detailed quantification of stabilisation modes through which SOM bounds to the mineral matrix is still lacking. In this research we determined C and N distribution in several soils including coniferous and broadleaved forest soils, grassland soils, technosols and an agricultural soil amended with biochar at rates of 0 and 20 t/ha in a factorial combination with two types of organic amendment (municipal solid waste compost and sewage sludge). We performed a physical size fractionation by ultrasonic dispersion and wet sieving, splitting particles into four different size fractions: coarse sand (2000-200 µm diameter), fine sand (200-50 µm), coarse silt (50-20 µm) and fine silt plus clay (stabilization modes. This method, in fact, allows resolving the nature of different bonds between mineral and organic components by the use of sequential extractions with chemical reagents (potassium sulphate, sodium tetraborate, sodium pyrophosphate, sodium hydroxide, sodium hydroxide after weak acid attack, sodium hydroxide after sodium dithionite pretreatment, and sodium hydroxide after hydrofluoric acid pretreatments). Elemental analysis (CHN) was then carried out on SOM pools isolated from different fractions. Preliminary data show that, for all land uses in general, and for grassland soils in particular, most of the total N is found in organo-mineral complexes (fraction soil N content. Although a small N loss was observed during the fractionation procedure, especially in N-rich samples, and data analysis is still ongoing, these preliminary results could already represent a valuable insight into organic N stabilization by mineral matrix.

  18. Comparison of human exposure pathways in an urban brownfield: reduced risk from paving roads.

    Science.gov (United States)

    James, Kyle; Farrell, Richard E; Siciliano, Steven D

    2012-10-01

    Risk assessments often do not quantify the risk associated with soil inhalation. This pathway generally makes a negligible contribution to the cumulative risk, because soil ingestion is typically the dominant exposure pathway. Conditions in northern or rural centers in Canada characterized by large areas of exposed soil, including unpaved roads, favor the resuspension of soil particles, making soil inhalation a relevant risk pathway. The authors determined and compared human exposure to metals and polycyclic aromatic hydrocarbons (PAHs) from soil ingestion and inhalation and analyzed the carcinogenic and noncarcinogenic risks before and after roads were paved in a northern community. To determine the inhalation exposure, three size fractions of airborne particulate matter were collected (total suspended particulates [TSP], particulate matter with an aerodynamic diameter less than 10 µm [PM10], and particulate matter with an aerodynamic diameter less than 2.5 µm [PM2.5]) before and after roads were paved. Road paving reduced the concentration of many airborne contaminants by 25 to 75%, thus reducing risk. For example, before paving, the carcinogenic risk associated with inhalation of Cr was 3.4 excess cancers per 100,000 people exposed, whereas after paving, this risk was reduced to 1.6 in 100,000. Paving roads reduced the concentrations of total suspended particulates (TSP; p roads is an effective method of reducing risk from the inhalation of soil particles. Copyright © 2012 SETAC.

  19. Discerning the biochemical stability of pyrogenic C in soils

    Science.gov (United States)

    De la Rosa, José M.; Paneque, Marina; Contreras-Bernal, Lidia; Miller, Ana Z.; Knicker, Heike

    2016-04-01

    The soil organic matter (SOM) constitutes approximately 2/3 of the global terrestrial C pool, which corresponds to estimated 4000 Pg to a depth of 3 m [1] and therefore, the dynamics of organic carbon (OC) in soils control a large part of the terrestrial C cycle. The term Pyrogenic Carbon (PyC) comprises the whole range of pyrogenic organic materials, from partly charred material through charcoal to soot produced during fire, as well as technical chars (biochars) produced by pyrolysis of biomass. The previously common assumption of PyC being inert has long been proven wrong [2]. In theory, the pyrogenic process confers these materials a longer mean residence time in the soils than their precursors, thus the application of PyC in general and particularly biochar to soil is proposed as a valid approach to establish a significant, long-term sink for atmospheric carbon dioxide in terrestrial ecosystems [3]. Nevertheless, the knowledge concerning the biochemical recalcitrance of PyOM in soils is still limited. This study combines the analysis by 13C solid state Nuclear Magnetic Resonance Spectroscopy (13C NMR), Field Emission Scanning Electron Microscopy (FESEM), analytical pyrolysis (Py-GC/MS) and CO2 emissions in incubated pots of burned and unburned soils as well as in biochar amended and un-amended soils. By using this integrated approach we achieved a more complete understanding of the stability of different forms of PyC in the soil and the chemical changes occurring during aging. Significant differences are found between the stability of PyC. They depend on the nature of the source material, surficial properties of PyC, the pyrolysis process and the soil conditions during aging. Acknowledgements: The Marie Skłodowska-Curie actions (PCIG12-GA-2012-333784-Biocharisma project and PIEF-GA-2012-328689-DECAVE project), and the Spanish Ministry of Economy and Competitiveness (MINECO) (project PCGL2012-37041) are thanked for the financial support of the present study

  20. EVALUATION OF SOLIDIFICATION/STABILIZATION AS A BEST DEMONSTRATED AVAILABLE TECHNOLOGY FOR CONTAMINATED SOILS

    Science.gov (United States)

    This project involved the evaluation of solidification/stabilization technology as a BDAT for contaminated soil. Three binding agents were used on four different synthetically contaminated soils. Performance evaluation data included unconfined compressive strength (UCS) and the T...

  1. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?

    Science.gov (United States)

    Cotrufo, M Francesca; Wallenstein, Matthew D; Boot, Claudia M; Denef, Karolien; Paul, Eldor

    2013-04-01

    The decomposition and transformation of above- and below-ground plant detritus (litter) is the main process by which soil organic matter (SOM) is formed. Yet, research on litter decay and SOM formation has been largely uncoupled, failing to provide an effective nexus between these two fundamental processes for carbon (C) and nitrogen (N) cycling and storage. We present the current understanding of the importance of microbial substrate use efficiency and C and N allocation in controlling the proportion of plant-derived C and N that is incorporated into SOM, and of soil matrix interactions in controlling SOM stabilization. We synthesize this understanding into the Microbial Efficiency-Matrix Stabilization (MEMS) framework. This framework leads to the hypothesis that labile plant constituents are the dominant source of microbial products, relative to input rates, because they are utilized more efficiently by microbes. These microbial products of decomposition would thus become the main precursors of stable SOM by promoting aggregation and through strong chemical bonding to the mineral soil matrix. © 2012 Blackwell Publishing Ltd.

  2. Compressibility of soft Iraqi soil stabilized with traditional Iraqi stabilizers (cement and lime

    Directory of Open Access Journals (Sweden)

    Baqir Husam

    2018-01-01

    Full Text Available This study shows an improvement of two types of clay soil brought from different parts of Iraq. The first soil (A from Al - Zaafaraniya site in Baghdad governorate. The second soil (B from Garma Ali site in the Al Basra governorate, Iraq. Soft clayey soils were treated by a combination of sulphate resistance Portland cement (PC and Quicklime (LQ to modify and stability. PC was added in percentages of 2,4,6,8 and 10%, as well as, LQ was added to 2 and 4%, of dry weight. Laboratory tests to determine specific gravity, Atterbergs limits and standard proctor test were conducted. Also, the main objective of this research is the concentrating on compression ratio (CR, the Rebound (Swelling ratio (RR and the stiffness during the modulus of elasticity (Es for treated and natural soils procreation from consolidation test. The results from laboratory tests shows high ability on the enhancing in terms of reduction in plasticity index (greatly increased workability, reduction in compression ratio (CR, reduction in the Rebound (Swelling ratio (RR, increase in the modulus of elasticity (Es. The change in moisture-density relationships resulting in lower maximum dry densities, higher optimum water content, and less variation of dry density from the maximum over a much wider range of water contents.

  3. Long-term efficiency of soil stabilization with apatite and Slovakite: the impact of two earthworm species (Lumbricus terrestris and Dendrobaena veneta) on lead bioaccessibility and soil functioning.

    Science.gov (United States)

    Tica, D; Udovic, M; Lestan, D

    2013-03-01

    Remediation soil is exposed to various environmental factors over time that can affect the final success of the operation. In the present study, we assessed Pb bioaccessibility and microbial activity in industrially polluted soil (Arnoldstein, Austria) stabilized with 5% (w/w) of Slovakite and 5% (w/w) of apatite soil after exposure to two earthworm species, Lumbricus terrestris and Dendrobaena veneta, used as model environmental biotic soil factors. Stabilization resulted in reduced Pb bioaccessibility, as assessed with one-step extraction tests and six-step sequential extraction, and improved soil functioning, mirrored in reduced β-glucosidase activity in soil. Both earthworm species increased Pb bioaccessibility, thus decreasing the initial stabilization efficacy and indicating the importance of considering the long-term fate of remediated soil. The earthworm species had different effects on soil enzyme activity, which can be attributed to species-specific microbial populations in earthworm gut acting on the ingested soil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Influence of forest roads standards and networks on water yield as predicted by the distributed hydrology-soil-vegetation model

    Science.gov (United States)

    Salli F. Dymond; W. Michael Aust; Steven P. Prisley; Mark H. Eisenbies; James M. Vose

    2013-01-01

    Throughout the country, foresters are continually looking at the effects of logging and forest roads on stream discharge and overall stream health. In the Pacific Northwest, a distributed hydrology-soil-vegetation model (DHSVM) has been used to predict the effects of logging on peak discharge in mountainous regions. DHSVM uses elevation, meteorological, vegetation, and...

  5. Erosion and stability of a mine soil

    International Nuclear Information System (INIS)

    Wu, T.H.; Stadler, A.T.; Low, C.

    1996-01-01

    Mine soils developed from mine spoils commonly have a wide range of particle size. The slopes of old spoil piles usually are marked by gullies due to years of uncontrolled erosion. These characteristics raise questions about applicability of available theories and models for estimating runoff and erosion. An investigation was made to determine whether available erosion models can work for mine soils and can account for gully erosion. The investigation at an abandoned surface mine consisted of measurement of soil and sediment properties, measurement of runoff and erosion, observations of armor by rock fragments on gully floor, and calculations with available theories of sediment transport and slope stability. The results at this site suggest that (1) predictions with the ANSWERS model have about the same accuracy as those made for agricultural lands; (2) armor provided by rock fragments are temporary as they are periodically removed by debris flows; (3) detachment by rainfall impact is the primary cause of erosion on short steep slopes; and (4) a simplified method can be used for estimating erosion on such slopes

  6. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility.

    Science.gov (United States)

    Bolan, N S; Kunhikrishnan, A; Choppala, G K; Thangarajan, R; Chung, J W

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t(1/2)) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Forest access roads: design, maintenance, and soil loss

    Science.gov (United States)

    Lloyd W. Swift

    1988-01-01

    The Regional Guide for,the South (United States Department of Agriculture 1984b) recognizes that roads and skid trails are the major sources of sediment from forestry-related activities. The overall environmental impact statement for Region 8 (United States Department of Agriculture 1984a) estimates an existing national forest road network of 56,300 km (3 1,000 miles)...

  8. The effect of vehicle characteristics on road accidents

    CERN Document Server

    Jones, I S

    2016-01-01

    The Effect of Vehicle Characteristics on Road Accidents investigates whether vehicle characteristics related to handling and stability contribute to road accidents. Using multiple regression analysis, this book addresses driver and vehicle effects separately in order to define both the magnitude of the handling/accident causation problem as well as the relative importance of the various performance measures. This monograph is comprised of six chapters and begins with detailed studies of accidents to determine the circumstances which lead to loss of control or overturning of a car on the road, and which accidents are likely to be influenced by the handling and stability characteristics of cars. Accident rates for these types of accident are then examined for the more popular models of car. Measures of vehicle handling and stability related to accident rates are also discussed. This text will be a useful resource for motorists and road engineers as well as transportation officials.

  9. Conceptual design and analysis of roads and road construction machinery for initial lunar base operations

    Science.gov (United States)

    Sines, Jeffrey L.; Banks, Joel; Efatpenah, Keyanoush

    1990-01-01

    Recent developments have made it possible for scientists and engineers to consider returning to the Moon to build a manned lunar base. The base can be used to conduct scientific research, develop new space technology, and utilize the natural resources of the Moon. Areas of the base will be separated, connected by a system of roads that reduce the power requirements of vehicles traveling on them. Feasible road types for the lunar surface were analyzed and a road construction system was designed for initial lunar base operations. A model was also constructed to show the system configuration and key operating features. The alternate designs for the lunar road construction system were developed in four stages: analyze and select a road type; determine operations and machinery needed to produce the road; develop machinery configurations; and develop alternates for several machine components. A compacted lunar soil road was selected for initial lunar base operations. The only machinery required to produce this road were a grader and a compactor. The road construction system consists of a main drive unit which is used for propulsion, a detachable grader assembly, and a towed compactor.

  10. Conceptual Modeling of the Influence of Wetting and Drying Cycles on Soil Aggregation and Stabilization

    Science.gov (United States)

    Albalasmeh, A. A.; Ghezzehei, T.

    2011-12-01

    Soil structure directly determines important soil physical properties including porosity, hydraulic conductivity, water retention, and mechanical strength and indirectly influences most biological and chemical processes that occur in and around soil. The interaction of environmental and biotic agents influences the physical condition of the soil, particularly through soil structural evolution. Wetting and drying cycles are important environmental processes known to enhance aggregation, while clay minerals, sesquioxides and soil organic matter (SOM) are the soil solids most involved in soil structural development. We hypothesize that drying of capillary water transports suspended and/or dissolved cementing agents toward inter-particle contacts and eventually deposits part of the colloidal mass forming inter-particle bonds. Here, we will show the role of wetting and drying cycles on soil aggregation and stabilization and how these cycles transport and deposit organic cementing agents at the inter-particle contact. We will present results of the effect of particle size, number of wetting and drying cycles, viscosity, molecule length and concentration of suspended and/or dissolved cementing agents on soil aggregation and stabilization.

  11. Stability of volatile organics in environmental soil samples. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

    1992-11-01

    This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

  12. An in vivo invertebrate bioassay of Pb, Zn and Cd stabilization in contaminated soil.

    Science.gov (United States)

    Udovic, Metka; Drobne, Damjana; Lestan, Domen

    2013-08-01

    The terrestrial isopod (Porcellio scaber) was used to assess the remediation efficiency of limestone and a mixture of gravel sludge and red mud as stabilizing agents of Pb, Zn and Cd in industrially polluted soil, which contains 800, 540 and 7mgkg(-1) of Pb, Zn and Cd, respectively. The aim of our study was to compare and evaluate the results of the biological and non-biological assessment of metal bioavailability after soil remediation. Results of a 14d bioaccumulation test with P. scaber showed that that Pb and Zn stabilization were more successful with gravel sludge and red mud, while Cd was better stabilized and thus less bioavailable following limestone treatment. In vivo bioaccumulation tests confirmed the results of chemical bioaccessibility, however it was more sensitive. Biotesting with isopods is a relevant approach for fast screening of bioavailability of metals in soils which includes temporal and spatial components. Bioavailability assessed by P. scaber is a more relevant and sensitive measure of metal bioavailability than chemical bioaccessibility testing in remediated industrially polluted soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Introducing Dual Suspension System in Road Vehicles

    OpenAIRE

    Imtiaz Hussain; Jawaid Daudpoto; Ali Asghar Memon

    2013-01-01

    The main objective of suspension system is to reduce the motions of the vehicle body with respect to road disturbances. The conventional suspension systems in road vehicles use passive elements such as springs and dampers to suppress the vibrations induced by the irregularities in the road. But these conventional suspension systems can suppress vibrations to a certain limit. This paper presents a novel idea to improve the ride quality of roads vehicles without compromising vehicle?s stability...

  14. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils

    OpenAIRE

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Metadata only record The long-term effects of tillage system and residue management on soil organic carbon stabilization are studied in two tropical soils in Zimbabwe, a red clay and a sandy soil. The four tillage systems evaluated were conventional tillage (CT), mulch ripping (MR), clean ripping (CR) and tied ridging (TR). Soil organic carbon (SOC) content was measured for each size fraction as well as total SOC. Based on the findings, the authors conclude that residue management - mainta...

  15. Reliability-based optimization design of geosynthetic reinforced road embankment.

    Science.gov (United States)

    2014-07-01

    Road embankments are typically large earth structures, the construction of which requires for large amounts of competent fill soil. In order to limit costs, the utilization of geosynthetics in road embankments allows for construction of steep slopes ...

  16. Forest road management to protect soil and water

    Science.gov (United States)

    J. McFero Grace; Barton D. Clinton

    2006-01-01

    The National Forest road system is the network that supports recreation which has become the primary use of the public lands. The pattern of use of National Forest roads for recreation by the public has increased dramatically since the late 1940’s and is expected to continue to increase beyond the rates observed today. However, research over the past 60 years clearly...

  17. Sediment pathways in a tropical forest: effects of logging roads and skid trails

    Science.gov (United States)

    Sidle, Roy C.; Sasaki, Shozo; Otsuki, Mieko; Noguchi, Shoji; Rahim Nik, Abdul

    2004-03-01

    Significant erosion occurred from recently constructed forest logging roads and skid trails in a small headwater catchment in Peninsular Malaysia. Soil loss was estimated by measuring dimensions of all significant rills and gullies along the road, as well as by measuring height of preserved soil pedestals in sidecast and fill material and on skid trails. Estimates of surface erosion from logging roads and skid trails were 272 +/- 20 t ha-1 year-1 and 275 +/- 20 t ha-1 year-1 respectively. However, owing to lack of connectivity of skid trails to the stream, much of the sediment mobilized on skid trails was stored either on adjacent hillslopes or the trails themselves, rather than being transported to the stream system, as was the case for the road. Steeper skid trails (>20% gradient) had slightly higher erosion rates (320 +/- 24 t ha-1 year-1) than trails with gentler gradients (245-264 t ha-1 year-1). Some 60% of the soil loss on logging roads comes from erosion of the running surface. Disturbed cut and fill material along the road supplied the remaining 40% of the soil loss from roads. Roads and skid trails had no designed drainage systems; runoff discharged onto the hillslope at 25 major discharge nodes from the logging road (690 m total length) and at 34 nodes from skid trails (2300 m). Sediment pathways were either fully or moderately connected to headwater channels at 64% of the logging road nodes, but at only 26% of the nodes emanating from skid trails. A detailed sediment budget revealed that 78% of the soil loss from the road system (including log landings) was delivered to the stream in the first 16 months after logging began. Most (90%) of the deposition from skid trails occurred below just three discharge nodes. Runoff from and onto skid trails often exacerbated the sediment connectivity to channels. Clearly, sediment discharge from logging roads was more highly connected to the stream than discharge from skid trails. Once in the channel, much of this

  18. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index.

    Science.gov (United States)

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study.

  19. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index.

    Directory of Open Access Journals (Sweden)

    Min-Suk Kim

    Full Text Available Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study.

  20. Changes in soil aggregate stability under different irrigation doses of waste water

    Science.gov (United States)

    Morugán, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Victoria; Bárcenas, Gema

    2010-05-01

    Freshwater availability and soil degradation are two of the most important environmental problems in the Mediterranean area acerbated by incorrect agricultural use of irrigation in which organic matter is not correctly managed, the use of low quality water for irrigation, and the inefficiency of dose irrigation. For these reasons strategies for saving water and for the restoration of the mean properties of soil are necessary. The use of treated waste water for the irrigation of agricultural land could be a good solution to these problems, as it reduces the utilization of fresh water and could potentially improve key soil properties. In this work we have been studying, for more than three years, the effects on soil properties of different doses of irrigation with waste water. Here we show the results on aggregate stability. The study is located in an agricultural area at Biar (Alicante, SE of Spain), with a crop of grape (Vitis labrusca). Three types of waters are being used in the irrigation of the soil: fresh water (control) (TC), and treated waste water from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type: D10 (10 L m-2 every week during 17 months), D50 (50 L m-2 every fifteen days during 14 moths) and D30 (30 L m-2 every week during 6 months up to present day). The results showed a clear decrease of aggregate stability during the period we used the second dose (D50) independent of the type of water used. That dose of irrigation and frequency produced strong wetting and drying cycles (WD) in the soil, and this is suspected to be the main factor responsible for the results. When we changed the dose of irrigation to D30, reducing the quantity per event and increasing the frequency, the soil aggregate stability started to improve. This dose avoids strong drying periods between irrigation events and the aggregate stability is confirmed to be slowly

  1. Soil stabilization with recycled materials improves subgrade performance : research spotlight.

    Science.gov (United States)

    2016-02-29

    The use of recycled materials for subgrade stabilization can provide the support needed for construction vehicle loading and more typical long-term traffic loading. This is a particular need in Michigan due to the prevalence of weak subgrade soils. U...

  2. A novel method for soil aggregate stability measurement by laser granulometry with sonication

    Science.gov (United States)

    Rawlins, B. G.; Lark, R. M.; Wragg, J.

    2012-04-01

    Regulatory authorities need to establish rapid, cost-effective methods to measure soil physical indicators - such as aggregate stability - which can be applied to large numbers of soil samples to detect changes of soil quality through monitoring. Limitations of sieve-based methods to measure the stability of soil macro-aggregates include: i) the mass of stable aggregates is measured, only for a few, discrete sieve/size fractions, ii) no account is taken of the fundamental particle size distribution of the sub-sampled material, and iii) they are labour intensive. These limitations could be overcome by measurements with a Laser Granulometer (LG) instrument, but this technology has not been widely applied to the quantification of aggregate stability of soils. We present a novel method to quantify macro-aggregate (1-2 mm) stability. We measure the difference between the mean weight diameter (MWD; μm) of aggregates that are stable in circulating water of low ionic strength, and the MWD of the fundamental particles of the soil to which these aggregates are reduced by sonication. The suspension is circulated rapidly through a LG analytical cell from a connected vessel for ten seconds; during this period hydrodynamic forces associated with the circulating water lead to the destruction of unstable aggregates. The MWD of stable aggregates is then measured by LG. In the next step, the aggregates - which are kept in the vessel at a minimal water circulation speed - are subject to sonication (18W for ten minutes) so the vast majority of the sample is broken down into its fundamental particles. The suspension is then recirculated rapidly through the LG and the MWD measured again. We refer to the difference between these two measurements as disaggregation reduction (DR) - the reduction in MWD on disaggregation by sonication. Soil types with more stable aggregates have larger values of DR. The stable aggregates - which are resistant to both slaking and mechanical breakdown by the

  3. Alkaline hydrothermal stabilization of Cr(VI) in soil using glass and aluminum from recycled municipal solid wastes.

    Science.gov (United States)

    Gattullo, Concetta Eliana; D'Alessandro, Caterina; Allegretta, Ignazio; Porfido, Carlo; Spagnuolo, Matteo; Terzano, Roberto

    2018-02-15

    Hexavalent chromium was stabilized in soil by using a mixture of glass and aluminum recovered from municipal solid wastes under alkaline hydrothermal conditions. Cr(VI) concentration was reduced by 94-98% already after 7days of treatment. After the same period, more than 90% of total Cr was stabilized in highly recalcitrant and scarcely mobile chemical forms, with 50% in the residual fraction (when the samples were treated at 1/10w/w mixture/soil ratio). Longer treatments increased Cr stabilization. X-ray microanalyses revealed that Cr was stabilized in geopolymeric structures within large aluminosilicate mineral aggregates (containing both amorphous and crystalline phases). 3D microstructural analyses showed a limited compaction of the soil with still a 20% internal porosity in the neoformed aggregates. Increased pH and salinity after the treatment can be restored by simple soil amendments and washing. Copyright © 2017. Published by Elsevier B.V.

  4. Quantification of centimeter-scale spatial variation in PAH, glucose and benzoic acid mineralization and soil organic matter in road-side soil

    Energy Technology Data Exchange (ETDEWEB)

    Hybholt, Trine K.; Aamand, Jens [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark); Johnsen, Anders R., E-mail: arj@geus.dk [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark)

    2011-05-15

    The aim of the study was to determine centimeter-scale spatial variation in mineralization potential in diffusely polluted soil. To this end we employed a 96-well microplate method to measure the mineralization of {sup 14}C-labeled organic compounds in deep-well microplates and thereby compile mineralization curves for 348 soil samples of 0.2-cm{sup 3}. Centimeter-scale spatial variation in organic matter and the mineralization of glucose, benzoic acid, and PAHs (phenanthrene and pyrene) was determined for urban road-side soil sampled as arrays (7 x 11 cm) of 96 subsamples. The spatial variation in mineralization was visualized by means of 2-D contour maps and quantified by means of semivariograms. The geostatistical analysis showed that the easily degradable compounds (glucose and benzoic acid) exhibited little spatial variation in mineralization potential, whereas the mineralization was highly heterogeneous for the PAH compounds that require specialized degraders. The spatial heterogeneity should be taken into account when estimating natural attenuation rates. - Highlights: > Geostatistics were applied at the centimeter scale. > Glucose and benzoic acid mineralization showed little spatial variation. > PAH mineralization was highly variable at the sub-centimeter scale. > High spatial heterogeneity may be caused by low functional redundancy. - This study supports the hypothesis that specialized xenobiotic degraders may show high spatial heterogeneity in soil due to low functional redundancy.

  5. Importance of microscopy in durability studies of solidified and stabilized contaminated soils

    Science.gov (United States)

    Klich, I.; Wilding, L.P.; Drees, L.R.; Landa, E.R.

    1999-01-01

    Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or achieved in a laboratory warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical

  6. Development of Low Cost Soil Stabilization Using Recycled Material

    Science.gov (United States)

    Ahmad, F.; Yahaya, A. S.; Safari, A.

    2016-07-01

    Recycled tyres have been used in many geotechnical engineering projects such as soil improvement, soil erosion and slope stability. Recycled tyres mainly in chip and shredded form are highly compressible under low and normal pressures. This characteristic would cause challenging problems in some applications of soil stabilization such as retaining wall and river bank projects. For high tensile stress and low tensile strain the use of fiberglass would be a good alternative for recycled tyre in some cases. To evaluate fiberglass as an alternative for recycled tyre, this paper focused on tests of tensile tests which have been carried out between fiberglass and recycled tyre strips. Fibreglass samples were produced from chopped strand fibre mat, a very low-cost type of fibreglass, which is cured by resin and hardener. Fibreglass samples in the thickness of 1 mm, 2 mm, 3 mm and 4 mm were developed 100 mm x 300 mm pieces. It was found that 3 mm fibreglass exhibited the maximum tensile load (MTL) and maximum tensile stress (MTS) greater than other samples. Statistical analysis on 3 mm fibreglass indicated that in the approximately equal MTL fibreglass samples experienced 2% while tyre samples experienced 33.9% ultimate tensile strain (UTST) respectively. The results also showed an approximately linear relationship between stress and strain for fibreglass samples and Young's modulus (E), ranging from 3581 MPa to 4728 MPa.

  7. Response of soil microbial communities to red mud-based stabilizer remediation of cadmium-contaminated farmland.

    Science.gov (United States)

    Li, Hui; Liu, Lemian; Luo, Lin; Liu, Yan; Wei, Jianhong; Zhang, Jiachao; Yang, Yuan; Chen, Anwei; Mao, Qiming; Zhou, Yaoyu

    2018-04-01

    In this work, a field test was conducted to investigate the effects of heavy metal stabilizer addition on brown rice and microbial variables in a cadmium (Cd)-contaminated farmland from April to October in 2016. Compared with the control, red mud-based stabilizer (RMDL) effectively reduced the concentration of Cd in brown rice (with the removal rate of 48.14% in early rice, 20.24 and 47.62% in late rice). The results showed that adding 0.3 kg m -2 RDML in early rice soil or soil for both early and late rice increased the microbial biomass carbon (MBC), the number of culturable heterotrophic bacteria and fungi, and the catalase activity in soil at different stages of paddy rice growth. Furthermore, there was no notable difference in the diversity of the bacterial species, community composition, and relative abundance at phylum (or class) or operational taxonomic unit (OTU) levels between the control and treatment (RMDL addition) groups. In a word, RMDL could be highly recommended as an effective remediation stabilizer for Cd-contaminated farmland, since its continuous application in paddy soil cultivating two seasons rice soil could effectively decrease the Cd content in brown rice and had no negative impact on soil microorganisms.

  8. Stabilization/solidification of lead-contaminated soil using cement and rice husk ash.

    Science.gov (United States)

    Yin, Chun-Yang; Mahmud, Hilmi Bin; Shaaban, Md Ghazaly

    2006-10-11

    This paper presents the findings of a study on solidification/stabilization (S/S) of lead-contaminated soil using ordinary Portland cement (OPC) and rice husk ash (RHA). The effects of varying lead concentrations (in the form of nitrates) in soil samples on the physical properties of their stabilized forms, namely unconfined compressive strength (UCS), setting times of early mixtures and changes in crystalline phases as well as chemical properties such as leachability of lead, pH and alkalinity of leachates are studied. Results have indicated that usage of OPC with RHA as an overall binder system for S/S of lead-contaminated soils is more favorable in reducing the leachability of lead from the treated samples than a binder system with standalone OPC. On the other hand, partial replacement of OPC with RHA in the binder system has reduced the UCS of solidified samples.

  9. Subsurface Characterization using Geophysical Seismic Refraction Survey for Slope Stabilization Design with Soil Nailing

    Science.gov (United States)

    Ashraf Mohamad Ismail, Mohd; Ng, Soon Min; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    The application of geophysical seismic refraction for slope stabilization design using soil nailing method was demonstrated in this study. The potential weak layer of the study area is first identify prior to determining the appropriate length and location of the soil nail. A total of 7 seismic refraction survey lines were conducted at the study area with standard procedures. The refraction data were then analyzed by using the Pickwin and Plotrefa computer software package to obtain the seismic velocity profiles distribution. These results were correlated with the complementary borehole data to interpret the subsurface profile of the study area. It has been identified that layer 1 to 3 is the potential weak zone susceptible to slope failure. Hence, soil nails should be installed to transfer the tensile load from the less stable layer 3 to the more stable layer 4. The soil-nail interaction will provide a reinforcing action to the soil mass thereby increasing the stability of the slope.

  10. Assessment of the availability of As and Pb in soils after in situ stabilization.

    Science.gov (United States)

    Zhang, Wanying; Yang, Jie; Li, Zhongyuan; Zhou, Dongmei; Dang, Fei

    2017-10-01

    The in situ stabilization has been widely used to remediate metal-contaminated soil. However, the long-term retaining performance of heavy metals and the associated risk after in situ stabilization remains unclear and has evoked amounting concerns. Here, Pb- or As-contaminated soil was stabilized by a commercial amendment. The availability of Pb and As after in situ stabilization were estimated by ten different in vitro chemical extractions and DGT technique. After amendment application, a significant decline in extractable Pb or As was observed in treatments of Milli-Q water, 0.01 M CaCl 2 , 0.1 M NaNO 3 , 0.05 M (NH 4 ) 2 SO 4 , and 0.43 M HOAc. Potential available metal(loid)s determined by DGT also showed remarkable reduction. Meanwhile, the results of in vivo uptake assays demonstrated that Pb concentrations in shoots of ryegrass Lolium perenne L. declined to 12% of the control samples, comparable to the extraction ratio of 0.1 M NaNO 3 (15.8%) and 0.05 M (NH 4 ) 2 SO 4 (17.3%). For As-contaminated soil, 0.43 M HOAC provided a better estimation of relative phytoavailability (64.6 vs. 65.4% in ryegrass) compared to other extraction methods. We propose that 0.1 M NaNO 3 or 0.05 M (NH 4 ) 2 SO 4 for Pb and 0.43 M HOAc for As may serve as surrogate measures to estimate the lability of metal(loid)s after soil remediation of the tested contaminated soils. Further studies over a wider range of soil types and amendments are necessary to validate extraction methods.

  11. Treated wastewater irrigation effects on soil hydraulic conductivity and aggregate stability of loamy soils in Israel

    Directory of Open Access Journals (Sweden)

    Schacht Karsten

    2015-03-01

    Full Text Available The use of treated wastewater (TWW for agricultural irrigation becomes increasingly important in water stressed regions like the Middle East for substituting fresh water (FW resources. Due to elevated salt concentrations and organic compounds in TWW this practice has potential adverse effects on soil quality, such as the reduction of hydraulic conductivity (HC and soil aggregate stability (SAS. To assess the impact of TWW irrigation in comparison to FW irrigation on HC, in-situ infiltration measurements using mini disk infiltrometer were deployed in four different long-term experimental orchard test sites in Israel. Topsoil samples (0-10 cm were collected for analyzing SAS and determination of selected soil chemical and physical characteristics.

  12. Soil-Geosynthetic Interaction Test to Develop Specifications for Geosynthetic-Stabilized Roadways

    Science.gov (United States)

    2018-05-01

    soil-geosynthetic composite (KSGC) for a wide range of geosynthetics. The tests were conducted after establishment of test configurations that were found suitable for specification of geosynthetic-stabilized base roadways. Field performance of experi...

  13. Immobilization of metals in contaminated soils using natural polymer-based stabilizers.

    Science.gov (United States)

    Tao, Xue; Li, Aimin; Yang, Hu

    2017-03-01

    Three low-cost natural polymer materials, namely, lignin (Ln), carboxymethyl cellulose, and sodium alginate, were used for soil amendment to immobilize lead and cadmium in two contaminated soil samples collected from a mining area in Nanjing, China. The remediation effects of the aforementioned natural polymers were evaluated by toxicity characteristic leaching procedure (TCLP) and sequential extractions. The stabilizers could lower the bioavailability of Pb and Cd in the contaminated soils, and the amount of the exchangeable forms of the aforementioned two metals were reduced evidently. TCLP results showed that the leaching concentrations of Pb and Cd were decreased by 5.46%-71.1% and 4.25%-49.6%, respectively, in the treated soils. The contents of the organic forms of the two metals both increased with the increase in stabilizer dose on the basis of the redistribution of metal forms by sequential extractions. These findings were due to the fact that the abundant oxygen-containing groups on the polymeric amendments were effective in chelating and immobilizing Pb and Cd, which have been further confirmed from the metal adsorptions in aqueous solutions. Moreover, Ln achieved the greatest effect among the three polymers under study because of the former's distinct three-dimensional molecular structure, showing the preferential immobilization of Pb over Cd in soils also. Thus, the above-mentioned natural polymers hold great application potentials for reducing metal ion entry into the food chain at a field scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Chemical stabilization of metals and arsenic in contaminated soils using oxides – A review

    International Nuclear Information System (INIS)

    Komárek, Michael; Vaněk, Aleš; Ettler, Vojtěch

    2013-01-01

    Oxides and their precursors have been extensively studied, either singly or in combination with other amendments promoting sorption, for in situ stabilization of metals and As in contaminated soils. This remediation option aims at reducing the available fraction of metal(loid)s, notably in the root zone, and thus lowering the risks associated with their leaching, ecotoxicity, plant uptake and human exposure. This review summarizes literature data on mechanisms involved in the immobilization process and presents results from laboratory and field experiments, including the subsequent influence on higher plants and aided phytostabilization. Despite the partial successes in the field, recent knowledge highlights the importance of long-term and large-scale field studies evaluating the stability of the oxide-based amendments in the treated soils and their efficiency in the long-term. - In situ stabilization of metals and As in contaminated soils using oxides combined with phytostabilization is a potential alternative to conventional remediation techniques.

  15. Innovative electrical technique for in-place stabilization of contaminated soils

    International Nuclear Information System (INIS)

    Buelt, J.L.; FitzPatrick, V.F.; Timmerman, C.L.

    1984-05-01

    This paper discusses an emerging thermoelectric process known as in situ vitrification as a potential method for stabilizing buried waste inplace. The paper describes the Scott-Tee power system for the large-scale testing unit and how its design was developed. A brief synopsis of the performance assessments that have been conducted with regard to waste form quality, effect of soil conditions on processing, physical constraints of the process, and vitrification of soils containing organic and hazardous components is presented. A summary of an economic analysis is also provided

  16. Stabilization of contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1984-01-01

    In Situ Vitrification is an emerging technology developed by Pacific Northwest Laboratory for potential in-place immobilization of radioactive wastes. The contaminated soil is stabilized and converted to an inert glass form. This conversion is accomplished by inserting electrodes in the soil and establishing an electric current between the electrodes. The electrical energy causes a joule heating effect that melts the soil during processing. Any contaminants released from the melt are collected and routed to an off-gas treatment system. A stable and durable glass block is produced which chemically and physically encapsulates any residual waste components. In situ vitrification has been developed for the potential application to radioactive wastes, specifically, contaminated soil sites; however, it could possibly be applied to hazardous chemical and buried munitions waste sites. The technology has been developed and demonstrated to date through a series of 21 engineering-scale tests [producing 50 to 1000 kg (100 to 2000 lb) blocks] and seven pilot-scale tests [producing 9000 kg (20,000 lb) blocks], the most recent of which illustrated treatment of actual radioactively contaminated soil. Testing with some organic materials has shown relatively complete thermal destruction and incineration. Further experiments have documented the insensitivity of in situ vitrification to soil characteristics such as fusion temperature, specific heat, thermal conductivity, electrical resistivity, and moisture content. Soil inclusions such as metals, cements, ceramics, and combustibles normally present only minor process limitations. Costs for hazardous waste applications are estimated to be less than $175/m 3 ($5.00/ft 3 ) of material vitrified. For many applications, in situ vitrification can provide a cost-effective alternative to other disposal options. 13 references, 4 figures, 1 table

  17. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site.

    Science.gov (United States)

    Beiyuan, Jingzi; Tsang, Daniel C W; Ok, Yong Sik; Zhang, Weihua; Yang, Xin; Baek, Kitae; Li, Xiang-Dong

    2016-09-01

    While chelant-enhanced soil washing has been widely studied for metal extraction from contaminated soils, there are concerns about destabilization and leaching of residual metals after remediation. This study integrated 2-h soil washing enhanced by biodegradable ethylenediaminedisuccinic acid (EDDS) and 2-month stabilization using agricultural waste product (soybean stover biochar pyrolyzed at 300 and 700 °C), industrial by-product (coal fly ash (CFA)), and their mixture. After integration with 2-month stabilization, the leachability and mobility of residual metals (Cu, Zn, and Pb) in the field-contaminated soil were significantly reduced, especially for Cu, in comparison with 2-h EDDS washing alone. This suggested that the metals destabilized by EDDS-washing could be immobilized by subsequent stabilization with biochar and CFA. Moreover, when the remediation performance was evaluated for phytoavailability and bioaccessibility, prior EDDS washing helped to achieve a greater reduction in the bioavailable fraction of metals than sole stabilization treatment. This was probably because the weakly-bound metals were first removed by EDDS washing before stabilization. Both individual and combined applications of biochar and CFA showed comparable effectiveness regardless of the difference in material properties, possibly due to the high level of amendments (150 ton ha(-1)). Based on the mobility and bioaccessibility results, the estimated human health risk (primarily resulting from Pb) could be mitigated to an acceptable level in water consumption pathway or reduced by half in soil ingestion pathway. These results suggest that an integration of EDDS washing with soil stabilization can alleviate post-remediation impacts of residual metals in the treated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    Science.gov (United States)

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Frozen soil barrier technology. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    The technology of using refrigeration to freeze soils has been employed in large-scale engineering projects for a number of years. This technology bonds soils to give load-bearing strength during construction; to seal tunnels, mine shafts, and other subsurface structures against flooding from groundwater; and to stabilize soils during excavation. Examples of modern applications include several large subway, highway, and water supply tunnels. Ground freezing to form subsurface frozen soil barriers is an innovative technology designed to contain hazardous and radioactive contaminants in soils and groundwater. Frozen soil barriers that provide complete containment (open-quotes Vclose quotesconfiguration) are formed by drilling and installing refrigerant piping (on 8-ft centers) horizontally at approximately 45 degrees angles for sides and vertically for ends and then recirculating an environmentally safe refrigerant solution through the piping to freeze the soil porewater. Freeze plants are used to keep the containment structure at subfreezing temperatures. A full-scale containment structure was demonstrated from May 12 to October 10, 1994, at a nonhazardous site on SEG property on Gallaher Road, Oak Ridge, Tennessee

  20. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification.

    Science.gov (United States)

    Guo, Fuyu; Ding, Changfeng; Zhou, Zhigao; Huang, Gaoxiang; Wang, Xingxiang

    2018-06-04

    Chemical immobilization is a practical approach to remediate heavy metal contamination in agricultural soils. However, the potential remobilization risks of immobilized metals are a major environmental concern, especially in acid rain zones. In the present study, changes in the immobilization efficiency of several amendments as affected by simulated soil acidification were investigated to evaluate the immobilization remediation stability of several amendments on two cadmium (Cd) contaminated soils. Amendments (hydrated lime, hydroxyapatite and biochar) effectively immobilized Cd, except for organic fertilizer, and their immobilizations were strongly decreased by the simulated soil acidification. The ratio of changes in CaCl 2 -extractable Cd: pH (△CaCl 2 -Cd/△pH) can represent the Cd remobilization risk of different amended soils. Hydroxyapatite and biochar had a stronger durable immobilizing effect than did hydrated lime, particularly in soil with a lower pH buffering capacity, which was further confirmed by the Cd concentration and accumulation in lettuce. These results can be attributed to that hydroxyapatite and biochar transformed greater proportions of exchangeable Cd to other more stable fractions than lime. After 48 weeks of incubation, in soil with a lower pH buffering capacity, the immobilization efficiencies of lime, hydroxyapatite, biochar and organic fertilizer in the deionized water group (pH 6.5) were 71.7%, 52.7%, 38.6% and 23.9%, respectively, and changed to 19.1%, 33.6%, 26.5% and 5.0%, respectively, in the simulated acid rain group (pH 2.5). The present study provides a simple method to preliminarily estimate the immobilization efficiency of amendments and predict their stability in acid rain regions before large-scale field application. In addition, hydrated lime is recommended to be combined with other acid-stable amendments (such as hydroxyapatite or biochar) to remediate heavy metal-contaminated agricultural soils in acid precipitation

  1. RELATIONSHIPS BETWEEN SOIL MICROBIAL BIOMASS, AGGREGATE STABILITY AND AGGREGATE ASSOCIATED-C: A MECHANISTIC APPROACH

    Directory of Open Access Journals (Sweden)

    Patrizia Guidi

    2014-01-01

    Full Text Available For the identification of C pools involved in soil aggregation, a physically-based aggregate fractionation was proposed, and  additional pretreatments were used in the measurement of the 1-2 mm aggregate stability in order to elucidate the relevance of the role of soil microorganisms with respect to the different aggregate breakdown mechanisms. The study was carried out on three clay loam Regosols, developed on calcareous shales, known history of organic cultivation.Our results showed that the soil C pool controlling the process of stabilisation of aggregates was related to the microbial community. We identified the resistance to fast wetting as the major mechanism of aggregate stability driven by microorganims. The plausible hypothesis is that organic farming promotes fungi growth, improving water repellency of soil aggregates by fungal hydrophobic substances. By contrast, we failed in the identification of C pools controlling the formation of aggregates, probably because of the disturbance of mechanical tillage which contributes to the breakdown of soil aggregates.The physically-based aggregate fractionation proposed in this study resulted useful in the  mechanistically understanding of the role of microorganisms in soil aggregation and it might be suggested for studying the impact of management on C pools, aggregates properties and their relationships in agricultural soils.

  2. Stabilization of recent soil carbon in the humid tropics following land use changes: evidence from aggregate fractionation and stable isotope analyses

    OpenAIRE

    Paul, Sonja; Flessa, Heiner; Veldkamp, Edzo; López-Ulloa, Magdalena

    2008-01-01

    Keywords: Carbon sequestration - Ecuador - Mean residence time - Pasture - Secondary forest - Soil type - Texture - Water-stable aggregates Quantitative knowledge of stabilization- and decomposition processes is necessary to understand, assess and predict effects of land use changes on storage and stability of soil organic carbon (soil C) in the tropics. Although it is well documented that different soil types have different soil C stocks, it is presently unknown how different soil types a...

  3. Geogrid reinforced road subgrade influence on the pavement evenness

    Science.gov (United States)

    Šiukščius, A.; Vorobjovas, V.; Vaitkus, A.

    2018-05-01

    As a result of increasing geogrid reinforcement applications in the road subgrade, there are number of projects where geogrid reinforcement is used to control road pavement evenness when there are small layers of peat or mud deeper under road construction. For this task geogrid reinforcement application is not documented but widely used in Lithuania for over a decade. This paper evaluates the long term influence of the geogrid reinforced soil influence on the road surface evenness, when the organic soils stratify in the deeper layers of the subgrade. The geological conditions of the investigated sections are reviewed. The experiment methodology and test results are described, which leads to the conclusions and insights how the pavement evenness depend on the geological conditions and its enhancement. The question is raised about the need for including this geogrid application to the normative documentation. Explanation of the problems that are encountered and the need for further research is given.

  4. The Effect of Polymer-Cement Stabilization on the Unconfined Compressive Strength of Liquefiable Soils

    Directory of Open Access Journals (Sweden)

    Ali Ateş

    2013-01-01

    Full Text Available Soil stabilization has been widely used as an alternative to substitute the lack of suitable material on site. The use of nontraditional chemical stabilizers in soil improvement is growing daily. In this study a laboratory experiment was conducted to evaluate the effects of waterborne polymer on unconfined compression strength and to study the effect of cement grout on pre-venting of liquefiable sandy soils. The laboratory tests were performed including grain size of sandy soil, unit weight, ultrasonic pulse velocity, and unconfined compressive strength test. The sand and various amounts of polymer (1%, 2%, 3%, and 4% and cement (10%, 20%, 30%, and 40% were mixed with all of them into dough using mechanical kneader in laboratory conditions. Grouting experiment is performed with a cylindrical mould of  mm. The samples were subjected to unconfined compression tests to determine their strength after 7 and 14 days of curing. The results of the tests indicated that the waterborne polymer significantly improved the unconfined compression strength of sandy soils which have susceptibility of liquefaction.

  5. Bioavailability and stability of mercury sulfide in Armuchee (USA) soil

    International Nuclear Information System (INIS)

    Han, Fengxiang; Shiyab, Safwan; Su, Yi; Monts, David L.; Waggoner, Charles A.; Matta, Frank B.

    2007-01-01

    Because of the adverse effects of elemental mercury and mercury compounds upon human health, the U.S. Department of Energy (DOE) is engaged in an on-going effort to monitor and remediate mercury-contaminated DOE sites. In order to more cost effectively implement those extensive remediation efforts, it is necessary to obtain an improved understanding of the role that mercury and mercury compounds play in the ecosystem. We have conducted pilot scale experiments to study the bioavailability of mercury sulfide in an Armuchee (eastern US ) soil. The effects of plants and incubation time on chemical stability and bioavailability of HgS under simulated conditions of the ecosystem have been examined, as has the dynamics of the dissolution of mercury sulfide by various extractants. The results show that mercury sulfide in contaminated Armuchee soil was still to some extent bioavailable to plants. After planting, soil mercury sulfide is more easily dissolved by both 4 M and 12 M nitric acid than pure mercury sulfide reagent. Dissolution kinetics of soil mercury sulfide and pure chemical reagent by nitric acid are different. Mercury release by EDTA from HgS-contaminated soil increased with time of reaction and soil mercury level. Chelating chemicals increase the solubility and bioavailability of mercury in HgS-contaminated soil. (authors)

  6. Stabilization/Solidification Remediation Method for Contaminated Soil: A Review

    Science.gov (United States)

    Tajudin, S. A. A.; Azmi, M. A. M.; Nabila, A. T. A.

    2016-07-01

    Stabilization/Solidification (S/S) is typically a process that involves a mixing of waste with binders to reduce the volume of contaminant leachability by means of physical and chemical characteristics to convert waste in the environment that goes to landfill or others possibly channels. Stabilization is attempts to reduce the solubility or chemical reactivity of the waste by changing the physical and chemical properties. While, solidification attempt to convert the waste into easily handled solids with low hazardous level. These two processes are often discussed together since they have a similar purpose of improvement than containment of potential pollutants in treated wastes. The primary objective of this review is to investigate the materials used as a binder in Stabilization/Solidification (S/S) method as well as the ability of these binders to remediate the contaminated soils especially by heavy metals.

  7. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals

    Directory of Open Access Journals (Sweden)

    M. Schrumpf

    2013-03-01

    Full Text Available Conceptual models suggest that stability of organic carbon (OC in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organo-mineral complexes, and location within the soil profile. Density fractionation is a useful tool to study the relevance of OC stabilization in aggregates and in association with minerals, but it has rarely been applied to full soil profiles. We aim to determine factors shaping the depth profiles of physically unprotected and mineral associated OC and test their relevance for OC stability across a range of European soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions – fLF, occluded light fractions – oLF, heavy fractions – HF were analysed for OC, total nitrogen (TN, δ14C, and Δ14C. Bulk samples were also incubated to determine CO2 evolution per g OC in the samples (specific mineralization rates as an indicator for OC stability. Depth profiles of OC in the light fraction (LF-OC matched those of roots for undisturbed grassland and forest sites, suggesting that roots are shaping the depth distribution of LF-OC. Organic C in the HF declined less with soil depth than LF-OC and roots, especially at grassland sites. The decrease in Δ14C (increase in age of HF-OC with soil depth was related to soil pH as well as to dissolved OC fluxes. This indicates that dissolved OC translocation contributes to the formation of subsoil HF-OC and shapes the Δ14C profiles. The LF at three sites were rather depleted in 14C, indicating the presence of fossil material such as coal and lignite, probably inherited from the parent material. At the other sites, modern Δ14C signatures and positive correlations between specific mineralization rates and fLF-OC indicate the fLF is a potentially available energy and

  8. Erodibilidade e tensão crítica de cisalhamento em solos de estradas não pavimentadas Erodibility and critical shear stress on unpaved road soils

    Directory of Open Access Journals (Sweden)

    João F. de Oliveira

    2009-12-01

    Full Text Available A falta de um sistema adequado para drenagem de águas pluviais em estradas não pavimentadas é um dos principais fatores que causam a sua degradação e, para que referidos sistemas possam ser adequadamente planejados e dimensionados é necessário o conhecimento de parâmetros de resistência dos solos. Com este trabalho se teve, por objetivo, determinar a erodibilidade e a tensão crítica de cisalhamento para diferentes solos de estradas não pavimentadas. Utilizou-se um simulador de escoamento superficial instalado diretamente nos canais das estradas, sob condição natural e se determinou a perda de solo para diferentes lâminas de escoamento. A erodibilidade e a tensão crítica de cisalhamento foram determinadas por meio do ajuste de curvas relacionando-se a perda de solo em função da tensão cisalhante provocada pelo escoamento. Os resultados alcançados mostraram variações nos valores de erodibilidade e de tensão crítica de cisalhamento das estradas avaliadas. Os valores de erodibilidade encontrados mostraram, quando comparados com valores observados na literatura, elevada suscetibilidade à erosão para as condições de estradas, sendo mais elevados nos solos de textura mais arenosa e siltosa. Os valores de tensão crítica se mostraram bastante próximos aos observados em outros trabalhos.The absence of an adequate drainage system in unpaved roads is one of the main factors for their degradation. For adequate planning knowledge of the resistance parameters of soil is necessary. This study had as its objective the determinatiom of the erodibility and critical shear stress of unpaved road soils. For this work, a runoff simulator was directly installed on road channels, under natural conditions. Different flow depths were applied and the soil loss was measured for each depth. The erodibility and the critical shear stress were determined through adjusted curves relating soil disaggregation and flow shear stress. The results

  9. Interactions Between Wind Erosion, Vegetation Structure, and Soil Stability in Groundwater Dependent Plant Communities

    Science.gov (United States)

    Vest, K. R.; Elmore, A. J.; Okin, G. S.

    2009-12-01

    Desertification is a human induced global phenomenon causing a loss of biodiversity and ecosystem productivity. Semi-arid grasslands are vulnerable to anthropogenic impacts (i.e., groundwater pumping and surface water diversion) that decrease vegetation cover and increase bare soil area leading to a greater probability of soil erosion, potentially enhancing feedback processes associated with desertification. To enhance our understanding of interactions between anthropogenic, physical, and biological factors causing desertification, this study used a combination of modeling and field observations to examine the relationship between chronic groundwater pumping and vegetation cover change and its effects on soil erosion and stability. The work was conducted in Owens Valley California, where a long history of groundwater pumping and surface water diversion has lead to documented vegetation changes. The work examined hydrological, ecological and biogeochemical factors across thirteen sites in Owens Valley. We analyzed soil stability, vegetation and gap size, soil organic carbon, and we also installed Big Spring Number Eight (BSNE) catchers to calculate mass transport of aeolian sediment across sites. Mass transport calculations were used to validate a new wind erosion model that represents the effect of porous vegetation on surface windshear velocity. Results across two field seasons show that the model can be used to predict mass transport, and areas with increased groundwater pumping show a greater susceptibility to erosion. Sediment collected in BSNE catchers was positively correlated with site gap size. Additionally, areas with larger gap sizes have a greater threshold shear velocity and soil stability, yet mass transport was greater at these sites than at sites with smaller gap sizes. Although modeling is complicated by spatial variation in multiple model parameters (e.g., gap size, threshold shear velocity in gaps), our results support the hypothesis that soils

  10. Transformations in soil organic matter and aggregate stability after conversion of Mediterranean forest to agriculture

    Science.gov (United States)

    Recio Vázquez, Lorena; Almendros, Gonzalo; Carral, Pilar; Knicker, Heike; González Pérez, José Antonio; González Vila, Francisco Javier

    2013-04-01

    Conversion of forest ecosystems into croplands often leads to severe decrease of the soil organic matter (SOM) levels with the concomitant deterioration of soil structure. The present research focuses on the effects of cultivation on the stability of soil macroaggregates, as well as on the total quantity and quality of SOM. Three representative soils from central Spain (i.e., Petric Calcisol, Cutanic Luvisol and Calcic Vertisol) were sampled. Each site had natural vegetation (NV) dominated either by characteristic Mediterranean forest (dehesa) or cereal crops (CC) under conventional tillage. For each site, three spatial replicates of the NV and CC were sampled. Soil aggregate stability was measured by the wet sieving method. The structural stability index was then calculated as the mass of aggregated soil (>250 μm) remaining after wet sieving, as a percent of total aggregate weight. The analytical characterization of the SOM was carried out after chemical fractionation for quantifying the different organic pools: free organic matter (FOM), humic acids (HA), fulvic acids (FA) and humin (H). Furthermore, whole soil samples pretreated with 10 % HF solution were analyzed by CP-MAS 13C NMR and the purified HA fraction was characterized by elementary analysis, visible and infrared spectroscopies and Py-GC/MS. A marked reduction in the proportion of stable aggregates when the natural ecosystem was converted to agriculture was observed. Values of the structural stability index (%) changed over from 96.2 to 38.1, 95.1 to 83.7 and 98.5 to 60.6 for the Calcisol, Luvisol and Vertisol respectively. Comparatively higher contents of SOM were found in the soils under NV (11.69 to 0.93, 3.29 to 2.72 and 9.51 to 0.79 g C100 g-1soil) even though a quantitative rearrangement of the SOM pools was noticed. In all sites, the relative contribution of the labile C (FOM) to the total SOM content decreased when the forest soils were converted into croplands, whereas the proportion of both

  11. Study on the Permeability Characteristics of Polyurethane Soil Stabilizer Reinforced Sand

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available A polymer material of polyurethane soil stabilizer (PSS is used to reinforce the sand. To understand the permeability characteristics of PSS reinforced sand, a series of reinforcement layer form test, single-hole permeability test, and porous permeability test of sand reinforced with PSS have been performed. Reinforcement mechanism is discussed with scanning electron microscope images. The results indicated that the permeability resistance of sand reinforced with polyurethane soil stabilizer is improved through the formation of reinforcement layer on the sand surface. The thickness and complete degree of the reinforcement layer increase with the increasing of curing time and PSS concentration. The water flow rate decreases with the increasing of curing time or PSS concentration. The permeability coefficient decreases with the increasing of curing time and PSS concentration and increases with the increasing of depth in specimen. PSS fills up the voids of sand and adsorbs on the surface of sand particle to reduce or block the flowing channels of water to improve the permeability resistance of sand. The results can be applied as the reference for chemical reinforcement sandy soil engineering, especially for surface protection of embankment, slope, and landfill.

  12. Stabilization of soil hydraulic properties under a long term no-till system

    Directory of Open Access Journals (Sweden)

    Luis Alberto Lozano

    2014-08-01

    Full Text Available The area under the no-tillage system (NT has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC for these soils, but not the hydraulic conductivity (K vs tension (h curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.

  13. Investigating local controls on temporal stability of soil water content using sensor network data and an inverse modeling approach

    Science.gov (United States)

    Qu, W.; Bogena, H. R.; Huisman, J. A.; Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2013-12-01

    Soil water content is a key variable in the soil, vegetation and atmosphere continuum with high spatial and temporal variability. Temporal stability of soil water content (SWC) has been observed in multiple monitoring studies and the quantification of controls on soil moisture variability and temporal stability presents substantial interest. The objective of this work was to assess the effect of soil hydraulic parameters on the temporal stability. The inverse modeling based on large observed time series SWC with in-situ sensor network was used to estimate the van Genuchten-Mualem (VGM) soil hydraulic parameters in a small grassland catchment located in western Germany. For the inverse modeling, the shuffled complex evaluation (SCE) optimization algorithm was coupled with the HYDRUS 1D code. We considered two cases: without and with prior information about the correlation between VGM parameters. The temporal stability of observed SWC was well pronounced at all observation depths. Both the spatial variability of SWC and the robustness of temporal stability increased with depth. Calibrated models both with and without prior information provided reasonable correspondence between simulated and measured time series of SWC. Furthermore, we found a linear relationship between the mean relative difference (MRD) of SWC and the saturated SWC (θs). Also, the logarithm of saturated hydraulic conductivity (Ks), the VGM parameter n and logarithm of α were strongly correlated with the MRD of saturation degree for the prior information case, but no correlation was found for the non-prior information case except at the 50cm depth. Based on these results we propose that establishing relationships between temporal stability and spatial variability of soil properties presents a promising research avenue for a better understanding of the controls on soil moisture variability. Correlation between Mean Relative Difference of soil water content (or saturation degree) and inversely

  14. Topsoil and Deep Soil Organic Carbon Concentration and Stability Vary with Aggregate Size and Vegetation Type in Subtropical China

    Science.gov (United States)

    Fang, Xiang-Min; Chen, Fu-Sheng; Wan, Song-Ze; Yang, Qing-Pei; Shi, Jian-Min

    2015-01-01

    The impact of reforestation on soil organic carbon (OC), especially in deep layer, is poorly understood and deep soil OC stabilization in relation with aggregation and vegetation type in afforested area is unknown. Here, we collected topsoil (0–15 cm) and deep soil (30–45 cm) from six paired coniferous forests (CF) and broad-leaved forests (BF) reforested in the early 1990s in subtropical China. Soil aggregates were separated by size by dry sieving and OC stability was measured by closed-jar alkali-absorption in 71 incubation days. Soil OC concentration and mean weight diameter were higher in BF than CF. The cumulative carbon mineralization (Cmin, mg CO2-C kg-1 soil) varied with aggregate size in BF and CF topsoils, and in deep soil, it was higher in larger aggregates than in smaller aggregates in BF, but not CF. The percentage of soil OC mineralized (SOCmin, % SOC) was in general higher in larger aggregates than in smaller aggregates. Meanwhile, SOCmin was greater in CF than in BF at topsoil and deep soil aggregates. In comparison to topsoil, deep soil aggregates generally exhibited a lower Cmin, and higher SOCmin. Total nitrogen (N) and the ratio of carbon to phosphorus (C/P) were generally higher in BF than in CF in topsoil and deep soil aggregates, while the same trend of N/P was only found in deep soil aggregates. Moreover, the SOCmin negatively correlated with OC, total N, C/P and N/P. This work suggests that reforested vegetation type might play an important role in soil OC storage through internal nutrient cycling. Soil depth and aggregate size influenced OC stability, and deep soil OC stability could be altered by vegetation reforested about 20 years. PMID:26418563

  15. Stability numerical analysis of soil cave in karst area to drawdown of underground water level

    Science.gov (United States)

    Mo, Yizheng; Xiao, Rencheng; Deng, Zongwei

    2018-05-01

    With the underground water level falling, the reliable estimates of the stability and deformation characteristics of soil caves in karst region area are required for analysis used for engineering design. Aimed at this goal, combined with practical engineering and field geotechnical test, detail analysis on vertical maximum displacement of top, vertical maximum displacement of surface, maximum principal stress and maximum shear stress were conducted by finite element software, with an emphasis on two varying factors: the size and the depth of soil cave. The calculations on the soil cave show that, its stability of soil cave is affected by both the size and depth, and only when extending a certain limit, the collapse occurred along with the falling of underground water; Additionally, its maximum shear stress is in arch toes, and its deformation curve trend of maximum displacement is similar to the maximum shear stress, which further verified that the collapse of soil cave was mainly due to shear-failure.

  16. Introducing Dual Suspension System in Road Vehicles

    Directory of Open Access Journals (Sweden)

    Imtiaz Hussain

    2013-04-01

    Full Text Available The main objective of suspension system is to reduce the motions of the vehicle body with respect to road disturbances. The conventional suspension systems in road vehicles use passive elements such as springs and dampers to suppress the vibrations induced by the irregularities in the road. But these conventional suspension systems can suppress vibrations to a certain limit. This paper presents a novel idea to improve the ride quality of roads vehicles without compromising vehicle?s stability. The paper proposes the use of primary and secondary suspension to suppress the vibrations more effectively.

  17. Stabilizing lead bullets in shooting range soil by phosphate-based surface coating

    Directory of Open Access Journals (Sweden)

    Bin Hua

    2016-08-01

    Full Text Available Soil lead (Pb is well known as a threat to human health and ecosystem. Although relatively insoluble, lead bullets in shooting range soil can be readily released into soluble forms through natural weathering processes and thus pose significant human and environmental risks. In this study, laboratory experiments were conducted to investigate if the Pb bullets in shooting range soil can be stabilized through surface coating of phosphate-based materials. Results indicated that FePO4 or AlPO4 coatings, insoluble metal phosphates, have been successfully formed on the surface of the Pb bullets. The EPA Toxicity Characteristic Leaching Procedure (TCLP test showed that FePO4 or AlPO4 surface coating would effectively reduce the Pb solubility or leachability of the bullets. The surface coating under pH of <5.5 for 7 days could achieve 92–100% reduction, with 85–98% by FePO4 coating and 77–98% by AlPO4 coating as compared with the non-coating. Leachable Pb concentration in the contaminated shooting range soil was reduced by 85–98% or 77–98% as a result of the FePO4 or AlPO4 solution treatment. This study demonstrated that the FePO4 or AlPO4–based surface coating on lead bullets can effectively inhibit the Pb weathering and significantly reduce the Pb release from soil through in situ chemical stabilization, which could be potentially applicable as a cost-effective and environmental-sound technology for the remediation of Pb-contaminated shooting range soil.

  18. A novel integrated approach for path following and directional stability control of road vehicles after a tire blow-out

    Science.gov (United States)

    Wang, Fei; Chen, Hong; Guo, Konghui; Cao, Dongpu

    2017-09-01

    The path following and directional stability are two crucial problems when a road vehicle experiences a tire blow-out or sudden tire failure. Considering the requirement of rapid road vehicle motion control during a tire blow-out, this article proposes a novel linearized decoupling control procedure with three design steps for a class of second order multi-input-multi-output non-affine system. The evaluating indicators for controller performance are presented and a performance related control parameter distribution map is obtained based on the stochastic algorithm which is an innovation for non-blind parameter adjustment in engineering implementation. The analysis on the robustness of the proposed integrated controller is also performed. The simulation studies for a range of driving conditions are conducted, to demonstrate the effectiveness of the proposed controller.

  19. Effects of traffic and ditch maintenance on forest road sediment production

    Science.gov (United States)

    Charles H. Luce; Thomas A. Black

    2001-01-01

    Observations of sediment yield from road segments in the Oregon Coast Range show that either heavy traffic during rainfall or blading the road ditch will increase erosion from forest roads. For the fine soils and high quality aggregate surfacing on the study plots, ditch blading increased sediment yield more than traffic equivalent to 12 log trucks per day. The...

  20. Soil application of sewage sludge stabilized with steelmaking slag and its effect on soil properties and wheat growth.

    Science.gov (United States)

    Samara, Eftihia; Matsi, Theodora; Balidakis, Athanasios

    2017-10-01

    The effect of sewage sludge, stabilized with steelmaking slag, on soil chemical properties and fertility and on wheat (Triticum aestivum L.) growth was evaluated. Dewatered sewage sludge [75% (wet weight basis)] stabilized with steelmaking slag (25%) and three soils with different pH values were used in a pot experiment with winter wheat. The following treatments were applied: (i) sludge addition of 30gkg -1 (≈ 120Mgha -1 , rate equivalent to the common inorganic N fertilization for wheat, based on sludge's water soluble NO 3 -N), (ii) sludge addition of 10gkg -1 (≈ 40Mgha -1 , rate equivalent to the common inorganic N fertilization for wheat, based on sludge's Kjeldahl-N), (iii) addition of the common inorganic N fertilization for wheat (120kgNha -1 ) as NH 4 NO 3 , (iv) control (no fertilizer, no sludge). Sludge application at both rates to all soils resulted in a significant increase of pH, electrical conductivity of the saturation extract (EC se ) and soil available NO 3 -N and P, in comparison to the other two treatments and this increase remained constant till the end of the pot experiment. In sludge treatments pH did not exceed the critical value of 8.5, whereas EC se , although it did not reach the limit of 4dSm -1 , exceeded the value of 2dSm -1 at the rate of 30gkg -1 . Concentrations of heavy metals, which regulate the agronomic use of sewage sludge according to the established legislation, ranged from not detectable to lower than the respective permissible levels. Both rates of sludge's addition in all soils improved wheat's growth, as judged by the significant increase of the aboveground biomass yield and the total plant uptake of almost all nutrients, compared to the other two treatments. It was concluded that sewage sludge stabilized with steelmaking slag could be used in agriculture, applied at rates based on sludge's Kjeldahl-N content and crop's demand for N. However, potential environmental impacts must also be considered. Copyright © 2017

  1. Accelerated decay rates drive soil organic matter persistence and storage in temperate forests via greater mineral stabilization of microbial residues.

    Science.gov (United States)

    Phillips, R.; Craig, M.; Turner, B. L.; Liang, C.

    2017-12-01

    Climate predicts soil organic matter (SOM) stocks at the global scale, yet controls on SOM stocks at finer spatial scales are still debated. A current hypothesis predicts that carbon (C) and nitrogen (N) storage in soils should be greater when decomposition is slow owing to microbial competition for nutrients or the recalcitrance of organic substrates (hereafter the `slow decay' hypothesis). An alternative hypothesis predicts that soil C and N storage should be greater in soils with rapid decomposition, owing to the accelerated production of microbial residues and their stabilization on soil minerals (hereafter the `stabilization hypothesis'). To test these alternative hypotheses, we quantified soil C and N to 1-m depth in temperate forests across the Eastern and Midwestern US that varied in their biotic, climatic, and edaphic properties. At each site, we sampled (1) soils dominated by arbuscular mycorrhizal (AM) tree species, which typically have fast decay rates and accelerated N cycling, (2) soils dominated by ectomycorrhizal (ECM) tree species, which generally have slow decay rates and slow N cycling, and (3) soils supporting both AM and ECM trees. To the extent that trees and theor associated microbes reflect and reinforce soil conditions, support for the slow decay hypothesis would be greater SOM storage in ECM soils, whereas support for the stabilization hypothesis would be greater SOM storage in AM soils. We found support for both hypotheses, as slow decomposition in ECM soils increased C and N storage in topsoil, whereas fast decomposition in AM soils increased C and N storage in subsoil. However, at all sites we found 57% greater total C and N storage in the entire profile in AM- soils (P stabilization hypothesis. Amino sugar biomarkers (an indicator of microbial necromass) and particle size fractionation revealed that the greater SOM storage in AM soils was driven by an accumulation of microbial residues on clay minerals and metal oxides. Taken together

  2. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area.

    Science.gov (United States)

    Yang, Yurong; He, Chuangjun; Huang, Li; Ban, Yihui; Tang, Ming

    2017-01-01

    Glomalin-related soil protein (GRSP), a widespread glycoprotein produced by arbuscular mycorrhizal fungi (AMF), is crucial for ecosystem functioning and ecological restoration. In the present study, an investigation was conducted to comprehensively analyze the effects of heavy metal (HM) contamination on AMF status, soil properties, aggregate distribution and stability, and their correlations at different soil depths (0-10, 10-20, 20-30, 30-40 cm). Our results showed that the mycorrhizal colonization (MC), hyphal length density (HLD), GRSP, soil organic matter (SOM) and soil organic carbon (SOC) were significantly inhibited by Pb compared to Zn at 0-20 cm soil depth, indicating that HM had significant inhibitory effects on AMF growth and soil properties, and that Pb exhibited greater toxicity than Zn at shallow layer of soil. Both the proportion of soil large macroaggregates (>2000 μm) and mean weight diameter (MWD) were positively correlated with GRSP, SOM and SOC at 0-20 cm soil depth (P soil particles together into large macroaggregates and improving aggregate stability. Furthermore, MC and HLD had significantly positive correlation with GRSP, SOM and SOC, suggesting that AMF played an essential role in GRSP, SOM and SOC accumulation and subsequently influencing aggregate formation and particle-size distribution in HM polluted soils. Our study highlighted that the introduction of indigenous plant associated with AMF might be a successful biotechnological tool to assist the recovery of HM polluted soils, and that proper management practices should be developed to guarantee maximum benefits from plant-AMF symbiosis during ecological restoration.

  3. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.

    Science.gov (United States)

    Birgisdóttir, H; Bhander, G; Hauschild, M Z; Christensen, T H

    2007-01-01

    Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment, Acidification, Stratospheric Ozone Depletion, Human Toxicity via air/water/soil, Ecotoxicity in water/soil, and a new impact category, Stored Ecotoxicity to water/soil that accounts for the presence of heavy metals and very persistent organic compounds that in the long-term might leach. Leaching of heavy metals and salts from bottom ash was estimated from a series of laboratory leaching tests. For both scenarios, Ecotoxicity(water) was, when evaluated for the first 100 yr, the most important among the twelve impact categories involved in the assessment. Human Toxicity(soil) was also important, especially for the Road scenario. When the long-term leaching of heavy metals from bottom ash was evaluated, based on the total content of heavy metals in bottom ash, all impact categories became negligible compared to the potential Stored Ecotoxicity, which was two orders of magnitudes greater than Ecotoxicity(water). Copper was the constituent that gave the strongest contributions to the ecotoxicities. The most important resources consumed were clay as liner in landfill and the

  4. The effect of composition on stability ({sup 14}C activity) of soil organic matter fractions from the albic and black soils

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jie [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); Sun, Ke, E-mail: sunke@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Wang, Ziying; Han, Lanfang [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Wu, Fengchang [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Xing, Baoshan [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States)

    2016-01-15

    The importance of the composition of soil organic matter (SOM) for carbon (C) cycling is still under debate. Here a single soil source was used to examine the specific influence of its composition on stability ({sup 14}C activity) of SOM fractions while constraining other influential C turnover factors such as mineral, climate and plant input. The following SOM fractions were isolated from two soil samples: four humic acids, two humins, non-hydrolyzable carbon, and the demineralized fraction. We examined the isotope ratios of SOM fractions in relation to composition (such as aliphatic and aromatic C content) using solid state {sup 13}C nuclear magnetic resonance (NMR) and thermal analysis. The Δ{sup 14}C values of the fractions isolated from both an albic soil (SOMs-A) and a black soil (SOMs-B) correlated negatively with their peak temperature of decomposition and the temperature where half of the total heat of reaction was evolved, implying a potential link between thermal and biogeochemical stability of SOM fractions. Aryl C contents of SOMs-A determined using {sup 13}C NMR varied inversely with δ{sup 15}N values and directly with δ{sup 13}C values, suggesting that part of aryl C of SOMs-A might be fire-derived. The Δ{sup 14}C values of SOMs-A correlated positively with aliphatic C content and negatively with aromatic C content. We therefore concluded that fire-derived aromatic C in SOMs-A appeared to be more stable than microbially-derived aliphatic C. The greater decomposition of SOMs-B fractions weakened the relationship of their Δ{sup 14}C values with alkyl and aryl C contents. Hence, the role of the composition of SOM fractions in regulating stability might be dependent on the source of specific C forms and their stage of decomposition. - Highlights: • The effect of composition on stability of SOM fractions (SOMs) was examined. • There was a potential link between thermal and biological stability of SOMs. • Fire-derived aromatic C was likely more

  5. The effect of composition on stability ("1"4C activity) of soil organic matter fractions from the albic and black soils

    International Nuclear Information System (INIS)

    Jin, Jie; Sun, Ke; Wang, Ziying; Han, Lanfang; Wu, Fengchang; Xing, Baoshan

    2016-01-01

    The importance of the composition of soil organic matter (SOM) for carbon (C) cycling is still under debate. Here a single soil source was used to examine the specific influence of its composition on stability ("1"4C activity) of SOM fractions while constraining other influential C turnover factors such as mineral, climate and plant input. The following SOM fractions were isolated from two soil samples: four humic acids, two humins, non-hydrolyzable carbon, and the demineralized fraction. We examined the isotope ratios of SOM fractions in relation to composition (such as aliphatic and aromatic C content) using solid state "1"3C nuclear magnetic resonance (NMR) and thermal analysis. The Δ"1"4C values of the fractions isolated from both an albic soil (SOMs-A) and a black soil (SOMs-B) correlated negatively with their peak temperature of decomposition and the temperature where half of the total heat of reaction was evolved, implying a potential link between thermal and biogeochemical stability of SOM fractions. Aryl C contents of SOMs-A determined using "1"3C NMR varied inversely with δ"1"5N values and directly with δ"1"3C values, suggesting that part of aryl C of SOMs-A might be fire-derived. The Δ"1"4C values of SOMs-A correlated positively with aliphatic C content and negatively with aromatic C content. We therefore concluded that fire-derived aromatic C in SOMs-A appeared to be more stable than microbially-derived aliphatic C. The greater decomposition of SOMs-B fractions weakened the relationship of their Δ"1"4C values with alkyl and aryl C contents. Hence, the role of the composition of SOM fractions in regulating stability might be dependent on the source of specific C forms and their stage of decomposition. - Highlights: • The effect of composition on stability of SOM fractions (SOMs) was examined. • There was a potential link between thermal and biological stability of SOMs. • Fire-derived aromatic C was likely more stable than microbial

  6. Fly ash stabilisation of gravel roads; Flygaska som foerstaerkningslager i grusvaeg

    Energy Technology Data Exchange (ETDEWEB)

    Macsik, Josef

    2006-01-15

    Majority of the existing gravel roads have low bearing capacity during spring and autumn, due to thaw and/or rain. Low bearing capacity leads often to bad road conditions. This situation results in higher costs for the lumber industry and the public. Management of gravel roads all the year around would traditionally require excavation of frost susceptible soils and replacement with natural materials. Fly ash (from bio fuels) has good technical properties as bearing layer in road constructions. Fly ash stabilised gravel roads have better function and longer life span with less maintenance than traditional gravel roads. The aim of this project is to show how fly ash stabilisation of gravel roads can increase bearing capacity and what its environmental impact is. The overall aim is to make it easier for entrepreneurs and consulting companies to use fly ash during gravel road renovation and/or constructing new gravel roads. This report targets fly ash producers and road constructors as well as environmental agencies. Two different pilot tests were investigated in this study, Norberg with fly ash from Stora Enso Fors AB, and Boerje (Uppsala) with fly ash from Vattenfall Uppsala AB. Both road sections with related reference section were investigated during a two year period. Only fly ash was used in the bearing layer at Norberg and fly ash gravel was used at Boerje. Bearing capacity was investigated twice, for both locations, November 2003 one month after the road renovation and during thawing, April 2004. Water samples from lysimeters, ground water and surface water were only collected and analysed from Norberg. Experience from the fly ash stabilised road sections show that curing and traffic load can with time compensate for less compaction. The same is noticed at Boerje, although deflection measurements show that there are small differences. Stabilisation of gravel roads increases the roads bearing capacity. Two years after stabilisation 90 timber loads were

  7. Effects of sewage sludge stabilization on fertilizer value and greenhouse gas emissions after soil application

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Nielsen, Martin P.; Scheutz, Charlotte

    2015-01-01

    was therefore to investigate the effect of sewage sludge stabilization techniques on the C and N mineralization and gaseous emissions from soil. A soil incubation was conducted to determine the rate of C and N mineralization and N2O and CH4 emissions of sewage sludge stabilized using different techniques....... Unstabilized sludge released up to 90% of their C content as CO2, part of which could be caused by release of CO2 from carbonates. Compared with this, sludge stabilization including anaerobic digestion and drying resulted in a reduction of the C mineralization rate of about 40%. Liming reduced C mineralization...... the value of the sludge as a fertilizer. Emissions of CH4 were also reduced through sludge stabilization and mainly occurred after application of easily degradable sludge types, which is likely to have enhanced the creation of anaerobic microsites. The stabilization processes also decreased emissions of N2O...

  8. Biological soil crusts in deserts: A short review of their role in soil fertility, stabilization, and water relations

    Science.gov (United States)

    Belnap, Jayne

    2003-01-01

    Cyanobacteria and cyanolichens dominate most desert soil surfaces as the major component of biological soil crusts (BSC). BSCs contribute to soil fertility in many ways. BSC can increase weathering of parent materials by up to 100 times. Soil surface biota are often sticky, and help retain dust falling on the soil surface; this dust provides many plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. BSCs also provide roughened soil surfaces that slow water runoff and aid in retaining seeds and organic matter. They provide inputs of newly-fixed carbon and nitrogen to soils. They are essential in stabilizing soil surfaces by linking soil particles together with filamentous sheaths, enabling soils to resist both water and wind erosion. These same sheaths are important in keeping soil nutrients from becoming bound into plant-unavailable forms. Experimental disturbances applied in US deserts show soil surface impacts decrease N and C inputs from soil biota by up to 100%. The ability to hold aeolian deposits in place is compromised, and underlying soils are exposed to erosion. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produces up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, reduction in the cover of cyanophytes in desert soils can both reduce fertility inputs and accelerate fertility losses.

  9. Rapid Stabilization/Polymerization of Wet Clay Soils; Literature Review

    Science.gov (United States)

    2009-01-15

    MacDonald, W. A., Pitman, D., and Ryan, T. G. (1999). "High Tempera- ture Non-aqueous Dispersion Polymerization of Aromatic Main Chain Liquid...of Dispersive Soils by Using Different Additives." Indian Geotechnical Journal, 14(3), 202-216. 36. Charleson, D. A. and Widger, R. A. (1989...Baghdadi, Z. A., and Khan, A. M. (1991). "Overconsolidated Beha- vior of Phosphoric Acid and Lime-Stabilized Kaolin Clay." Transportation Research

  10. Utilization of air pollution control residues for the stabilization/solidification of trace element contaminated soil.

    Science.gov (United States)

    Travar, I; Kihl, A; Kumpiene, J

    2015-12-01

    The aim of this study was to evaluate the stabilization/solidification (S/S) of trace element-contaminated soil using air pollution control residues (APCRs) prior to disposal in landfill sites. Two soil samples (with low and moderate concentrations of organic matter) were stabilized using three APCRs that originated from the incineration of municipal solid waste, bio-fuels and a mixture of coal and crushed olive kernels. Two APCR/soil mixtures were tested: 30% APCR/70% soil and 50% APCR/50% soil. A batch leaching test was used to study immobilization of As and co-occurring metals Cr, Cu, Pb and Zn. Solidification was evaluated by measuring the unconfined compression strength (UCS). Leaching of As was reduced by 39-93% in APCR/soil mixtures and decreased with increased amounts of added APCR. Immobilization of As positively correlated with the amount of Ca in the APCR and negatively with the amount of soil organic matter. According to geochemical modelling, the precipitation of calcium arsenate (Ca3(AsO4)2/4H2O) and incorporation of As in ettringite (Ca6Al2(SO4)3(OH)12 · 26H2O) in soil/APCR mixtures might explain the reduced leaching of As. A negative effect of the treatment was an increased leaching of Cu, Cr and dissolved organic carbon. Solidification of APCR/soil was considerably weakened by soil organic matter.

  11. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area.

    Directory of Open Access Journals (Sweden)

    Yurong Yang

    Full Text Available Glomalin-related soil protein (GRSP, a widespread glycoprotein produced by arbuscular mycorrhizal fungi (AMF, is crucial for ecosystem functioning and ecological restoration. In the present study, an investigation was conducted to comprehensively analyze the effects of heavy metal (HM contamination on AMF status, soil properties, aggregate distribution and stability, and their correlations at different soil depths (0-10, 10-20, 20-30, 30-40 cm. Our results showed that the mycorrhizal colonization (MC, hyphal length density (HLD, GRSP, soil organic matter (SOM and soil organic carbon (SOC were significantly inhibited by Pb compared to Zn at 0-20 cm soil depth, indicating that HM had significant inhibitory effects on AMF growth and soil properties, and that Pb exhibited greater toxicity than Zn at shallow layer of soil. Both the proportion of soil large macroaggregates (>2000 μm and mean weight diameter (MWD were positively correlated with GRSP, SOM and SOC at 0-20 cm soil depth (P < 0.05, proving the important contributions of GRSP, SOM and SOC for binding soil particles together into large macroaggregates and improving aggregate stability. Furthermore, MC and HLD had significantly positive correlation with GRSP, SOM and SOC, suggesting that AMF played an essential role in GRSP, SOM and SOC accumulation and subsequently influencing aggregate formation and particle-size distribution in HM polluted soils. Our study highlighted that the introduction of indigenous plant associated with AMF might be a successful biotechnological tool to assist the recovery of HM polluted soils, and that proper management practices should be developed to guarantee maximum benefits from plant-AMF symbiosis during ecological restoration.

  12. Study on Flexible Pavement Failures in Soft Soil Tropical Regions

    Science.gov (United States)

    Jayakumar, M.; Chee Soon, Lee

    2015-04-01

    Road network system experienced rapid upgrowth since ages ago and it started developing in Malaysia during the colonization of British due to its significant impacts in transportation field. Flexible pavement, the major road network in Malaysia, has been deteriorating by various types of distresses which cause descending serviceability of the pavement structure. This paper discusses the pavement condition assessment carried out in Sarawak and Sabah, Malaysia to have design solutions for flexible pavement failures. Field tests were conducted to examine the subgrade strength of existing roads in Sarawak at various failure locations, to assess the impact of subgrade strength on pavement failures. Research outcomes from field condition assessment and subgrade testing showed that the critical causes of pavement failures are inadequate design and maintenance of drainage system and shoulder cross fall, along with inadequate pavement thickness provided by may be assuming the conservative value of soil strength at optimum moisture content, whereas the exiting and expected subgrade strengths at equilibrium moisture content are far below. Our further research shows that stabilized existing recycled asphalt and base materials to use as a sub-base along with bitumen stabilized open graded base in the pavement composition may be a viable solution for pavement failures.

  13. Influence of management practices on C stabilization pathways in agricultural volcanic ash soils (Canary Islands, Spain)

    Science.gov (United States)

    Hernandez, Zulimar; María Álvarez, Ana; Carral, Pilar; de Figueiredo, Tomas; Almendros, Gonzalo

    2014-05-01

    Although C stabilization mechanisms in agricultural soils are still controversial [1], a series of overlapped pathways has been suggested [2] such as: i) insolubilization of low molecular weight precursors of soil organic matter (SOM) with reactive minerals through physical and chemical bonding, ii) selective accumulation of biosynthetic substances which are recalcitrant because of its inherent chemical composition, and iii) preservation and furter diagenetic transformation of particulate SOM entrapped within resistant microaggregates, where diffusion of soil enzymes is largely hampered. In some environments where carbohydrate and N compounds are not readily biodegraded, e.g., with water saturated micropores, an ill-known C stabilization pathway may involve the formation of Maillard's reaction products [3]. In all cases, these pathways converge in the formation of recalcitrant macromolecular substances, sharing several properties with the humic acid (HA) fraction [4]. In template forests, the selective preservation and further microbial reworking of plant biomass has been identified as a prevailing mechanism in the accumulation of recalcitrant SOM forms [5]. However, in volcanic ash soils with intense organomineral interactions, condensation reactions of low molecular weight precursors with short-range minerals may be the main mechanism [6]. In order to shed some light about the effect of agricultural management on soil C stabilization processes on volcanic ash soils, the chemical composition of HA and some structural proxies of SOM informing on its origin and potential resistance to biodegradation, were examined in 30 soils from Canary Islands (Spain) by visible, infrared (IR) and 13C nuclear magnetic resonance (NMR) spectroscopies, elementary analysis and pyrolytic techniques. The results of multivariate treatments, suggested at least three simultaneous C stabilization biogeochemical trends: i) diagenetic alteration of plant biomacromolecules in soils receiving

  14. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments.

    Science.gov (United States)

    Lee, Sang-Hwan; Lee, Jin-Soo; Choi, Youn Jeong; Kim, Jeong-Gyu

    2009-11-01

    Chemical stabilization is an in situ remediation method that uses inexpensive amendments to reduce contaminant availability in polluted soil. We tested the effects of several amendments (limestone, red-mud, and furnace slag) on the extractability of heavy metals, microbial activities, phytoavailability of soil metals (assessed using lettuce, Lactuca sativa L.), and availability of heavy metals in ingested soil to the human gastrointestinal system (assessed using the physiologically based extraction test). The application of soil amendments significantly decreased the amount of soluble and extractable heavy metals in the soil (p<0.05). The decreased extractable metal content of soil was accompanied by increased microbial activity and decreased plant uptake of heavy metals. Soil microbial activities (soil respiration, urease, and dehydrogenase activity) significantly increased in limestone and red-mud-amended soils. Red-mud was the most effective treatment in decreasing heavy-metal concentrations in lettuce. Compared to non-amended control soil, lettuce uptake of Cd, Pb, and Zn was reduced 86%, 58%, and 73%, respectively, by the addition of red-mud.

  15. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust.

    Science.gov (United States)

    Moon, Deok Hyun; Grubb, Dennis G; Reilly, Trevor L

    2009-09-15

    Stabilization/solidification (S/S) processes were utilized to immobilize selenium (Se) as selenite (SeO(3)(2-)) and selenate (SeO(4)(2-)). Artificially contaminated soils were prepared by individually spiking kaolinite, montmorillonite and dredged material (DM; an organic silt) with 1000 mg/kg of each selenium compound. After mellowing for 7 days, the Se-impacted soils were each stabilized with 5, 10 and 15% Type I/II Portland cement (P) and cement kiln dust (C) and then were cured for 7 and 28 days. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effectiveness of the S/S treatments. At 28 days curing, P doses of 10 and 15% produced five out of six TCLP-Se(IV) concentrations below 10mg/L, whereas only the 15% C in DM had a TCLP-Se(IV) concentration soil-cement slurries aged for 30 days enabled the identification of Se precipitates by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX). XRD and SEM-EDX analyses of the Se(IV)- and Se(VI)-soil-cement slurries revealed that the key selenium bearing phases for all three soil-cement slurries were calcium selenite hydrate (CaSeO(3).H(2)O) and selenate substituted ettringite (Ca(6)Al(2)(SeO(4))(3)(OH)(12).26H(2)O), respectively.

  16. The Distribution of Road Salt in Private Drinking Water Wells in a Southeastern New York Suburban Township.

    Science.gov (United States)

    Kelly, Victoria R; Cunningham, Mary Ann; Curri, Neil; Findlay, Stuart E; Carroll, Sean M

    2018-05-01

    We used a GIS analysis of sodium and chloride concentrations in private water wells in a southeastern New York township to describe the pattern of distribution of road salt in aquifers tapped for drinking water. The primary source of road salt was sodium chloride, and sodium and chloride concentrations were significantly correlated ( = 0.80, road ( = 0.76, road had higher concentrations of chloride than wells that were higher than the nearest road, but this occurred only when the nearest road was >30 m from the wells ( road type (major or minor roads). Surface geology and hydrologic soil class had significant effects ( road salt contamination of groundwater is unevenly distributed and is affected by landscape factors that can be used to guide well testing and best management practices of deicing salt distribution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Factors influencing As(V) stabilization in the mine soils amended with iron-rich materials.

    Science.gov (United States)

    Kim, Mijin; Kim, Juhee; Kim, Minhee; Kim, Yong-Seong; Nam, Seung Mo; Moon, Deok Hyun; Hyun, Seunghun

    2017-09-04

    Chemical stability of As(V) in amended mine-impacted soils was assessed according to functions of incubation period (0, 1, 2, 4, and 6 months), amendment dose (2.5 and 5%), and application timing (0 and 3rd month). Six soils contaminated with 26-209 mg kg -1 of As(V) were collected from two abandoned mine sites and were treated with two alkaline iron-rich materials (mine discharge sludge (MS) and steel-making slag (SS)). Seventeen to 23% of As(V) in soils was labile. After each designated time, As(V) stability was assessed by the labile fractions determined with sequential extraction procedures (F1-F5). Over 6 months, a reduction (26.9-70.4%) of the two labile fractions (F1 and F2) and a quantitative increase (7.4-29.9%) of As(V) in F3 were observed (r 2  = 0.956). Two recalcitrant fractions (F4 and F5) remained unchanged. Temporal change of As(V) stability in a sample was well described by the two-domain model (k fast , k slow , and F fast ). The stabilization (%) correlated well with the fast-stabilizing domain (F fast ), clay content (%), and Fe oxide content (mg kg -1 ), but correlated poorly with kinetic rate constants (k fast and k slow ). Until the 3rd month, the 2.5%-MS amended sample resulted in lower As(V) stabilization (25-40%) compared to the 5% sample (50-60%). However, the second 2.5% MS addition on the 2.5% sample upon the lapse of the 3rd month led to a substantial reduction (up to 38%) of labile As(V) fraction in the following 4th and 6th months. As a result, an additional 15-25% of As(V) stability was obtained when splitting the amendment dose into 3-month intervals. In conclusion, the As(V) stabilization by Fe-rich amendment is time-dependent and its efficacy can be improved by optimizing the amendment dose and its timing.

  18. Soil communities promote temporal stability and species asynchrony in experimental grassland communities

    NARCIS (Netherlands)

    Pellkofer, Sarah; Van Der Heijden, Marcel G A; Schmid, Bernhard; Wagg, Cameron

    2016-01-01

    Background Over the past two decades many studies have demonstrated that plant species diversity promotes primary productivity and stability in grassland ecosystems. Additionally, soil community characteristics have also been shown to influence the productivity and composition of plant communities,

  19. Denudational slope processes on weathered basalt in northern California: 130 ka history of soil development, periods of slope stability and colluviation, and climate change

    Science.gov (United States)

    McDonald, Eric; Harrison, Bruce; Baldwin, John; Page, William; Rood, Dylan

    2017-04-01

    The geomorphic history of hillslope evolution is controlled by multiple types of denudational processes. Detailed analysis of hillslope soil-stratigraphy provides a means to identify the timing of periods of slope stability and non-stability, evidence of the types of denudational processes, and possible links to climatic drivers. Moreover, the degree of soil formation and the presence of buried or truncated soils provide evidence of the relative age of alternating periods of colluviation and stability. We use evaluation of soil stratigraphy, for a small forested hillslope (soils and slope colluvium are derived from highly weathered basalt. Stratigraphic interpretation is reinforced with soil profile development index (PDI) derived age estimates, tephrochronology, luminescence ages on colluvium, and He3 nuclide exposure dates. Soils formed along hilltop ridges are well developed and reflect deep (>2-3 m) in-situ weathering of the basalt bedrock. PDI age estimates and He3 exposure dates indicate that these hilltop soils had been in place for 100-130 ka, implying a long period of relative surface stability. At about 40-30 ka, soil stratigraphy indicates the onset of 3 distinct cycles of denudation of the hilltop and slopes. Evidence for changes in stability and onset of soil erosion is the presence of several buried soils formed in colluvium downslope of the hilltop. These buried soils have formed in sediment derived from erosion of the hilltop soils (i.e. soil parent material of previously weathered soil matrix and basalt cobbles). The oldest buried soil indicates that slope stability was re-established between 32-23 ka, with stability and soil formation lasting to about 10 ka. Soil-stratigraphy indicates that two additional intervals of downslope transport of sediment between 6-10 ka, and 2-5 ka. Soil properties indicate that the primary method of downslope transport is largely due to tree throw and faunal burrowing. Onset of slope instability at 40-30 ka appears to

  20. Soil erosion model predictions using parent material/soil texture-based parameters compared to using site-specific parameters

    Science.gov (United States)

    R. B. Foltz; W. J. Elliot; N. S. Wagenbrenner

    2011-01-01

    Forested areas disturbed by access roads produce large amounts of sediment. One method to predict erosion and, hence, manage forest roads is the use of physically based soil erosion models. A perceived advantage of a physically based model is that it can be parameterized at one location and applied at another location with similar soil texture or geological parent...

  1. Stability of organic matter in soils of the Belgian Loess Belt upon erosion and deposition

    NARCIS (Netherlands)

    Wang, X.; Cammeraat, L.H.; Wang, Z.; Zhou, J.; Govers, G.; Kalbitz, K.

    2013-01-01

    Soil erosion has significant impacts on terrestrial carbon (C) dynamics. It removes C-rich topsoil and deposits it in lower areas, which might result in its stabilization against microbial decay. Subsequently, C-poor deeper horizons will be exposed, which also affects C stabilization. We analysed

  2. Combining Old and New Stable Isotope Techniques to Evaluate the Impact of Conservation Tillage on Soil Organic Carbon Dynamics and Stability

    International Nuclear Information System (INIS)

    De Clercq, T.; Xu, H.; Mercklx, R.; Heiling, M.; Dercon, G.; Resch, C.

    2016-01-01

    Soil organic matter (SOM) is a major carbon pool. It is a crucial factor for soil quality including several soil physical properties and a major nutrient source for crops. It also plays a significant role in the global carbon cycle. Soils can act as a carbon sink or source depending on land use and agricultural management practices. Some practices such as conservation tillage or no-tillage could increase SOM stocks, particularly in the topsoil, but in the long term it remains to be seen if and how this SOM is stabilized (De Clercq et al., 2015; Govaerts et al., 2009). In order to evaluate the sustainability and efficiency of soil carbon sequestration measures and the impact of different management and environmental factors, information on SOM stability and mean residence time (MRT) is required. However, this information on SOM stability and MRT is expensive to determine via radiocarbon dating, precluding a wide spread use of stability measurements in soil science. But alternative methods based on stable carbon and nitrogen isotopes, can provide this information at a fraction of the cost

  3. Iron-mediated stabilization of soil carbon amplifies the benefits of ecological restoration in degraded lands.

    Science.gov (United States)

    Silva, Lucas C R; Doane, Timothy A; Corrêa, Rodrigo S; Valverde, Vinicius; Pereira, Engil I P; Horwath, William R

    2015-07-01

    Recent observations across a 14-year restoration chronosequence have shown an unexpected accumulation of soil organic carbon in strip-mined areas of central Brazil. This was attributed to the rapid plant colonization that followed the incorporation of biosolids into exposed regoliths, but the specific mechanisms involved in the stabilization of carbon inputs from the vegetation remained unclear. Using isotopic and elemental analyses, we tested the hypothesis that plant-derived carbon accumulation was triggered by the formation of iron-coordinated complexes, stabilized into physically protected (occluded) soil fractions. Confirming this hypothesis, we identified a fast formation of microaggregates shortly after the application of iron-rich biosolids, which was characterized by a strong association between pyrophosphate-extractable iron and plant-derived organic matter. The formation of microaggregates preceded the development of macroaggregates, which drastically increased soil carbon content (-140 Mg C/ha) a few years after restoration. Consistent with previous theoretical work, iron-coordinated organic complexes served as nuclei for aggregate formation, reflecting the synergistic effect of biological, chemical, and physical mechanisms of carbon stabilization in developing soils. Nevertheless, iron was not the only factor affecting soil carbon content. The highest carbon accumulation was observed during the period of highest plant diversity (> 30 species; years 3-6), declining significantly with the exclusion of native species by invasive grasses (years 9-14). Furthermore, the increasing dominance of invasive grasses was associated with a steady decline in the concentration of soil nitrogen and phosphorus per unit of accumulated carbon. These results demonstrate the importance of interdependent ecological and biogeochemical processes, and the role of soil-plant interactions in determining the success of restoration efforts. In contrast with previous but

  4. Stability of organic matter in soils of the Belgium Loess Belt upon erosion and deposition

    NARCIS (Netherlands)

    Wang, X.; Cammeraat, E.; Wang, Z.; Govers, G.; Kalbitz, K.

    2011-01-01

    Stability of organic matter in soils of the Belgium Loess Belt upon erosion and deposition X. Wang, L.H. Cammeraat, Z. Wang, G. Govers, K. Kalbitz. Abstract: Soil erosion has significant impacts on terrestrial C dynamics, which removes C from topsoil and continually exposes subsoil that has lower C

  5. A steep road to climate stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Friedlingstein, P [CEA Saclay, Inst Pierre Simon Laplace, Lab Climate and Environm Sci, F-91191 Gif Sur Yvette, (France)

    2008-07-01

    The only way to stabilize Earth's climate is to stabilize the concentration of greenhouse gases in the atmosphere, but future changes in the carbon cycle might make this more difficult than has been thought. (author)

  6. A steep road to climate stabilization

    International Nuclear Information System (INIS)

    Friedlingstein, P.

    2008-01-01

    The only way to stabilize Earth's climate is to stabilize the concentration of greenhouse gases in the atmosphere, but future changes in the carbon cycle might make this more difficult than has been thought. (author)

  7. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application

    Science.gov (United States)

    Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A.; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability. PMID:27191160

  8. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application.

    Science.gov (United States)

    Ma, Ningning; Zhang, Lili; Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability.

  9. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application.

    Directory of Open Access Journals (Sweden)

    Ningning Ma

    Full Text Available A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK, application of inorganic fertilizer (NPK, combined application of inorganic fertilizer with maize straw (NPK+S and addition of biochar with inorganic fertilizer (NPK+B. Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability.

  10. Use of Waste Marble Dust for Stabilization of Clayey Soil

    Directory of Open Access Journals (Sweden)

    Altug SAYGILI

    2015-11-01

    Full Text Available The main objective of this research is to investigate the possibility of utilizing waste marble dust in stabilizing problematic soils (especially swelling clays. The research work was divided into two sections. The first section deals with the shear strength parameters and swelling characteristics, the second section deals with the microstructural investigation of the improved problematic soils. The marble dust addition ratios which have been studied were 0 %, 5 %, 10 %, 20 % and 30 % by weight. Physical, mechanical and chemical properties of soil and marble dust samples were investigated. In addition, SEM analyses were performed on the specimens. Test results indicate that marble dust addition improved the shear strength parameters and reduced the swell potential of the tested clay samples. Marble dust had a noticeable role in the hydration process because of high calcium content. Obtained results showed that marble dust addition to the clay samples will reduce the cost of constructing structures on problematic soils, and finding new utilization areas for waste marble dust will decrease environmental pollution. Utilizing waste marble dust materials in problematic soils will have great contribution to the economy and conservation of resources.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.11966

  11. Stability of embankments over cement deep soil mixing columns; Estabilidad de terraplenes sobre columnas de suelo-cemento

    Energy Technology Data Exchange (ETDEWEB)

    Morilla Moar, P.; Melentijevic, S.

    2014-07-01

    The deep soil mixing (DSM) is one of the ground improvement methods used for the construction of embankments over soft soils. DSM column-supported embankments are constructed over soft soils to accelerate its construction, improve embankment stability, increase bearing capacity and control of total and differential settlements. There are two traditional design methods, the Japanese (rigid columns) and the scandinavian (soft and semi-rigid columns). Based on Laboratory analysis and numerical analysis these traditional approaches have been questioned by several authors due to its overestimation of the embankment stability considering that the most common failures types are not assumed. This paper presents a brief review of traditional design methods for embankments on DSM columns constructed in soft soils, studies carried out determine the most likely failure types of DSM columns, methods to decrease the overestimation when using limit equilibrium methods and numerical analysis methods that permit detect appropriate failure modes in DSM columns. Finally a case study was assessed using both limited equilibrium and finite element methods which confirmed the overestimation in the factors of safety on embankment stability over DSM columns. (Author)

  12. Report: Potential environmental impact of exempt site materials - a case study of bituminous road planings and waste soils.

    Science.gov (United States)

    Bark, Marjorie; Bland, Michael; Grimes, Sue

    2009-09-01

    The use of waste materials for ecological benefit, agricultural improvement or as part of construction works are often exempt from waste management control in order to maximize the reuse of material that would otherwise be disposed of to landfill. It is important, however, to determine whether there is potential for such waste to cause environmental harm in the context of the basis for granting exemptions under the relevant framework objective to ensure that waste is recovered or disposed of without risk to water, air, soil, plants or animals. The potential for environmental harm was investigated by leaching studies on two wastes commonly found at exempt sites: bituminous road planings and waste soils. For bituminous road planings, the organic components of the waste were identified by their solubility in organic solvents but these components would have low environmental impact in terms of bioavailability. Leaching studies of the heavy metals copper, lead and zinc, into the environment, under specific conditions and particularly those modelling acid rain and landfill leachate conditions showed that, except for copper, the amounts leached fell within Waste Acceptance Criteria compliance limits for defining waste as inert waste. The fact that the amount of copper leached was greater than the Waste Acceptance Criteria level suggests that either additional testing of wastes regarded as exempt should be carried out to ensure that they are in analytical compliance or that legislation should allow for the potential benefits of reuse to supersede deviations from analytical compliance.

  13. Enhanced stabilization of Pb, Zn, and Cd in contaminated soils using oxalic acid-activated phosphate rocks.

    Science.gov (United States)

    Zhang, Zhuo; Guo, Guanlin; Wang, Mei; Zhang, Jia; Wang, Zhixin; Li, Fasheng; Chen, Honghan

    2018-01-01

    Phosphate amendments, especially phosphate rock (PR), are one of the most commonly used materials to stabilize heavy metals in contaminated soils. However, most of PR reserve consists of low-grade ore, which limits the efficiency of PR for stabilizing heavy metals. This study was to enhance the stabilization of heavy metals through improving the available phosphorous (P) release of PR by oxalic acid activation. Raw PR and activated PR (APR) were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analysis, and laser diffraction to determine the changes of structure and composition of APR. The stabilization effectiveness of lead (Pb), zinc (Zn), and cadmium (Cd) in soils by APR was investigated through toxicity leaching test and speciation analysis. The results indicated that after treatment by oxalic acid, (1) the crystallinity of the fluorapatite phase of PR transformed into the weddellite phase; (2) the surface area of PR increased by 37%; (3) the particle size of PR became homogenized (20-70 μm); and (4) the available P content in PR increased by 22 times. These changes of physicochemical characteristics of PR induced that APR was more effective to transform soil heavy metals from the non-residual fraction to the residual fraction and enhance the stabilization efficiency of Pb, Zn, and Cd than PR. These results are significant for the future use of low-grade PR to stabilize heavy metals.

  14. Cadmium Immobilization in Soil using Sodium Dodecyl Sulfate Stabilized Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmad Farrokhian Firouzi

    2017-06-01

    Full Text Available Introduction Some methods of contaminated soils remediation reduces the mobile fraction of trace elements, which could contaminate groundwater or be taken up by soil organisms. Cadmium (Cd as a heavy metal has received much attention in the past few decades due to its potential toxic impact on soil organism activity and compositions. Cadmium is a soil pollutant of no known essential biological functions, and may pose threats to soil-dwelling organisms and human health. Soil contamination with Cd usually originates from mining and smelting activities, atmospheric deposition from metallurgical industries, incineration of plastics and batteries, land application of sewage sludge, and burning of fossil fuels. Heavy metal immobilization using amendments is a simple and rapid method for the reduction of heavy metal pollution. One way of the assessment of contaminated soils is sequential extraction procedure. Sequential extraction of heavy metals in soils is an appropriate way to determine soil metal forms including soluble, exchangeable, carbonate, oxides of iron and manganese, and the residual. Its results are valuable in prediction of bioavailability, leaching rate and elements transformation in contaminated agricultural soils. Materials and Methods The objective of this study was to synthesize magnetite nanoparticles (Fe3O4 stabilized with sodium dodecyl sulfate (SDS and to investigate the effect of its different percentages (0, 1, 2.5, 5, and 10% on the different fractions of cadmium in soil by sequential extraction method. The nanoparticles were synthesized following the protocol described by Si et al. (19. The investigations were carried out with a loamy sand topsoil. Before use, the soil was air-dried, homogenized and sieved (

  15. Soil stabilization by a prokaryotic desert crust - Implications for Precambrian land biota

    Science.gov (United States)

    Campbell, S. E.

    1979-01-01

    The ecology of the cyanophyte-dominated stromatolitic mat forming the ground cover over desert areas of Utah and Colorado is investigated and implications for the formation of mature Precambrian soils are discussed. The activation of the growth of the two species of filamentous cyanophyte identified and the mobility of their multiple trichromes upon wetting are observed, accompanied by the production and deposition of a sheath capable of accreting and stabilizing sand and clay particles. The formation of calcium carbonate precipitates upon the repeated wetting and drying of desert crust is noted, and it is suggested that the desert crust community may appear in fossil calcrete deposits as lithified microscopic tubes and cellular remains of algal trichromes. The invasion of dry land by both marine and freshwater algae on the model of the desert crust is proposed to be responsible for the accumulation, stabilization and biogenic modification of mature Precambrian soils.

  16. Stabilization treatment of soft subgrade soil by sewage sludge ash and cement.

    Science.gov (United States)

    Chen, Li; Lin, Deng-Fong

    2009-02-15

    In this study, incinerated sewage sludge ash (ISSA) is mixed with cement in a fixed ratio of 4:1 for use as a stabilizer to improve the strength of soft, cohesive, subgrade soil. Five different ratios (in wt%: 0%, 2%, 4%, 8%, and 16%) of ISSA/cement admixture are mixed with cohesive soil to make soil samples. In order to understand the influences of admixtures on the soil properties, tests of the pH value, Atterberg limits, compaction, California bearing ratio (CBR), unconfined compressive strength, and triaxial compression were performed on those samples. The study shows that the unconfined compressive strength of specimens with the ISSA/cement addition was improved to approximately 3-7 times better than that of the untreated soil; furthermore, the swelling behavior was also effectively reduced as much as 10-60% for those samples. In some samples, the ISSA/cement additive improved the CBR values by up to 30 times that of untreated soil. This suggests that ISSA/cement has many potential applications in the field of geotechnical engineering.

  17. Effect of dairy manure rate and the stabilization time of amended soils on atrazine degradation.

    Science.gov (United States)

    Aguilera, Paula; Briceño, Gabriela; Candia, Maribel; Mora, Maria de la Luz; Demanet, Rolando; Palma, Graciela

    2009-10-01

    The application rate of liquid cow manure (LCM) in the field and the stabilization time of amended soils before application of pre-plant herbicides are factors that determine their efficiency. This study includes evaluation of residual atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) in soil and amended soils with equivalent rate of 100,000; 200,000; and 300,000 L ha(-1) of LCM and the effect of pre-incubation time of amended soils on atrazine degradation. The study was carried out under controlled conditions using an Andisol with previous historical application of atrazine. The respiratory activity and fluorescein diacetate (FDA) studies indicated that the time necessary for stabilization of amended soils is over 20-30 d. During the measurement of respiratory and FDA activity, no significant differences were observed when atrazine was applied. The half-life of atrazine ranged from 5 to 8d and the relative distribution of degradation products seem to be affected by the application of LCM. The pre-incubation time of amended soil and LCM dose would not affect atrazine degradation rate, when the soil has a history of herbicide application. However, repeated applications of LCM in a long period of time could change the soil pH and increase the content of dissolved organic carbon (DOC) which could further contribute to a faster degradation of atrazine. Both effects would reduce the effectiveness of atrazine in weed control.

  18. Dust dynamics in off-road vehicle trails: Measurements on 16 arid soil types, Nevada, USA.

    Science.gov (United States)

    Goossens, Dirk; Buck, Brenda

    2009-08-01

    Soil analyses and measurements with the Portable In Situ Wind Erosion Laboratory (PI-SWERL) were conducted on 16 soil types in an area heavily affected by off-road vehicle (ORV) driving. Measurements were performed in ORV trails as well as on undisturbed terrain to investigate how ORV driving affects the vulnerability of a soil to emit PM10 (particlestrail affects those properties of the topsoil that determine its capability to emit PM10. Also, recommendations are given for adequate management of ORV-designed areas. The type of surface (sand, silt, gravel, drainage) is a key factor with respect to dust emission in an ORV trail. Trails in sand, defined in this study as the grain size fraction 63-2000microm, show higher deflation thresholds (the critical wind condition at which wind erosion starts) than the surrounding undisturbed soil. Trails in silt (2-63microm) and in drainages, on the other hand, have lower deflation thresholds than undisturbed soil. The increase in PM10 emission resulting from the creation of a new ORV trail is much higher for surfaces with silt than for surfaces with sand. Also, the creation of a new trail in silt decreases the supply limitation in the top layer: the capacity of the reservoir of emission-available PM10 increases. For sand the situation is reversed: the supply limitation increases, and the capacity of the PM10 reservoir decreases. Finally, ORV trails are characterized by a progressive coarsening of the top layer with time, but the speed of coarsening is much lower in trails in silt than in trails in sand or in drainages. The results of this study suggest that, to minimize emissions of PM10, new ORV fields should preferably be designed on sandy terrain rather than in silt areas or in drainages.

  19. The Effect of Drying-Wetting Cycle’s Repetition to the Characteristic of Natural and Stabilization Residual Soils Jawa Timur - Indonesia

    Science.gov (United States)

    Muntaha, M.

    2017-11-01

    Indonesia, which located in tropical region, continuously undergoes wetting and drying cycles due to the changeable seasons. An important role in activating the clay minerals on tropical residual soils is the main factor that affects the static and dynamic properties, such as: volume change, soil suction and dynamic modulus. The purpose of this paper is to evaluate the effect of drying-wetting cycles repetition on volume change, soil suction and mechanical characteristics of natural and stabilization of residual soils from Jawa Timur - Indonesia. The natural undisturbed and stabilized residual soil sample was naturally and gradually dried up with air to 25%, 50%, 75%, and 100 % of the initial water content. The wetting processes were carried out with the gradual increment water content of 25 %(wsat - wi), 50 %(wsat - wi), 75 %(wsat - wi), up to 100 %(wsat - wi). The Direct Shear test is used to measure the mechanic properties, and Whatman filter paper No. 42 is used to measure the soil suction. The drying-wetting processes were carried out for 1, 2, 4, and 6 cycles. The laboratory test results showed that, the void ratio decreased, the unit weight, cohesion and the internal friction angle were increasing due to stabilization. Drying-wetting cycle repetition reduces void ratio, negative pore-water pressure, cohesion and internal friction angle of natural and stabilized soils. Briefly, the decreased of mechanical soil properties was proven from the physical properties change observation.

  20. Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study

    Science.gov (United States)

    Hernandez-Soriano, Maria C.; Kerré, Bart; Kopittke, Peter M.; Horemans, Benjamin; Smolders, Erik

    2016-01-01

    The use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization. A silty-loam soil was amended with three different organic residues and with the biochar produced from these residues and incubated for 237 d. Soil respiration was lower in biochar-amended soils than in residue-amended soils. Fluorescence analysis of the dissolved organic matter revealed that biochar application increased a humic-like fluorescent component, likely associated with biochar-C in solution. The combined spectroscopy-microscopy approach revealed the accumulation of aromatic-C in discrete spots in the solid-phase of microaggregates and its co-localization with clay minerals for soil amended with raw residue or biochar.The co-localization of aromatic-C:polysaccharides-C was consistently reduced upon biochar application. We conclude that reduced C metabolism is an important mechanism for C stabilization in biochar-amended soils. PMID:27113269

  1. Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study

    Science.gov (United States)

    Hernandez-Soriano, Maria C.; Kerré, Bart; Kopittke, Peter M.; Horemans, Benjamin; Smolders, Erik

    2016-04-01

    The use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization. A silty-loam soil was amended with three different organic residues and with the biochar produced from these residues and incubated for 237 d. Soil respiration was lower in biochar-amended soils than in residue-amended soils. Fluorescence analysis of the dissolved organic matter revealed that biochar application increased a humic-like fluorescent component, likely associated with biochar-C in solution. The combined spectroscopy-microscopy approach revealed the accumulation of aromatic-C in discrete spots in the solid-phase of microaggregates and its co-localization with clay minerals for soil amended with raw residue or biochar.The co-localization of aromatic-C:polysaccharides-C was consistently reduced upon biochar application. We conclude that reduced C metabolism is an important mechanism for C stabilization in biochar-amended soils.

  2. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    International Nuclear Information System (INIS)

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex

  3. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014).

    Science.gov (United States)

    Lassaletta, Luis; Aguilera, Eduardo

    2015-04-15

    Sommer and Bossio (2014) model the potential soil organic carbon (SOC) sequestration in agricultural soils (croplands and grasslands) during the next 87 years, concluding that this process cannot be considered as a climate stabilization wedge. We argue, however, that the amounts of SOC potentially sequestered in both scenarios (pessimistic and optimistic) fulfil the requirements for being considered as wedge because in both cases at least 25 GtC would be sequestered during the next 50 years. We consider that it is precisely in the near future, and meanwhile other solutions are developed, when this stabilization effort is most urgent even if after some decades the sequestration rate is significantly reduced. Indirect effects of SOC sequestration on mitigation could reinforce the potential of this solution. We conclude that the sequestration of organic carbon in agricultural soils as a climate change mitigation tool still deserves important attention for scientists, managers and policy makers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. LOW COST SOLIDIFICATION/STABILIZATION TREATMENT FOR SOILS CONTAMINATED WITH DIOXIN, PCP AND CREOSOTE

    Science.gov (United States)

    The USEPA's NRMRL conducted successful treatability tests of innovative solidification/stabilization (S/S) formulations to treat soils contaminated with dioxins, pentachlorophenol (PCP), and creosote from four wood preserving sites. Formulations developed during these studies wer...

  5. Use of the ion exchange method for determination of stability constants of uranyl ions with three soil humic acids

    International Nuclear Information System (INIS)

    Tao Zuyi; Du Jinzhou

    1994-01-01

    The ion exchange equilibrium method proposed by Ardakani and Stevenson has not been widely used to determine the stability constants of metal-soil organic matter complexes. In this paper the Ardakani-Stevenson's method has been modified and the stability constants of uranyl ion complexes with three soil humic acids were determined by using the modified Ardakani-Stevenson's method. (orig.)

  6. Stabilization and solidification of chromium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  7. Stabilization and solidification of chromium-contaminated soil

    International Nuclear Information System (INIS)

    Cherne, C.A.; Thomson, B.M.

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments

  8. The use of municipal sewage sludge for the stabilization of soil contaminated by mining activities.

    Science.gov (United States)

    Theodoratos, P; Moirou, A; Xenidis, A; Paspaliaris, I

    2000-10-02

    The ability of municipal sewage sludge to immobilize Pb, Zn and Cd contained in contaminated soil originating from a former mining area in Lavrion, Greece was investigated. The soil was cured with sewage sludge in various proportions. The stabilization was evaluated primarily by applying chemical tests and complemented by the performance of additional biological tests. Application of the U.S. EPA Toxicity Characteristic Leaching Procedure (TCLP) on the stabilized mixtures proved that Pb, Zn and Cd solubility was reduced by 84%, 64% and 76%, respectively, at 15% w/w sludge addition, while a 10% w/w addition was sufficient to reduce Pb solubility below the U.S. EPA TCLP regulatory limit. The results of the extraction using EDTA solution showed the same trend, resulting in 26%, 36% and 53% reduction in the Pb, Zn and Cd extractable fractions, respectively. Speciation analysis of the treated soils revealed a significant decrease in the mobile fractions of heavy metals, which was attributed to their retention in sewage sludge by adsorption and organic complexation mechanisms. For the assessment of possible phytotoxicity, experiments including growing dwarf beans in the treated soil was carried out. It was found that sewage sludge addition had a positive effect on plant growth. Furthermore, the Pb and Zn uptake of plant leaves and roots was reduced, while Cd uptake was unaffected by the sludge treatment. The results of this study support the hypothesis that municipal sewage sludge is a potential effective stabilizing agent for contaminated soil containing Pb, Zn and Cd.

  9. Towards successful SPP treatment of local materials for road building

    CSIR Research Space (South Africa)

    Paige-Green, P

    2009-06-17

    Full Text Available This report discusses the use of certain proprietary soil stabilisers in low volume roads in South Africa. Although ionic soil stabilisers have been in use for many years, they have not been marketed to their fullest potential and in many cases have...

  10. Lead Contamination and Microbial Lead Tolerance in Soils at Major ...

    African Journals Online (AJOL)

    Devika

    ABSTRACT: Lead pollution and lead tolerance levels of microbes in soil at major road junctions in Benin. City were investigated. Results revealed that distance from the road junctions affected the concentrations of lead in soil, as well as the microbial population density and types of microbes present in the soil. The highest ...

  11. Lead Contamination and Microbial Lead Tolerance in Soils at Major ...

    African Journals Online (AJOL)

    Lead pollution and lead tolerance levels of microbes in soil at major road junctions in Benin City were investigated. Results revealed that distance from the road junctions affected the concentrations of lead in soil, as well as the microbial population density and types of microbes present in the soil. The highest concentrations ...

  12. Soil stabilization mat for lunar launch/landing site

    Science.gov (United States)

    Acord, Amy L.; Cohenour, Mark W.; Ephraim, Daniel; Gochoel, Dennis; Roberts, Jefferson G.

    1990-01-01

    Facilities which are capable of handling frequent arrivals and departures of spaceships between Earth and a lunar colony are necessary. The facility must be able to provide these services with minimal interruption of operational activity within the colony. The major concerns associated with the space traffic are the dust and rock particles that will be kicked up by the rocket exhaust. As a result of the reduced gravitation of the Moon, these particles scatter over large horizontal distances. This flying debris will not only seriously interrupt the routine operations of the colony, but could cause damage to the equipment and facilities surrounding the launch site. An approach to overcome this problem is presented. A proposed design for a lunar take-off/landing mat is presented. This proposal goes beyond dealing with the usual problems of heat and load resistances associated with take-off and landing, by solving the problem of soil stabilization at the site. Through adequate stabilization, the problem of flying debris is eliminated.

  13. Linking measurements of biodegradability, thermal stability and chemical composition to evaluate the effects of management on soil organic matter

    Science.gov (United States)

    Gregorich, Ed; Gillespie, Adam; Beare, Mike; Curtin, Denis; Sanei, Hamed; Yanni, Sandra

    2015-04-01

    The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to accurately quantify and characterise the labile and stable forms of soil organic C. Our objectives in this study were to evaluate and describe relationships among the biodegradability, thermal stability and chemistry of SOM in soil under widely contrasting management regimes. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: managements and that sand-associated organic matter was significantly more susceptible than that in the silt or clay fractions. Analysis by XANES showed accumulation of carboxylates and strong depletion of amides (protein) and aromatics in the fallow whole soil. Moreover, protein depletion was most significant in the sand fraction of the fallow soil. Sand fractions in fallow and cropped soils were, however, enriched in plant-derived phenols, aromatics and carboxylates compared to the sand fraction of pasture soils. In contrast, ketones, which have been identified as products of microbially-processed organic matter, were slightly enriched in the silt fraction of the pasture soil. These data suggest reduced inputs and cropping restrict the decomposition of plant residues and, without supplemental N additions, protein-N in native SOM is significantly mineralized in fallow systems to meet microbial C mineralization demands. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the size fractions and management treatments; it also showed that the loss of SOM generally involved dehydrogenation. The temperature at which half of the C was pyrolyzed showed strong correlation with mineralizable C and thus provides solid evidence for a link between the biological and

  14. Influence of zeolite and cement additions on mechanical behavior of sandy soil

    Directory of Open Access Journals (Sweden)

    Hossein Mola-Abasi

    2016-10-01

    Full Text Available It is well known that the cemented sand is one of economic and environmental topics in soil stabilization. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite can be commercially available and effectively used in soil stabilization in road construction. However, the influence and effectiveness of zeolite on the properties of cemented sand systems have not been completely explored. In this study, based on an experimental program, the effects of zeolite on the characteristics of cemented sands are investigated. Stabilizing agent includes Portland cement of type II and zeolite. Results show the improvements of unconfined compressive strength (UCS and failure properties of cemented sand when the cement is replaced by zeolite at an optimum proportion of 30% after 28 days. The rate of strength improvement is approximately between 20% and 78%. The efficiency of using zeolite increases with the increases in cement amount and porosity. Finally, a power function of void-cement ratio and zeolite content is demonstrated to be an appropriate method to assess UCS of zeolite-cemented mixtures.

  15. Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material.

    Science.gov (United States)

    Colangelo, F; Cioffi, R; Montagnaro, F; Santoro, L

    2012-06-01

    Fly ash from municipal solid waste incinerators (MSWI) is classified as hazardous in the European Waste Catalogue. Proper stabilization processes should be required before any management option is put into practice. Due to the inorganic nature of MSWI fly ash, cementitious stabilization processes are worthy of consideration. However, the effectiveness of such processes can be severely compromised by the high content of soluble chlorides and sulphates. In this paper, a preliminary washing treatment has been optimized to remove as much as possible soluble salts by employing as little as possible water. Two different operating conditions (single-step and two-step) have been developed to this scope. Furthermore, it has been demonstrated that stabilized systems containing 20% of binder are suitable for safer disposal as well as for material recovery in the field of road basement (cement bound granular material layer). Three commercially available cements (pozzolanic, limestone and slag) have been employed as binders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Use of Biomass Ash as a stabilization agent for expansive marly soils (SE Spain)

    Science.gov (United States)

    Ureña, C.; Azañón, J. M.; Caro, J. M.; Irigaray, C.; Corpas, F.; Ramirez, A.; Rivas, F.; Salazar, L. M.; Mochón, I.

    2012-04-01

    In recent years, several biomass power plants have been installed in Southeastern Spain to reuse olive oil industry residues. This energy production tries to reduce the high costs associated with fossil fuels, but without entering into direct competition to traditional food crops. The waste management in these biomass energy plants is still an issue since there are non-flammable materials which remains after incineration in the form of ashes. In Southeastern Spain there is also a great amount of clayey and marly soils whose volume is very sensitive to changes in climate conditions, making them unsuitable for civil engineering. We propose the use of biomass ash (both fly ash and bottom ash) as a stabilization agent for expansive soils in order to improve the efficiency of construction processes by using locally available materials. In this work biomass ashes from a biomass power plant in Southeastern Spain have been used to stabilize 6 samples of local marly soil. Those 6 samples of expansive soil were mixed with different dosages of biomass ash (2%, 4% and 7%) to create 18 specimens of treated soil, which were submitted to Proctor, Atterberg Limits, pH and Free Swell Index tests, following Spanish Standards UNE by AENOR. X-Ray Diffraction (XRD) tests by powder method were also carried out, using a diffractometer Philips X'Pert-MPD. The results obtained for the original untreated marly soil were: PI = 34.6; Free Swell = 12.5; pH = 8. By adding biomass ash the value of the plasticity index (PI) became slightly lower although it was not low enough as to obtain a non-plastic soil (PI under 25). However, there were dramatical decreases of free swell index (FSI) after the stabilization treatment: FSI < 8.18 (2% biomass); FSI < 6.15 (4% biomass); FSI < 4.18 (7% biomass); These results suggest that treated soil is quite less susceptible than the original soil to moisture changes. The pH of the mixes after adding biomass ash rose from 8 to 11±1 leading to an alkaline

  17. Bio-transformation and stabilization of arsenic (As) in contaminated soil using arsenic oxidizing bacteria and FeCl3 amendment.

    Science.gov (United States)

    Karn, Santosh Kumar; Pan, Xiangliang; Jenkinson, Ian R

    2017-05-01

    A combination of biological and chemical methods was applied in the present study to evaluate the removal of arsenic (As) from contaminated soil. The treatment involved As-oxidizing microbes aimed of transforming the more toxic As (III) to less toxic As (V) in the soil. FeCl 3 was added at three different concentrations (1, 2, and 3%) to stabilize the As (V). Leaching of the treated soil was investigated by making a soil column and passing tap water through it to determine solubility. Experimental results indicated that the bacterial activity had a pronounced positive effect on the transformation of As, and decreased the soluble exchangeable fraction from 50 to 0.7 mg/kg as compared to control and from 50 to 44 mg/kg after 7 days of treatment. FeCl 3 also played an indispensable role in the adsorption/stabilization of As in the soil; 1 and 2% FeCl 3 strongly influenced the adsorption of As (V). The soil leachate contained negligible amount of As and trace metals, which indicates that combining an efficient microbe with a chemical treatment is very effective route for the removal and stabilization of As from contaminated soil in the environment.

  18. Innovative solidification/stabilization of lead contaminated soil using incineration sewage sludge ash.

    Science.gov (United States)

    Li, Jiangshan; Poon, Chi Sun

    2017-04-01

    The proper treatment of lead (Pb) contaminated soils and incinerated sewage sludge ash (ISSA) has become an environmental concern. In this study, ordinary Portland cement (OPC) and blended OPC containing incinerated sewage sludge ash (ISSA) were used to solidify/stabilize (S/S) soils contaminated with different concentrations of Pb. After curing for 7 and 28 d, the S/S soils were subjected to a series of strength, leaching and microscopic tests. The results showed that replacement of OPC by ISSA significantly reduced the unconfined compressive strength (UCS) of S/S soils and leached Pb. In addition, the leaching of Pb from the monolithic samples was diffusion controlled, and increasing the ISSA addition in the samples led to a lower diffusion coefficient and thus an increase in the feasibility for "controlled utilization" of S/S soils. Furthermore, the proposed S/S method significantly decreased the amount of Pb associated with carbonates and increased the amount of organic and residual Pb in S/S soils, reflecting that the risk of Pb contaminated soils can be effectively mitigated by the incorporating of ISSA. Overall, the leachability of Pb was controlled by the combined effect of adsorption, encapsulation or precipitation in the S/S soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Erodibility of cement-stabilized tropical soils in highway engineering in Togo

    International Nuclear Information System (INIS)

    Eklu-Natey, T.E.D.

    1992-01-01

    This work contains a methodical study on the suceptibility to weather of cement-stabilized tropical soils of Togo by simulating on the one hand the climatic conditions of the original surroundings and on the other hand the variations occuring in situ of the degree of saturation and compaction. The chosen tests ensure for the first time a simple execution and at the same time reproducible numerical values of the results achieved. From results of the slaking, erosion, adhesion, durability and swelling tests clear parameters and classification criteria were derived which help to forecast the susceptibility to weather of soils in tropical climates. A method for the determination of the reaction to water of soils is proposed consisting of a particular process of derivation and interpretation of the consistency value for a given swelling rate. Moreover a possibility is recommended with which the time-consuming and expensive mineralogical analyses which were frequently used in the past for torpical soils can be avoided. The proposed evaluation criteria provides civil engineers working in permanently moist, arid or intermittently moist tropical regions with practical and theoretical bases for the estimation of the erodibility of soils. (orig./BBR) [de

  20. Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites

    International Nuclear Information System (INIS)

    Knight, M.J.

    1983-04-01

    Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m 3 ) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time

  1. Synthesis of a one-part geopolymer system for soil stabilizer using fly ash and volcanic ash

    Directory of Open Access Journals (Sweden)

    Tigue April Anne S.

    2018-01-01

    Full Text Available A novel approach one-part geopolymer was employed to investigate the feasibility of enhancing the strength of in-situ soil for possible structural fill application in the construction industry. Geopolymer precursors such as fly ash and volcanic ash were utilized in this study for soil stabilization. The traditional geopolymer synthesis uses soluble alkali activators unlike in the case of ordinary Portland cement where only water is added to start the hydration process. This kind of synthesis is an impediment to geopolymer soil stabilizer commercial viability. Hence, solid alkali activators such as sodium silicate (SS, sodium hydroxide (SH, and sodium aluminate (SA were explored. The influence of amount of fly ash (15% and 25%, addition of volcanic ash (0% and 12.5%, and ratio of alkali activator SS:SH:SA (50:50:0, 33:33:33, 50:20:30 were investigated. Samples cured for 28 days were tested for unconfined compressive strength (UCS. To evaluate the durability, sample yielding highest UCS was subjected to sulfuric acid resistance test for 28 days. Analytical techniques such as X-ray fluorescence (XRF, X-ray diffraction (XRD, and scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM/EDX were performed to examine the elemental composition, mineralogical properties, and microstructure of the precursors and the geopolymer stabilized soil.

  2. Minimum Additive Waste Stabilization (MAWS), Phase I: Soil washing final report

    International Nuclear Information System (INIS)

    1995-08-01

    As a result of the U.S. Department of Energy's environmental restoration and technology development activities, GTS Duratek, Inc., and its subcontractors have demonstrated an integrated thermal waste treatment system at Fernald, OH, as part the Minimum Additive Waste Stabilization (MAWS) Program. Specifically, MAWS integrates soil washing, vitrification of mixed waste streams, and ion exchange to recycle and remediate process water to achieve, through a synergistic effect, a reduction in waste volume, increased waste loading, and production of a durable, leach-resistant, stable waste form suitable for disposal. This report summarizes the results of the demonstration/testing of the soil washing component of the MAWS system installed at Fernald (Plant 9). The soil washing system was designed to (1) process contaminated soil at a rate of 0.25 cubic yards per hour; (2) reduce overall waste volume and provide consistent-quality silica sand and contaminant concentrates as raw material for vitrification; and (3) release clean soil with uranium levels below 35 pCi/g. Volume reductions expected ranged from 50-80 percent; the actual volume reduction achieved during the demonstration reached 66.5 percent. The activity level of clean soil was reduced to as low as 6 pCi/g from an initial average soil activity level of 17.6 pCi/g (the highest initial level of soil provided for testing was 41 pCi/g). Although the throughput of the soil washing system was inconsistent throughout the testing period, the system was online for sufficient periods to conclude that a rate equivalent to 0.25 cubic yards per hour was achieved

  3. Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder

    OpenAIRE

    Xia, Wei-Yi; Feng, Ya-Song; Jin, Fei; Zhang, Li-Ming; Du, Yan-Jun

    2017-01-01

    Synthetic hydroxyapatite (HA) is an efficient and environment-friendly material for the remediation of heavy metal contaminated soils. However, the application of conventional HA powder in stabilizing contaminated soils is limited, due to high cost of final products, difficulties in synthesizing purified HA crystals. A new binder named SPC, which composes of single superphosphate (SSP) and calcium oxide (CaO), is presented as an alternative in this study. HA can form in the soil matrix by an ...

  4. A study of the landslide potential along the mountain road using environmental indices

    Science.gov (United States)

    Lin, C. Y.

    2014-12-01

    Utilization of slope land in recent years is rapid as a result of the dense population and limit of land resources in Taiwan. Therefore, mountain road plays an essential role for the necessity of human life. However, landslide disaster resulting in road failure occurred frequently in Taiwan on the slope land due to earthquake and typhoon. Previous studies found that the extreme rainfall coupled with the property of fragile geology could cause landslide. Nevertheless, the landslide occurrence might be affected by the drainage of the road side ditches. Taiwan Highway No.21 in Chi-Shan watershed and the forest roads located in Xiao-Lin Village, which failure during the hit of Typhoon Morakot in 2009, were selected for exploring the potential of vulnerable to landslides. Topographic Wetness Index (TWI) and Road Curvature (RC) were extracted along the road to indicate the potential sites which are vulnerable to slope failure. The surface runoff diverted by the road side ditches could spoil the sites with high RC due to the straight movement characteristics of the diverted runoff and cause the downslope collapse. The sites with higher mean value and lower standard deviation of Normalized Difference Vegetation Index (NDVI) derived from the SPOT imagery taken in dry and/or rainy seasons could be implied as the vegetation stands showing highly buffer effects in environmental stress due to having deeper soil layer, and are hardly interfered by the drought. The stands located in such sites once collapsed are often resulting in huge volumes of debris. Drainage Density (DD) index could be applied as the degrees of geologic fragile in the slope land. A road across the sites with higher mean value and lower standard deviation of NDVI and/or higher DD should be paid more attention because of having highly vulnerable to deep seated landslide. This study is focusing on extracting and analyzing the environmental indices such as TWI, RC, NDVI and DD for exploring the slope stability

  5. [Effect of inorganic amendments on the stabilization of heavy metals in contaminated soils].

    Science.gov (United States)

    Cao, Meng-hua; Zhu, Xi; Liu, Huang-cheng; Wang, Lin-ling; Chen, Jing

    2013-09-01

    Effects of single and mixed inorganic amendments on the stabilization of heavy metals in contaminated soils were investigated. Significant synergistic effects on the stabilization of Zn and Cu were observed with the mixed inorganic amendments of KH2PO4 and Ca(OH)2 in the laboratory test. In the field test, the stabilization ratios of Zn, Cu and Cd were 41.8%, 28.2% and 48.4%, respectively, with the dosage of 0.5 kg x m(-2). The growth of peanut was inhibited by the addition of the inorganic amendments. Meanwhile, the uptake of heavy metals was reduced in peanut.

  6. A Lattice Model for Bidirectional Pedestrian Flow on Gradient Road

    International Nuclear Information System (INIS)

    Ge Hong-Xia; Cheng Rong-Jun; Lo Siu-Ming

    2014-01-01

    Ramps and sloping roads appear everywhere in the built environment. It is obvious that the movement pattern of people in the sloping path may be different as compared with the pattern on level roads. Previously, most of the studies, especially the mathematical and simulation models, on pedestrian movement consider the flow at level routes. This study proposes a new lattice model for bidirectional pedestrian flow on gradient road. The stability condition is obtained by using linear stability theory. The nonlinear analysis method is employed to derive the modified Korteweg-de Vries (mKdV) equation, and the space of pedestrian flow is divided into three regions: the stable region, the metastable region, and the unstable region respectively. Furthermore, the time-dependent Ginzburg—Landan (TDGL) equation is deduced and solved through the reductive perturbation method. Finally, we present detailed results obtained from the model, and it is found that the stability of the model is enhanced in uphill situation while reduced in downhill situation with increasing slope. (general)

  7. The efficacy of winter cover crops to stabilize soil inorganic nitrogen after fall-applied anhydrous ammonia.

    Science.gov (United States)

    Lacey, Corey; Armstrong, Shalamar

    2015-03-01

    There is a dearth of knowledge on the ability of cover crops to increase the effectiveness of fall-applied nitrogen (N). The objective of this study was to investigate the efficacy of two cover crop species to stabilize inorganic soil N after a fall application of N. Fall N was applied at a rate of 200 kg N ha into living stands of cereal rye, tillage radish, and a control (no cover crop) at the Illinois State University Research and Teaching Farm in Lexington, Illinois. Cover crops were sampled to determine N uptake, and soil samples were collected in the spring at four depths to 80 cm to determine the distribution of inorganic N within the soil profile. Tillage radish (131.9-226.8 kg ha) and cereal rye (188.1-249.9 kg ha N) demonstrated the capacity to absorb a minimum of 60 to 80% of the equivalent rate of fall-applied N, respectively. Fall applying N without cover crops resulted in a greater percentage of soil NO-N (40%) in the 50- to 80-cm depth, compared with only 31 and 27% when tillage radish and cereal rye were present at N application. At planting, tillage radish stabilized an average of 91% of the equivalent rate of fall-applied N within the 0- to 20-cm, depth compared with 66 and 57% for the cereal rye and control treatments, respectively. This study has demonstrated that fall applying N into a living cover crop stand has the potential to reduce the vulnerability of soil nitrate and to stabilize a greater concentration of inorganic N within the agronomic depths of soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Influence of Roads on the Surrounding Natural Environment - Vegetation, Soil, and Ground Water

    Science.gov (United States)

    1980-02-01

    lands. The spreading of salt to combat slipperiness and to hold down the dust results in the pollution of the ground water near the highways under...Among meadow-type forests elm , ash, and alder forests are particularly sensitive to reduced water availability, while meadow-oak, meadow-beech, and... slipperiness on more heavily travelled roads (primarily K_ _ - -41- NaCi), dust-binding on gravel roads (road salt/CaClg/ and previouslv road lye

  9. Antisideslip and Antirollover Safety Speed Controller Design for Vehicle on Curved Road

    Directory of Open Access Journals (Sweden)

    Guo Lie

    2014-01-01

    Full Text Available When the drivers cannot be aware of the existing of forthcoming curved roads and fail to regulate their safety speeds accordingly, sideslip or rollover may occur with high probability. The antisideslip and antirollover control of vehicle on curved road in automatic highway systems is studied. The safety speed warning system is set before entering the curved road firstly. The speed adhesion control is adopted to shorten the braking distance while decelerating and to guarantee the safety speed. The velocity controller when decelerating on the straight path and the posture controller when driving on curved road are designed, respectively, utilizing integral backstepping technology. Simulation results demonstrate that this control system is characterized by quick and precise tracking and global stability. Consequently, it is able to avoid the dangerous operating conditions, such as sideslip and rollover, and guarantee the safety and directional stability when driving on curved road.

  10. A Biogeotechnical approach to Stabilize Soft Marine Soil with a Microbial Organic Material called Biopolymer

    Science.gov (United States)

    Chang, I.; Cho, G. C.; Kwon, Y. M.; Im, J.

    2017-12-01

    The importance and demands of offshore and coastal area development are increasing due to shortage of usable land and to have access to valuable marine resources. However, most coastal soils are soft sediments, mainly composed with fines (silt and clay) and having high water and organic contents, which induce complicated mechanical- and geochemical- behaviors and even be insufficient in Geotechnical engineering aspects. At least, soil stabilization procedures are required for those soft sediments, regardless of the purpose of usage on the site. One of the most common soft soil stabilization method is using ordinary cement as a soil strengthening binder. However, the use of cement in marine environments is reported to occur environmental concerns such as pH increase and accompanying marine ecosystem disturbance. Therefore, a new environmentally-friendly treatment material for coastal and offshore soils. In this study, a biopolymer material produced by microbes is introduced to enhance the physical behavior of a soft tidal flat sediment by considering the biopolymer rheology, soil mineralogy, and chemical properties of marine water. Biopolymer material used in this study forms inter-particle bonds between particles which is promoted through cation-bridges where the cations are provided from marine water. Moreover, biopolymer treatment renders unique stress-strain relationship of soft soils. The mechanical stiffness (M) instantly increase with the presence of biopolymer, while time-dependent settlement behavior (consolidation) shows a big delay due to the viscous biopolymer hydrogels in pore spaces.

  11. Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland.

    Science.gov (United States)

    Poeplau, Christopher; Kätterer, Thomas; Leblans, Niki I W; Sigurdsson, Bjarni D

    2017-03-01

    Terrestrial carbon cycle feedbacks to global warming are major uncertainties in climate models. For in-depth understanding of changes in soil organic carbon (SOC) after soil warming, long-term responses of SOC stabilization mechanisms such as aggregation, organo-mineral interactions and chemical recalcitrance need to be addressed. This study investigated the effect of 6 years of geothermal soil warming on different SOC fractions in an unmanaged grassland in Iceland. Along an extreme warming gradient of +0 to ~+40 °C, we isolated five fractions of SOC that varied conceptually in turnover rate from active to passive in the following order: particulate organic matter (POM), dissolved organic carbon (DOC), SOC in sand and stable aggregates (SA), SOC in silt and clay (SC-rSOC) and resistant SOC (rSOC). Soil warming of 0.6 °C increased bulk SOC by 22 ± 43% (0-10 cm soil layer) and 27 ± 54% (20-30 cm), while further warming led to exponential SOC depletion of up to 79 ± 14% (0-10 cm) and 74 ± 8% (20-30) in the most warmed plots (~+40 °C). Only the SA fraction was more sensitive than the bulk soil, with 93 ± 6% (0-10 cm) and 86 ± 13% (20-30 cm) SOC losses and the highest relative enrichment in 13 C as an indicator for the degree of decomposition (+1.6 ± 1.5‰ in 0-10 cm and +1.3 ± 0.8‰ in 20-30 cm). The SA fraction mass also declined along the warming gradient, while the SC fraction mass increased. This was explained by deactivation of aggregate-binding mechanisms. There was no difference between the responses of SC-rSOC (slow-cycling) and rSOC (passive) to warming, and 13 C enrichment in rSOC was equal to that in bulk soil. We concluded that the sensitivity of SOC to warming was not a function of age or chemical recalcitrance, but triggered by changes in biophysical stabilization mechanisms, such as aggregation. © 2016 John Wiley & Sons Ltd.

  12. The effects of road building on arbuscular mycorrhizal fungal diversity in Huangshan Scenic Area.

    Science.gov (United States)

    Yang, Anna; Tang, Dongmei; Jin, Xiulong; Lu, Lin; Li, Xiaohong; Liu, Kun

    2018-01-22

    Arbuscular mycorrhizal (AM) fungi are vital soil microbes that connect many individual plants into a large functional organism via a vast mycelial network under the ground. In this study, the changes of soil AM fungal community in response to road-building disturbance caused by tourism development in Huangshan (Yellow Mountain) Scenic Area are assessed. Road building have brought negative effects on AM fungal community, inducing lower diversity parameters, including species number, spore density and diversity indices. However, the dominant genus and species of AM fungi which play key roles in the AM fungal community composition are quite similar before and after road building. Moreover, there are no significant differences in species richness of AM fungi associated with plants, suggesting the tolerance of AM fungal community to the disturbance of road building.

  13. Chemical stabilization of metals and arsenic in contaminated soils using oxides--a review.

    Science.gov (United States)

    Komárek, Michael; Vaněk, Aleš; Ettler, Vojtěch

    2013-01-01

    Oxides and their precursors have been extensively studied, either singly or in combination with other amendments promoting sorption, for in situ stabilization of metals and As in contaminated soils. This remediation option aims at reducing the available fraction of metal(loid)s, notably in the root zone, and thus lowering the risks associated with their leaching, ecotoxicity, plant uptake and human exposure. This review summarizes literature data on mechanisms involved in the immobilization process and presents results from laboratory and field experiments, including the subsequent influence on higher plants and aided phytostabilization. Despite the partial successes in the field, recent knowledge highlights the importance of long-term and large-scale field studies evaluating the stability of the oxide-based amendments in the treated soils and their efficiency in the long-term. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. TECHNOLOGY EVALUATION REPORT: SILICATE TECHNOLOGY CORPORATION - SOLIDIFICATION/STABILIZATION OF PCP AND INORGANIC CONTAMINANTS IN SOILS - SELMA, CA

    Science.gov (United States)

    This Technolgy Evaluation Report evaluates the solidification/stabilization process of Silicate Technology Corporation (STC) for the on-site treatment of contaminated soil The STC immobilization technology uses a proprietary product (FMS Silicate) to chemically stabilize and ...

  15. Highly Organic Soil Stabilization by Using Sugarcane Bagasse Ash (SCBA

    Directory of Open Access Journals (Sweden)

    Abu Talib Mohd Khaidir

    2017-01-01

    Full Text Available The study objective is to develop alternative binders that are environment friendly by utilizing sugarcane bagasse ash (SCBA in the organic soil stabilization. Together with SCBA, Ordinary Portland Cement (OPC, calcium chloride (CaCl2 and silica sand (K7 were used as additives to stabilize the peat. In obtaining the optimal mix design, specimens of stabilized peat were tested in unconfined compression. It was found that stabilized peat comprising 20% and 5% (PCB1-20 and PCB2-5 partial replacement of OPC with SCBA 1 and SCBA 2 attain the maximum unconfined compressive strength (UCS and discovered greater than UCS of peat-cement (PC specimen. At the optimal mix design, the UCS of the stabilized peat specimens increased with increasing of curing time, preloading rate, OPC and K7 dosage. For PCB1-20 mixture, inclusion of a minimum OPC of 300kg/m3 and K7 of 500kg/m3 along with curing under 20kPa pressure is recommendable for the peat stabilization to be effective. However for PCB2-5, it suggested to use more OPC and K7 dosage or alternatively increase the preloading during curing to 40kPa in order to achieve target UCS. It can be concluded that SCBA 1 has better quality than SCBA 2 in peat stabilization especially the contribution made by its fine particle size.

  16. Ecotoxicological evaluation of the short term effects of fresh and stabilized textile sludges before application in forest soil restoration

    International Nuclear Information System (INIS)

    Rosa, Edson V.C.; Giuradelli, Thayse M.; Correa, Albertina X.R.; Roerig, Leonardo R.; Schwingel, Paulo R.; Resgalla, Charrid; Radetski, Claudemir M.

    2007-01-01

    The short term (eco)toxicity potential of fresh and stabilized textile sludges, as well as the short term (eco)toxicity of leachates obtained from both fresh and stabilized textile sludges, was evaluated by a battery of toxicity tests carried out with bacteria, algae, daphnids, fish, earthworms, and higher plants. The (eco)toxicological results showed that, after 120 d of stabilization, the experimental loading ratio of 25% sludge:75% soil (v/v) (equivalent to 64.4 ton/ha) did not significantly increase toxicity effects and increased significantly the biomass yield for earthworms and higher plants. The rank of biological sensitivity endpoints was: Algae ∼ Plant biomass > Plant germination ∼ Daphnids > Bacteria ∼ Fish > Annelids. The lack of short term toxicity effects and the stimulant effect observed with higher plants and earthworms are good indications of the fertilizer/conditioner potential of this industrial waste, which after stabilization can be used in the restoration of a non-productive forest soil. - Short term ecotoxicity evaluation of textile sludge showed that stabilized sludge can be used in the restoration of a non-productive forest soil

  17. Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador

    NARCIS (Netherlands)

    Tonneijck, F.H.; Jansen, B.; Nierop, K.G.J.; Verstraten, J.M.; Sevink, J.; de Lange, L.

    2010-01-01

    Volcanic ash soils contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute potential sources or sinks for the greenhouse gas carbon dioxide. Whether soils become a net carbon source or sink with climate and/or land-use change depends on the stability of

  18. Use of fatal real-life crashes to analyze a safe road transport system model, including the road user, the vehicle, and the road.

    Science.gov (United States)

    Stigson, Helena; Krafft, Maria; Tingvall, Claes

    2008-10-01

    To evaluate if the Swedish Road Administration (SRA) model for a safe road transport system, which includes the interaction between the road user, the vehicle, and the road, could be used to classify fatal car crashes according to some safety indicators. Also, to present a development of the model to better identify system weakness. Real-life crashes with a fatal outcome were classified according to the vehicle's safety rating by Euro NCAP (European Road Assessment Programme) and fitment of ESC (Electronic Stability Control). For each crash, the road was also classified according to EuroRAP (European Road Assessment Programme) criteria, and human behavior in terms of speeding, seat belt use, and driving under the influence of alcohol. Each crash was compared with the model criteria, to identify components that might have contributed to fatal outcome. All fatal crashes where a car occupant was killed that occurred in Sweden during 2004 were included: in all, 215 crashes with 248 fatalities. The data were collected from the in-depth fatal crash data of the Swedish Road Administration (SRA). It was possible to classify 93% of the fatal car crashes according to the SRA model. A number of shortcomings in the criteria were identified since the model did not address rear-end or animal collisions or collisions with stationary/parked vehicles or trailers (18 out of 248 cases). Using the further developed model, it was possible to identify that most of the crashes occurred when two or all three components interacted (in 85 of the total 230 cases). Noncompliance with safety criteria for the road user, the vehicle, and the road led to fatal outcome in 43, 27, and 75 cases, respectively. The SRA model was found to be useful for classifying fatal crashes but needs to be further developed to identify how the components interact and thereby identify weaknesses in the road traffic system. This developed model might be a tool to systematically identify which of the components are

  19. THE IMPACT OF ROAD CONDITIONS ON THE SUSTAINABILITY DECLINE IN THE ROAD TRANSPORT IN THE REPUBLIC OF DAGESTAN

    Directory of Open Access Journals (Sweden)

    E. S. Batmanov

    2016-01-01

    Full Text Available The article touches upon the theoretical and experimental studies of the influence of the various components of road conditions to reduce the stability of the vehicle, which lead to skidding and rollover. The resulting research material will improve traffic safety on the roads of the Republic of Dagestan. We give formulas for calculating the critical speed cornering with cross gradients and sharp change in direction, in which the skid and rollover is not excluded, due to the appearance of additional transverse forces of inertia. It is explained that a significant impact on the stability of the car has a «side pull». We give graphs of the lateral force from the vehicle slip angle of tires and tire tread wear of the impact on the quality of grip at different speeds and the amount of coating roughness obtained experimentally. Effect on the skid and rollover car road surface irregularities is marked. In such traffic conditions, the technical condition of the vehicle and in particular the shock absorbers are essential. The schedule damper effect on driving conditions, obtained experimentally.

  20. Phytoextraction of rare earth elements in herbaceous plant species growing close to roads.

    Science.gov (United States)

    Mikołajczak, Patrycja; Borowiak, Klaudia; Niedzielski, Przemysław

    2017-06-01

    The aim of study was to determine the phytoextraction of rare earth elements (REEs) to roots, stems and leaves of five herbaceous plant species (Achillea millefolium L., Artemisia vulgaris L., Papaver rhoeas L., Taraxacum officinale AND Tripleurospermum inodorum), growing in four areas located in close proximity to a road with varied traffic intensity. Additionally, the relationship between road traffic intensity, REE concentration in soil and the content of these elements in plant organs was estimated. A. vulgaris and P. rhoeas were able to effectively transport REEs in their leaves, independently of area collection. The highest content of REEs was observed in P. rhoeas leaves and T. inodorum roots. Generally, HREEs were accumulated in P. rhoeas roots and leaves and also in the stems of T. inodorum and T. officinale, whereas LREEs were accumulated in T. inodorum roots and T. officinale stems. It is worth underlining that there was a clear relationship between road traffic intensity and REE, HREE and LREE concentration in soil. No positive correlation was found between the concentration of these elements in soil and their content in plants, with the exception of T. officinale. An effective transport of REEs from the root system to leaves was observed, what points to the possible ability of some of the tested plant species to remove REEs from soils near roads.

  1. The Impact of Road Maintenance Substances on Metals Surface Corrosion

    OpenAIRE

    Jolita Petkuvienė; Dainius Paliulis

    2011-01-01

    The purpose of research is to assess changes in the visual metal surface due to the exposure of road maintenance salts and molasses (‘Safecote’). Chlorides of deicing salts (NaCl, CaCl2) are the main agents affecting soil and water resources as well as causing the corrosion of roadside metallic elements. Molasses (‘Safecote’) is offered as an alternative to deice road pavement by minimizing the corrosion of metal elements near the road. A laboratory experiment was carried out to immerse and s...

  2. Evaluation of deformation-strength characteristics of Fiber-cement-stabilized soil by using Distinct Element Method

    Science.gov (United States)

    Satomi, Tomoaki; Konda, Naoki; Takahashi, Hiroshi

    Fiber-cement-stabilized soil method is an effective way to recycle high-water content mud. The modified soil has several advantages such as high failure stress and high failure strain. However, the quality of the modified soil is not constant and depends on the water content of the mud and additives. Therefore, experimental verification to obtain the strength characteristics of the modified soil is necessary, but conducting experiments under various conditions is ineffective and uneconomic. In this study, a numerical model to estimate deformation-strength characteristics of the modified soil is investigated by using Distinct Element Method (DEM). It was shown that the developed model was effective way to estimate deformation-strength characteristics. Moreover, it was confirmed that the modified soil had high earthquake resistance.

  3. Influence of Soil Humic and Fulvic Acid on the Activity and Stability of Lysozyme and Urease

    NARCIS (Netherlands)

    Li, Yan; Tan, WenFeng; Koopal, Luuk K.; Wang, MingXia; Liu, Fan; Norde, Willem

    2013-01-01

    Humic substances (HS), including humic acids (HA) and fulvic acids (FA), are important components of soil systems. HS form strong complexes with oppositely charged proteins, which will lead to changes in the enzyme activity. The effect of soil HS on the activity and stability of two enzymes was

  4. Stability and instability on Maya Lowlands tropical hillslope soils

    Science.gov (United States)

    Beach, Timothy; Luzzadder-Beach, Sheryl; Cook, Duncan; Krause, Samantha; Doyle, Colin; Eshleman, Sara; Wells, Greta; Dunning, Nicholas; Brennan, Michael L.; Brokaw, Nicholas; Cortes-Rincon, Marisol; Hammond, Gail; Terry, Richard; Trein, Debora; Ward, Sheila

    2018-03-01

    Substantial lake core and other evidence shows accelerated soil erosion occurred in the Maya Lowlands of Central America over ancient Maya history from 3000 to 1000 years ago. But we have little evidence of the wider network of the sources and sinks of that eroded sediment cascade. This study begins to solve the mystery of missing soil with new research and a synthesis of existing studies of tropical forest soils along slopes in NW Belize. The research aim is to understand soil formation, long-term human impacts on slopes, and slope stability over time, and explore ecological implications. We studied soils on seven slopes in tropical forest areas that have experienced intensive ancient human impacts and those with little ancient impacts. All of our soil catenas, except for one deforested from old growth two years before, contain evidence for about 1000 years of stable, tropical forest cover since Maya abandonment. We characterized the physical, chemical, and taxonomic characteristics of soils at crest-shoulder, backslopes, footslopes, and depression locations, analyzing typical soil parameters, chemical elements, and carbon isotopes (δ13C) in dated and undated sequences. Four footslopes or depressions in areas of high ancient occupation preserved evidence of buried, clay-textured soils covered by coarser sediment dating from the Maya Classic period. Three footslopes from areas with scant evidence of ancient occupation had little discernable deposition. These findings add to a growing corpus of soil toposequences with similar facies changes in footslopes and depressions that date to the Maya period. Using major elemental concentrations across a range of catenas, we derived a measure (Ca + Mg) / (Al + Fe + Mn) of the relative contributions of autochthonous and allochthonous materials and the relative age of soil catenas. We found very low ratios in clearly older, buried soils in footslopes and depressions and on slopes that had not undergone ancient Maya erosion. We

  5. [Phytotoxic activity of chernozem saprophytic micromycetes: specificity, sorption and stability of phytotoxins in soil].

    Science.gov (United States)

    Svistova, I D; Shcherbakov, A P; Frolova, L O

    2003-01-01

    Micromycetes of the complex of typical chernozem saprotrophic fungi released phytotoxic metabolites into medium. The metabolites displayed their phytotoxic activities directly in soil. Evaluation of the toxicities, range of biological effects activities, and stabilities of phytotoxins in soil and the rates of their biodegradation allowed the species that can serve as indicators of chernozem microbial toxicosis to be selected, namely, Aspergillus clavatus, Fusarium solani, Talaromyces flavus, Penicillium rubrum, and P. funiculosum.

  6. Stabilization and incorporation into biomass of specific plant carbons during biodegradation in soil

    International Nuclear Information System (INIS)

    Stott, D.E.; Kassim, G.; Jarrell, W.M.; Martin, J.P.; Haider, K.; Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig

    1983-01-01

    The effect of soil type and incubation period on the biodegradation, incorporation into biomass, and stabilization in humus of 14 C-labeled cornstalk and/or wheat straw lignin, polysaccharide, and protein fractions were followed for one year. After 6 months, 56-68%, 6-21%, 71-81%, 63-75%, and 56-68% from wheat straw and from the lignin, polysaccharide, and protein fraction of wheat straw had been lost as CO 2 , respectively. Loss of CO 2 increased only slightly with further incubation. Greater amounts of CO 2 , especially during the early incubation stages, were evolved from neutral and alkaline soils (pH 7.0, 7.4, 7.8) than from acid soils (pH 5.0, 5.5). After one year, a major portion of the residual C from lignin was recovered in the humic acid fraction, relatively small amounts, 5 to 17% were lost upon acid hydrolysis, and generally <1% was found present in the biomass. Lesser amounts of the polysaccharide and protein carbons were incorporated into the humic acid, 17-20% and 16-27% respectively. Relatively greater amounts of the residual carbons of the polysaccharide and protein were incorporated into the biomass, 4.9-7.8% and 4.6-13.4%, respectively and higher percentages were lost upon acid hydrolysis, 56 to 81%. The results for the whole wheat straw were very similar to those of the protein fraction. Overall, more residual C was stabilized into humic acid in the acid soils than in the neutral soils. (orig.)

  7. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Dermatas, D.; Meng, X. [Stevens Inst. of Technology, Hoboken, NJ (United States)

    1995-12-01

    Pozzolanic-based stabilization/solidification (S/S) is an effective, yet economic technological alternative to immobilize heavy metals in contaminated soils and sludges. Fly ash waste materials were used along with quicklime (CaO) to immobilize lead, trivalent and hexavalent chromium present in contaminated clayey sand soils. The degree of heavy metal immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as controlled extraction experiments. These leaching test results along with X-ray diffraction (XRD), scanning electron microscope and energy dispersive x-ray (SEM-EDX) analyses were also implemented to elucidate the mechanisms responsible for immobilization of the heavy metals under study. Finally, the reusability of the stabilized waste forms in construction applications was also investigated by performing unconfined compressive strength and swell tests. Results suggest that the controlling mechanism for both lead and hexavalent chromium immobilization is surface adsorption, whereas for trivalent chromium it is hydroxide precipitation. Addition of fly ash to the contaminated soils effectively reduced heavy metal leachability well below the non-hazardous regulatory limits. However, quicklime addition was necessary in order to attain satisfactory immobilization levels. Overall, fly ash addition increases the immobilization pH region for all heavy metals tested, and significantly improves the stress-strain properties of the treated solids, thus allowing their reuse as readily available construction materials. The only potential problem associated with this quicklime/fly ash treatment is the excessive formation of the pozzolanic product ettringite in the presence of sulfates. Ettringite, when brought in contact with water, may cause significant swelling and subsequent deterioration of the stabilized matrix. Addition of minimum amounts of barium hydroxide was shown to effectively eliminate ettringite formation.

  8. Decomposition of heterogeneous organic matterand its long-term stabilization in soils

    Science.gov (United States)

    Sierra, Carlos A.; Harmon, Mark E.; Perakis, Steven S.

    2011-01-01

    Soil organic matter is a complex mixture of material with heterogeneous biological, physical, and chemical properties. Decomposition models represent this heterogeneity either as a set of discrete pools with different residence times or as a continuum of qualities. It is unclear though, whether these two different approaches yield comparable predictions of organic matter dynamics. Here, we compare predictions from these two different approaches and propose an intermediate approach to study organic matter decomposition based on concepts from continuous models implemented numerically. We found that the disagreement between discrete and continuous approaches can be considerable depending on the degree of nonlinearity of the model and simulation time. The two approaches can diverge substantially for predicting long-term processes in soils. Based on our alternative approach, which is a modification of the continuous quality theory, we explored the temporal patterns that emerge by treating substrate heterogeneity explicitly. The analysis suggests that the pattern of carbon mineralization over time is highly dependent on the degree and form of nonlinearity in the model, mostly expressed as differences in microbial growth and efficiency for different substrates. Moreover, short-term stabilization and destabilization mechanisms operating simultaneously result in long-term accumulation of carbon characterized by low decomposition rates, independent of the characteristics of the incoming litter. We show that representation of heterogeneity in the decomposition process can lead to substantial improvements in our understanding of carbon mineralization and its long-term stability in soils.

  9. A Survey of Soil Enzyme Activities along Major Roads in Beijing: The Implications for Traffic Corridor Green Space Management

    Directory of Open Access Journals (Sweden)

    Tianxin Li

    2015-10-01

    Full Text Available Soil quality is critical to the management of urban green space, in particular, along traffic corridors where traffic-related air pollution is significant. Soil quality can be evaluated by soil enzyme activities, which show quick responses to both natural and anthropogenic disturbances. In this study, we investigated three soil enzyme activities (i.e., dehydrogenase, catalase and urease along the major roads in urban areas of Beijing. Results show the activities of dehydrogenase, catalase and urease in urban samples were 58.8%, 68.2% and 48.5% less than the rural sample, respectively. The content of fluorescent amino acids as indicators of microbial activities was also consistently lower in urban samples than the rural. We observed two times greater exposure of particulate material along the roadsides in urban areas than rural areas. Although traffic air pollutants provide some nutrient sources to stimulate the URE activity, the exposure to traffic-related air pollution leads to the substantial decrease in enzyme activities. There were significant negative correlations for exposure to PM10 with DHA (r = −0.8267, p = 0.0017 and CAT (r = −0.89, p = 0.0002 activities. For the urban soils URE activity increased with the increasing of PM. We conclude that the degraded soil quality can negatively affect the target of developing plants and green spaces along the traffic corridors to mitigate the traffic impact. This study suggests the investigation of integrated strategies to restore the soil quality, reinforce the ecological service functions of green spaces along the traffic corridors and reduce the traffic pollutants.

  10. Experimental study of water fluxes in a residential area: 2. Road infiltration, runoff and evaporation

    Science.gov (United States)

    Ragab, R.; Rosier, P.; Dixon, A.; Bromley, J.; Cooper, J. D.

    2003-08-01

    Lack of accurate data has led some hydrologists and city planners to assume that urban infiltration is zero and runoff is 100% of the rainfall. These assumptions lead to an over estimation of road runoff volume and an underestimation of direct recharge to groundwater, which is already rising under some UK cities. This study investigates infiltration and runoff processes and quantifies the percentage of rainfall that contributes to storm drainage, and that which infiltrates through different types of road surface. Access tubes were installed for measuring soil water content using a neutron probe in three car parks, a road and a grass site at the Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford. Storm drainage was recorded at the exit of the Thamesmead Estate in Crowmarsh Gifford, just before the drain joins the River Thames at Wallingford. Rainfall and water table depth were also recorded. Weekly measurements of soil moisture content indicated that the top 40 cm layer is not influenced by water-table fluctuations and, therefore, positive changes in soil moisture could be attributed to infiltration of rainfall through the surface. Depending on the nature of the surface, subsurface layers, level of traffic, etc., between 6 and 9% of rainfall was found to infiltrate through the road surfaces studied. The storm drainage generated by road runoff revealed a flow pattern similar to that of the receiving watercourse (River Thames) and increased with the increase of infiltration and soil water content below the road surface. The ratio of runoff to rainfall was 0·7, 0·9 and 0·5 for annual, winter (October-March) and summer (April-September) respectively. As the results of the infiltration indicated that 6 to 9% of annual rainfall infiltrates through the road surface, this means that evaporation represents, 21-24% of annual rainfall, with more evaporation taking place during summer than winter.

  11. Role of water repellency in aggregate stability of cultivated soils under simulated raindrop impact

    Science.gov (United States)

    Kořenková, Lucia; Matúš, Peter

    2015-07-01

    Soil aggregate stability (AS) is an important indicator of soil physical quality. For the purpose of this research it was hypothesized that particular properties such as water repellency (WR) influence soil aggregation and AS. Directly after sampling, WR was detected for three soils, after a week of air-drying two of these soils still showed some resistance to penetration by a water drop placed on the surface (WDPT test). The study examines AS of air-dried texturally different aggregates of size 0.25-0.5 mm taken from surface layers (5-15 cm depth) of six agriculturally used soils. The procedure involves exposure of soil aggregates to direct impact of water drops. Results showed that soil AS increases in order: cutanic Luvisol (siltic) Chernozem < calcic mollic Fluvisol < mollic grumic Vertisol (pellic) < mollic Fluvisol (calcaric) < gleyic Fluvisol (eutric). Gradual increase in AS can be explained by the increase in soil organic matter content and its hydrophobic properties. Although WR has been most commonly observed in soils under forests and grass cover, the results confirmed that cultivated soils may also create water-stable aggregates, especially in the case when their organic matter induces WR under particular moisture conditions.

  12. Assessment of Susceptibility to Liquefaction of Saturated Road Embankment Subjected to Dynamic Loads

    Science.gov (United States)

    Borowiec, Anna; Maciejewski, Krzysztof

    2014-03-01

    Liquefaction has always been intensely studied in parts of the world where earthquakes occur. However, the seismic activity is not the only possible cause of this phenomenon. It may in fact be triggered by some human activities, such as constructing and mining or by rail and road transport. In the paper a road embankment built across a shallow water reservoir is analyzed in terms of susceptibility to liquefaction. Two types of dynamic loadings are considered: first corresponding to an operation of a vibratory roller and second to an earthquake. In order to evaluate a susceptibility of soil to liquefaction, a factor of safety against triggering of liquefaction is used (FSTriggering). It is defined as a ratio of vertical effective stresses to the shear stresses both varying with time. For the structure considered both stresses are obtained using finite element method program, here Plaxis 2D. The plastic behavior of the cohesionless soils is modeled by means of Hardening Soil (HS) constitutive relationship, implemented in Plaxis software. As the stress tensor varies with time during dynamic excitation, the FSTriggering has to be calculated for some particular moment of time when liquefaction is most likely to occur. For the purposes of this paper it is named a critical time and established for reference point at which the pore pressures were traced in time. As a result a factor of safety distribution throughout embankment is generated. For the modeled structure, cyclic point loads (i.e., vibrating roller) present higher risk than earthquake of magnitude 5.4. Explanation why considered structure is less susceptible to earthquake than typical dam could lay in stabilizing and damping influence of water, acting here on both sides of the slope. Analogical procedure is applied to assess liquefaction susceptibility of the road embankment considered but under earthquake excitation. Only the higher water table is considered as it is the most unfavorable. Additionally the

  13. Metal immobilization and phosphorus leaching after stabilization of pyrite ash contaminated soil by phosphate amendments.

    Science.gov (United States)

    Zupančič, Marija; Lavrič, Simona; Bukovec, Peter

    2012-02-01

    In this study we would like to show the importance of a holistic approach to evaluation of chemical stabilization using phosphate amendments. An extensive evaluation of metal stabilization in contaminated soil and an evaluation of the leaching of phosphorus induced after treatment were performed. The soil was highly contaminated with Cu (2894 mg kg(-1)), Zn (3884 mg kg(-1)), As (247 mg kg(-1)), Cd (12.6 mg kg(-1)) and Pb (3154 mg kg(-1)). To immobilize the metals, mixtures of soil with phosphate (from H(3)PO(4) and hydroxyapatite (HA) with varying ratios) were prepared with a constant Pb : P molar ratio of 1: 10. The acetic acid extractable concentration of Pb in the mixture with the highest amount of added phosphoric acid (n(H(3)PO(4)) : n(HA) = 3 : 1) was reduced to 1.9% (0.62 mg L(-1)) of the extractable Pb concentration in the untreated soil, but the content of water extractable phosphorus in the samples increased from 0.04 mg L(-1) in the untreated soil sample up to 14.3 mg L(-1) in the same n(H(3)PO(4)) : n(HA) = 3 : 1 mixture. The high increase in arsenic mobility was also observed after phosphate addition. The PBET test showed phosphate induced reduction in Pb bioavailability. In attempting to stabilize Pb in the soil with the minimum treatment-induced leaching of phosphorus, it was found that a mixture of soil with phosphate addition in the molar ratio of H(3)PO(4) : HA of 0.75 : 1 showed the most promising results, with an acetic acid extractable Pb concentration of 1.35 mg L(-1) and a water extractable phosphorus concentration of 1.76 mg L(-1). The time-dependent leaching characteristics of metals and phosphorus for this mixture were evaluated by a column experiment, where irrigation of the soil mixture with the average annual amount of precipitation in Slovenia (1000 mm) was simulated. The phosphorus concentration in the leachates decreased from 2.60 mg L(-1) at the beginning of irrigation to 1.00 mg L(-1) at the end.

  14. Crop residue stabilization and application to agricultural and degraded soils: A review.

    Science.gov (United States)

    Medina, Jorge; Monreal, Carlos; Barea, José Miguel; Arriagada, César; Borie, Fernando; Cornejo, Pablo

    2015-08-01

    Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem.

    Science.gov (United States)

    Chiquoine, Lindsay P; Abella, Scott R; Bowker, Matthew A

    2016-06-01

    Restoring biological soil crusts (biocrusts) in degraded drylands can contribute to recovery of ecosystem functions that have global implications, including erosion resistance and nutrient cycling. To examine techniques for restoring biocrusts, we conducted a replicated, factorial experiment on recently abandoned road surfaces by applying biocrust inoculation (salvaged and stored dry for two years), salvaged topsoil, an abiotic soil amendment (wood shavings), and planting of a dominant perennial shrub (Ambrosia dumosa). Eighteen months after treatments, we measured biocrust abundance and species composition, soil chlorophyll a content and fertility, and soil resistance to erosion. Biocrust addition significantly accelerated biocrust recovery on disturbed soils, including increasing lichen and moss cover and cyanobacteria colonization. Compared to undisturbed controls, inoculated plots had similar lichen and moss composition, recovered 43% of total cyanobacteria density, had similar soil chlorophyll content, and exhibited recovery of soil fertility and soil stability. Inoculation was the only treatment that generated lichen and moss cover. Topsoil application resulted in partial recovery of the cyanobacteria community and soil properties. Compared to untreated disturbed plots, topsoil application without inoculum increased cyanobacteria density by 186% and moderately improved soil chlorophyll and ammonium content and soil stability. Topsoil application produced 22% and 51% of the cyanobacteria density g⁻¹ soil compared to undisturbed and inoculated plots, respectively. Plots not treated with either topsoil or inoculum had significantly lower cyanobacteria density, soil chlorophyll and ammonium concentrations, and significantly higher soil nitrate concentration. Wood shavings and Ambrosia had no influence on biocrust lichen and moss species recovery but did affect cyanobacteria composition and soil fertility. Inoculation of severely disturbed soil with native

  16. Recycling of waste spent catalyst in road construction and masonry blocks.

    Science.gov (United States)

    Taha, Ramzi; Al-Kamyani, Zahran; Al-Jabri, Khalifa; Baawain, Mahad; Al-Shamsi, Khalid

    2012-08-30

    Waste spent catalyst is generated in Oman as a result of the cracking process of petroleum oil in the Mina Al-Fahl and Sohar Refineries. The disposal of spent catalyst is of a major concern to oil refineries. Stabilized spent catalyst was evaluated for use in road construction as a whole replacement for crushed aggregates in the sub-base and base layers and as a partial replacement for Portland cement in masonry blocks manufacturing. Stabilization is necessary as the waste spent catalyst exists in a powder form and binders are needed to attain the necessary strength required to qualify its use in road construction. Raw spent catalyst was also blended with other virgin aggregates, as a sand or filler replacement, for use in road construction. Compaction, unconfined compressive strength and leaching tests were performed on the stabilized mixtures. For its use in masonry construction, blocks were tested for unconfined compressive strength at various curing periods. Results indicate that the spent catalyst has a promising potential for use in road construction and masonry blocks without causing any negative environmental impacts. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Physico-chemical and mineralogical properties influencing water-stability of aggregates of some Italian surface soils

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.; Bazzoffi, P.; Unamba Oparah, I.

    1994-06-01

    A laboratory study was conducted to determine the relationship between physical, chemical and mineralogical properties of some surface soils (developed in north central Italy) and the stability of their aggregates to water. The index of stability used is the mean-weight diameter of water-stable aggregates (MWD). The ratio of total sand to clay which correlated negatively with MWD (r=-0.638) is the physical property which explained most of the variability in aggregate stability. The chemical properties which correlated best with aggregate stability are FeO (r=0.671), CaO (R=0.635), CaCO 3 (r=0.651) and SiO 2 (r=-0.649). Feldspar, chlorite and calcite are the minerals which influence MWD most, with respective ''r'' values of -0.627, 0.588 and 0.550. The best-fit model developed from soil physical properties explained 59% of the variation in MWD with a standard error of 0.432, that developed from chemical properties explained 97% of the variation in MWD with a standard error of 0.136, whereas the model developed from mineralogical properties explained 78% of the variation in MWD with a standard error of 0.222. Also the closest relationship between measured and model-predicted MWD was obtained with the chemical properties-based model (r=0.985), followed by the mineralogical properties-based model (r=0.884) and then the physical properties-based model (r=0.656). This indicates that the most reliable inference on the stability of these soils in water can be made from a knowledge of the amount and composition of their chemical constituents. (author). 32 refs, 1 fig., 9 tabs

  18. Impact of natural and calcined starfish (Asterina pectinifera) on the stabilization of Pb, Zn and As in contaminated agricultural soil.

    Science.gov (United States)

    Lim, Jung Eun; Sung, Jwa Kyung; Sarkar, Binoy; Wang, Hailong; Hashimoto, Yohey; Tsang, Daniel C W; Ok, Yong Sik

    2017-04-01

    Metal stabilization using soil amendments is an extensively applied, economically viable and environmentally friendly remediation technique. The stabilization of Pb, Zn and As in contaminated soils was evaluated using natural starfish (NSF) and calcined starfish (CSF) wastes at different application rates (0, 2.5, 5.0 and 10.0 wt%). An incubation study was conducted over 14 months, and the efficiency of stabilization for Pb, Zn and As in soil was evaluated by the toxicity characteristic leaching procedure (TCLP) test. The TCLP-extractable Pb was reduced by 76.3-100 and 91.2-100 % in soil treated with NSF and CSF, respectively. The TCLP-extractable Zn was also reduced by 89.8-100 and 93.2-100 % in soil treated with NSF and CSF, respectively. These reductions could be associated with the increased metal adsorption and the formation of insoluble metal precipitates due to increased soil pH following application of the amendments. However, the TCLP-extractable As was increased in the soil treated with NSF, possibly due to the competitive adsorption of phosphorous. In contrast, the TCLP-extractable As in the 10 % CSF treatment was not detectable because insoluble Ca-As compounds might be formed at high pH values. Thermodynamic modeling by visual MINTEQ predicted the formation of ettringite (Ca 6 Al 2 (SO 4 ) 3 (OH) 12 ·26H 2 O) and portlandite (Ca(OH) 2 ) in the 10 % CSF-treated soil, while SEM-EDS analysis confirmed the needle-like structure of ettringite in which Pb was incorporated and stabilized in the 10 % CSF treatment.

  19. Equilibrium leaching of toxic elements from cement stabilized soil.

    Science.gov (United States)

    Voglar, Grega E; Leštan, Domen

    2013-02-15

    The toxicity characteristics leaching procedure (TCLP) is commonly used to assess the efficiency of solidification/stabilization (S/S) of pollutants in wastes, despite recent objections to this method. In this study, formulations of 7, 10, 15 and 20% (w/w) of calcium aluminate cement (CAC) and sulfate resistant Portland cement (SRC) were used for S/S of soil from brownfield contaminated with 43,149, 10,115, 7631, 6130, 90, 82 mg kg(-1) of Zn, Pb, Cu, As, Cd and Ni, respectively. CAC produced S/S soil monoliths of higher mechanical strength (up to 7.65 N mm(-2)). Mass-transfer analysis indicated surface wash-off as a mechanism of toxic elements release, and equilibrium leaching as a crucial parameter of S/S efficiency assessment. In the expected range of field soil pH after S/S (pH 7-9), the TCLP gave markedly different results than the multi-point pH equilibrium leaching method (using nine targeted pH values): up to 2953-, 94-, 483-, 1.3-, 27- and 1.5-times more Zn, Pb, Cu, As, Cd and Ni, respectively, was determined in the TCLP leachate. S/S with CAC reduced leachability of toxic elements more effectively than SRC. Our results indicate that, under given field conditions, the TCLP significantly underrates the efficiency of S/S of contaminated soil with cementitious binders. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Enhanced precipitation promotes decomposition and soil C stabilization in semiarid ecosystems, but seasonal timing of wetting matters

    Science.gov (United States)

    Campos, Xochi; Germino, Matthew; de Graaff, Marie-Anne

    2017-01-01

    AimsChanging precipitation regimes in semiarid ecosystems will affect the balance of soil carbon (C) input and release, but the net effect on soil C storage is unclear. We asked how changes in the amount and timing of precipitation affect litter decomposition, and soil C stabilization in semiarid ecosystems.MethodsThe study took place at a long-term (18 years) ecohydrology experiment located in Idaho. Precipitation treatments consisted of a doubling of annual precipitation (+200 mm) added either in the cold-dormant season or in the growing season. Experimental plots were planted with big sagebrush (Artemisia tridentata), or with crested wheatgrass (Agropyron cristatum). We quantified decomposition of sagebrush leaf litter, and we assessed organic soil C (SOC) in aggregates, and silt and clay fractions.ResultsWe found that: (1) increased precipitation applied in the growing season consistently enhanced decomposition rates relative to the ambient treatment, and (2) precipitation applied in the dormant season enhanced soil C stabilization.ConclusionsThese data indicate that prolonged increases in precipitation can promote soil C storage in semiarid ecosystems, but only if these increases happen at times of the year when conditions allow for precipitation to promote plant C inputs rates to soil.

  1. Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud: a field experiment.

    Science.gov (United States)

    Wang, Yangyang; Li, Fangfang; Song, Jian; Xiao, Ruiyang; Luo, Lin; Yang, Zhihui; Chai, Liyuan

    2018-04-12

    Red mud (RM) was used to remediate heavy metal-contaminated soils. Experiments with two different dosages of RM added to soils were carried out in this study. It was found that soil pH increased 0.3 and 0.5 unit with the dosage of 3 and 5% (wt%), respectively. At the dosage of 5%, the highest stabilization efficiencies for Cd, Pb, Cu and Zn reached 67.95, 64.21, 43.73 and 63.73%, respectively. The addition of RM obviously transferred Cd from the exchangeable fraction to the residual fraction. Meanwhile, in comparison with the control (no RM added), it reduced 24.38, 49.20, 19.42 and 8.89% of Cd, Pb, Cu and Zn in wheat grains at the RM addition dosage of 5%, respectively. At the same time, the yield of wheat grains increased 17.81 and 24.66% at the RM addition dosage of 3 and 5%, respectively. Finally, the addition of RM did not change the soil bacterial community. These results indicate that RM has a great potential in stabilizing heavy metals in calcareous agricultural soils.

  2. REGULATION OF deflationary stability OF Polissya agrolandscapes soil cover

    Directory of Open Access Journals (Sweden)

    Barvinskyi A.V.

    2017-08-01

    Full Text Available In the Ukrainian Polissya soil cover is dominated by sod-podzolic soils, that due tolight particle size distribution and relatively small amount of humus, have weak aggregationand low resistance to deflation processes. Soil deflation here is often in the spring, when arable land have the lowest level of vegetation protection.Drywall southeast winds dry up much upper layers of soil, destroy its structure and cause local deflation, particularly in the areas of drained peat and mineral soils of sandyand sandy-loamygranulometric composition.Display of local deflation on the same land for several years, leading to significant loss of soil. The intensity of these hazards depends largely deflationary stability of the soil, of which the main criterion in the literature defined mechanical strength (cohesion of soil aggregates and main indicator - content in soil aggregates with a diameter greater than 1 mm. Based on experimental data obtained in the Kyiv Polissya proven ability to adjust the deflationarydurability of sod-podzolic sandy-loamy soils by rational combining fertilizer plants and chemical reclamation.Increasing the strength of the structure at the joint application of lime and fertilizers due, based on a close correlation, positive changes in soil absorbing complex caused by calcium of lime and humus content increase and improve its quality composition: accumulationof calcium humates that play a leading role in grouting units. In addition, liming of unsaturated bases soils prevents the destruction and removal of these most valuable in agriculturally parts thereof: silt fraction.When applying lime on organo-mineral background of relative content increased by 8,2-18,4%, and the application of some fertilizers - on the contrary, decreased by 10,2%. Liming of acid soils increases the "grain rate structuring" at 0,3-0,6% compared to organo-mineral background, while the separate application of fertilizers reduces it to 2,1-2,7%. Comparison of

  3. [Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain].

    Science.gov (United States)

    Li, Jian-Lin; Jiang, Chang-Sheng; Hao, Qing-Ju

    2014-12-01

    Soil aggregates have the important effect on soil fertility, soil quality and the sustainable utilization of soil, and they are the mass bases of water and fertilizer retention ability of soil and the supply or release of soil nutrients. In this paper, in order to study the impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain, we separated four land use types of soil, which are woodland, abandoned land, orchard and sloping farmland by wet sieving method, then we got the proportion of large macroaggregates (> 2 mm), small macroaggregates (0.25-2 mm), microaggregates (53 μm-0.25 mm) and silt + clay (soil depth of 0-60 cm and calculated the total content of organic carbon of all aggregates fraction in each soil. The results showed that reclamation of woodland will lead to fragmentation of macroaggregates and deterioration of soil structure, and the proportion of macroaggrgates (> 0.25 mm) were 44.62% and 32.28% respectively in the soils of orchard and sloping farmland, which reduced 38.58% (P soil fraction from silt + clay to large macroaggregates and small macroaggregates, so it will improve the soil structure. MWD (mean weight diameter) and GMD (geometric mean diameter) are important indicators of evaluating the stability of soil aggregates. We found the MWD and GWD in soil depth of 0-60 cm in orchards and sloping farmland were significantly lower than those in woodland (P soil aggregates, and they will be separated more easily by water. However, after changing the sloping farmland to abandoned land will enhance the stability of soil aggregates, and improve the ability of soil to resist external damage. The organic carbon content in each soil aggregate of four land use types decreased with the increase of soil depth. In soil depth of 0-60 cm, the storage of organic carbon of large macroaggregates in each soil are in orders of woodland (14.98 Mg x hm(-2)) > abandoned land (8.71 Mg x hm(-2)) > orchard (5.82 Mg x hm(-2

  4. Potential Carbon Transport: Linking Soil Aggregate Stability and Sediment Enrichment for Updating the Soil Active Layer within Intensely Managed Landscapes

    Science.gov (United States)

    Wacha, K.; Papanicolaou, T.; Abban, B. K.; Wilson, C. G.

    2014-12-01

    Currently, many biogeochemical models lack the mechanistic capacity to accurately simulate soil organic carbon (SOC) dynamics, especially within intensely managed landscapes (IMLs) such as those found in the U.S. Midwest. These modeling limitations originate by not accounting for downslope connectivity of flowpathways initiated and governed by landscape processes and hydrologic forcing, which induce dynamic updates to the soil active layer (generally top 20-30cm of soil) with various sediment size fractions and aggregates being transported and deposited along the downslope. These hydro-geomorphic processes, often amplified in IMLs by tillage events and seasonal canopy, can greatly impact biogeochemical cycles (e.g., enhanced mineralization during aggregate breakdown) and in turn, have huge implications/uncertainty when determining SOC budgets. In this study, some of these limitations were addressed through a new concept, Potential Carbon Transport (PCT), a term which quantifies a maximum amount of material available for transport at various positions of the landscape, which was used to further refine a coupled modeling framework focused on SOC redistribution through downslope/lateral connectivity. Specifically, the size fractions slaked from large and small aggregates during raindrop-induced aggregate stability tests were used in conjunction with rainfall-simulated sediment enrichment ratio (ER) experiments to quantify the PCT under various management practices, soil types and landscape positions. Field samples used in determining aggregate stability and the ER experiments were collected/performed within the historic Clear Creek Watershed, home of the IML Critical Zone Observatory, located in Southeastern Iowa.

  5. Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic.

    Science.gov (United States)

    Drahota, Petr; Raus, Karel; Rychlíková, Eva; Rohovec, Jan

    2017-06-15

    Historical mining activities in the village of Kaňk (in the northern part of the Kutná Hora ore district, Czech Republic) produced large amounts of mine wastes which contain significant amounts of metal(loid) contaminants such as As, Cu, Pb, and Zn. Given the proximity of residential communities to these mining residues, we investigated samples of mine waste (n = 5), urban soil (n = 6), and road dust (n = 5) with a special focus on the solid speciation of As, Cu, Pb, and Zn using a combination of methods (XRD, SEM/EDS, oxalate extractions), as well as on in vitro bioaccessibility in simulated gastric and lung fluids to assess the potential exposure risks for humans. Bulk chemical analyses indicated that As is the most important contaminant in the mine wastes (~1.15 wt%), urban soils (~2900 mg/kg) and road dusts (~440 mg/kg). Bioaccessible fractions of As were quite low (4-13%) in both the simulated gastric and lung fluids, while the bioaccessibility of metals ranged between waste materials and highly contaminated urban soil. Based on the risk assessment, arsenic was found to be the element posing the greatest risk.

  6. The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: implication for chemical stabilization of metals and metalloids.

    Science.gov (United States)

    Ettler, Vojtěch; Tomášová, Zdeňka; Komárek, Michael; Mihaljevič, Martin; Šebek, Ondřej; Michálková, Zuzana

    2015-04-09

    An amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH 3-8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH>5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Rock-Eval analysis of French forest soils: the influence of depth, soil and vegetation types on SOC thermal stability and bulk chemistry

    Science.gov (United States)

    Soucemarianadin, Laure; Cécillon, Lauric; Baudin, François; Cecchini, Sébastien; Chenu, Claire; Mériguet, Jacques; Nicolas, Manuel; Savignac, Florence; Barré, Pierre

    2017-04-01

    Soil organic matter (SOM) is the largest terrestrial carbon pool and SOM degradation has multiple consequences on key ecosystem properties like nutrients cycling, soil emissions of greenhouse gases or carbon sequestration potential. With the strong feedbacks between SOM and climate change, it becomes particularly urgent to develop reliable routine methodologies capable of indicating the turnover time of soil organic carbon (SOC) stocks. Thermal analyses have been used to characterize SOM and among them, Rock-Eval 6 (RE6) analysis of soil has shown promising results in the determination of in-situ SOC biogeochemical stability. This technique combines a phase of pyrolysis followed by a phase of oxidation to provide information on both the SOC bulk chemistry and thermal stability. We analyzed with RE6 a set of 495 soils samples from 102 permanent forest sites of the French national network for the long-term monitoring of forest ecosystems (''RENECOFOR'' network). Along with covering pedoclimatic variability at a national level, these samples include a range of 5 depths up to 1 meter (0-10 cm, 10-20 cm, 20-40 cm, 40-80 cm and 80-100 cm). Using RE6 parameters that were previously shown to be correlated to short-term (hydrogen index, HI; T50 CH pyrolysis) or long-term (T50 CO2 oxidation and HI) SOC persistence, and that characterize SOM bulk chemical composition (oxygen index, OI and HI), we tested the influence of depth (n = 5), soil class (n = 6) and vegetation type (n = 3; deciduous, coniferous-fir, coniferous-pine) on SOM thermal stability and bulk chemistry. Results showed that depth was the dominant discriminating factor, affecting significantly all RE6 parameters. With depth, we observed a decrease of the thermally labile SOC pool and an increase of the thermally stable SOC pool, along with an oxidation and a depletion of hydrogen-rich moieties of the SOC. Soil class and vegetation type had contrasted effects on the RE6 parameters but both affected significantly T

  8. Integrated Geophysical Investigation of the Causes of Road ...

    African Journals Online (AJOL)

    ADOWIE PERE

    failure of the road is caused mainly by geologic sequence and structures such as clayey sub- grade soil under the ... structures and other zones of weakness controlled by regional fractures and ..... Highway Unpublished M.Sc. Project. Obafemi.

  9. Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification.

    Science.gov (United States)

    Li, Jiang-Shan; Beiyuan, Jingzi; Tsang, Daniel C W; Wang, Lei; Poon, Chi Sun; Li, Xiang-Dong; Fendorf, Scott

    2017-09-01

    Geogenic sources of arsenic (As) have aroused extensive environmental concerns in many countries. This study evaluated the vertical profiles, leaching characteristics, and surface characteristics of As-containing soils in Hong Kong. The results indicated that elevated levels of As (486-1985 mg kg -1 ) were mostly encountered in deeper layer (15-20 m below ground). Despite high concentrations, geogenic As displayed a high degree of chemical stability in the natural geochemical conditions, and there was minimal leaching of As in various leaching tests representing leachability, mobility, phytoavailability, and bioaccessibility. Microscopic/spectroscopic investigations suggested that As in the soils was predominantly present as As(V) in a coordination environment with Fe oxides. Sequential extraction indicated that the majority of As were strongly bound with crystalline Fe/Al oxides and residual phase. Yet, uncertainties may remain with potential As exposure through accidental ingestion and abiotic/biotic transformation due to changes in geochemical conditions. Hence, the effectiveness of stabilization/solidification (S/S) treatment was evaluated. Although the leached concentrations of As from the S/S treated soils increased to varying extent in different batch leaching tests due to the increase in alkalinity, the mobility of As was considered very low based on semi-dynamic leaching test. This suggested that As immobilization in the S/S treated soils was predominantly dependent on physical encapsulation by interlocking framework of hydration products, which could also prevent potential exposure and allow controlled utilization of S/S treated soils as monolithic materials. These results illustrate the importance of holistic assessment and treatment/management of As-containing soils for enabling flexible future land use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Assessment of chemical and biochemical stabilization of organic C in soils from the long-term experiments at Rothamsted (UK).

    Science.gov (United States)

    De Nobili, M; Contin, M; Mahieu, N; Randall, E W; Brookes, P C

    2008-01-01

    Biological and chemical stabilization of organic C was assessed in soils sampled from the long-term experiments at Rothamsted (UK), representing a wide range of carbon inputs and managements by extracting labile, non-humified organic matter (NH) and humic substances (HS). Four sequentially extracted humic substances fractions of soil organic matter (SOM) were extracted and characterized before and after a 215-day laboratory incubation at 25 degrees C from two arable soils, a woodland soil and an occasionally stubbed soil. The fractions corresponded to biochemically stabilised SOM extracted in 0.5M NaOH (free fulvic acids (FA) and humic acids (HA)) and chemically plus biochemically stabilised SOM extracted from the residue with 0.1M Na4P2O7 plus 0.1M NaOH (bound FA and HA). Our aim was to investigate the effects of chemical and biochemical stabilization on carbon sequestration. The non-humic to humic (NH/H) C ratio separated the soils into two distinct groups: arable soils (unless fertilised with farmyard manure) had an NH/H C ratio between 1.05 and 0.71, about twice that of the other soils (0.51-0.26). During incubation a slow, but detectable, decrease in the NH/H C ratio occurred in soils of C input equivalent or lower to 4Mgha(-1)y(-1), whereas the ratio remained practically constant in the other soils. Before incubation the free to bound humic C ratio increased linearly (R2=0.91) with C inputs in the soils from the Broadbalk experiment and decreased during incubation, showing that biochemical stabilization is less effective than chemical stabilization in preserving humic C. Changes in delta13C and delta15N after incubation were confined to the free FA fractions. The delta13C of free FA increased by 1.48 and 0.80 per thousand, respectively, in the stubbed and woodland soils, indicating a progressive biological transformation. On the contrary, a decrease was observed for the bound FA of both soils. Concomitantly, a Deltadelta15N of up to +3.52 per thousand was

  11. Stability Behavior and Thermodynamic States of Iron and Manganese in Sandy Soil Aquifer, Manukan Island, Malaysia

    International Nuclear Information System (INIS)

    Lin, Chin Yik; Abdullah, Mohd. Harun; Musta, Baba; Praveena, Sarva Mangala; Aris, Ahmad Zaharin

    2011-01-01

    A total of 20 soil samples were collected from 10 boreholes constructed in the low lying area, which included ancillary samples taken from the high elevation area. Redox processes were investigated in the soil as well as groundwater in the shallow groundwater aquifer of Manukan Island, Sabah, Malaysia. Groundwater samples (n = 10) from each boreholes were also collected in the low lying area to understand the concentrations and behaviors of Fe and Mn in the dissolved state. This study strives to obtain a general understanding of the stability behaviors on Fe and Mn at the upper unsaturated and the lower-saturated soil horizons in the low lying area of Manukan Island as these elements usually play a major role in the redox chemistry of the shallow groundwater. Thermodynamic calculations using PHREEQC showed that the groundwater samples in the study area are oversaturated with respect to goethite, hematite, Fe(OH) 3 and undersaturated with respect to manganite and pyrochroite. Low concentrations of Fe and Mn in the groundwater might be probably due to the lack of minerals of iron and manganese oxides, which exist in the sandy aquifer. In fact, high organic matters that present in the unsaturated horizon are believed to be responsible for the high Mn content in the soil. It was observed that the soil samples collected from high elevation area (BK) comprises considerable amount of Fe in both unsaturated (6675.87 mg/kg) and saturated horizons (31440.49 mg/kg) compared to the low Fe content in the low lying area. Based on the stability diagram, the groundwater composition lies within the stability field for Mn 2+ and Fe 2+ under suboxic condition and very close to the FeS/Fe 2+ stability boundary. This study also shows that both pH and Eh values comprise a strong negative value thus suggesting that the redox potential is inversely dependent on the changes of pH.

  12. Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China

    Directory of Open Access Journals (Sweden)

    Jiguang Zhang

    2016-07-01

    Full Text Available To determine the effects of straw incorporation on soil nutrients, enzyme activity, and aggregates in tobacco fields, we conducted experiments with different amounts of wheat and maize straw in Zhucheng area of southeast Shandong province for three years (2010–2012. In the final year of experiment (2012, straw incorporation increased soil organic carbon (SOC and related parameters, and improved soil enzyme activity proportionally with the amount of straw added, except for catalase when maize straw was used. And maize straw incorporation was more effective than wheat straw in the tobacco field. The percentage of aggregates >2 mm increased with straw incorporation when measured by either dry or wet sieving. The mean weight diameter (MWD and geometric mean diameter (GMD in straw incorporation treatments were higher than those in the no-straw control (CK. Maize straw increased soil aggregate stability more than wheat straw with the same incorporation amount. Alkaline phosphatase was significantly and negatively correlated with soil pH. Sucrase and urease were both significantly and positively correlated with soil alkali-hydrolysable N. Catalase was significantly but negatively correlated with soil extractable K (EK. The MWD and GMD by dry sieving had significantly positive correlations with SOC, total N, total K, and EK, but only significantly correlated with EK by wet sieving. Therefore, soil nutrients, metabolic enzyme activity, and aggregate stability might be increased by increasing the SOC content through the maize or wheat straw incorporation. Moreover, incorporation of maize straw at 7500 kg·hm−2 was the best choice to enhance soil fertility in the tobacco area of Eastern China.

  13. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust

    International Nuclear Information System (INIS)

    Moon, Deok Hyun; Grubb, Dennis G.; Reilly, Trevor L.

    2009-01-01

    Stabilization/solidification (S/S) processes were utilized to immobilize selenium (Se) as selenite (SeO 3 2- ) and selenate (SeO 4 2- ). Artificially contaminated soils were prepared by individually spiking kaolinite, montmorillonite and dredged material (DM; an organic silt) with 1000 mg/kg of each selenium compound. After mellowing for 7 days, the Se-impacted soils were each stabilized with 5, 10 and 15% Type I/II Portland cement (P) and cement kiln dust (C) and then were cured for 7 and 28 days. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effectiveness of the S/S treatments. At 28 days curing, P doses of 10 and 15% produced five out of six TCLP-Se(IV) concentrations below 10 mg/L, whereas only the 15% C in DM had a TCLP-Se(IV) concentration 3 .H 2 O) and selenate substituted ettringite (Ca 6 Al 2 (SeO 4 ) 3 (OH) 12 .26H 2 O), respectively.

  14. Carbohydrates and thermal analysis reflects changes in soil organic matter stability after forest expansion on abandoned grassland

    Science.gov (United States)

    Guidi, Claudia; Vesterdal, Lars; Cannella, David; Leifeld, Jens; Gianelle, Damiano; Rodeghiero, Mirco

    2014-05-01

    Grassland abandonment, followed by progressive forest expansion, is the dominant land-use change in the Southern Alps, Europe. Land-use change can affect not only the amount of organic matter (OM) in soil but also its composition and stability. Our objective was to investigate changes in organic matter properties after forest expansion on abandoned grasslands, combining analysis of carbohydrates, indicative of labile OM compounds with prevalent plant or microbial origin, with thermal analysis. Thermal analysis was used as a rapid assessment method for the characterization of SOM stability. A land-use gradient was investigated in four land-use types in the subalpine area of Trentino region, Italy: i) managed grassland, mown and fertilized for the past 100 years; ii) grassland abandoned since 10 years, with sparse shrubs and Picea abies saplings; iii) early-stage forest, dominated by P. abies and established on a grassland abandoned around 1970; iv) old forest, dominated by Fagus sylvatica and P. abies. Mineral soil was sampled at three subplots in each land use type with eight soil cores, which were subsequently pooled by depth (0-5 cm, 5-10 cm, 10-20 cm). Sugars were extracted from bulk soil samples through acid hydrolysis with H2SO4 (0.5 M). The analytical composition of sugar monomers was performed with HPAEC technology (Dionex ICS5000), equipped with PAD-detection. Thermal stability was assessed with a differential scanning calorimeter DSC100, heating soil samples up to 600°C at a heating rate of 10°C min-1 in synthetic air. Peak height (W g OC-1) of 1st DSC exotherm, dominated by burning of labile OM compounds, was used as thermal stability index. In the abandoned grassland, carbohydrates compounds accounted for a greater proportion of soil OC than in other land use types. Microbially derived sugars, as rhamnose and galactose, were more abundant in managed and abandoned grasslands compared with early-stage and old forest. The amount of thermally labile sugars

  15. Contamination of environment in the road surroudings - impact of road salting on Norway spruce (Picea abies) and Scots pine (Pinus sylvestris)

    Science.gov (United States)

    Hegrová, Jitka; Steiner, Oliver; Goessler, Walter; Tanda, Stefan; Anděl, Petr

    2017-09-01

    A comprehensive overview of the influence of transport on the environment is presented in this study. The complex analysis of soil and needle samples provides an extensive set of data, which presents elemental contamination of the environment near roads. Traffic pollution (including winter road treatment) has a significant negative influence on our environment. Besides sodium and chlorine from winter maintenance many other elements are emitted into the environment. Three possible sources of contamination are assumed for environmental contamination evaluation: car emission, winter maintenance and abrasion from breaks and clutches. The chemical analysis focused on the description of samples from inorganic point of view. The influence of the contamination potential on the sodium and chlorine content in the samples of 1st year-old and 2nd year-old needles of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) is discussed. Additional soil samples were taken from each sampling site and analyzed to get insight in the sodium and chlorine distribution. Statistical evaluation was used for interpretation of complex interaction patterns between element concentrations in different aged needles based on localities character including distance from the road and element concentration in soils. This species of needles were chosen because of its heightened sensitivity towards salinization. The study was conducted in different parts of the Czech Republic. The resulting database is a source of valuable information about the influence of transport on the environment.

  16. Stabilization of organic matter in the raised-bed soils of tidal swamplands is influenced by the types and the amounts of organic matter application

    Directory of Open Access Journals (Sweden)

    A R Saidy

    2015-05-01

    Full Text Available Farmers in tidal swamplands annually added organic matter (OM onto the raised beds to maintain organic matter contents and thereby maintain soil productivity of the raised beds. This experiment aimed to study the influence of the types and the amounts of OM on the stabilization of organic matter in the raised-bed soils. Four types of OM: rice straw, eceng gondok (Eichornia crassipes, purun tikus  (Eleocharis dulcis and mixed  rice straw-eceng gondok were added to a 27-year raised bed soil with 4 different rates: 0, 0.5, 1.0 and 2.0  of maximum sorption capacity (Qmax, and the OM stabilization was quantified after 10 weeks of OM addition.  Results of this study showed with the exception of rice straw, OM addition to soil resulted in increases in the mineralization of soil OM thereby inducing priming effect. Addition of rice straw at rate of 0.5 of Qmax resulted in stabilization of 46% added OM, while only 30% and 37% of added OM was stabilized when OM was added to soils at rates of 1.0 and 2.0 Qmax, respectively.  This study showed that the stabilization of OM in raised bed soils were influenced by the chemical composition of OM and the amount of added OM.

  17. Stabilization of organic matter in the raised-bed soils of tidal swamplands is influenced by the types and the amounts of organic matter application

    Directory of Open Access Journals (Sweden)

    A R Saidy

    2015-03-01

    Full Text Available Farmers in tidal swamplands annually added organic matter (OM onto the raised beds to maintain organic matter contents and thereby maintain soil productivity of the raised beds. This experiment aimed to study the influence of the types and the amounts of OM on the stabilization of organic matter in the raised-bed soils. Four types of OM: rice straw, eceng gondok (Eichornia crassipes, purun tikus  (Eleocharis dulcis and mixed  rice straw-eceng gondok were added to a 27-year raised bed soil with 4 different rates: 0, 0.5, 1.0 and 2.0  of maximum sorption capacity (Qmax, and the OM stabilization was quantified after 10 weeks of OM addition.  Results of this study showed with the exception of rice straw, OM addition to soil resulted in increases in the mineralization of soil OM thereby inducing priming effect. Addition of rice straw at rate of 0.5 of Qmax resulted in stabilization of 46% added OM, while only 30% and 37% of added OM was stabilized when OM was added to soils at rates of 1.0 and 2.0 Qmax, respectively.  This study showed that the stabilization of OM in raised bed soils were influenced by the chemical composition of OM and the amount of added OM.

  18. Aplicações de misturas solo-"grits" em estradas florestais: resistência mecânica via CBR Application of soil-grits mixtures in forest roads: mechanical strength via CBR test

    Directory of Open Access Journals (Sweden)

    Reginaldo Sérgio Pereira

    2006-08-01

    Full Text Available Analisaram-se as potencialidades de emprego do resíduo sólido industrial "grits", oriundo da indústria de celulose, como agente estabilizante de dois solos da Zona da Mata Norte de Minas Gerais, Brasil, para fins de emprego em estradas florestais. Os solos estudados englobaram um residual maduro, de textura argilo-areno-siltosa, e um residual jovem, de textura areno-silto-argilosa. Para tanto, prepararam-se misturas envolvendo solos e o resíduo nos quantitativos de 4, 8, 12, 16, 20, 24 e 28% em relação às massas de solo seco. Fez-se uso do ensaio CBR para avaliar as características de resistência e expansão das misturas. A avaliação dos resultados do estudo permite concluir que o resíduo "grits" apresentou potencial significativo como estabilizante dos solos, observando-se que: (i a adição de "grits" aos solos foi responsável por ganhos nas suas resistências mecânicas, obtendo-se melhores resultados com o solo de textura areno-silto-argilosa; (ii com relação à expansão medida no ensaio CBR, observaram-se pequenos acréscimos para o solo de textura argilo-areno-siltosa e decréscimos para o solo de textura areno-silto-argilosa, com aumentos no teor de "grits"; e (iii as misturas solo-"grits" não responderam bem ao aumento da energia de compactação, quanto aos parâmetros CBR e expansãoCBR.This paper is directed to forest road engineering applications, and address the potentialities of using an industrial solid waste from the cellulose industry, named grits, in the stabilization process of two soils from Zona da Mata Norte of Minas Gerais States, Brazil. Soil types tested comprised a mature residual silty-sandy-clay and a young residual clayey-silty-sand. Soil-grits mixtures were prepared at 4, 8, 12, 16, 20, 24 and 28 % stabilizer contents referred to soil dry masses. Mechanical strength and swelling parameters were determined by CBR (California Bearing Ratio tests. The laboratory testing program data supported that

  19. Collapse settlement in compacted soils

    CSIR Research Space (South Africa)

    Booth, AR

    1977-01-01

    Full Text Available Research into collapse settlement in compacted soils is described, with special reference to recent cases in Southern Africa where collapse settlement occurred in road embankments following wetting of the soil. The laboratory work described...

  20. A study of the effectiveness of the use of gypsum and volcanic ash against the stability of clay soil in terms of UCT and CBR values

    Science.gov (United States)

    Roesyanto; Iskandar, R.; Hastuty, IP; Lubis, AIU

    2018-02-01

    Soil stabilization is an effort to improve engineering properties of soil. The conventional soil stabilization is by adding additives to the soil such as Portland cement, lime, and bitumen. The clay stabilization research was done by adding gypsum and volcanic ash. The research purposes were to find out the value of engineering properties of clay due to the addition of 2% gypsum and 2% - 15% volcanic ash. The soil was classified as Clay - Low Plasticity (CL) based on USCS and was classified as A-7-6 (10) based on AASHTO classification system. The UCT values of original soil and original soil plus 2% gypsum were 1.40 kg/cm2 and 1.66 kg/cm2 respectively. The CBR soaked and unsoaked values of original soil were 4.44% and 6.28% correspondingly. Meanwhile, CBR soaked and CBR unsoaked values of original soil plus 2% gypsum were 6.74% and 8.02% respectively. The research results showed that the additives materials of gypsum and volcanic ash improved the engineering properties of clay. The UCT result from the stabilized soil by 2% gypsum and 10% volcanic ash gave value of 2.79 kg/cm2 (increased 99.28% from original soil). For CBR test, the most effective mixture were in variation of 2% gypsum and 9% volcanic ash which gave value of 9.07% (104.27% increase from original soil) for CBR soaked and 10.29% (63.85% increase from original soil) for CBR unsoaked. The stabilized soil with 2% gypsum and 9% volcanic ash was classified as CL based on USCS and was classified as A-6 (4) based on AASHTO classification system.

  1. COMPARATIVE ASSESSMENT OF RICE HUSK ASH, POWDERED GLASS AND CEMENT AS LATERITIC SOIL STABILIZERS

    Directory of Open Access Journals (Sweden)

    Adebisi Ridwan

    2016-10-01

    Full Text Available This paper compares the stabilizing effects of three different materials, namely: rice husk ash, powdered glass, and cement on the properties of lateritic soil. The basic properties of the lateritic soil were first obtained through colour, moisture content determination, specific gravity, particle size distribution and Atterberg limits tests. Each of the stabilizing materials was then mixed with the lateritic soil in varying percentages of 2.5%, 5%, 7.5%, 10%, 12.5% and 15% by weight of the soil. Thereafter, compaction and California bearing ratio (CBR tests were carried out on the sample mixes to determine the effects of the materials on the lateritic soil. Chemical tests were also carried out on the samples to determine their percentage oxides composition. The compaction test showed that the highest maximum dry densities (MDD obtained for the mixed samples were 2.32 g/cm3 (at 2.5% cement addition, 2.28g/cm3 (at 5% powdered glass (PG addition and 2.18 g/cm3 (at 5% rice husk ash (RHA addition with corresponding optimum moisture contents (OMC of 10.06%, 14.3% and 12.31% respectively. The CBR tests showed that the CBR values increased in all cases as the materials were added with those of the cement and powdered glass giving the highest values and showing close semblance under unsoaked conditions. The chemical test showed that the significant oxides present in the cement, powdered glass and rice husk ash were CaO (53.60%, SiO2 (68.45% and SiO2 (89.84% respectively.

  2. Can electronic stability control replace studded tyres?

    DEFF Research Database (Denmark)

    Elvik, Rune

    2015-01-01

    Highlights • Electronic stability control can substitute studded tyres. • This makes it easier to discourage the use of studded tyres. • A certain level of use of studded tyres makes roads less slippery.......Highlights • Electronic stability control can substitute studded tyres. • This makes it easier to discourage the use of studded tyres. • A certain level of use of studded tyres makes roads less slippery....

  3. Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products.

    Science.gov (United States)

    Chang, Yao-Tsung; Hsi, Hsing-Cheng; Hseu, Zeng-Yei; Jheng, Shao-Liang

    2013-01-01

    In situ immobilization of heavy metals using reactive or stabilizing materials is a promising solution for soil remediation. Therefore, four agronomic and industrial by-products [wood biochar (WB), crushed oyster shell (OS), blast furnace slag (BFS), and fluidized-bed crystallized calcium (FBCC)] and CaCO3 were added to acidic soil (Cd = 8.71 mg kg(-1)) at the rates of 1%, 2%, and 4% and incubated for 90 d. Chinese cabbage (Brassica chinensis L.) was then planted in the soil to test the Cd uptake. The elevation in soil pH caused by adding the by-products produced a negative charge on the soil surface, which enhanced Cd adsorption. Consequently, the diethylenetriamine pentaacetic acid (DTPA)-extractable Cd content decreased significantly (P soil. These results from the sequential extraction procedure indicated that Cd converted from the exchangeable fraction to the carbonate or Fe-Mn oxide fraction. The long-term effectiveness of Cd immobilization caused by applying the 4 by-products was much greater than that caused by applying CaCO3. Plant shoot biomass clearly increased because of the by-product soil amendment. Cd concentration in the shoots was soil.

  4. Scaling roads and wildlife: The Cinderella principle

    Science.gov (United States)

    Bissonette, J.A.

    2002-01-01

    It is clear that a reduction in both direct and indirect effects of roads and road networks must be the goal of management agencies. However, increased permeability of roaded landscapes can only be achieved by up-front planning and subsequent mitigative actions. The key is to understand that roads must be made permeable to the movement of animals. More profoundly, ecosystem services, i.e., clean water, clean air, uncontaminated soil, natural landscapes, recreation opportunities, abundant wildlife, and life sustaining ecological processes must not be seriously impacted. In other words, quality of life as measured by ecosystem services should be a major component of the planning process when roads are constructed or improved. Mitigative structures exist to increase permeability of roads. Wildlife overpasses and underpasses, often referred to as ecoducts or green bridges, with associated structures to enable larger animals to exit the road right of way, e.g., earthen escape ramps (BISSONETTE and HAMMER, 2001), various culvert designs for smaller animals including badger pipes and amphibian and reptile tunnels, and fish ladders are but a small sampling of the structures already in place around the world. What is needed is attention to the big picture. Landscapes need to be reconnected and made more permeable. Responsible agencies and organizations need to be aggressive about promoting mitigations and a conservation ethic into road planning. Only with a broad based effort between a concerned public, a database to work from, and a willingness of responsible agencies, will the now very large virtual footprint of roads and road networks be reduced to more closely approximate the physical footprint. By embracing the Cinderella Principle of making the virtual shoe fit more closely the actual physical footprint of roads, we will be able to achieve a closer connection with ecological harmony with its resultant effect of abundant wildlife.

  5. Testing Single and Combinations of Amendments for Stabilization of Metals in Contrasting Extremely Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Siebielec G.

    2013-04-01

    Full Text Available Metals can be stabilized by soil amendments that increase metals adsorption or alter their chemical forms. Such treatments may limit the risk related to the contamination through reduction of metal transfer to the food chain (reduction of metal uptake by plants and its availability to soil organisms and metals migration within the environment. There is a need for experiments comparing various soil amendments available at reasonable amounts under similar environmental conditions. The other question is whether all components of soil environment or soil functions are similarly protected after remediation treatment. We conducted a series of pot studies to test some traditional and novel amendments and their combinations. The treatments were tested for several highly Zn/Cd/Pb contaminated soils. Among traditional amendments composts were the most effective – they ensured plant growth, increased soil microbial activity, reduced Cd in earthworms, reduced Pb bioaccessibility and increased share of unavailable forms of Cd and Pb.

  6. Geology and Slope Stability Analysis using Markland Method on Road Segment of Piyungan – Patuk, Sleman and Gunungkidul Regencies, Yogyakarta Special Region, Indonesia

    Directory of Open Access Journals (Sweden)

    B. N. Kresna Citrabhuwana

    2016-06-01

    Full Text Available Road segment of Piyungan - Patuk is a part of Yogyakarta - Wonosari highway, fairly dense traversed by vehicles, from bicycles to buses and trucks. This road crosses hilly topography, causing its sides bounded by quite steep slopes or cliffs. Steep slopes and cliffs are potential to create mass movement. Geologic condition of the surrounding area is built of various volcanic lithology such as breccia, siltstone, sandstone and tuff. There are also geologic structures of joints and faults that affect the stability of the slopes around this road. Slope stability analysis for road segment of Piyungan – Patuk was conducted by applying Markland method. Laboratory testings were done to determine the mechanical and physical properties of rocks that influence the slope strength. Results of the testings show that cohesion and friction angle of volcanic breccia are c = 20.0441 kg/cm2 and  = 56.38˚; cohesion and friction angle of sandstone are cr = 0.6862 kg/cm2, cp = 4.6037 kg/cm2, r = 26.37˚, and p = 32.79˚; cohesion and friction angle of tuff is cr = 1.677 kg/cm2, cp = 7.5553 kg/cm2, r = 17.85˚, and p = 24.19˚. Based on the analysis, some slopes in the study area are potential to move. The movements can be classified into rock fall, debris fall, and rock slides with the sliding plane categorized as planar and wedge. On the other hand, landslide prone zones in the study area can be divided into: Areas with high vulnerability, Areas with moderate vulnerability, and Areas with low vulnerability. Areas prone to landslide should be managed by a series of measures, among others understand natural phenomena, recognizing symptoms of avalanche, attempting to reduce the risk, and land use regulation. The management activities should involve all stakeholders in an integrated manner of implementation.

  7. Stabilization of heavy metals in soil using two organo-bentonites.

    Science.gov (United States)

    Yu, Kai; Xu, Jian; Jiang, Xiaohong; Liu, Cun; McCall, Wesley; Lu, Jinlong

    2017-10-01

    Stabilization of Cu, Zn, Cd, Hg, Cr and As in soil using tetramethylammonium (TMA) and dodecyltrimethylammonium (DTMA) modified bentonites (T-Bents and D-Bents) as amendments was investigated. Toxicity characteristic leaching procedure (TCLP) was used to quantify the metal mobility after soil treatment. The structural parameters of modified bentonites, including the BET surface area, basal spacing and zeta potential were obtained as a function of the TMA and DTMA loading at 40, 80, 120, 160 and 200% of the bentonite's cation exchange capacity, respectively. The results indicated that the characteristics of the organo-bentonites fundamentally varied depending on the species and concentration of modifiers loaded on bentonite. T-Bents and D-Bents manifested distinct immobilization effectiveness towards various metals. In association with the organo-bentonite characteristics, the main interactive mechanisms for Cu, Zn and Cd proceeded via cation exchange, Hg proceeded via physical adsorption and partitioning, Cr and As proceeded via specific adsorption and electrostatic attraction, respectively. This study provided operational and mechanistic basis for optimizing the organic clay synthesis and selecting as the appropriate amendment for remediation of heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Prioritizing Road Treatments using the Geomorphic Roads Analysis and Inventory Package (GRAIP) to Improve Watershed Conditions in the Wall Creek Watershed, Oregon

    Science.gov (United States)

    Day, K. T.; Black, T.; Clifton, C.; Luce, C.; McCune, S.; Nelson, N.

    2010-12-01

    the current rate. These data are being used by the Umatilla National Forest to prioritize road rehabilitation activities including storm risk reduction and road decommissioning, and to move toward an ecologically and economically sustainable road system. The highest sediment-delivering road segments were evaluated in 2010 to prioritize stabilization and storm damage risk reduction projects. Approximately 30 km of hydrologically connected road segments will be proposed for treatments including closure, decommissioning, and stabilization activities. Once complete, these improvements would result in the reduction of about 7,000 kg/year of fine sediment delivered to the fluvial system from the road network, or a third of the total road contribution to stream sedimentation. Methods and results presented are part of federal land management agency involvement in Total Maximum Daily Load development in the John Day Basin. The project is a collaborative effort with funding and support from the Environmental Protection Agency, Bureau of Land Management, and Oregon Department of Environmental Quality.

  9. Plume Mitigation for Mars Terminal Landing: Soil Stabilization Project

    Science.gov (United States)

    Hintze, Paul E.

    2014-01-01

    Kennedy Space Center (KSC) has led the efforts for lunar and Martian landing site preparation, including excavation, soil stabilization, and plume damage prediction. There has been much discussion of sintering but until our team recently demonstrated it for the lunar case there was little understanding of the serious challenges. Simplistic sintering creates a crumbly, brittle, weak surface unsuitable for a rocket exhaust plume. The goal of this project is to solve those problems and make it possible to land a human class lander on Mars, making terminal landing of humans on Mars possible for the first time.

  10. How far can we prevent further physical soil degradation in the future?

    Science.gov (United States)

    Horn, Rainer

    2017-04-01

    Arable as well as forest soils are exposed to increasing external stresses, which coincide with a further and deeper reaching soil degradation, which may result in an aggravation of hydraulic, gaseous, thermal but also physicochemical and chemical soil functions. The decline coincides with a simultaneous reduction in useable land areas and worsens food production amongst others. Therefore, it is mandatory, that stable soil structure from the surface down to depth prevents soil compaction, sustains water infiltration, reduces rates of soil erosion by water and wind in each case to the minimum possible under the soil, terrain, land use, and climatic conditions in which the soils occur. It improves organic carbon storage in soils and optimizes microbial activity and functions. These benefits coincide with sustainable soil properties and soil management systems, which prevent - deep mechanical stress propagation which can cause irreversible soil deformation, - loss of surface soil layers with coinciding organic and mineral nutrient pool available for microbial processing and plant uptake, - Truncation of soil horizons, or damage on private and public infrastructures (roads, houses) and downstream fields. In order to prevent negative impacts on soils, it is recommended, that A) concerning prevention of soil compaction - stresses applied to soils shall not exceed the mechanical soil stability to maintain the actual functioning of chemical, physical and biological processes and to utilize their resilience (i.e. the elasticity), - land use management strategies have to be related to the actual soil properties in order to optimize plant growth, yield, filtering and buffering of infiltrating water, and carbon sequestration. B) soil erosion by - water, wind, and tillage is counteracted by an adequate surface soil stability including a site specific residue management (e.g. conservation tillage), controlled traffic and harvesting, ecological grassland use strategies (e

  11. Probabilistic evaluation method of stability of ground and slope considering spatial randomness of soil properties

    International Nuclear Information System (INIS)

    Ohtori, Yasuki

    2004-01-01

    In the JEAG4601-1987 (Japan Electric Association Guide for earthquake resistance design), either the conventional deterministic method or probabilistic method is used for evaluating the stability of ground foundations and surrounding slopes in nuclear power plants. The deterministic method, in which the soil properties of 'mean ± coefficient x standard deviation' is adopted for the calculations, is generally used in the design stage to data. On the other hand, the probabilistic method, in which the soil properties assume to have probabilistic distributions, is stated as a future method. The deterministic method facilitates the evaluation, however, it is necessary to clarify the relation with the probabilistic method. In this paper, the relationship between the deterministic and the probabilistic methods are investigated. To do that, a simple model that can take into account the dynamic effect of structures and a simplified method for accounting the spatial randomness are proposed and used for the studies. As the results of studies, it is found that the strength of soil properties is most importation factor for the stability of ground structures and the probability below the safety factor evaluated with the soil properties of mean -1.0 x standard deviation' by the deterministic method is of much lower. (author)

  12. Stabilization of ancient organic matter in deep buried paleosols

    Science.gov (United States)

    Marin-Spiotta, E.; Chaopricha, N. T.; Mueller, C.; Diefendorf, A. F.; Plante, A. F.; Grandy, S.; Mason, J. A.

    2012-12-01

    Buried soils representing ancient surface horizons can contain large organic carbon reservoirs that may interact with the atmosphere if exposed by erosion, road construction, or strip mining. Paleosols in long-term depositional sites provide a unique opportunity for studying the importance of different mechanisms on the persistence of organic matter (OM) over millennial time-scales. We report on the chemistry and bioavailability of OM stored in the Brady soil, a deeply buried (7 m) paleosol in loess deposits of southwestern Nebraska, USA. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying. The Brady soil represents a dark brown horizon enriched in C relative to loess immediately above and below. Spanning much of the central Great Plains, this buried soil contains large C stocks due to the thickness of its A horizon (0.5 to 1 m) and wide geographic extent. Our research provides a unique perspective on long-term OM stabilization in deep soils using multiple analytical approaches. Soils were collected from the Brady soil A horizon (at 7 m depth) and modern surface A horizons (0-15 cm) at two sites for comparison. Soils were separated by density fractionation using 1.85 g ml-1 sodium polytungstate into: free particulate organic matter (fPOM) and aggregate-occluded (oPOM) of two size classes (large: >20 μm, and small: separated into sand, silt, and clay size fractions. The distribution and age of C among density and particle-size fractions differed between surface and Brady soils. We isolated the source of the characteristic dark coloring of the Brady soil to the oPOM-small fraction, which also contained 20% of the total organic C pool in the Brady soil. The oPOM-small fraction and the bulk soil in the middle of the Brady A horizon had 14C ages of 10,500-12,400 cal yr BP, within the time that the soil was actively forming at the land surface. Surface soils showed modern ages. Lipid analyses of the Brady soil indicate a predominance of

  13. Intervention criterion and control research for active front steering with consideration of road adhesion

    Science.gov (United States)

    Wu, Xiaojian; Zhou, Bing; Wen, Guilin; Long, Lefei; Cui, Qingjia

    2018-04-01

    A multi-objective active front steering (AFS) control system considering the road adhesion constraint on vehicle stability is developed using the sliding mode control (SMC) method. First, an identification function combined with the relationship between the yaw rate and the steering angle is developed to determine whether the tyre state is linear or nonlinear. On this basis, an intervention criterion for the AFS system is proposed to improve vehicle handling and stability in emergent conditions. A sideslip angle stability domain enveloped by the upper, lower, left, and right boundaries, as well as the constraint of road adhesion coefficient, is constructed based on the ? phase-plane method. A dynamic weighting coefficient to coordinate the control of yaw rate and sideslip angle, and a control strategy that considers changing control objectives based on the desired yaw rate, the desired sideslip angle, and their proportional weights, are proposed for the SMC controller. Because road adhesion has a significant effect on vehicle stability and to meet the control algorithm's requirement of real-time access to vehicle states, a unscented Kalman filter-based state observer is proposed to estimate the adhesion coefficient and the required states. Finally, simulations are performed using high and low road adhesion conditions in a Matlab/Simulink environment, and the results show that the proposed AFS control system promptly intervenes according to the intervention criterion, effectively improving vehicle handling and stability.

  14. Análise técnica e avaliação de trechos experimentais de misturas solo-lama de cal com vistas a aplicações em estradas florestais Technical analysis and evaluation of experimental field road sites of soil-whitewash mud mixtures for forest ROAD applications

    Directory of Open Access Journals (Sweden)

    Carlos Cardoso Machado

    2007-04-01

    Full Text Available Trechos rodoviários experimentais são ferramentas úteis para a avaliação da eficiência de material de construção de estradas. Neste artigo, apresenta-se uma avaliação do desempenho de trechos experimentais construídos com camadas de solos estabilizados com o resíduo sólido industrial denominado lama de cal, que é um subproduto gerado em indústrias de celulose. Com base nos resultados de ensaios de resistência mecânica de um extenso programa de laboratório, em que se realizaram ensaios de caracterização dos solos e estudos de dosagem das misturas, foram construídos três trechos experimentais na região de Alagoinhas, Bahia, Brasil. Em uma avaliação qualitativa desses trechos experimentais, o melhor desempenho de campo foi associado àquele construído com a mistura contendo 70% de solo cascalho de primeira e 30% do resíduo lama de cal.Experimental field road test sites are useful technical tools for evaluating the efficiency of road engineering materials. This paper is directed to the evaluation of performance of experimental field road test sites built using mixtures of in-place soils and industrial waste from the cellulose industry named whitewash mud. Analysis of data from an extensive laboratory testing program including soils geotechnical characterization and mixtures mechanical strength tests led to the construction of three experimental field road test sites in the municipality of Alagoinhas, Bahia State, Brazil. Data from a qualitative evaluation of these sites under field traffic conditions support that best performance can be associated to the road pilot test site built using mixture contents of 70 % of first class gravel and 30 % of whitewash mud.

  15. Engineering properties of stabilized subgrade soils for implementation of the AASHTO 2002 pavement design guide.

    Science.gov (United States)

    2009-06-01

    A comprehensive laboratory study was undertaken to determine engineering properties of cementitiously stabilized common subgrade soils in Oklahoma for the design of roadway pavements in accordance with the AASHTO 2002 Mechanistic-Empirical Pavement D...

  16. Assessment of environmental stability of agroserous soil according to indicator of energy potential of organic substances

    Science.gov (United States)

    Murtazina, S. G.; Gaffarova, L. G.; Murtazin, MG

    2018-01-01

    Studies of the group and fractional composition of humus have determineded that the long-term use of soil (for 20 years) without the use of fertilizers (control) leads to a decrease in the content of humic acids and fulvic acids relative to the initial soil, which indicates an increase in mineralization of the soil humus. Under the influence of a long application of high doses of mineral fertilizers, the content of mobile fractions of humic and fulvic acids in the field rotation increases in the humus content. In systems of agriculture that are not balanced by organic matter, which are predominant in most farms of the Republic of Tatarstan, the use of very high doses of potassium fertilizers is not justified energetically. To compensate for losses of humus and its energy potential in calculating organic fertilizers on backgrounds with high doses of mineral fertilizers, the humification coefficients of organic residues should be increased by 30-40% during the rotational period of 5-6 years, which will reduce the loss of energy reserves and thereby improve the ecological stability of soils and the stability of agricultural landscapes

  17. Traffic-related distribution of antimony in roadside soils.

    Science.gov (United States)

    Földi, Corinna; Sauermann, Simon; Dohrmann, Reiner; Mansfeldt, Tim

    2018-06-01

    Vehicular emissions have become one of the main source of pollution of urban soils; this highlights the need for more detailed research on various traffic-related emissions and related distribution patterns. Since the banning of asbestos in the European Union, its substitution with antimony (Sb) in brake linings has led to increased inputs of this toxic metalloid to environmental compartments. The objective of this study was to provide detailed information about the spatial distribution patterns of Sb and to assess its mobility and bioavailability. Roadside soils along an arterial road (approx. 9000 vehicles per day) in Cologne (Germany) were studied along five transects, at four soil depths and at seven sampling points set at varying distances from the road (n = 140). For all samples, comprehensive soil characterization was performed and inverse aqua regia-extractable trace metal content was determined being pseudo-total contents. Furthermore, for one transect, also total Sb and a chemical sequential extraction procedure was applied (n = 28). Pseudo-total Sb for all transects decreased significantly with soil depth and distance from the road, reflecting a distribution pattern similar to that of other trace metals associated with brake lining emissions. Conversely, metals associated with exhaust emissions showed a convex distribution. The geochemical fractionation of Sb revealed the following trends: i) non-specifically sorbed Sb was <5%; ii) specifically sorbed Sb was only detected within 1 m distance from the road and decreased with depth; iii) Sb associated with poorly-crystalline Fe oxides decreased with distance from the road; and iv) content of Sb bounded to well-crystalline Fe oxides, and Sb present in the residual fraction remained relatively constant at each depth. Consequently, roadside soils appear to inhibit brake lining-related Sb contamination, with significant but rather low ecotoxicological potential for input into surface and groundwater

  18. Spatial Extent of the Impact of Transported Road Materials on the Ecological Function of Forested Landscapes

    Science.gov (United States)

    2012-08-16

    Roads have varied ecological impacts on the adjacent plant and soil environment due to physical and chemical disturbances resulting from roadway construction, roadside maintenance, and vehicle deposition. The two main areas influenced by a road are t...

  19. Minimizing total costs of forest roads with computer-aided design ...

    Indian Academy of Sciences (India)

    imum total road costs, while conforming to design specifications, environmental ..... quality, and enhancing fish and wildlife habitat, an appropriate design ..... Soil, Water and Timber Management: Forest Engineering Solutions in Response to.

  20. Stabilization of lead and copper contaminated firing range soil using calcined oyster shells and fly ash.

    Science.gov (United States)

    Moon, Deok Hyun; Park, Jae-Woo; Cheong, Kyung Hoon; Hyun, Seunghun; Koutsospyros, Agamemnon; Park, Jeong-Hun; Ok, Yong Sik

    2013-12-01

    A stabilization/solidification treatment scheme was devised to stabilize Pb and Cu contaminated soil from a firing range using renewable waste resources as additives, namely waste oyster shells (WOS) and fly ash (FA). The WOS, serving as the primary stabilizing agent, was pre-treated at a high temperature to activate quicklime from calcite. Class C FA was used as a secondary additive along with the calcined oyster shells (COS). The effectiveness of the treatment was evaluated by means of the toxicity characteristic leaching procedure (TCLP) and the 0.1 M HCl extraction tests following a curing period of 28 days. The combined treatment with 10 wt% COS and 5 wt% FA cause a significant reduction in Pb (>98 %) and Cu (>96 %) leachability which was indicated by the results from both extraction tests (TCLP and 0.1 M HCl). Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) analyses are used to investigate the mechanism responsible for Pb and Cu stabilization. SEM-EDX results indicate that effective Pb and Cu immobilization using the combined COS-FA treatment is most probably associated with ettringite and pozzolanic reaction products. The treatment results suggest that the combined COS-FA treatment is a cost effective method for the stabilization of firing range soil.