WorldWideScience

Sample records for stabilized scrubber sludge

  1. Separation of Flue-Gas Scrubber Sludge into Marketable Products

    International Nuclear Information System (INIS)

    1998-01-01

    The reduction of sulfur oxides from high sulfur coal burning utility companies has resulted in the production of huge quantities of wet flue-gas desulfurization scrubber sludge. A typical 400 MW power station burning a coal containing 3.5% sulfur by weight and using a limestone absorbent would produce approximately 177,000 tons (dry weight) of scrubber sludge per year. This brownish colored, finely divided material contains calcium sulfite (CaSO 3 · 1/2 H 2 O), calcium sulfate (CaSO 4 · 2H 2 O), unreacted limestone (CaCO 3 ), and various other impurities such as fly-ash and iron oxide particles. The physical separation of the components of scrubber sludge would result in the re-use of this material. The primary use would be conversion to a highly pure synthetic gypsum. This technical report concentrates on the effect of baffle configuration on the separation of calcium sulfite/sulfate from limestone. The position of the baffles as they related to the feed inlet, and the quantity of the baffles were examined. A clean calcium sulfite/sulfate (less than 2.0% limestone by weight) was achieved with the combination of water-only cyclone and horizontally baffled column

  2. Industry-Government-University Cooperative Research Program for the Development of Structural Materials from Sulfate-Rich FGD Scrubber Sludge

    Energy Technology Data Exchange (ETDEWEB)

    V. M. Malhotra; Y. P. Chugh

    2003-08-31

    The main aim of our project was to develop technology, which converts flue gas desulfurization (FGD) sulfate-rich scrubber sludge into value-added decorative materials. Specifically, we were to establish technology for fabricating cost effective but marketable materials, like countertops and decorative tiles from the sludge. In addition, we were to explore the feasibility of forming siding material from the sludge. At the end of the project, we were to establish the potential of our products by generating 64 countertop pieces and 64 tiles of various colors. In pursuit of our above-mentioned goals, we conducted Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) measurements of the binders and co-processed binders to identify their curing behavior. Using our 6-inch x 6-inch and 4-inch x 4-inch high pressure and high temperature hardened stainless steel dies, we developed procedures to fabricate countertop and decorative tile materials. The composites, fabricated from sulfate-rich scrubber sludge, were subjected to mechanical tests using a three-point bending machine and a dynamic mechanical analyzer (DMA). We compared our material's mechanical performance against commercially obtained countertops. We successfully established the procedures for the development of countertop and tile composites from scrubber sludge by mounting our materials on commercial boards. We fabricated more than 64 pieces of countertop material in at least 11 different colors having different patterns. In addition, more than 100 tiles in six different colors were fabricated. We also developed procedures by which the fabrication waste, up to 30-weight %, could be recycled in the manufacturing of our countertops and decorative tiles. Our experimental results indicated that our countertops had mechanical strength, which was comparable to high-end commercial countertop materials and contained substantially larger inorganic content than the commercial products. Our

  3. Oxidation of North Dakota scrubber sludge for soil amendment and production of gypsum. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hassett, D.J.; Moe, T.A.

    1997-10-01

    Cooperative Power`s Coal Creek Station (CCS) the North Dakota Industrial Commission, and the US Department of Energy provided funds for a research project at the Energy and Environmental Research Center. The goals of the project were (1) to determine conditions for the conversion of scrubber sludge to gypsum simulating an ex situ process on the laboratory scale; (2) to determine the feasibility of scaleup of the process; (3) if warranted, to demonstrate the ex situ process for conversion on the pilot scale; and (4) to evaluate the quality and handling characteristics of the gypsum produced on the pilot scale. The process development and demonstration phases of this project were successfully completed focusing on ex situ oxidation using air at low pH. The potential to produce a high-purity gypsum on a commercial scale is excellent. The results of this project demonstrate the feasibility of converting CCS scrubber sludge to gypsum exhibiting characteristics appropriate for agricultural application as soil amendment as well as for use in gypsum wallboard production. Gypsum of a purity of over 98% containing acceptable levels of potentially problematic constituents was produced in the laboratory and in a pilot-scale demonstration.

  4. Ammonia scrubber testing during IDMS SRAT and SME processing. Revision 1

    International Nuclear Information System (INIS)

    Lambert, D.P.

    1995-01-01

    This report summarizes results of the Integrated DWPF (Defense Waste Processing Facility) Melter System (IDMS) ammonia scrubber testing during the PX-7 run (the 7th IDMS run with a Purex type sludge). Operation of the ammonia scrubber during IDMS Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processing has been completed. The ammonia scrubber was successful in removing ammonia from the vapor stream to achieve NH3 concentrations far below the 10 ppM vapor exist design basis during SRAT processing. However, during SME processing, vapor NH3 concentrations as high as 450 ppM were measured exiting the scrubber. Problems during the SRAT and SME testing were vapor bypassing the scrubber and inefficient scrubbing of the ammonia at the end of the SME cycle (50% removal efficiency; 99.9% is design basis efficiency)

  5. Sludge Stabilization Campaign blend plan

    International Nuclear Information System (INIS)

    De Vries, M.L.

    1994-01-01

    This sludge stabilization blend plan documents the material to be processed and the order of processing for the FY95 Sludge Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing sludge. The source of the sludge is residual and glovebox floor sweepings from the production of material at the Plutonium Finishing Plant (PFP). The reactive sludge is currently being stored in various gloveboxes at PFP. There are two types of the plutonium bearing material that will be thermally stabilized in the muffle furnace: Plutonium Reclamation Facility (PRF) sludge and Remote Mechanical C (RMC) Line material

  6. Cylinder supplied ammonia scrubber testing in IDMS

    International Nuclear Information System (INIS)

    Lambert, D.P.

    1994-01-01

    This report summarizes the results of the off-line testing the Integrated DWPF Melter System (IDMS) ammonia scrubbers using ammonia supplied from cylinders. Three additional tests with ammonia are planned to verify the data collected during off-line testing. Operation of the ammonia scrubber during IDMS SRAT and SME processing will be completed during the next IDMS run. The Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) scrubbers were successful in removing ammonia from the vapor stream to achieve ammonia vapor concentrations far below the 10 ppM vapor exit design basis. In most of the tests, the ammonia concentration in the vapor exit was lower than the detection limit of the analyzers so results are generally reported as <0.05 parts per million (ppM). During SRAT scrubber testing, the ammonia concentration was no higher than 2 ppM and during SME testing the ammonia concentration was no higher than 0.05 m

  7. Cost effective treatment for wet FGD scrubber bleedoff

    Energy Technology Data Exchange (ETDEWEB)

    Janecek, K.F. [EIMCO Process Equipment Company, Salt Lake City, UT (United States); Kim, J.Y. [Samkook Corporation, Seoul (Korea, Democratic People`s Republic of)

    1994-12-31

    The dewatering of scrubber bleedoff gypsum is a thoroughly proven technology, whether for production of wallboard grade gypsum or environmentally responsible land fill. Careful review of the technology options will show which one is the most effective for the specific plant site. Likewise, a recipe for wastewater treatment for heavy metals removal can be found that will meet local regulatory limits. EIMCO has worldwide experience in FGD gypsum sludge dewatering and wastewater treatment. Contacting EIMCO can be the most important step toward a practical cost effective system for handling FGD scrubber bleed slurries.

  8. Synchronous municipal sewerage-sludge stabilization.

    Science.gov (United States)

    Bukuru, Godefroid; Jian, Yang

    2005-01-01

    A study on a pilot plant accomplishing synchronous municipal sewerage-sludge stabilization was conducted at a municipal sewerage treatment plant. Stabilization of sewerage and sludge is achieved in three-step process: anaerobic reactor, roughing filter and a microbial-earthworm-ecofilter. The integrated ecofilter utilizes an artificial ecosystem to degrade and stabilize the sewerage and sludge. When the hydraulic retention time(HRT) of the anaerobic reactor is 6 h, the hydraulic load(HL) of the bio-filter is 16 m3/(m2 x d), the HL of the eco-filter is 5 m3/(m2 x d), the recycle ratio of nitrified liquor is 1.5, the removal efficiency is 83%-89% for COD(Cr), 94%-96% for BOD5, 96%-98% for SS, and 76%-95% for NH3-N. The whole system realizes the zero emission of sludge, and has the characteristics of saving energy consumption and operational costs.

  9. Stabilization/solidification of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Boura, Panagiota; Katsioti, Margarita; Tsakiridis, Petros; Katsiri, Alexandra

    2003-07-01

    The main objective of this work is to investigate a viable alternative for the final disposal of sewage sludge from urban wastewater treatment plants by its use as an additive in developing new construction materials. For this purpose, several mixtures of sludge- cement and sludge-cement and jarosite/alunite precipitate were prepared. Jarosite/alunite precipitate is a waste product of a new hydrometallurgical process. Two kinds of sludge were used: primary sludge from Psyttalia Wastewater Treatment Plant, which receives a considerable amount of industrial waste, and biological sludge from Metamorphosi Wastewater Treatment Plant. Various percentages of these sludges were stabilized/solidified with Portland cement and Portland cement with jarosite/alunite. The specimens were tested by determination of compressive strength according to the methods described by European Standard EN 196. X-Ray Diffraction (XRD) analysis as well as Thermogravimetry-Differential Thermal Analysis (TG-DTA) were used to determine the hydration products in 28 days. Furthermore, Toxicity Characteristic Leaching Procedure test for heavy metals (TCLP), were carried out in order to investigate the environmental compatibility of these new materials. (author)

  10. Biomass stabilization in the anaerobic digestion of wastewater sludges

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C. [Universidad de Sevilla, Dept. de Ingenieria Quimica y Ambiental, Sevilla (Spain); Gutierrez, J.C. [Universidad Pablo de Olavide, Dept. de Ciencias Ambientales, Sevilla (Spain); Lebrato, J. [Universidad de Sevilla, Grupo Tratamiento de Aguas Residuales, Sevilla (Spain)

    2005-07-01

    Sludge stabilization processes include both volatile solid destruction and biomass stabilization. Traditionally, both processes have been considered together, in such a way that, when volatile solid destruction is achieved, the biomass is considered stabilized. In this study, volatile solids reduction and biomass stabilization in the anaerobic digestion of primary, secondary and mixed sludges from municipal wastewater treatment plants were researched in batch cultures by measurements of suspended solids and suspended lipid-phosphate. The estimated kinetic constants were higher in all sludge types tested for the biomass stabilization process, indicating that volatile solids destruction and biomass stabilization are not parallel processes, since the latter one is reached before the former. (Author)

  11. Changes on sewage sludge stability after greenhouse drying

    Science.gov (United States)

    Soriano-Disla, J. M.; Houot, S.; Imhoff, M.; Valentin, N.; Gómez, I.; Navarro-Pedreño, J.

    2009-04-01

    The progressive implementation of the Urban Waste Water Treatment Directive 91/271/EEC in all the European member states is increasing the quantities of sewage sludge requiring disposal. Sludge application onto cultivated soils as organic fertilizers allows the recycling of nutrients. The application of only dehydrated sludges has generated many problems including unpleasant odours and difficult management (regarding transport and application) related to their high water content. One way to overcome these problems, in a cheap and clean way, is the drying of sludges using the energy of the sun under greenhouse conditions. This drying may affect sludge chemical characteristics including organic matter stability and nitrogen availability, parameters which have to be controlled for the proper management of dry sludge application onto soils. For this reason, the main aim of this work was to study the impact of greenhouse drying of different sewage sludges on their organic matter stability and nitrogen availability, assessed by biochemical fractionation and mineralization assays. Three sewage sludges were sampled before (dehydrated sludges) and after greenhouse drying (dried sludges). The analyses consisted of: humidity, organic matter, mineral and organic N contents, N and C mineralization during 91-day laboratory incubations in controlled conditions, and biochemical fractionation using the Van Soest procedure. Greenhouse drying decreased the water content from 70-80% to 10% and also the odours, both of which will improve the management of the final product from the perspective of application and transport. We also found that drying reduced the organic matter content of the sludges but not the biodegradability of the remaining carbon. Organic N mineralization occurred during greenhouse drying, explaining why mineral N content tended to increase and the potential mineralization of organic nitrogen decreased after greenhouse drying. The biochemical stability did not

  12. SCRUBBERS AS SHIPOWNERS’ RESPONSE TO THE SULPHUR DIRECTIVE AND ITS IMPLICATIONS FOR THE WASTE MANAGEMENT IN BALTIC PORTS

    Directory of Open Access Journals (Sweden)

    Magdalena Klopott

    2015-12-01

    Full Text Available The paper investogates the recent developments in exhaust gas cleaning systems and the growing interests in scrubber installation among ferry and ro-ro shipowners operating on the Baltic Sea. This technology creates the need for reception of scrubber sludge, which is produced alongside with gas cleaning. The study states that the information about the disposal of scrubber waste is largely limited or vague and evaluates – on the basis of a questionnaire - the availability of port reception facilities for the disposal of waste from sulphur scrubbers at major Baltic Sea ports. The paper concludes that a review of current legislature on port reception facilities is absolutely necessary and expresses the hope that the situation will improve in the wake of recent environmental regulations.

  13. Physical inactivation and stabilization of sludges

    International Nuclear Information System (INIS)

    Alexandre, D.

    1979-07-01

    High temperature conditioning of sludge is a stabilization process that insures sterilization. Both thermal pasteurization and irradiation are inactivation processes. Viruses and parasites are inactivated at 70-80 0 C. Total bacterial destruction requires higher temperatures and/or detention time. Radio sensitivity of pathogens and pertinent treatment parameters are examined. If sludge is to be land disposed, disinfection requires irradiation doses ranging 500 Krad; if cattle feeding is considered, the required dose is 1 Mrad

  14. Sludge stabilization operability test report

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    Document provides the results of the Operability Test Procedure performed to test the operability of the HC-21C thermal stabilization process for sludge. The OTP assured all equipment functioned properly and established the baseline temperature profile for glovebox HC-21C

  15. Cement stabilization of hazardous and radioactive electroplating sludge

    International Nuclear Information System (INIS)

    Langton, C.A.; Pickett, J.B.; Martin, M.L.

    1991-01-01

    Cement stabilization was evaluated for treatment of nickel and uranium in electroplating sludge at the Savannah River Site. Waste forms were prepared by pretreating the sludge and the solidifying it in a variety of cement, cement plus flyash, and cement-flyash-slag mixes. The sludge was also treated by one-step filtration-solidification. Leaching results and processing data indicate the cement solidification is an effective method of treating hazardous-low-level electroplating waste

  16. Impact of aerobic stabilization on the characteristics of treatment sludge in the leather tanning industry.

    Science.gov (United States)

    Cokgor, Emine Ubay; Aydinli, Ebru; Tas, Didem Okutman; Zengin, Gulsum Emel; Orhon, Derin

    2014-01-01

    The efficiency of aerobic stabilization on the treatment sludge generated from the leather industry was investigated to meet the expected characteristics and conditions of sludge prior to landfill. The sludge types subjected to aerobic stabilization were chemical treatment sludge, biological excess sludge, and the mixture of both chemical and biological sludges. At the end of 23 days of stabilization, suspended solids, volatile suspended solids and total organic carbon removal efficiencies were determined as 17%, 19% and 23% for biological sludge 31%, 35% and 54% for chemical sludge, and 32%, 34% and 63% for the mixture of both chemical and biological sludges, respectively. Model simulations of the respirometric oxygen uptake rate measurements showed that the ratio of active biomass remained the same at the end of the stabilization for all the sludge samples. Although mixing the chemical and biological sludges resulted in a relatively effective organic carbon and solids removal, the level of stabilization achieved remained clearly below the required level of organic carbon content for landfill. These findings indicate the potential risk of setting numerical restrictions without referring to proper scientific support.

  17. Quality assessment of digested sludges produced by advanced stabilization processes.

    Science.gov (United States)

    Braguglia, C M; Coors, A; Gallipoli, A; Gianico, A; Guillon, E; Kunkel, U; Mascolo, G; Richter, E; Ternes, T A; Tomei, M C; Mininni, G

    2015-05-01

    The European Union (EU) Project Routes aimed to discover new routes in sludge stabilization treatments leading to high-quality digested sludge, suitable for land application. In order to investigate the impact of different enhanced sludge stabilization processes such as (a) thermophilic digestion integrated with thermal hydrolysis pretreatment (TT), (b) sonication before mesophilic/thermophilic digestion (UMT), and (c) sequential anaerobic/aerobic digestion (AA) on digested sludge quality, a broad class of conventional and emerging organic micropollutants as well as ecotoxicity was analyzed, extending the assessment beyond the parameters typically considered (i.e., stability index and heavy metals). The stability index was improved by adding aerobic posttreatment or by operating dual-stage process but not by pretreatment integration. Filterability was worsened by thermophilic digestion, either alone (TT) or coupled with mesophilic digestion (UMT). The concentrations of heavy metals, present in ranking order Zn > Cu > Pb > Cr ~ Ni > Cd > Hg, were always below the current legal requirements for use on land and were not removed during the processes. Removals of conventional and emerging organic pollutants were greatly enhanced by performing double-stage digestion (UMT and AA treatment) compared to a single-stage process as TT; the same trend was found as regards toxicity reduction. Overall, all the digested sludges exhibited toxicity to the soil bacterium Arthrobacter globiformis at concentrations about factor 100 higher than the usual application rate of sludge to soil in Europe. For earthworms, a safety margin of factor 30 was generally achieved for all the digested samples.

  18. Fabrication of remote steam atomized scrubbers for DWPF off-gas system

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Lafferty, J.D.

    1988-01-01

    The defense waste processing facility (DWPF) is being constructed for the purpose of processing high-level waste from sludge to a vitrified borosilicate glass. In the operation of continuous slurry-fed melters, off-gas aerosols are created by entrainment of feed slurries and the vaporization of volatile species from the molten glass mixture. It is necessary to decontaminate these aerosols in order to minimize discharge of airborne radionuclide particulates. A steam atomized scrubber (SAS) has been developed for DWPF which utilizes a patented hydro- sonic system gas scrubbing method. The Hydro-Sonic System utilizes a steam aspirating-type venturi scrubber that requires very precise fabrication tolerances in order to obtain acceptable decontamination factors. In addition to the process-related tolerances, precision mounting and nozzle tolerances are required for remote service at DWPF

  19. Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials.

    Science.gov (United States)

    Tang, Yuanyuan; Chan, Siu-Wai; Shih, Kaimin

    2014-06-01

    A promising strategy for effectively incorporating metal-containing waste materials into a variety of ceramic products was devised in this study. Elemental analysis confirmed that copper was the predominant metal component in the collected electroplating sludge, and aluminum was the predominant constituent of waterworks sludge collected in Hong Kong. The use of waterworks sludge as an aluminum-rich precursor material to facilitate copper stabilization under thermal conditions provides a promising waste-to-resource strategy. When sintering the mixture of copper sludge and the 900 °C calcined waterworks sludge, the CuAl2O4 spinel phase was first detected at 650 °C and became the predominant product phase at temperatures higher than 850 °C. Quantification of the XRD pattern using the Rietveld refinement method revealed that the weight of the CuAl2O4 spinel phase reached over 50% at 850 °C. The strong signals of the CuAl2O4 phase continued until the temperature reached 1150 °C, and further sintering initiated the generation of the other copper-hosting phases (CuAlO2, Cu2O, and CuO). The copper stabilization effect was evaluated by the copper leachability of the CuAl2O4 and CuO via the prolonged leaching experiments at a pH value of 4.9. The leaching results showed that the CuAl2O4 phase was superior to the CuAlO2 and CuO phases for immobilizing hazardous copper over longer leaching periods. The findings clearly indicate that spinel formation is the most crucial metal stabilization mechanism when sintering multiphase copper sludge with aluminum-rich waterworks sludge, and suggest a promising and reliable technique for reusing both types of sludge waste for ceramic materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Effects of sewage sludge stabilization on fertilizer value and greenhouse gas emissions after soil application

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Nielsen, Martin P.; Scheutz, Charlotte

    2015-01-01

    was therefore to investigate the effect of sewage sludge stabilization techniques on the C and N mineralization and gaseous emissions from soil. A soil incubation was conducted to determine the rate of C and N mineralization and N2O and CH4 emissions of sewage sludge stabilized using different techniques....... Unstabilized sludge released up to 90% of their C content as CO2, part of which could be caused by release of CO2 from carbonates. Compared with this, sludge stabilization including anaerobic digestion and drying resulted in a reduction of the C mineralization rate of about 40%. Liming reduced C mineralization...... the value of the sludge as a fertilizer. Emissions of CH4 were also reduced through sludge stabilization and mainly occurred after application of easily degradable sludge types, which is likely to have enhanced the creation of anaerobic microsites. The stabilization processes also decreased emissions of N2O...

  1. Wastewater Sludge Stabilization Using Lime A Case Study of West Ahwaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Mehdi Farzadkia

    2009-01-01

    Full Text Available Lime stabilization is a chemical method used for wastewater sludge stabilization. It is capable of decreasing large quantities of pathogens and of preventing microbial degradation of sludge organic materials. The main objective of the present experimental research was to investigate stabilization of the sludge from west Ahwaz wastewater treatment plant by lime addition and to control if the microbial quality of this sludge conforms to the USEPA standards for sludge reuse and safe disposal. The study was carried out on a pilot scale in 5 stages over a period of 12 months (July 2005 to June 2006 at west Ahwaz wastewater treatment plant laboratory using raw sludge. For the purposes of this study, a 30-liter reactor was commissioned and loaded with sludge and appropriate quantities of hydrated lime were added based on the solid waste percent. The parameters used to determine stabilization efficiency were pH, Total Coliform, Fecal Coliform, and parasite eggs. The results showed that lime addition at a ratio of 265g Ca(OH2/kg. ds was the optimum level for sludge stabilization in westAhwazwastewater treatment plant, which is acceptable from both economic and technical viewpoints. The method is capable of achieving class B but never satisfied class A of USEPA standards.

  2. Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices.

    Science.gov (United States)

    Qian, Guangren; Yang, Xiaoyan; Dong, Shixiang; Zhou, Jizhi; Sun, Ying; Xu, Yunfeng; Liu, Qiang

    2009-06-15

    This work investigated the feasibility and effectiveness of MSWI fly ash-based Friedel matrices on stabilizing/solidifying industrial chromium-bearing electroplating sludge using MSWI fly ash as the main raw material with a small addition of active aluminum. The compressive strength, leaching behavior and chemical speciation of heavy metals and hydration phases of matrices were characterized by TCLP, XRD, FTIR and other experimental methods. The results revealed that MSWI fly ash-based Friedel matrices could effectively stabilize chromium-bearing electroplating sludge, the formed ettringite and Friedel phases played a significant role in the fixation of heavy metals in electroplating sludge. The co-disposal of chromium-bearing electroplating sludge and MSWI fly ash-based Friedel matrices with a small addition of active aluminum is promising to be an effective way of stabilizing chromium-bearing electroplating sludge.

  3. Impact of sludge stabilization processes and sludge origin (urban or hospital) on the mobility of pharmaceutical compounds following sludge landspreading in laboratory soil-column experiments.

    Science.gov (United States)

    Lachassagne, Delphine; Soubrand, Marilyne; Casellas, Magali; Gonzalez-Ospina, Adriana; Dagot, Christophe

    2015-11-01

    This study aimed to determine the effect of sludge stabilization treatments (liming and anaerobic digestion) on the mobility of different pharmaceutical compounds in soil amended by landspreading of treated sludge from different sources (urban and hospital). The sorption and desorption potential of the following pharmaceutical compounds: carbamazepine (CBZ), ciprofloxacin (CIP), sulfamethoxazole (SMX), salicylic acid (SAL), ibuprofen (IBU), paracetamol (PAR), diclofenac (DIC), ketoprofen (KTP), econazole (ECZ), atenolol (ATN), and their solid-liquid distribution during sludge treatment (from thickening to stabilization) were investigated in the course of batch testing. The different sludge samples were then landspread at laboratory scale and leached with an artificial rain simulating 1 year of precipitation adapted to the surface area of the soil column used. The quality of the resulting leachate was investigated. Results showed that ibuprofen had the highest desorption potential for limed and digested urban and hospital sludge. Ibuprofen, salicylic acid, diclofenac, and paracetamol were the only compounds found in amended soil leachates. Moreover, the leaching potential of these compounds and therefore the risk of groundwater contamination depend mainly on the origin of the sludge because ibuprofen and diclofenac were present in the leachates of soils amended with urban sludge, whereas paracetamol and salicylic acid were found only in the leachates of soils amended with hospital sludge. Although carbamazepine, ciprofloxacin, sulfamethoxazole, ketoprofen, econazole, and atenolol were detected in some sludge, they were not present in any leachate. This reflects either an accumulation and/or (bio)degradation of these compounds (CBZ, CIP, SMX, KTP, ECZ, and ATN ), thus resulting in very low mobility in soil. Ecotoxicological risk assessment, evaluated by calculating the risk quotients for each studied pharmaceutical compound, revealed no high risk due to the

  4. Measurements and thermodynamics of hydrotreater product sludge stability

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.I. [Technical Univ. of Denmark, Lyngby (Denmark)

    2003-07-01

    Sludge is a by-product of the hydrotreating process of asphaltene during feedstock conversions. The stability of the asphaltenes in the system is related to the produced sludge. The remaining asphaltenes are unstable due to chemical changes in the mixture even though a large conversion of heptane asphaltene occurs. The flocculation titration technique was applied to several feedstocks and catalysts to understand changes in stability and to develop conversion schemes that avoid sludge formation. The effect of temperature conversion was studied in detail. Results obtained by flocculation titration were in agreement with size exclusion chromatography, elemental analysis, infrared spectroscopy and other methods. The authors also examined the chemical changes in product and in product asphaltenes. It was concluded that high hydrotreatment temperature leads to the formation of unstable products as cracking occurs. It was shown that molecular weight of asphaltenes decreases during the hydroprocessing, and the transition temperature is related to the feed. tabs., figs.

  5. CHALLENGES IN SLUDGE STABILIZATION: REGULATORY COMPLIANCE IN THE DESIGN AND OPERATION OF FACILITIES

    Science.gov (United States)

    Successful sewage sludge management involving the beneficial use of biosolids is predicated on acceptable quality of the product. Sludge quality can be defined in many ways. One of the most critical qualities affecting product marketability is sludge stability. While the terms &q...

  6. Earthworm-microorganism interactions: a strategy to stabilize domestic wastewater sludge.

    Science.gov (United States)

    Zhao, Limin; Wang, Yayi; Yang, Jian; Xing, Meiyan; Li, Xiaowei; Yi, Danghao; Deng, Dehan

    2010-04-01

    The performance of a conventional biofilter (BF) and a vermifilter containing the earthworm, Eisenia foetida, (VF) for the treatment of domestic wastewater sludge were compared with the earthworm-microorganism interaction mechanisms involved in sludge stabilization. The results revealed that the presence of earthworms in the VF led to significant stabilization of the sludge by enhancing the reduction in volatile suspended solids (VSS) by 25.1%. Digestion by earthworms and the earthworm-microorganism interactions were responsible for 54% and 46% of this increase, respectively. Specifically, earthworms in the VF were capable of transforming insoluble organic materials to a soluble form and then selectively digesting the sludge particles of 10-200 microm to finer particles of 0-2 microm, which led to the further degradation of organic materials by the microorganisms in the reactor. Additionally, denaturing gradient gel electrophoresis (DGGE) profiles showed that there was an intensified bacterial diversity in the vermifilter due to the presence of earthworms, especially in response to the nutrients in their casts. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. CFD analysis of sludge accumulation and hydraulic performance of a waste stabilization pond.

    Science.gov (United States)

    Alvarado, Andres; Sanchez, Esteban; Durazno, Galo; Vesvikar, Mehul; Nopens, Ingmar

    2012-01-01

    Sludge management in waste stabilization ponds (WSPs) is essential for safeguarding the system performance. Sludge accumulation patterns in WSPs are strongly influenced by the pond hydrodynamics. CFD modeling was applied to study the relation between velocity profiles and sludge deposition during 10 years of operation of the Ucubamba WSP in Cuenca (Ecuador). One tracer experiment was performed and three sludge accumulation scenarios based on bathymetric surveys were simulated. A residence time distribution (RTD) analysis illustrated the decrease of residence times due to sludge deposition. Sludge accumulation rates were calculated. The influence of flow pattern on the sludge deposition was studied, enabling better planning of future pond operation and desludging.

  8. Stability and activity of anaerobic sludge from UASB reactors treating sewage in subtropical regions

    NARCIS (Netherlands)

    Seghezzo, L.; Cuevas, C.M.; Trupiano, A.P.; Guerra, R.G.; Gonzalez, S.M.; Zeeman, G.; Lettinga, G.

    2006-01-01

    The production of small amounts of well-stabilized biological sludge is one of the main advantages of upflow anaerobic sludge bed (UASB) reactors over aerobic wastewater treatment systems. In this work, sludge produced in three pilot-scale UASB reactors used to treat sewage under subtropical

  9. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE.

    Energy Technology Data Exchange (ETDEWEB)

    ADAMA, J.W.; BOWERMAN, B.S.; KALB, P.D.

    2002-10-01

    The Environmental Protection Agency (EPA) is currently seeking to validate technologies that can directly treat radioactively contaminated high mercury (Hg) subcategory wastes without removing the mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needs additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 30 wt% dry sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes.

  10. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J. W.; Bowerman, B. S.; Kalb, P. D.

    2002-02-25

    The Environmental Protection Agency (EPA) is currently evaluating alternative treatment standards for radioactively contaminated high mercury (Hg) subcategory wastes, which do not require the removal of mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needed additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 46 wt% (30 wt% dry) sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide the EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes.

  11. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE

    International Nuclear Information System (INIS)

    ADAMA, J.W.; BOWERMAN, B.S.; KALB, P.D.

    2002-01-01

    The Environmental Protection Agency (EPA) is currently seeking to validate technologies that can directly treat radioactively contaminated high mercury (Hg) subcategory wastes without removing the mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needs additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 30 wt% dry sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes

  12. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE

    International Nuclear Information System (INIS)

    Adams, J. W.; Bowerman, B. S.; Kalb, P. D.

    2002-01-01

    The Environmental Protection Agency (EPA) is currently evaluating alternative treatment standards for radioactively contaminated high mercury (Hg) subcategory wastes, which do not require the removal of mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needed additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 46 wt% (30 wt% dry) sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide the EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes

  13. Solidifications/stabilization treatability study of a mixed waste sludge

    International Nuclear Information System (INIS)

    Spence, R.D.; Stine, E.F.

    1996-01-01

    The Department of Energy Oak Ridge Operations Office signed a Federal Facility Compliance Agreement with the US Environmental Protection Agency Region IV regarding mixed wastes from the Oak Ridge Reservation (ORR) subject to the land disposal restriction provisions of the Resource Conservation and Recovery Act (RCRA). This agreement required treatability studies of solidification/stabilization (S/S) on mixed wastes from the ORR. This paper reports the results of the cementitious S/S studies conducted on a waste water treatment sludge generated from biodenitrification and heavy metals precipitation. For the cementitious waste forms, the additives tested were Portland cement, ground granulated blast furnace slag, Class F fly ash, and perlite. The properties measured on the treated waste were density, free-standing liquid, unconfined compressive strength, and TCLP performance. Spiking up to 10,000, 10,000, and 4,400 mg/kg of nickel, lead, and cadmium, respectively, was conducted to test waste composition variability and the stabilization limitations of the binding agents. The results indicated that nickel, lead and cadmium were stabilized fairly well in the high pH hydroxide-carbonate- ''bug bones'' sludge, but also clearly confirmed the established stabilization potential of cementitious S/S for these RCRA metals

  14. Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; Mattus, C.H.; Mattus, A.J.

    1998-01-01

    Grouting and vitrification are currently the most likely stabilization/solidification technologies for mixed wastes. Grouting has been used to stabilize and solidify hazardous and low-level waste for decades. Vitrification has long been developed as a high-level-waste alternative and has been under development recently as an alternative treatment technology for low-level mixed waste. Laboratory testing has been performed to develop grout and vitrification formulas for mixed-waste sludges currently stored in underground tanks at Oak Ridge National Laboratory (ORNL) and to compare these waste forms. Envelopes, or operating windows, for both grout and soda-lime-silica glass formulations for a surrogate sludge were developed. One formulation within each envelope was selected for testing the sensitivity of performance to variations (±10 wt%) in the waste form composition and variations in the surrogate sludge composition over the range previously characterized in the sludges. In addition, one sludge sample of an actual mixed-waste tank was obtained, a surrogate was developed for this sludge sample, and grout and glass samples were prepared and tested in the laboratory using both surrogate and the actual sludge. The sensitivity testing of a surrogate tank sludge in selected glass and grout formulations is discussed in this paper, along with the hot-cell testing of an actual tank sludge sample

  15. STABILIZATION AND TESTING OF MERCURY CONTAINING WASTES: BORDEN SLUDGE

    Science.gov (United States)

    This report details the stability assessment of a mercury containing sulfide treatment sludge. Information contained in this report will consist of background data submitted by the geneerator, landfill data supplied by EPA and characterization and leaching studies conducted by UC...

  16. Grout and glass performance in support of stabilization/solidification of ORNL tank sludges

    International Nuclear Information System (INIS)

    Spence, R.D.; Mattus, C.H.; Mattus, A.J.

    1998-09-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) and Bethel Valley Evaporator Storage Tanks (BVEST) pending treatment for disposal. In addition, some sludges and supernatants also requiring treatment remain in two inactive tank systems: the gunite and associated tanks (GAAT) and the old hydrofracture (OHF) tank. The waste consists of two phases: sludge and supernatant. The sludges contain a high amount of radioactivity, and some are classified as TRU sludges. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough to be defined as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste. Grouting and vitrification are currently two likely stabilization/solidification alternatives for mixed wastes. Grouting has been used to stabilize/solidify hazardous and low-level radioactive waste for decades. Vitrification has been developed as a high-level radioactive alternative for decades and has been under development recently as an alternative disposal technology for mixed waste. The objective of this project is to define an envelope, or operating window, for grout and glass formulations for ORNL tank sludges. Formulations will be defined for the average composition of each of the major tank farms (BVEST/MVST, GAAT, and OHF) and for an overall average composition of all tank farms. This objective is to be accomplished using surrogates of the tank sludges with hot testing of actual tank sludges to check the efficacy of the surrogates

  17. Venturi scrubber modelling and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S [National Univ., La Jolla, CA (United States). School of Engineering and Technology; Ananthanarayanan, N.V. [National Univ. of Singapore (Singapore). Dept. of Chemical and Environmental Engineering; Azzopardi, B.J. [Nottingham Univ., Nottingham (United Kingdom). Dept. of Chemical Engineering

    2005-04-01

    This study presented a method to maintain the efficiency of venturi scrubbers in removing fine particulates during gas clean operations while minimizing pressure drop. Venturi scrubbers meet stringent emission standards. In order to choose the optimal method for predicting pressure drop, 4 established models were compared for their accuracy of prediction and simplicity in application. The enhanced algorithm optimizes Pease-Anthony type venturi scrubber performance by predicting the minimum pressure drop required to achieve the desired collection efficiency. This was accomplished by optimizing the key operating and design parameters such as liquid-to-gas ratio, throat gas velocity, number of nozzles, nozzle diameter and throat aspect ratio. Two of the 4 established models were expanded by providing an empirical algorithm to better predict pressure drop in the venturi throat. Model results were validated with experimental data. The optimization algorithm considers the non-uniformity in liquid distribution. It can be applied to cylindrical and rectangular Pease-Anthony type scrubbers. It offers an effective, systematic and accurate method to optimize the performance of new and existing scrubbers. 54 refs., 5 figs.

  18. Starved air combustion-solidification/stabilization of primary chemical sludge from a tannery

    Energy Technology Data Exchange (ETDEWEB)

    Swarnalatha, S. [Department of Environmental Technology, Central Leather Research Institute, Adyar, Chennai-600 020, Tamil Nadu (India); Ramani, K. [Department of Environmental Technology, Central Leather Research Institute, Adyar, Chennai-600 020, Tamil Nadu (India); Karthi, A. Geetha [Department of Environmental Technology, Central Leather Research Institute, Adyar, Chennai-600 020, Tamil Nadu (India); Sekaran, G. [Department of Environmental Technology, Central Leather Research Institute, Adyar, Chennai-600 020, Tamil Nadu (India)]. E-mail: ganesansekaran@hotmail.com

    2006-09-01

    The high concentration of trivalent chromium along with organic/inorganic compounds in tannery sludge causes severe ground water contamination in the case of land disposal and chronic air pollution during incineration. In the present investigation, the sludge was subjected to flow-through column test to evaluate the concentration of leachable organics (tannin, COD and TOC) and heavy metal ions (Cr{sup 3+}, Fe{sup 2+}) present in it. The dried sludge was incinerated at 800 deg. C in an incinerator under starved oxygen supply (starved-air combustion) to prevent the conversion of Cr{sup 3+} to Cr{sup 6+}. The efficiency of starved air combustion was studied under different loading rates of sludge. The calcined sludge was solidified/stabilized using fly ash and Portland cement/gypsum. The solidified bricks were tested for unconfined compressive strength and heavy metal leaching. Unconfined compressive strength of the blocks was in the range of 83-156 kg/cm{sup 2}. The stabilization of chromium (III) in the cement gel matrix was confirmed with scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDX). Leachability studies on solidified bricks were carried out to determine the metal fixation and dissolved organic (as COD) concentration in the leachate.

  19. Aerosol scrubbers

    International Nuclear Information System (INIS)

    Sheely, W.F.

    1986-01-01

    The Submerged Gravel Scrubber is an air cleaning system developed by the Department of Energy's Liquid Metal Reactor Program. The Scrubber System has been patented by the Department of Energy. This technology is being transferred to industry by the DOE. Its basic principles can be adapted for individual applications and the commercialized version can be used to perform a variety of tasks. The gas to be cleaned is percolated through a continuously washed gravel bed. The passage of the gas through the gravel breaks the stream into many small bubbles rising in a turbulent body of water. These conditions allow very highly efficient removal of aerosols from the gas

  20. Sludge stabilization at the Plutonium Finishing Plant, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-10-01

    This Environmental Assessment evaluates the proposed action to operate two laboratory-size muffle furnaces in glovebox HC-21C, located in the Plutonium Finishing Plant (PFP), Hanford Site, Richland, Washington. The muffle furnaces would be used to stabilize chemically reactive sludges that contain approximately 25 kilograms (55 pounds) of plutonium by heating to approximately 500 to 1000 degrees C (900 to 1800 degrees F). The resulting stable powder, mostly plutonium oxide with impurities, would be stored in the PFP vaults. The presence of chemically reactive plutonium-bearing sludges in the process gloveboxes poses a risk to workers from radiation exposure and limits the availability of storage space for future plant cleanup. Therefore, there is a need to stabilize the material into a form suitable for long-term storage. This proposed action would be an interim action, which would take place prior to completion of an Environmental Impact Statement for the PFP which would evaluate stabilization of all plutonium-bearing materials and cleanout of the facility. However, only 10 percent of the total quantity of plutonium in reactive materials is in the sludges, so this action will not limit the choice of reasonable alternatives or prejudice the Record of Decision of the Plutonium Finishing Plant Environmental Impact Statement

  1. Design Aspects of Wet Scrubber System

    International Nuclear Information System (INIS)

    Lee, Hyun-Chul; Bang, Young-suk; Jung, Woo-Young; Lee, Doo-Yong

    2015-01-01

    The water pool in the wet scrubber system has advantage to cope with decay heat based on the thermal hydraulic balance such as condensation and evaporation inside it. This study focuses on the design aspects of the wet scrubber system to estimate the required water pool mass during the mission time and size of the scrubbing tank including inner structures. The design of the wet scrubber system include the estimation of the required water mass during the mission time and sizing of the scrubber vessel to contain the water pool. The condensation due to the inlet steam and evaporation due to the steam and non-condensable gas superheat and decay heat from filtered fission products should be considered to estimate the water mass required to maintain its function during the mission time. On the other hand, the level swelling due to the noncondensable gas is another important design aspect on the sizing of the scrubber vessel and determination of the entry elevation of the filtration components such as the droplet separator or filter. The minimum water level based on the minimum collapsed water level should be higher than the exit of scrubber nozzle

  2. Design Aspects of Wet Scrubber System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun-Chul; Bang, Young-suk; Jung, Woo-Young; Lee, Doo-Yong [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    The water pool in the wet scrubber system has advantage to cope with decay heat based on the thermal hydraulic balance such as condensation and evaporation inside it. This study focuses on the design aspects of the wet scrubber system to estimate the required water pool mass during the mission time and size of the scrubbing tank including inner structures. The design of the wet scrubber system include the estimation of the required water mass during the mission time and sizing of the scrubber vessel to contain the water pool. The condensation due to the inlet steam and evaporation due to the steam and non-condensable gas superheat and decay heat from filtered fission products should be considered to estimate the water mass required to maintain its function during the mission time. On the other hand, the level swelling due to the noncondensable gas is another important design aspect on the sizing of the scrubber vessel and determination of the entry elevation of the filtration components such as the droplet separator or filter. The minimum water level based on the minimum collapsed water level should be higher than the exit of scrubber nozzle.

  3. Beneficial reuse of precast concrete industry sludge to produce alkaline stabilized biosolids.

    Science.gov (United States)

    Gowda, C; Seth, R; Biswas, N

    2008-01-01

    The precast concrete industry generates waste called concrete sludge during routine mixer tank washing. It is highly alkaline and hazardous, and typically disposed of by landfilling. This study examined the stabilization of municipal sewage sludge using concrete sludge as an alkaline agent. Sewage sludge was amended with 10 to 40% of concrete sludge by wet weight, and 10 and 20% of lime by dry weight of the sludge mix. Mixes containing 30 and 40% of concrete sludge with 20% lime fulfilled the primary requirements of Category 1 and 2 (Canada) biosolids of maintaining a pH of 12 for at least 72 hours. The heavy metals were below Category 1 regulatory limits. The 40% concrete sludge mix was incubated at 52 degrees C for 12 of the 72 hours to achieve the Category 1 and 2 regulations of less than 1000 fecal coliform/g solids. The nutrient content of the biosolids was 8.2, 10 and 0.6 g/kg of nitrogen, phosphorus and potassium respectively. It can be used as a top soil or augmented with potassium for use as fertilizer. The study demonstrates that concrete sludge waste can be beneficially reused to produce biosolids, providing a long-term sustainable waste management solution for the concrete industry.

  4. The use of municipal sewage sludge for the stabilization of soil contaminated by mining activities.

    Science.gov (United States)

    Theodoratos, P; Moirou, A; Xenidis, A; Paspaliaris, I

    2000-10-02

    The ability of municipal sewage sludge to immobilize Pb, Zn and Cd contained in contaminated soil originating from a former mining area in Lavrion, Greece was investigated. The soil was cured with sewage sludge in various proportions. The stabilization was evaluated primarily by applying chemical tests and complemented by the performance of additional biological tests. Application of the U.S. EPA Toxicity Characteristic Leaching Procedure (TCLP) on the stabilized mixtures proved that Pb, Zn and Cd solubility was reduced by 84%, 64% and 76%, respectively, at 15% w/w sludge addition, while a 10% w/w addition was sufficient to reduce Pb solubility below the U.S. EPA TCLP regulatory limit. The results of the extraction using EDTA solution showed the same trend, resulting in 26%, 36% and 53% reduction in the Pb, Zn and Cd extractable fractions, respectively. Speciation analysis of the treated soils revealed a significant decrease in the mobile fractions of heavy metals, which was attributed to their retention in sewage sludge by adsorption and organic complexation mechanisms. For the assessment of possible phytotoxicity, experiments including growing dwarf beans in the treated soil was carried out. It was found that sewage sludge addition had a positive effect on plant growth. Furthermore, the Pb and Zn uptake of plant leaves and roots was reduced, while Cd uptake was unaffected by the sludge treatment. The results of this study support the hypothesis that municipal sewage sludge is a potential effective stabilizing agent for contaminated soil containing Pb, Zn and Cd.

  5. Ecotoxicological evaluation of the short term effects of fresh and stabilized textile sludges before application in forest soil restoration

    International Nuclear Information System (INIS)

    Rosa, Edson V.C.; Giuradelli, Thayse M.; Correa, Albertina X.R.; Roerig, Leonardo R.; Schwingel, Paulo R.; Resgalla, Charrid; Radetski, Claudemir M.

    2007-01-01

    The short term (eco)toxicity potential of fresh and stabilized textile sludges, as well as the short term (eco)toxicity of leachates obtained from both fresh and stabilized textile sludges, was evaluated by a battery of toxicity tests carried out with bacteria, algae, daphnids, fish, earthworms, and higher plants. The (eco)toxicological results showed that, after 120 d of stabilization, the experimental loading ratio of 25% sludge:75% soil (v/v) (equivalent to 64.4 ton/ha) did not significantly increase toxicity effects and increased significantly the biomass yield for earthworms and higher plants. The rank of biological sensitivity endpoints was: Algae ∼ Plant biomass > Plant germination ∼ Daphnids > Bacteria ∼ Fish > Annelids. The lack of short term toxicity effects and the stimulant effect observed with higher plants and earthworms are good indications of the fertilizer/conditioner potential of this industrial waste, which after stabilization can be used in the restoration of a non-productive forest soil. - Short term ecotoxicity evaluation of textile sludge showed that stabilized sludge can be used in the restoration of a non-productive forest soil

  6. Spinel formation for stabilizing simulated nickel-laden sludge with aluminum-rich ceramic precursors.

    Science.gov (United States)

    Shih, Kaimin; White, Tim; Leckie, James O

    2006-08-15

    The feasibility of stabilizing nickel-laden sludge from commonly available Al-rich ceramic precursors was investigated and accomplished with high nickel incorporation efficiency. To simulate the process, nickel oxide was mixed alternatively with gamma-alumina, corundum, kaolinite, and mullite and was sintered from 800 to 1480 degrees C. The nickel aluminate spinel (NiAl2O4) was confirmed as the stabilization phase for nickel and crystallized with efficiencies greater than 90% for all precursors above 1250 degrees C and 3-h sintering. The nickel-incorporation reaction pathways with these precursors were identified, and the microstructure and spinel yield were investigated as a function of sintering temperature with fixed sintering time. This study has demonstrated a promising process for forming nickel spinel to stabilize nickel-laden sludge from a wide range of inexpensive ceramic precursors, which may provide an avenue for economically blending waste metal sludges via the building industry processes to reduce the environmental hazards of toxic metals. The correlation of product textures and nickel incorporation efficiencies through selection of different precursors also provides the option of tailoring property-specific products.

  7. Nitrogen tetroxide vapor scrubber using a recirculating liquid

    Science.gov (United States)

    Reisert, T. D.

    1978-01-01

    Scrubbers required to reduce N2O4 contamination of nitrogen vent gas streams to a safe level to preclude health hazard to personnel and to preclude adverse environmental effects were developed. The scrubber principle involved is to absorb and neutralize the N2O4 component in a closed circuit circulating water/chemical solution in a vertical counter-flow, packed-tower configuration. The operational and performance test requirements for the scrubbers consist of demonstrating that the exit gas contamination level from the scrubbers does not exceed 150 ppm oxidizer under any flow conditions up to 400 scfm with inlet concentrations of up to 100,000 ppm oxidizer. Several problems were encountered during the performance testing that led to a series of investigations and supplementary testing. It was finally necessary to change the scrubber liquors in oxidizer scrubber to successfully achieve performance requirements. The scrubbers, the test configuration, and the various tests performed are described.

  8. STABILIZATION OF A MIXED WASTE SLUDGE SURROGATE CONTAINING MORE THAN 260 PPM MERCURY

    International Nuclear Information System (INIS)

    Smith, W. J.; Feizollahi, F.; Brimley, R.

    2002-01-01

    In an earlier demonstration of an innovative mercury stabilization technology for the Department of Energy, ATG's full-scale process stabilized mercury in soils that initially contained more than 260 ppm of mercury of unknown speciation. The treated waste satisfied the leaching standards for mercury that qualify wastes containing less than 260 ppm for land disposal. This paper describes the extension of that work to demonstrate a full-scale process for the stabilization of a representative sludge that contained more than 260 ppm of Hg of several mercury species. RCRA (Resource Conservation and Recovery Act) regulations now require the recovery of mercury from any waste containing more than 260 ppm of mercury, usually with thermal retorts. The results of this work with a surrogate sludge, and of the previous work with an actual soil, support a proposal now before the U.S. EPA (Environmental Protection Agency) to allow such wastes to be stabilized without retorting. The full-scale demonstration with a sulfide reagent reduced the mercury concentrations in extracts of treated sludge below the relevant leaching standard, a Universal Treatment Standard (UTS) limit of 0.025 mg mercury per liter of leachate generated by the Toxicity Characteristic Leaching Procedure (TCLP). The sulfide formulation reduced the concentration to about onehalf the UTS limit

  9. Cementitious stabilization of chromium, arsenic, and selenium in a cooling tower sludge

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; Bleier, A.

    1995-01-01

    The Federal Facility Compliance Agreement (FFCA) establishes an aggressive schedule for conducting studies and treatment method development under the treatability exclusion of RCRA for those mixed wastes for which treatment methods and capabilities have yet to be defined. One of these wastes is a radioactive cooling tower sludge. This paper presents some results of a treatability study of the stabilization of this cooling tower sludge in cementitious waste forms. The sample of the cooling tower sludge obtained for this study was found to be not characteristically hazardous in regard to arsenic, barium, chromium, lead, and selenium, despite the waste codes associated with this waste. However, the scope of this study included spiking three RCRA metals to two orders of magnitude above the initial concentration to test the limits of cementitious stabilization. Chromium and arsenic were spiked at concentrations of 200, 2,000, and 20,000 mg/kg, and selenium was spiked at 100, 1,000, and 10,000 mg/kg (concentrations based on the metal in the sludge solids). Portland cement, Class F fly ash, and slag were selected as stabilizing agents in the present study. Perlite, a fine, porous volcanic rock commonly used as a filter aid, was used as a water-sorptive agent in this study in order to control bleed water for high water contents. The highly porous perlite dust absorbs large amounts of water by capillary action and does not present the handling and processing problems exhibited by clays used for bleed water control

  10. Arsenic in an alkaline AMD treatment sludge: Characterization and stability under prolonged anoxic conditions

    International Nuclear Information System (INIS)

    Beauchemin, Suzanne; Fiset, Jean-Francois; Poirier, Glenn; Ablett, James

    2010-01-01

    Lime treatment of acid mine drainage (AMD) generates large volumes of neutralization sludge that are often stored under water covers. The sludge consists mainly of calcite, gypsum and a widespread ferrihydrite-like Fe phase with several associated species of metal(loid) contaminants. The long-term stability of metal(loid)s in this chemically ill-defined material remains unknown. In this study, the stability and speciation of As in AMD sludge subjected to prolonged anoxic conditions is determined. The total As concentration in the sludge is 300 mg kg -1 . In the laboratory, three distinct water cover treatments were imposed on the sludge to induce different redox conditions (100%N 2 , 100%N 2 + glucose, 95%N 2 :5%H 2 ). These treatments were compared against a control of oxidized, water-saturated sludge. Electron micro-probe (EMP) analysis and spatially resolved synchrotron X-ray fluorescence (SXRF) results indicate that As is dominantly associated with Fe in the sludge. In all treatments and throughout the experiment, measured concentrations of dissolved As were less than 5 μg L -1 . Dissolved Mn concentration in the N 2 + glucose treatment increased significantly compared to other treatments. Manganese and As K-edge X-ray absorption near edge structure spectroscopy (XANES) analyses showed that Mn was the redox-active element in the solid-phase, while As was stable. Arsenic(V) was still the dominant species in all water-covered sludges after 9 months of anoxic treatments. In contrast, Mn(IV) in the original sludge was partially reduced into Mn(II) in all water-covered sludges. The effect was most pronounced in the N 2 + glucose treatment, suggesting microbial reduction. Micro-scale SXRF and XANES analysis of the treated sludge showed that Mn(II) accumulated in areas already enriched in Fe and As. Overall, the study shows that AMD sludges remain stable under prolonged anoxic conditions. External sources of chemical reductants or soluble C were needed to induce

  11. Mathematical modelling of non-isothermal venturi scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, A. [Isfahan Univ., Isfahan (Iran, Islamic Republic of). Dept. of Chemical Engineering; Taheri, M.; Fathikakajahi, J. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). Dept. of Chemical Engineering

    2005-06-01

    Venturi scrubbers collect gaseous pollutants and particulate matter from industrial exhaust. This air pollution control device is highly efficient, easy to maintain and has a low initial cost. However, the high pressure drop through the device results in a high running cost. The main mechanism for collecting particulates is the inertial impaction of the particles on the droplets, which occurs due to high velocity between the gas stream and droplets. Droplet acceleration and irreversible drag-force which results from this high relative velocity are responsible for the high pressure drop in this type of scrubber. While several attempts have been made to mathematically model particulate removal in Venturi scrubbers, most models do not consider simultaneous heat and mass transfer. This factor is important because most Venturi scrubbers operate under non-isothermal conditions where the inlet gas is humidified in order to cool it before entering the scrubber. For that reason, the authors developed a more realistic model to determine the effects of heat and mass transfer on the particulate removal efficiency of a non-isothermal Venturi type scrubber. The model considers the effect of droplet size distribution and liquid film flow on the walls. It consists of differential equations for energy, momentum and material exchange. Model results were compared with data from experimental studies and industrial facilities. It was concluded that the removal efficiency of the scrubber is influenced by the inlet humidity temperature of the inlet gas. 26 refs., 1 tab., 10 figs.

  12. Soil application of sewage sludge stabilized with steelmaking slag and its effect on soil properties and wheat growth.

    Science.gov (United States)

    Samara, Eftihia; Matsi, Theodora; Balidakis, Athanasios

    2017-10-01

    The effect of sewage sludge, stabilized with steelmaking slag, on soil chemical properties and fertility and on wheat (Triticum aestivum L.) growth was evaluated. Dewatered sewage sludge [75% (wet weight basis)] stabilized with steelmaking slag (25%) and three soils with different pH values were used in a pot experiment with winter wheat. The following treatments were applied: (i) sludge addition of 30gkg -1 (≈ 120Mgha -1 , rate equivalent to the common inorganic N fertilization for wheat, based on sludge's water soluble NO 3 -N), (ii) sludge addition of 10gkg -1 (≈ 40Mgha -1 , rate equivalent to the common inorganic N fertilization for wheat, based on sludge's Kjeldahl-N), (iii) addition of the common inorganic N fertilization for wheat (120kgNha -1 ) as NH 4 NO 3 , (iv) control (no fertilizer, no sludge). Sludge application at both rates to all soils resulted in a significant increase of pH, electrical conductivity of the saturation extract (EC se ) and soil available NO 3 -N and P, in comparison to the other two treatments and this increase remained constant till the end of the pot experiment. In sludge treatments pH did not exceed the critical value of 8.5, whereas EC se , although it did not reach the limit of 4dSm -1 , exceeded the value of 2dSm -1 at the rate of 30gkg -1 . Concentrations of heavy metals, which regulate the agronomic use of sewage sludge according to the established legislation, ranged from not detectable to lower than the respective permissible levels. Both rates of sludge's addition in all soils improved wheat's growth, as judged by the significant increase of the aboveground biomass yield and the total plant uptake of almost all nutrients, compared to the other two treatments. It was concluded that sewage sludge stabilized with steelmaking slag could be used in agriculture, applied at rates based on sludge's Kjeldahl-N content and crop's demand for N. However, potential environmental impacts must also be considered. Copyright © 2017

  13. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants

    International Nuclear Information System (INIS)

    Patel, Hema; Pandey, Suneel

    2012-01-01

    Highlights: ► Stabilization/solidification of chemical sludge from textile wastewater treatment plants using Portland Pozzolona Cement (PPC) containing fly ash. ► Physical engineering (compressive strength and block density) indicates that sludge has potential to be reused for construction purpose after stabilization/solidification. ► Leaching of heavy metals from stabilized/solidified materials were within stipulated limits. ► There is a modification of microstructural properties of PPC with sludge addition as indicated by XRD and SEM patterns. - Abstract: The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland Pozzolona Cement (PPC) was selected as the binder system which is commercially available cement with 10–25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62–33.62 MPa) and block density (1222.17–1688.72 kg/m 3 ) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  14. Application of contact stabilization activated sludge for enhancing biological phosphorus removal (EBPR in domestic wastewater

    Directory of Open Access Journals (Sweden)

    Ehab M. Rashed

    2014-04-01

    Full Text Available The experiment has been performed in order to investigate the effect of using contact stabilization activated sludge as an application of enhancing biological phosphorous removal (EBPR by using contact tank as a phosphorus uptake zone and using thickening tank as a phosphorus release zone. The study involved the construction of a pilot plant which was setup in Quhafa waste water treatment plant (WWTP that included contact, final sedimentation, stabilization and thickening tanks, respectively with two returns sludge in this system one of them to contact tank and another to stabilization tank. Then observation of the uptake and release of total phosphorus by achievement through two batch test using sludge samples from thickener and final sedimentations. Results showed the removal efficiencies of COD, BOD and TP for this pilot plant with the range of 94%, 85.44% and 80.54%, respectively. On the other hand the results of batch tests showed that the reason of high ability of phosphorus removal for this pilot plant related to the high performance of microorganisms for phosphorus accumulating. Finally the mechanism of this pilot plant depends on the removal of the phosphorus from the domestic waste water as a concentrated TP solution from the supernatant above the thickening zone not through waste sludge like traditional systems.

  15. [Research on Cultivation and Stability of Nitritation Granular Sludge in Integrated ABR-CSTR Reactor].

    Science.gov (United States)

    Wu, Kai-cheng; Wu, Peng; Shen, Yao-liang; Li, Yue-han; Wang, Han-fang; Xu, Yue-zhong

    2015-11-01

    Abstract: The last two compartments of the Anaerobic Baffled Readtor ( ABR) were altered into aeration tank and sedimentation tank respectively to get an integrated anaerobic-aerobic reactor, using anaerobic granular sludge in anaerobic zone and aerobic granular sludge in aerobic zone as seed sludge. The research explored the condition to cultivate nitritation granular sludge, under the condition of continuous flow. The C/N rate was decreased from 1 to 0.4 and the ammonia nitrogen volumetric loading rate was increased from 0.89 kg x ( m3 x d)(-1) to 2.23 kg x (m3 x d)(-1) while the setting time of 1 h was controlled in the aerobic zone. After the system was operated for 45 days, the mature nitritation granular sludge in aerobic zone showed a compact structure and yellow color while the nitrite accumulation rate was about 80% in the effluent. The associated inhibition of free ammonia (FA) and free nitrous acid (FNA) dominated the nitritation. Part of granules lost stability during the initial period of operation and flocs appeared in the aerobic zone. However, the flocs were transformed into newly generated small particles in the following reactor operation, demonstrating that organic carbon was benefit to granulation and the enrichment of slow-growing nitrifying played an important role in the stability of granules.

  16. Stabilization of industry sludge by composting for use as an organic fertilizer

    Science.gov (United States)

    Elia Ruda, Ester; Mercedes Ocampo, Ester; Acosta, Adriana; Mongiello, Adriana; Olmos, Graciela

    2013-04-01

    The effluent treatment plant having PBLEINER SA food industry produces sludge coming from aerobic treatment reactors. The research team FIQ-UNL evaluated the feasibility of their use for the production of organic fertilizers as part of an environmental management problem to reduce the volume of sludge to be moved to land farming located more than 300 km of the plant. The mean values of the variables analyzed in the sludge were the following: carbon: 23.7 %, nitrogen: 7.83 %, pH: 7.36, bulk density: 0.722 g.cm-3, actual density: 1.76 g.cm-3, porosity: 50.7 %, potassium: 0.242 %, phosphorus: 1.29 %, calcium: 1.84 %, magnesium: 0.364 % and electrical conductivity: 3.51 dS.m-1 (25 °C). The content of heavy metals in sludge is much lower than the limits set by the European Union, USEPA and SENASA for use in agriculture. The mean values of the metals analyzed in the sludge were the following: cadmium: no detected, lead: 18.7 mg.kg-1, zinc 213 mg.kg-1, copper: 40.7 mg.kg-1, nickel: 110 mg.kg-1, chrome: 406 mg.kg-1, mercury: 1.53 mg.kg-1. In this framework it was proposed stabilization of sludge by composting, using sawdust or chips as stabilizing material, with aeration technique in rows with frequent turning and recycling leachate, so as to degrade organic solids humic material for application as a soil conditioner, this is for transformation into a new product to be used as fertilizer. The company provided the physical space and technical staff to assist the research team. This process design is a proposal to improve the waste treatment of an industrial plant, reducing its environmental impact and enabling the use of the resulting product for soil enhancement in the region. Optimizing operating parameters such as kinetics, moisture, temperature, pH, total dissolved solids, nutrient availability, alternative sources of carbon and processing steps, will allow obtaining technical data for the modelling process.

  17. Droplet size in a rectangular Venturi scrubber

    OpenAIRE

    Costa, M. A. M.; Henrique, P. R.; Gonçalves, J. A. S.; Coury, J.R.

    2004-01-01

    The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s), liquid-to-gas ratio (0...

  18. Synergistic and alkaline stability studies of mixtures of simulated high level waste sludge with selected energetic compounds

    International Nuclear Information System (INIS)

    Fondeur, F.F.

    2000-01-01

    This study examined the stability of mercury oxalate and mercury fulminate in alkaline sludge simulating Savannah River Site waste. These compounds represent two classes of energetic compounds previously speculated as potential components in sludge stored without a supernatant liquid

  19. Water scrubbers as new mitigating devices in Swedish reactors

    International Nuclear Information System (INIS)

    Espefaelt, R.

    1988-01-01

    Controlling the containment pressure is an important part of the Swedish severe accident mitigation strategy. As a final measure, venting of the containment atmosphere to the environment is feasible via a filtered venting system using a water scrubber as the filtering device. The comprehensive theoretical and experimental verification of the Multi Venturi Scrubber System has resulted in the following predicted scrubber performance: Both during the scrubber heat-up phase and in long periods of operation, where the water of the scrubber is heated to saturation, a decontamination factor of the order of several thousand is predicted. During no conditions foreseen in the safety analysis are decontamination factors below DF = 500 in the BWR scrubber and DF = 1500 in the PWR scrubber envisaged. These values are equivalent to a retention of 99.8 % and 99.9 % respectively and correspond to a case with only about 10-20 cm of water above the venturi tube outlets and unfavorable gas dynamic conditions. They can be compared to the design values (DF = 100 and 500, respectively) required to limit ground contamination to the very low level specified by Swedish authorities. 1 fig

  20. Stabilization of heavy metals in municipal sewage sludge by freeze-thaw treatment with a blend of diatomite, FeSO4, and Ca(OH)2.

    Science.gov (United States)

    Wang, Jing; Fu, Rongbing; Xu, Zhen

    2017-08-01

    In this work, the effects of diatomite with 15% FeSO 4 •7H 2 O and 7.5% Ca(OH) 2 on sludge stabilization were investigated using batch leaching tests. The influence of cell rupture caused by freezing and thawing on stabilization was also evaluated. The results indicated that the optimal diatomite percentage was 2%. Cell rupture by freezing and thawing reduced heavy metal leachability, followed by cell death and decrease of organic groups. The concentration of heavy metals in sludge leachate increased after cell rupture, indicating that the heavy metal leachability was reduced after freezing and thawings. Moreover, the stabilization effects were generally improved after freezing and thawing. As compared with the stabilization of the original sludge, the unstable fractions decreased and the residual fractions of the heavy metals increased in the stabilized sludge after cell rupture. This study developed a method to stabilize heavy metals in municipal sewage sludge. Diatomite combined with FeSO 4 ·7H 2 O and Ca(OH) 2 improved the treatment of sewage sludge contaminated by heavy metals. Cell lysis by freeze-thaw treatment reduced the risk of leaching heavy metals caused by cell death and decreased major organic groups in the sludge.

  1. Leachability and physical stability of solidified and stabilized pyrite cinder sludge from dye effluent treatment

    Directory of Open Access Journals (Sweden)

    Kerkez Đurđa V.

    2015-01-01

    Full Text Available This work is concerned with exploring the possibilities of using solidification/stabilization (S/S treatment for toxic sludge generated in dye effluent treatment, when pyrite cinder is used as catalytic iron source in the modified heterogeneous Fenton process. S/S treatment was performed by using different clay materials (kaolin, bentonite and native clay from the territory of Vojvodina and fly ash in order to immobilize toxic metals and arsenic presented in sludge. For the evaluation of the extraction potential of toxic metals and the effectiveness of the S/S treatment applied, four single-step leaching tests were performed. Leaching test results indicated that all applied S/S treatments were effective in immobilizing toxic metals and arsenic presented in sludge. X-ray diffraction analysis confirmed the formation of pozzolanic products, and compressive strength measurement proved the treatment efficacy. It can be concluded that the S/S technique has significant potential for solving the problem of hazardous industrial waste and its safe disposal. [Projekat Ministarstva nauke Republike Srbije, br. III43005 i br. TR37004

  2. Scrubbers: A popular Phase I compliance strategy

    International Nuclear Information System (INIS)

    Fink, C.E.; Bissell, P.E.; Koch, B.J.; Rutledge, G.D.

    1992-01-01

    As utilities commit to compliance plans to meet the Phase I requirements of the Clean Air Act Amendments of 1990, there are indications that scrubbing may account for up to 50 percent of the total SO 2 reductions in Phase I. This paper presents and analyzes the critical reasons that explain how and why scrubber-based compliance strategies have developed into the least-cost option in Phase I for many utilities. A hypothetical utility system was simulated to study the impacts of various technological, legislative, and regulatory issues on compliance decisions and costs. Issues evaluated using the hypothetical system include the emissions cap, Clean Air Act and state incentives to scrub, improvements in scrubber technology and costs, and the integration of Phase I and II compliance strategies by the phased installation of scrubbers. In combination, these considerations increase the attractiveness of scrubbers during the 1995-1999 Phase I period. Other considerations that will ultimately influence the amount of Phase I scrubbing capacity include the additional power generation costs associated with fuel switching, the uncertainty of low-sulfur coal price projections, fuel supply flexibility, scrubber market aspects, and socioeconomic considerations

  3. Separation of finest dusts in Venturi scrubber with hybrid nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Reither, K. [Reither Venturiwaescher GmbH, Troisdorf (Germany); Boerger, G.G.; Listner, U.; Schweitzer, M. [Bayer AG, Leverkusen (Germany)

    2001-03-01

    Venturi scrubbers are high-performance dust separators whose efficiency is closely connected with high pressure losses. The tube-slot Venturi scrubber with hybrid nozzles is a novel scrubber type of simple and compact design, by means of which high separation efficiency is reached with pressure losses practically tending to zero. This new wet scrubber is particularly suitable for refitting existing plants. (orig.)

  4. Value-Added Products From FGD Sulfite-Rich Scrubber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Vivak M. Malhotra

    2006-09-30

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber materials are produced every year in the USA. In fact, at present, the production of wet sulfite-rich scrubber cake outstrips the production of wet sulfate-rich scrubber cake by about 6 million tons per year. However, most of the utilization focus has centered on FGD gypsum. Therefore, we have recently initiated research on developing new strategies for the economical, but environmentally-sound, utilization of sulfite-rich scrubber material. In this exploratory project (Phase I), we attempted to ascertain whether it is feasible to develop reconstituted wood replacement products from sulfite-rich scrubber material. In pursuit of this goal, we characterized two different wet sulfite-rich scrubber materials, obtained from two power plants burning Midwestern coal, for their suitability for the development of value-added products. The overall strategy adopted was to fabricate composites where the largest ingredient was scrubber material with additional crop materials as additives. Our results suggested that it may be feasible to develop composites with flexural strength as high as 40 MPa (5800 psi) without the addition of external polymers. We also attempted to develop load-bearing composites from scrubber material, natural fibers, and phenolic polymer. The polymer-to-solid ratio was limited to {le} 0.4. The formulated composites showed flexural strengths as high as 73 MPa (10,585 psi). We plan to harness the research outcomes from Phase I to develop parameters required to upscale our value-added products in Phase II.

  5. The long-term behavior of stabilized coal ash in the sea

    International Nuclear Information System (INIS)

    van der Sloot, H.A.; Hockley, D.; Woodhead, P.M.J.; Roethel, F.J.

    1991-01-01

    Over an eight year period blocks of stabilized coal fly-ash and FGD scrubber sludge were placed in the Atlantic Ocean where they served as substrate for an artificial fishing reef. Structural testing has shown that these blocks have maintained their physical integrity over this extended time period. The concentrations of Ca, As, Sb and Mo have declined. The concentrations of Mg, Na, Br and CO 3 have increased. The influx of mass entering the block exceeds the leaching of inorganic constituents and results in the deposition of material in the pore spaces. This pore-blocking affects the diffusion of ions from the block and could potentially result in the cessation of contaminant release to the water column

  6. Theoretical study of liquid droplet dispersion in a venturi scrubber.

    Science.gov (United States)

    Fathikalajahi, J; Talaie, M R; Taheri, M

    1995-03-01

    The droplet concentration distribution in an atomizing scrubber was calculated based on droplet eddy diffusion by a three-dimensional dispersion model. This model is also capable of predicting the liquid flowing on the wall. The theoretical distribution of droplet concentration agrees well with experimental data given by Viswanathan et al. for droplet concentration distribution in a venturi-type scrubber. The results obtained by the model show a non-uniform distribution of drops over the cross section of the scrubber, as noted by the experimental data. While the maximum of droplet concentration distribution may depend on many operating parameters of the scrubber, the results of this study show that the highest uniformity of drop distribution will be reached when penetration length is approximately equal to one-fourth of the depth of the scrubber. The results of this study can be applied to evaluate the removal efficiency of a venturi scrubber.

  7. Value-Added Products from FGD Sulfite-Rich Scrubber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Vivak Malhotra

    2010-01-31

    According to the American Coal Ash Association, about 29.25 million tons of flue gas desulfurization (FGD) byproducts were produced in the USA in 2003. Out of 29.25 million tons, 17.35 million tons were sulfite-rich scrubber materials. At present, unlike its cousin FGD gypsum, the prospect for effective utilization of sulfite-rich scrubber materials is not bright. In fact, almost 16.9 million tons are leftover every year. In our pursuit to mitigate the liability of sulfite-rich FGD scrubber materials' disposal, we are attempting to develop value-added products that can commercially compete. More specifically, for this Innovative Concept Phase I project, we have the following objectives: to characterize the sulfite-rich scrubber material for toxic metals; to optimize the co-blending and processing of scrubber material and natural byproducts; to formulate and develop structural composites from sulfite-rich scrubber material; and to evaluate the composites' mechanical properties and compare them with current products on the market. After successfully demonstrating the viability of our research, a more comprehensive approach will be proposed to take these value-added materials to fruition.

  8. Dust particle removal efficiency of a venturi scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Mehboob, Khurram

    2013-01-01

    Highlights: ► Experimental and theoretical study of dust removal efficiency in venturi scrubber. ► Dust removal efficiency 99.5% is achieved at throat gas velocity 220 m/s. ► Results obtained from mathematical model concur well with experimental results. - Abstract: The venturi scrubber is one of the most efficient gas cleaning devices to remove the contaminated particles from gaseous stream during severe accident in nuclear power plant. This study is focused on the dust particle removal efficiency of the venturi scrubber experimentally and theoretically. The venturi scrubber encapsulates the dust particles in petite water droplets flowing into it. The water injected into the scrubber is in the form of water film. The study investigates the removal efficiency of venturi scrubber for throat gas velocities of 130, 165 and 200 m/s and liquid flow rates 0.3–1 m 3 /h, whereas dust concentration ranges between 0.1 and 1 g/m 3 . The hydrophobic titanium dioxide (TiO 2 ) particles having density 4.23 g/cm 3 and mean diameter of 1 μm are used as dust particles in this research. Filtration technique is used to measure the concentration of dust particles at inlet and outlet. Experimental results show that the removal efficiency is higher with the increase of throat gas velocity and liquid flow rate. A mathematical model is employed for the verification of experimental results. The model concurs well with the experimental results

  9. Water Utility Lime Sludge Reuse – An Environmental Sorbent ...

    Science.gov (United States)

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up included a simulated flue gas preparation unit, a lab-scale wet scrubber, and a mercury analyzer system. The influent mercury concentration was based on a range from 22 surveyed power plants. The reactivity of the lime sludge sample for acid neutralization was determined using a method similar to method ASTM C1318-95. Similar experiments were conducted using reagent calcium carbonate and calcium sulfate to obtain baseline data for comparing with the lime sludge test results. The project also evaluated the techno-economic feasibility and sustainable benefits of reusing lime softening sludge. If implemented on a large scale, this transformative approach for recycling waste materials from water treatment utilities at power generation utilities for environmental cleanup can save both water and power utilities millions of dollars. Huge amounts of lime sludge waste, generated from hundreds of water treatment utilities across the U.S., is currently disposed in landfills. This project evaluated a sustainable and economically-attractive approach to the use of lime sludge waste as a valuable resource for power generation utilities.

  10. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge.

    Science.gov (United States)

    Chen, Quanyuan; Zhang, Lina; Ke, Yujuan; Hills, Colin; Kang, Yanming

    2009-02-01

    Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30-50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20-30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.

  11. Vitrification of F006 plating waste sludge by Reactive Additive Stabilization Process (RASP)

    International Nuclear Information System (INIS)

    Martin, H.L.; Jantzen, C.M.; Pickett, J.B.

    1994-01-01

    Solidification into glass of nickel-on-uranium plating wastewater treatment plant sludge (F006 Mixed Waste) has been demonstrated at the Savannah River She (SRS). Vitrification using high surface area additives, the Reactive Additive Stabilization Process (RASP), greatly enhanced the solubility and retention of heavy metals In glass. The bench-scale tests using RASP achieved 76 wt% waste loading In both soda-lime-silica and borosilicate glasses. The RASP has been Independently verified by a commercial waste management company, and a contract awarded to vitrify the approximately 500,000 gallons of stored waste sludge. The waste volume reduction of 89% will greatly reduce the disposal costs, and delisting of the glass waste is anticipated. This will be the world's first commercial-scale vitrification system used for environmental cleanup of Mixed Waste. Its stabilization and volume reduction abilities are expected to set standards for the future of the waste management Industry

  12. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar.

    Science.gov (United States)

    Fang, Shen'en; Tsang, Daniel C W; Zhou, Fengsha; Zhang, Weihua; Qiu, Rongliang

    2016-04-01

    Currently, sludge pyrolysis has been considered as a promising technology to solve disposal problem of municipal sewage sludge, recover sludge heating value, sequester carbon and replenish nutrients in farmland soils. The resultant sludge-derived biochar (SDBC) is potentially an excellent stabilizing agent for metal species. This study applied the SDBC into four soils that had been contaminated in field with cationic Pb(II) and Cd(II)/Ni(II), and anionic Cr(VI) and As(III), respectively. The performance of metal stabilization under various operational and environmental conditions was evaluated with acid batch extraction and column leaching tests. Results indicated the SDBC could effectively stabilize these metals, which was favored by elevated temperature and longer aging. Periodic temperature decrease from 45 to 4 °C resulted in the release of immobilized Cr(VI) and As(III) but not Pb(II). However, a longer aging time offset such metal remobilization. This was possibly because more Pb was strongly bound and even formed stable precipitates, as shown by XRD and sequential extraction results. With increasing time, Cr(VI) was sorbed and partly reduced to Cr(III), while immobilized As(III) was co-oxidized to As(V) as indicated by XPS spectra. Column tests revealed that adding SDBC as a separate layer was unfavorable because the concentrated Cd(II) and Ni(II) in localized positions increased the peak levels of metal release under continuous acid leaching. In contrast, uniformly mixed SDBC could effectively delay the metal breakthrough and reduce their released amounts. Yet, a long-term monitoring may be required for evaluating the potential leaching risks and bioavailability/toxicity of these immobilized and transformed species in the SDBC-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Predicting pressure drop in venturi scrubbers with artificial neural networks.

    Science.gov (United States)

    Nasseh, S; Mohebbi, A; Jeirani, Z; Sarrafi, A

    2007-05-08

    In this study a new approach based on artificial neural networks (ANNs) has been used to predict pressure drop in venturi scrubbers. The main parameters affecting the pressure drop are mainly the gas velocity in the throat of venturi scrubber (V(g)(th)), liquid to gas flow rate ratio (L/G), and axial distance of the venturi scrubber (z). Three sets of experimental data from five different venturi scrubbers have been applied to design three independent ANNs. Comparing the results of these ANNs and the calculated results from available models shows that the results of ANNs have a better agreement with experimental data.

  14. Effects of wastewater sludge and its detergents on the stability of rotavirus

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.L. (Sandia Labs., Albuquerque, NM); Ashley, C.S.

    1980-06-01

    Wastewater sludge reduced the heat required to inactivate rotavirus SA-11, and ionic detergents were identified as the sludge components responsible for this effect. A similar result was found previously with reovirus. The quantitative effects of individual ionic detergents on rotavirus and reovirus were very different, and rotavirus was found to be extremely sensitive to several of these detergents. However, neither virus was destabilized by nonionic detergents. On the contrary, rotavirus was stabilized by a nonionic detergent against the potent destabilizing effects of the ionic detergent sodium dodecyl sulfate. The destabilizing effects of both cationic and anionic detergents on rotavirus were greatly altered by changes in the pH of the medium.

  15. Stabilization of heavy metals in fired clay brick incorporated with wastewater treatment plant sludge: Leaching analysis

    Science.gov (United States)

    Kadir, A. A.; Hassan, M. I. H.; Salim, N. S. A.; Sarani, N. A.; Ahmad, S.; Rahmat, N. A. I.

    2018-04-01

    Wastewater treatment sludge or known as sewage sludge is regarded as the residue and produced by the sedimentation of the suspended solid during treatment at the wastewater treatment plant. As such, this sludge was gained from the separation process of the liquids and solids. This sludge wastes has becomes national issues in recent years due to the increasing amount caused by population and industrialization growth in Malaysia. This research was conducted to fully utilize the sludge that rich in dangerous heavy metals and at the same time act as low cost alternative materials in brick manufacturing. The investigation includes determination of heavy metal concentration and chemical composition of the sludge, physical and mechanical properties. Wastewater treatment sludge samples were collected from wastewater treatment plant located in Johor, Malaysia. X-Ray Fluorescence was conducted to determine the heavy metals concentration of wastewater treatment sludge. Different percentage of sludges which are 0%, 1%, 5%, 10%, and 20%, has been incorporated into fired clay brick. The leachability of heavy metals in fired clay brick that incorporated with sludge were determined by using Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leachability Procedure (SPLP) that has been analyzed by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results show a possibility to stabilize the heavy metals in fired clay brick incorporated with wastewater treatment sludge. 20% of the sludge incorporated into the brick is the most suitable for building materials as it leached less heavy metals concentration and complying with USEPA standard.

  16. STABILIZATION OF DEWATERED SEWAGE SLUDGE BY AEROBIC COMPOSTING METHOD: USING SAWDUST AS BULKING AGENTS

    Directory of Open Access Journals (Sweden)

    A PARVARESH

    2002-12-01

    Full Text Available Introduction. Sludge production from municipal wastewater treatment plants should have quality standards before disposal in to the environment. Environmental specialists classified sewage sludge as a hazardous waste because of high organic compounds and pathogenic microorganisms. They belive that sewage should be stabilized before disposal and so composting of sewage sludge is an effective and economical method to stabilize. Sewage sludge compost could be used to improve soil structure and enrich the soil with nutrients. Methods. To evaluate the optimum conditions of aerobic compost, the mixture of dewatered sewage sludge from Isfahan municipal waste water treatment plant and sawdust as bulking agent were used. Pilot scale study were performed in Isfahan municipal waste water treatment plant. To perform this research project, the dewatered sewage sludge with humidity between 78 to 82 percent were mixed with sawdust. Turning over method of the piles with one week interval were applied to aerate the mixture. Temperature of the piles were monitored at different depths daily. Other parameters such as N, G, organic matters and pH were determined weekly. Total and fecal coli form, and salmonella were determined at the beginning and end of the composting process, also heavy metals were measured at the same time. Results. The results of this study showed that after days, temperature of the mixture reached up to 55 G, and were stabled for 15 days. Humidity, organic matter, organic carbon and GIN ratio of the mixture decreased over the period of the study, due to increasing the temperature. Also organic matter and humidity mainly decreased in thermofilic phase. The number of total and fecal coliform and also salmonella decreased to A class standards of US.EPA at the end of the operation. Discussion. The results of the study also showed that, this type of composting method is reliable, and simple to schedule, with high flexibility and low odor

  17. Selected species and amendments for revegetating saline flue gas desulfurization sludge: greenhouse study

    Energy Technology Data Exchange (ETDEWEB)

    Salo, L.F.; Artiola, J.F.; Goodrich-Mahoney, J.W. [University of Arizona, Tuscon, AZ (United States). Dept. of Soil, Water and Environmental Science

    1997-07-01

    Codisposing low-volume wastes from electrical generating stations with flue gas desulfurization (FGD) scrubber sludge simplifies waste disposal but produces a saline waste that presents unique challenges to revegetation. This greenhouse study identified plants and amendments for revegetating a saline FGD sludge disposal pond in eastern Arizona. Survival and growth of 16 sown accessions plus two vegetatively propagated accessions of inland saltgrass were investigated in saline FGD sludge. Amendments used included two soils from the disposal site, Claysprings gravelly clay and Sheppard sand, composted steer manure, and N-P-K fertilizers. Sols and manure were added at 2:1 sludge/amendment (v/v). Plants were irrigated with a 1:1 mixture of disposal pond water and untreated well water. One accession of inland saltgrass, two cultivars of tall wheatgrass, Altai wildrye tall fescue and alkali sacaton show promise for revegetating saline FGD sludge disposal sites. Survival rates were the same in unamended sludge and in sludge amended with the clay soil or with N-P-K fertilizer. Plant dry matter produced was the same in unamended sludge and in sludge amended with either of the soils or with N-P-K. Although survival rates were significantly lower with manure than with any other amendment, growth was significantly greater by all measurements, due to the high fertility of this treatment. 34 refs., 5 tabs.

  18. Droplet size in a rectangular Venturi scrubber

    Directory of Open Access Journals (Sweden)

    M. A. M. Costa

    2004-06-01

    Full Text Available The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s, liquid-to-gas ratio (0.07 to 0.27 l/m³, and distance from liquid injection point (64 to 173 mm. It was found that all these variables significantly affect droplet size. The results were compared with the predictions from correlations found in the literature.

  19. Permeability of Consolidated Incinerator Facility Wastes Stabilized with Portland Cement

    International Nuclear Information System (INIS)

    Walker, B.W.

    1999-01-01

    The Consolidated Incinerator Facility (CIF) at the Savannah River Site (SRS) burns low-level radioactive wastes and mixed wastes as method of treatment and volume reduction. The CIF generates secondary waste, which consists of ash and off-gas scrubber solution. Currently the ash is stabilized/solidified in the Ashcrete process. The scrubber solution (blowdown) is sent to the SRS Effluent Treatment Facility (ETF) for treatment as waste water. In the past, the scrubber solution was also stabilized/solidified in the Ashcrete process as blowcrete and will continue to be treated this way for listed waste burns and scrubber solution that do not meet the Effluent Treatment Facility (ETF) Waste Acceptance Criteria (WAC)

  20. A conceptual chemical solidification/stabilization system to remediate radioactive raffinate sludge

    International Nuclear Information System (INIS)

    Carpenter, D.J.; Ansted, J.P.; Foldyna, J.T.

    1994-01-01

    Past operations at the U.S. Department of Energy's (DOE) Weldon Spring, Missouri, Superfund Site included the manufacture of nitroaromatic-based munitions and the production of uranium and thorium metal from ore concentrates. These operations generated a large quantity of diverse contaminated waste media including raffinate sludge, soil, sediment, and building debris. These various waste media are contaminated with varying amounts of radionuclides nitroaromatics, metals, metalloids, non-metals, polychlorinated biphenyls (PCBs) and asbestos. The volumes and diversity of contaminants and waste media pose significant challenges in identifying applicable remedial technologies, particularly for the excavation and treatment of the water-rich raffinate sludge. This paper presents the results of comprehensive efforts to develop a conceptual chemical solidification/stabilization (CSS) system to treat a variety of waste media. The emphasis of this paper is the treatment of a water-rich refractory raffinate sludge and site contaminated soils both radioactive and nonradioactive. The conceptual system design includes raffinate sludge excavation, dewatering, and CSS processing (reagent selection and formulation, reagent and waste storage and metering, and product mixing). Many innovations were incorporated into the design, producing a system that can process the various waste types. Additionally, the radioactive and hazardous constituents are sufficiently immobilized to allow the secured disposal in a waste cell of the treated product. The conceptual CSS system can also produce a variety of treated product types, ranging from a monolithic form to a compactible soil-like medium. The advantages of this system flexibility are also presented

  1. IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

    Directory of Open Access Journals (Sweden)

    MAJID ALI

    2013-04-01

    Full Text Available The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH and sodium thiosulphate (Na2S2O3 in water to remove the gaseous iodine (I2 from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  2. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram [Harbin Engineering Univ., Harbin (China)

    2013-04-15

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na{sub 2}S{sub 2}O{sub 3}) in water to remove the gaseous iodine (I{sub 2}) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  3. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram

    2013-01-01

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na 2 S 2 O 3 ) in water to remove the gaseous iodine (I 2 ) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber

  4. Radiation disinfection of sewage sludge and composting of the irradiated sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Nishimura, Koichi; Watanabe, Hiromasa; Kawakami, Waichiro

    1985-01-01

    In the radiation disinfected sewage sludge, its stabilization is necessary with the composting. In this disinfected sludge, there is no need of keeping it at high temperature at the cost of fermentation velocity. The fermentation velocity can thus be set to obtain its maximum value. In sewage sludge utilization of farm land, to prevent the contamination with pathogenic bacteria and the secondary pollution, the radiation disinfection of dehydrated sludge and the composting of the disinfected sludge have been studied. The disinfection effect when an electron accelerator is used for the radiation source is described. Then, the composting of the disinfected sludge is described in chemical kinetics of the microorganisms. (Mori, K.)

  5. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting.

    Science.gov (United States)

    Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang

    2017-07-01

    The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.

  6. The Dynamics of Aerosols in Condensational Scrubbers

    DEFF Research Database (Denmark)

    Johannessen, Jens Tue; Christensen, Jan A.; Simonsen, Ole

    1997-01-01

    A mathematical model for the simulation of the dynamics of aerosol change in condensational scrubbers and scrubbing condensers is proposed. The model is applicable for packed column gas/liquid contact when plug flow can be assumed. The model is compared with experimental data for particle removal...... for their estimation is proposed. The behaviour of scrubbers and condensers for some important technical applications is demonstrated by model simulations. (C) 1997 Elsevier Science Ltd....

  7. Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions

    Science.gov (United States)

    Said, M. M.; Manyele, S. V.; Raphael, M. L.

    2012-01-01

    The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…

  8. Numerical Analysis on Behavior of Droplet in Venturi Scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W. Y.; Lee, D. Y.; Bang, Y. S. [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    At throat, the velocity of the gas would be at maximum and the pressure would be the lowest. Due to pressure difference between inside and outside of the throat, the liquid submerging the venture scrubber would be sucked and atomized. As the gas flow through the diffuser, the pressure would be recovered and the dust in the gas mixture would be captured by the atomized liquid droplets. In this process of dust removal in venture scrubber, atomization (i.e. breakup of liquid droplet in the venturi scrubber) is crucial for filtering efficiency. In order to maintain the high efficiency, the injected liquid should be atomized into fine droplets and well spread. Because of its importance, the experimental study has been conducted by many researchers. However, numerical study has not been conducted extensively. As a preliminary study for estimating filtration efficiency of venturi scrubber by numerical tools, the behavior of droplet inside the venturi scrubber is simulated. Due to the pressure difference inside and outside of the throat, the liquid would be sucked and injected through the holes. The behavior that the liquid is injected through the holes, accelerated by the gas flow and atomized into small sized particles has been observed.

  9. Numerical Analysis on Behavior of Droplet in Venturi Scrubber

    International Nuclear Information System (INIS)

    Choi, W. Y.; Lee, D. Y.; Bang, Y. S.

    2015-01-01

    At throat, the velocity of the gas would be at maximum and the pressure would be the lowest. Due to pressure difference between inside and outside of the throat, the liquid submerging the venture scrubber would be sucked and atomized. As the gas flow through the diffuser, the pressure would be recovered and the dust in the gas mixture would be captured by the atomized liquid droplets. In this process of dust removal in venture scrubber, atomization (i.e. breakup of liquid droplet in the venturi scrubber) is crucial for filtering efficiency. In order to maintain the high efficiency, the injected liquid should be atomized into fine droplets and well spread. Because of its importance, the experimental study has been conducted by many researchers. However, numerical study has not been conducted extensively. As a preliminary study for estimating filtration efficiency of venturi scrubber by numerical tools, the behavior of droplet inside the venturi scrubber is simulated. Due to the pressure difference inside and outside of the throat, the liquid would be sucked and injected through the holes. The behavior that the liquid is injected through the holes, accelerated by the gas flow and atomized into small sized particles has been observed

  10. Mesophilic anaerobic stabilization of sewage sludge. Mesophile anaerobe Klaerschlammstabilisierung mit aerober Folgebehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, U.

    1988-01-01

    Sludges treated in two stages in experiments - 7 days of anaerobic treatment and 2 days of aerobic-thermophilic treatment - can be judged to be completely stabilized because of the stabilization parameters BOD/sub 5//COD ratio and respiratory activity. The degradation results obtained are comparable to or better than those of the 20-day digestion (reference process). For all aerobic processes under investigation a clear temperature increase in the aerobic reactor was measured because of the exothermal metabolic processes of the aerobic biocenosis. There was a temperature rise of 15/sup 0/C in the tests in the aerobic reactor even after longer digestion times of 15 and 20 days. The results of the epidemics and hygiene investigations show that a secondary aerobic-thermophilic stage after the mesophilic digestion with adequate marginal conditions - germ retention time of 23 hours in the aerobic reactor at process temperatures higher than 50/sup 0/C as well as charging in batch quantities - leads to a safe and complete decontamination. Under these process and operation conditions all salmonellae were killed and the number of the enterobacteriaceae in 1 g of sludge was always less than 1.000. (orig./EF).

  11. Examination of solidified and stabilized matrices as a result of solidification and stabilization process of arseniccontaining sludge with portland cement and lime

    Directory of Open Access Journals (Sweden)

    Tanapon Phenrat

    2004-02-01

    Full Text Available By solidification and stabilization (S/S with Portland cement and lime, it is possible to reduce arsenic concentration in leachate of the arsenic-containing sludge from arsenic removal process by coagulation with ferric chloride. From the initial arsenic concentration in leachate of unsolidified /unstabilized sludge which was around 20.75 mg/L, the arsenic concentrations in leachate of solidified/stabilized waste were reduced to 0.3, 0.58, 1.09, and 1.85 mg/L for the waste-to-binder ratios of 0.15, 0.25, 0.5, and 1, respectively, due tothe formation of insoluble calcium-arsenic compounds. To be more cost effective for the future, alternative uses of these S/S products were also assessed by measurement of compressive strength of the mortar specimens. It was found that the compressive strengths of these matrices were from 28 ksc to 461 ksc. In conclusion, considering compressive strength and leachability of the solidified matrices, some of these solidified/ stabilized products have potential to serve as an interlocking concrete paving block.

  12. An efficient venturi scrubber system to remove submicron particles in exhaust gas.

    Science.gov (United States)

    Tsai, Chuen-Jinn; Lin, Chia-Hung; Wang, Yu-Min; Hunag, Cheng-Hsiung; Li, Shou-Nan; Wu, Zong-Xue; Wang, Feng-Cai

    2005-03-01

    An efficient venturi scrubber system making use of heterogeneous nucleation and condensational growth of particles was designed and tested to remove fine particles from the exhaust of a local scrubber where residual SiH4 gas was abated and lots of fine SiO2 particles were generated. In front of the venturi scrubber, normal-temperature fine-water mist mixes with high-temperature exhaust gas to cool it to the saturation temperature, allowing submicron particles to grow into micron sizes. The grown particles are then scrubbed efficiently in the venturi scrubber. Test results show that the present venturi scrubber system is effective for removing submicron particles. For SiO2 particles greater than 0.1microm, the removal efficiency is greater than 80-90%, depending on particle concentration. The corresponding pressure drop is relatively low. For example, the pressure drop of the venturi scrubber is approximately 15.4 +/- 2.4 cm H2O when the liquid-to-gas ratio is 1.50 L/m3. A theoretical calculation has been conducted to simulate particle growth process and the removal efficiency of the venturi scrubber. The theoretical results agree with the experimental data reasonably well when SiO2 particle diameter is greater than 0.1 microm.

  13. Fluidized-bed-combustion ash for the solidification and stabilization of a metal-hydroxide sludge.

    Science.gov (United States)

    Knoll, K L; Behr-Andres, C

    1998-01-01

    Fluidized-bed-combustion (FBC) ash is a by-product from a developing technology for coal-fired power plants that will economically reduce air emissions to meet requirements of the Clean Air Act. FBC ash has physical and chemical properties similar to Portland cement, but only has moderate success as a pozzolan in concrete applications due to low compressive strengths. However, FBC ash has proven effective for use as a binder for the solidification and stabilization (S/S) of metal-bearing sludges. Physical and chemical characterization procedures were used to analyze FBC ash and a metal-bearing sludge obtained from a hazardous waste treatment facility to develop 12 different S/S mix designs. The mix designs consist of four binder designs to evaluate sludge-to-binder ratios of approximately 0, 0.5, and 1. Portland cement is used as a control binder to compare unconfined compressive strengths and Toxicity Characteristic Leaching Procedure (TCLP) analyses from different ratios of the FBC ash streams: fly ash, char, and spent bed material (SBM). Compressive strengths ranging from 84 lbs per square inch (psi) to 298 psi were obtained from various mix designs containing different sludge-to-ash ratios cured for 28 days. All the mix designs passed the TCLP. Recoveries from leaching for each metal were less than 5% for most mix designs. Results of unconfined compressive strengths, TCLP, and percent recovery calculations indicate that the mix design containing approximately a 1:1 ratio of fly ash to char-and-sludge is the best mix design for the S/S of the metal-bearing sludge.

  14. Ternary blends containing demercurated lighting phosphor and MSWI fly ash as high-performance binders for stabilizing and recycling electroplating sludge.

    Science.gov (United States)

    Huang, Wu-Jang; Wu, Chia-Teng; Wu, Chang-En; Hsieh, Lin-Huey; Li, Chang-Chien; Lain, Chi-Yuan; Chu, Wei

    2008-08-15

    This paper describes the solidification and stabilization of electroplating sludge treated with a high-performance binder made from portland type-I cement, municipal solid waste incineration fly ash, and lighting phosphor powder (called as cement-fly ash-phosphor binder, CFP). The highest 28-day unconfined compressive strength of the CFP-treated paste was 816 kg/cm(2) at a ratio of cement to fly ash to lighting phosphor powder of 90:5:5; the strength of this composition also fulfilled the requirement of a high-strength concrete (>460 kg/cm(2) at 28 days). The CFP-stabilized sludge paste samples passed the Taiwanese EPA toxicity characteristic leaching procedure test and, therefore, could be used either as a building material or as a controlled low-strength material, depending on the sludge-to-CFP binder ratio.

  15. Analysis of Liquid Fraction in Venturi Scrubber by E-E Method Using CFX

    OpenAIRE

    Majid Ali; Yan Changqi; Sun Zhongning; Wang Jianjun; Gu HaiFeng

    2012-01-01

    In this research, the distribution of liquid fraction in cylindrical venturi scrubber is analyzed in ANSYS CFX by Eulerian-Eulerian regime. Liquid gaps allow the aerosols to escape from the venturi scrubber. Therefore, it is vital to investigate the liquid fraction in venturi scrubber at different operating condition. The mesh model is developed in ANSYS ICEM and simulation is conducted in ANSYS CFX. k- ε turbulence model is used for simulation of two phase flow in venturi scrubber. The analy...

  16. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control.

    Science.gov (United States)

    Gabriel, David; Deshusses, Marc A

    2003-05-27

    Biological treatment is a promising alternative to conventional air-pollution control methods, but thus far biotreatment processes for odor control have always required much larger reactor volumes than chemical scrubbers. We converted an existing full-scale chemical scrubber to a biological trickling filter and showed that effective treatment of hydrogen sulfide (H2S) in the converted scrubber was possible even at gas contact times as low as 1.6 s. That is 8-20 times shorter than previous biotrickling filtration reports and comparable to usual contact times in chemical scrubbers. Significant removal of reduced sulfur compounds, ammonia, and volatile organic compounds present in traces in the air was also observed. Continuous operation for >8 months showed stable performance and robust behavior for H2S treatment, with pollutant-removal performance comparable to that achieved by using a chemical scrubber. Our study demonstrates that biotrickling filters can replace chemical scrubbers and be a safer, more economical technique for odor control.

  17. Municipal Sewage Sludge Drying Treatment by an Composite Modifier

    Directory of Open Access Journals (Sweden)

    Na Wei

    2012-01-01

    Full Text Available A sludge composite modifier (SCM which comprises a mixture of three cementitious components was proposed for sludge drying and stabilization. Effect of SCM components on sludge moisture content was analyzed using uniform design and the optimum composition of SCM was determined by computer-aided modeling and optimization. To compare the drying effect of SCM, quicklime, and Portland cement, the effects of material content and curing time on moisture content of sludge were also studied. The results showed that the optimum ratio of modifier component was slag/cement clinker/dihydrate gypsum = 0.64/0.292/0.068 and the moisture content of SCM-stabilized sludge decreased with the increasing material content and extending curing time. Besides, the experimental results showed that optimized SCM behaved better than quicklime and Portland cement in sludge semi-drying and XRD analysis revealed that the main hydrated product of stabilization was ettringite, which played an important role in the effective drying process. Sewage sludge stabilized using SCM could be used as an effective landfill cover.

  18. Experimental study of iodine removal efficiency in self-priming venturi scrubber

    International Nuclear Information System (INIS)

    Gulhane, N.P.; Landge, A.D.; Shukla, D.S.; Kale, S.S.

    2015-01-01

    Highlights: • Fabrication, erection of experimental set up and carrying out experimentation with self priming venturi scrubber. • Predicting solubility of iodine in water and its pH dependency. • Increasing pH of water increases iodine removal efficiency. • Maximum iodine removal efficiency is obtained at 10 pH of water using sodium thiosulphate. - Abstract: The objective of present experimental study is to examine the iodine removal efficiency of a self-priming venturi scrubber for submerged operating condition. The venturi scrubber is used in Containment Filtered Venting System of nuclear power plants to remove the gaseous pollutants from contaminated gas during severe accidents. The experiment consists of mixing the iodine vapours with the air using suction venturi and pressure cooker system. The purpose of iodine mixing with air is to examine scrubbing performance of the designed venturi scrubber with water as scrubbing liquid. The performance parameters of venturi scrubber are expressed mainly in terms of pressure drop and iodine removal efficiency. The iodine removal efficiency of venturi scrubber is estimated for a series of two experiments by measuring the quantity of iodine in water from iodometric titration with four distinct pH of water. It has been experimentally observed that iodine removal efficiency is improved by using higher pH value of scrubbing liquid since solubility of iodine gets improved at higher pH

  19. Radioactive and hazardous wastewater treatment and sludge stabilization by filtration

    International Nuclear Information System (INIS)

    Martin, H.L.; Pickett, J.B.; Langton, C.A.

    1991-01-01

    Concentrated effluents from batch discharges of spent process solutions are mixed with filter cake from treatment of the dilute effluents and stored in a large tank at the optimum high pH for hydroxide precipitation of heavy metals. Supernate is decanted from the storage tanks and mixed with the dilute effluents before treatment. A filtration and stabilization process has been developed to treat and stored sludge as well as the concentrated wastewater slurry as it is generated. A 94% waste volume reduction over conventional technology can be achieved. Furthermore, leachate from the solidified waste filter cake meets the EPA land disposal restrictions

  20. Westinghouse containment filtered venting system wet scrubber technology

    International Nuclear Information System (INIS)

    Kristensson, S.; Nilsson, P-O.

    2014-01-01

    Following the Fukushima event Westinghouse has further developed and enhanced its filtered containment venting system (FCVS) product line. The filtration efficiency of the proven FILTRA-MVSS system installed at all Swedish NPPs as well as at the Muhelberg plant in Switzerland has been enhanced and a new wet scrubber design, SVEN (Safety Venting), based on the FILTRA-MVSS tradition, developed. To meet increased filtration requirements for organic iodine these two wet scrubber products have been complemented with a zeolite module. The offering of a select choice of products allows for a better adjustment to the specific constraints and needs of each nuclear power station that is planning for the installation of such a system. The FILTRA-MVSS (MVSS=Multi Venturi Scrubber System) is a wet containment filtered vent system that uses multiple venturies to create an interaction between the vent gases and the scrubber media allowing for removal of aerosols and gaseous iodines in a very efficient manner. The FILTRA-MVSS was originally developed to meet stringent requirements on autonomy and maintained filtration efficiency over a wide range of venting conditions. The system was jointly developed in the late 80's by ABB Atom and ABB Flaekt, today Westinghouse and Alstom. Following installations in Sweden and Switzerland the system was further developed by replacement of the gravel-bed moisture separator with a standard demister and by addition of a set of sintered metal fibre filter cartridges placed after the moisture separator step. The system is today offered as a modular steel tank design to simplify installation at site. To reduce complexity and delivery time Westinghouse has developed an alternative design in which the venturi module is replaced by a submerged metal fibre filter cartridges module. This new wet scrubber design, SVEN (patent pending), provides a flexible, compact, and lower weight system, while still preserving and even enhancing the filtration

  1. Prediction of hydrodynamic characteristics of a venturi scrubber by using CFD simulation

    Directory of Open Access Journals (Sweden)

    Manisha Bal

    2017-12-01

    Full Text Available The filtered containment venting system (FCVS is a safety relevant system, which consists of venturi scrubber and a mesh filter. FCVS needs to be further assessed to improve the existing performance of the venturi scrubber. Therefore, hydrodynamics is an important counter-component needs to be investigated to improve the design of the venturi scrubber. In the present research, Computational Fluid Dynamic (CFD has been used to predict the hydrodynamic behaviour of a newly designed venturi scrubber. Mesh was developed by gambit 2.4.6 and ansys fluent 15 has been used to predict the pressure drop profile inside the venturi scrubber under various flow conditions. The Reynolds Renormalization Group (RNG k-ε turbulence model and the volume of the fluid (VOF were employed for this simulation. The effect of throat gas velocity, liquid mass flow rate, and liquid loading on pressure drop was studied. Maximum pressure drop 2064.34 pa was achieved at the throat gas velocity of 60 m/s and liquid flow rate of 0.033 kg/s and minimum pressure drop 373.51 pa was achieved at the throat gas velocity of 24 m/s and liquid flow rate of 0.016 kg/s. The results of the present study will assist for proper functioning of venturi scrubber. Keywords: Venturi scrubber, Hydrodynamics, Pressure drop, Computational fluid dynamics, Nuclear power plant safety, Flow prediction

  2. Evaluation of a Zirconium Recycle Scrubber System

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A hot-cell demonstration of the zirconium recycle process is planned as part of the Materials Recovery and Waste Forms Development (MRWFD) campaign. The process treats Zircaloy® cladding recovered from used nuclear fuel with chlorine gas to recover the zirconium as volatile ZrCl4. This releases radioactive tritium trapped in the alloy, converting it to volatile tritium chloride (TCl). To meet regulatory requirements governing radioactive emissions from nuclear fuel treatment operations, the capture and retention of a portion of this TCl may be required prior to discharge of the off-gas stream to the environment. In addition to demonstrating tritium removal from a synthetic zirconium recycle off-gas stream, the recovery and quantification of tritium may refine estimates of the amount of tritium present in the Zircaloy cladding of used nuclear fuel. To support these objectives, a bubbler-type scrubber was fabricated to remove the TCl from the zirconium recycle off-gas stream. The scrubber was fabricated from glass and polymer components that are resistant to chlorine and hydrochloric acid solutions. Because of concerns that the scrubber efficiency is not quantitative, tests were performed using DCl as a stand-in to experimentally measure the scrubbing efficiency of this unit. Scrubbing efficiency was ~108% ± 3% with water as the scrubber solution. Variations were noted when 1 M NaOH scrub solution was used, values ranged from 64% to 130%. The reason for the variations is not known. It is recommended that the equipment be operated with water as the scrubbing solution. Scrubbing efficiency is estimated at 100%.

  3. Particle collection by a pilot plant venturi scrubber downstream from a pilot plant electrostatic precipitator

    Science.gov (United States)

    Sparks, L. E.; Ramsey, G. H.; Daniel, B. E.

    The results of pilot plant experiments of particulate collection by a venturi scrubber downstream from an electrostatic precipitator (ESP) are presented. The data, which cover a range of scrubber operating conditions and ESP efficiencies, show that particle collection by the venturi scrubber is not affected by the upstream ESP; i.e., for a given scrubber pressure drop, particle collection efficiency as a function of particle diameter is the same for both ESP on and ESP off. The experimental results are in excellent agreement with theoretical predictions. Order of magnitude cost estimates indicate that particle collection by ESP scrubber systems may be economically attractive when scrubbers must be used for SO x control.

  4. Liquid film thickness and interfacial wave propagate in venturi scrubber for filtered venting

    International Nuclear Information System (INIS)

    Nakao, Yasuhiro; Horiguchi, Naoki; Kanagawa, Tetsuya; Kaneko, Akiko; Abe, Yutaka; Yoshida, Hiroyuki

    2016-01-01

    As one of filtered venting systems which should be installed in light water reactors from the viewpoint of protecting a containment vessel and suppressing the diffusion of radioactive materials, there is a system composed of venturi scrubbers. The radioactive materials in the contaminated gas are collected into liquid. By forming dispersed flow in the venturi scrubber, interfacial area between liquid and gas is enhanced, finally, large decontamination factor is realized. In evaluation for the decontamination performance of the venturi scrubber, interface characteristics of droplets and liquid film are important. In this study, as a part of evaluation method of the interfacial area, the liquid film thickness in the venturi scrubber was measured. And evaluate the results of investigation experimentally for each ruffling average thickness and liquid film in a fluidized condition. The cross section area of a venturi scrubber is a rectangular one manufactured a transparent acrylic for visualization. In the venturi scrubber, a pressure drop occurs in the throat part by the inflow of air from the compressor. Water flows from the tank by a pressure difference between a suctioned hole with head pressure and a throat part. An annular spray flow is then formed in the venturi scrubber. (author)

  5. The effect of gamma irradiation on the stability of cemented Winfrith reactor (SGHWR) sludge

    International Nuclear Information System (INIS)

    Holland, T.R.

    1985-01-01

    The effects of prolonged self-irradiation within cemented Winfrith SGHWR sludge have been investigated by exposing simulant material to a CO-60 source. Measurements of dimensional stability and radiolysis have been used in this assessment of radiation stability. The dimensional stability of the cement matrix was unaffected by an irradiation intensity which greatly exceeded the expected lifetime dose, and radiolysis rates have followed those which have previously been observed by other researchers. Data obtained for the release of radiolytic hydrogen has allowed a prediction to be made of release from the full-size product, during decay of the principal radioactive species, Co-60. A method has been developed for the determination of dimensional stability using non-standard sized specimens and is appended. (author)

  6. Continuous measurements of ammonia, nitrous oxide and methane from air scrubbers at pig housing facilities.

    Science.gov (United States)

    Van der Heyden, C; Brusselman, E; Volcke, E I P; Demeyer, P

    2016-10-01

    Ammonia, largely emitted by agriculture, involves a great risk for eutrophication and acidification leading to biodiversity loss. Air scrubbers are widely applied to reduce ammonia emission from pig and poultry housing facilities, but it is not always clear whether their performance meets the requirements. Besides, there is a growing international concern for the livestock related greenhouse gases methane and nitrous oxide but hardly any data concerning their fate in air scrubbers are available. This contribution presents the results from measurement campaigns conducted at a chemical, a biological and a two-stage biological air scrubber installed at pig housing facilities in Flanders. Ammonia, nitrous oxide and methane at the inlet and outlet of the air scrubbers were monitored on-line during one week using a photoacoustic gas monitor, which allowed to investigate diurnal fluctuations in the removal performance of air scrubbers. Additionally, the homogeneity of the air scrubbers, normally checked by gas detection tubes, was investigated in more detail using the continuous data. The biological air scrubber with extra nitrification tank performed well in terms of ammonia removal (86 ± 6%), while the two-stage air scrubber suffered from nitrifying bacteria inhibition. In the chemical air scrubber the pH was not kept constant, lowering the ammonia removal efficiency. A lower ammonia removal efficiency was found during the day, when the ventilation rate was the highest. Nitrous oxide was produced inside the biological and two-stage scrubber, resulting in an increased outlet concentration of more than 200%. Methane could not be removed in the different air scrubbers because of its low water solubility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Numerical Study on Shape of Liquid Inlet for Venturi Scrubber in Self-Priming Mode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. W.; Kim, H. S.; Kim, W. S. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the simulation was developed for different design of liquid inlet to improve injection in submerged self-priming mode venturi scrubber. 1. A hole type is easy to discharged gas from liquid inlet for submerged self-priming mode. 2. A spit type, the liquid is injected into venturi scrubber for all gas volume rate in submerged self-priming mode. 3. A spit type is better than a hole type on improving injection of liquid inlet for submerged self-priming mode in venturi scrubber.The gas accelerate in convergent segment and reach maximum velocity at throat. The liquid is injected into venturi scrubber depends on static pressure difference between outside and inside of the venturi throat, then liquid is atomized into fine droplet when it contacts with high speed airflow. Aerosol removal occur in the diverging section as the inlet gas stream mixes with the fog of tiny liquid droplets. Many studies dealing with the non-submerged selfpriming venturi scrubber. In a non-submerged condition, outlet nozzle of venturi scrubber is not immersed in water pool of a tank whereas in a submerged condition, the outlet of a venturi scrubber is immersed in water pool. The scrubbing liquid is supplied by water reservoir surrounding the throat and is drawn in due to a pressure difference between the outside and the inside of the venturi throat that arises out of the hydrostatic pressure of the liquid and static pressure of the flowing gas. The performance of a venturi scrubber is improved with high gas velocities and high liquid flow rate. Therefore, it is important to study the liquid fraction in venturi scrubber operated at different condition. The venturi scrubber is used to a submerged self-priming mode because the system operates in a passive mode in CFVS. The present study focuses on the liquid flow characteristics for various shapes of liquid inlet in submerged self-priming venturi scrubber.

  8. Numerical Study on Shape of Liquid Inlet for Venturi Scrubber in Self-Priming Mode

    International Nuclear Information System (INIS)

    Lee, J. W.; Kim, H. S.; Kim, W. S.

    2016-01-01

    In this study, the simulation was developed for different design of liquid inlet to improve injection in submerged self-priming mode venturi scrubber. 1. A hole type is easy to discharged gas from liquid inlet for submerged self-priming mode. 2. A spit type, the liquid is injected into venturi scrubber for all gas volume rate in submerged self-priming mode. 3. A spit type is better than a hole type on improving injection of liquid inlet for submerged self-priming mode in venturi scrubber.The gas accelerate in convergent segment and reach maximum velocity at throat. The liquid is injected into venturi scrubber depends on static pressure difference between outside and inside of the venturi throat, then liquid is atomized into fine droplet when it contacts with high speed airflow. Aerosol removal occur in the diverging section as the inlet gas stream mixes with the fog of tiny liquid droplets. Many studies dealing with the non-submerged selfpriming venturi scrubber. In a non-submerged condition, outlet nozzle of venturi scrubber is not immersed in water pool of a tank whereas in a submerged condition, the outlet of a venturi scrubber is immersed in water pool. The scrubbing liquid is supplied by water reservoir surrounding the throat and is drawn in due to a pressure difference between the outside and the inside of the venturi throat that arises out of the hydrostatic pressure of the liquid and static pressure of the flowing gas. The performance of a venturi scrubber is improved with high gas velocities and high liquid flow rate. Therefore, it is important to study the liquid fraction in venturi scrubber operated at different condition. The venturi scrubber is used to a submerged self-priming mode because the system operates in a passive mode in CFVS. The present study focuses on the liquid flow characteristics for various shapes of liquid inlet in submerged self-priming venturi scrubber.

  9. Effectiveness of multi-stage scrubbers in reducing emissions of air pollutants from pig houses

    OpenAIRE

    Zhao, Y.; Aarnink, A.J.A.; Jong, de, M.C.M.; Ogink, N.W.M.; Groot Koerkamp, P.W.G.

    2011-01-01

    Emissions of air pollutants from livestock houses may raise environmental problems and pose hazards to public health. They can be reduced by scrubbers installed at the air outlets of livestock houses. In this study, three multi-stage scrubbers were evaluated in terms of their effectiveness in reducing emissions of airborne dust, total bacteria, ammonia, and CO2 from pig houses in winter. The three multi-stage scrubbers were one double-stage scrubber (acid stage+ bio-filter), one double-stage ...

  10. Relationships between stability, maturity, water-extractable organic matter of municipal sewage sludge composts and soil functionality.

    Science.gov (United States)

    Sciubba, Luigi; Cavani, Luciano; Grigatti, Marco; Ciavatta, Claudio; Marzadori, Claudio

    2015-09-01

    Compost capability of restoring or enhancing soil quality depends on several parameters, such as soil characteristics, compost carbon, nitrogen and other nutrient content, heavy metal occurrence, stability and maturity. This study investigated the possibility of relating compost stability and maturity to water-extractable organic matter (WEOM) properties and amendment effect on soil quality. Three composts from municipal sewage sludge and rice husk (AN, from anaerobic wastewater treatment plants; AE, from aerobic ones; MIX, from both anaerobic and aerobic ones) have been analysed and compared to a traditional green waste compost (GM, from green manure, solid waste and urban sewage sludge). To this aim, WEOMs were characterized through chemical analysis; furthermore, compost stability was evaluated through oxygen uptake rate calculation and maturity was estimated through germination index determination, whereas compost impact on soil fertility was studied, in a lab-scale experiment, through indicators as inorganic nitrogen release, soil microbial biomass carbon, basal respiration rate and fluorescein di-acetate hydrolysis. The obtained results indicated that WEOM characterization could be useful to investigate compost stability (which is related to protein and phenol concentrations) and maturity (related to nitrate/ammonium ratio and degree of aromaticity) and then compost impact on soil functionality. Indeed, compost stability resulted inversely related to soil microbial biomass, basal respiration rate and fluorescein di-acetate hydrolysis when the products were applied to the soil.

  11. Effect of nozzle arrangement on Venturi scrubber performance

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayanan, N.V.; Viswanathan, S.

    1999-12-01

    The effect of nozzle arrangement on flux distribution is studied in a rectangular, pilot-scale, Pease-Anthony-type Venturi scrubber. The annular, two-phase, heterogeneous, three-dimensional gas-liquid flow inside the scrubber is modeled using a commercial computational fluid dynamic (CFD) package, FLUENT. The comparison of predicted liquid drop concentration shows good agreement with experimental data. The model predicts the fraction of liquid flowing as film on the walls reasonably well. Visualization of flux patterns studied using four typical nozzle configurations indicate that the nonuniformity in flux distribution increases when the nozzle-to-nozzle distance is greater than 10% of the width of the side on which the nozzles are placed. An analysis of the effect of multiple jet penetration lengths on liquid flux distribution yielded a comparable distribution at 10--45% less liquid than uniform penetration for a particular nozzle configuration. This would lead to significant improvements in scrubber performance by achieving comparable collection efficiency at a lower pressure drop.

  12. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Suidan, M.T.; Deady, M.A.; Gee, C.S.

    1983-11-01

    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  13. Prediction of hydrodynamic characteristics of a venturi scrubber by using CFD simulation

    OpenAIRE

    Manisha Bal; Bhim Charan Meikap

    2017-01-01

    The filtered containment venting system (FCVS) is a safety relevant system, which consists of venturi scrubber and a mesh filter. FCVS needs to be further assessed to improve the existing performance of the venturi scrubber. Therefore, hydrodynamics is an important counter-component needs to be investigated to improve the design of the venturi scrubber. In the present research, Computational Fluid Dynamic (CFD) has been used to predict the hydrodynamic behaviour of a newly designed venturi sc...

  14. Drop size measurements in Venturi scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Alonso, D.; Azzopardi, B.J. [Nottingham Univ. (United Kingdom). Dept. of Chemical Engineering; Goncalves, J.A.S.; Coury, J.R. [Universidade Federal de Sao Carlos (Brazil). Departamento de Engenharia Quimica

    2001-07-01

    Venturi scrubbers are high efficiency gas cleaners in which suspended particles are removed from gas streams by drops formed by liquid atomisation, usually in the Venturi throat. The size of the drops formed are of fundamental importance to the performance of the equipment, both in terms of pressure drop and dust removal efficiency. In this study, drop sizes in a cylindrical laboratory-scale Venturi scrubber were measured using a laser diffraction technique. Gas velocity and liquid to gas ratios varied from 50 to 90 m/s and 0.5 to 2.0 1/m{sup 3}, respectively. Water was injected using two different arrangements: either as jets in the throat or as a film just upstream of the convergence. Drop size measurements were performed at three positions in the case of jet injection: two located along the throat, and the last one at the end of the diffuser. The present data shows that the Sauter mean diameter of the spray can be well correlated by the equation of Boll et al. (J. Air Pollut. Control Assoc. 24 (1974) 932). Drop size distributions are satisfactorily represented by a Rosin-Rammler function. This paper also provides a simple method for calculating the parameters of the Rosin-Rammler function. As a result of this work, drop sizes in Venturi scrubbers can be estimated with much higher accuracy. (Author)

  15. A solidification/stabilization process for wastewater treatment sludge from a primary copper smelter

    Directory of Open Access Journals (Sweden)

    Ivšić-Bajčeta Dragana

    2013-01-01

    Full Text Available Wastewater treatment sludge from primary copper smelter is characterized as hazardous waste that requires treatment prior disposal due to significant amount of heavy metals and arsenic. The aim of the presented study was to investigate the feasibility and the effectiveness of solidification/stabilization process of the sludge using fly ash and lime as binders. The effectiveness of the process was evaluated by Unconfined Compressive Strength (UCS testing, leaching tests (EN 12457-4 and Toxicity Characteristic Leaching Procedure (TCLP and Acid Neutralization Capacity (ANC test. All samples reached target UCS of 0.35 MPa. Calcium to silicon concentration ratio (cCa/cSi, determined by X-Ray Fluorescence (XRF analysis, was identified as main factor governing strength development. Inductively coupled plasma-optical emission spectrometry (ICP-OES analyses of solutions after leaching tests showed excellent stabilization of Cu, Ni, Pb and Zn (above 99 % and arsenic (above 90 % in samples with high Ca(OH2 content. Results of ANC test indicated that buffering capacity of solidified material linearly depended on Ca concentration in FA and lime. Sample with 20 % of binder heaving 50 % of FA and 50 % of lime met all requirements to be safely disposed. [Projekat Ministarstva nauke Republike Srbije, br. 34033

  16. Exhaust Gas Scrubber Washwater Effluent

    Science.gov (United States)

    2011-11-01

    variations in the chemistry. Rivers running through soil rich in carbonates will be high in alkalinity. For example, the southern rivers of the Baltic Sea... enviro /Scrubber Test_Report_onboard_Suula.pdf) Waterco. 2010. MultiCyclone for Cooling Towers (http://www.waterco.eu/installations/water- treatment

  17. Investigation of dust particle removal efficiency of self-priming venturi scrubber using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Sarim Ahmed

    2018-06-01

    Full Text Available A venturi scrubber is an important element of Filtered Containment Venting System (FCVS for the removal of aerosols in contaminated air. The present work involves computational fluid dynamics (CFD study of dust particle removal efficiency of a venturi scrubber operating in self-priming mode using ANSYS CFX. Titanium oxide (TiO2 particles having sizes of 1 micron have been taken as dust particles. CFD methodology to simulate the venturi scrubber has been first developed. The cascade atomization and breakup (CAB model has been used to predict deformation of water droplets, whereas the Eulerian–Lagrangian approach has been used to handle multiphase flow involving air, dust, and water. The developed methodology has been applied to simulate venturi scrubber geometry taken from the literature. Dust particle removal efficiency has been calculated for forced feed operation of venturi scrubber and found to be in good agreement with the results available in the literature. In the second part, venturi scrubber along with a tank has been modeled in CFX, and transient simulations have been performed to study self-priming phenomenon. Self-priming has been observed by plotting the velocity vector fields of water. Suction of water in the venturi scrubber occurred due to the difference between static pressure in the venturi scrubber and the hydrostatic pressure of water inside the tank. Dust particle removal efficiency has been calculated for inlet air velocities of 1 m/s and 3 m/s. It has been observed that removal efficiency is higher in case of higher inlet air velocity. Keywords: Computational Fluid Dynamics, Dust Particles, Filtered Containment Venting System, Self-priming Venturi Scrubber, Venturi Scrubber

  18. Vermistabilization of Municipal Wastewater Sludge with Eisenia fetida

    Directory of Open Access Journals (Sweden)

    A Parvaresh, H Movahedian, L Hamidian

    2004-10-01

    Full Text Available Sludges are stabilized to reduce pathogens, eliminate offensive odors and inhibit, reduce or eliminate the potential for putrification. In this study, stabilization of municipal wastewater sludge with and without earthworms (Eisenia fetida was tested in a pilot study. The earthworms were fed at the optimum level of 0.75 kg-feed/kg-worm/day. Decomposition and stabilization of wastewater sludge occurred both in the presence and in the absence of earthworms during 9 weeks but the process was accelerated in their presence. Phosphorus content increased in the sludge with earthworms but decreased in it without them. Nitrogen content in the resulting vermicompost showed no difference with its quantity in the original substrate while it increased in the control treatment.

  19. Implementation of an ex situ stabilization technique at the Sand Springs superfund site to solidify and stabilize acid tar sludges involving a quick-lime based stabilization process and innovative equipment design

    International Nuclear Information System (INIS)

    McManus, R.W.; Grajczak, P.; Wilcoxson, J.C.; Webster, S.D.

    1997-01-01

    An old refinery site was safely remediated a year before schedule and for 25% less than final engineering estimates for the stabilization remedy thanks to energetic project management and innovative design involving ex situ stabilization/solidification of acid tar sludges. A quicklime based process, Dispersion by Chemical Reaction (DCR trademark), was employed to solidify and stabilize (SS) over 103,000 cubic meters (135,000 cubic yards) of petroleum waste, mostly acidic tarry sludge. The SS process was selected over competing methods because it afforded minimal volume increase, could readily achieve Record of Decision (ROD) specified physical and chemical treatment goals, could be implemented with treatment equipment that minimized emissions, and could be performed with low reagent usage and at low cost. To ensure treatment goals were achieved and an accelerated schedule met, a custom designed and fabricated transportable treatment unit (TTU) was employed to implement the process. The treated material was visually soil-like in character, it was left in stockpiles for periods of time, and it was placed and compacted in the on site landfill using standard earth-moving equipment

  20. Investing in Marine Scrubber under Uncertainty with Real Option Thinking

    DEFF Research Database (Denmark)

    Jiang, Liping; Hansen, Carsten Ørts

    works that examine the economic feasibility of scrubber retrofitting through the net present value rule, this paper applies the Real Option Analysis to find the optimal investment strategies. The proposed decision-making framework addresses the uncertainty and the value of deferral option embedded...... in the scrubber investment. The multiple sources of investment uncertainties are explicitly analyzed and integrated in the modeling by using Rainbow option. The results demonstrate that the value of the scrubber investment has significantly increased for several cases by considering the deferral option....... It is thus important for ship owners to consider the available options before proceeding with abandoning or investing strategy. The proposed framework can be widely applied to other ship retrofitting investment evaluations, which include similar investment alternatives and uncertainties....

  1. Application of electrochemical peroxidation (ECP) process for waste-activated sludge stabilization and system optimization using response surface methodology (RSM).

    Science.gov (United States)

    Gholikandi, Gagik Badalians; Kazemirad, Khashayar

    2018-03-01

    In this study, the performance of the electrochemical peroxidation (ECP) process for removing the volatile suspended solids (VSS) content of waste-activated sludge was evaluated. The Fe 2+ ions required by the process were obtained directly from iron electrodes in the system. The performance of the ECP process was investigated in various operational conditions employing a laboratory-scale pilot setup and optimized by response surface methodology (RSM). According to the results, the ECP process showed its best performance when the pH value, current density, H 2 O 2 concentration and the retention time were 3, 3.2 mA/cm 2 , 1,535 mg/L and 240 min, respectively. In these conditions, the introduced Fe 2+ concentration was approximately 500 (mg/L) and the VSS removal efficiency about 74%. Moreover, the results of the microbial characteristics of the raw and the stabilized sludge demonstrated that the ECP process is able to remove close to 99.9% of the coliforms in the raw sludge during the stabilization process. The energy consumption evaluation showed that the required energy of the ECP reactor (about 1.8-2.5 kWh (kg VSS removed) -1 ) is considerably lower than for aerobic digestion, the conventional waste-activated sludge stabilization method (about 2-3 kWh (kg VSS removed) -1 ). The RSM optimization process showed that the best operational conditions of the ECP process comply with the experimental results, and the actual and the predicted results are in good conformity with each other. This feature makes it possible to predict the introduced Fe 2+ concentrations into the system and the VSS removal efficiency of the process precisely.

  2. Effects of Land-Applied Ammonia Scrubber Solutions on Yield, Nitrogen Uptake, Soil Test Phosphorus, and Phosphorus Runoff.

    Science.gov (United States)

    Martin, Jerry W; Moore, Philip A; Li, Hong; Ashworth, Amanda J; Miles, Dana M

    2018-03-01

    Ammonia (NH) scrubbers reduce amounts of NH and dust released from animal rearing facilities while generating nitrogen (N)-rich solutions, which may be used as fertilizers. The objective of this study was to determine the effects of various NH scrubber solutions on forage yields, N uptake, soil-test phosphorus (P), and P runoff. A small plot study was conducted using six treatments: (i) an unfertilized control, (ii) potassium bisulfate (KHSO) scrubber solution, (iii) aluminum sulfate [Al(SO) ⋅14HO, alum] scrubber solution, (iv) sodium bisulfate (NaHSO) scrubber solution, (v) sulfuric acid (HSO) scrubber solution, and (vi) ammonium nitrate (NHNO) fertilizer. The scrubber solutions were obtained from ARS Air Scrubbers attached to commercial broiler houses. All N sources were applied at a rate of 112 kg N ha. Plots were harvested approximately every 4 wk and soil-test P measurements were made, then a rainfall simulation study was conducted. Cumulative forage yields were greater ( scrubber solutions than for alum (6.7 Mg ha) or HSO (6.5 Mg ha) scrubber solutions or for NHNO (6.9 Mg ha). All N sources resulted in higher yields than the control (5.1 Mg ha). The additional potassium in the KHSO treatment likely resulted in higher yields. Although Mehlich-III-extractable P was not affected, water-extractable P in soil was lowered by the alum-based scrubber solution, which also resulted in lower P runoff. This study demonstrates that N captured using NH scrubbers is a viable N fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Dewatering properties of differently treated sewage sludge

    International Nuclear Information System (INIS)

    Zehnder, H.J.

    1977-01-01

    A study on dewatering properties of radiosterilized sewage sludge of different type and origin was carried out. For comparison, also heat-treated (pasteurized) sludge was investigated. The specific filtration resistance of irradiated sewage sludge was lowered in all types of sludge examined. In general, pasteurization increased this parameter. The settling properties of irradiated digested sewage sludge was slightly improved, mainly in the first hours after treatment. Microbial effects may mask the real sedimentation relations especcially in aerobically stabilized sludges. A pasteurization treatment of sewage sludge caused an increased content of soluble substances and suspended particles in the supernatant water. The supernatant water from irradiated sludge showed a smaller increase

  4. The ways of mass transfer intensification in industrial jet scrubbers

    Directory of Open Access Journals (Sweden)

    Shilyaev Michael

    2015-01-01

    Full Text Available This paper is devoted to parametrical analysis of model, and is aimed at understanding its possibilities to find the most profitable conditions for the technical processes. These processes should consider the maximal extraction of gas and mechanical admixtures from the flow on the droplets of irrigating liquid and reduce the dimensions of hollow direct-flow jet scrubbers (DFJS and Venturi scrubbers (VS.

  5. Efficient particulate scrubber for glass melter off-gas

    International Nuclear Information System (INIS)

    Wright, G.T.

    1983-01-01

    Operation of joule-heated, continuous slurry-fed melters has demonstrated that off-gas aerosols are generated by entrainment of feed slurry and vaporization of volatile species from the melt. Effective off-gas stream decontamination for these aerosols can be obtained by utilizing a suitably designed and operated wet scrubber system. Results are presented for performance tests conducted with an air aspirating-type venturi scrubber processing a simulated melter off-gas aerosol. Mass overall removal efficiencies ranged from 99.5 to 99.8%. Details of the testing program and applications for melter off-gas system design are discussed

  6. Dual vapor extraction on acidic sludge tar at a former refinery

    International Nuclear Information System (INIS)

    Lear, P.R.; Beall, P.; Townsend, S.

    1996-01-01

    OHM Remediation Services Corp conducted a pilot-scale demonstration for a novel application of dual vapor extraction technology for the pretreatment of the acid tar sludge material. The acid tar sludge comprised of approximately 60% asphaltene hydrocarbon material, 20% clay, and up to 20% sulfuric acid (H 2 SO 4 ). The liquid layer in the bottom of the pits has a low pH ( 2 ) gas which is released with the sludge material is excavated or handled. The objective of the dual vapor extraction was to remove the SO 2 vapors and liquid layer containing sulfuric acid prior to any further treatment. The dual vapor extraction would reduce the amount of alkaline reagent required for neutralization while eliminating the health and safety concerns. Overall, the DVE pilot demonstration successfully showed that both liquids and vapors could be removed from the acid tar sludge material. The liquid present in the lower portions of the pits will have pH values of 1.0 or less and acidities on the order of 5% H 2 SO 4 . The liquid removed from the acid tar sludge material by a DVE system will have slightly higher pH (∼1.5) and lower alkalinities (∼3% H 2 SO 4 ). The SO 2 concentration in the vapors removed by the DVE system will be variable with initial levels approaching 1,200 ppmv SO 2 . The SO 2 concentration in the vapor phase should decrease with time. A caustic scrubber solution will remove any SO 2 from the vapor phase. After DVE treatment, the acid tar sludge material would have a slightly increased pH and a decreased SO 2 concentration

  7. Composting sewage sludge

    International Nuclear Information System (INIS)

    Epstein, E.

    1979-01-01

    Sewage sludge is predominantly organic matter containing domestic and industrial wastes. The inefficiency of the waste water treatment to destroy pathogens and stabilization of odor-producing volatile organic compounds necessitates further treatment before sludge can be used as a soil amendment or fertilizer. Composting, which is the rapid biological decomposition of the sludge organic matter is an excellent method of sludge stabilization. During the process, volatile organics are decomposed and many of the pathogens destoyed. The low cost of the process and its flexibility with respect to labor and capital makes the system highly attractive to municipalities. A major problem facing large urban waste water treatment facilities is the distribution or marketing. The light weight of the material, expensive hauling costs, and low fertilizer value reduce its attractiveness to the agricultural sector. Thus, the greatest market is for horticultural purposes, sod, nurseries, greenhouses, parks, and reclamation areas. The major potential benefits of irradiating compost as a means of further disinfection are: (1) elimination of any health hazard; (2) increase of market potential, i.e., providing more market outlets to distribute the material; (3) compliance with state and federal health regulations; and (4) enhancement of the economics of composting as a result of utilizing compost in speciality products commanding a higher value

  8. Study of iodine removal efficiency in self-priming venturi scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong

    2013-01-01

    Highlights: ► Study of iodine removal efficiency in a self-priming venturi scrubber. ► Investigation of iodine removal efficiency at different gas and liquid flow rates. ► Investigation of different inlet concentrations of iodine. ► Mathematical model based on mass transfer. - Abstract: Venturi scrubber is used in filtered vented containment system of nuclear power plants to remove the gaseous pollutants from contaminated gas during severe accidents. In this research, an experimental and theoretical investigation has been carried out to study the iodine removal efficiency in a self-priming venturi scrubber. The aqueous solution is prepared by adding weight percentage of sodium hydroxide 0.5% and sodium thiosulphate 0.2% in scrubbing water to increase the absorbance of inorganic iodine (I 2 ) from the contaminated gas during emission. The iodine removal efficiency is investigated at various gas and liquid flow rates, and iodine inlet concentrations. The iodine removal efficiency is measured experimentally by measuring the inlet and outlet concentration of iodine at sampling ports. The petite droplets are formed in a venturi scrubber to absorb the iodine through the mass transfer phenomenon. A mathematical model for mass transfer based on a gas liquid interface is employed for the verification of experimental results. The contact time between iodine and scrubbing solution depends on the total volumetric flow of gas and liquid, and volume of throat and diffuser of the venturi scrubber. Sauter mean diameter is calculated from the Nukiyama and Tanasawa correlation. Steinberger and Treybal’s correlation is used to measure the mass transfer coefficient for the gas phase. The results calculated from the model under predict the experimental data

  9. Wet scrubber technology for tritium confinement at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Perevezentsev, A.N., E-mail: alexander.perevezentsev@iter.org [ITER Organization, CS 90 046, 13067 St Paul lez Durance Cedex (France); Andreev, B.M.; Rozenkevich, M.B.; Pak, Yu.S.; Ovcharov, A.V.; Marunich, S.A. [Mendeleev University of Chemical Technology, 125047 Miusskaya Sq. 9, Moscow (Russian Federation)

    2010-12-15

    Operation of the ITER machine with tritium plasma requires tritium confinement systems to protect workers and the environment. Tritium confinement at ITER is based on multistage approach. The final stage provides tritium confinement in building sectors and consists of building's walls as physical barriers and control of sub-atmospheric pressure in those volumes as a dynamic barrier. The dynamic part of the confinement function shall be provided by safety important components that are available all the time when required. Detritiation of air prior to its release to the environment is based on catalytic conversion of tritium containing gaseous species to water vapour followed by their isotopic exchange with liquid water in scrubber column of packed bed type. Wet scrubber technology has been selected because of its advantages over conventional air detritiation technique based on gas drying by water adsorption. The most important design target of system availability was very difficult to meet with conventional water adsorption driers. This paper presents results of experimental trial for validation of wet scrubber technology application in the ITER tritium confinement system and process evaluation using developed simulation computer code.

  10. FOREST SEEDLINGS PRODUCTION USING STABILIZED SEWAGE SLUDGE / PRODUÇÃO DE MUDAS FLORESTAIS UTILIZANDO LODO DE ESGOTO ESTABILIZADO

    Directory of Open Access Journals (Sweden)

    DURVAL R. DE PAULA JR

    2009-11-01

    Full Text Available Aiming tThis study aims at evaluating the physical, chemical and biological characteristics of sewage sludge and its feasibility for use as a component of substrata to produce seedlings of native and exotic trees. The sewage sludge was previously stabilized through the process of composting with grassremnants. Before and after the composting, chemical analyses were carried out in order to quantify levels of heavy metals, macro nutrients and micro nutrients in addition to microbiological analyses of sewage sludge. The mixtures (Treatments in the proportions vary from 0 to 100% of organic compostof sewage sludge (OCSS in composition with carbonized rice husks (CRH and were compared to control treatments, which consisted of commercial substrates (PLANTMAX-EUCATEX and cattle manure. Porosity, density, capacity of water retention and particles size of treatments were evaluated. Results of the physical characterization of substrates revealed that proportions ranging from 100 to 40% of the compost showed better results for tree seedlings cultivation. The use of organic compost of sewage sludge (OCSS to produce seedlings of forest essences is a viable alternative for waste reuse, aggregating not only economy and quality of inputs in the yields, but also environmental benefits.

  11. Inhibition of the bioavailability of heavy metals in sewage sludge biochar by adding two stabilizers

    Science.gov (United States)

    Huang, Zhujian; Lu, Qin; Wang, Jun; Chen, Xian; He, Zhenli

    2017-01-01

    Agricultural application of sewage sludge (SS) after carbonization is a plausible way for disposal. Despite its benefits of improving soil fertility and C sequestration, heavy metals contained in sewage sludge biochars (SSB) are still a concern. In this study, two types of heavy metal stabilizers were chosen: fulvic acid (FA) and phosphogypsum (with CaSO4, CS, as the main component). The two stabilizers were incorporated into SS prior to 350°C carbonization for 1 h at the rates of 1%, 2%, or 4%. The obtained SSBs were then analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Total and available concentrations of four heavy metals, i.e., Zn, Pb, Cd, and Ni, in the SSBs were determined. In addition, a series of pot soil culture experiments was conducted to investigate the effects of stabilizers incorporation into SSB on heavy metal bioavailability and the uptake by plants (corn as an indicator) and plant biomass yield, with SS and SSB (no stabilizers) as controls. The results showed that incorporation of both FA and CS increased functional groups such as carboxyl, phenol, hydroxyl, amine and quinine groups in the SSBs. The percentage of heavy metals in sulfuric and oxidizable state and residual state of SSBs were significantly increased after carbonization, and hence the mobility of the heavy metals in SSBs was decreased. The introduction of the stabilizers (i.e., FA or CS) significantly lowered the total and available concentrations of Zn, Pb, Cd, and Ni. The reduction in available heavy metal concentration increased with incorporation rate of the stabilizers from 1% to 4%. In the treatments with FA or CS incorporated SSB, less heavy metals were taken up by plants and more plant biomass yields were obtained. The mitigating effects were more pronounced at higher rates of FA or CS stabilizer. These findings provide a way to lower bioavailability of heavy metals in SS or SSB for land application or horticulture as a

  12. Retention of nitrous gases in scrubber columns

    International Nuclear Information System (INIS)

    Nakazone, A.K.; Costa, R.C.; Lobao, A.S.T.; Matsuda, H.T.; Araujo, B.F. de

    1988-01-01

    During the UO 2 dissolution in nitric acid, some different species of NO (sub)x are released. The off gas can either be refluxed to the dissolver or be released and retained on special colums. The final composition of the solution is the main parameter to take in account. A process for nitrous gases retention using scrubber colums containing H 2 O or diluted HNO 3 is presented. Chemiluminescence measurement was employed to NO x evaluation before and after scrubing. Gas flow, temperature, residence time are the main parameters considered in this paper. For the dissolution of 100g UO 2 in 8M nitric acid, a 6NL/h O 2 flow was the best condition for the NO/NO 2 oxidation with maximum absorption in the scrubber columns. (author) [pt

  13. Droplet dispersion angle measurements on a Pease-Antony Venturi scrubber

    OpenAIRE

    Puentes,N. A. G.; Guerra,V. G.; Coury,J. R.; Gonçalves,J. A. S.

    2012-01-01

    A Pease-Anthony Venturi scrubber is a gas cleaning device that uses liquid, injected in the equipment as jets, to remove contaminants from the gas. The liquid jet is atomized into droplets, which are dispersed throughout the equipment due to the turbulence. The performance of the scrubber is affected by the spatial distribution of the droplets. Although CFD models have been used to predict the droplet dispersion, these models are expensive. Alternatively, the concept of "jet spreading angle" ...

  14. Environmental impact of industrial sludge stabilization/solidification products: chemical or ecotoxicological hazard evaluation?

    Science.gov (United States)

    Silva, Marcos A R; Testolin, Renan C; Godinho-Castro, Alcione P; Corrêa, Albertina X R; Radetski, Claudemir M

    2011-09-15

    Nowadays, the classification of industrial solid wastes is not based on risk analysis, thus the aim of this study was to compare the toxicity classifications based on the chemical and ecotoxicological characterization of four industrial sludges submitted to a two-step stabilization/solidification (S/S) processes. To classify S/S products as hazardous or non-hazardous, values cited in Brazilian chemical waste regulations were adopted and compared to the results obtained with a battery of biotests (bacteria, alga and daphnids) which were carried out with soluble and leaching fractions. In some cases the hazardous potential of industrial sludge was underestimated, since the S/S products obtained from the metal-mechanics and automotive sludges were chemically classified as non-hazardous (but non-inert) when the ecotoxicity tests showed toxicity values for leaching and soluble fractions. In other cases, the environmental impact was overestimated, since the S/S products of the textile sludges were chemically classified as non-inert (but non-hazardous) while ecotoxicity tests did not reveal any effects on bacteria, daphnids and algae. From the results of the chemical and ecotoxicological analyses we concluded that: (i) current regulations related to solid waste classification based on leachability and solubility tests do not ensure reliable results with respect to environmental protection; (ii) the two-step process was very effective in terms of metal immobilization, even at higher metal-concentrations. Considering that S/S products will be subject to environmental conditions, it is of great interest to test the ecotoxicity potential of the contaminants release from these products with a view to avoiding environmental impact given the unreliability of ecotoxicological estimations originating from chemical analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Acid in perchloroethylene scrubber solutions used in HTGR fuel preparation processes. Analytical chemistry studies

    International Nuclear Information System (INIS)

    Lee, D.A.

    1979-02-01

    Acids and corrosion products in used perchloroethylene scrubber solutions collected from HTGR fuel preparation processes have been analyzed by several analytical methods to determine the source and possible remedy of the corrosion caused by these solutions. Hydrochloric acid was found to be concentrated on the carbon particles suspended in perchloroethylene. Filtration of carbon from the scrubber solutions removed the acid corrosion source in the process equipment. Corrosion products chemisorbed on the carbon particles were identified. Filtered perchloroethylene from used scrubber solutions contained practically no acid. It is recommended that carbon particles be separated from the scrubber solutions immediately after the scrubbing process to remove the source of acid and that an inhibitor be used to prevent the hydrolysis of perchloroethylene and the formation of acids

  16. Shipping and the environment: Smokestack emissions, scrubbers and unregulated oceanic consequences

    Directory of Open Access Journals (Sweden)

    David R. Turner

    2017-08-01

    Full Text Available While shipping has long been recognised as a very carbon-efficient transport medium, there is an increasing focus on its broader environmental consequences. The International Maritime Organisation is responsible for the regulation of ship emissions arising from fuel combustion. Their current regulations are, however, much less strict than those applying to land-based transport within the European Union. Five different groups of pollutant emission from ship smokestacks are addressed in this paper: sulphur oxides, nitrogen oxides, particulate matter, organic matter and metals. The reduction of sulphur oxide emissions into the atmosphere using scrubber technology adds another dimension to the discussion, as this approach results in focused discharge of some pollutants to the surface water. A scoping calculation shows that an open-loop scrubber on a medium-sized ship could discharge more copper and zinc daily to the surface water than the ship’s antifouling paint. The use of antifouling paint in the European Union is subject to a prior risk assessment, but scrubber discharges are not subject to any such risk assessment. This situation presents a problem from the perspective of the Marine Strategy Framework Directive, as environmental monitoring programmes in some coastal areas of the Baltic Sea have shown that levels of both copper and zinc exceed environmental quality standards. To fulfil the Marine Strategy Framework Directive requirements and achieve Good Environmental Status, having knowledge of the magnitude of different anthropogenic pressures is important. Metal inputs from open-loop scrubbers have been largely neglected until now: some metals have the potential to serve as tracers for monitoring scrubber discharges.

  17. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker.

    Science.gov (United States)

    Liu, De-Gang; Min, Xiao-Bo; Ke, Yong; Chai, Li-Yuan; Liang, Yan-Jie; Li, Yuan-Cheng; Yao, Li-Wei; Wang, Zhong-Bing

    2018-03-01

    Flotation waste of copper slag (FWCS), neutralization sludge (NS), and arsenic-containing gypsum sludge (GS), both of which are difficult to dispose of, are major solid wastes produced by the copper smelting. This study focused on the co-treatment of FWCS, NS, and GS for solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Firstly, the preparation parameters of binder composed of FWCS, NS, and cement clinker were optimized to be FWCS dosage of 40%, NS dosage of 10%, cement clinker dosage of 50%, mill time of 1.5 h, and water-to-binder ratio of 0.25. On these conditions, the unconfined compressive strength (UCS) of the binder reached 43.24 MPa after hydration of 28 days. Then, the binder was used to solidify/stabilize the As-containing GS. When the mass ratio of binder-to-GS was 5:5, the UCS of matrix can reach 11.06 MPa after hydration of 28 days, meeting the required UCS level of MU10 brick in China. Moreover, arsenic and other heavy metals in FWCS, NS, and GS were effectively solidified or stabilized. The heavy metal concentrations in leachate were much lower than those in the limits of China standard leaching test (CSLT). Therefore, the matrices were potential to be used as bricks in some constructions. XRD analysis shows that the main hydration products of the matrix were portlandite and calcium silicate hydrate. These hydration products may play a significant role in the stabilization/solidification of arsenic and heavy metals.

  18. Study of elemental mercury re-emission through a lab-scale simulated scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Cheng-Li Wu; Yan Cao; Cheng-Chun He; Zhong-Bing Dong; Wei-Ping Pan [Western Kentucky University, KY (United States). Institute for Combustion Science and Environmental Technology

    2010-08-15

    This paper describes a lab-scale simulated scrubber that was designed and built in the laboratory at Western Kentucky University's Institute for Combustion Science and Environmental Technology. A series of tests on slurries of CaO, CaSO{sub 3}, CaSO{sub 4}/CaSO{sub 3} and Na{sub 2}SO{sub 3} were carried out to simulate recirculating slurries in different oxidation modes. Elemental mercury (Hg{sup 0}) re-emission was replicated through the simulated scrubber. The relationship between the oxidation-reduction potential (ORP) of the slurries and the Hg0 re-emissions was evaluated. Elemental mercury re-emission occurred when Hg{sup 2+} that was absorbed in the simulated scrubber was converted to Hg{sup 0}; then, Hg{sup 0} was emitted from the slurry together with the carrier gas. The effects of both the reagents and the operational conditions (including the temperature, pH, and oxygen concentrations in the carrier gas) on the Hg{sup 0} re-emission rates in the simulated scrubber were investigated. The results indicated that as the operational temperature of the scrubber and the pH value of the slurry increased, the Hg{sup 0} concentrations that were emitted from the simulated scrubber increased. The Hg{sup 0} re-emission rates decreased as the O{sub 2} concentration in the carrier gas increased. In addition, the effects of additives to suppress Hg{sup 0} re-emission were evaluated in this paper. Sodium tetrasulfide, TMT 15, NaHS and HI were added to the slurry, while Hg{sup 2+}, which was absorbed in the slurry, was retained in the slurry as mercury precipitates. Therefore, there was a significant capacity for the additives to suppress Hg{sup 0} re-emission. 11 refs., 11 figs., 5 tabs.

  19. The effects of modification for contact stabilization activated sludge on EBPR

    Directory of Open Access Journals (Sweden)

    Hamdy I. Ali

    2015-04-01

    Available design and research information for the EBPR process were directly related to organic strength, solids and phosphorus content in wastewater. The success of excess biological phosphorus removal (EBPR process is largely dependent on the characteristics of organic carbon present in wastewater. The COD and BOD5 content of wastewater will also determine whether a phosphorus removal EBPR system is required. For this paper, the performance of EBPR was investigated using modified contact stabilization activated sludge pilot plant. The study involved the construction of pilot plant which was setup in Quhafa WasteWater Treatment Plant (WWTP, Al Fayoum, Egypt. Results showed average removal efficiencies of COD, BOD5 and TP are 91%, 92% and 85% respectively.

  20. Separation of nitrate salts and stabilization of resdue of the lagoon sludge

    International Nuclear Information System (INIS)

    Oh, J. H.; Hwang, D. S.; Lee, G. I.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Park, S. J.

    2003-01-01

    In this work, the dissolution property of nitrate salts in the desalination process by water and the stabilization characteristics of residue after separating nitrates in a series of the process for the sludge treatment. Desalination was carried out with the addition ratio of water of 1.0∼3.0 by 0.5 and thermal decomposition was carried out at 900 .deg. C. The stabilization characteristics were analyzed by TG/DTA, and XRD. Optimum addition ratio of water was 1.5 for the task minimizing of following process, but a small quantity of nitrates remained in the residue. These were decomposed over 600 .deg. C and calcium carbonate, which was consisted mainly of residue, was decomposed into calcium oxide over 750 .deg. C. The residue have to be decomposed over 800 .deg. C to converse the uranium compound into the stable U 3 O 8 of four valve

  1. Experience with Stabilization of SGHWR Sludge in a Commercial Plant in the United Kingdom

    International Nuclear Information System (INIS)

    Hagan, M.; Cornell, R.M.; Riley, B.; Ware, B.

    2009-01-01

    In July 2000, following a competitive tender, Nuvia Limited was contracted to design, build and commission a waste treatment plant to stabilise the active sludge stored in the External Active Sludge Tanks (EAST) at Winfrith, UK. The sludge was generated during the operational lifetime of the Steam Generating Heavy Water Reactor (SGHWR), which was in the early stages of decommissioning. This was in support of UKAEA's mission, which is to carry out environmental restoration of its nuclear sites and to put them to alternative uses wherever possible. Latterly, a new body, the Nuclear Decommissioning Authority (NDA), has become responsible for managing the UK decommissioning legacy and since 2004 UKAEA has been contracted to the NDA to deliver decommissioning work at Winfrith and other UK sites. The purpose of this commercial plant is to stabilise the radioactive sludge by encapsulation into a cement matrix within a purpose-designed 500 litre steel drum. The drum design incorporates a lost paddle mixer used to maintain homogeneity of the sludge as well as mixing it with the stabilising powders. The sludge in the EAST tanks is prepared for recovery by a process of homogenisation using in-tank stirrers. The means of reaching a narrow ratio of suspended solids within an aqueous medium will be described together with some of the problems encountered and the practical solutions devised. The material is transferred to the purpose-built Winfrith EAST Treatment Plant (WETP), where it is held in stainless steel tanks in a process area prior to being metered into a 500 litre stainless steel drum in the cell line for stabilization with powders. The cell line consists of five cells separated by shield doors designed to maintain strict contamination control. The line has a wet cell where the drums are filled with the sludge and powder, a cell with stations for curing and grouting the drums, a cell for lidding, bolting and QA inspection, a maintenance and gamma monitoring cell and a

  2. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The influence of protruding filamentous bacteria on floc stability and solid-liquid separation in the activated sludge process.

    Science.gov (United States)

    Burger, Wilhelm; Krysiak-Baltyn, Konrad; Scales, Peter J; Martin, Gregory J O; Stickland, Anthony D; Gras, Sally L

    2017-10-15

    Filamentous bacteria can impact on the physical properties of flocs in the activated sludge process assisting solid-liquid separation or inducing problems when bacteria are overabundant. While filamentous bacteria within the flocs are understood to increase floc tensile strength, the relationship between protruding external filaments, dewatering characteristics and floc stability is unclear. Here, a quantitative methodology was applied to determine the abundance of filamentous bacteria in activated sludge samples from four wastewater treatment plants. An automated image analysis procedure was applied to identify filaments and flocs and calculate the length of the protruding filamentous bacteria (PFB) relative to the floc size. The correlation between PFB and floc behavior was then assessed. Increased filament abundance was found to increase interphase drag on the settling flocs, as quantified by the hindered settling function. Additionally, increased filament abundance was correlated with a lower gel point concentration leading to poorer sludge compactability. The floc strength factor, defined as the relative change in floc size upon shearing, correlated positively with filament abundance. This influence of external protruding filamentous bacteria on floc stability is consistent with the filamentous backbone theory, where filamentous bacteria within flocs increase floc resistance to shear-induced breakup. A qualitative correlation was also observed between protruding and internal filamentous structure. This study confirms that filamentous bacteria are necessary to enhance floc stability but if excessively abundant will adversely affect solid-liquid separation. The tools developed here will allow quantitative analysis of filament abundance, which is an improvement on current qualitative methods and the improved method could be used to assist and optimize the operation of waste water treatment plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Use of a heated graphite scrubber as a means of reducing interferences in UV-absorbance measurements of atmospheric ozone

    Directory of Open Access Journals (Sweden)

    A. A. Turnipseed

    2017-06-01

    Full Text Available A new solid-phase scrubber for use in conventional ozone (O3 photometers was investigated as a means of reducing interferences from other UV-absorbing species and water vapor. It was found that when heated to 100–130 °C, a tubular graphite scrubber efficiently removed up to 500 ppb ozone and ozone monitors using the heated graphite scrubber were found to be less susceptible to interferences from water vapor, mercury vapor, and aromatic volatile organic compounds (VOCs compared to conventional metal oxide scrubbers. Ambient measurements from a graphite scrubber-equipped photometer and a co-located Federal equivalent method (FEM ozone analyzer showed excellent agreement over 38 days of measurements and indicated no loss in the scrubber's ability to remove ozone when operated at 130 °C. The use of a heated graphite scrubber was found to reduce the interference from mercury vapor to ≤ 3 % of that obtained using a packed-bed Hopcalite scrubber. For a series of substituted aromatic compounds (ranging in volatility and absorption cross section at 253.7 nm, the graphite scrubber was observed to consistently exhibit reduced levels of interference, typically by factors of 2.5 to 20 less than with Hopcalite. Conventional solid-phase scrubbers also exhibited complex VOC adsorption and desorption characteristics that were dependent upon the relative humidity (RH, volatility of the VOC, and the available surface area of the scrubber. This complex behavior involving humidity is avoided by use of a heated graphite scrubber. These results suggest that heated graphite scrubbers could be substituted in most ozone photometers as a means of reducing interferences from other UV-absorbing species found in the atmosphere. This could be particularly important in ozone monitoring for compliance with the United States (U.S. Clean Air Act or for use in VOC-rich environments such as in smog chambers and monitoring indoor air quality.

  5. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting.

    Science.gov (United States)

    Nikaeen, Mahnaz; Nafez, Amir Hossein; Bina, Bijan; Nabavi, BiBi Fatemeh; Hassanzadeh, Akbar

    2015-05-01

    The objective of this work was to study the evolution of physico-chemical and microbial parameters in the composting process of sewage sludge (SS) with pruning wastes (PW) in order to compare these parameters with respect to their applicability in the evaluation of organic matter (OM) stabilization. To evaluate the composting process and organic matter stability, different microbial activities were compared during composting of anaerobically digested SS with two volumetric ratios, 1:1 and 3:1 of PW:SS and two aeration techniques including aerated static piles (ASP) and turned windrows (TW). Dehydrogenase activity, fluorescein diacetate hydrolysis, and specific oxygen uptake rate (SOUR) were used as microbial activity indices. These indices were compared with traditional parameters, including temperature, pH, moisture content, organic matter, and C/N ratio. The results showed that the TW method and 3:1 (PW:SS) proportion was superior to the ASP method and 1:1 proportion, since the former accelerate the composting process by catalyzing the OM stabilization. Enzymatic activities and SOUR, which reflect microbial activity, correlated well with temperature fluctuations. Based on these results it appears that SOUR and the enzymatic activities are useful parameters to monitor the stabilization of SS compost. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Two-step upflow anaerobic sludge bed system for sewage treatment under subtropical conditions with posttreatment in waste stabilization ponds

    NARCIS (Netherlands)

    Seghezzo, L.; Trupiano, A.P.; Liberal, V.; Todd, P.G.; Figueroa, M.E.; Gutierrez, M.A.; Silva Wilches, Da A.C.; Iribarnegaray, M.; Guerra, R.G.; Arena, A.; Cuevas, C.M.; Zeeman, G.; Lettinga, G.

    2003-01-01

    A pilot-scale sewage treatment system consisting of two upflow anaerobic sludge bed (UASB) reactors followed by five waste stabilization ponds (WSPs) in series was studied under subtropical conditions. The first UASB reactor started up in only 1 mo (stable operation, high chemical oxygen demand

  7. Scrubber capabilities to remove airborne microorganisms and other aerial pollutants from the exhaust air of animal houses

    NARCIS (Netherlands)

    Aarnink, A.J.A.; Landman, W.J.M.; Melse, R.W.; Zhao, Y.; Ploegaert, J.P.M.; Huynh, T.T.T.

    2011-01-01

    Two studies were conducted to assess the efficiency of air scrubbers to reduce airborne microorganisms in the exhaust air from animal houses. First, in a field study, the effects of a bio-scrubber and an acid scrubber on total bacterial counts were assessed. Higher bacterial counts were found in the

  8. Wet Flue Gas Desulfurization Using a New O-Element Design Which Replaces the Venturi Scrubber

    OpenAIRE

    P. Lestinsky; D. Jecha; V. Brummer; P. Stehlik

    2015-01-01

    Scrubbing by a liquid spraying is one of the most effective processes used for removal of fine particles and soluble gas pollutants (such as SO2, HCl, HF) from the flue gas. There are many configurations of scrubbers designed to provide contact between the liquid and gas stream for effectively capturing particles or soluble gas pollutants, such as spray plates, packed bed towers, jet scrubbers, cyclones, vortex and venturi scrubbers. The primary function of venturi scrubb...

  9. Influence of brick air scrubber by-product on growth and development of corn and hybrid poplar.

    Science.gov (United States)

    Thomas, Carla N; Bauerle, William L; Owino, Tom O; Chastain, John P; Klaine, Stephen J

    2007-03-01

    Studies were conducted to determine the effects of spent reagent from air pollution control scrubbers used at a brick manufacturing facility on emergence, growth, and physiological responses of corn and hybrid poplar plants. Scrubber by-product was obtained from General Shale Brick, Louisville, KY. Potting substrate was weighed and quantities of scrubber by-product were added to the substrate to obtain treatments of 0%, 6.25%, 12.5%, 25%, 50%, 75%, and 100% scrubber by-product (w:w) for the corn study. Each treatment mix was potted into nine replicate polyethylene pots and four corn seeds were sown per pot. The pots were randomized in a greenhouse at Clemson University and the number of seedlings emerging from each treatment, dark-adapted leaf chlorophyll a fluorescence, and shoot heights were measured at the end of a 21-day growth period. Then, dry shoot biomass was determined for plants from each treatment and plant tissues were analyzed for selected constituents. For the poplar study, nine-inch cuttings of hybrid poplar clone 15-29 (Populus trichocarpa x P. deltoides) and clone OP367 (P. deltoides x P. nigra) were planted in treatments of scrubber by-product-potting soil mixes of 0% , 5% , 10% , and 25% w:w. Leaf chlorophyll a fluorescence was measured over six weeks and cumulative leaf area, dry biomass, and nutrient content of tissues were determined upon harvest. Results of these studies indicate that percent seedling emergence for corn plants decreased with increasing scrubber by-product application rates. Application rates up to 12.5% scrubber by-product w:w had no adverse effect on corn seedling emergence. Shoot elongation, biomass production, and the status of the photosynthetic apparatus of the seedlings were also not severely impaired at applications below this level. A critical value of 58.2% w:w scrubber by-product was estimated to cause 25% inhibition of seedling emergence. Biomass production, cumulative leaf area, and chlorophyll a fluorescence of

  10. Droplet dispersion angle measurements on a Pease-Antony Venturi scrubber

    Directory of Open Access Journals (Sweden)

    N. A. G. Puentes

    2012-03-01

    Full Text Available A Pease-Anthony Venturi scrubber is a gas cleaning device that uses liquid, injected in the equipment as jets, to remove contaminants from the gas. The liquid jet is atomized into droplets, which are dispersed throughout the equipment due to the turbulence. The performance of the scrubber is affected by the spatial distribution of the droplets. Although CFD models have been used to predict the droplet dispersion, these models are expensive. Alternatively, the concept of "jet spreading angle" could be used as a simple and quick way to estimate droplet dispersion. The purpose of this paper is to measure the spreading angle of jets transversally injected into the throat of a Venturi scrubber and correlate it with both gas and jet velocities. The throat gas velocities varied between 59 and 74 m/s and the jet velocity between 3.18 and 19.1 m/s. The angles were measured through image analysis, obtained with high velocity photography. The spreading angle was found to be strongly dependent on jet velocity.

  11. Innovative solidification/stabilization of lead contaminated soil using incineration sewage sludge ash.

    Science.gov (United States)

    Li, Jiangshan; Poon, Chi Sun

    2017-04-01

    The proper treatment of lead (Pb) contaminated soils and incinerated sewage sludge ash (ISSA) has become an environmental concern. In this study, ordinary Portland cement (OPC) and blended OPC containing incinerated sewage sludge ash (ISSA) were used to solidify/stabilize (S/S) soils contaminated with different concentrations of Pb. After curing for 7 and 28 d, the S/S soils were subjected to a series of strength, leaching and microscopic tests. The results showed that replacement of OPC by ISSA significantly reduced the unconfined compressive strength (UCS) of S/S soils and leached Pb. In addition, the leaching of Pb from the monolithic samples was diffusion controlled, and increasing the ISSA addition in the samples led to a lower diffusion coefficient and thus an increase in the feasibility for "controlled utilization" of S/S soils. Furthermore, the proposed S/S method significantly decreased the amount of Pb associated with carbonates and increased the amount of organic and residual Pb in S/S soils, reflecting that the risk of Pb contaminated soils can be effectively mitigated by the incorporating of ISSA. Overall, the leachability of Pb was controlled by the combined effect of adsorption, encapsulation or precipitation in the S/S soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Passive self-cleaning aerosol scrubber

    International Nuclear Information System (INIS)

    Postma, A.K.

    1981-01-01

    A hybrid gas scrubbing system is described, which includes features of both a pool type scrubber and a sand or ground filter, for use on nuclear reactor containment buildings to limit release of aerosol particles and absorbable gases, including radio-active materials, during postulated major accidents. The system requires no energy while in the passive state and no active energy other than pressurization of the stream of gas being scrubbed. (U.K.)

  13. Effectiveness of multi-stage scrubbers in reducing emissions of air pollutants from pig houses

    NARCIS (Netherlands)

    Zhao, Y.; Aarnink, A.J.A.; Jong, de M.C.M.; Ogink, N.W.M.; Groot Koerkamp, P.W.G.

    2011-01-01

    Emissions of air pollutants from livestock houses may raise environmental problems and pose hazards to public health. They can be reduced by scrubbers installed at the air outlets of livestock houses. In this study, three multi-stage scrubbers were evaluated in terms of their effectiveness in

  14. Removing Ambiguities of IP Telephony Traffic Using Protocol Scrubbers

    Directory of Open Access Journals (Sweden)

    Bazara I. A. Barry

    2012-10-01

    Full Text Available Network intrusion detection systems (NIDSs face the serious challenge of attacks such as insertion and evasion attacks that are caused by ambiguous network traffic. Such ambiguity comes as a result of the nature of network traffic which includes protocol implementation variations and errors alongside legitimate network traffic. Moreover, attackers can intentionally introduce further ambiguities in the traffic. Consequently, NIDSs need to be aware of these ambiguities when detection is performed and make sure to differentiate between true attacks and protocol implementation variations or errors; otherwise, detection accuracy can be affected negatively. In this paper we present the design and implementation of tools that are called protocol scrubbers whose main functionality is to remove ambiguities from network traffic before it is presented to the NIDS. The proposed protocol scrubbers are designed for session initiation and data transfer protocols in IP telephony systems. They guarantee that the traffic presented to NIDSs is unambiguous by eliminating ambiguous behaviors of protocols using well-designed protocol state machines, and walking through packet headers of protocols to make sure packets will be interpreted in the desired way by the NIDS. The experimental results shown in this paper demonstrate the good quality and applicability of the introduced scrubbers.

  15. Co-digestion of sewage sludge from external small WWTP's in a large plant

    Science.gov (United States)

    Miodoński, Stanisław

    2017-11-01

    Improving energy efficiency of WWTPs (Waste Water Treatment Plants) is crucial action of modern wastewater treatment technology. Technological treatment process optimization is important but the main goal will not be achieved without increasing production of renewable energy from sewage sludge in anaerobic digestion process which is most often used as sludge stabilization method on large WWTP's. Usually, anaerobic digestion reactors used for sludge digestion were designed with reserve and most of them is oversized. In many cases that reserve is unused. On the other hand, smaller WWTPs have problem with management of sewage sludge due to lack of adequately developed infrastructure for sludge stabilization. Paper shows an analysis of using a technological reserve of anaerobic digestion reactors at large WWTP (1 million P.E.) for sludge stabilization collected from smaller WWTP in a co-digestion process. Over 30 small WWTPs from the same region as the large WWTP were considered in this study. Furthermore, performed analysis included also evaluation of potential sludge disintegration pre-treatment for co-digestion efficiency improvement.

  16. Research on injection characteristics of venturi scrubber worked in self-priming mode

    International Nuclear Information System (INIS)

    Zhou Yanmin; Sun Zhongning; Gu Haifeng; Miao Zhuang

    2015-01-01

    The injection characteristics of Venturi scrubber worked in self-priming mode in containment filter venting system was studied experimentally under different air flows, liquid levels and system pressures. The results indicate that with the increase of superficial gas velocity in throat, the static pressure drop of both sides of the suction grows approximately following a parabolic law, and the injection flow rate injecting into the Venturi scrubber increases linearly. The effect of liquid level on injection characteristics relates closely with the relative position to the outlet of the Venturi scrubber. When the liquid level is below the outlet, the injection flow rate improves significantly with increasing liquid level and presents a partition phenomenon, and in the low throat velocity, the increase of liquid level is more effective to improve the injection flow rate. However, when the liquid level is above the outlet, it almost has no impact on the injection flow rate. The pressure is another important factor affecting the injection characteristic of self-priming Venturi scrubber, which is mainly caused by the change on gas density. In the range of 0.150 kPa, with the increase of pressure, the injection flow rate improves greatly and the influence of pressure is more obvious in high throat velocity than in low throat velocity. (authors)

  17. Inconel alloy 625 clad steel for application in wet scrubber systems

    International Nuclear Information System (INIS)

    Morse, S.L.; Shoemaker, L.E.

    1984-01-01

    Test panels from INCONEL 625 clad plate were successfully installed in two wet flue gas scrubber systems. In one system INCONEL 625 clad plate was located in the roof section of the absorber just ahead of the outlet ducting. The test plates, including weld seams, showed no signs to corrosion after six months of exposure. In the other scrubber test plates located in the outlet duct of an I.D. fan house, in the stack lining, and in the absorber quench area were unattacked after nine months

  18. Multi-Pollutant and One-Stage Scrubbers for Removal of Ammonia, Odor, and Particulate Matter from Animal House Exhaust Air

    OpenAIRE

    Ogink, N.W.M.; Melse, R.W.; Mosquera Losada, J.

    2008-01-01

    In several European countries, acid scrubbers and bio-scrubbers are off-the-shelf techniques for effective removal of ammonia from exhaust air from animal houses and, to a lesser extent, for odor. The number of operating air scrubbers at livestock operations in the Netherlands in 2008 is estimated to clean the air of approximately 10 percent of the pigs produced nationwide. Currently, a new generation of so-called multi-pollutant air scrubbers are developed for intensive livestock production ...

  19. Heavy metal sequestration by humic substances during phyto-treatment of sewage sludges

    International Nuclear Information System (INIS)

    Peruzzi, E.; Doni, S.; Macci, C.; Ceccanti, B.; Masciandaro, G.

    2009-01-01

    The presence of heavy metals in sludges stabilized in a reed bed system, may affect their use for agricultural purposes; however, the environmental impact of sludges depends on the availability and phyto toxicity of their heavy metal. The aim of this paper was to determine the effectiveness of a reed bed (Phragmites Australia) sludge treatment system in two urban wastewater treatment plants in Italy after two-year period of operation: by estimating the process of sludge stabilization, following conventional and non conventional parameters related with the evolution of organic matter quality Water soluble Carbon, Dehydrogenase activity, Fulvic Acids, Humic Acids, Pyrolytic indices or organic matter Mineralization and Humification); by following the heavy metal speciation bioavailability in sludges. (Author)

  20. Municipal Sewage Sludge Drying Treatment by an Composite Modifier

    OpenAIRE

    Na Wei

    2012-01-01

    A sludge composite modifier (SCM) which comprises a mixture of three cementitious components was proposed for sludge drying and stabilization. Effect of SCM components on sludge moisture content was analyzed using uniform design and the optimum composition of SCM was determined by computer-aided modeling and optimization. To compare the drying effect of SCM, quicklime, and Portland cement, the effects of material content and curing time on moisture content of sludge were also studied. The res...

  1. Refractories for exhaust gas scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Primary metal smelters are recovering a greater percentage of their stack emissions because of increased global environmental pressures. Copper and nickel producers processing sulfide ore are under particular scrutiny for sulfur dioxide emissions. The use of various acid plant designs and associated scrubbers to capture the gas is commonplace. Failure of acid plant or sulfur dioxide control devices can be very expensive, both in terms of repair costs and lost production. Close attention should be paid to ensure smooth, long term and proper operation of these vessels. With INCO flash furnace shops smelter gases are treated immediately upon leaving the furnace in a particulate scrubber where the gases are cooled and de-dusted in a water spray chamber. The amount of chlorine and fluorine in the waste gas can vary widely, ranging from non-existent to being a major source of concern for refractory wear. Developed specifically for use in hazardous waste incinerators burning fluorine-containing materials, spall-resistant, high-purity alimina bricks were installed in various gas cleaning units in copper smelting plants. Because of the materials's combination of abrasion resistance, thermal cycling resistance, and chemical durability under conditions of variable SO(3) and fluorine attack, the material has proven to be more than adequate for the challenges of gas cleaning equipment. 2 refs.

  2. Mercury removal in utility wet scrubber using a chelating agent

    Science.gov (United States)

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  3. Biological sulphate reduction with primary sewage sludge in an ...

    African Journals Online (AJOL)

    2009-07-31

    Jul 31, 2009 ... The success of the UASB reactor depends largely on the settling properties and stability of the sludge bed which comprises the anaerobic active biomass. The solid-liquid separation behaviour of the sludge bed in 2 UASB reactors (R1 at 35oC and. R2 at 20oC) fed with primary sewage sludge and sulphate ...

  4. Biological sulphate reduction with primary sewage sludge in an ...

    African Journals Online (AJOL)

    The success of the UASB reactor depends largely on the settling properties and stability of the sludge bed which comprises the anaerobic active biomass. The solid-liquid separation behaviour of the sludge bed in 2 UASB reactors (R1 at 35oC and R2 at 20oC) fed with primary sewage sludge and sulphate was investigated ...

  5. Risk assessments of polybrominated diphenyl ethers (PBDEs) during sludge application in China

    Science.gov (United States)

    Qian, Jun

    2018-02-01

    Due to increasingly less space in municipal environment, waste management has become an urgent issue worldwide. As one of common municipal waste, sewage sludge from wastewater treatment plants (WWTPs) contains abundant nutrients, some of which can be quite essential for plant growth. In consideration of nutrient recycling and energy saving, sludge application has been frequently promoted in many countries across the world. However, even after several sludge stabilization procedures, sewage sludge may still contain a large variety of toxic pollutants, especially some emerging organic contaminants (EOCs). Applied in various household products and plastic industries as additives, polybrominated diphenyl ethers (PBDEs) have been constantly detected in sewage sludge samples from several cities in China since 2005, as well as some biosolid samples after sludge stabilization processes, suggesting their strong persistence and wide occurrence. During sludge application onto farmland soils, PBDEs may desorb from sludge particles and get attached by soil organic matter (SOM), followed by plant root uptake and translocation to aboveground tissues. In this study, data about current pollution of PBDEs in sewage sludge samples from China was reviewed, and the potential risks during sludge application was comprehensively assessed.

  6. Development and evaluation of a full-scale spray scrubber for ammonia recovery and production of nitrogen fertilizer at poultry facilities.

    Science.gov (United States)

    Hadlocon, Lara Jane S; Manuzon, Roderick B; Zhao, Lingying

    2015-01-01

    Significant ammonia emissions from animal facilities need to be controlled due to its negative impacts on human health and the environment. The use of acid spray scrubber is promising, as it simultaneously mitigates and recovers ammonia emission for fertilizer. Its low pressure drop contribution on axial fans makes it applicable on US farms. This study develops a full-scale acid spray scrubber to recover ammonia emissions from commercial poultry facilities and produce nitrogen fertilizer. The scrubber performance and economic feasibility were evaluated at a commercial poultry manure composting facility that released ammonia from exhaust fans with concentrations of 66-278 ppmv and total emission rate of 96,143 kg yr(-1). The scrubber consisted of 15 spray scrubber modules, each equipped with three full-cone nozzles that used dilute sulphuric acid as the medium. Each nozzle was operated at 0.59 MPa with a droplet size of 113 μm and liquid flow rate of 1.8 L min(-1). The scrubber was installed with a 1.3-m exhaust fan and field tested in four seasons. Results showed that the scrubber achieved high NH3 removal efficiencies (71-81%) and low pressure drop (scrubber effluents containing 22-36% (m/v) ammonium sulphate are comparable to the commercial-grade nitrogen fertilizer. Preliminary economic analysis indicated that the break-even time is one year. This study demonstrates that acid spray scrubbers can economically and effectively recover NH3 from animal facilities for fertilizer.

  7. Radiological engineering evaluation of the delay time line air scrubber located at the Clinton P. Anderson Meson Physics Facility (LAMPF)

    International Nuclear Information System (INIS)

    Huneycutt, S.E.

    1996-05-01

    The purpose of this study was to determine the effects of the addition of an air scrubber to an already existing delay line and whether it would scrub 11 CO 2 . There were three main objectives of this study. The first objective was to determine the scrubbing efficiency of the scrubber. The scrubbing efficiency was then used to predict the dose rates in the scrubber area and compare those values with measurements from radiological surveys. The third objective was to determine if the shield blocks were effective in reducing the dose rates in the scrubber area. The activities were measured before and during scrubber operation and this information was used to calculate the scrubbing efficiency and the efficiency of 11 CO 2 removal was determined to be around 50%. Microshield was then used to predict dose rates and compared those values with measurements from radiological surveys. This was also used to determine the that the shield blocks around the scrubber were effective in reducing the dose rates from the radiation field produced by the radionuclides in the scrubber

  8. Multi-Pollutant and One-Stage Scrubbers for Removal of Ammonia, Odor, and Particulate Matter from Animal House Exhaust Air

    NARCIS (Netherlands)

    Ogink, N.W.M.; Melse, R.W.; Mosquera Losada, J.

    2008-01-01

    In several European countries, acid scrubbers and bio-scrubbers are off-the-shelf techniques for effective removal of ammonia from exhaust air from animal houses and, to a lesser extent, for odor. The number of operating air scrubbers at livestock operations in the Netherlands in 2008 is estimated

  9. Characterization of oily sludge from a Tehran oil refinery.

    Science.gov (United States)

    Heidarzadeh, Nima; Gitipour, Saeid; Abdoli, Mohammad Ali

    2010-10-01

    In this study, oily sludge samples generated from a Tehran oil refinery (Pond I) were evaluated for their contamination levels and to propose an adequate remediation technique for the wastes. A simple, random, sampling method was used to collect the samples. The samples were analyzed to measure Total petroleum hydrocarbon (TPH), polyaromatic hydrocarbon (PAH) and heavy metal concentrations in the sludge. Statistical analysis showed that seven samples were adequate to assess the sludge with respect to TPH analyses. The mean concentration of TPHs in the samples was 265,600 mg kg⁻¹. A composite sample prepared from a mix of the seven samples was used to determine the sludge's additional characteristics. Composite sample analysis showed that there were no detectable amounts of PAHs in the sludge. In addition, mean concentrations of the selected heavy metals Ni, Pb, Cd and Zn were 2700, 850, 100, 6100 mg kg⁻¹, respectively. To assess the sludge contamination level, the results from the analysis above were compared with soil clean-up levels. Due to a lack of national standards for soil clean-up levels in Iran, sludge pollutant concentrations were compared with standards set in developed countries. According to these standards, the sludge was highly polluted with petroleum hydrocarbons. The results indicated that incineration, biological treatment and solidification/stabilization treatments would be the most appropriate methods for treatment of the sludges. In the case of solidification/stabilization, due to the high organic content of the sludge, it is recommended to use organophilic clays prior to treatment of the wastes.

  10. PROGRESS WITH K BASINS SLUDGE RETRIEVAL STABILIZATION & PACKAGING AT THE HANFORD NUCLEAR SITE

    Energy Technology Data Exchange (ETDEWEB)

    KNOLLMEYER, P.M.; PHILLIPS, C; TOWNSON, P.S.

    2006-01-30

    This paper shows how Fluor Hanford and BNG America have combined nuclear plant skills from the U.S. and the U.K. to devise methods to retrieve and treat the sludge that has accumulated in K Basins at the Hanford Site over many years. Retrieving the sludge is the final stage in removing fuel and sludge from the basins to allow them to be decontaminated and decommissioned, so as to remove the threat of contamination of the Columbia River. A description is given of sludge retrieval using vacuum lances and specially developed nozzles and pumps into Consolidation Containers within the basins. The special attention that had to be paid to the heat generation and potential criticality issues with the irradiated uranium-containing sludge is described. The processes developed to re-mobilize the sludge from the Consolidation Containers and pump it through flexible and transportable hose-in-hose piping to the treatment facility are explained with particular note made of dealing with the abrasive nature of the sludge. The treatment facility, housed in an existing Hanford building, is described, and the uranium-corrosion and grout packaging processes explained. The uranium corrosion process is a robust, tempered process very suitable for dealing with a range of differing sludge compositions. Optimization and simplification of the original sludge corrosion process design is described and the use of transportable and reusable equipment is indicated. The processes and techniques described in the paper are shown to have wide applicability to nuclear cleanup.

  11. Joint stabilization of sewage sludge and separated manure fluid. Treatment and utilization of manure. Final report; Gemeinsame Stabilisierung von Klaerschlamm und separierter Guellefluessigkeit. Guellebehandlung und -verwertung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, W.F.; Kolisch, G.

    1994-12-01

    As an alternative to separate manure processing, anaerobic stabilization of surplus manure and sewage sludge in combination is possible at municipal sewage treatment plants. Subsequently to the removal of solids, pig manure is fed into existing digesters. The process concept comprises the following partial steps: preliminary treatment of crude manure, anarobic stabilization of the separated manure fluid, biological nitrogen elimination from the digested mixture of sewage sludge and manure, and dewatering of the mixed sludge in the dewatering systems of the sewage treatment plant. (orig./SR) [Deutsch] Eine Alternative zu den Verfahren einer separaten Guelleaufbereitung stellt die gemeinsame anaerobe Stabilisierung von Ueberschussguelle und Klaerschlamm auf kommunalen Klaeranlagen dar, die eine Einspeisung feststoffseparierter Schweineguelle in bereits vorhandene Faulbehaelter vorsieht. Das Verfahrenskonzept besteht aus den Teilschritten Vorseparierung der Rohguelle, anaerobe Stabiliserung der separierten Guellefluessigkeit, biologische Stickstoffelimination aus dem ausgefaulten Klaerschlamm-Guelle-Gemisch sowie Entwaesserung der Mischschlaemme auf den Entwaesserungsaggregaten der Klaeranlage. (orig./SR)

  12. Combined biological treatment of sinter plant waste water, blast furnace gas scrubber water polluted groundwater and coke plant effluent

    Energy Technology Data Exchange (ETDEWEB)

    Antoine van Hoorn [Corus Staal, IJmuiden (Netherlands)

    2006-07-01

    Waste water from the Corus coke plant in IJmuiden had been handled by the activated sludge process since start-up in 1972 but in the eighties it was clear that although this removed most phenols, the rest of the COD and thiocyanate must also be removed before discharge. The paper describes the original water treatment process and the higher pressure gas scrubber system for removal of SO{sub 2}, heavy metals and other harmful components. It goes on to describe development of a combined biological treatment system, the heart of which is the so-called Bio 2000. The performance of this new plant is discussed. COD concentrations are very constant but Total Kjeldahl Nitrogen (TKN) concentrations fluctuate. COD, TKN and heavy metals are in compliance but cyanide and suspended solids are not always so. A method of overcoming this is being sought. This paper was presented at a COMA meeting in March 2005 held in Scunthorpe, UK. 10 figs., 2 tabs.

  13. Handling 78,000 drums of mixed-waste sludge

    International Nuclear Information System (INIS)

    Berry, J.B.; Gilliam, T.M.; Harrington, E.S.; Youngblood, E.L.; Baer, M.B.

    1991-01-01

    The Oak Ridge Gaseous Diffusion Plant (now know as the Oak Ridge K-25 Site) prepared two mixed-waste surface impoundments for closure by removing the sludge and contaminated pond-bottom clay and attempting to process it into durable, nonleachable, concrete monoliths. Interim, controlled, above-ground storage of the stabilized waste was planned until final disposition. The strategy for disposal included delisting the stabilized pond sludge from hazardous to nonhazardous and disposing of the delisted monoliths as radioactive waste. Because of schedule constraints and process design and control deficiencies, ∼46,000 drums of material in various stages of solidification and ∼32,000 drums of unprocessed sludge are presently being stored. In addition, the abandoned treatment facility still contains ∼16,000 gal of raw sludge. Such conditions do not comply with the requirements set forth by the Resource Conservation and Recovery Act (RCRA) for the storage of listed waste. Various steps are being taken to bring the storage of ∼78,000 drums of mixed waste into compliance with RCRA. This paper (1) reviews the current situation, (2) discusses the plan for remediation of regulatory noncompliances, including decanting liquid from stabilized waste and dewatering untreated waste, and (3) provides an assessment of alternative raw-waste treatment processes. 1 ref., 6 figs., 2 tabs

  14. Numerical simulation of self-priming phenomena in venturi scrubber by two-phase flow simulation code TPFIT

    International Nuclear Information System (INIS)

    Horiguchi, Naoki; Kanagawa, Tetsuya; Kaneko, Akiko; Abe, Yutaka; Yoshida, Hiroyuki

    2015-01-01

    In the wake of Fukushima Daiichi nuclear disaster, reviews of the safety of nuclear facilities have been conducted in the world beginning with Japan. Countermeasures against severe accidents in nuclear power plants are an urgent need. In particular, from the viewpoint of protecting containment and suppressing diffusion of the radioactive materials, it is important to install filtered venting devices to release high pressure pollutant gas to the atmosphere with elimination radioactive materials in the gas. One of the devices for the filtered venting is a Multi venturi scrubber system (MVSS), which is used to realize filtered venting without any power supply in European reactors. The MVSS is composed of a “venturi Scrubbers” part, in which there are hundreds of the venturi scrubbers, and a “bubble column” part. In the MVSS, all of the venturi scrubbers is branched off from a vent line which connect between the containment and the MVSS. In an operation mode of the MVSS, the radioactive materials are eliminated through the gas-liquid interface from the pollutant gas to the liquid phase of a dispersed flow in the venturi scrubber and a bubbly flow in the bubble column part. The dispersed flow is formed from the liquid, which is suctioned from around the venturi scrubber through the hole for suction (called self-priming). In previous studies, an evaluation method for the scrubbing performance of the venturi scrubber was developed. However, actual hydraulic behavior in it is too complicated, the previous evaluation was not validated the hydraulic behavior and studied the effect of differences between the simulated hydraulic behavior and an actual one on the performance of the venturi scrubber. To develop a validated evaluation method for the scrubbing performance, it is important to develop detailed evaluation method for the hydraulic behavior in the venturi scrubber. To simulate the complicated hydraulic behavior, we consider to use analysis code TPFIT. Then, the

  15. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    Science.gov (United States)

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  16. Co-digestion of pig slaughterhouse waste with sewage sludge.

    Science.gov (United States)

    Borowski, Sebastian; Kubacki, Przemysław

    2015-06-01

    Slaughterhouse wastes (SHW) are potentially very attractive substrates for biogas production. However, mono-digestion of these wastes creates great technological problems associated with the inhibitory effects of ammonia and fatty acids on methanogens as well as with the foaming in the digesters. In the following study, the co-digestion of slaughterhouse wastes with sewage sludge (SS) was undertaken. Batch and semi-continuous experiments were performed at 35°C with municipal sewage sludge and pig SHW composed of meat tissue, intestines, bristles and post-flotation sludge. In batch assays, meat tissue and intestinal wastes gave the highest methane productions of 976 and 826 dm(3)/kg VS, respectively, whereas the methane yield from the sludge was only 370 dm(3)/kg VS. The co-digestion of sewage sludge with 50% SHW (weight basis) provided the methane yield exceeding 600 dm(3)/kg VS, which was more than twice as high as the methane production from sewage sludge alone. However, when the loading rate exceeded 4 kg VS/m(3) d, a slight inhibition of methanogenesis was observed, without affecting the digester stability. The experiments showed that the co-digestion of sewage sludge with large amount of slaughterhouse wastes is feasible, and the enhanced methane production does not affect the digester stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Venturi/Vortex Scrubber Technology for Controlling/Recycling Chromium Electroplating Emissions

    National Research Council Canada - National Science Library

    Hay, K

    1999-01-01

    ...) above the plating tank. Venturi/Vortex Scrubber Technology (VVST) was designed to control chromium electroplating emissions by collecting the gas bubbles before they burst at the solution's surface...

  18. Maximizing the performance of a multiple-stage variable-throat venturi scrubber for particle collection

    Science.gov (United States)

    Muir, D. M.; Akeredolu, F.

    The high collection efficiencies that are required nowadays to meet the stricter pollution control standards necessitate the use of high-energy scrubbers, such as the venturi scrubber, for the arrestment of fine particulate matter from exhaust gas streams. To achieve more energy-efficient particle collection, several venturi stages may be used in series. This paper is principally a theoretical investigation of the performance of a multiple-stage venturi scrubber, the main objective of the study being to establish the best venturi design configuration for any given set of operating conditions. A mathematical model is used to predict collection efficiency vs pressure drop relationships for particle sizes in the range 0.2-5.0 μm for one-, two-, three- and four-stage scrubbers. The theoretical predictions are borne out qualitatively by experimental work. The paper shows that the three-stage venturi produces the highest collection efficiencies over the normal operating range except for the collection of very fine particles at low pressure drops, when the single-stage venturi is best. The significant improvement in performance achieved by the three-stage venturi when compared with conventional single-stage operation increases as both the particle size and system pressure drop increase.

  19. Enhancement of biogas production from sewage sludge by addition of grease trap sludge

    International Nuclear Information System (INIS)

    Grosser, A.; Neczaj, E.

    2016-01-01

    Highlights: • Addition of grease trap sludge is interesting option for sewage sludge digestion. • Co-digestion of grease trap sludge and sewage sludge improved efficiency of process. • The anaerobic digestion can be carried out at short hydraulic retention time. • Long chain fatty acids concentration was below the ranges for inhibition of anaerobic digestion. - Abstract: Despite having many benefits, a low degree of volatile solids removal as well as long retention time are the main factors limiting the performance of the anaerobic digestion. Co-digestion of sewage sludge with other organic waste (for example fat rich materials) is one of the few potential ways to enhance the performance of the anaerobic digestion. In this article, the effects of adding fatty rich materials on the performance and stability of semi-continuous anaerobic digestion of sewage sludge were investigated on a 6 l laboratory-scale reactor (working volume equal to 5.5 l). The reactor was operated in a semi-continuous mode with a hydraulic retention time of 10 days. The data presented in this paper relate to the period in which the grease trap sludge accounted for 10, 12, 14, 16 and 18% of the mixture on the volatile solids basis. The results clearly indicate that the addition of fat rich materials like grease trap sludge can lead to a satisfactory increase in biogas yield in digester treating sewage sludge. The results showed that co-digestion can enhance the biogas yield by 28–82% compared to anaerobic digestion of sewage sludge alone (control sample). Moreover, the addition of grease trap sludge to digesters resulted in increased volatile solids removal from 44.38% (control sample) to 57.77% (feedstock with 14% addition of grease trap sludge). It was found that the increase of grease trap sludge in the feedstock had a direct impact on the biogas production and methane yield. This proposal has also been confirmed by statistical analysis such as Pearson correlation coefficients and

  20. The study of leachability and toxicity of sludge after neutralization of Saraka and Robule AMD wastewaters

    Directory of Open Access Journals (Sweden)

    Gardić Vojka

    2017-01-01

    Full Text Available Acid mine drainage (AMD waters are one of the most important ecological risks at the global level because of its high heavy metals content and strong acidity. Treatment of AMD water is a complex and expensive. One of the most widely used treatment process is the neutralization process of AMD. The result of neutralization is the production of sludge which may contain various other (heavy metals, depending on the chemical characteristics of the mine water treated. In this paper, leachability and toxicity of the sludges obtained during the neutralization process of wastewater from Saraka and Robule acid mine drainage and the sludges after the stabilization process at different temperatures is tested. Sludge produced in the neutralization process of Robule AMD R4 (40 and stabilized on 105°C and 200°C shows a H8-corrosiveness characteristic. Stabilized sludge show tendency to lower leachability of zinc and copper, but without influence on sulphate leachability. Sludges that show a H8-corrosiveness needs additional stabilization/neutralization pretreatment prior temperature treatment.

  1. Pilot-scale field study for ammonia removal from lagoon biogas using an acid wet scrubber.

    Science.gov (United States)

    Lin, Hongjian; Wu, Xiao; Miller, Curtis; Zhu, Jun; Hadlocon, Lara Jane; Manuzon, Roderick; Zhao, Lingying

    2014-01-01

    The anaerobic activities in swine slurry storage and treatment generate biogas containing gaseous ammonia component which is a chemical agent that can cause adverse environmental impacts when released to the atmosphere. The aim of this pilot plant study was to remove ammonia from biogas generated in a covered lagoon, using a sulfuric acid wet scrubber. The data showed that, on average, the biogas contained 43.7 ppm of ammonia and its concentration was found to be exponentially related to the air temperature inside the lagoon. When the air temperature rose to 35°C and the biogas ammonia concentration reached 90 ppm, the mass transfer of ammonia/ammonium from the deeper liquid body to the interface between the air and liquid became a limiting factor. The biogas velocity was critical in affecting ammonia removal efficiency of the wet scrubber. A biogas flow velocity of 8 to 12 mm s(-1) was recommended to achieve a removal efficiency of greater than 60%. Stepwise regression revealed that the biogas velocity and air temperature, not the inlet ammonia concentration in biogas, affected the ammonia removal efficiency. Overall, when 73 g L(-1) (or 0.75 M) sulfuric acid solution was used as the scrubber solution, removal efficiencies varied from 0% to 100% with an average of 55% over a 40-d measurement period. Mass balance calculation based on ammonium-nitrogen concentration in final scrubber liquid showed that about 21.3 g of ammonia was collected from a total volume of 1169 m(3) of biogas, while the scrubber solution should still maintain its ammonia absorbing ability until its concentration reaches up to 1 M. These results showed promising use of sulfuric acid wet scrubber for ammonia removal in the digester biogas.

  2. Sewage sludge as a biomass energy source

    Directory of Open Access Journals (Sweden)

    Pavel Kolat

    2013-01-01

    Full Text Available The major part of the dry matter content of sewage sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary microbiological sludge. The sludge also contains a substantive amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery and co-incineration in coal-fired power plants. The goal of our applied research is to verify, if the sludge from waste water treatment plants may be used as a biomass energy source in respect of the EU legislation, which would comply with emission limits or the proposal of energy process optimizing the preparation of coal/sludge mixture for combustion in the existing fluid bed boilers in the Czech Republic. The paper discusses the questions of thermal usage of mechanically drained stabilized sewage sludge from the waste water treatment plants in the boiler with circulated fluid layer. The paper describes methods of thermal analysis of coal, sewage sludge and its mixtures, mud transport to the circulating fluidised bed boiler, effects on efficiency, operational reliability of the combustion equipment, emissions and solid combustion residues.

  3. Processing method for radioactive sludge

    International Nuclear Information System (INIS)

    Shoji, Yuichi; Kaneko, Masaaki.

    1993-01-01

    The concentration of radioactive sludges contained in a storage tank is controlled, thereafter, a filter is charged into a processing vessel to continuously conduct dewatering. Then, the radioactive sludges and an oxidizer are mixed by stirring using a stirring impeller and by vibrations using a vibrator. At the same time, thermic rays are irradiated by using infrared ray lamps to heat and decompose them. Since thermic rays reach the center of the radioactive sludges by the infrared ray lamps, ion exchange resins are sufficiently decomposed and carbonized into inorganic material. Then, a filling hardener such as mortar cement having a good flowability is charged to solidify the wastes. With such procedures, radioactive sludges can be stored under a stable condition for a long period of time by decomposing organic materials into inorganic materials and solidifying them. Further, an operator's radiation exposure dose can remarkably be reduced by applying a predetermined and a stabilization treatment in an identical processing vessel. (N.H.)

  4. Evaluation of surface dose rate on C-14 scrubber and gas bag

    International Nuclear Information System (INIS)

    Gang, D. W.; Lee, H. S.; Lee, D. H.

    2003-01-01

    In CANDU(Canadian Deuterium Uranium) reactors, purge and discharge of moderator cover gas has been performed via vapor recovery system. The methods employed in C-14 removal are mainly based on reactions of CO 2 with absorber of adsorbent. In order to choose an optimum process, we should consider the characteristics of the process, such as, temperature, pressure, humidity etc. and surface dose rate on C-14 scrubber and gas bag to estimate job-related personnel doses. Assuming that the whole C-14 scrubber was completely replaced after one-cycle operation, and that its C-14 activity for one-cycle operation was 40 mCi, we calculated the surface dose rate at the six points of the C-14 scrubber. This calculation showed that the dose rate on the surface of cartridge was only 1.25μSυ/hγ because of low energy of β ray. It is concluded, therefore, that the cartridge change-out is safe because the operation of C-14 removal system causes only a small increase in dose rate

  5. Development of evaluation method for hydraulic behavior in Venturi scrubber for filtered venting

    International Nuclear Information System (INIS)

    Horiguchi, Naoki; Nakao, Yasuhiro; Kaneko, Akiko; Abe, Yutaka; Yoshida, Hiroyuki

    2016-01-01

    Filtered venting systems have been installed to restart Nuclear Power Plants in Japan after Fukushima Daiichi Nuclear Disaster. Venturi scrubber is main component of one of the systems. To evaluate decontamination performance of the Venturi scrubber for filtered venting, mechanistic evaluation method for hydrodynamic behavior is important. In this paper, our objective is to develop the method. As approaches, we conducted experimental observation under adiabatic (air-water) condition, developed a numerical simulation code with one-dimensional two-fluid model and made verification and validation by comparison between these results in terms of superficial gas, static pressure, superficial liquid velocity, droplet ratio and droplet diameter in Venturi scrubber. As results, we observed the hydrodynamic behavior, developed the code and confirmed that it has capability to evaluate the parameters with following accuracy, superficial gas velocity with +30%, static pressure in throat part with +-10%, superficial liquid velocity with +-80%, droplet diameter with +-30% and droplet ratio with -50%. (author)

  6. Two-phase anaerobic digestion of partially acidified sewage sludge: a pilot plant study for safe sludge disposal in developing countries.

    Science.gov (United States)

    Passio, Luca; Rizzoa, Luigi; Fuchs, Stephan

    2012-09-01

    The unsafe disposal of wastewater and sludge in different areas of developing countries results in significant environmental pollution, particularly for groundwater, thus increasing the risk of waterborne diseases spreading. In this work, a two-phase anaerobic digestion process for post-treatment of partially acidified sewage sludge was investigated to evaluate its feasibility as a safe sludge disposal system. Pilot tests showed that an effective sludge stabilization can be achieved (total volatile solids content <65%, organic acid concentration <200 mg/L at flow rate = 50 L/d and hydraulic residence time = 18 d) as well as a relative low faecal coliform density (<1000 most probable number per g total solids), showing that land application of the sludge without restrictions is possible according to US Environmental Protection Agency criteria for safe sludge disposal. A biogas production as high as 390 L/d with a 60% methane content by volume was achieved, showing that energy production from biogas may be achieved as well.

  7. The exploitation of swamp plants for dewatering liquid sewage sludge

    Directory of Open Access Journals (Sweden)

    Jiří Šálek

    2006-01-01

    Full Text Available The operators of little rural wastewater treatment plants have been interested in economic exploitation of sewage sludge in local conditions. The chance is searching simply and natural ways of processing and exploitation stabilized sewage sludge in agriculture. Manure substrate have been obtained by composting waterless sewage sludge including rest plant biomass after closing 6–8 years period of filling liquid sewage sludge to the basin. Main attention was focused on exploitation of swamp plants for dewatering liquid sewage sludge and determination of influence sewage sludge on plants, intensity and course of evapotranspiration and design and setting of drying beds. On the base of determined ability of swamp plants evapotranspiration were edited suggestion solutions of design and operation sludge bed facilities in the conditions of small rural wastewater treatment plant.

  8. TRU waste cyclone drum incinerator and treatment system: January--March 1978

    International Nuclear Information System (INIS)

    Klingler, L.M.; Batchelder, D.M.; Lewis, E.L.

    1978-01-01

    The cyclone incinerator was operated throughout the past quarter, generating additional data on system characteristics, equipment life expectancies, and by-product generation. Several changes in the incinerator system are in various stages of completion. The lid assembly, secondary chamber, and expansion unit for the new exhaust equipment are nearly ready for installation. A new heat exchanger has been installed in the scrubber system. An ash handling system has been designed for possible future addition to the system. Continuing studies will determine the best delivery mechanism for continuously feeding the cyclone incinerator. Preliminary investigations are being conducted to select an independent system to treat incinerator scrubber solution for recycling and to remove salts and sludge for disposal. Metal samples of two possible materials for incinerator construction were examined for corrosion degradation suffered at the incinerator exhaust outlet. Controlled experiments were conducted on the pressed ash-cement pellet matrix to define compressive strength, mechanical stability, density, and effect of curing environment (wet cure and dry cure). Leachability studies were initiated on pressed sludge/cement matrix in distilled water at ambient temperature. Compressive strengths of sludge/cement pressed matrix samples were investigated. Physical and chemical attributes of incinerated ash were evaluated in relationship to the ash/cement matrix

  9. Disintegration impact on sludge digestion process.

    Science.gov (United States)

    Dauknys, Regimantas; Rimeika, Mindaugas; Jankeliūnaitė, Eglė; Mažeikienė, Aušra

    2016-11-01

    The anaerobic sludge digestion is a widely used method for sludge stabilization in wastewater treatment plant. This process can be improved by applying the sludge disintegration methods. As the sludge disintegration is not investigated enough, an analysis of how the application of thermal hydrolysis affects the sludge digestion process based on full-scale data was conducted. The results showed that the maximum volatile suspended solids (VSS) destruction reached the value of 65% independently on the application of thermal hydrolysis. The average VSS destruction increased by 14% when thermal hydrolysis was applied. In order to have the maximum VSS reduction and biogas production, it is recommended to keep the maximum defined VSS loading of 5.7 kg VSS/m(3)/d when the thermal hydrolysis is applied and to keep the VSS loading between 2.1-2.4 kg VSS/m(3)/d when the disintegration of sludge is not applied. The application of thermal hydrolysis leads to an approximately 2.5 times higher VSS loading maintenance comparing VSS loading without the disintegration; therefore, digesters with 1.8 times smaller volume is required.

  10. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    International Nuclear Information System (INIS)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-01-01

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report. The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments

  11. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    Energy Technology Data Exchange (ETDEWEB)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-09-18

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

  12. A New Perspective at the Ship-Air-Sea-Interface: The Environmental Impacts of Exhaust Gas Scrubber Discharge

    Directory of Open Access Journals (Sweden)

    Sonja Endres

    2018-04-01

    Full Text Available Shipping emissions are likely to increase significantly in the coming decades, alongside increasing emphasis on the sustainability and environmental impacts of the maritime transport sector. Exhaust gas cleaning systems (“scrubbers”, using seawater or fresh water as cleaning media for sulfur dioxide, are progressively used by shipping companies to comply with emissions regulations. Little is known about the chemical composition of the scrubber effluent and its ecological consequences for marine life and biogeochemical processes. If scrubbers become a central tool for atmospheric pollution reduction from shipping, modeling, and experimental studies will be necessary to determine the ecological and biogeochemical effects of scrubber wash water discharge on the marine environment. Furthermore, attention must be paid to the regulation and enforcement of environmental protection standards concerning scrubber use. Close collaboration between natural scientists and social scientists is crucial for progress toward sustainable shipping and protection of the marine environment.

  13. Parameters influencing the aerosol capture performance of the Submerged-Bed Scrubber

    International Nuclear Information System (INIS)

    Ruecker, C.M.; Scott, P.A.

    1987-04-01

    The Submerged-Bed Scrubber (SBS) is a novel air cleaning device that has been investigated by Pacific Northwest Laboratory (PNL) for scrubbing off gases from liquid-fed ceramic melters used to vitrify high-level waste (HLW). The concept for the SBS was originally conceived at Hanford for emergency venting of a reactor containment building. The SBS was adapted for use as a quenching scrubber at PNL because it can cool the hot melter off gas as well as remove over 90% of the airborne particles, thus meeting the minimum particulate decontamination factor (DF) of 10 required of a primary scrubber. The experiments in this study showed that the submicron aerosol DF for the SBS can exceed 100 under certain conditions. A conventional device, the ejector-venturi scrubber (EVS), has been previously used in this application. The EVS also adequately cools the hot gases from the melter while exhibiting aerosol removal DFs in the range of 5 to 30. In addition to achieving higher DFs than the EVS, however, the SBS has the advantage of being a passive system, better suited to the remote environment of an HLW processing system. The objective of this study was to characterize the performance of the SBS and to improve the aerosol capture efficiency by modifying the operating procedure or the design. A partial factorial experimental matrix was completed to determine the main effects of aerosol solubility, inlet off-gas temperature, inlet off-gas flow rate, steam-to-air ratio, bed diameter and packing diameter on the particulate removal efficiency of the SBS. Several additional experiments were conducted to measure the influence of the inlet aerosol concentration and scrubbing-water concentration on aerosol-removal performance. 33 refs., 17 figs., 14 tabs

  14. Energy Conservation Alternatives Study (ECAS): Conceptual Design and Implementation Assessment of a Utility Steam Plant with Conventional Furnace and Wet Lime Stack Gas Scrubbers

    Science.gov (United States)

    Brown, Dale H.

    1976-01-01

    A study was performed to estimate the technical/economic characteristics of a steam power plant (3500 pounds per square inch gauge, 1000 degrees Fahrenheit / 1000 degrees Fahrenheit) with a coal-burning radiant furnace and a wet lime stack gas scrubber to control sulfur emissions. Particulate emissions were controlled by an electrostatic precipitator operating at 300 degrees Fahrenheit. The stack gas from the scrubber was reheated from 125 degrees Fahrenheit to 250 degrees Fahrenheit as a base case, and from 125 degrees Fahrenheit to 175 degrees Fahrenheit as an alternate case. The study was performed on a basis consistent with the General Electric ECAS Phase II evaluation of advanced energy conversion systems for electric utility baseload applications using coal or coal-derived fuels. A conceptual design of the power plant was developed, including the on-site calcination of limestone to lime and the provision of sludge ponds to store the products of flue gas scrubbing. From this design, estimates were derived for power plant efficiency, capital cost, environmental intrusion characteristics, natural resource requirements, and cost of electricity at an assumed capacity factor of 65 percent. An implementation assessment was performed where factors affecting applicability of the conceptual design power plant in electric utility generation systems were appraised. At 250 degrees Fahrenheit and 175 degrees Fahrenheit stack gas temperatures respectively, the plants showed a cost of electricity of 39.8 and 37.0 mills per kilowatt-hours and overall plant efficiencies of 32 percent and 34 percent.

  15. Treatment of Petroleum Sludge By Using Solidification/Stabilization (S/S) Method : Effect of Hydration Days to Heavy Metals Leaching and Strength

    Science.gov (United States)

    Murshid, N.; Kamil, N. A. F. M.; Kadir, A. A.

    2018-04-01

    Petroleum sludge is one of the major solid wastes generated in the petroleum industry. Generally, there are numbers of heavy metals in petroleum sludge and one treatment that is gaining prominence to treat a variety of mixed organic and inorganic waste is solidification/stabilization (S/S) method. The treatment protects human health and the environment by immobilizing contaminants within the treated material and prevents migration of the contaminants. In this study, solidification/stabilization (S/S) method has been used to treat the petroleum sludge. The comparison of hydration days, namely, 7th and 28th days in these cement-based waste materials were studied by using Synthetic Precipitate Leaching Procedure (SPLP). The results were compared to the United States Environmental Protection Agency (USEPA) standards. The results for leaching test concluded that less percentage OPC gave maximum concentration of heavy metals leaching due to deficient in Calcium Oxide (CaO), which is can caused weak solidification in the mixture. Physical and mechanical properties conducted such as compressive strength and density test. From the results, it shows addition up to of 30percentage PS give results which comply with minimum landfill dispose limit. The results shows correlation between strength and density are strong regression coefficient of 82.7%. In conclusion, S/S method can be alternative disposal method for PS in the same time complies with standard for minimum landfill disposal limit. The results for leaching test concluded the less OPC percentage gave maximum concentration of heavy metals leaching.

  16. Inhibition of the Nitrification Process of Activated Sludge Micro-Organism by Scrubber Water from an Industrial Flue Gas Cleaning Process

    DEFF Research Database (Denmark)

    Thomsen, Jens Peter

    2007-01-01

    the nitrogen removal. A major sewage cleaning plant in the southern part of Denmark is a recipient of industrial sewage from a major fish meal industry. Severe nitrification inhibition was observed in scrubber water from an incineration of process air, and the processes that lead to the production were stopped......The microbial transformation of ammonia to nitrate, the nitrification, is a central process in the nitrogen biogeochemical cycle. In a modern wastewater treatment plant, the nitrification process is a key process in the removal of nitrogen and inhibitory compounds in sewage can seriously affect....... In order to investigate the relation between incineration temperatures and the production of inhibitory compounds, the process air was burned at temperatures from 800°C to 1000°C. The termically affected condensate was collected and the nitrification inhibition effect of the condensate was tested using...

  17. Placement of radium/barium sludges in tailings areas

    International Nuclear Information System (INIS)

    Murphy, K.L.; Multamaki, G.E.

    1980-01-01

    Currently radium is removed from uranium mining and milling effluents by the addition of barium chloride to precipitate the radium as radium/barium sulphate. The precipitate is allowed to settle in sedimentation basins prior to discharge of the effluent. The sedimentation basins are not suitable for final disposal of the sludge, and placement of the sludges in the tailings area has been proposed. The geochemical environment of fresh tailings areas was characterized as an acidic, oxidized surface zone underlain by an alkaline, reduced zone comprising the rest of the tailings. The quantity of sludge produced was estimated to be small relative to the quantity of tailings, and therefor a relatively small amount of radium would be added to the tailings disposal area by the addition of sludge. To confirm whether sludge addition affected radionuclide solubilization, laboratory leaching tests were conducted on slurries of acid leach tailings, and sludge-tailings mixtures. Radium in the (Ra,Ba)SO 4 sludge was at least as stable as radium in the tailings, and the sludge was able to absorb radium released from the tailings. The addition of sludge did not affect uranium and thorium solubilization. From these results it appears that the placement of sludge in tailings areas would not adversely affect the stability of radionuclides in the tailings or sludge. (auth)

  18. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray

    Energy Technology Data Exchange (ETDEWEB)

    Pak, S.I. [National Fusion Research Center, 52 Eoeun-dong, Yuseong-gu, Daejeon 305-333 (Korea, Republic of)]. E-mail: paksunil@dreamwiz.com; Chang, K.S. [Department of Aerospace Engineering, KAIST, Daejeon (Korea, Republic of)]. E-mail: kschang@kaist.ac.kr

    2006-12-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.

  19. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray

    International Nuclear Information System (INIS)

    Pak, S.I.; Chang, K.S.

    2006-01-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements

  20. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray.

    Science.gov (United States)

    Pak, S I; Chang, K S

    2006-12-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.

  1. Atomization of liquids in a Pease-Anthony Venturi scrubber. Part I. Jet dynamics.

    Science.gov (United States)

    Gonçalves, J A S; Costa, M A M; Henrique, P R; Coury, J R

    2003-02-28

    Jet dynamics, in particular jet penetration, is an important design parameter affecting the collection efficiency of Venturi scrubbers. A mathematical description of the trajectory, break-up and penetration of liquid jets initially transversal to a subsonic gas stream is presented. Experimental data obtained from a laboratory scale Venturi scrubber, operated with liquid injected into the throat through a single orifice, jet velocities between 6.07 and 15.9 m/s, and throat gas velocities between 58.3 and 74.9 m/s, is presented and used to validate the model.

  2. Synthetic fibers as an indicator of land application of sludge

    International Nuclear Information System (INIS)

    Zubris, Kimberly Ann V.; Richards, Brian K.

    2005-01-01

    Synthetic fabric fibers have been proposed as indicators of past spreading of wastewater sludge. Synthetic fiber detectability was examined in sludges (dewatered, pelletized, composted, alkaline-stabilized) and in soils from experimental columns and field sites applied with those sludge products. Fibers (isolated by water extraction and examined using polarized light microscopy) were detectable in sludge products and in soil columns over 5 years after application, retaining characteristics observed in the applied sludge. Concentrations mirrored (within a factor of 2) predictions based on soil dilution. Fibers were detectable in field site soils up to 15 years after application, again retaining the characteristics seen in sludge products. Concentrations correlated with residual sludge metal concentration gradients in a well-characterized field site. Fibers found along preferential flow paths and/or in horizons largely below the mixed layer suggest some potential for translocation. Synthetic fibers were shown to be rapid and semi-quantitative indicators of past sludge application. - Synthetic fabric fibers present in wastewater sludge are a semi-quantitative long-term indicator of past sludge application in soils

  3. Reduction of Fecal Streptococcus and Salmonella by selected treatment methods for sludge and organic waste

    DEFF Research Database (Denmark)

    Jepsen, Svend Erik; Krause, Michael; Grüttner, Henrik

    1997-01-01

    The increasing utilization of waste water sludge and source-separated organic household waste in agriculture has brought the quality aspects into focus, among others the hygienic aspects. In this study, the reducting effect on Fecal Streptococcus (FS) and Salmonella of different methods...... for stabilization and methods for further treatment of sludge and organic waste has been investigated. The most common methods for stabilization, i.e. aerobic and anaerobic stabilization, only reduce the indicator organisms by approximately 1 logarithmic decade. Methods for further treatment of sludge and organic......) significant reductions of Salmonella were found, while the die out at low temperatures (below 10°C) was limited. FS was not reduced systematically during storage, and therefore, FS is not usable as indicator organism for the hygienic properties of sludge during storage....

  4. The importance of CFD methods to the design of huge scrubber systems

    International Nuclear Information System (INIS)

    Maier, H.

    2005-01-01

    Due to the influence of the multiphase flow on the scrubber removal performance Austrian Energy and Environment started research end development in co-operation with universities on the simulation of wet scrubber systems using CFD methods (Computational removal performance). In November 2001 the spray banks were reconstructed with a minimum of requirements according to the concept of AE and E. The first experiences in operation already showed a significant improvement. In July 2002 measurements of the SO 2 -profile confirmed the experiences of the client. The high SO 2 peaks nearly disappeared at the absorber wall. Furthermore the changes resulted in a more homogenous SO 2 distribution in the clean gas which was also found out by measurements in the outlet duct. According to the client the LG-ratio could be reduced. Nearly every load case can now be handled with one active spray bank less. With respect to energy consumption of the plant this means a remarkable reduction of operational costs. Compared to that the scrubbers of the FGD system in Neurath will have a flue gas capacity nearly twice much as that of the FGD plant in Heyden. The start up will take place in 2008

  5. Study on the use of oxidant scrubbers for elimination of interferences due to nitrogen dioxide in analysis of atmospheric dimethylsulfide

    Directory of Open Access Journals (Sweden)

    Rodrigues Beatriz A.

    2000-01-01

    Full Text Available In this work, oxidant scrubbers were evaluated for their ability to prevent sampling losses of dimethylsulfide caused by reactions with nitrogen dioxide. Various compounds and mixtures were used in the preparation of the oxidant scrubbers. An automatic flow analysis device was used to compare scrubbing efficiency for nitrogen dioxide. Among the scrubbers tested, the best were shown to be the one made with filter paper or glass wool coated with iron (II sulfate, sulfuric acid and pyrogallic acid, and the one made from with paper coated with triethanolamine. The results obtained under laboratory conditions, using dimethylsulfide standard gas, and in field experiments confirmed that these scrubbers are suitable for the prevention of oxidation during sampling.

  6. Solubility of flue gas components in NaOH based scrubber solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sandelin, K; Backman, R

    1997-11-01

    The work reported here is a thermodynamic study on the solubility of flue gas components in aqueous solutions containing sodium salts. The result of the work is an equilibrium model. The model presented here includes sodium hydroxide and sodium salts that makes it possible to study simultaneous absorption of flue gas components in alkaline scrubber solutions. The model is applied on the absorption of a flue gas into a NaOH scrubber solution. The calculations show that it is possible to simultaneously absorb sulfur dioxide, sulfuric acid, and ammonia without carbon dioxide co-absorption. The calculations also show that gaseous NO and N{sub 2}O cannot be scrubbed unless they are oxidized to nitrate or reduced to ammonia. (author) SIHTI 2 Research Programme. 59 refs.

  7. Effects of land-applied ammonia scrubber solutions on yield, nitrogen uptake, soil test phosphorus and phosphorus runoff

    Science.gov (United States)

    Ammonia (NH3) scrubbers reduce amounts of NH3 and dust released from animal rearing facilities, while generating nitrogen (N) rich solutions, which may be used as fertilizer. The objective of this study was to determine the effects of various NH3 scrubber solutions on yields, N uptake by forage, so...

  8. Grout and Glass Performance in Support of Stabilization/Solidification of the MVST Tank Sludges

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M.; Spence, R.D.

    1998-11-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) pending treatment for disposal. The waste separates into two phases: sludge and supematant. Some of the supematant from these tanks has been decanted, solidified into a grout, and stored for disposal as a solid low-level waste. The sludges in the tank bottoms have been accumulating ,for several years. Some of the sludges contain a high amount of gamma activity (e.g., `37CS concentration range of 0.01 3-11 MBq/g) and contain enough transuranic (TRU) radioisotopes to be classified as TRU wastes. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough in the available total constituent analysis for the MVST sludge to be classified as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste.

  9. Grout performance in support of in situ stabilization/solidification of the GAAT tank sludges

    International Nuclear Information System (INIS)

    Spence, R.D.; Kauschinger, J.L.

    1997-05-01

    The Gunite trademark and associated tanks (GAATs) were constructed at ORNL between 1943 and 1951 and were used for many years to collect radioactive and chemical wastes. These tanks are currently inactive. Varying amounts of the sludge were removed and disposed of through the Hydrofracture Program. Thus, some tanks are virtually empty, while others still contain significant amounts of sludge and supernatant. In situ grouting of the sludges in the tanks using multi-point injection (MPI trademark), a patented, proprietary technique, is being investigated as a low-cost alternative to (1) moving the sludges to the Melton Valley Storage Tanks (MVSTs) for later solidification and disposal, (2) ex situ grouting of the sludges followed by either disposal back in the tanks or containerizing and disposal elsewhere, and (3) vitrification of the sludges. The paper discusses the chemical characteristics of the GAATs and the type of chemical surrogate that was used during the leachability tests. This is followed by the experimental work, which, consisted of scope testing and sensitivity testing. The scope testing explored the rheology of the proposed jetting slurries and the settling properties of the proposed grouts using sand-water mixes for the wet sludge. After establishing a jetting slurry and grout with an acceptable rheology and settling properties, the proposed in situ grout formulation was subjected to sensitivity testing for variations in the formulation

  10. The CO{sub 2} capture performance of a high-intensity vortex spray scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Javed, K.H.; Mahmud, T.; Purba, E. [University of Leeds, Leeds (United Kingdom)

    2010-08-15

    The present study focuses on the enhancement of CO{sub 2} capture efficiency using a high-intensity vortex spray scrubber by imparting swirl to the gas flow, which has the ability to augment the rates of heat and mass transfer. Experimental investigations into the reactive absorption of CO{sub 2} from a mixture of air-CO{sub 2} into an aqueous solution of NaOH in a laboratory-scale counter-current spray scrubber have been carried out. The mass transfer characteristics, in terms of the overall gas phase mass transfer coefficient (K{sub g}a) were investigated for both the swirling and the non-swirling (axial) gas flows through the scrubber in order to quantify the effect of swirl. The effects of the gas/liquid flow rates, flow arrangements, scrubber height and spray nozzle type on the CO{sub 2} capture performance were examined. For both the axial and the swirling flows, the K{sub g}a increases initially with increasing gas flow rate up to a certain limit, beyond which it becomes essentially constant, whereas the K{sub g}a increases continuously with the liquid flow rate within the measured range. The counter-current gas-droplets flow provides higher mass transfer rates compared with those in co-current flow. The K{sub g}a deceases with the increase in the tower height. The spray nozzle producing finer droplets provides enhanced mass transfer rates. It is found that imparting swirl in the gas flow enhances the K(g)a up to around 49% compared with that in axial flows.

  11. Effect of lime addition during sewage sludge treatment on characteristics of resulting SSA when it is used in cementitious materials.

    Science.gov (United States)

    Vouk, D; Nakic, D; Štirmer, N; Baricevic, A

    2017-02-01

    Final disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater treatment technology, including the sludge treatment. In most EU countries, significant amounts of stabilized and dewatered sludge are incinerated, and sewage sludge ash (SSA) is generated as a by product. At the same time, lime is one of the commonly used additives in the sewage sludge treatment primarily to stabilize the sludge. In doing so, the question arose how desirable is such addition of lime if the sludge is subsequently incinerated, and the generated ash is further used in the production of cementitious materials. A series of mortars were prepared where 10-20% of the cement fraction was replaced by SSA. Since all three types of analyzed SSA (without lime, with lime added during sludge stabilization and with extra lime added during sludge incineration) yielded nearly same results, it can be concluded that if sludge incineration is accepted solution, lime addition during sludge treatment is unnecessary even from the standpoint of preserving the pozzolanic properties of the resulting SSA. Results of the research carried out on cement mortars point to the great possibilities of using SSA in concrete industry.

  12. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Yenal, U.; Skiadas, Ioannis V.

    2003-01-01

    Anaerobic digestion is an appropriate technique for the treatment of sludge before final disposal and it is employed worldwide as the oldest and most important process for sludge stabilization. In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic...... digestion. Furthermore, thermal pre-treatment is suitable for the improvement of stabilization, enhancement of dewatering of the sludge, reduction of the numbers of pathogens and could be realized at relatively low cost especially at low temperatures. The present study investigates (a) the differences...... between mesophilic and thermophilic anaerobic digestion of sludge and (b) the effect of the pretreatment at 70 degreesC on mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. The pretreatment step showed very positive effect on the methane potential and production rate upon...

  13. Disinfection of sewage sludge by gamma radiation, electron beams and alternative methods

    International Nuclear Information System (INIS)

    Lessel, T.

    1997-01-01

    Sewage sludges generally contain high concentrations of pathogens, even after digestion or other conventional treatments for stabilization. Disinfection can be effected by irradiation (e.g. gamma or electron beam), by heat treatment (pasteurization or thermophilic stabilization), and by changing the pH (lime treatment). Irradiation is a simple and reliable process for disinfection with special advantages and favorable side-effects. Irradiation can be combined with oxygenation, heat or other treatments, with favorable synergistic effects. The total costs for the irradiation treatment of sewage sludges are comparable to those of alternative disinfection methods. Most of the worldwide practical experience has been obtained at the sewage-sludge irradiation plant in Geiselbullach (10 km west of Munich, Germany), which was continuously in operation from 1973 to 1993. A multidisciplinary research programme was conducted during the first 8 years. In subsequent years, the plant was operated commercially for sewage-sludge disinfection, without public funds. Other demonstration or research plants for sewage-sludge irradiation have been reported in the USA, India, Russia, Japan, Austria, Germany and Hungary. (author)

  14. Experimental study of pressure drop characteristics of venturi scrubber working at self-priming mode

    International Nuclear Information System (INIS)

    Wang Meng; Sun Zhongning; Gu Haifeng; Guo Xueqing; Yu Yong

    2012-01-01

    The pressure drop characteristics of Venturi scrubber working at self-priming mode were studied experimentally. The test sections were smooth glass scrubbers, with air and water as the working medium. The results show that the trends of empirical formula are more consistent with that of the experimental results, but the relative error is large, up to ±50% or more. The experimental correlation is proposed based on the experimental research, and the calculated results of which can well predict the experimental data and the relative error is within ±15%. (authors)

  15. Opportunities for energy conservation and load shaping in sludge management systems

    International Nuclear Information System (INIS)

    Burton, F.L.

    1992-11-01

    Expansion of both water and wastewater treatment plants increases the quantity of resulting sludge that must be processed. This report focuses on alternative sludge processing technologies, which may pre sent opportunities for managing the amount of electricity required to power processing equipment. Overall, the report provides information on the electrotechnologies used in sludge management systems, defines opportunities in the design and operation of water and wastewater sludge management systems for more efficient use of electric power, and identifies possible areas for research and development that would enhance the design of energy-efficient systems. The sludge operations and processes covered in this report include pumping, thickening, stabilization, conditioning and dewatering, heat drying, and thermal reduction

  16. Modeling of venturi scrubber efficiency

    Science.gov (United States)

    Crowder, Jerry W.; Noll, Kenneth E.; Davis, Wayne T.

    The parameters affecting venturi scrubber performance have been rationally examined and modifications to the current modeling theory have been developed. The modified model has been validated with available experimental data for a range of throat gas velocities, liquid-to-gas ratios and particle diameters and is used to study the effect of some design parameters on collection efficiency. Most striking among the observations is the prediction of a new design parameter termed the minimum contactor length. Also noted is the prediction of little effect on collection efficiency with increasing liquid-to-gas ratio above about 2ℓ m-3. Indeed, for some cases a decrease in collection efficiency is predicted for liquid rates above this value.

  17. Numerical Simulation of Flow Behavior within a Venturi Scrubber

    Directory of Open Access Journals (Sweden)

    M. M. Toledo-Melchor

    2014-01-01

    Full Text Available The present work details the three-dimensional numerical simulation of single-phase and two-phase flow (air-water in a venturi scrubber with an inlet and throat diameters of 250 and 122.5 mm, respectively. The dimensions and operating parameters correspond to industrial applications. The mass flow rate conditions were 0.483 kg/s, 0.736 kg/s, 0.861 kg/s, and 0.987 kg/s for the gas only simulation; the mass flow rate for the liquid was 0.013 kg/s and 0.038 kg/s. The gas flow was simulated in five geometries with different converging and diverging angles while the two-phase flow was only simulated for one geometry. The results obtained were validated with experimental data obtained by other researchers. The results show that the pressure drop depends significantly on the gas flow rate and that water flow rate does not have significant effects neither on the pressure drop nor on the fluid maximum velocity within the scrubber.

  18. Use of phytoproductivity data in the choice of native plant species to restore a degraded coal mining site amended with a stabilized industrial organic sludge.

    Science.gov (United States)

    Chiochetta, Claudete G; Toumi, Hela; Böhm, Renata F S; Engel, Fernanda; Poyer-Radetski, Gabriel; Rörig, Leonardo R; Adani, Fabrizio; Radetski, Claudemir M

    2017-11-01

    Coal mining-related activities result in a degraded landscape and sites associated with large amounts of dumped waste material. The arid soil resulting from acid mine drainage affects terrestrial and aquatic ecosystems, and thus, site remediation programs must be implemented to mitigate this sequential deleterious processes. A low-cost alternative material to counterbalance the affected physico-chemical-microbiological aspects of the degraded soil is the amendment with low contaminated and stabilized industrial organic sludge. The content of nutrients P and N, together with stabilized organic matter, makes this material an excellent fertilizer and soil conditioner, fostering biota colonization and succession in the degraded site. However, choice of native plant species to restore a degraded site must be guided by some minimal criteria, such as plant survival/adaptation and plant biomass productivity. Thus, in this 3-month study under environmental conditions, phytoproductivity tests with five native plant species (Surinam cherry Eugenia uniflora L., C. myrianthum-Citharexylum myrianthum, Inga-Inga spp., Brazilian peppertree Schinus terebinthifolius, and Sour cherry Prunus cerasus) were performed to assess these criteria, and additional biochemical parameters were measured in plant tissues (i.e., protein content and peroxidase activity) exposed to different soil/sludge mixture proportions. The results show that three native plants were more adequate to restore vegetation on degraded sites: Surinam cherry, C. myrianthum, and Brazilian peppertree. Thus, this study demonstrates that phytoproductivity tests associated with biochemical endpoint measurements can help in the choice of native plant species, as well as aiding in the choice of the most appropriate soil/stabilized sludge proportion in order to optimize biomass production.

  19. Possibility Of Using Cardboard Mill Sludge In Remediation Of Contaminated Sediment

    Directory of Open Access Journals (Sweden)

    Rastko Milošević

    2011-10-01

    Full Text Available The sludge from cardboard mill is commonly landfilled, but it could be recycled into production on-site or reused insome other way. In this study the use of sludge from cardboard mill as stabilizing agent in the solidification/stabilization(S/S treatment of lead polluted sediment was examined. The effectiveness of S/S treatment was evaluated bydetermining cumulative percentage of lead leached and by applying different leaching tests. Applied S/S treatmentwas effective in immobilizing lead irrespective of high concentration in the untreated sample.

  20. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Seggiani, Maurizia, E-mail: m.seggiani@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Puccini, Monica, E-mail: m.puccini@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Raggio, Giovanni, E-mail: g.raggio@tiscali.it [Italprogetti Engineering SPA, Lungarno Pacinotti, 59/A, 56020 San Romano (Pisa) (Italy); Vitolo, Sandra, E-mail: s.vitolo@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was

  1. Applicability of numerical simulation code TPFIT to two-phase flow in Venturi scrubber

    International Nuclear Information System (INIS)

    Horiguchi, Naoki; Kanagawa, Tetsuya; Kaneko, Akiko; Abe, Yutaka; Yoshida, Hiroyuki

    2015-01-01

    As one of the filtered venting devices for light water reactor, Venturi scrubber can operate with effective decontamination efficiency because dispersed flow is formed in the Venturi scrubber by pressure difference between inside and outside of holes for liquid suction. Droplet diameter and its distribution in cross-section area are important for the decontamination. However, they are changed by hydraulic behavior of suctioned liquid until atomized, and kinds of atomization phenomena. In this report, to understand the hydraulic behavior of the liquid in detail for the filtered venting, we performed visualized observation experimentally and numerical simulation by TPFIT. Then the numerical simulation result was validated by the experimental data. (author)

  2. Influence of microbial acitivity on the stability of activated sludge flocs

    DEFF Research Database (Denmark)

    Wilén, Britt-Marie; Nielsen, Jeppe Lund; Keiding, Kristian

    2000-01-01

    . These results strongly suggested that microorganisms using oxygen and/or nitrate as electron acceptors were important for maintaining the floc strength. The increase in turbidity under deflocculation was well correlated with the number of bacteria and concentration of protein, humic substances and carbohydrates...... sludge. Furthermore, the importance of Fe(III) for the floc strength was illustrated by removal of Fe(III) from the sludge matrix by adding sulphide, which resulted in strong deflocculation. Thus, the deflocculation observed could be either directly due to lack of aerobic microbial activity or indirectly...

  3. Cohesive Soil Stabilized Using Sewage Sludge Ash/Cement and Nano Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Huan-Lin Luo

    2012-03-01

    Full Text Available In order to improve soft soil strength, a mixture of incinerated sewage sludge ash (SSA and cement was applied as a soil stabilizer. The intended mix ratio for SSA and cement was 3:1. A-6 clay was selected as the untreated soil. In this study, 15% of clay soil was replaced by SSA/cement to produce the treated soil specimens. Then, four different volumes, namely 0, 1, 2, and 3%, of nano-Al2O3 were mixed with the treated soil as an additive. Tests such as compaction, pH values, Atterberg limits, unconfined compressive strength (UCS, swell potential, California bearing ratio (CBR, and permeability were performed. The results indicate that both UCSs and CBR values of untreated soil were greatly improved by the use of 15% SSA/cement. Moreover, a 1% addition of nano-Al2O3 enhanced the treated soil in terms of both UCS and CBR values. Furthermore, the swell potential was effectively reduced by the use of 15% SSA/cement as compared with untreated soil and the 1% nano-Al2O3 additive fraction offered the best performance. From this study, we conclude that 15% of SSA/cement replacement could effectively stabilize A-6 clay soil, and 1% of nano-Al2O3 additive may be the optimum amount to add to the soil.

  4. Sludge pre-treatment with pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Kopplow, O.; Barjenbruch, M.; Heinz, V.

    2003-07-01

    The anaerobic stabilization process depends - among others - on the bio-availability of organic carbon. Through pre-treatment of the sludge which leads to the destruction of micro-organisms and to the setting-free of cell content substances (disintegration), the carbon can be microbially converted better and faster. Moreover, effects on the digestion are likely. However, only little experience is available in the sludge treatment with pulsed electric fields. Laboratory-scale digestion tests have been run to analyse the influence of pulsed electric fields on the properties of sludge, anaerobic degradation, sludge water reload and foaming of digesters. The results will be compared with those of other disintegration methods (high pressure homogenise, thermal treatment). The effect of pre-treatment on the sludge is shown by the COD release. Degrees of disintegration have been achieved up to 20%. The specific energy input was high. The energy consumption has been decreased by initial improvements (pre-heating to 55{sup o}C). The filament bacteria were partially destroyed. The foam reduction in the digesters was marginal. The anaerobic degradation performance has been improved in every case. The degradation rate of organic matter increased about 9%. Due to the increase of degradation, there is a higher reload of the sludge-water with COD and nitrogen compounds. (author)

  5. Integration of chemical scrubber with sodium hypochlorite and surfactant for removal of hydrocarbons in cooking oil fume

    International Nuclear Information System (INIS)

    Cheng, Hsin-Han; Hsieh, Chu-Chin

    2010-01-01

    There are many types of technologies to control cooking oil fumes (COFs), but current typical technologies, such as electrostatic precipitator, conventional scrubber, catalyst, or condenser, are unable to efficiently remove the odorous materials present in COFs which are the primary cause of odor-complaint cases. There is also a lack of information about using sodium hypochlorite (NaOCl) and surfactants to remove contaminants in COFs, and previous studies lack on-site investigations in restaurants. This study presents a chemical scrubber integrated with an automatic control system (ACS) to treat hydrocarbons (HCs) in COFs, and to monitor non-methane HCs (NMHC) and odor as indicators for its efficiency evaluation. The chemical scrubber effectively treats hydrophobic substances in COFs by combining surfactant and NaOCl under optimal operational conditions with NHMC removal efficiency as high as 85%. The mass transfer coefficient (K L a) of NMHC was enhanced by 50% under the NaOCl and surfactant conditions, as compared to typical wet scrubber. Further, this study establishes the fuzzy equations of the ACS, including the relationship between the removal efficiency and K L a, liquid/gas ratio, pH and C NaOCl .

  6. Integration of chemical scrubber with sodium hypochlorite and surfactant for removal of hydrocarbons in cooking oil fume

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsin-Han [Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Touliu, Yunlin, Taiwan (China); Hsieh, Chu-Chin, E-mail: hsiehcc@yuntech.edu.tw [Department of Environmental and Safety Engineering, National Yunlin University of Science and Technology, Touliu, Yunlin, Taiwan (China)

    2010-10-15

    There are many types of technologies to control cooking oil fumes (COFs), but current typical technologies, such as electrostatic precipitator, conventional scrubber, catalyst, or condenser, are unable to efficiently remove the odorous materials present in COFs which are the primary cause of odor-complaint cases. There is also a lack of information about using sodium hypochlorite (NaOCl) and surfactants to remove contaminants in COFs, and previous studies lack on-site investigations in restaurants. This study presents a chemical scrubber integrated with an automatic control system (ACS) to treat hydrocarbons (HCs) in COFs, and to monitor non-methane HCs (NMHC) and odor as indicators for its efficiency evaluation. The chemical scrubber effectively treats hydrophobic substances in COFs by combining surfactant and NaOCl under optimal operational conditions with NHMC removal efficiency as high as 85%. The mass transfer coefficient (K{sub L}a) of NMHC was enhanced by 50% under the NaOCl and surfactant conditions, as compared to typical wet scrubber. Further, this study establishes the fuzzy equations of the ACS, including the relationship between the removal efficiency and K{sub L}a, liquid/gas ratio, pH and C{sub NaOCl}.

  7. Fluidization of Dried Wastewater Sludge.

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2007-01-01

    Roč. 178, 3 (2007) , s. 166-172 ISSN 0032-5910 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidization characteristics * multiphase reactors * dried stabilized wastewater sludge Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.130, year: 2007

  8. The bulk composition and leaching properties of electroplating sludge prior/following the solidification/stabilization by calcium oxide.

    Science.gov (United States)

    Orescanin, Visnja; Mikulic, Nenad; Mikelic, Ivanka Lovrencic; Posedi, Mario; Kampic, Stefica; Medunic, Gordana

    2009-10-01

    Eighteen samples of electroplating sludge were taken from three vertical profiles of waste storage pond of the zinc plating facility. Dry matter and organic matter content, pH value, bulk concentrations and leachate composition were determined. A sludge sample with the highest zinc value in the leachate was treated with calcium oxide (10% to 70%) and the obtained solidificate was repeatedly tested. There were found significant variations of all measured parameters among the profiles of untreated waste. Dry matter content varied from 125 to 455 mgg(-1), organic matter varied from 94.3 to 293.9 mgg(-1), and pH value varied from 3.42 to 5.90 (mean 4.34). Iron content ranged from 38.4 to 191.4 mgg(-1) (mean 136 mgg(-1); RSD 0.25), while zinc ranged from 10.9 to 58.2 mgg(-1) (mean 33.4 mgg(-1); RSD 0.38). According to its DIN38414-S4 leachate composition, this material was not suitable for landfilling of inert waste since zinc and nickel mean values were 10 and 1.5 times higher, respectively, and maximum values 27 and 2.5 times higher, respectively, compared to the upper permissible limit. Maximum values of Cr(VI), Fe, Ni, Cu, and Zn in the DIN38414-S4 leachate were 0.183 mgL(-1), 34.085 mgL(-1), 1.052 mgL(-1), 0.829 mgL(-1) and 107.475 mgL(-1)L, respectively. Following the solidification/stabilization procedure with CaO (sample/CaO = 90/10), concentrations of Cr(VI), Fe, Cu and Zn were reduced 92, 44, 66 and 57 times, respectively, compared to the untreated sample. The addition of 50% of CaO into the sludge reduced zinc and nickel concentrations 79 and 45 times, respectively, in the DIN38414-S4 leachate of the solidified waste compared to the original sludge, thereby converting an hazardous waste into the inert material suitable for landfilling or reuse in the construction processes.

  9. Micro- and Nanostructural Characteristics of Particles Before and After an Exhaust Gas Recirculation System Scrubber

    DEFF Research Database (Denmark)

    Lieke, Kirsten Inga; Rosenørn, Thomas; Pedersen, Jannik

    2013-01-01

    microscopy (TEM) grids on two stages. Micro- and nanostructural characteristics of sin-gle particles were studied by TEM. Image analysis was carried out on overview and high-resolution images, revealing influence of the exhaust gas treatment (scrubber) on the particle morphology and mixing state. Soot......This work provides insight into the morphology and mixing state of submicron particles in diesel exhaust from a ship engine with an exhaust gas recirculation scrubber. Particles from this low-speed ship engine on test bed were collected using a microiner-tial impactor with transmission electron...

  10. Venturi scrubber with integrated separating column for aerosol precipitation and gas sorption

    International Nuclear Information System (INIS)

    Mayinger, F.; Lehner, M.

    1992-01-01

    A concept for a novel, compact process combination in the form of a Venturi scrubber with integrated separating column was developed. The design of the system is such as to meet the boundary conditions encountered in practice. Comprehensive tests were carried through with this high-performance Venturi scrubber in a wide range of parameters, using the superfine dusts titanium dioxide and zinc oxide as test aerosols. Separating efficiency was found to be excellent, especially for multi-stage spray injection of the scrubbing fluid. Multi-stage spray injection achieves a more favourable pulse exchange between gas and fluid so that pressure losses are relatively low even though loading may be high. A provisional experimental set-up is used for further optimization of separating efficiency and pressure loss. (orig.) [de

  11. Removal of particulate matter (PM10) by air scrubbers at livestock facilities: results of an on-farm monitoring program.

    NARCIS (Netherlands)

    Melse, R.W.; Hofschreuder, P.; Ogink, N.W.M.

    2012-01-01

    Air scrubbers are commonly used for removal of ammonia and odor from exhaust air of animal houses in the Netherlands. In addition, air scrubbers remove a part of the particulate matter. In this article, the results of an on-farm monitoring are presented in which PM10 removal was monitored at 24

  12. 75 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final...

    Science.gov (United States)

    2010-09-24

    ... landfill. The scrubber water blowdown will be managed in the waste water treatment plant (WWTP). The sludge... waste streams included in the petition were: the RKI fly ash, RKI bottom ash and RKI scrubber water... water blowdown waste resulting from the operations of the rotary kiln incinerator at its facility. B...

  13. Experimental and theoretical investigation of droplet dispersion in venturi scrubbers with axial liquid injection

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarian, N.; Talaei, A.; Karimikhosroabadi, M. [Islamic Azad University, Shahreza Branch, Shahreza (Iran); Sadeghi, F. [Chemical Engineering Department, University of Isfahan, Isfahan (Iran); Talaie, M.R.

    2009-05-15

    Droplet dispersion in a Venturi scrubber with axial liquid injection was investigated both experimentally and theoretically. The main objective of this study was to develop a mathematical model to predict droplet dispersion in a Venturi scrubber with axial liquid injection. The effects of the Peclet number and droplet size distribution on droplet dispersion were studied using the developed model. Sampling of the droplets was carried out, isokinetically, in 16 positions at the end of the throat section. The experimental data were used to find the parameters of the developed model, such as the Peclet number. From the results of this study, it was found that the Peclet number was not constant across the cross section of the scrubber channel. In order to achieve a better agreement between the results of the model and the experimental data, it was required to consider Peclet number variations across the Venturi channel. It was also revealed that the parameter representing the width of the Rosin-Rammler distribution of droplet size could not be considered constant and it was influenced significantly by the operating parameters such as liquid flow rate and gas velocity. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Size reduction of ammonia scrubbers for pig and poultry houses: Use of conditional bypass vent at high air loading rates

    NARCIS (Netherlands)

    Melse, R.W.; Wagenberg, van A.V.; Mosquera, J.

    2006-01-01

    In The Netherlands, both acid and biological air scrubbers are used for removal of ammonia from exhaust air at pig and poultry houses. Current regulations require that scrubbers are dimensioned for treating the maximum airflow rate that may occur, so on average these systems are overdimensioned and

  15. Stabilization treatment of soft subgrade soil by sewage sludge ash and cement.

    Science.gov (United States)

    Chen, Li; Lin, Deng-Fong

    2009-02-15

    In this study, incinerated sewage sludge ash (ISSA) is mixed with cement in a fixed ratio of 4:1 for use as a stabilizer to improve the strength of soft, cohesive, subgrade soil. Five different ratios (in wt%: 0%, 2%, 4%, 8%, and 16%) of ISSA/cement admixture are mixed with cohesive soil to make soil samples. In order to understand the influences of admixtures on the soil properties, tests of the pH value, Atterberg limits, compaction, California bearing ratio (CBR), unconfined compressive strength, and triaxial compression were performed on those samples. The study shows that the unconfined compressive strength of specimens with the ISSA/cement addition was improved to approximately 3-7 times better than that of the untreated soil; furthermore, the swelling behavior was also effectively reduced as much as 10-60% for those samples. In some samples, the ISSA/cement additive improved the CBR values by up to 30 times that of untreated soil. This suggests that ISSA/cement has many potential applications in the field of geotechnical engineering.

  16. Solidification process for sludge residue

    International Nuclear Information System (INIS)

    Pearce, K.L.

    1998-01-01

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria

  17. Removal of hydrocarbon from refinery tank bottom sludge employing microbial culture.

    Science.gov (United States)

    Saikia, Rashmi Rekha; Deka, Suresh

    2013-12-01

    Accumulation of oily sludge is becoming a serious environmental threat, and there has not been much work reported for the removal of hydrocarbon from refinery tank bottom sludge. Effort has been made in this study to investigate the removal of hydrocarbon from refinery sludge by isolated biosurfactant-producing Pseudomonas aeruginosa RS29 strain and explore the biosurfactant for its composition and stability. Laboratory investigation was carried out with this strain to observe its efficacy of removing hydrocarbon from refinery sludge employing whole bacterial culture and culture supernatant to various concentrations of sand-sludge mixture. Removal of hydrocarbon was recorded after 20 days. Analysis of the produced biosurfactant was carried out to get the idea about its stability and composition. The strain could remove up to 85 ± 3 and 55 ± 4.5 % of hydrocarbon from refinery sludge when whole bacterial culture and culture supernatant were used, respectively. Maximum surface tension reduction (26.3 mN m(-1)) was achieved with the strain in just 24 h of time. Emulsification index (E24) was recorded as 100 and 80 % with crude oil and n-hexadecane, respectively. The biosurfactant was confirmed as rhamnolipid containing C8 and C10 fatty acid components and having more mono-rhamnolipid congeners than the di-rhamnolipid ones. The biosurfactant was stable up to 121 °C, pH 2-10, and up to a salinity value of 2-10 % w/v. To our knowledge, this is the first report showing the potentiality of a native strain from the northeast region of India for the efficient removal of hydrocarbon from refinery sludge.

  18. Large-scale tests of aqueous scrubber systems for LMFBR vented containment

    International Nuclear Information System (INIS)

    McCormack, J.D.; Hilliard, R.K.; Postma, A.K.

    1980-01-01

    Six large-scale air cleaning tests performed in the Containment Systems Test Facility (CSTF) are described. The test conditions simulated those postulated for hypothetical accidents in an LMFBR involving containment venting to control hydrogen concentration and containment overpressure. Sodium aerosols were generated by continously spraying sodium into air and adding steam and/or carbon dioxide to create the desired Na 2 O 2 , Na 2 CO 3 or NaOH aerosol. Two air cleaning systems were tested: (a) spray quench chamber, educator venturi scrubber and high efficiency fibrous scrubber in series; and (b) the same except with the spray quench chamber eliminated. The gas flow rates ranged up to 0.8 m 3 /s (1700 acfm) at temperatures to 313 0 C (600 0 F). Quantities of aerosol removed from the gas stream ranged up to 700 kg per test. The systems performed very satisfactorily with overall aerosol mass removal efficiencies exceeding 99.9% in each test

  19. Development of the venturi scrubber model for the FILTRA-MVSS system

    International Nuclear Information System (INIS)

    Luangdilok, W.; Epstein, M.; Berger, W.E.; Augustsson, Thomas

    2009-01-01

    The thermal-hydraulic model of the venturi scrubber for the FILTRA-MVSS system was developed. The developed model was then incorporated into the MAAP4 code for performance analysis purposes. The results show that during severe accident conditions where the vent line control valve is used to regulate the flow to the vent line, the scrubbing performance of the venturi can peak at a value of about 5000 in the decontamination factor. For a fixed valve throttling there is a time window where scrubbing is effective. Outside this window the venturi scrubbing is ineffective due to either too high or too low pressure. To optimize the scrubbing performance, it would be necessary (1) to allow a substantial fraction of the high vent flow to bypass the venturi scrubber tubes so that a certain amount of vent flow is always scrubbed as well as (2) to adjust the flow control valve to its optimal position during the containment venting. (author)

  20. Numerical Simulations of Airflow and Droplet Dispersion in a Horizontal Ammonia Scrubber

    DEFF Research Database (Denmark)

    Liu, Li; Nielsen, Peter Vilhelm; Heiselberg, Per Kvols

    2015-01-01

    Ammonia released in pig production industries can lead to eutrophication of surface waters, soil acidification, fertilization of vegetation and changes in ecosystems, etc. Air scrubbers with spray of aerosolized sulphur solution were used to remove the ammonia mixed in the airflow ventilated out...... plate or a flow straightener were tested. Impact of nozzle velocity and droplet residue size were analysed. It is found that additional input on the pump pressure to increase the injection velocity may not cause any more benefit in our cases, and the ammonia removal efficiency of the horizontal scrubber...... from a piggery. In this study, numerical method were used to investigate airflow pattern, droplet dispersion, ammonia absorption at droplet surface and overall removal efficiency in an air cleaner. Droplet trajectories and elapsed time in air were adopted to characterize the absorption efficiency...

  1. Design procedure for sizing a submerged-bed scrubber for airborne particulate removal

    International Nuclear Information System (INIS)

    Ruecker, C.M.; Scott, P.A.

    1987-04-01

    Performance correlations to design and operate the submerged bed scrubber were developed for various applications. Structural design procedure outlined in this report focuses on off-gas scrubbing for HLW vitrification applications; however, the method is appropriate for other applications

  2. Comparing environmental impact of air scrubbers for ammonia abatement at pig houses

    NARCIS (Netherlands)

    Vries, De Jerke W.; Melse, Roland W.

    2017-01-01

    Intensive livestock production involves environmental emissions and impacts, including emission of greenhouse gases and ammonia leading to climate change and terrestrial acidification. Ammonia emission from animal housing systems can be reduced by introducing air scrubbers for cleaning the

  3. Performance of a Venturi scrubber in the removal of fine powder from a confined gas stream

    OpenAIRE

    Costa, Maria Angélica Martins; Ribeiro, Ana Paula Rodrigues Alves; Tognetti, Érica Rodrigues; Aguiar, Mônica Lopes; Gonçalves, José Antônio Silveira; Coury, José Renato

    2005-01-01

    Experimental results on the performance of a laboratory scale rectangular Venturi scrubber in the removal of fine mineral particles from a confined air stream are presented, and a new correlation is proposed and evaluated. The scrubber was operated with air velocities in the throat varying from 58 m/s to 75 m/s and liquid flow rates varying from 280 ml/min to 900 ml/min. Liquid was injected as a jet emerging from a 1.0 mm orifice at the throat. Results for dust collection grade efficiency var...

  4. Sludge storage lagoon biogas recovery and use

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D.; Norville, C. (Memphis and Shelby County Div. of Planning and Development, TN (United States))

    1991-07-01

    The City of Memphis has two wastewater treatment plants. The SWTP employs two large anaerobic digestion sludge lagoons as part of the overall sludge treatment system. Although these lagoons are effective in concentrating and digesting sludge, they can generate offensive odors. The SWTP uses aerobic digesters to partially stabilize the sludge and help reduce objectionable odors before it enters the lagoons. The anaerobic digestion of sludge in the lagoons results in the dispersion of a large quantity of biogas into the atmosphere. The City realized that if the lagoons could be covered, the odor problem could be resolved, and at the same, time, biogas could be recovered and utilized as a source of energy. In 1987, the City commissioned ADI International to conduct a feasibility study to evaluate alternative methods of covering the lagoons and recovering and utilizing the biogas. The study recommended that the project be developed in two phases: (1) recovery of the biogas and (2) utilization of the biogas. Phase 1 consists of covering the two lagoons with an insulated membrane to control odor and temperature and collect the biogas. Phase 1 was found to be economically feasible and offered a unique opportunity for the City to save substantial operating costs at the treatment facility. The Memphis biogas recovery project is the only application in the world where a membrane cover has been used on a municipal wastewater sludge lagoon. It is also the largest lagoon cover system in the world.

  5. Introducing a new formula based on an artificial neural network for prediction of droplet size in venturi scrubbers

    Directory of Open Access Journals (Sweden)

    A. Sharifi

    2012-09-01

    Full Text Available Droplet size is a fundamental parameter for Venturi scrubber performance. For many years, the correlations proposed by Nukiyama and Tanasawa (1938 and Boll et al. (1974 were used for calculating mean droplet size in Venturi scrubbers with limited operating parameters. This study proposes an alternative approach on the basis of artificial neural networks (ANNs to determine the mean droplet size in Venturi scrubbers, in a wide range of operating parameters. Experimental data were used to design the ANNs. A neural network was trained based on the liquid to gas ratio (L/G and throat gas velocity (Vgth, as input parameters, and the Sauter mean diameter (D32 as the desired parameter. The back-propagation learning algorithms were used in the network and the best approach was found. A new formula for the prediction of D32 using the weights of the network was then generated. This formula predicts mean droplet size in Venturi scrubbers more accurately than the correlations of Boll et al. (1974 and Nukiyama and Tanasawa (1938. The Average Absolute Percent Deviation (AAPD of our formula and the Boll et al. and Nukiyama and Tanasawa correlations for the full ranges of experimental data are 26.04%, 40.19% and 32.99%, respectively.

  6. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge

    NARCIS (Netherlands)

    Butkovskyi, A.; Ni, G.; Hernandez Leal, L.; Rijnaarts, H.H.M.; Zeeman, G.

    2016-01-01

    The excess sludge from Up-flow anaerobic sludge bed (UASB) reactor operated on source separated toilet wastewater is a potential source of nutrients and organic matter. It can be further stabilized and dried by composting and applied as a soil amendment. Presence of pathogens, heavy metals and

  7. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO{sub 4}), calcium sulfite (CaSO{sub 3}), calcium carbonate (CaCO{sub 3}), calcium hydroxide [Ca(OH){sub 2}], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO{sub 4}2H{sub 2}O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments.

  8. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO 4 ), calcium sulfite (CaSO 3 ), calcium carbonate (CaCO 3 ), calcium hydroxide [Ca(OH) 2 ], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO 4 2H 2 O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments

  9. Co-conditioning and dewatering of chemical sludge and waste activated sludge.

    Science.gov (United States)

    Chang, G R; Liu, J C; Lee, D J

    2001-03-01

    The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.

  10. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management.

    Science.gov (United States)

    Bratina, Božidar; Šorgo, Andrej; Kramberger, Janez; Ajdnik, Urban; Zemljič, Lidija Fras; Ekart, Janez; Šafarič, Riko

    2016-12-01

    After a ban on the depositing of untreated sludge in landfills, the sludge from municipal and industrial water-treatment plants can be regarded as a problem. Waste products of the water treatment process can be a problem or an opportunity - a source for obtaining raw materials. In the European Union, raw sludge and fats, oil and grease (FOG) from municipal and industrial wastewater treatment plants (WWTP) cannot be deposited in any natural or controlled environment. For this reason, it must be processed (stabilized, dried) to be used later as a fertilizer, building material, or alternative fuel source suitable for co-incineration in high temperature furnaces (power plants or concrete plants). The processes of drying sludge, where heat and electricity are used, are energy consuming and economically unattractive. Beside energy efficiency, the main problem of sludge drying is in its variability of quality as a raw material. In addition to this, sludge can be contaminated by a number of organic and inorganic pollutants and organisms. Due to the presence or absence of pollutants, different end products can be economically interesting. For example, if the dried sludge contains coliform bacteria, viruses, helminths eggs or smaller quantities of heavy metals, it cannot be used as a fertilizer but can still be used as a fuel. The objectives of the current article is to present a batch-processing pilot device of sludge or digestate that allows the following: (1) low pressure and low temperature energy effective drying of from 10 to 40% remaining water content, (2) disinfection of pathogen (micro)organisms, (3) heavy metal reduction, (4) production of products of predetermined quality (e.g. containing different quantities of water; it can be used as a fertilizer, or if the percentage of water in the dry sludge is decreased to 10%, then the dried sludge can be used as a fuel with a calorific value similar to coal). An important feature is also the utilization of low

  11. Removal of nitrogen by Algal Turf Scrubber Technology in recirculating aquaculture system

    NARCIS (Netherlands)

    Valeta, J.; Verdegem, M.C.J.

    2015-01-01

    Ongoing research in recirculation aquaculture focuses on evaluating and improving the purification potential of different types of filters. Algal Turf Scrubber (ATS) are special as they combine sedimentation and biofiltration. An ATS was subjected to high nutrient loads of catfish effluent to

  12. Development of an Automated Diffusion Scrubber-Conductometry System for Measuring Atmospheric Ammonia

    International Nuclear Information System (INIS)

    Lee, Bok Young; Lee, Chong Keun; Lee, Dong Soo

    2011-01-01

    A semi-continuous and automated method for quantifying atmospheric ammonia at the parts per billion level has been developed. The instrument consists of a high efficiency diffusion scrubber, an electrolytic on-line anion exchange device, and a conductivity detector. Water soluble gases in sampled air diffuse through the porous membrane and are absorbed in an absorbing solution. Interferences are eliminated by using an anion exchange devises. The electrical conductivity of the solution is measured without chromatographic separation. The collection efficiency was over 99%. Over the 0-200 ppbv concentration range, the calibration was linear with r"2 = 0.99. The lower limit of detection was 0.09 ppbv. A parallel analysis of Seoul air over several days using this method and a diffusion scrubber coupled to an ion chromatography system showed acceptable agreement, r"2 = 0.940 (n = 686). This method can be applied for ambient air monitoring of ammonia

  13. Gas pollutants removal in a single- and two-stage ejector-venturi scrubber.

    Science.gov (United States)

    Gamisans, Xavier; Sarrà, Montserrrat; Lafuente, F Javier

    2002-03-29

    The absorption of SO(2) and NH(3) from the flue gas into NaOH and H(2)SO(4) solutions, respectively has been studied using an industrial scale ejector-venturi scrubber. A statistical methodology is presented to characterise the performance of the scrubber by varying several factors such as gas pollutant concentration, air flowrate and absorbing solution flowrate. Some types of venturi tube constructions were assessed, including the use of a two-stage venturi tube. The results showed a strong influence of the liquid scrubbing flowrate on pollutant removal efficiency. The initial pollutant concentration and the gas flowrate had a slight influence. The use of a two-stage venturi tube considerably improved the absorption efficiency, although it increased energy consumption. The results of this study will be applicable to the optimal design of venturi-based absorbers for gaseous pollution control or chemical reactors.

  14. Environmental consequences of the placement of radium-barium sludge in tailings areas

    International Nuclear Information System (INIS)

    Huck, P.M.; Brown, J.R.; Multimaki, G.; Murphy, K.L.

    1982-01-01

    A preliminary evaluation was made of the implications of placing radium-barium sludge in tailings areas. The study was restricted to a consideration of possible increases in the quantities of radionuclides escaping to the environment through either groundwater or surface water, considering the types of tailings treated and the effluent treatment systems currently operating in Canada. It was concluded that the placement of radium/barium sludge in tailings areas should not adversely affect the long-term stability of the radionuclides in the tailings or sludge, based on geochemical inorganic reactions

  15. Effects of ultrasonic disintegration of excess sewage sludge.

    Science.gov (United States)

    Zielewicz, Ewa

    2016-10-01

    Breaking down sludge floc (sonodyspergation effect) and destruction of the cell membranes of microorganisms forming floc is a direct effect of ultrasonic disintegration of sludge excess. This results in release of organic material by liquid sludge (the sonolysis effect). Desired technological effects of the disintegration are: to shorten the hydrolytic phase of fermentation, to increase the production of biogas (source of renewable energy) and an increased mineralization (stability) of fermented sludge. The presented study demonstrates research covering thickened excess sludge of various physicochemical properties, collected from nine municipal sewage treatment plants. The sludge was subjected to ultrasonic disintegration using three differently constructed disintegrators and different proportions of sonification area. Direct effects of disintegration were monitored and recorded using selected indicators describing changes in the properties of sludge and increase of substance dispersed and dissolved in the supernatant liquid to be filtered. Studies have demonstrated that those (direct) effects of ultrasonic disintegration depend on the physicochemical properties of the sludge (foremost the concentration of dry solids) that determine their variable susceptibility to the disintegration methods. The direct effects also depend on optimal process conditions (which consist of the construction of the ultrasonic disintegrator), the geometric proportions of the sonication area and the operating parameters of disintegration (which could be appropriately matched to the characteristics of sludge). The most preferable results were obtained for ultrasonic disintegration of sludge with a dry matter concentration C 0 < 4.2 %. The highest effect of sonolysis-an almost 30-fold increase in the COD dissolved in the supernatant-was obtained for the sludge of lowest dry matter (C 0 = 2.0 %), which was sonicated in a reactor with a short transducer of the largest radiating surface

  16. Minimization of Excess Sludge in Activated Sludge Systems

    Directory of Open Access Journals (Sweden)

    Sayed Ali Reza Momeni

    2006-01-01

    Full Text Available The disposal of excess sludge from wastewater treatment plant represents a rising challenge in activated sludge processes. Hence, the minimization of excess sludge production was investigated by increasing the dissolved oxygen in aeration basin. Units of the pilot include: Primary sedimentation tank, aeration basin, secondary sedimentation tank, and return sludge tank. Volume of aeration basin is 360 l and influent flow rate is 90 L/h. Influent of pilot is taken from effluent of grit chamber of Isfahan's North Wastewater treatment plant. The experiments were done on different parts of pilot during the 5 month of study. Results show that increase of dissolved oxygen in aeration tank affect on decrease of excess sludge. Increase of dissolved oxygen from 0.5 to 4.5 mg/L resulted in 25% decrease of excess sludge. Variation of dissolved oxygen affect on settleability of sludge too. By increase of dissolved oxygen, SVI decreased and then increased. Value of 1-3 mg/L was the adequate range of dissolved oxygen by settleability of sludge and optimum range was 2-2.5 mg/L. It could be concluded by increasing of dissolved oxygen up to of 3 mg/L, sludge settleability significant decreased.

  17. Performance assessment of containment filtered venting system with Venturi scrubber

    International Nuclear Information System (INIS)

    Adinarayna, K.N.V.; Ali, Seik Mansoor; Balasubramaniyan, V.

    2015-01-01

    Venting through appropriate filtration systems is now being considered as a severe accident management strategy for maintaining the containment integrity and also as a means to reduce the radiological consequences to the public and environment. The option of filtered containment venting appears to have assumed significance in the post- Fukushima accident backdrop. Back-fitting of a suitable Venturi scrubber based CFVS for the Indian BWRs (TAPS- 1 and 2) at Tarapur is now being contemplated. Several key issues need to be carefully addressed for ensuring the desired functional capability of such a system. At the outset, this paper highlights a few thermal hydraulic issues that are of interest from regulatory perspective. This is followed by a detailed description of the mathematical models developed for assessing the depressurization characteristics of CFVS, energy absorption capacity of the Scrubber Tank (ST) water inventory, iodine removal and aerosol retention capability etc. Finally, application of these models to investigate the response of CFVS under twin unit SBO conditions in TAPS-1 and 2 is presented. The studies presented here give insight into the key variables affecting the CFVS performance and would be useful to both the system designer as well as the regulator. (author)

  18. Method of Dehydration of Sewage Sludge Using Elements of GEOTUBE Technology at Bortnichy’s Aeration Station

    Directory of Open Access Journals (Sweden)

    Kashkovsky, V.I.

    2014-01-01

    Full Text Available The work is dedicated to major environmental and social problem — dehydration of sewage sludge with the help of GeoTube technology elements. The process of dehydration dynamics for different sludge origin has developed. The pilot installation has worked out — filter module placed in the tank of Bortnichy’s sewage treatment plant, where the aerobically-stabilized sludge processed with flocculant Praestol 859 BS and water from filtration fields are delivered to. Installation can be used to reduce the workload on sludge fields, for purification of undersludge returning water and de hydration of accumulated sludge.

  19. Eco-technological process of glass-ceramic production from galvanic sludge and aluminium slag

    Directory of Open Access Journals (Sweden)

    Stanisavljević M.

    2010-01-01

    Full Text Available Methods of purification of waste water which are most commonly used in the Republic of Serbia belong to the type of conventional systems for purification such as chemical oxidation and reduction, neutralization, sedimentation, coagulation, and flocculation. Consequently, these methods generate waste sludge which, unless adequately stabilized, represents hazardous matter. The aluminium slag generated by melting or diecasting aluminium and its alloys is also hazardous matter. In this sense, this paper establishes ecological risk of galvanic waste sludge and aluminium slag and then describes the process of stabilization of these waste materials by means of transformation into a glass-ceramic structure through sintering. The obtained product was analyzed with Fourier Transform Infrared Spectroscopy (FT-IR and X-ray diffraction (XRD. The object of the paper is the eco-technological process of producing glass-ceramics from galvanic sludge and aluminium slag. The aim of the paper is to incorporate toxic metals from galvanic sludge and aluminium slag into the glass-ceramic product, in the form of solid solutions.

  20. The sanitary effect of gamma irradiation on sewage sludge

    International Nuclear Information System (INIS)

    Hess, E.; Breer, C.

    1975-01-01

    Sludge contains Salmonellae in more than 90% of samples. The maximum number reaches 10 7 per liter. Neither aerobic stabilization nor anaerobic digestion significantly reduces the contamination with Salmonellae. Moreover, Salmonellae in sewage sludge spread on grass may survive up to 72 weeks. Fertilizing with unsanitized sludge may therefore lead to transmission from plant to animal. Sanitizing of sludge to be used as fertilizer is therefore urgent. The sanitary effect of pasteurisation and of gamma irradiation on sewage sludge was investigated. For this the number of Enterobacteriaceae before and after irradiation in 259 specimens of sludge from 44 different sewage disposal plants was examined. The doses applied were 100, 200, 300, 400 and sometimes 500 krad. A linear reduction of Enterobacteriaceae was achieved with increasing radiation doses. A dose of 300 krad resulted in a death rate of 10 4 - 10 8 , occasionally 10 9 Enterobacteriaceae. Less than 10 Enterobacteriaceae per gramm were found in 97.2% of the samples irradiated with 300 krad. The effect found in the above mentioned model experiments could be perfectly confirmed under practical conditions in the irradiation plant of Geiselbullach. The sanitary effect of gamma irradiation with 300-350 krad, determined by Enterobacteriaceae reduction, was equivalent to the effect of heat treatment by pasteurisation. (orig./MG) [de

  1. Development of a submerged gravel scrubber for containment venting applications: summary

    International Nuclear Information System (INIS)

    Hilliard, R.K.; McCormack, J.D.; Postma, A.K.

    1981-01-01

    Although hypothetical core disruptive accidents (HCDAs) are not design basis accidents for breeder reactor plants, extensive assessments of HCDA consequences have been made and design features for providing margins beyond the design base have been considered for future fast reactor plants. One feature proposed for increasing the safety margin is a containment vent and/or purge system which would mitigate the challenge to containment integrity resulting from excessive temperature and pressure or excessive hydrogen. A cleanup system would be required for removal of vented aerosols and condensible vapors to mitigate radiological consequences to the environment. A study is in progress at HEDL to select and develop a suitable air cleaning system for use in potential breeder reactor containment venting applications. A concept was conceived whereby the passiveness and high loading capacity of a water pool scrubber was combined with the high efficiency of a sand and gravel bed. It was termed a Submerged Gravel Scrubber (SGS). A schematic drawing of the concept is shown. The SGS consists of a bed of gravel (or other packing) submerged in a pool of water

  2. Handling 78,000 drums of mixed-waste sludge

    International Nuclear Information System (INIS)

    Berry, J.B.; Harrington, E.S.; Mattus, A.J.

    1991-01-01

    The Oak Ridge Gaseous Diffusion Plant (now known as the Oak Ridge K-25 Site) closed two mixed-waste surface impoundments by removing the sludge and contaminated pond-bottom clay and attempting to process it into durable, nonleachable, concrete monoliths. Interim, controlled, above-ground storage included delisting the stabilized sludge from hazardous to nonhazardous and disposing of the delisted monoliths as Class 1 radioactive waste. Because of schedule constraints and process design and control deficiencies, ∼46,000 drums of material in various stages of solidification and ∼32,000 barrels of unprocessed sludge are stored. The abandoned treatment facility still contains ∼16,000 gal of raw sludge. Such storage of mixed waste does not comply with the Resource Conservation and Recovery Act (RCRA) guidelines. This paper describes actions that are under way to bring the storage of ∼78,000 drums of mixed waste into compliance with RCRA. Remediation of this problem by treatment to meet regulatory requirements is the focus of the discussion. 3 refs., 2 figs., 4 tabs

  3. Development of an Automated Diffusion Scrubber-Conductometry System for Measuring Atmospheric Ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bok Young; Lee, Chong Keun; Lee, Dong Soo [Yonsei University, Seoul (Korea, Republic of)

    2011-06-15

    A semi-continuous and automated method for quantifying atmospheric ammonia at the parts per billion level has been developed. The instrument consists of a high efficiency diffusion scrubber, an electrolytic on-line anion exchange device, and a conductivity detector. Water soluble gases in sampled air diffuse through the porous membrane and are absorbed in an absorbing solution. Interferences are eliminated by using an anion exchange devises. The electrical conductivity of the solution is measured without chromatographic separation. The collection efficiency was over 99%. Over the 0-200 ppbv concentration range, the calibration was linear with r{sup 2} = 0.99. The lower limit of detection was 0.09 ppbv. A parallel analysis of Seoul air over several days using this method and a diffusion scrubber coupled to an ion chromatography system showed acceptable agreement, r{sup 2} = 0.940 (n = 686). This method can be applied for ambient air monitoring of ammonia.

  4. Ultrasonic reduction of excess sludge from the activated sludge system

    International Nuclear Information System (INIS)

    Zhang Guangming; Zhang Panyue; Yang Jinmei; Chen Yanming

    2007-01-01

    Sludge treatment has long become the most challenging problem in wastewater treatment plants. Previous studies showed that ozone or chlorine effectively liquefies sludge into substrates for bio-degradation in the aeration tank, and thus reduces the excess sludge. This paper employs ultrasound to reduce the excess sludge from the sequential batch reactor (SBR) system. Partial sludge was disintegrated into dissolved substrates by ultrasound in an external sono-tank and was then returned to the SBR for bio-degradation. The results showed that ultrasound (25 kHz) effectively liquefied the sludge. The most effective conditions for sludge reduction were as following: sludge sonication ratio of 3/14, ultrasound intensity of 120 kW/kgDS, and sonication duration of 15 min. The amount of excess sludge was reduced by 91.1% to 17.8 mg/(L d); the organic content and settleability of sludge in the SBR were not impacted. The chemical oxygen demand (COD) removal efficiency was 81.1%, the total nitrogen (TN) removal efficiency was 17-66%, and high phosphorus concentration in the effluent was observed

  5. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, V.G.; Goncalves, J.A.S. [Department of Chemical Engineering, Federal University of Sao Carlos, Via Washington Luiz, Km. 235, 13565-905 Sao Carlos, SP (Brazil); Coury, J.R. [Department of Chemical Engineering, Federal University of Sao Carlos, Via Washington Luiz, Km. 235, 13565-905 Sao Carlos, SP (Brazil)], E-mail: jcoury@ufscar.br

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.

  6. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber

    International Nuclear Information System (INIS)

    Guerra, V.G.; Goncalves, J.A.S.; Coury, J.R.

    2009-01-01

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets

  7. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber.

    Science.gov (United States)

    Guerra, V G; Gonçalves, J A S; Coury, J R

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.

  8. Innovative reuse of drinking water sludge in geo-environmental applications.

    Science.gov (United States)

    Caniani, D; Masi, S; Mancini, I M; Trulli, E

    2013-06-01

    In recent years, the replacement of natural raw materials with new alternative materials, which acquire an economic, energetic and environmental value, has gained increasing importance. The considerable consumption of water has favoured the increase in the number of drinking water treatment plants and, consequently, the production of drinking water sludge. This paper proposes a protocol of analyses capable of evaluating chemical characteristics of drinking water sludge from surface water treatment plants. Thereby we are able to assess their possible beneficial use for geo-environmental applications, such as the construction of barrier layers for landfill and for the formation of "bio-soils", when mixed with the stabilized organic fraction of municipal solid waste. This paper reports the results of a study aimed at evaluating the quality and environmental aspects of reconstructed soils ("bio-soil"), which are used in much greater quantities than the usual standard, for "massive" applications in environmental actions such as the final cover of landfills. The granulometric, chemical and physical analyses of the sludge and the leaching test on the stabilized organic fraction showed the suitability of the proposed materials for reuse. The study proved that the reuse of drinking water sludge for the construction of barrier layers and the formation of "bio-soils" reduces the consumption of natural materials, the demand for landfill volumes, and offers numerous technological advantages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: a review.

    Science.gov (United States)

    Rakotonimaro, Tsiverihasina V; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Zagury, Gérald J

    2017-01-01

    The treatment of mine drainage-impacted waters generates considerable amounts of sludge, which raises several concerns, such as storage and disposal, stability, and potential social and environmental impacts. To alleviate the storage and management costs, as well as to give the mine sludge a second life, recovery and reuse have recently become interesting options. In this review, different recovery and reuse options of sludge originating from active and passive treatment of mine drainage are identified and thoroughly discussed, based on available laboratory and field studies. The most valuable products presently recovered from the mine sludge are the iron oxy-hydroxides (ochre). Other by-products include metals, elemental sulfur, and calcium carbonate. Mine sludge reuse includes the removal of contaminants, such as As, P, dye, and rare earth elements. Mine sludge can also be reused as stabilizer for contaminated soil, as fertilizer in agriculture/horticulture, as substitute material in construction, as cover over tailings for acid mine drainage prevention and control, as material to sequester carbon dioxide, and in cement and pigment industries. The review also stresses out some of the current challenges and research needs. Finally, in order to move forward, studies are needed to better estimate the contribution of sludge recovery/reuse to the overall costs of mine water treatment.

  10. The effect of sludge recirculation rate on a UASB-digester treating domestic sewage at 15 °C.

    Science.gov (United States)

    Zhang, Lei; Hendrickx, Tim L G; Kampman, Christel; Zeeman, Grietje; Temmink, Hardy; Li, Weiguang; Buisman, Cees J N

    2012-01-01

    The anaerobic treatment of low strength domestic sewage at low temperature is an attractive and important topic at present. The upflow anaerobic sludge bed (UASB)-digester system is one of the anaerobic systems to challenge low temperature and concentrations. The effect of sludge recirculation rate on a UASB-digester system treating domestic sewage at 15 °C was studied in this research. A sludge recirculation rate of 0.9, 2.6 and 12.5% of the influent flow rate was investigated. The results showed that the total chemical oxygen demand (COD) removal efficiency rose with increasing sludge recirculation rate. A sludge recirculation rate of 0.9% of the influent flow rate led to organic solids accumulation in the UASB reactor. After the sludge recirculation rate increased from 0.9 to 2.6%, the stability of the UASB sludge was substantially improved from 0.37 to 0.15 g CH₄-COD/g COD, and the bio-gas production in the digester went up from 2.9 to 7.4 L/d. The stability of the UASB sludge and bio-gas production in the digester were not significantly further improved by increasing sludge recirculation rate to 12.5% of the influent flow rate, but the biogas production in the UASB increased from 0.37 to 1.2 L/d. It is recommended to apply a maximum sludge recirculation rate of 2-2.5% of the influent flow rate in a UASB-digester system, as this still allows energy self-sufficiency of the system.

  11. Algal Turf Scrubbers: Cleaning Water While Capturing Solar Energy

    International Nuclear Information System (INIS)

    Adey, W.

    2009-01-01

    Algal Turfs and Algal Turf Scrubbers (ATS) Algal Turfs are bio diverse communities of unicellular to filamentous algae of all major algal phyla. Algal Turf Scrubbers (ATS) are bioengineered ecosystems dominated by algal turfs. They clean water to very high quality, and remove CO 2 from the atmosphere by capturing solar energy at rates 10 times that of agriculture and 50 times that of forestry. ATS was invented at the Smithsonian Institution, by scientist, Walter Adey in the 1980s as a tool for controlling water quality in highly diverse model ecosystems. The technology received extensive R and D for aqua cultural, municipal, and industrial water cleaning by Dr. Adey, using venture capital, through the 1990s. Later, Hydro Mentia, Inc., of Ocala, Florida, engineered ATS to landscape scale of 20-50 Mgpd (it is important to note that this is a modular system, capable of expanding to any size.) A 2005 independent study of ATS, by the South Florida Water Management District and the IFAS Institute of the University of Florida, certified ATS as 5-100 times more cost efficient at removing nutrients from Everglades canal waters than the next competitor, the STA, a managed marsh system. ATS and STA were the final contestants in a 15-year study of nine technologies, and ATS was the only technology that created a use able byproduct.

  12. Sludge pipe flow pressure drop prediction using composite power ...

    African Journals Online (AJOL)

    2011-09-30

    Sep 30, 2011 ... 3Department of Chemical Engineering, IIT Kanpur, India. Abstract. When predicting pressure gradients for the flow of sludges in pipes, the rheology of the fluid ..... implicit in the stability analysis of Ryan and Johnson (1959).

  13. Heating value characteristics of sewage sludge: a comparative study of different sludge types

    International Nuclear Information System (INIS)

    Kim, Young-JU.; Kang, Hae-Ok.; Qureshi, T.I.

    2005-01-01

    Heating value characteristics of three different types of sludge, i.e. domestic sewage sludge, industrial sludge, and industrial + domestic sewage sludge were investigated. Industrial + domestic sewage sludge (thickened) showed the highest heating value (5040 kcal/kg) than other sludge types. This may be due to increased amount of organic matter presents in thickened sludge than de-watered sludge. A gradual increase in organic matter of the sludge was observed with the increase of the moisture contents. Heating value of the sludge having 60% moisture contents was found in the range between 924-1656 kcal/kg and this amount was higher than the minimum heating value (800 kcal/kg) required sustaining auto thermal combustion in sludge incineration process. Energy consumption requirement for pre drying sludge operations revealed that industrial sludge (de-watered) required the minimum cost (13 $/ton of sludge) to make it a sludge of fuel grade (60% W), while mixed sludge cost the highest amount for its pre-drying operations. (author)

  14. Earthworm eco-physiological characteristics and quantification of earthworm feeding in vermifiltration system for sewage sludge stabilization using stable isotopic natural abundance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaowei; Xing, Meiyan, E-mail: lixiaowei419@163.com; Yang, Jian; Dai, Xiaohu

    2014-07-15

    Highlights: • Earthworm growth biomass and activity decreased with the VF depth. • Earthworm gut microbial communities were dominated by Gammaproteobacteria. • δ{sup 15}N and δ{sup 13}C in earthworms decreased with time, and increased with the VF depth. • Effect of earthworm feeding in enhanced VSS reduction was analyzed quantitatively. • Earthworm feeding had low contribution to the enhanced VSS reduction. - Abstract: Previous studies showed that the presence of earthworm improves treatment performance of vermifilter (VF) for sewage sludge stabilization, but earthworm eco-physiological characteristics and effects in VF were not fully investigated. In this study, earthworm population, enzymatic activity, gut microbial community and stable isotopic abundance were investigated in the VF. Results showed that biomass, average weight, number and alkaline phosphatase activity of the earthworms tended to decrease, while protein content and activities of peroxidase and catalase had an increasing tendency as the VF depth. Earthworm gut microbial communities were dominated by Gammaproteobacteria, and the percentages arrived to 76–92% of the microbial species detected. {sup 15}N and {sup 13}C natural abundance of the earthworms decreased with operation time, and increased as the VF depth. Quantitative analysis using δ{sup 15}N showed that earthworm feeding and earthworm–microorganism interaction were responsible for approximately 21% and 79%, respectively, of the enhanced volatile suspended solid reduction due to the presence of earthworm. The finding provides a quantitative insight into how earthworms influence on sewage sludge stabilization in vermifiltration system.

  15. The influence of aerobic sludge retention time on anaerobic co ...

    African Journals Online (AJOL)

    GREGO

    2007-04-02

    Apr 2, 2007 ... INTRODUCTION. In developing countries such as China, secondary waste- ..... co-digestion product of azo dye of TDP wastewater. (Razo-Flores et al., .... sludge disintegration for improving anaerobic stabilization. Water. Res.

  16. Heat recovery using a venturi scrubber

    International Nuclear Information System (INIS)

    Gilbert, W.J.

    1982-01-01

    When an air pollution problem involves scrubbing at relatively elevated temperatures, the possibility exists for practical use of the heat contained with the gas. A venturi type scrubber has been shown to successfully handle such hot exhaust gases for removal of both gases and particulates, as well as heat recovery. The use of a relatively simple overall system, using the recirculated liquid loop for space heating, can be made practical and efficient. Whenever possible, this will allow the scrubbing equipment, normally considered a nuisance, to actually produce a pay-back for the customer. Careful consideration must be given to all aspects of the system's installation, operation, and maintenance. The feasibility of such a system depends on conditions at the particular location and the relative need for a low temperature heat source

  17. Performance of a Venturi scrubber in the removal of fine powder from a confined gas stream

    Directory of Open Access Journals (Sweden)

    Maria Angélica Martins Costa

    2005-06-01

    Full Text Available Experimental results on the performance of a laboratory scale rectangular Venturi scrubber in the removal of fine mineral particles from a confined air stream are presented, and a new correlation is proposed and evaluated. The scrubber was operated with air velocities in the throat varying from 58 m/s to 75 m/s and liquid flow rates varying from 280 ml/min to 900 ml/min. Liquid was injected as a jet emerging from a 1.0 mm orifice at the throat. Results for dust collection grade efficiency varied from 87% to 98% for particles from 0.1 µm to 2.0 µm.

  18. Development of water scrubbers to reduce fine dust emission from poultry houses

    NARCIS (Netherlands)

    Ogink, N.W.M.; Aarnink, A.J.A.; Harn, van J.; Melse, R.W.; Cambra-Lopez, M.

    2010-01-01

    Poultry housings with litter are a major contributor to fine dust emissions (PM10/PM2.5) in the Netherlands. Poultry producers are in need of dust mitigation options that are cost effective. Such an option could be provided by adequately designed water scrubbers. Catchment of dust particles by water

  19. Dust captures effectiveness of scrubber systems on mechanical miners operating in larger roadways.

    CSIR Research Space (South Africa)

    Hole, BJ

    1998-03-01

    Full Text Available The project was directed towards bord and pillar working by mechanised miners operating in larger section roadways, where the problem of scrubber capture tends to be greatest owing to the limited size of the zone of influence around exhaust...

  20. Strategies for enhancing the co-removal of mercury in FGD-scrubbers of power plants. Operating parameters and additives

    Energy Technology Data Exchange (ETDEWEB)

    Schuetze, Jan; Koeser, Heinz [Magdeburg Univ. (Germany). Chair of Environmental Technology; Halle-Wittenberg Univ., Halle (Germany). Centre of Engineering Services

    2012-07-01

    Co-combustion of waste fuels, coals with variable mercury content and lower regulatory emission limits are drivers for the optimisation of the co-removal of mercury in flue gas desulphurisation (FGD) scrubbers. The paper explains some new features of the system performance of FGD scrubbers for the co-removal of mercury in coal-fired power plants. Results on their efficiency under standardised laboratory conditions are presented. The effect of these measures on the quality of the FGD by-product gypsum will be covered as well. (orig.)

  1. Use of a water treatment sludge in a sewage sludge dewatering process

    Science.gov (United States)

    Górka, Justyna; Cimochowicz-Rybicka, Małgorzata; Kryłów, Małgorzata

    2018-02-01

    The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.

  2. [Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].

    Science.gov (United States)

    Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang

    2014-11-01

    In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules.

  3. Delisting petition for 300-M saltstone (treated F006 sludge) from the 300-M liquid effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-04

    This petition seeks exclusion for stabilized and solidified sludge material generated by treatment of wastewater from the 300-M aluminum forming and metal finishing processes. The waste contains both hazardous and radioactive components and is classified as a mixed waste. The objective of this petition is to demonstrate that the stabilized sludge material (saltstone), when properly disposed, will not exceed the health-based standards for the hazardous constituents. This petition contains sampling and analytical data which justify the request for exclusion. The results show that when the data are applied to the EPA Vertical and Horizontal Spread (VHS) Model, health-based standards for all hazardous waste constituents will not be exceeded during worst case operating and environmental conditions. Disposal of the stabilized sludge material in concrete vaults will meet the requirements pertaining to Waste Management Activities for Groundwater Protection at the Savannah River Site in Aiken, S.C. Documents set forth performance objectives and disposal options for low-level radioactive waste disposal. Concrete vaults specified for disposal of 300-M saltstone (treated F006 sludge) assure that these performance objectives will be met.

  4. Presence of helminth eggs in sewage sludge from waste water plants; Presencia de huevos de helmintos en lodos procedentes de la depuracion de aguas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Muro, J. L.; Garcia Orenes, F.; Nieto Asensio, N.; Bonora, I. B.; Morenilla Martinez, J. J.

    2003-07-01

    Land application of sewage sludge is a usual practice in wide areas of the Comunidad Valencia, due the low organic contents and nutrients of the soils, and the sewage sludge is a suitable material to use os organic amendment of soils. However the use of sewage sludge involves a very detailed characterization of sewage, to avoid sanitary hazards as the presence of helminth eggs and its high resistant to most of the treatment used to stabilize sewage sludge. The aim of this work was determine the parasitic contamination of helminths found in sewage sludge, stabilized by anaerobic digestion, from two waste water plants of Alicante (Alcoy y Benidorm) destined to agricultural land. Also it was studies the evolution of helminth eggs content of a sewage sludge subjected to composting process. (Author) 12 refs.

  5. Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined

  6. Aerobic storage under dynamic conditions in activated sludge processes

    DEFF Research Database (Denmark)

    Majone, M.; Dircks, K.

    1999-01-01

    In activated sludge processes, several plant configurations (like plug-flow configuration of the aeration tanks, systems with selectors, contact-stabilization processes or SBR processes) impose a concentration gradient of the carbon sources to the biomass. As a consequence, the biomass grows unde...

  7. Removal of iodomethane from air using a plot-scale corona discharge scrubber

    International Nuclear Information System (INIS)

    Dickson, L.W.; Toft-Hall, A.; Torgerson, D.F.

    1985-12-01

    This report presents the results of a study of the removal of iodomethane from air using a pilot-scale corona discharge scrubber. The removal was measured in the following parameter ranges: bulk air flow, 30 to 350 m 3 /h; initial CH 3 I concentration, 6 to 230 μmol/m 3 ; and discharge current, 0 to 75 mA DC (negative polarity). Approximately five to ten moles of iodomethane are removed per mole of electrons added to the air stream at a discharge voltage of ∼ 10 kV. This removal efficiency suggests that both ion-molecule and radical-molecule reactions may be important in the removal of iodomethane from air in a corona discharge. The results of this pilot-scale demonstration indicate that a corona discharge scrubber would be suitable for removing iodine species from air as part of the emergency filtered-air discharge system of a nuclear reactor. The application of this technology to the control of nitrogen oxide, sulfur dioxide and hydrogen sulfide emissions is being investigated. 15 refs

  8. Sanitary effect of gamma irradiation on sewage sludge

    International Nuclear Information System (INIS)

    Hess, E.; Breer, C.

    1975-01-01

    Our investigations prove that sludge contains Salmonellae in more than 90% of samples. The maximum number of organisms was 10 7 per litre. One of our most important findings was the fact that neither aerobic stabilization nor anaerobic digestion significantly reduces contamination with Salmonellae. Moreover we found that Salmonellae in sewage sludge spread on grass may survive up to 72 weeks. Fertilizing with unsanitized sludge may therefore lead to transmission from plant to animal. The increasing number of Salmonella carriers among our herds of cattle and their striking accumulation during the grazing period demonstrate that such transmission represents a growing danger. Sanitation of sludge to be used as fertilizer is therefore urgent. In our investigation of the sanitary effect of pasteurization (70degC for 30 min) and of gamma irradiation on sewage sludge, we examined the number of Enterobacteriaceae before and after irradiation in 259 specimens of sludge from 44 different sewage disposal plants. The doses applied were 100, 200, 300, 400 and also 500 krad. We found a linear reduction of Enterobacteriaceae with increasing doses; a dose of 300 krad resulted in a death rate of 10 4 - 10 8 , occasionally 10 9 Enterobacteriaceae; and there were less than 10 Enterobacteriaceae per gram in 97.2% of the samples irradiated with 300 krad. The results of these model experiments could be completely confirmed under practical conditions in the irradiation plant of Geiselbullach. The sanitary effect of gamma irradiation with 300-350 krad, determined by the reduction in Enterobacteriaceae, was equivalent to the effect of heat treatment by pasteurization. (author)

  9. Sewage sludge pretreatment and disposal. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The bibliography contains citations concerning techniques and equipment used in the pretreatment and disposal of sewage sludges. Citations discuss sludge digestion, dewatering, disinfection, stabilization, chlorination, and desulfurization. Topics include pretreatment programs, land disposal, incineration, and waste utilization. Environmental monitoring and protection, federal regulations, and legal aspects are examined. (Contains 50-250 citations and includes a subject term index and title list.)

  10. Feasibility of bioleaching combined with Fenton oxidation to improve sewage sludge dewaterability.

    Science.gov (United States)

    Liu, Changgeng; Zhang, Panyue; Zeng, Chenghua; Zeng, Guangming; Xu, Guoyin; Huang, Yi

    2015-02-01

    A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration (SRF) and moisture of sludge cake (MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge pH dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation. Meanwhile, the SRF declined from 6.45×10(10) to 2.07×10(10) s2/g, and MSC decreased from 91.42% to 87.66%. The bioleached sludge was further conditioned with Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2+ were 0.12 and 0.036 mol/L, respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF, volatile solids reduction, and MSC were 3.43×10(8) s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides, the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioning mechanisms by bioleaching-Fenton oxidation might mainly include the flocculation effects and the releases of extracellular polymeric substances-bound water and intercellular water. Copyright © 2014. Published by Elsevier B.V.

  11. Northeast Regional environmental impact study: Waste disposal technical report

    Science.gov (United States)

    Saguinsin, J. L. S.

    1981-04-01

    The potential for cumulative and interactive environmental impacts associated with the conversion of multiple generating stations in the Northeast is assessed. The estimated quantities and composition of wastes resulting from coal conversion, including ash and SO2 scrubber sludge, are presented. Regulations governing the use of ash and scrubber sludge are identified. Currently available waste disposal schemes are described. The location, capacity, and projected life of present and potential disposal sites in the region are identified. Waste disposal problems, both hazardous and nonhazardous, are evaluated. Environmental regulations within the region as they pertain to coal conversion and as they affect the choice of conversion alternatives are discussed. A regional waste management strategy for solid waste disposal is developed.

  12. K Basin sludge polychlorinated biphenyl removal technology assessment

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    1998-01-01

    The two Hanford K Basins are water-filled concrete pools that contain over 2,100 metric tons of N Reactor fuel elements stored in aluminum or stainless steel canisters. During the time the fuel has been stored, approximately 50 m3 of heterogeneous solid material have accumulated in the basins. This material, referred to as sludge, is a mixture of fuel corrosion products, metallic bits of spent fuel and zirconium clad iron and metal corrosion products and silica from migrating sands. Some of the sludges also contain PCBs. The congener group of PCBs was identified as Aroclor 1254. The maximum concentration of sludge PCBS was found to be 140 ppm (as settled wet basis). However, the distribution of the PCBs is non-uniform throughout the sludge (i.e., there are regions of high and low concentrations and places where no PCBs are present). Higher concentrations could be present at various locations. Aroclors 1016/1242, 1221, 1248, 1254, and 1260 were identified and quantified in K West (KW) Canister sludge. In some of these samples, the concentration of 1260 was higher than 1254. The sludge requires pre-treatment to meet tank farm waste acceptance criteria, Among the numerous requirements, the sludge should be retreated so that it does not contain regulated levels of Toxic Substances Control Act (TSCA) compounds. Because of their stable chemistry and relative insolubility in water, PCBs are difficult to treat. They also resist degradation from heat and electrical charges. This stability has resulted in environmental persistence which has prompted the development of a variety of new cleanup processes including supercritical processes, advanced oxidation, dehalogenation and others. Hopefully, most of the new processes are discussed herein. Information on new processes are being received and will be evaluated in a future revision

  13. Biological sludge solubilisation for reduction of excess sludge production in wastewater treatment process.

    Science.gov (United States)

    Yamaguchi, T; Yao, Y; Kihara, Y

    2006-01-01

    A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.

  14. Sludge storage lagoon biogas recovery and use. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D.; Norville, C. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

    1991-07-01

    The City of Memphis has two wastewater treatment plants. The SWTP employs two large anaerobic digestion sludge lagoons as part of the overall sludge treatment system. Although these lagoons are effective in concentrating and digesting sludge, they can generate offensive odors. The SWTP uses aerobic digesters to partially stabilize the sludge and help reduce objectionable odors before it enters the lagoons. The anaerobic digestion of sludge in the lagoons results in the dispersion of a large quantity of biogas into the atmosphere. The City realized that if the lagoons could be covered, the odor problem could be resolved, and at the same, time, biogas could be recovered and utilized as a source of energy. In 1987, the City commissioned ADI International to conduct a feasibility study to evaluate alternative methods of covering the lagoons and recovering and utilizing the biogas. The study recommended that the project be developed in two phases: (1) recovery of the biogas and (2) utilization of the biogas. Phase 1 consists of covering the two lagoons with an insulated membrane to control odor and temperature and collect the biogas. Phase 1 was found to be economically feasible and offered a unique opportunity for the City to save substantial operating costs at the treatment facility. The Memphis biogas recovery project is the only application in the world where a membrane cover has been used on a municipal wastewater sludge lagoon. It is also the largest lagoon cover system in the world.

  15. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    Directory of Open Access Journals (Sweden)

    Getachew D. Gebreeyessus

    2016-06-01

    Full Text Available During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH. In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so

  16. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    Science.gov (United States)

    Gebreeyessus, Getachew D.; Jenicek, Pavel

    2016-01-01

    During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs) is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD) of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH). In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so as to optimize

  17. Transport evaluation of a gas-liquid scrubber

    International Nuclear Information System (INIS)

    Brodner, A.J.; Bistline, J.E.; Weber, S.E.

    1982-10-01

    The hydraulics and the mass-transfer behavior of a five-tray, single-bubble-cap, single-downcomer, gas-liquid contactor were studied for use as a gas scrubber. Flooding was not observed at the maximum available liquid and gas flow rates of 0.32 and 464 L/min, respectively. The maximum liquid entrainment was 33% at a gross liquid flow rate of 0.05 L/min. The Murphree-tray efficiencies for absorption of CO 2 (5000 ppM in air) into demineralized water ranged from 0.14 to 0.74 for volumetric liquid-to-gas ratios of 4 x 10 -4 and 2 x 10 -4 , respectively, for k/sub L/a values ranging from 0.088 to 0.36 min -1 . 12 figures, 10 tables

  18. Scrubber-Integrated Wet Electrostatic Precipitator; Skrubberintegrerat vaatt elektrofilter, WESP

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven; Baefver, Linda; Davidsson, Kent; Pettersson, Jens; Schmidt, Hans; Strand, Michael; Yngvesson, Johan

    2011-07-01

    Combustion processes for heat and power production are an important source of sub-micron particle emissions, which cause enhanced health risks and premature deaths. To meet future requirements of economical and robust dust cleaning equipment, the Wet Electrostatic Precipitation (WESP) technology has been further developed in this project. A pilot scale slip stream WESP unit, installed by Goetaverken Miljoe, has been successfully installed and tested at the Renova Waste-to-Energy plant in Goeteborg, Sweden. The particles in the gas are charged by an ionizing electrode and collected in a concentric cylinder geometry. The WESP pilot consists of a unique combination of several existing technologies: it is integrated with a packed bed scrubber which means an ideally uniformly distributed gas flow in the WESP inlet. Furthermore, the WESP unit has a water cooled condensing collector, which facilitates continuous formation of a water film. The downward flowing water film transports the collected dust counter current to the upward flowing flue gas in order to minimize particle re-entrainment. The WESP is equipped with a high frequency transformer for stable voltage output and is fabricated in electrically conductive corrosion resistant Fibre Reinforced Plastic (FRP). The concentration of dust upstream of the WESP unit varied between 6.2 and 28 mg/Nm{sup 3} dry gas. All measured outlet dust concentrations were below 0.3 mg/Nm{sup 3} (dry gas, 11% O{sub 2}), which equals 3% of the applicable emission limit. The dust removal efficiency has been higher than 97% in all the dust measurements. The mean value of all the dust measurements was 15.2 mg/Nm{sup 3} upstream and 0.14 mg/Nm{sup 3} in downstream (both as dry gas, 11% O{sub 2}), which gives an average removal efficiency of slightly more than 99%. The removal efficiency increased with increasing inlet dust concentration, SO{sub 2} concentration and {Delta}T of the collector cooling. Chlorine, potassium, sodium, silicon and

  19. Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion.

    Science.gov (United States)

    Wei, Wei; Wang, Qilin; Zhang, Liguo; Laloo, Andrew; Duan, Haoran; Batstone, Damien J; Yuan, Zhiguo

    2018-03-01

    Previous work has demonstrated that pre-treatment of waste activated sludge (WAS) with free nitrous acid (FNA i.e. HNO 2 ) enhances the biodegradability of WAS, identified by a 20-50% increase in specific methane production in biochemical methane potential (BMP) tests. This suggests that FNA pre-treatment would enhance the destruction of volatile solids (VS) in an anaerobic sludge digester, and reduce overall sludge disposal costs, provided that the dewaterability of the digested sludge is not negatively affected. This study experimentally evaluates the impact of FNA pre-treatment on the VS destruction in anaerobic sludge digestion and on the dewaterability of digested sludge, using continuously operated bench-scale anaerobic digesters. Pre-treatment of full-scale WAS for 24 h at an FNA concentration of 1.8 mg NN/L enhanced VS destruction by 17 ± 1% (from 29.2 ± 0.9% to 34.2 ± 1.1%) and increased dewaterability (centrifuge test) from 12.4 ± 0.4% to 14.1 ± 0.4%. Supporting the VS destruction data, methane production increased by 16 ± 1%. Biochemical methane potential tests indicated that the final digestate stability was also improved with a lower potential from FNA treated digestate. Further, a 2.1 ± 0.2 log improvement in pathogen reduction was also achieved. With inorganic solids representing 15-22% of the full-scale WAS used, FNA pre-treatment resulted in a 16-17% reduction in the volume of dewatered sludge for final disposal. This results in significantly reduced costs as assessed by economic analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance.

    Science.gov (United States)

    Dai, Xiaohu; Duan, Nina; Dong, Bin; Dai, Lingling

    2013-02-01

    System stability and performance of high-solids anaerobic co-digestion of dewatered sludge (DS) and food waste (FW) in comparison with mono digestions were investigated. System stability was improved in co-digestion systems with co-substrate acting as a diluting agent to toxic chemicals like ammonia or Na(+). For high-solids digestion of DS, the addition of FW not only improved system stability but also greatly enhanced volumetric biogas production. For high-solids digestion of FW, the addition of DS could reduce Na(+) concentration and help maintain satisfactory stability during the conversion of FW into biogas. System performances of co-digestion systems were mainly determined by the mixing ratios of DS and FW. Biogas production and volatile solids (VSs) reduction in digestion of the co-mixture of DS and FW increased linearly with higher ratios of FW. A kinetic model, which aimed to forecast the performance of co-digestion and to assist reactor design, was developed from long-term semi-continuous experiments. Maximum VS reduction for DS and FW was estimated to be 44.3% and 90.3%, respectively, and first order constant k was found to be 0.17d(-1) and 0.50 d(-1), respectively. Experimental data of co-digestion were in good conformity to the predictions of the model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. ASSESSMENT OF THE POSSIBILITIES OF AGRICULTURAL USE OF SEWAGE SLUDGE FROM WASTEWATER TREATMENT PLANTS IN OLECKO

    Directory of Open Access Journals (Sweden)

    Magdalena Filkiewicz

    2015-03-01

    Full Text Available According to the National Waste Management Plan 2014 (NWMP 2014 recommended method of utilization of sewage sludge is using it for agricultural purposes or for land reclamation. The sludge is characterized by a high content of organic substances, microelements and biogenic compounds, through which sewage sludge possess high soil formation and fertilization properties. It is assumed that in 2020 approximately 30% of the sludge production will be used for agricultural purposes, while 15% will be used for land reclamation. We have to remember that prior to the introduction of sludge into the ground, security, health and chemical requirements should be met. In order to use the sludge for agricultural purposes, the process of their disposal should be previously carried out e.g. Autoheated Thermophilic Aerobic Digestion (ATAD. It allows for hygienisation of sewage sludge and reducing the heavy metal content. As a result, processed sewage sludge is characterized by the presence of heavy metals in amounts which do not exceed the standards. It is also deprived of microorganisms. The stabilized sludge is characterized by high phosphorus and calcium content. Therefore there is possibility to use the examined sludge in agriculture.

  2. An Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined.

  3. Control of the biological process through continuous measurement of the sludge age. Experiences in the WWTP Molina de Segura (Murcia, Spain)

    International Nuclear Information System (INIS)

    Marques, F.; Pradas, P.; Lardin, C.; Simon, P.

    2010-01-01

    This paper reports the results obtained when a sludge age based control is incorporated in the biological process of a wastewater treatment plant (WWTP). Greater stability of the biological process is achieved when this control is implemented in WWTP of Molina de Segura. In particular biodiversity has increased and it has been possible to reduce and stabilize the secondary sludge production. An improvement of the sludge decantation and a reduction of the specific volumetric load of secondary clarifiers have also been observed. finally, costs have been reduced dur to the decrease of cationic polyelectrolyte consumption. (Author) 16 refs.

  4. THE CONCENTRATION OF TRACE ELEMENTS IN SEWAGE SLUDGE FROM WASTEWATER TREATMENT PLANT IN GNIEWINO

    Directory of Open Access Journals (Sweden)

    Julita Karolina Milik

    2017-09-01

    Full Text Available Sewage sludge originated from wastewater treatment plants (WWTP serving rural areas are suggested for agricultural or natural usage. Before, however, sewage sludge is subjected to the several pre-treatments, which involve stabilization, hygienisation and pre-composting. These methods decrease mainly the amount of organic substances and presence of microorganisms, but hardly affects concentrations of heavy metals. The advantages of using sludges as fertilizer for improving and sustaining soil fertility and crop production are many. The addition of sewage sludge to soils could affect potential availability of heavy metals. Trace elements are distributed in the soil in various forms: solid phases, free ions in soil solution, soluble organic-mineral complexes, or adsorbed on colloidal particles. In the study the concentrations of trace elements (Pb, Cd, Cr, Hg, Ni, Zn, Al, As, Se, B, Ba, Br, Ca, Cu, Fe, Mn, Na, Ga, Li, Mo, Sr, Mg, K, Ru, Tl, V, U was tested in sewage sludge obtained from (WWTP serving rural areas (PE< 9 000. In each case, the tested sewage sludge was meeting the criteria of stabilization and was used for agriculture and land reclamation purpose. All the samples were collected in 2016 and were subjected to microwave mineralization in a closed system in aqua regia. The total amound of macro and microelements were determined with a ICP-OES. It was found that the total concentrations of trace metals in all of sewage sludge are the same than Polish regulation limit of pollutants for sludge to be used in agriculture. The trace elements (cadmium: 1,16 mg·kg-1/d.m. in polish sewage sludge, respectively, much higher than those in the other countries. As a most prevalent copper and zinc were observed (111,28 mg·kg-1/d.m. and 282,94 mg·kg-1/d.m.. The concentrations of copper in polish sewage sludge are much lower (49-130 mg·kg-1/d.m. than european sewage sludge (522-562 mg·kg-1/d.m.. The two out of tested heavy metals (beryllium, bismuth

  5. Energy potential of the modified excess sludge

    Science.gov (United States)

    Zawieja, Iwona

    2017-11-01

    On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4), it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  6. Energy potential of the modified excess sludge

    Directory of Open Access Journals (Sweden)

    Zawieja Iwona

    2017-01-01

    Full Text Available On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4, it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  7. Sewage sludge disintegration by high-pressure homogenization: a sludge disintegration model.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Ma, Boqiang; Wu, Hao; Zhang, Sheng; Xu, Xin

    2012-01-01

    High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DD(COD)), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DD(COD) of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DD(COD) = kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.

  8. Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community.

    Science.gov (United States)

    Fu, Xiaoyong; Cui, Guangyu; Huang, Kui; Chen, Xuemin; Li, Fusheng; Zhang, Xiaoyu; Li, Fei

    2016-03-01

    In this study, the effect of earthworms on microbial features during vermicomposting of pelletized dewatered sludge (PDS) was investigated through comparing two degradation systems with and without earthworm E isenia fetida involvement. After 60 days of experimentation, a relatively stable product with low organic matter and high nitrate and phosphorous was harvested when the earthworms were involved. During the process, earthworms could enhance microbial activity and biomass at the initial stage and thus accelerating the rapid decomposition of PDS. The end products of vermicomposting allowed the lower values of bacterial and eukaryotic densities comparison with those of no earthworm addition. In addition, the presence of earthworms modified the bacterial and fungal diversity, making the disappearances of some pathogens and specific decomposing bacteria of recalcitrant substrates in the vermicomposting process. This study evidences that earthworms can facilitate the stabilization of PDS through modifying microbial activity and number and community during vermicomposting.

  9. Impacts of aeration and active sludge addition on leachate recirculation bioreactor

    International Nuclear Information System (INIS)

    Dong Jun; Zhao Yongsheng; Henry, Rotich K.; Hong Mei

    2007-01-01

    Stabilization of municipal solid waste (MSW) is affected by moisture, nutrients, oxygen, pH and accumulation of inhibitory fermentation products, etc. Optimization of these parameters could create a favorable environment that promotes the rapid development of the desired microbial population and acceleration of decomposition of MSW. The objectives of this work was to determine the feasibility of enhancing phase separation through intermittent aeration strategy throughout the treatment process; to demonstrate the potential of active sludge for in situ nitrogen removal; to examine the efficiency and evaluate the possibility of in situ removal of contaminants from leachate. The results indicate that the removal ratio of COD, BOD 5 , NH 4 + and total nitrogen are over 80, 81, 75, and 74%, respectively, in the leachate recirculation reactors with aeration; the removal efficiency of NH 4 + and total nitrogen of the reactor which were added active sludge were 88 and 84%, respectively. Therefore, aeration strategy has positive impacts on the solid waste stabilization; addition of active sludge in reactor is favorable for the remediation of the nitrogen; using landfill itself for in situ attenuating the contaminants from leachate is feasible

  10. Sludge derived fuel technique of sewage sludge by oil vacuum evaporation drying

    International Nuclear Information System (INIS)

    Kim, Seokhwan; Lim, Byungran; Lee, Sookoo

    2010-01-01

    Sewage sludge contains high content of organic materials and its water content is also very high about 80% even after filtration process. Landfill as a sludge treatment methods can cause odor problem and leachate production which can derive the secondary contamination of soil and groundwater. The ocean dumping will be prohibited according to the London Convention and domestic stringent environmental regulation. Based on domestic agenda on organic sewage sludge treatment, the ocean disposal will be prohibited from 2012, thus alternative methods are demanded. Sludge derived fuel (SDF) technology can alleviate the emission of greenhouse gas and recover energy from sludge. For proper treatment and SDF production from sludge, the vacuum evaporation and immersion frying technology was adopted in this research. This technology dries moisture in sludge after mixing with oil such as Bunker C oil, waste oil or waste food oil etc. Mixing sludge and oil secures liquidity of organic sludge to facilitate handling throughout the drying process. The boiling temperature could be maintained low through vacuum condition in whole evaporation process. This study was performed to find the optimum operating temperature and pressure, the mixing ratio of sludge and oil. Finally, we could obtained SDF which moisture content was less than 5%, its heating value was over 4,500 kcal/ kg sludge. This heating value could satisfy the Korean Fuel Standard for the Recycle Products. Assessed from the perspective of energy balance and economic evaluation, this sludge drying system could be widely used for the effective sludge treatment and the production of SDF. (author)

  11. Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash

    Science.gov (United States)

    Wei, Na

    2015-01-01

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800

  12. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    Sludge recovery machine comprising a hollow centrifuge, a vertical pipe for feeding in a liquid containing sludge and a sliding rake pressing against the internal wall of the centrifuge to dislodge and move the sludge, a power drive for spinning the centrifuge at high speed and a rotating drying table to take the sludge and dry it [fr

  13. Excess sludge reduction in activated sludge processes by integrating ultrasound treatment

    International Nuclear Information System (INIS)

    Perez-Elvira, S.; Fdz-Polanco, M.; Plaza, F. I.; Garralon, G.; Fdz-Polanco, F.

    2009-01-01

    Biological sludge produced in the activated sludge process can be minimised modifying the water line, the sludge line or the final disposal strategy. Selecting the water line the general idea is to reduce the sludge producing the yield coefficient by means of the called lysis cryptic growth process. The main techniques referenced in literature are onization, chlorination and chemical and heat treatment. Ultrasounds are widely used to increase anaerobic biodegradability but are not reported as system to control excess sludge production. (Author)

  14. Preparation of lightweight concretes with sewage sludge ash and their properties

    International Nuclear Information System (INIS)

    Lee, Hwa Young

    2010-01-01

    Sewage sludge results from the accumulation of solids from the unit processes of chemical coagulation, flocculation and sedimentation during wastewater treatment. Rapid urbanization in many areas of the world has resulted in a drastic increase of sewage sludge. More than two million tons of sewage sludge resulted from the treatment of urban sewage is produced annually in Korea. The majority of sewage sludge is disposed of conventionally by the landfill or ocean disposal method, both of which create severe environmental pollution. However, increasingly stringent environmental regulations and scarcity of landfill sites have posed disposal problems of sludge. Incineration is a viable alternative providing a means of sludge stabilization resulting in a reduced volume of sterile, odorless and practically inert residue. Accordingly, the development of environment friendly treatment technique of SSA (sewage sludge ash) inevitably produced during incineration of sewage sludge may be urgently required. For this aim, an attempt to manufacture the lightweight concrete has been made using sewage sludge ash and the physical properties have been determined in terms of specific gravity, compressive strength and thermal conductivity. As a result, the density of specimen prepared with SSA was ranged from 0.6 to 1.4g/ cm 3 and the compressive strength was ranged from 20 to 40kg/ cm 2 . As far as the thermal conductivity of specimen was concerned, it was ranged from 0.3 to 0.6 W/ mK depending on material composition which was far less than that of concrete. It was concluded that the lightweight concretes prepared with SSA could be applicable to building or construction materials such as insulation board and sound absorption material. (author)

  15. Utilisation of fly ash for the management of heavy metal containing primary chemical sludge generated in a leather manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Sekaran, G.; Rao, B.P.; Ghanamani, A.; Rajamani, S. [Central Leather Research Institute, Chennai (India). Dept. of Environmental Technology

    2003-07-01

    The present study aims at disposal of primary chemical sludge generated in the tanning industry by solidification and stabilization process using flyash generated from thermal power plant along with binders and also on evaluating the leachability of heavy metal from the solidified product. The primary chemical sludge containing heavy metals iron and chromium were obtained from a garment leather manufacturing company at Chennai in India. The sludge was dried in open environment and it was powdered to fine size in a grinder. Binding increases stabilization of heavy metal in calcined sludge with refractory binders such as clay, fly ash, lime and ordinary Portland cement. Fly ash can be considered as the additional binder for producing stronger bricks, with high metal fixation efficiency, and minimum rate of removal of heavy metal and minimum diffusion co-efficient. 15 refs., 5 figs., 5 tabs.

  16. Evaluation of coagulation sludge from raw water treated with Moringa oleifera for agricultural use

    Directory of Open Access Journals (Sweden)

    Jhon Jairo Feria

    2016-05-01

    Full Text Available Coagulation-flocculation is a physical-chemical process responsible for producing the largest amount of sludge in the purification of natural raw water. Conventionally, aluminum sulfate or alum has been used as a coagulant. However, disposal of the sludge produced has been problematic for the environment due to excess aluminum. Currently, the convenience of using natural coagulants such as seed extracts from Moringa oleifera (MO is being studied, although, the properties of sewage sludge produced and its possible reuse are unknown. In this paper the physical-chemical, nutritional and dangerous characteristics from MO sludge were evaluated by using standard methods to verify its potential use in agricultural soils. Results indicated that pH, electrical conductivity, ion exchange capacity, organic matter and micronutrients from sludge were suitable for application to soils with agricultural potential; but deficiency of macronutrients and presence of fecal coliforms limits it to be used as soil improver and not as fertilizer. Sludge stabilization with hydrated lime at doses greater than or equal to 3 % was effective to ensure the elimination of pathogenic microorganisms and to obtain a Class A sludge, unrestricted for agricultural use and suitable for acid soils.

  17. Numerical Simulation of Flow Behavior within a Venturi Scrubber

    OpenAIRE

    M. M. Toledo-Melchor; C. del C. Gutiérrez-Torres; J. A. Jiménez-Bernal; J. G. Barbosa-Saldaña; S. A. Martínez-Delgadillo; H. R. Mollinedo-Ponce de León; A. Yoguéz-Seoane; A. Alonzo-García

    2014-01-01

    The present work details the three-dimensional numerical simulation of single-phase and two-phase flow (air-water) in a venturi scrubber with an inlet and throat diameters of 250 and 122.5 mm, respectively. The dimensions and operating parameters correspond to industrial applications. The mass flow rate conditions were 0.483 kg/s, 0.736 kg/s, 0.861 kg/s, and 0.987 kg/s for the gas only simulation; the mass flow rate for the liquid was 0.013 kg/s and 0.038 kg/s. The gas flow was simulated in f...

  18. INTEGRATED WASTE WATER TREATMENT ACCOMPANIED BY MINIMAL GENERATION OF EXCESSIVE ACTIVATED SLUDGE OR SEDIMENT

    Directory of Open Access Journals (Sweden)

    Makisha Nikolay Alekseevich

    2012-12-01

    ments held. A combination of aerobic and anaerobic processes helps provide the proper quality of integrated biological treatment. Chambers of the aeration reactor are also equipped with the polymer feed of various compositions. Sludge treatment that is also strongly needed was performed by means of aerobic stabilization accompanied by ejecting aeration. The experiment findings demonstrate its substantial effect in terms of both components, including sewage and sludge treatment.

  19. Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance.

    Science.gov (United States)

    Jin, Lingyun; Zhang, Guangming; Zheng, Xiang

    2015-02-01

    A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability. Copyright © 2014. Published by Elsevier B.V.

  20. High capacity Venturi scrubber to separate aerosol-borne radioactivity from an air-gas-steam mixture. Final report

    International Nuclear Information System (INIS)

    Mayinger, F.; Glueckert, U.

    1993-01-01

    All German LWR are equipped with devices which in the case of a hypothetic accident permit a filtered depressurization of the containment precluding failure of the latter and minimizing the release of radioactive materials into the environment. To filter the aerosol charged air-steam mixture from the containment also a venturi scrubber is used. It has the great advantage that it can remove safely and over a certain period of time, even without active cooling systems, the after-heat released from the separated radioactive materials. Those separated radioactive materials are trapped in a scrubbing liquid which, in the event of a temporary failure of all active cooling systems, may partly evaporate and thus remove the heat in a completely passive way. The venturi scrubbers conceived earlier by the reactor manufacturer are of a very simple design and not optimized to achieve highest separation degrees. Therefore development work was started to optimize the separation behaviour of the venturi scrubber precisely with regard to submicron aerosols which are to be expected after a core meltdown accident. To achieve this, a special concept of scrubbing liquid addition developed by the contractor, the so-called multistage concept, was applied adapting it to the specific requirements. (orig./HP) [de

  1. Solidification as low cost technology prior to land filling of industrial hazardous waste sludge.

    Science.gov (United States)

    El-Sebaie, O; Ahmed, M; Ramadan, M

    2000-01-01

    The aim of this study is to stabilize and solidify two different treated industrial hazardous waste sludges, which were selected from factories situated close to Alexandria. They were selected to ensure their safe transportation and landfill disposal by reducing their potential leaching of hazardous elements, which represent significant threat to the environment, especially the quality of underground water. The selected waste sludges have been characterized. Ordinary Portland Cement (OPC), Cement Kiln Dust (CKD) from Alexandria Portland Cement Company, and Calcium Sulphate as a by-product from the dye industry were used as potential solidification additives to treat the selected treated waste sludges from tanning and dyes industry. Waste sludges as well as the solidified wastes have been leach-tested, using the General Acid Neutralization Capacity (GANC) procedure. Concentration of concerning metals in the leachates was determined to assess changes in the mobility of major contaminants. The treated tannery waste sludge has an acid neutralization capacity much higher than that of the treated dyes waste sludge. Experiment results demonstrated the industrial waste sludge solidification mix designs, and presented the reduction of contaminant leaching from two types of waste sludges. The main advantages of solidification are that it is simple and low cost processing which includes readily available low cost solidification additives that will convert industrial hazardous waste sludges into inert materials.

  2. Solidified structure and leaching properties of metallurgical wastewater treatment sludge after solidification/stabilization process.

    Science.gov (United States)

    Radovanović, Dragana Đ; Kamberović, Željko J; Korać, Marija S; Rogan, Jelena R

    2016-01-01

    The presented study investigates solidification/stabilization process of hazardous heavy metals/arsenic sludge, generated after the treatment of the wastewater from a primary copper smelter. Fly ash and fly ash with addition of hydrated lime and Portland composite cement were studied as potential binders. The effectiveness of the process was evaluated by unconfined compressive strength (UCS) testing, leaching tests (EN 12457-4 and TCLP) and acid neutralization capacity (ANC) test. It was found that introduction of cement into the systems increased the UCS, led to reduced leaching of Cu, Ni and Zn, but had a negative effect on the ANC. Gradual addition of lime resulted in decreased UCS, significant reduction of metals leaching and high ANC, due to the excess of lime that remained unreacted in pozzolanic reaction. Stabilization of more than 99% of heavy metals and 90% of arsenic has been achieved. All the samples had UCS above required value for safe disposal. In addition to standard leaching tests, solidificates were exposed to atmospheric conditions during one year in order to determine the actual leaching level of metals in real environment. It can be concluded that the EN 12457-4 test is more similar to the real environmental conditions, while the TCLP test highly exaggerates the leaching of metals. The paper also presents results of differential acid neutralization (d-AN) analysis compared with mineralogical study done by scanning electron microscopy and X-ray diffraction analysis. The d-AN coupled with Eh-pH (Pourbaix) diagrams were proven to be a new effective method for analysis of amorphous solidified structure.

  3. Dynamic flow-through sequential extraction for assessment of fractional transformation and inter-element associations of arsenic in stabilized soil and sludge

    International Nuclear Information System (INIS)

    Buanuam, Janya; Wennrich, Rainer

    2010-01-01

    A dynamic flow-through extraction system was applied for the first time to ascertain the fractional transformation and inter-element associations of arsenic in stabilized environmental solids, as exemplified by the partitioning of soil and sludge stabilized with three additives, namely MnO 2 , Ca(OH) 2 and FeSO 4 . The extraction system used not only gave fractionation data, but also the extraction profiles (extractograms) which were used for investigation of the breaking down of phases, kinetic releasing of As and elemental association between As and inorganic additives. Five geochemical fractions of As were elucidated by accommodation in the flow manifold of a modified Wenzel's sequential extraction scheme, well established for fractionation of arsenic. The results revealed that MnO 2 and FeSO 4 have a slight effect on As phase transformation for soil and sludge samples amended for one week whereas the addition of Ca(OH) 2 increases As mobility due to the desorption of As from the solid Fe-oxides phase. The significant change in fractional transformation after 8 weeks of incubation can be seen in MnO 2 -treated soil. There was an increase of 17% in the non-mobilizable As fraction in MnO 2 -treated soil. From extractograms, arsenic in untreated soil was found to be rapidly leached and concurrently released with Fe. This may be evidence that the release of As is dependent on the dissolution of amorphous Fe oxides. In MnO 2 -treated soil, a strong affinity was observed between Mn and As in the amorphous Fe/Al oxides fraction, and this plays an important role in slowing down the kinetics of As releasing.

  4. SPREADING OF A FLUID JET ON THE CORRUGATED SURFACE OF THE STRUCTURED PACKING OF WET SCRUBBERS

    Directory of Open Access Journals (Sweden)

    Gorodilov A.A.

    2014-08-01

    Full Text Available The new packing for wet scrubbers for cooling exhaust gases of furnaces is presented. Spreading features of the fluid jet on the corrugated surface of the proposed packing have been studied. Flow rate of the liquid flowing through slits to the opposite side of the packing element was determined. Several regimes of a fluid flow on the surface of the proposed structured packing were determined. An optimal range of rational flow rates for more intense cooling of exhaust gases is proposed. It was discovered that the range of optimum flow rates may be extended if the surface of the packing element is pre-wetted. The way of increasing the rate of effective interfacial surface area for gas-liquid contact per unit volume of the packing of the scrubber is presented.

  5. Development of structure design program for venturi scrubber working at self-priming mode

    International Nuclear Information System (INIS)

    Wang Meng; Sun Zhongning; Gu Haifeng

    2012-01-01

    A structure design program was developed for Venturi scrubber working at the self-priming mode. This program proposed a complete logic for thermal parameters calculation and structure design of the throat. A revised calculation for resistance relationship was carried out based on experimental study. The relative error between revised results and experimental values is within 8.6%. (authors)

  6. Performance of iodide vapour absorption in the venturi scrubber working in self-priming mode

    International Nuclear Information System (INIS)

    Zhou, Yanmin; Sun, Zhongning; Gu, Haifeng; Miao, Zhuang

    2016-01-01

    Highlights: • The absorption performance for iodide vapour was studied under different conditions. • A mathematical model was developed to describe the iodide absorption process. • The venturi scrubber can ensure absorption efficiiency and reduce pressure loss. - Abstract: The self-priming venturi scrubber is the key component of filtered containment venting systems for the removal of radioactive products during severe accidents in nuclear power plants. This paper is focused on the absorption performance of iodide vapour in the venturi scrubber, based on experiment and mathematical calculation. The results indicate that the absorption efficiency is closely related to solution flow rate, gas flow rate and temperature, but is not sensitive to iodide inlet concentration. When solution flow rate is low, the absorption efficiency increases rapidly with increasing the solution flow rate, and when the solution is excessive, the absorption efficiency remains around 99% stably; the influence of gas flow rate on absorption efficiency is mainly reflected in the variation of gas and liquid contacting time; when the solution flow rate is low, the increase of gas flow rate will led to an obvious decrease in absorption efficiency; temperature is not important when gas flow rate in constant but becomes effective for improving the absorption efficiency when gas velocity is constant. The proposed mathematical model can predict the iodide absorption process well in the range of experimental conditions. Especially, in the condition of lower gas flow rate and higher solution flow rate, the prediction accuracy is more satisfactory; however the accuracy of prediction will decrease at higher gas flow rates and lower solution flow rates because of neglecting the transverse exchange between gas and liquid phase.

  7. Stabilization of the As-contaminated soil from the metal mining areas in Korea.

    Science.gov (United States)

    Ko, Myoung-Soo; Kim, Ju-Yong; Bang, Sunbeak; Lee, Jin-Soo; Ko, Ju-In; Kim, Kyoung-Woong

    2012-01-01

    The stabilization efficiencies of arsenic (As) in contaminated soil were evaluated using various additives such as limestone, steel mill slag, granular ferric hydroxide (GFH), and mine sludge collected from an acid mine drainage treatment system. The soil samples were collected from the Chungyang area, where abandoned Au-Ag mines are located. Toxicity characteristic leaching procedure, synthetic precipitation leaching procedure, sequential extraction analysis, aqua regia digestion, cation exchange capacity, loss on ignition, and particle size distribution were conducted to assess the physical and chemical characteristics of highly arsenic-contaminated soils. The total concentrations of arsenic in the Chungyang area soil ranged up to 145 mg/kg. After the stabilization tests, the removal percentages of dissolved As(III) and As(V) were found to differ from the additives employed. Approximately 80 and 40% of the As(V) and As(III), respectively, were removed with the use of steel mill slag. The addition of limestone had a lesser effect on the removal of arsenic from solution. However, more than 99% of arsenic was removed from solution within 24 h when using GFH and mine sludge, with similar results observed when the contaminated soils were stabilized using GFH and mine sludge. These results suggested that GFH and mine sludge may play a significant role on the arsenic stabilization. Moreover, this result showed that mine sludge can be used as a suitable additive for the stabilization of arsenic.

  8. Vermistabilization of sewage sludge (biosolids) by earthworms: converting a potential biohazard destined for landfill disposal into a pathogen-free, nutritive and safe biofertilizer for farms.

    Science.gov (United States)

    Sinha, Rajiv K; Herat, Sunil; Bharambe, Gokul; Brahambhatt, Ashish

    2010-10-01

    Earthworms feed readily upon sludge components, rapidly converting them into vermicompost, reduce the pathogens to safe levels and ingest the heavy metals. Volume is significantly reduced from 1 m³ of wet sludge (80% moisture) to 0.5 m³ of vermicompost (30% moisture). Earthworms have real potential both to increase the rate of aerobic decomposition and composting of organic matter and also to stabilize the organic residues in the sludge--removing the harmful pathogens (by devouring them and also by discharge of antibacterial coelomic fluid) and heavy metals (by bio-accumulation). They also mineralize the essential nutrients nitrogen, phosphorus and potassium from the sludge. It may not be possible to remove toxic substances completely, but at least change the 'chemical make-up' of the sludge to make it harmless to the soil and enable its use as a nutritive organic fertilizer. This method has been found to comply with grade A standards for sludge stabilization.

  9. Legislation concerning the energy reuse of sludge from waste water treatment plant in the region of Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Mislej, V. (Vodovod-Kanalizacija, Ljubljana (Slovenia)), Email: vmislej@vo-ka.si; Grilc, V. (National Inst. of Chemistry, Ljubljana (Slovenia)), Email: viktor.grilc@ki.si

    2009-07-01

    The legislation on waste management in Slovenia was markedly renovated in the year 2008. The main changes were related to the treatment of biologically degradable wastes, which was extended to the energy-from-waste option. New regulations in Slovenia have set criteria on which wastes can be processed and transformed into a solid recovered fuel and the conditions concerning its quality and use. The legislation also outlines other process conditions for placing sewage sludge on the market as a secondary solid fuel and its application in various thermal processes. Sewage sludge represents the largest share of wastes. generated at biological wastewater treatment plants (BWWTP). In fresh form it is formed as excess active sludge formed during biological treatment of municipal wastewater and may be consecutive stabilized by an aerobic or anaerobic process. Anaerobic stabilization (digestion)of the raw gravity thickened sludge, followed by mechanical and thermal dehydration transform the fresh sludge into stable dry granules. In this form it is suitable for marketing and utilization in thermal processes. The main problems may be low calorific value and relative high metals content (especially mercury) and sulphur. Sulphur and cadmium are not among the limiting parameters of the noted technical specification for alternative fuels, so the new regulation in Slovenia will be appealed. (orig.)

  10. Nitrate control strategies in an activated sludge wastewater treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenhao; Tao, Erpan; Chen, Xiaoquan; Liu, Dawei [South China University of Technology, Guangzhou (China); Liu, Hongbin [Kyung Hee University, Yongin (Korea, Republic of)

    2014-03-15

    We studied nitrate control strategies in an activated sludge wastewater treatment process (WWTP) based on the activated sludge model. Two control strategies, back propagation for proportional-integral-derivative (BP-PID) and adaptive-network based fuzzy inference systems (ANFIS), are applied in the WWTP. The simulation results show that the simple local constant setpoint control has poor control effects on the nitrate concentration control. However, the ANFIS (4*1) controller, which considers not only the local constant setpoint control of the nitrate concentration, but also three important indices in the effluent--ammonia concentration, total suspended sludge concentration and total nitrogen concentration--demonstrates good control performance. The results also prove that ANFIS (4*1) controller has better control performance than that of the controllers PI, BP-PID and ANFIS (2*1), and that the ANFIS (4*1) controller is effective in improving the effluent quality and maintaining the stability of the effluent quality.

  11. The role and control of sludge age in biological nutrient removal activated sludge systems.

    Science.gov (United States)

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  12. Radioactivity in sludge: tank cleaning procedures and sludge disposal

    International Nuclear Information System (INIS)

    Bradley, D.A.

    1995-01-01

    In the oil and gas industry management of alpha-active sludge is made more complex by the presence of hydrocarbons and heavy metals. This presentation discusses the origin of radioactivity in sludge, management of risk in terms of safe working procedures, storage and possible disposal options. The several options will generally involve aspects of dilution or of concentration; issues to be discussed will include sludge farming, bioremediation and incineration. (author)

  13. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    International Nuclear Information System (INIS)

    Colton, N.G.

    1995-03-01

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent

  14. Strength, leachability and microstructure characteristics of cement-based solidified plating sludge

    International Nuclear Information System (INIS)

    Asavapisit, Suwimol; Naksrichum, Siripat; Harnwajanawong, Naraporn

    2005-01-01

    The solidification of the stabilized zinc-cyanide plating sludge was carried out using ordinary Portland cement (OPC) and pulverized fuel ash (PFA) as solidification binders. The plating sludge were used at the level of 0%, 10%, 20% and 30% dry weight, and PFA was used to replace OPC at 0%, 10%, 20% and 30% dry weight, respectively. Experimental results showed that a significant reduction in strength was observed when the plating sludge was added to both the OPC and OPC/PFA binders, but the negative effect was minimized when PFA was used as part substitute for OPC. SEM observation reveals that the deposition of the plating sludge on the surface of the clinkers and PFA could be the cause for hydration retardation. In addition, calcium zinc hydroxide hydrate complex and the unreacted di- and tricalcium silicates were the major phases in X-ray diffraction (XRD) patterns of the solidified plating waste hydrated for 28 days, although the retardation effect on hydration reactions but Cr concentration in toxicity characteristic leaching procedure (TCLP) leachates was lower than the U.S. EPA regulatory limit

  15. Grout and vitrification formula development for immobilization of hazardous radioactive tank sludges at ORNL

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Spence, R.D.

    1997-01-01

    Stabilization/solidification (S/S) has been identified as the preferred treatment option for hazardous radioactive sludges, and currently grouting and vitrification are considered the leading candidate S/S technologies. Consequently, a project was initiated at Oak Ridge National Laboratory (ORNL) to define composition envelopes, or operating windows, for acceptable grout and glass formulations containing Melton Valley Storage Tank (MVST) sludges. The resulting data are intended to be used as guidance for the eventual treatment of the MVST sludges by the government and/or private sector. Wastewater at ORNL is collected, evaporated, and stored in the MVSTs pending treatment for disposal. The waste separates into two phases: sludge and supernate. The sludges in the tank bottoms have been accumulating for several years and contain a high amount of radioactivity, with some classified as transuranic (TRU) sludges. The available total constituent analysis for the MVST sludge indicates that the Resource and Conservation Recovery Act (RCRA) metal concentrations are high enough to be potentially RCRA hazardous; therefore, these sludges have the potential to be designated as mixed TRU waste. S/S treatment must be performed to remove free liquids and reduce the leach rate of RCRA metals. This paper focuses on initial results for the development of the operating window for vitrification. However, sufficient data on grouting are presented to allow a comparison of the two options

  16. Grout and vitrification formula development for immobilization of hazardous radioactive tank sludges at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M.; Spence, R.D.

    1997-12-31

    Stabilization/solidification (S/S) has been identified as the preferred treatment option for hazardous radioactive sludges, and currently grouting and vitrification are considered the leading candidate S/S technologies. Consequently, a project was initiated at Oak Ridge National Laboratory (ORNL) to define composition envelopes, or operating windows, for acceptable grout and glass formulations containing Melton Valley Storage Tank (MVST) sludges. The resulting data are intended to be used as guidance for the eventual treatment of the MVST sludges by the government and/or private sector. Wastewater at ORNL is collected, evaporated, and stored in the MVSTs pending treatment for disposal. The waste separates into two phases: sludge and supernate. The sludges in the tank bottoms have been accumulating for several years and contain a high amount of radioactivity, with some classified as transuranic (TRU) sludges. The available total constituent analysis for the MVST sludge indicates that the Resource and Conservation Recovery Act (RCRA) metal concentrations are high enough to be potentially RCRA hazardous; therefore, these sludges have the potential to be designated as mixed TRU waste. S/S treatment must be performed to remove free liquids and reduce the leach rate of RCRA metals. This paper focuses on initial results for the development of the operating window for vitrification. However, sufficient data on grouting are presented to allow a comparison of the two options.

  17. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yuancai, E-mail: donkey1204@hotmail.com [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Chen, Yuancai, E-mail: chenyc@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Song, Wenzhe, E-mail: songwenzhe007@126.com [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Hu, Yongyou, E-mail: ppyyhu@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China)

    2014-09-15

    Graphical abstract: In this work, an aerobic column reactor was placed before the USB to maintain micro-oxygen condition in the reactor and the micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) was successfully obtained. PCP degradation by the micro-aerobic system was studied and the variance of microbial community was also discussed by using PCR-DGGE analysis. - Highlights: • Micro-aerobic granular sludge was cultivated in column-type combined reactors. • PCP biodegradation, VFA accumulation and biogas production were studied. • The function of Methanogenic archaeon in the system was investigated. • Fluctuation and diversity of microbial community were discussed by DGGE analysis. • The dominated microorganisms were identified by 16S rDNA sequences. - Abstract: Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH{sub 4}/h g VSS) and aerobic activity (SOUR: 2.21 mMO{sub 2}/h g VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro

  18. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge

    International Nuclear Information System (INIS)

    Lv, Yuancai; Chen, Yuancai; Song, Wenzhe; Hu, Yongyou

    2014-01-01

    Graphical abstract: In this work, an aerobic column reactor was placed before the USB to maintain micro-oxygen condition in the reactor and the micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L −1 ) was successfully obtained. PCP degradation by the micro-aerobic system was studied and the variance of microbial community was also discussed by using PCR-DGGE analysis. - Highlights: • Micro-aerobic granular sludge was cultivated in column-type combined reactors. • PCP biodegradation, VFA accumulation and biogas production were studied. • The function of Methanogenic archaeon in the system was investigated. • Fluctuation and diversity of microbial community were discussed by DGGE analysis. • The dominated microorganisms were identified by 16S rDNA sequences. - Abstract: Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L −1 ) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH 4 /h g VSS) and aerobic activity (SOUR: 2.21 mMO 2 /h g VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic condition and

  19. K basins sludge removal sludge pretreatment system

    International Nuclear Information System (INIS)

    Chang, H.L.

    1997-01-01

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08

  20. Design of artificial neural networks using a genetic algorithm to predict collection efficiency in venturi scrubbers.

    Science.gov (United States)

    Taheri, Mahboobeh; Mohebbi, Ali

    2008-08-30

    In this study, a new approach for the auto-design of neural networks, based on a genetic algorithm (GA), has been used to predict collection efficiency in venturi scrubbers. The experimental input data, including particle diameter, throat gas velocity, liquid to gas flow rate ratio, throat hydraulic diameter, pressure drop across the venturi scrubber and collection efficiency as an output, have been used to create a GA-artificial neural network (ANN) model. The testing results from the model are in good agreement with the experimental data. Comparison of the results of the GA optimized ANN model with the results from the trial-and-error calibrated ANN model indicates that the GA-ANN model is more efficient. Finally, the effects of operating parameters such as liquid to gas flow rate ratio, throat gas velocity, and particle diameter on collection efficiency were determined.

  1. Sludge minimization technologies - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, Hallvard

    2003-07-01

    The management of wastewater sludge from wastewater treatment plants represents one of the major challenges in wastewater treatment today. The cost of the sludge treatment amounts to more that the cost of the liquid in many cases. Therefore the focus on and interest in sludge minimization is steadily increasing. In the paper an overview is given for sludge minimization (sludge mass reduction) options. It is demonstrated that sludge minimization may be a result of reduced production of sludge and/or disintegration processes that may take place both in the wastewater treatment stage and in the sludge stage. Various sludge disintegration technologies for sludge minimization are discussed, including mechanical methods (focusing on stirred ball-mill, high-pressure homogenizer, ultrasonic disintegrator), chemical methods (focusing on the use of ozone), physical methods (focusing on thermal and thermal/chemical hydrolysis) and biological methods (focusing on enzymatic processes). (author)

  2. The dimensional stability and elastic modulus of cemented simulant Winfrith reactor (SGHWR) sludge

    International Nuclear Information System (INIS)

    Holland, T.R.; Lee, D.J.

    1985-12-01

    Dimensional changes and elastic modulus have been monitored on cemented simulant sludge stored in various environments. Specimens prepared using a blended cement show no serious detrimental effects during sealed storage, underwater storage or freeze/thaw cycling. (author)

  3. Filterability of membrane bioreactor (MBR) sludge: impacts of polyelectrolytes and mixing with conventional activated sludge.

    Science.gov (United States)

    Yigit, Nevzat O; Civelekoglu, Gokhan; Cinar, Ozer; Kitis, Mehmet

    2010-01-01

    The main objective of this work was to investigate the filterability of MBR sludge and its mixture with conventional activated sludge (CAS). In addition, the impacts of type and dose of various polyelectrolytes, filter type and sludge properties on the filterability of both MBR and Mixed sludges were determined. Specific cake resistance (SCR) measured by the Buchner funnel filtration test apparatus and the solids content of the resulting sludge cake were used to assess the dewaterability of tested sludges. The type of filter paper used in Buchner tests affected the results of filterability for MBR, CAS and Mixed sludges. SCR values and optimum polyelectrolyte doses increased with increasing MLSS concentrations in the MBR, which suggested that increase in MLSS concentrations accompanied by increases in EPS and SMP concentrations and a shift toward smaller particles caused poorer dewaterability of the MBR sludge. The significant differences observed among the filterability of CAS and MBR sludges suggested that MLSS alone is not a good predictor of sludge dewaterability. Combining CAS and MBR sludges at different proportions generally improved their dewaterability. Combining MBR sludges having typically high MLSS and EPS concentrations with CAS having much lower MLSS concentrations may be an option for full-scale treatment plants experiencing sludge dewaterability problems. Better filterability and higher cake dry solids were achieved with cationic polyelectrolytes compared to anionic and non-ionic ones for all sludge types tested.

  4. Land reclamation recovery with the sewage sludge use

    Directory of Open Access Journals (Sweden)

    Cristina Rincon Tamanini

    2008-08-01

    Full Text Available In this work, investigations were carried out with five treatments [control, three doses of lime stabilized sludge (60, 120, 240 Mg ha-1 dry base and soil corrective plus mineral fertilizer] to evaluate the immediate recuperation of a borrowed area. The application of stabilized alkaline sewage sludge acted as an acidity corrective, allowed the increase in the organic matter contents (21 to 43.5g dm-3 and available P (44 to 156 mg dm-3. Even with the use of the highest dose, no increase in the concentration of 32 analyzed metals was observed, due to the low concentration of metals in the sludge. The experiment showed that short term restoration of degraded area was possible by using high rates of sewage sludge without metal contamination.Obras de infra-estrutura próximas aos grandes centros levam ao surgimento de áreas degradadas por decapamento que podem ser reintegradas a paisagem através dos processos de recuperação com o uso do lodo de esgoto. Estabeleceu-se um experimento com cinco tratamentos [testemunha, três doses de lodo alcalinizado (60, 120, 240Mgha-1 em base seca e corretivo mais adubo mineral], para avaliar a recuperação imediata de uma área de empréstimo. A aplicação de lodo de esgoto alcalinizado atuou como corretivo da acidez, proporcionou aumento no teor de matéria orgânica (21 para 43,5g dm-3 e P disponível (4,4 para 156mg dm-3 e total, se mostrando superior ao mineral mais calagem. Mesmo com uso da maior dose, não foi observado acréscimos nos teores de 32 metais analisados, dado à baixa concentração de metais no lodo. Os resultados obtidos indicam que é possível o uso de doses elevadas de lodo de esgoto na recuperação de áreas degradadas.

  5. Atomization of liquids in a Pease-Anthony Venturi scrubber. Part II. Droplet dispersion.

    Science.gov (United States)

    Gonçalves, J A S; Costa, M A M; Aguiar, M L; Coury, J R

    2004-12-10

    Droplet distribution is of fundamental importance to the performance of a Venturi scrubber. Ensuring good liquid distribution can increase performance at minimal liquid usage. In this study, droplet dispersion in a rectangular Pease-Anthony Venturi scrubber, operating horizontally, was examined both theoretically and experimentally. The Venturi throat cross-section was 24 mm x 35 mm, and the throat length varied from 63 to 140 mm. Liquid was injected through a single orifice (1.0 mm diameter) on the throat wall. This arrangement allowed the study of the influence of jet penetration on droplet distribution. Gas velocity at the throat was 58.3 and 74.6 m/s, and the liquid flow rate was 286, 559 and 853 ml/min. A probe with a 2.7 mm internal diameter was used to isokinetically remove liquid from several positions inside the equipment. It was possible to study liquid distribution close to the injection point. A new model for droplet dispersion, which incorporates the new description of the jet atomization process developed by the present authors in the first article of this series, is proposed and evaluated. The model predicted well the experimental data.

  6. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    Science.gov (United States)

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results

  7. Effects of Sludge-amendment on Mineralization of Pyrene and Microorganisms in Sludge and Soil

    DEFF Research Database (Denmark)

    Klinge, C; Gejlsbjerg, B; Ekelund, Flemming

    2001-01-01

    . Sludge-amendment enhanced the mineralization of pyrene in the soil compared to soil without sludge, and the most extensive mineralization was observed when the sludge was kept in a lump. The number of protozoa, heterotrophic bacteria and pyrene-mineralizing bacteria was much higher in the sludge compared...... to the soil. The amendment of sludge did not affect the number of protozoa and bacteria in the surrounding soil, which indicated that organic contaminants in the sludge had a little effect on the number of protozoa and bacteria in the surrounding soil...

  8. Full-scale performance of selected starch-based biodegradable polymers in sludge dewatering and recommendation for applications.

    Science.gov (United States)

    Zhou, Kuangxin; Stüber, Johan; Schubert, Rabea-Luisa; Kabbe, Christian; Barjenbruch, Matthias

    2018-01-01

    Agricultural reuse of dewatered sludge is a valid route for sludge valorization for small and mid-size wastewater treatment plants (WWTPs) due to the direct utilization of nutrients. A more stringent of German fertilizer ordinance requires the degradation of 20% of the synthetic additives like polymeric substance within two years, which came into force on 1 January 2017. This study assessed the use of starch-based polymers for full-scale dewatering of municipal sewage sludge. The laboratory-scale and pilot-scale trials paved the way for full-scale trials at three WWTPs in Germany. The general feasibility of applying starch-based 'green' polymers in full-scale centrifugation was demonstrated. Depending on the sludge type and the process used, the substitution potential was up to 70%. Substitution of 20-30% of the polyacrylamide (PAM)-based polymer was shown to achieve similar total solids (TS) of the dewatered sludge. Optimization of operational parameters as well as machinery set up in WWTPs is recommended in order to improve the shear stability force of sludge flocs and to achieve higher substitution potential. This study suggests that starch-based biodegradable polymers have great potential as alternatives to synthetic polymers in sludge dewatering.

  9. Effect of seed sludge on characteristics and microbial community of aerobic granular sludge.

    Science.gov (United States)

    Song, Zhiwei; Pan, Yuejun; Zhang, Kun; Ren, Nanqi; Wang, Aijie

    2010-01-01

    Aerobic granular sludge was cultivated by using different kinds of seed sludge in sequencing batch airlift reactor. The influence of seed sludge on physical and chemical properties of granular sludge was studied; the microbial community structure was probed by using scanning electron microscope and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that seed sludge played an important role on the formation of aerobic granules. Seed sludge taken from beer wastewater treatment plant (inoculum A) was more suitable for cultivating aerobic granules than that of sludge from municipal wastewater treatment plant (inoculum B). Cultivated with inoculum A, large amount of mature granules formed after 35 days operation, its SVI reached 32.75 mL/g, and SOUR of granular sludge was beyond 1.10 mg/(g x min). By contrast, it needed 56 days obtaining mature granules using inoculum B. DGGE profiles indicated that the dominant microbial species in mature granules were 18 and 11 OTU when inoculum A and B were respectively employed as seed sludge. The sequencing results suggested that dominant species in mature granules cultivated by inoculum A were Paracoccus sp., Devosia hwasunensi, Pseudoxanthomonas sp., while the dominant species were Lactococcus raffinolactis and Pseudomonas sp. in granules developed from inoculum B.

  10. Research on the influence of anaerobic stabilization of various dairy sewage sludge on biodegradation of polycyclic aromatic hydrocarbons PAHs with the use of effective microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Boruszko, Dariusz, E-mail: d.boruszko@pb.edu.pl

    2017-05-15

    Sewage sludge was taken from a dairy WWTP belonging to Mlekovita Cooperative in Wysokie Mazowieckie. There were excess sludge, flotation sludge and a mixture of excess and flotation sludge from pre-treatment of dairy sewage. The initial content of 16 PAHs in excess sludge before fermentation was approximately 689 µg·kg{sup −1} in dry mass, whereas in post-flotation sludge (which constituted around 30% of raw sludge) it was approximately 95 µg·kg{sup −1} in dry mass. A mixture of excess and flotation sludge had the content of 497,7 µg·kg{sup −1} in dry mass. Through comparison of particular hydrocarbons content in raw sewage sludge to the total PAHs content, it was shown that tricyclic compounds, which constituted 46,3% of the PAHs sum (excess sludge), and tetracyclic compounds, which constituted 60,0% of the PAHs sum (flotation sludge), were the dominating fractions. In the sludge subjected to fermentation in reactors with mixed sludge and surplus activated sludge, the general trend of the course of changes in concentrations of PAHs was similar. Both in the sludge inoculated with EM and in that not inoculated with EM, a significant increase in the total PAHs contents was observed in the first fermentation phase (acidic fermentation) after 7 days of the process. Addition of EM into the sludge did not prevent the PAHs release, and therefore higher concentrations of PAHs sum were recorded during the hydrolysis stage than in sludge before fermentation. A decrease in the sum of PAHs was observed after 2 weeks of fermentation in relation to the quantity observed after 1 week of fermentation (except from post-flotation sludge). In the following weeks, there was further decrease in the concentration of the 16 PAHs sum in all sludge types. However, in sludge without EM inoculation, it was lower than in sludge with EM inoculation. The loss of the majority of tested hydrocarbons was reported in the final phase of fermentation. - Highlights: • The influence of

  11. Research on the influence of anaerobic stabilization of various dairy sewage sludge on biodegradation of polycyclic aromatic hydrocarbons PAHs with the use of effective microorganisms

    International Nuclear Information System (INIS)

    Boruszko, Dariusz

    2017-01-01

    Sewage sludge was taken from a dairy WWTP belonging to Mlekovita Cooperative in Wysokie Mazowieckie. There were excess sludge, flotation sludge and a mixture of excess and flotation sludge from pre-treatment of dairy sewage. The initial content of 16 PAHs in excess sludge before fermentation was approximately 689 µg·kg −1 in dry mass, whereas in post-flotation sludge (which constituted around 30% of raw sludge) it was approximately 95 µg·kg −1 in dry mass. A mixture of excess and flotation sludge had the content of 497,7 µg·kg −1 in dry mass. Through comparison of particular hydrocarbons content in raw sewage sludge to the total PAHs content, it was shown that tricyclic compounds, which constituted 46,3% of the PAHs sum (excess sludge), and tetracyclic compounds, which constituted 60,0% of the PAHs sum (flotation sludge), were the dominating fractions. In the sludge subjected to fermentation in reactors with mixed sludge and surplus activated sludge, the general trend of the course of changes in concentrations of PAHs was similar. Both in the sludge inoculated with EM and in that not inoculated with EM, a significant increase in the total PAHs contents was observed in the first fermentation phase (acidic fermentation) after 7 days of the process. Addition of EM into the sludge did not prevent the PAHs release, and therefore higher concentrations of PAHs sum were recorded during the hydrolysis stage than in sludge before fermentation. A decrease in the sum of PAHs was observed after 2 weeks of fermentation in relation to the quantity observed after 1 week of fermentation (except from post-flotation sludge). In the following weeks, there was further decrease in the concentration of the 16 PAHs sum in all sludge types. However, in sludge without EM inoculation, it was lower than in sludge with EM inoculation. The loss of the majority of tested hydrocarbons was reported in the final phase of fermentation. - Highlights: • The influence of applying

  12. Impact of sludge properties on solid-liquid separation of activated sludge

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    2016-01-01

    Solid-liquid separation of activated sludge is important both directly after the biological treatment of wastewater and for sludge dewatering. The separation of solid from the treated wastewater can be done by clarifiers (conventional plants) or membrane (MBR). Further, part of the sludge is taken...... out from the proces and usually dewatered before further handling. The separation process is costly. Moreover, the separation process depends on the composition and the properties of the sludge. The best separation is obtained for sludge that contains strong, compact flocs without single cells...... and dissolved extracellular polymeric substances (EPS). Polyvalent ions improve the floc strangth and improve the separation whereas monovalent ions (e.g. from road salt, sea water intrusion and industry) reduces impair the separation. Further high pH impairs the separation process due to floc disintegration...

  13. Wasting Away: To Sludge or Not to Sludge?

    Directory of Open Access Journals (Sweden)

    L Nicolle

    2001-01-01

    Full Text Available Following a century of high standards of sanitation, food and water safety in North America are often taken for granted. Recent outbreaks of illness attributed to food and water contamination, however, have challenged this complacency. Now, sludge is added to the list of concerns. Sewage sludge is the muddy substance that remains after the treatment of municipal sewage. This material includes not only human waste, but also household and industrial toxic wastes disposed of in local sewers. Federal and provincial Canadian regulations support the use of this material as fertilizer, within acceptable guidelines, as does the Environmental Protection Agency in the United States. The safety of sludge, however, is questioned by some individuals and groups. Specifically, the risk of infectious agents and toxins to workers or other exposed individuals, and the potential for heavy metals and organic chemicals to be transferred from sludge-treated fields into crops are concerns.

  14. Carbon-14 in sludge

    International Nuclear Information System (INIS)

    Fowler, J.R.; Coleman, C.J.

    1983-01-01

    The level of C-14 in high-level waste is needed to establish the amount of C-14 that will be released to the environment either as off-gas from the Defense Waste Processing Facility (DWPF) or as a component of saltstone. Available experimental data confirmed a low level of C-14 in soluble waste, but no data was available for sludge. Based on the processes used in each area, Purex LAW sludge in F-area and HM HAW sludge in H-area will contain the bulk of any sludge produced by the cladding. Accordingly, samples from Tank 8F containing Purex LAW and Tank 15H containing HM HAW were obtained and analyzed for C-14. These two waste types constitute approximately 70% of the total sludge inventory now stored in the waste tanks. Results from analyses of these two sludge types show: the total C-14 inventory in sludge now stored in the waste tanks is 6.8 Ci; C-14 releases to the atmosphere from the DWPF will average approximately 0.6 Ci annually at the projected sludge processing rate in the DWPF. 4 references, 2 tables

  15. Wood ash to treat sewage sludge for agricultural use

    Energy Technology Data Exchange (ETDEWEB)

    White, R.K. [Clemson Univ., SC (United States)

    1993-12-31

    About 90% of the three million tons of wood ash generated in the United States from wood burning facilities is being landfilled. Many landfills are initiated tipping fees and/or restrictions on the disposal of special wastes such as ash. The purpose of this work was to evaluate (1) the feasibility of using wood ash to stabilize sewage sludge and (2) the fertilizer and liming value of the sludge/ash mixture on plant response and soil pH. Research showed that wood ash, when mixed with sludge, will produce a pH above 12.0, which meets US EPA criteria for pathogen reduction for land application on non-direct food chain crops. Different ratios of wood ash to sludge mixtures were tested and the 1:1 ratio (by weight) was found to be optimal. Five replications of wood ash from four sources were tested for moisture content, pH and fertilizer nutrients. The pH of the ash/sludge mixture (1:1) on day one ranged from 12.4 to 13.2. In most cases the pH remained the same over a 21 day test or only dropped 0.1 to 0.3 units. Analyses of the mixtures showed that heavy metal concentrations (As, B, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, S, Se, Zn) were low. The 1:1 ash/sludge mixture had a calcium carbonate equivalency of 17%. Green house pot studies using tall fescue grass were loadings of 300 to 750 pounds per acre of TKN-N than for 500 lb/acre of 10-10-10 commercial fertilizer. Plant tissue analysis showed N, P, K, Ca, and Mg levels to be within the sufficiency range for tall fescue.

  16. Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode

    Science.gov (United States)

    Zhang, Jia-Jia; Fan, Hao-Xiang; Dai, Xiao-Hu; Yuan, Shi-Jie

    2018-04-01

    Digested sludge, as the main by-product of the sewage sludge anaerobic digestion process, still contains considerable organic compounds. In this protocol, we report a facile method for preparing digested sludge-derived self-doped porous carbon material for high-performance supercapacitor electrodes via a sustainable pyrolysis/activation process. The obtained digested sludge-derived carbon material (HPDSC) exhibits versatile O-, N-doped hierarchical porous framework, high specific surface area (2103.6 m2 g-1) and partial graphitization phase, which can facilitate ion transport, provide more storage sites for electrolyte ions and enhance the conductivity of active electrode materials. The HPDSC-based supercapacitor electrodes show favourable energy storage performance, with a specific capacitance of 245 F g-1 at 1.0 A g-1 in 0.5 M Na2SO4; outstanding cycling stability, with 98.4% capacitance retention after 2000 cycles; and good rate performance (211 F g-1 at 11 A g-1). This work provides a unique self-doped three-dimensional hierarchical porous carbon material with a favourable charge storage capacity and at the same time finds a high value-added and environment-friendly strategy for disposal and recycling of digested sludge.

  17. Energy saving type area hot water supply system using heat of hot waste water from the sludge center as hot source for hot water; New energy rokko airando CITY. Surajjisenta karano onhaisuinetsu wo kyuyuyo netsugen ni riyosuru sho energy gata chiiki onsui kyokyu system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Heat source of area hot water supply system in Rokko island City (man-made island) is heat of combustion at the sludge center (sludge incineration plant) in this island. Dehydrated sludge cakes (230ton/day) brought from seven sewage disposal plants in Kobe City is combusted (850degC) in the fluid bed hearth. Combustion gas washed in the scrubber, hot waste water after the washing give heat into heat transfer water in the first heat exchanger. Temperature being 64degC in summer and about 50degC in winter, this heat transfer water is sent into the second heat exchanger at every condominium building throughout the pipe line system circulating in the area. At each home, gas heater and hot water supply devices fitted, additional combustion is not necessary in summer but is used according to demand in other seasons. This hot water supply service has been carried out since 1988 and at present has been used by 3600 homes. Amount of supplying hot water being about 3000cu.m/day, saving is calculated roughly as 60% of gas for hot water supply. Fee for this system is 1500/yen/month uniformly for each home. 14 figs.

  18. Evaluation of robustness of fly ash stabilized sewage sludge (FSS) as liner - Durability, percolation and drainage water quality; Bedoemning av laangtidsegenskaper hos taetskikt bestaaende av flygaskastabiliserat avloppsslam, FSA - Bestaendighet, taethet och ytutlakning

    Energy Technology Data Exchange (ETDEWEB)

    Macsik, Josef; Laendell, Maerta; Haakansson, Karsten

    2012-02-15

    This project shows that fly ash stabilized sewage sludge (FSS) is watertight and resistant as liner in landfills. The presented results can lead to that more landfills will use FSS as liner, and landfills already using FSS together with geomembrane, can leave out the latter without risking contamination of the drainage water collected by the closure construction

  19. STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT

    Energy Technology Data Exchange (ETDEWEB)

    CROWE RD; APTHORPE R; LEE SJ; PLYS MG

    2010-04-29

    The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

  20. COMBINED COMPOST AND VERMICOMPOSTING PROCESS IN THE TREATMENT AND BIOCONVERSION OF SLUDGE

    Directory of Open Access Journals (Sweden)

    H. Alidadi, A. R. Parvaresh and M. R. Shamansouri

    2005-10-01

    Full Text Available Traditional thermophillic composting is commonly for treatment of sludge. A related technique as vermicomposting process, using earthworms to breakdown sludge, is also becoming popular. These two techniques have their inherent advantages and disadvantages. The combined approach suggested in this study to enhance the overall process and improve the products qualities. Two systems,vermicomposting and combined compost vermicomposting processes, have been investigated in this study. The sludge used in this study was obtained from the drying beds of South Isfahan wastewater treatment plant.The sludge mixed with sawdust to provide C/N ratio of 25/1.Eisenia fetida was the species of earthworms used in the vermicomposting processes.The results obtained indicates reduction in the amount of volatile solids,total carbon and C/N ratio with the vermicompost age,which indicates the reduction in the biodegradable organic content and mineralization of sludge. Also increase in phosphorus concentration by the end process because of mineralization of organic matter. The results indicate that, a system that combines the two mentioned processes not only shortens stabilization time, but also improves the products quality. Combining the two systems resulted in a product that was more stable and homogenous; the product could meet the pathogen reduction requirements.

  1. Effects of municipal sewage sludge doses on the yield, some yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... Whereas grain yield, which was the highest component was ... land application, many studies have been performed ... grain. Analysis of variance was used to compare treatment ... een 17.0 - 164.0 cm depending on the environmental .... municipal sewage sludge for the stabilization of soil contaminated by.

  2. Nuclear safety of extended sludge processing on tank 42 and 51 sludge (DWPF sludge feed batch one)

    International Nuclear Information System (INIS)

    Clemons, J.S.

    1993-01-01

    The sludge in tanks 42 and 51 is to be washed with inhibited water to remove soluble salts and combined in tank 51 in preparation for feed to DWPF. Since these tanks contain uranium and plutonium, the process of washing must be evaluated to ensure subcriticality is maintained. When the sludge is washed, inhibited water is added, the tank contents are slurried and allowed to settle. The sludge wash water is then decanted to the evaporator feed tank where it is fed to the evaporator to reduce the volume. The resulting evaporator concentrate is sent to a salt tank where it cools and forms crystallized salt cake. This salt cake will later be dissolved, processed in ITP and sent to Z-Area. This report evaluates the supernate and sludge during washing, the impact on the evaporator during concentration of decanted wash water, and the salt tank where the concentrated supernate is deposited. The conclusions generated in this report are specific to the sludge currently contained in tanks 42 and 51

  3. Application of the International Water Association activated sludge models to describe aerobic sludge digestion.

    Science.gov (United States)

    Ghorbani, M; Eskicioglu, C

    2011-12-01

    Batch and semi-continuous flow aerobic digesters were used to stabilize thickened waste-activated sludge at different initial conditions and mean solids retention times. Under dynamic conditions, total suspended solids, volatile suspended solids (VSS) and total and particulate chemical oxygen demand (COD and PCOD) were monitored in the batch reactors and effluent from the semi-continuous flow reactors. Activated Sludge Model (ASM) no. 1 and ASM no. 3 were applied to measured data (calibration data set) to evaluate the consistency and performances of models at different flow regimes for digester COD and VSS modelling. The results indicated that both ASM1 and ASM3 predicted digester COD, VSS and PCOD concentrations well (R2, Ra2 > or = 0.93). Parameter estimation concluded that compared to ASM1, ASM3 parameters were more consistent across different batch and semi-continuous flow runs with different operating conditions. Model validation on a data set independent from the calibration data successfully predicted digester COD (R2 = 0.88) and VSS (R2 = 0.94) concentrations by ASM3, while ASM1 overestimated both reactor COD (R2 = 0.74) and VSS concentrations (R2 = 0.79) after 15 days of aerobic batch digestion.

  4. Natural attenuation of toxic metal phytoavailability in 35-year-old sewage sludge-amended soil.

    Science.gov (United States)

    Tai, Yiping; Li, Zhian; Mcbride, Murray B

    2016-04-01

    Toxic heavy metals persist in agricultural soils and ecosystem for many decades after their application as contaminants in sewage sludge and fertilizer products This study assessed the potential long-term risk of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in land-applied sewage sludge to food crop contamination. A sewage sludge-amended soil (SAS) aged in the field more than 35 years was used in a greenhouse pot experiment with leafy vegetables (lettuce and amaranth) having strong Cd and Zn accumulation tendencies. Soil media with variable levels of available Cd, Zn, and Cu (measured using 0.01 M CaCl2 extraction) were prepared by diluting SAS with several levels of uncontaminated control soil. Despite long-term aging in the field, the sludge site soil still retains large reserves of heavy metals, residual organic matter, phosphorus, and other nutrients, but its characteristics appear to have stabilized over time. Nevertheless, lettuce and amaranth harvested from the sludge-treated soil had undesirable contents of Cd and Zn. The high plant uptake efficiency for Cd and Zn raises a concern regarding the quality and safety of leafy vegetables in particular, when these crops are grown on soils that have been amended heavily with sewage sludge products at any time in their past.

  5. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge

    International Nuclear Information System (INIS)

    Butkovskyi, A.; Ni, G.; Hernandez Leal, L.; Rijnaarts, H.H.M.; Zeeman, G.

    2016-01-01

    Highlights: • Micropollutants removal in the composted UASB sludge ranged from 87% to 99%. • 99% removal of the persistent pharmaceutical diclofenac is achieved. • Triclosan is partly transformed into methyltriclosan that is accumulated in compost. - Abstract: The excess sludge from Up-flow anaerobic sludge bed (UASB) reactor operated on source separated toilet wastewater is a potential source of nutrients and organic matter. It can be further stabilized and dried by composting and applied as a soil amendment. Presence of pathogens, heavy metals and micropollutants in the compost derived from anaerobic sludge is thus undesirable. This paper focuses on removal of micropollutants, typically present in domestic wastewater, via composting of UASB sludge with waste wood. Estrone, diclofenac, ibuprofen, metoprolol, carbamazepine, galaxolide and triclosan were spiked to a mixture of UASB sludge and waste wood. Their concentrations were monitored during 92 days of composting at controlled temperature conditions. All studied micropollutants were removed at various rates with overall removal ranging from 99.9% for ibuprofen, diclofenac and estrone to 87.8% for carbamazepine. Accumulation of methyltriclosan as by-product of triclosan degradation was observed. The prospects and limitations of the integration of a composting process into Source Separated Sanitation concepts are discussed.

  6. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge

    Energy Technology Data Exchange (ETDEWEB)

    Butkovskyi, A., E-mail: andrii.butkovskyi@wur.nl [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands); Wetsus, Center of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden (Netherlands); Ni, G. [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands); Hernandez Leal, L. [Wetsus, Center of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden (Netherlands); Rijnaarts, H.H.M.; Zeeman, G. [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands)

    2016-02-13

    Highlights: • Micropollutants removal in the composted UASB sludge ranged from 87% to 99%. • 99% removal of the persistent pharmaceutical diclofenac is achieved. • Triclosan is partly transformed into methyltriclosan that is accumulated in compost. - Abstract: The excess sludge from Up-flow anaerobic sludge bed (UASB) reactor operated on source separated toilet wastewater is a potential source of nutrients and organic matter. It can be further stabilized and dried by composting and applied as a soil amendment. Presence of pathogens, heavy metals and micropollutants in the compost derived from anaerobic sludge is thus undesirable. This paper focuses on removal of micropollutants, typically present in domestic wastewater, via composting of UASB sludge with waste wood. Estrone, diclofenac, ibuprofen, metoprolol, carbamazepine, galaxolide and triclosan were spiked to a mixture of UASB sludge and waste wood. Their concentrations were monitored during 92 days of composting at controlled temperature conditions. All studied micropollutants were removed at various rates with overall removal ranging from 99.9% for ibuprofen, diclofenac and estrone to 87.8% for carbamazepine. Accumulation of methyltriclosan as by-product of triclosan degradation was observed. The prospects and limitations of the integration of a composting process into Source Separated Sanitation concepts are discussed.

  7. Ecological effects of scrubber water discharge on coastal plankton: Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa.

    Science.gov (United States)

    Koski, Marja; Stedmon, Colin; Trapp, Stefan

    2017-08-01

    To meet the oncoming requirements for lower sulphur emissions, shipping companies can install scrubbers where the exhaust is sprayed with seawater and subsequently discharged to the sea. The discharge water has a pH around 3 and contains elevated concentrations of vanadium, nickel, lead and hydrocarbons. We investigated 1) the threshold concentrations of scrubber discharge water for survival, feeding and reproduction of the copepod Acartia tonsa, 2) whether the effects depend on the exposure route and 3) whether exposure to discharge water can be detected in field-collected organisms. A direct exposure to discharge water increased adult copepod mortality and reduced feeding at metal concentrations which were orders of magnitude lower than the lethal concentrations in previous single-metal studies. In contrast, reproduction was not influenced by dietary uptake of contaminants. Scrubber water constituents could have synergistic effects on plankton productivity and bioaccumulation of metals, although the effects will depend on their dilution in the marine environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sludge busters

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Max

    2010-07-15

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  9. Sludge busters

    International Nuclear Information System (INIS)

    Pichon, Max

    2010-01-01

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  10. Independent Panel Evaluation of Dry Sludge PISA Program

    International Nuclear Information System (INIS)

    Fondeur, F.F.

    1999-01-01

    Dr. Kirk Yeager and Mr. Marvin Banks from Energetic Material Research and Technology Center (EMRTC) evaluated the Savannah River Site (SRS) efforts in the Dry Sludge program. They evaluated four program areas: energetic material formation, stability, initiation, and propagation. The panel evaluation included a site visit (July 13, 1999 and July 14, 1999) as well as a review of various reports and presentations by researchers involved in the program

  11. Independent Panel Evaluation of Dry Sludge PISA Program

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.F.

    1999-10-20

    Dr. Kirk Yeager and Mr. Marvin Banks from Energetic Material Research and Technology Center (EMRTC) evaluated the Savannah River Site (SRS) efforts in the Dry Sludge program. They evaluated four program areas: energetic material formation, stability, initiation, and propagation. The panel evaluation included a site visit (July 13, 1999 and July 14, 1999) as well as a review of various reports and presentations by researchers involved in the program.

  12. Chemical analysis of sewage sludge of southern sewerage treatment plant (SSTP) Hyderabad for achieving sustainable development in sector of agriculture

    International Nuclear Information System (INIS)

    Qureshi, K.; Shaikh, N.; Ahmed, R.S.; Nawaz, Z.

    2003-01-01

    A study on the chemical analysis of sewage sludge of southern sewerage treatment plant (SSPP) Hyderabad was studied. Chemical analysis on sludge samples collected form the waste stabilization for different micro-nutrients (essential manures, nitrogen, phosphorus, potassium, calcium and magnesium) were conducted in year 1999-2000. These nutrients and metal were detected by reliable analytical method i.e. Kjeldahls method and Atomic Absorption Spectrophotometer. The analysis showed that sewage sludge contained sufficient quantity of primary and secondary nutrients, hence sewage sludge could be utilized as a natural fertilizer. This will not only solve the disposal problem but it would also be environmentally safer way of providing regulators to the plants. (author)

  13. Biochemical stability of sewage sludge chars and their impact on soil organic matter of a Mediterranean Cambisol

    Science.gov (United States)

    Paneque, Marina; María De la Rosa, José; Aragón, Carlos; Kern, Jürgen; Knicker, Heike

    2016-04-01

    Transformation of sewage sludge (SS) into char achieves sludge hygienisation, which is necessary prior its application into agricultural soils. The pyrolysis of SS increases its stability in a degree which depends on the thermal treatment used. Thus, chars produced by using hydrothermal carbonization are typically more stable than normal soil organic matter (SOM), but less stable than chars from dry pyrolysis (Libra et al., 2011). Addition of highly-recalcitrant SS-chars to soil will likely increase its carbon sequestration potential; however the fertilizing properties of SS may be compromised due to its alteration during the pyrolysis. The main goal of this work was to investigate the biochemical recalcitrance of two 13C-enriched SS-chars once applied in a Mediterranean Cambisol as well as to evaluate their impact on the SOM quality and carbon stability. Thus, we studied the distribution of 13C between plants and soil after the addition of the 13C-enriched chars (2 atm%) to the soil. Therefore, we performed a greenhouse incubation experiment, using a Mediterranean Cambisol as matrix and tested the following treatments: control (soil alone), raw SS, SS-hydrochar, SS-pyrochar. The SS was produced in a pilot-scale waste-water plant and enriched with 13C by the addition of 13C-glucose during the treatment. The amendment was only applied to the upper 2 cm of the soil matrix where it accounted for 5% of its dry weight. Per pot, 25 seeds of Lolium perenne were sowed and incubated under controlled conditions. The biomass production as well as the concentration of 13C in leaves and roots was determined after 1, 2 and 5 months. The partitioning of the 13C between soil and plant and its transformation into bioavailable forms were monitored by stable isotopic mass spectrometry. The 13C-enrichment of the chars allowed the use of solid-state 13C NMR spectroscopy as a means for the detection of chemical alterations of the chars during their aging. Libra J., Ro K., Kammann C

  14. Use of life cycle assessment to evaluate environmental impacts associated with the management of sludge and biogas.

    Science.gov (United States)

    do Amaral, Karina Cubas; Aisse, Miguel Mansur; Possetti, Gustavo Rafael Collere; Prado, Marcelo Real

    2018-05-01

    Upflow anaerobic sludge blanket (UASB) reactors used in sewage treatment generate two by-products that can be reused: sludge and biogas. At the present time in Brazil, most of this resulting sludge is disposed of in sanitary landfills, while biogas is commonly burned off in low-efficiency flares. The aim of the present study was to use life cycle assessment to evaluate the environmental impacts from four different treatment and final destination scenarios for the main by-products of wastewater treatment plants. The baseline scenario, in which the sludge was sanitized using prolonged alkaline stabilization and, subsequently, directed toward agricultural applications and the biogas destroyed in open burners, had the most impact in the categories of global warming, terrestrial ecotoxicity, and human non-carcinogenic toxicity. The scenario in which heat resulting from biogas combustion is used to dry the sludge showed significant improvements over the baseline scenario in all the evaluated impact categories. The recovery of heat from biogas combustion decreased significantly the environmental impact associated with global warming. The combustion of dried sludge is another alternative to improve the sludge management. Despite the reduction of sludge volume to ash, there are environmental impacts inherent to ozone formation and terrestrial acidification.

  15. Relationship between self-priming and hydraulic behavior in Venturi Scrubber

    International Nuclear Information System (INIS)

    Horiguchi, Naoki; Kaneko, Akiko; Abe, Yutaka; Yoshida, Hiroyuki

    2014-01-01

    As revealed by Fukushima Daiichi nuclear disaster, countermeasures against severe accident in nuclear power plants are an urgent need. In particular, from the viewpoint of protecting a containment and suppressing the diffusion of radioactive materials, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi Scrubbers System is used to realize filtered venting without any power supply (Lindau, 1988) (Rust, et al., 1995). The system operates with any power supply and high pressure gas filled in the containment. This system is able to define to be composed of Venturi Scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through a submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer parts of a throat part of the VS. This type of the VS is called self-priming ones. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. In this study, to understand the VS operation characteristics for the filtered venting, we discussed the mechanisms of the self-priming phenomena and the hydraulic behavior in the VS. In this paper, we conducted a visualized observation of the hydraulic behavior in the VS and measured liquid flow rate of the self-priming. As a result, it is shown that there is the possibility that the VS decontamination performance falls low level with no self-priming. (author)

  16. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings.

    Science.gov (United States)

    Larsen, Julie D; Nielsen, Steen M; Scheutz, Charlotte

    2017-11-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH 4 ) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore space, the concentration of CH 4 often exceeded the concentration of carbon dioxide (CO 2 ). However, the total emission of CO 2 from the surface of the sludge residue exceeded the total emission of CH 4 , suggesting that CO 2 was mainly produced in the layer of newly applied sludge and/or that CO 2 was emitted from the sludge residue more readily compared to CH 4 .

  17. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    An improved design of a sludge recovery apparatus used in the fabrication of nuclear fuel is described. This apparatus provides for automatic separation of sludge from the grinder coolant, drying of the sludge into a flowable powder and transfer of the dry powder to a salvage container. It can be constructed to comply with criticality-safe-geometry requirements and to obviate need for operating personnel in its immediate vicinity. (UK)

  18. Description of dedusting in wet flue gas scrubbers with purposeful utilization of the secondary dispersion; Detailliertere Simulation der Staubabscheidung in Nasswaeschern durch Beruecksichtigung der Sekundaerdispersion

    Energy Technology Data Exchange (ETDEWEB)

    Feldkamp, M.; Lessmann, B.; Neumann, J.; Fahlenkamp, H. [Dortmund Univ. (Germany). Lehrstuhl Umwelttechnik

    2003-07-01

    Modern wet gas scrubbers are used in the power plant technology for the flue gas desulphurisation of coal-fired plants. For this the washing liquid is sprayed by numerous nozzles. The specific arrangement of the nozzles in several levels makes it possible for the spray to penetrate mutually. The penetration and overlapping of the spray in the wet scrubber causes the effect of secondary dispersion. This effect can be used effectively to improve the efficiency of the atomisation and to improve the absorption of the pollution gases in a flue gas desulphurisation scrubber. Analyses show that the cleaning efficiency of a wet scrubber depends on the distribution and the size of the drops. (orig.) [German] Moderne Gaswaescher werden in der Kraftwerkstechnik fuer die Rauchgasentschwefelung kohlebefeuerter Anlagen eingesetzt. Hierzu wird Waschfluessigkeit mit Hilfe zahlreicher Duesen zerstaeubt. Eine gezielte Anordnung der Duesen in mehreren Spruehebenen ermoeglicht es den Sprays der Duesen, sich gegenseitig zu durchdringen. Der Effekt der Sekundaerdisperson, der beim Ueberschneiden und Durchdringen der Sprays waehrend der Zerstaeubung im Rauchgaswaescher auftritt, laesst sich wirksam zur Verbesserung des Wirkungsgrades einer Rauchgasentschwefelungsanlage nutzen. Durchgefuehrte Untersuchungen zeigen, dass die Reinigungsleistung eines nassen REA-Waeschers von der Verteilung und der Groesse der Tropfen abhaengt. (orig.)

  19. CSER 90-006, addendum 1: Criticality safety control for source term reduction project in the scrubber glovebox of Building 232-Z. Revision 1

    International Nuclear Information System (INIS)

    Hess, A.L.

    1995-01-01

    This Criticality Safety Evaluation Report addendum extends the coverage of the original CSER (90-006) about dismantling the ductwork in 232-Z to include cleanout of the Scrubber Glovebox, with an estimated residual Pu holdup of less than 200 grams. For conservatism and containment considerations, the provisions about waste packaging and water exclusion from the original work are retained, even though it is not credible for the Scrubber Pu content to be made critical with water added (NDA gives about 1/3 a minimum critical mass)

  20. IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

    OpenAIRE

    MAJID ALI; YAN CHANGQI; SUN ZHONGNING; GU HAIFENG; WANG JUNLONG; KHURRAM MEHBOOB

    2013-01-01

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na2S2O3) in water to remove the gaseous iodine (I2) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine...

  1. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen M; Scheutz, Charlotte

    2017-01-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological...... processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during...

  2. Sludge technology assessment

    International Nuclear Information System (INIS)

    Krause, T.R.; Cunnane, J.C.; Helt, J.E.

    1994-12-01

    The retrieval, processing, and generation of final waste forms from radioactive tank waste sludges present some of the most challenging technical problems confronting scientists and engineers responsible for the waste management programs at the various Department of Energy laboratories and production facilities. Currently, the Department of Energy is developing a strategy to retrieve, process, and generate a final waste form for the sludge that meets the acceptance criteria for the final disposition. An integral part of this strategy will be use of separation processes that treat the sludge; the goal is to meet feed criteria for the various processes that will generate the final waste form, such as vitrification or grouting. This document is intended to (1) identify separation technologies which are being considered for sludge treatment at various DOE sites, (2) define the current state of sludge treatment technology, (3) identify what research and development is required, (4) identify current research programs within either DOE or academia developing sludge treatment technology, and (5) identify commercial separation technologies which may be applicable. Due to the limited scope of this document, technical evaluations regarding the need for a particular separations technology, the current state of development, or the research required for implementation, are not provided

  3. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater.

    Science.gov (United States)

    Franca, R D G; Ortigueira, J; Pinheiro, H M; Lourenço, N D

    2017-09-01

    Treatment of the highly polluting and variable textile industry wastewater using aerobic granular sludge (AGS) sequencing batch reactors (SBRs) has been recently suggested. Aiming to develop this technology application, two feeding strategies were compared regarding the capacity of anaerobic-aerobic SBRs to deal with disturbances in the composition of the simulated textile wastewater feed. Both a statically fed, anaerobic-aerobic SBR and an anaerobic plug-flow fed, anaerobic-aerobic SBR could cope with shocks of high azo dye concentration and organic load, the overall chemical oxygen demand and color removal yields being rapidly restored to 80%. Yet, subsequent azo dye metabolite bioconversion was not observed, along the 315-day run. Moreover, switching from a starch-based substrate to acetate in the feed composition deteriorated AGS stability. Overall, the plug-flow fed SBR recovered more rapidly from the imposed disturbances. Further research is needed towards guaranteeing long-term AGS stability during the treatment of textile wastewater.

  4. Activated sludge model No. 3

    DEFF Research Database (Denmark)

    Gujer, W.; Henze, M.; Mino, T.

    1999-01-01

    The Activated Sludge Model No. 3 (ASM3) can predict oxygen consumption, sludge production, nitrification and denitrification of activated sludge systems. It relates to the Activated Sludge Model No. 1 (ASM1) and corrects for some defects of ASM I. In addition to ASM1, ASM3 includes storage of org...

  5. Co-hydrothermal treatment of fallen leaves with iron sludge to prepare magnetic iron product and solid fuel.

    Science.gov (United States)

    Gu, Lin; Li, Binglian; Wen, Haifeng; Zhang, Xin; Wang, Liang; Ye, Jianfeng

    2018-06-01

    The hydrothermal carbonization (HTC) was performed on Metasequoia Leaves (ML) in the presence of iron sludge, both of which were generated as solid residuals. The relations between sludge, char's properties and operating conditions were systemically investigated. Iron sludge primarily catalyzed the efficient formation of char with higher heating value (HHV) becoming 1.15-1.65 times of ML (18.21 MJ/kg) and was meanwhile reduced to magnetite. The hydrated Fe ions in octahedron crystals acted as nucleophiles facilitating the dehydration and decarboxylation reactions. The increased HHV is found strong temperature dependent while prolonging the residence time is more preferable for low organic acids generation. Thermogravimetric analysis confirmed the iron sludge enhanced conversion of volatile to fixed carbon. The as-prepared solid char showed better stability after catalytic HTC treatment, having ignition temperature increased from 253 to 426 °C as compared to the char prepared without iron sludge addition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Effects of ultrasonic disintegration of excess sludge obtained in disintegrators of different constructions.

    Science.gov (United States)

    Zielewicz, Ewa; Tytła, Malwina

    2015-01-01

    The ultrasonic disintegration of excess sludge is placed after the mechanical thickening but before the digestion tanks in order to intensify the process of sludge stabilization. The effects obtained directly after ultrasonic disintegration depend on many factors and can be grouped in two main categories: factors affecting the quality of sludge and those associated with the construction of disintegrators and its parameters. The ultrasonic disintegration research was carried out using three types of structural solutions of disintegrators. Two of them, that is, WK-2000 ultrasonic generator (P = 400 W) working with a thin sonotrode and WK-2010 ultrasonic generator (P = 100-1000 W) working with a new type construction emitter lens sonotrode, were compared with the influence of a washer with a flat emitter. The investigations have shown that in the same sludge, using the same value of volumetric energy, the resulting effect depends on the construction of the ultrasonic disintegrator, that is, design of the head and the ratio between the field of the emitter and the field of the chamber in sonicated medium.

  7. Efficiency of a pilot-scale integrated sludge thickening and digestion reactor in treating low-organic excess sludge.

    Science.gov (United States)

    He, Qiang; Li, Jiang; Liu, Hongxia; Tang, Chuandong; de Koning, Jaap; Spanjers, Henri

    2012-06-01

    The sludge production from medium- and small-scale wastewater treatment plants in the Three Gorges Reservoir Region is low and non-stable; especially, the organic content in this sludge is low (near 40% of VS/TS). An integrated thickening and digestion (ISTD) reactor was developed to treat this low-organic excess sludge. After a flow test and start-up experiment of the reactor, a running experiment was used to investigate the excess sludge treatment efficiency under five different excess sludge inflows: 200, 300, 400, 500 and 400 L/d (a mixture of excess sludge and primary sludge in a volume ratio of 9:1). This trial was carried out in the wastewater treatment plant in Chongqing, which covers 80% of the Three Gorges Reservoir Region, under the following conditions: (1) sludge was heated to 38-40 degrees C using an electrical heater to maintain anaerobic mesophilic digestion; (2) the biogas produced was recirculated to mix raw sludge with anaerobic sludge in the reactor under the flow rate of 12.5 L/min. There were three main results. Firstly, the flow pattern of the inner reactor was almost completely mixed under the air flow of 12.0 L/min using clear water. Secondly, under all the different sludge inflows, the water content in the outlet sludge was below 93%. Thirdly, the organic content in the outlet sludge was decreased from 37% to 30% and from 24% to 20%, whose removal ratio was in relation to the organic content of the inlet sludge. The excess sludge treatment capacity of the ISTD reactor was according to the organic content in the excess sludge.

  8. Continuous sulfidogenic wastewater treatment with iron sulfide sludge oxidation and recycle.

    Science.gov (United States)

    Deng, Dongyang; Lin, Lian-Shin

    2017-05-01

    This study evaluated the technical feasibility of packed-bed sulfidogenic bioreactors dosed with ferrous chloride for continuous wastewater treatment over a 450-day period. In phase I, the bioreactors were operated under different combinations of carbon, iron, and sulfate mass loads without sludge recycling to identify optimal treatment conditions. A COD/sulfate mass ratio of 2 and a Fe/S molar ratio of 1 yielded the best treatment performance with COD oxidation rate of 786 ± 82 mg/(L⋅d), which resulted in 84 ± 9% COD removal, 94 ± 6% sulfate reduction, and good iron retention (99 ± 1%) under favorable pH conditions (6.2-7.0). In phase II, the bioreactors were operated under this chemical load combination over a 62-day period, during which 7 events of sludge collection, oxidation, and recycling were performed. The collected sludge materials contained both inorganic and organic matter with FeS and FeS 2 as the main inorganic constituents. In each event, the sludge materials were oxidized in an oxidizing basin before recycling to mix with the wastewater influent. Sludge recycling yielded enhanced COD removal (90 ± 6% vs. 75 ± 7%), and better effluent quality in terms of pH (6.8 ± 0.1 vs. 6.5 ± 0.2), iron (0.7 ± 0.5 vs. 1.9 ± 1.7 mg/L), and sulfide-S (0.3 ± 0.1 vs. 0.4 ± 0.1 mg/L) removal compared to the baseline operation without sludge recycling during phase II. This process exhibited treatment stability with reasonable variations, and fairly consistent sludge content over long periods of operation under a range of COD/sulfate and Fe/S ratios without sludge recycling. The bioreactors were found to absorb recycling-induced changes efficiently without causing elevated suspended solids in the effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A Decontamination Process to Remove Metals and Stabilise Montreal Sewage Sludge

    Directory of Open Access Journals (Sweden)

    G. Mercier

    2002-01-01

    Full Text Available The Montreal Urban Community (MUC treatment plant produces approximately 270 tons of dry sludge daily (tds/day during physicochemical wastewater treatment. The sludges are burned and contribute to the greenhouse effect by producing atmospheric CO2. Moreover, the sludge emanates a nauseating odour during its thermal stabilisation and retains unpleasant odours for the part (25% that is dried and granulated. To solve this particular problem, the treatment plant authorities are currently evaluating an acidic chemical leaching (sulfuric or hydrochloric acid process at a pH between 2 and 3, using an oxidizing agent such as ferric chloride or hydrogen peroxide (METIX-AC technology, patent pending; [20]. They could integrate it to a 70 tds/day granulated sludge production process. Verification of the application of METIX-AC technology was carried out in a pilot plant set up near the sludge production plant of the MUC. The tests showed that METIX-AC technology can be advantageously integrated to the process used at the MUC. The residual copper (274 ± 58 mg/kg and cadmium (5.6 ± 2.9 mg/kg concentrations in the treated sludge meet legislation standards. The results have also shown that odours have been significantly eliminated for the dewatered, decontaminated, and stabilized biosolids (> 97% compared to the non-decontaminated biosolids. A high rate of odour elimination also was obtained for the liquid leached biosolids (> 93%, compared to the untreated liquid biosolids. The fertilising value (N and P is well preserved by the METIX-AC process. Dissolved organic carbon measurements have showed that little organic matter is brought in solution during the treatment. In fact, the average concentration of dissolved organic carbon measured in the treated liquid phase is 966 ± 352 mg/l, whereas it is 1190 ± 325 mg/l in untreated sludge. The treated sludge was first conditioned with an organic polymer and a coagulant aid. It was successfully dewatered with

  10. Bacterial composition of activated sludge - importance for floc and sludge properties

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Thomsen, Trine R.; Nielsen, Jeppe L.

    2003-07-01

    Activated sludge flocs consist of numerous constituents which, together with other factors, are responsible for floc structure and floc properties. These properties largely determine the sludge properties such as flocculation, settling and dewaterability. In this paper we briefly review the present knowledge about the role of bacteria in relation to floc and sludge properties, and we present a new approach to investigate the identity and function of the bacteria in the activated sludge flocs. The approach includes identification of the important bacteria and a characterization of their physiological and functional properties. It is carried out by use of culture-independent molecular biological methods linked with other methods to study the physiology and function maintaining a single cell resolution. Using this approach it was found that floc-forming properties differed among the various bacterial groups, e.g. that different microcolony-forming bacteria had very different sensitivities to shear and that some of them deflocculated under anaerobic conditions. in our opinion, the approach to combine identity with functional analysis of the dominant bacteria in activated sludge by in situ methods is a very promising way to investigate correlations between presence of specific bacteria, and floc and sludge properties that are of interest. (author)

  11. Radiation hygienization of raw sewage sludge

    International Nuclear Information System (INIS)

    Shah, M.R.; Lavale, D.S.; Rawat, P.; Benny, P.G.; Sharma, A.K.; Dey, G.R.; Bhave, V.

    2001-01-01

    'Radiation treatment of municipal sewage sludge can achieve resource conservation and recovery objectives. The liquid sludge irradiator of Sludge Hygienization Research Irradiator at Baroda (India) was operated for generating data on treatment of raw sludge containing 3-4 % solids. The plant system was modified for irradiating raw sludge without affecting basic irradiator initially designed to treat digested sludge. Hourly samples were analysed for estimation of disinfection dose requirement. Sand separated from the sludge was used as in-situ dosimeter by making use of its thermoluminescence property. Investigations are being carried out for regrowth of Total Coliforms in the sludge samples from this irradiator. Possibility of inadequate treatment due to geometric configuration of irradiator is being checked. (author)

  12. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.; Gevaudan, P.P.

    1977-01-01

    There is a hygienic risk in using biological sewage sludges for agriculture. Systematic analyses carried out on sludge samples obtained from purification plants in the Eastern and Southern part of France, show the almost uniform presence of pathogenic microorganisms. Some of them survive more than nine months after application to the soil. Conventional processes for disinfection, liming and heat, make the sludge unsuitable for agricultural use. On the other hand, irradiation involves no modification of structure and composition of sludges. Radiation doses required for disinfection vary according to the type of microorganism. Some of them are eliminated at rather low doses (200 krad), but mycobacteria, viruses and eggs of worms resist to more important doses. The security dose is estimated to be approx. 1000 krad

  13. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1.

    Science.gov (United States)

    Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang

    2015-09-01

    Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode.

    Science.gov (United States)

    Zhang, Jia-Jia; Fan, Hao-Xiang; Dai, Xiao-Hu; Yuan, Shi-Jie

    2018-04-01

    Digested sludge, as the main by-product of the sewage sludge anaerobic digestion process, still contains considerable organic compounds. In this protocol, we report a facile method for preparing digested sludge-derived self-doped porous carbon material for high-performance supercapacitor electrodes via a sustainable pyrolysis/activation process. The obtained digested sludge-derived carbon material (HPDSC) exhibits versatile O-, N-doped hierarchical porous framework, high specific surface area (2103.6 m 2  g -1 ) and partial graphitization phase, which can facilitate ion transport, provide more storage sites for electrolyte ions and enhance the conductivity of active electrode materials. The HPDSC-based supercapacitor electrodes show favourable energy storage performance, with a specific capacitance of 245 F g -1 at 1.0 A g -1 in 0.5 M Na 2 SO 4 ; outstanding cycling stability, with 98.4% capacitance retention after 2000 cycles; and good rate performance (211 F g -1 at 11 A g -1 ). This work provides a unique self-doped three-dimensional hierarchical porous carbon material with a favourable charge storage capacity and at the same time finds a high value-added and environment-friendly strategy for disposal and recycling of digested sludge.

  15. FEASIBILITY STUDY OF GAS TREATMENT PLANT BASED ON AN EJECTOR SCRUBBER

    Directory of Open Access Journals (Sweden)

    S. Iu. Panov

    2014-01-01

    Full Text Available Summary. The article executed the feasibility study of various options for gas treatment. Rapid development of industry and transport worldwide in recent times raises the problem in the protection of habitat environment from harmful waste. In solving problems of flue gas treatment great attention is given to the economic characteristics and recycling techniques for capturing emissions and disposal must also meet the sanitary health requirements: flue gas treatment plants should not cause air or water pollution. The set objective is solved by developing a two-stage wet treatment system for pyrolysis gas based on ejector scrubbers. Their advantage - a central nozzle supply that allows the scrubber to operate on the principle of an ejector pump. Projected plant can be used in enterprises for processing of solid domestic and industrial waste, where there are steam and hot water boilers, whose operations result in contaminated gases emissions obtained with high temperatures. In particular, this installation can be applied at a cement plant in which a large amount of waste gases containing sulfur oxides is emitted. Assessment of market potential for the plant designed to treat waste gases in the cement factory is performed through a SWOT analysis. SWOT analysis results indicate the possibility of the treatment of exhaust gases without a high cost and with high gas treatment efficiency. Plant competitive analysis was done using an expert method in comparison with market competitors. Technical and economic indicators of the plant are presented. Return on investments is 46% and payback period of capital investments - 2.7 years.

  16. Inactivation of airborne Enterococcus faecalis and infectious bursal disease virus using a pilot-scale ultraviolet photocatalytic oxidation scrubber

    NARCIS (Netherlands)

    Zhao, Y.; Aarnink, A.J.A.; Xin, H.

    2014-01-01

    High microbial concentrations and emissions associated with livestock houses raise health and environmental concerns. A pilot-scale ultraviolet photocatalytic (UV-PCO) scrubber was tested for its efficacy to inactivate aerosolized Enterococcus faecalis and infectious bursal disease virus (IBDV).

  17. On-line measurements of liquid carry-over from scrubbers using radioactive tracers

    Energy Technology Data Exchange (ETDEWEB)

    Haugan, A; Hassfjell, S [Institute for Energy Technology, Kjeller (Norway); Finborud, A [Mator, Porsgrunn (Norway)

    2004-07-01

    A method to measure liquid carry-over from scrubbers using gamma-emitting tracers is described and results from field tests at two onshore installations are presented. One water/1,2-ethanediol (MEG) and two hydrocarbon liquid (condensate) tracers have been used in the tests. One of the condensate tracers deposited to some extent inside the process pipe, while the other had a too high vapor pressure. The water/MEG tracer showed no MEG carry-over while the carry-over of MEG was documented to be considerable. (author)

  18. On-line measurements of liquid carry-over from scrubbers using radioactive tracers

    International Nuclear Information System (INIS)

    Haugan, A.; Hassfjell, S.; Finborud, A.

    2004-01-01

    A method to measure liquid carry-over from scrubbers using gamma-emitting tracers is described and results from field tests at two onshore installations are presented. One water/1,2-ethanediol (MEG) and two hydrocarbon liquid (condensate) tracers have been used in the tests. One of the condensate tracers deposited to some extent inside the process pipe, while the other had a too high vapor pressure. The water/MEG tracer showed no MEG carry-over while the carry-over of MEG was documented to be considerable. (author)

  19. Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH.

    Science.gov (United States)

    Liu, Fenwu; Zhou, Lixiang; Zhou, Jun; Song, Xingwei; Wang, Dianzhan

    2012-06-30

    Bio-acidification caused by bio-oxidation of energy substances during bioleaching is widely known to play an important role in improving sludge-borne metals removal. Here we report that bioleaching also drastically enhances sludge dewaterability in a suitable pH level. To obtain the optimum initial concentrations of energy substances and pH values for sludge dewaterability during bioleaching, bio-oxidation of Fe(2+) and S(0) under co-inoculation with Acidithiobacillus thiooxidans TS6 and Acidothiobacillus ferrooxidans LX5 and their effects on sludge dewaterability and metals removal during sludge bioleaching were investigated. Results indicated that the dosage of energy substances with 2g/L S(0) and 2g/L Fe(2+) could obtain bio-oxidation efficiencies of up to 100% for Fe(2+) and 50% for S(0) and were the optimal dosages for sludge bioleaching. The removal efficiencies of sludge-borne Cu and Cr could reach above 85% and 40%, respectively, and capillary suction time (CST) of bioleached sludge decreased to as low as ∼10s from initial 48.9s for fresh sludge when sludge pH declined to ∼2.4 through bioleaching. These results confirm the potential of bioleaching as a novel method for improving sludge dewaterability as well as removal of metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Technical and economical feasibility study of a sewage sludge disinfection plants by irradiation process

    International Nuclear Information System (INIS)

    Rojas Bustos, Gustavo

    1999-01-01

    This report presents a technical and economical evaluation for a disinfection plant of sewage sludge based on irradiation. The process starts after sludge stabilization which is achieved by anaerobic digestion. It includes two stages, plus an optional: the first corresponds to dewatering of sewage sludge up to a solids content between 20 and 25 %, the second stage corresponds to disinfection by gamma or electron beam irradiation, and the third, which is optional, corresponds to the drying of sewage sludge up to a water content of 50%, which allows to diminish significantly the volumes of solids to be transported. If this stage is not accomplished the final product corresponds to a sewage sludge with 25 % of dry solids, which can also be disposed in agricultural land. Process was designed to treat 60 tons per day of sewage sludge (dry matter basis). The report presents the design of process equipment, principal and auxiliary, the investment and operational cost estimations as well as the total cost of treatment per ton of sewage sludge. A sensitivity analysis is also included to determine the influence of operational process parameters in operational and investment costs. The results showed that a sewage sludge plant including dewatering and disinfection process through gamma irradiation, achieves a capital investment of about US$ 12.000.000 with a treatment cost per ton of dry sludge of US$140. Including the optional air-drying stage, the total cost of treatment is about US$148 per ton of dry matter. In the case of electron beam irradiation the capital investment achieves a value of US$ 11 millions with a total treatment cost of US$ 136 per ton of dry matter. These values resulted quite similar to the cost of alternative treatment, i.e., disposal in a dedicated landfill. (L.V.)

  1. Cost and effectiveness comparisons of various types of sludge irradiation and sludge pasteurization treatments

    International Nuclear Information System (INIS)

    Morris, M.E.

    1976-01-01

    The radiation from 137 Cs, a major constituent of nuclear fuel reprocessing waste, can be used to sterilize sewage sludge. This paper compares the effectiveness and cost of heat pasteurization, irradiation, and thermoradiation (simultaneous heating/irradiation), three competing methods of sludge disinfection. The cost of irradiation and thermoradiation is slightly higher than heat pasteurization costs for liquid sludges, although minor changes in oil availability or prices could change this. If the viral destruction could be done easily by other means, a 500-kilorad irradiation dose would be effective and less costly. For dry sewage sludges, irradiation is as effective and much less costly than any of the liquid sludge disinfection processes. Irradiation of compost appears to be cheaper and more practical than any heat pasteurization process for the dry sludge (the insulating property of the compost makes heating difficult). 6 tables, 2 fig

  2. F-Canyon Sludge Physical Properties

    International Nuclear Information System (INIS)

    Poirier, M. R.; Hansen, P. R.; Fink, S. D.

    2005-01-01

    The Site Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the 800 underground tanks (including removal of the sludge heels from these tanks). To support this effort, DandD requested assistance from Savannah River National Laboratory (SRNL) personnel to determine the pertinent physical properties to effectively mobilize the sludge from these tanks (Tanks 804, 808, and 809). SDD provided SRNL with samples of the sludge from Tanks 804, 808, and 809. The authors measured the following physical properties for each tank: particle settling rate, shear strength (i.e., settled solids yield stress), slurry rheology (i.e., yield stress and consistency), total solids concentration in the sludge, soluble solids concentration of the sludge, sludge density, and particle size distribution

  3. Evaluation of sludge properties in a pilot-scale UASB reactor for sewage treatment in a temperate region.

    Science.gov (United States)

    Syutsubo, K; Yoochatchaval, W; Tsushima, I; Araki, N; Kubota, K; Onodera, T; Takahashi, M; Yamaguchi, T; Yoneyama, Y

    2011-01-01

    In this study, continuous operation of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor for sewage treatment was conducted for 630 days to investigate the physical and microbial characteristics of the retained sludge. The UASB reactor with a working volume of 20.2 m(3) was operated at ambient temperature (16-29 °C) and seeded with digested sludge. After 180 days of operation, when the sewage temperature had dropped to 20 °C or lower, the removal efficiency of both total suspended solids (TSS) and total biochemical oxygen demand (BOD) deteriorated due to washout of retained sludge. At low temperature, the cellulose concentration of the UASB sludge increased owing to the rate limitation of the hydrolytic reaction of suspended solids in the sewage. However, after an improvement in sludge retention (settleability and concentration) in the UASB reactor, the process performance stabilized and gave sufficient results (68% of TSS removal, 75% of total BOD removal) at an hydraulic retention time (HRT) of 9.7 h. The methanogenic activity of the retained sludge significantly increased after day 246 due to the accumulation of Methanosaeta and Methanobacterium following the improvement in sludge retention in the UASB reactor. Acid-forming bacteria from phylum Bacteroidetes were detected at high frequency; thus, these bacteria may have an important role in suspended solids degradation.

  4. Zinc, copper and manganese availability in soils treated with alkaline sewage sludge from Paraná state (Brazil

    Directory of Open Access Journals (Sweden)

    Maristela Dalpisol

    Full Text Available ABSTRACT In Paraná, most of the sludge generated in sewage treatment plants is subjected to the prolonged alkaline stabilization process. Although it is known that the alkaline sewage sludge contains micronutrients such as Zn, Cu and Mn, little is known about the availability of these elements in soils treated with this type of sewage sludge. Thus, the objective of the study was to evaluate the influence of alkaline sewage sludge from Paraná on Zn, Cu and Mn availability in soils. Twenty sewage treatment plants were selected throughout Paraná, where alkaline sewage sludge and the most representative agricultural soil of the each region were collected. Each soil was incubated for 60 days with alkaline sewage sludge rates (0, 10, 20, 40, and 80 Mg ha-1 from their region. Subsequently, Zn, Cu and Mn availability was determined using the Mehlich-1 extractant. The alkaline sewage sludge increased Zn availability and decreased Mn availability in most soils. Cu showed intermediate results, with increased availability, primarily in medium texture soils and decrease in most of the clayey soils. In soils with pH close to ideal for the plant growth, the alkaline sewage sludge rate should be carefully calculated so that there is no excessive increase in the pH and Zn, Cu and Mn imbalance.

  5. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS. ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    International Nuclear Information System (INIS)

    Rutherford, W.W.; Geuther, W.J.; Strankman, M.R.; Conrad, E.A.; Rhoadarmer, D.D.; Black, D.M.; Pottmeyer, J.A.

    2009-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  6. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  7. Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.

    Science.gov (United States)

    Demir, Ozlem; Filibeli, Ayse

    2012-09-01

    The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.

  8. Monitoringsprogramma experimentele gecombineerde luchtwassers op veehouderijbedrijven = Measurement program on experimental multi-pollutant air scrubbers at animal houses

    NARCIS (Netherlands)

    Melse, R.W.; Hol, J.M.G.; Mosquera Losada, J.; Nijeboer, G.M.; Huis in 'T Veld, J.W.H.; Hattum, van T.G.; Kwikkel, R.K.; Dousma, F.; Ogink, N.W.M.

    2011-01-01

    A measurement program was carried out in which the performance of 5 experimental scrubbers on animal farms was monitored for the removal of ammonia, odour and fine dust (PM10, PM2.5). This reports discusses and evaluates the realization of the program and its results.

  9. Lipid profiling in sewage sludge.

    Science.gov (United States)

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Efficiency of Worm Reactors in Reducing Sludge Volume in Activated Sludge Systems

    Directory of Open Access Journals (Sweden)

    Azam Naderi

    2017-01-01

    Full Text Available The activated sludge process is the most widely used on a global scale for the biological treatment of both domestic and industrial effluents. One problem associated with the process, however, is the high volume of sludge produced. Excess sludge treatment and disposal account for up to 60% of the total operating costs of urban wastewater treatment plants due to the stringent environmental regulations on excess sludge disposal. These strict requirements have encouraged a growing interest over the last few years in reducing sludge volumes produced at biological treatment plants and a number of physical, chemical, and mechanical methods have been accordingly developed for this purpose. The proposed methods are disadvantaged due to their rather high investment and operation costs. An alternative technology that avoids many of these limitations is the worm reactor. In this study, the characteristics of this technology are investigated while the related literature is reviewed to derive the optimal conditions for the operation of this process in different situations.

  11. Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production.

    Science.gov (United States)

    Yoon, Seong-Hoon

    2003-04-01

    In order to prevent excess sludge production during wastewater treatment, a membrane bioreactor-sludge disintegration (MBR-SD) system has been introduced, where the disintegrated sludge is recycled to the bioreactor as a feed solution. In this study, a mathematical model was developed by incorporating a sludge disintegration term into the conventional activated sludge model and the relationships among the operational parameters were investigated. A new definition of F/M ratio for the MBR-SD system was suggested to evaluate the actual organic loading rate. The actual F/M ratio was expected to be much higher than the apparent F/M ratio in MBR-SD. The kinetic parameters concerning the biodegradability of organics hardly affect the system performance. Instead, sludge solubilization ratio (alpha) in the SD process and particulate hydrolysis rate constant (k(h)) in biological reaction determine the sludge disintegration number (SDN), which is related with the overall economics of the MBR-SD system. Under reasonable alpha and k(h) values, SDN would range between 3 and 5 which means the amount of sludge required to be disintegrated would be 3-5 times higher for preventing a particular amount of sludge production. Finally, normalized sludge disintegration rate (q/V) which is needed to maintain a certain level of MLSS in the MBR-SD system was calculated as a function of F/V ratio.

  12. STUDY ON MAXIMUM SPECIFIC SLUDGE ACIVITY OF DIFFERENT ANAEROBIC GRANULAR SLUDGE BY BATCH TESTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The maximum specific sludge activity of granular sludge from large-scale UASB, IC and Biobed anaerobic reactors were investigated by batch tests. The limitation factors related to maximum specific sludge activity (diffusion, substrate sort, substrate concentration and granular size) were studied. The general principle and procedure for the precise measurement of maximum specific sludge activity were suggested. The potential capacity of loading rate of the IC and Biobed anaerobic reactors were analyzed and compared by use of the batch tests results.

  13. Composting of sewage sludge irradiated

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Watanabe, Hiromasa; Nishimura, Koichi; Kawakami, Waichiro

    1981-01-01

    Recently, the development of the techniques to return sewage sludge to forests and farm lands has been actively made, but it is necessary to assure its hygienic condition lest the sludge is contaminated by pathogenic bacteria. The research to treat sewage sludge by irradiation and utilize it as fertilizer or soil-improving material has been carried out from early on in Europe and America. The effects of the irradiation of sludge are sterilization, to kill parasites and their eggs, the inactivation of weed seeds and the improvement of dehydration. In Japan, agriculture is carried out in the vicinity of cities, therefore it is not realistic to use irradiated sludge for farm lands as it is. The composting treatment of sludge by aerobic fermentation is noticed to eliminate the harms when the sludge is returned to forests and farm lands. It is desirable to treat sludge as quickly as possible from the standpoint of sewage treatment, accordingly, the speed of composting is a problem. The isothermal fermentation experiment on irradiated sludge was carried out using a small-scale fermentation tank and strictly controlling fermentation conditions, and the effects of various factors on the fermentation speed were studied. The experimental setup and method are described. The speed of composting reached the maximum at 50 deg C and at neutral or weak alkaline pH. The speed increased with the increase of irradiation dose up to 30 Mrad. (Kako, I.)

  14. Design/installation and structural integrity assessment of Bethel Valley low-level waste collection and transfer system upgrade for Building 3092 (Central Off-Gas Scrubber Facility) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-01-01

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in responsible to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lines concrete vault, replacing and existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. New scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation

  15. Intensification of anaerobic digestion efficiency with use of mechanical excess sludge disintegration in the context of increased energy production in wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Żubrowska-Sudoł Monika

    2017-01-01

    Full Text Available The main goal of the study was to evaluate the effects of mechanical sludge disintegration for enhancing full scale anaerobic digestion of municipal sludge. Batch disintegration tests and lab dewatering tests were also performed aiming at determining the release of organic compounds and assessing the impact of disintegration of excess sludge before the fermentation process of mixed sludge on the dewaterability of post-fermented sludge, respectively. In the study a disc disintegrator driven by a motor with a power of 30 kW, revolutions n = 2950 rpm has been used. It was shown that with increase of energy consumed in the disintegration, the increased amounts of organic compounds were released from the sludge. It was also documented that the introduction of the excess sludge disintegration prior to fermentation tank, resulted in a significant increase in biogas production (by an average of 33.9% and in increase in volatile total solids reduction in the fermented sludge (by an average of 22.7%. Moreover, the obtained results indicate the possibility of obtaining a higher degree of sludge dewatering, which was subjected to anaerobic stabilization with using disintegrated excess sludge.

  16. Intensification of anaerobic digestion efficiency with use of mechanical excess sludge disintegration in the context of increased energy production in wastewater treatment plants

    Science.gov (United States)

    Żubrowska-Sudoł, Monika; Podedworna, Jolanta; Bisak, Agnieszka; Sytek-Szmeichel, Katarzyna; Krawczyk, Piotr; Garlicka, Agnieszka

    2017-11-01

    The main goal of the study was to evaluate the effects of mechanical sludge disintegration for enhancing full scale anaerobic digestion of municipal sludge. Batch disintegration tests and lab dewatering tests were also performed aiming at determining the release of organic compounds and assessing the impact of disintegration of excess sludge before the fermentation process of mixed sludge on the dewaterability of post-fermented sludge, respectively. In the study a disc disintegrator driven by a motor with a power of 30 kW, revolutions n = 2950 rpm has been used. It was shown that with increase of energy consumed in the disintegration, the increased amounts of organic compounds were released from the sludge. It was also documented that the introduction of the excess sludge disintegration prior to fermentation tank, resulted in a significant increase in biogas production (by an average of 33.9%) and in increase in volatile total solids reduction in the fermented sludge (by an average of 22.7%). Moreover, the obtained results indicate the possibility of obtaining a higher degree of sludge dewatering, which was subjected to anaerobic stabilization with using disintegrated excess sludge.

  17. K Basin sludge dissolution engineering study

    International Nuclear Information System (INIS)

    Westra, A.G.

    1998-01-01

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  18. Soil bioassays as tools for sludge compost quality assessment

    International Nuclear Information System (INIS)

    Domene, Xavier; Sola, Laura; Ramirez, Wilson; Alcaniz, Josep M.; Andres, Pilar

    2011-01-01

    Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment. Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed in bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.

  19. Critical evaluation of the use of the hydroxyapatite as a stabilizing agent to reduce the mobility of Zn and Ni in sewage sludge amended soils.

    Science.gov (United States)

    Zupancic, Marija; Bukovec, Peter; Milacic, Radmila; Scancar, Janez

    2006-01-01

    The leachability of zinc (Zn) and nickel (Ni) was investigated in various soil types amended with sewage sludge and sewage sludge treated with hydroxyapatite. Sandy, clay and peat soils were investigated. For leachability tests, plastic columns (diameter 9 cm, height 50 cm) were filled with moist samples up to a height of 25 cm. Sewage sludge (1 kg) was mixed with 4.6 kg of clay and sandy soils and with 6.7 kg of peat soil. For sewage sludge mixtures treated with hydroxyapatite, 0.5 kg of the hydroxyapatite was added to 1 kg of the sewage sludge. Neutral (pH 7) and acid precipitation (pH 3.5) were applied. Acid precipitation was prepared from concentrated HNO(3), H(2)SO(4) and fresh doubly distilled water. The amount of precipitation corresponded to the average annual precipitation for the city of Ljubljana, Slovenia. It was divided into eight equal portions and applied sequentially on the top of the columns. The results indicated that the leachabilities of Zn in sewage sludge amended peat and clay soils were low (below 0.3% of total Zn content) and of Ni in sewage sludge amended sandy, clay and peat soil below 1.9% of total Ni content. In sewage sludge amended sandy soil, the leachability of Zn was higher (11% of Zn content). The pH of precipitation had no influence on the leachability of either metal. Treatment of sewage sludge with hydroxyapatite efficiently reduced the leachability of Zn in sewage sludge amended sandy soil (from 11% to 0.2% of total Zn content). In clay and peat sewage sludge amended soils, soil characteristics rather than hydroxyapatite treatment dominate Zn mobility.

  20. The effect of operational conditions on the sludge specific methanogenic activity and sludge biodegradability

    International Nuclear Information System (INIS)

    Leitao, R. C.; Santaella, S. T.; Haandel, A. C. van; Zeeman, G.; Lettinga, G.

    2009-01-01

    The Specific Methanogenic Activity (SMA) and sludge biodegradability of an anaerobic sludge depends on various operational and environmental conditions imposed to the anaerobic reactor. However, the effects of hydraulic retention time (HRT), influent COD concentration (COD i nf) and sludge retention time (SRT) on those two parameters need to be elucidated. This knowledge about SMA can provide insights about the capacity of the UASB reactors to withstand organic and hydraulic shock loads, whereas the biodegradability gives information necessary for final disposal of the sludge. (Author)

  1. The effect of operational conditions on the sludge specific methanogenic activity and sludge biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, R. C.; Santaella, S. T.; Haandel, A. C. van; Zeeman, G.; Lettinga, G.

    2009-07-01

    The Specific Methanogenic Activity (SMA) and sludge biodegradability of an anaerobic sludge depends on various operational and environmental conditions imposed to the anaerobic reactor. However, the effects of hydraulic retention time (HRT), influent COD concentration (COD{sub i}nf) and sludge retention time (SRT) on those two parameters need to be elucidated. This knowledge about SMA can provide insights about the capacity of the UASB reactors to withstand organic and hydraulic shock loads, whereas the biodegradability gives information necessary for final disposal of the sludge. (Author)

  2. Research for waste water treatment technology with low production of excessive active sludge

    Directory of Open Access Journals (Sweden)

    Makisha Nikolay

    2017-01-01

    Full Text Available The article reflects the possibility to create a technological scheme of waste water treatment of domestic and similar type of sewage within minimal amount of excessive active sludge by means of bioreactors with immobilized feed. There are various aspects to be considered: technical, economic, social and ecological. According to the above it is strongly needed to provide a combination of proper waste water treatment, minimal sludge formation and the possibility for a further use of the sludge. One of the ways to achieve the goal above is to use an immobilized feed in the aeration tank. The necessary experiments were carried out in the department of waste water treatment and water ecology. The article includes the scheme of the facility and other parameters of the experiments, which has been carried. The combination of aerobic and anaerobic processes helps to provide proper quality of integrated biological treatment. Chambers of the aeration reactor were also equipped with the polymer feed of various structures. The sludge treatment that was also strongly needed was made by means of aerobic stabilization with the use of ejecting aeration. The results of experiment showed a good effect in both components – sewage and sludge treatment. Afterwards there was also an industrial model launched which confirmed the results of the previous stage.

  3. Electron beam disinfection of sewage sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji

    1992-01-01

    Electron beam treatment of dehydrated sewage sludge for safe reutilization was performed. Ranges of total bacterial counts and total coliforms in the sludge were from 1.5 x 10 8 to 1.6 x 10 9 and from 2.2 x 10 7 to 1.5 x 10 8 per wet gram, respectively. Total bacterial counts decreased about 5 log cycles after irradiating 5 kGy and irradiation with 2 kGy was enough to kill all coliforms in sewage sludge. The survival curves of total bacteria, obtained by irradiation in oxygen atmosphere, approached to that in nitrogen atmosphere with the increase of sludge thickness. No effects of dose rate and electron energy were found when the sludge layers were thin enough. Continuous disinfection of sewage sludge cake, with the maximum feed rate of 300 kg-sludge/hr, was successfully performed with a Cockcroft-Walton type electron accelerator, a sludge pump and a flat nozzle. (J.P.N.)

  4. Composting of gamma-radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, W.; Hashimoto, S.; Watanabe, H.; Nishimura, K.; Watanabe, H.; Ito, H.; Takehisa, M.

    1981-01-01

    The composting of radiation disinfected sewage sludge has been studied since 1978, aiming to present a new process of sludge composting for agricultural uses. This process is composed of two steps: irradiation step to disinfect sludge, and composting step to remove odor and easily decomposable organics in sludge. In this paper, the gamma-irradiation effect on sludge cake and composting condition of irradiated sludge are discussed. (author)

  5. Ultrasonic sludge pretreatment under pressure.

    Science.gov (United States)

    Le, Ngoc Tuan; Julcour-Lebigue, Carine; Delmas, Henri

    2013-09-01

    The objective of this work was to optimize the ultrasound (US) pretreatment of sludge. Three types of sewage sludge were examined: mixed, secondary and secondary after partial methanisation ("digested" sludge). Thereby, several main process parameters were varied separately or simultaneously: stirrer speed, total solid content of sludge (TS), thermal operating conditions (adiabatic vs. isothermal), ultrasonic power input (PUS), specific energy input (ES), and for the first time external pressure. This parametric study was mainly performed for the mixed sludge. Five different TS concentrations of sludge (12-36 g/L) were tested for different values of ES (7000-75,000 kJ/kgTS) and 28 g/L was found as the optimum value according to the solubilized chemical oxygen demand in the liquid phase (SCOD). PUS of 75-150 W was investigated under controlled temperature and the "high power input - short duration" procedure was the most effective at a given ES. The temperature increase in adiabatic US application significantly improved SCOD compared to isothermal conditions. With PUS of 150 W, the effect of external pressure was investigated in the range of 1-16 bar under isothermal and adiabatic conditions for two types of sludge: an optimum pressure of about 2 bar was found regardless of temperature conditions and ES values. Under isothermal conditions, the resulting improvement of sludge disintegration efficacy as compared to atmospheric pressure was by 22-67% and 26-37% for mixed and secondary sludge, respectively. Besides, mean particle diameter (D[4,3]) of the three sludge types decreased respectively from 408, 117, and 110 μm to about 94-97, 37-42, and 36-40 μm regardless of sonication conditions, and the size reduction process was much faster than COD extraction. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Rheological properties of disintegrated sewage sludge

    Science.gov (United States)

    Wolski, Paweł

    2017-11-01

    The rheology of the sludge provides information about the capacity and the flow, which in the case of project tasks for the hydraulic conveying installation is an important control parameter. Accurate knowledge of the rheological properties of sludge requires the designation of rheological models. Models single and multiparameter (Ostwald, Bingham, Herschel-Bulkley'a, and others) allow an approximation of flow curves, and the determination of the boundaries of the flow of modified sludge allows you to control the process compaction or are dewatered sludge undergoing flow. The aim of the study was to determine the rheological parameters and rheological models of sludge conditioned by physical methods before and after the process of anaerobic digestion. So far, studies have shown that the application of conditioning in the preparation of sewage sludge increases shear stress, viscosity as well as the limits of flow in relation to the untreated sludge. Offset yield point by the application of a conditioning agent is associated with decreased flowability tested sludge, which has also been observed by analyzing the structure of the prepared samples. Lowering the yield point, and thus the shear stress was recorded as a result of the fermentation test of disintegrated sludge.

  7. Dewatering of sludges

    International Nuclear Information System (INIS)

    Bode, P.

    1984-01-01

    A filter rig has been designed and built. Simulated magnox and alumino ferric hydroxide sludges have been successfully filtered on this equipment and both types of sludge produced a clear filtrate and a cake. The flow rates were low. The cake often partially remained adhered to the filter membrane instead of dropping clear during the filter cleaning cycle. This filtration technique can only be used on sludges which form a non-binding cake. Permeability of the membrane can be altered by stretching. Irradiation of the membrane showed that it should withstand 20 to 50 M.rads. (author)

  8. [Effect of different sludge retention time (SRT) on municipal sewage sludge bioleaching continuous plug flow reaction system].

    Science.gov (United States)

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan

    2012-01-01

    A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was divided into six sections along the direction of the sludge movement. Fourteen days of continuous operation of sludge bioleaching with different sludge retention time (SRT) under the condition of 1.2 m3 x h(-1) aeration amount and 4 g x L(-1) of microbial nutritional substance was conducted. During sludge bioleaching, the dynamic changes of pH, DO, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections were investigated in the present study. The results showed that sludge pH were maintained at 5.00, 3.00, 2.90, 2.70, 2.60 and 2.40 from section 1 to section 6 and the SRF of sludge was drastically decreased from initial 0.64 x 10(13) m x kg(-1) to the final 0.33 x 10(13) m x kg(-1) when bioleaching system reached stable at hour 72 with SRT 2.5d. In addition, the sludge pH were maintained at 5.10, 4.10, 3.20, 2.90, 2.70 and 2.60, the DO value were 0.43, 1.47, 3.29, 4.76, 5.75 and 5.88 mg x L(-1) from section 1 to section 6, and the SRF of sludge was drastically decreased from initial 0.56 x 10(13) to the final 0.20 x 10(13) m x kg(-1) when bioleaching system reached stable at hour 120 with SRT 2 d. The pH value was increased to 3.00 at section 6 at hour 48 h with SRT 1.25 d. The bioleaching system imbalanced in this operation conditions because of the utilization efficiency of microbial nutritional substance by Acidibacillus spp. was decreased. The longer sludge retention time, the easier bioleaching system reached stable. 2 d could be used as the optimum sludge retention time in engineering application. The bioleached sludge was collected and dewatered by plate-and-frame filter press to the moisture content of dewatered sludge cake under 60%. This study would provide the necessary data to the engineering application on municipal sewage sludge bioleaching.

  9. Criteria: waste tank isolation and stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly. (DLC)

  10. Criteria: waste tank isolation and stabilization

    International Nuclear Information System (INIS)

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly

  11. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  12. RELATIONSHIP BETWEEN SLUDGE DEWATERABILITY NUMBER ...

    African Journals Online (AJOL)

    A representative of a sludge sample collected from the same source was filtered under the same environmental condition and the result analysed with two different concepts. One method of analysis uses Sludge Dewaterability Number, while the second employed the Carman's Specific resistance concept in sludge ...

  13. Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Gebauer, R. [Finnmark University College, Alta (Norway). Dept. of Aquaculture and Natural Sciences

    2004-06-01

    The mesophilic anaerobic treatment of sludge from saline fish farm effluents (total solids (TS): 8.2-10.2 wt%, chemical oxygen demand (COD): 60-74 g/l, sodium (Na): 10-10.5 g/l) was carried out in continuously stirred tank reactors (CSTRs) at 35 {sup o}C. COD stabilization between 36% and 55% and methane yields between 0.114 and 0.184 l/g COD added were achieved. However, the process was strongly inhibited, presumably by sodium, and unstable, with propionic acid being the main compound of the volatile fatty acids (VFA). When diluting the sludge 1:1 with tap water (Na: 5.3 g/l), the inhibition could be overcome and a stable process with low VFA concentrations was achieved. The results of the study are used to make recommendations for the configuration of full-scale treatment plants for the collected sludge from one salmon farming licence and to estimate the energy production from these plants. (Author)

  14. Elektronische monitoring van luchtwassers op veehouderijbedrijven = Automated process monitoring and data logging of air scrubbers at animal houses

    NARCIS (Netherlands)

    Melse, R.W.; Franssen, J.C.T.J.

    2010-01-01

    At 6 animal houses air scrubbers equipped with an automated process monitoring and data logging system were tested. The measured values were successfully stored but the measured values, especially the pH and EC of the recirculation water, appeared not to be correct at all times.

  15. Elementary analysis and energetic potential of the municipal sewage sludges from the Gdańsk and Kościerzyna WWTPs

    Science.gov (United States)

    Ostojski, Arkadiusz

    2018-01-01

    This paper aims to present municipal sewage sludge (MSS) elementary analysis and energetic potential based on measurement of heat of combustion (higher heating value HHV) and calculation of calorific values (lower heating value LHV). The analysis takes into the consideration water content in sewage sludge, at different utilization stages, in wastewater treatment plants in Gdańsk Wschód and Kościerzyna - Pomeranian Voivodeship. The study yielded the following results (in % dry matter): ash 19÷31 %, C - 31÷36 %, H - 5÷6 %, N - 4÷6 %, O - 28÷32 %, S - 1 %. Calorific value of stabilized sludges in Gdańsk was on average 13.8÷15 MJ/kg. In case of sludges not undergoing digestion from Kościerzyna WWTP, the calorific value was at the level of 17.5 MJ/kg. Thus, sewage sludges are good energy carriers. High water content though is the problem, as it lowers the useful effect of heat. There is no alternative for thermal sewage sludge neutralization, which is in conformity with valid Polish National Waste Management Plan (KPGO 2022).

  16. Bench-scale enhanced sludge washing and gravity settling of Hanford Tank C-106 Sludge

    International Nuclear Information System (INIS)

    Brooks, K.P.; Myers, R.L.; Rappe, K.G.

    1997-01-01

    This report summarizes the results of a bench-scale sludge pretreatment demonstration of the Hanford baseline flowsheet using liter-quantities of sludge from Hanford Site single-shell tank 241-C-106 (tank C-106). The leached and washed sludge from these tests provided Envelope D material for the contractors supporting Tank Waste Remediation System (TWRS) Privatization. Pretreatment of the sludge included enhanced sludge washing and gravity settling tests and providing scale-up data for both these unit operations. Initial and final solids as well as decanted supernatants from each step of the process were analyzed chemically and radiochemically. The results of this work were compared to those of Lumetta et al. (1996a) who performed a similar experiment with 15 grams of C-106, sludge. A summary of the results are shown in Table S.1. Of the major nonradioactive components, those that were significantly removed with enhanced sludge washing included aluminum (31%), chromium (49%), sodium (57%), and phosphorus (35%). Of the radioactive components, a significant amount of 137 Cs (49%) were removed during the enhanced sludge wash. Only a very small fraction of the remaining radionuclides were removed, including 90 Sr (0.4%) and TRU elements (1.5%). These results are consistent with those of the screening test. All of the supernatants (both individually and as a blend) removed from these washing steps, once vitrified as LLW glasses (at 20 wt% Na 2 O), would be less than NRC Class C in TRU elements and less than NRC Class B in 90 Sr

  17. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    Science.gov (United States)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  18. Electroosmotic dewatering of chalk sludge, iron hydroxide sludge, wet fly ash and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, H.K.; Kristensen, I.V.; Ottosen, L.M.; Villumsen, A. [Dept. of Geology and Geotechnical Engineering, The Technical Univ. of Denmark, Lyngby (Denmark)

    2001-07-01

    Electroosmotic dewatering has been tested in laboratory cells for 4 different porous materials: chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge from enzyme production. In all cases it was possible to remove water when passing electric DC current through the material. Casagrande's coefficients for the three materials where determined at different water contents. In the electroosmotic experiments shown in this work chalk can be dewatered from 40% to 79% DM (dry matter), fly ash from 75 to 82% DM, iron hydroxide sludge from 2.7 to 19% DM and biomass from 3 to 33% DM. The process was not optimised indicating that higher dry matter contents could be achieved. (orig.)

  19. Estimation of long-term environmental inventory factors associated with land application of sewage sludge

    DEFF Research Database (Denmark)

    Bruun, Sander; Yoshida, Hiroko; Nielsen, Martin P.

    2016-01-01

    . However, because of the complexity of the agricultural production system, it is difficult to estimate emissions consistently under different conditions. In the current paper, a mechanistic agro-ecosystem model was calibrated to be able to simulate different sludge types stabilized using different...... crop response conditions (i.e. when nitrogen was limiting) and low crop response conditions (i.e. when nitrogen was not limiting). The average high response nitrogen harvest factor over the tested environmental conditions was ranging from 0.06 to 0.30 for the different sludge types included. This means...... that if an additional 1 kg of nitrogen is applied with sludge, between 0.06 and 0.30 kg additional nitrogen is harvested. This is considerably lower than for mineral fertilizer with an average value of 0.63. The low response harvest factors were considerably lower, ranging from 0.03 to 0.13. The emission factor...

  20. Enhancing faecal sludge management in peri-urban areas of Lusaka through faecal sludge valorisation: challenges and opportunities

    Science.gov (United States)

    Tembo, J. M.; Nyirenda, E.; Nyambe, I.

    2017-03-01

    Lusaka, the capital city of Zambia, has two million inhabitants with 70% residing in peri-urban areas. Ninety (90) % of this population employ pit latrines for excretion generating approximately 22,680 tons of faecal sludge per annum. This sludge is inadequately managed hence of the generated amount, over 60% remains within the residential environment thereby compromising both the environment and public health. To foster a solution to this problem, a study was commissioned to assess faecal sludge valorisation potential and how it would impact on Faecal Sludge Management. The study evaluated policy, institutional and regulatory frameworks, sanitation practices including latrine construction and usage aspects and also characterised the faecal sludge for selected parameters relevant to valorisation. Four peri-urban areas were adopted as study sites. Policy issues together with existing institutional and regulatory frameworks were assessed through literature review. Sanitation practices were evaluated through physical observations, focus group discussions, interviews and questionnaire administration. Faecal sludge characterisation was through sampling and analysis. It was observed that there are policy gaps in fostering faecal sludge valorisation. Sanitation practices and latrines construction also do not favour valorisation. The quality of the raw sludge has potential for valorisation though again, some parameters like solid waste content require drastic changes in sanitation practices in order not to compromise the reuse potential of the sludge. It was concluded that if faecal sludge management is to be enhanced through valorisation, there is need to have policies promoting pit latrine faecal sludge reuse and strengthened regulatory and institutional frameworks in this respect.

  1. Direct transformation of calcium sulfite to {alpha}-calcium sulfate hemihydrate in a concentrated Ca-Mg-Mn chloride solution under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baohong Guan; Hailu Fu; Jie Yu; Guangming Jiang; Bao Kong; Zhongbiao Wu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering

    2011-01-15

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber sludge have been generated by coal burning power plants. Utilization of the sulfite-rich sludge for preparing {alpha}-calcium sulfate hemihydrate ({alpha}-HH), an important kind of cementitious material, is of particular interest to electric utilities and environmental preservation. In the experiment, calcium sulfite hemihydrate was directly transformed to {alpha}-HH without the occurrence of calcium sulfate dihydrate (DH). The transformation was performed in a concentrated CaCl{sub 2} solution containing Mg{sup 2+} and Mn{sup 2+} at 95{sup o}C, atmospheric pressure and low pH. The oxidation of calcium sulfite and the subsequent crystallization of {alpha}-HH constitute the whole conversion, during which the oxidation turns out to be the rate controlling step. Solid solution comprised of calcium sulfite hemihydrate and calcium sulfate was found to coexist with {alpha}-HH in the suspension. Calcium sulfate increases and calcium sulfite decreases spontaneously until the solid solution disappears. Thus, it is a potential alternative to utilize sulfite-rich FGD scrubber sludge for the direct preparation of {alpha}-HH. 36 refs., 10 figs., 1 tab.

  2. Thermal pre-treatment of primary and secondary sludge at 70 °C prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis; Gavala, Hariklia N.; Lu, J.

    2005-01-01

    In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared tothermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated...... studyinvestigates the effect of the pre-treatment at 70 °C on thermophilic (55 °C) anaerobic digestion of primaryand secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondarysludge at 70 °C enhanced the removal of organic matter and the methane production during...... the subsequentanaerobic digestion step at 55 °C. It also greatly contributed to the destruction of pathogens present inprimary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic stepsuggesting that the same efficiencies in organic matter removal and methane recovery could be obtained...

  3. Performance evaluation of poly-urethane foam packed-bed chemical scrubber for the oxidative absorption of NH3 and H2S gases.

    Science.gov (United States)

    Nisola, Grace M; Valdehuesa, Kris Niño G; Anonas, Alex V; Ramos, Kristine Rose M; Lee, Won-Keun; Chung, Wook-Jin

    2018-01-02

    The feasibility of open-pore polyurethane (PU) foam as packing material for wet chemical scrubber was tested for NH 3 and H 2 S removals. The foam is inexpensive, light-weight, highly porous (low pressure drop) and provides large surface area per unit volume, which are desirable properties for enhanced gas/liquid mass transfer. Conventional HCl/HOCl (for NH 3 ) and NaOH/NaOCl (for H 2 S) scrubbing solutions were used to absorb and oxidize the gases. Assessment of the wet chemical scrubbers reveals that pH and ORP levels are important to maintain the gas removal efficiencies >95%. A higher re-circulation rate of scrubbing solutions also proved to enhance the performance of the NH 3 and H 2 S columns. Accumulation of salts was confirmed by the gradual increase in total dissolved solids and conductivity values of scrubbing solutions. The critical elimination capacities at >95% gas removals were found to be 5.24 g NH 3 -N/m 3 -h and 17.2 g H 2 S-S/m 3 -h at an empty bed gas residence time of 23.6 s. Negligible pressure drops (scrubbers for NH 3 and H 2 S removals from high-volume dilute emissions.

  4. Effect of earthworms on the biochemical characterization of biofilms in vermifiltration treatment of excess sludge.

    Science.gov (United States)

    Yang, Jian; Liu, Jing; Xing, Meiyan; Lu, Zhibo; Yan, Qiong

    2013-09-01

    In this study, the biofilms formed in a vermifilter (VF) with earthworms and a conventional biofilter (BF) without earthworms were compared to investigate the effects of earthworms on the characteristics of biofilms during an excess sludge treatment period of 4months. Typical macrographs and micrographs of the biofilms showed that the feeding and casting actions of earthworms remarkably modified the VF morphology. Elemental analysis and fluorescence spectra indicated that earthworms enhanced the stabilization of organic matter by accelerating the mineralization and humification of organic materials during vermiconversion. In addition, bacterial communities inhabiting the VF biofilm showed that earthworms increased both bacterial diversity and metabolic activities in the film, as revealed by automatic testing bacteriology (ATB) expression and sequencing data. These results demonstrate that earthworms influence the structure and biochemical characteristics of biofilms and enhance their bacterial diversity and functions for improved sludge stabilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Properties of bacterial radioresistance observed in sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H; Ito, H; Takehisa, M [Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment; Iizuka, H

    1981-09-01

    The changes in radiosensitivities of bacteria in sludge were investigated. The coliforms are more radioresistant in raw sludge than in cake (dewatered sludge). This radioresistance of coliforms was observed not only in raw sludge but also in the cake diluted with water. The radioresistance was independent of the difference of treatment plant, kind of sludge, and season. The oxygen effect on the radioresistance was not observed, but the resistance was changed during storage of sludge. Escherichia coli isolated from sludge was radiosensitive in buffer, but its radiosensitivity was protected by the water-extracts of sludge. On the other hand, radioresistant bacteria were present in total bacteria of sludge irradiated at 2 Mrad. However, the dominant flora in the irradiated sludge consisted of radiosensitive bacteria (mainly Pseudomonas). When a strain of radiosensitive Pseudomonas was irradiated in raw sludge and diluted cake, the radiosensitivity was remarkably protected. From these results, it is suggested that a factor affecting the radiosensitivity of bacteria is present in sludge.

  6. Properties of bacterial radioresistance observed in sewage sludge

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Ito, Hitoshi; Takehisa, Masaaki; Iizuka, Hiroshi.

    1981-01-01

    The changes in radiosensitivities of bacteria in sludge were investigated. The coliforms are more radioresistant in raw sludge than in cake (dewatered sludge). This radioresistance of coliforms was observed not only in raw sludge but also in the cake diluted with water. The radioresistance was independent of the difference of treatment plant, kind of sludge, and season. The oxygen effect on the radioresistance was not observed, but the resistance was changed during storage of sludge. Escherichia coli isolated from sludge was radiosensitive in buffer, but its radiosensitivity was protected by the water-extracts of sludge. On the other hand, radioresistant bacteria were present in total bacteria of sludge irradiated at 2 Mrad. However, the dominant flora in the irradiated sludge consisted of radiosensitive bacteria (mainly Pseudomonas). When a strain of radiosensitive Pseudomonas was irradiated in raw sludge and diluted cake, the radiosensitivity was remarkably protected. From these results, it is suggested that a factor affecting the radiosensitivity of bacteria is present in sludge. (author)

  7. Physical and chemical factors affecting sludge consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Blimkie, M.E.; Lavoie, P.A

    1997-09-01

    Chemical reactions between sludge components and precipitation reactions within the pores of the existing sludge are shown to contribute to the consolidation of sludge under steam generator operating conditions. Simulations of sludge representative of plants with a mixed iron/copper feedtrain suggest that as the conditions in the feedtrain become more oxidizing the sludge will become harder with a higher nickel ferrite content. The precipitation of feedwater impurities introduced by condenser leaks and of zinc silicate, which is produced in plants with brass condenser tubes and silica in the makeup water, contribute significantly to sludge consolidation. Sodium phosphate is also shown to be an agent of sludge consolidation. (author)

  8. Design/Installation and Structural Integrity Assessment of Bethel Valley Low-Level Waste collection and transfer system upgrade for Building 3092 (central off-gas scrubber facility) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-10-01

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in response to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lined concrete vault, replacing an existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. Ne scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation. A formal design certification statement is included herein on Page 53, a certification covering the installation shall be executed prior to placing the modified facility into service

  9. The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge.

    Science.gov (United States)

    Chen, Ying-Liang; Shih, Pai-Haung; Chiang, Li-Choung; Chang, Yi-Kuo; Lu, Hsing-Cheng; Chang, Juu-En

    2009-10-15

    The purpose of this study is to utilize an electroplating sludge for belite-rich clinker production and to observe the influence of heavy metals on the polymorphs of dicalcium silicate (C(2)S). Belite-rich clinkers prepared with 0.5-2% of NiO, ZnO, CuO, and Cr(2)O(3) were used to investigate the individual effects of the heavy metals in question. The Reference Intensity Ratio (RIR) method was employed to determine the weight fractions of gamma-C(2)S and beta-C(2)S in the clinkers, and their microstructures were examined by the transmission electron microscopy (TEM). The results showed that nickel, zinc, and chromium have positive effects on beta-C(2)S stabilization (Cr(3+)>Ni(2+)>Zn(2+)), whereas copper has a negative effect. The addition of up to 10% electroplating sludge did not have any negative influence on the formation of C(2)S. It was observed that gamma-C(2)S decreased while beta-C(2)S increased with a rise in the addition of the electroplating sludge. Moreover, nickel and chromium mainly contributed to stabilizing beta-C(2)S in the belite-rich clinkers produced from the electroplating sludge.

  10. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content.

    Science.gov (United States)

    Rauret, G; López-Sánchez, J F; Sahuquillo, A; Barahona, E; Lachica, M; Ure, A M; Davidson, C M; Gomez, A; Lück, D; Bacon, J; Yli-Halla, M; Muntau, H; Quevauviller, P

    2000-06-01

    This paper provides additional data on a sewage sludge amended soil certified reference material, CRM 483, which was certified in 1997 for its EDTA and acetic acid extractable contents of some trace metals, following standardised extraction procedures. The additional work aimed to test the long-term stability of the material and the applicability of an improved version of the BCR three-step sequential extraction procedure on the sewage sludge amended soil (CRM 483). The paper demonstrates the CRM 483 long-term stability for EDTA and acetic acid extractable contents of Cd, Cr, Cu, Ni, Pb and Zn and gives the results (obtained in the framework of an interlaboratory study) for the extractable contents of the same elements in the CRM 483, following the BCR three-step sequential extraction scheme. The aqua regia extractable contents following the ISO 11466 Standard are also given. The data are given as indicative (not certified) values.

  11. Advantages of thermal processes to reduce the amounts of sludge; Interet des procedes thermiques dans la problematique de la reduction et/ou de l'elimination des boues?

    Energy Technology Data Exchange (ETDEWEB)

    Cretenot, D. [Vivendi Water System, 94 - Saint-Maurice (France); Chauzy, J.; Fernandes, P.; Patria, L. [Anjou Recherche, 78 - Maisons-Laffite (France)

    2003-02-01

    All the actors in the water field have to face the fate of sludge generated by wastewater treatment. The challenge they have to take up is not only on the good quality of the final effluent but also on the by-products treatment performance. Reduction, stabilization and pasteurization are the key-words in the present trend of sludge treatment., There are many technologies that reduce the final volume of sludge by lowering their dry solids concentration, but only the treatment lines with thermal processes can both reduce the amounts of sludge generated, and also issue sludge that answers to more and more stringent constraints on sanitary quality.

  12. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries.

    Science.gov (United States)

    Kelessidis, Alexandros; Stasinakis, Athanasios S

    2012-06-01

    Municipal wastewater treatment results to the production of large quantities of sewage sludge, which requires proper and environmentally accepted management before final disposal. In European Union, sludge management remains an open and challenging issue for the Member States as the relative European legislation is fragmentary and quite old, while the published data concerning sludge treatment and disposal in different European countries are often incomplete and inhomogeneous. The main objective of the current study was to outline the current situation and discuss future perspectives for sludge treatment and disposal in EU countries. According to the results, specific sludge production is differentiated significantly between European countries, ranging from 0.1 kg per population equivalent (p.e.) and year (Malta) to 30.8 kg per p.e. and year (Austria). More stringent legislations comparing to European Directive 86/278/EC have been adopted for sludge disposal in soil by several European countries, setting lower limit values for heavy metals as well as limit values for pathogens and organic micropollutants. A great variety of sludge treatment technologies are used in EU countries, while differences are observed between Member States. Anaerobic and aerobic digestion seems to be the most popular stabilization methods, applying in 24 and 20 countries, respectively. Mechanical sludge dewatering is preferred comparing to the use of drying beds, while thermal drying is mainly applied in EU-15 countries (old Member States) and especially in Germany, Italy, France and UK. Regarding sludge final disposal, sludge reuse (including direct agricultural application and composting) seems to be the predominant choice for sludge management in EU-15 (53% of produced sludge), following by incineration (21% of produced sludge). On the other hand, the most common disposal method in EU-12 countries (new Member States that joined EU after 2004) is still landfilling. Due to the obligations

  13. Towards understanding the effects of additives on the vermicomposting of sewage sludge.

    Science.gov (United States)

    Xing, Meiyan; Lv, Baoyi; Zhao, Chunhui; Yang, Jian

    2015-03-01

    This work evaluated the effects of additives on the chemical properties of the final products (vermicompost) from vermicomposting of sewage sludge and the adaptable characteristics of Eisenia fetida during the process. An experimental design with different ratios of sewage sludge and the additives (cattle dung or pig manure) was conducted. The results showed that the vermicomposting reduced total organic carbon and the quotient of total organic carbon to total nitrogen (C/N ratio) of the initial mixtures and enhanced the stability and agronomical value of the final products. Notably, principal component analysis indicated that the additives had significant effects on the characteristics of the vermicomposts. Moreover, the vermibeds containing cattle dung displayed a better earthworm growth and reproduction than those with pig manure. Additionally, redundancy analysis demonstrated that electrical conductivity (EC), pH, and C/N ratio played crucial roles on earthworm growth and reproduction. In all, the additives with high C/N ratio, pH buffering capacity, and low EC are recommended to be used for vermicomposting of sewage sludge.

  14. Evaluation of treated sewage and sludge from establishing lagoons for agricultural use; Valoracion de aguas residuales depuradas y fangos de lagunas de estabilizacion para su uso agricola

    Energy Technology Data Exchange (ETDEWEB)

    Moreno Grau, D. [Dames and Moore, S.A. Madrid (Spain); Diaz de Barrionuevo, A. [E.T.S.I. Montes. Madrid (Spain)

    1998-04-01

    Wastewater treatment using stabilization ponds is a cost-effective method, easily adapted to water reuse in irrigation. This study evaluates the effluent of a wastewater stabilization pond facility in Cartagena, southeastern Spain. The rate of generation and characteristics of the sludges were assessed to determine the maintenance needs and suitability of these materials as soil amendment in agriculture. The results show a moderate increase in the saline content of the water in the ponds. Both influent wastewater and treated effluent attain the same water quality indices normally applied to irrigation water. Sludges accumulate at a very slow rate, 5 cm/yr. thus rendering unnecessary their periodical removal. The sludges generated in this facility are highly mineralized, with an elevated content in cadmium. (Author) 7 refs.

  15. Bacterial regrowth potential in alkaline sludges from open-sun and covered sludge drying beds

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, U.; Topac, F.O.; Birden, B.; Baskaya, H.S. [Uludag University, Gorukle (Turkey). Dept. of Environmnetal Engineering

    2007-10-15

    The aim of this study was to compare the regrowth potentials of wastewater sludges dried in two pilot-scale drying processes namely, Open-Sun Sludge Drying Bed (OSDB) and Covered Sludge Drying Bed (CSDB). Quicklime and/or coal fly ash were added to raw sludge samples prior to drying processes in order to enhance bacterial inactivation. Following three drying cycles (March-April, June-July and August-October), sludge samples were taken from the beds for the regrowth experiments. Addition of alkaline materials prevented the regrowth of faecal coliforms in all rewetted samples except for the samples obtained after the rainfall events in OSDB. Rewetting of these samples in the regrowth experiments increased faecal coliform numbers by 3.5-7 log units. In contradiction, the observed bacterial numbers in rewetted alkaline samples from CSDB were below the EPA Class B criterion (2 million MPN g{center_dot} 1) dry sludge). The combination of additional heat from solar collectors, protection from the rain and the unfavourable living conditions owing to alkaline materials appeared to inactivate bacteria more effectively in CSDB and hence eliminated regrowth potential more efficiently.

  16. Sludge Washing and Demonstration of the DWPF Nitric/Formic Flowsheet in the SRNL Shielded Cells for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-01

    Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to qualify the next batch of sludgeSludge Batch 9 (SB9). Current practice is to prepare sludge batches in Tank 51 by transferring sludge to Tank 51 from other tanks. The sludge is washed and transferred to Tank 40, the current Defense Waste Process Facility (DWPF) feed tank. Prior to sludge transfer from Tank 51 to Tank 40, the Tank 51 sludge must be qualified. SRNL qualifies the sludge in multiple steps. First, a Tank 51 sample is received, then characterized, washed, and again characterized. SRNL then demonstrates the DWPF Chemical Process Cell (CPC) flowsheet with the sludge. The final step of qualification involves chemical durability measurements of glass fabricated in the DWPF CPC demonstrations. In past sludge batches, SRNL had completed the DWPF demonstration with Tank 51 sludge. For SB9, SRNL has been requested to process a blend of Tank 51 and Tank 40 at a targeted ratio of 44% Tank 51 and 56% Tank 40 on an insoluble solids basis.

  17. Concept for a cyclonic spray scrubber as a fission product removal system for filtered containment venting

    International Nuclear Information System (INIS)

    Lebel, Luke S.; Piro, Markus H.; MacCoy, Reilly; Clouthier, Anthony; Chin, Yu-Shan

    2016-01-01

    Graphical abstract: - Highlights: • A new cyclonic spray scrubber concept for filtered containment venting is presented. • Mechanistic particle removal model paired with discrete particle CFD simulations. • Calculations predict that very high decontamination factors can be achieved. - Abstract: The application of a cyclonic spray scrubber as a technology for filtered containment venting is proposed in this paper. This study has paired a mechanistic model for the kinetic particle coagulation of with Euler–Lagrange discrete particle simulations in order to predict particle decontamination factors. The continuous phase behavior has been investigated using computational fluid dynamics simulations together with phase Doppler anemometry measurements. Calculations show that spray scrubbing of radionuclide-bearing aerosols could be very effective, and predict that decontamination factors can be in excess of 10 6 for micron sized particles and excess of 10 3 for submicron particles. In the wake of the accident at the Fukushima Daiichi Nuclear Power Plant, filtered containment venting is being viewed as an increasingly important severe accident mitigation technology. Cyclonic spray scrubbing could be implemented as a passive technology for decontaminating containment gases in an emergency prior to their discharge to the atmosphere, and is a novel approach for this application.

  18. Hydration and leaching characteristics of cement pastes made from electroplating sludge.

    Science.gov (United States)

    Chen, Ying-Liang; Ko, Ming-Sheng; Lai, Yi-Chieh; Chang, Juu-En

    2011-06-01

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the (29)Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic β-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Membrane installation for enhanced up-flow anaerobic sludge blanket (UASB) performance.

    Science.gov (United States)

    Liu, Yin; Zhang, Kaisong; Bakke, Rune; Li, Chunming; Liu, Haining

    2013-09-01

    It is postulated that up-flow anaerobic sludge blanket (UASB) reactor efficiency can be enhanced by a membrane immersed in the reactor to operate it as an anaerobic membrane bioreactor (AnMBR) for low-strength wastewater treatment. This postulate was tested by comparing the performance with and without a hollow fiber microfiltration membrane module immersed in UASB reactors operated at two specific organic loading rates (SOLR). Results showed that membrane filtration enhanced process performance and stability, with over 90% total organic carbon (TOC) removal consistently achieved. More than 91% of the TOC removal was achieved by suspended biomass, while less than 6% was removed by membrane filtration and digestion in the membrane attached biofilm during stable AnMBRs operation. Although the membrane and its biofilm played an important role in initial stage of the high SOLR test, linear increased TOC removal by bulk sludge mainly accounted for the enhanced process performance, implying that membrane led to enhanced biological activity of the suspended sludge. The high retention of active fine sludge particles in suspension was the main reason for this significant improvement of performance and biological activity, which led to decreased SOLR with time to a theoretical optimal level around 2  g COD/g MLVSS·d and the establishment of a microbial community dominated by Methanothrix-like microbes. It was concluded that UASB process performance can be enhanced by transforming such to AnMBR operation when the loading rate is too high for sufficient sludge retention, and/or when the effluent water quality demands are especially stringent. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis

  1. Sludge Batch 7B Qualification Activities With SRS Tank Farm Sludge

    International Nuclear Information System (INIS)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-01-01

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  2. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A VENTURI/PACKED COLUMN SCRUBBER - VOLUME II: APPENDICES

    Science.gov (United States)

    A 5-week series of pilot-scale incineration tests, employing a synthetic waste feed, was performed at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with a venturi scrubber/p...

  3. Recycling of biological sludge for the fertilizing of soils cultivated with Lolium perenne

    Directory of Open Access Journals (Sweden)

    Florica Morariu

    2017-05-01

    Full Text Available The present study has been elaborated with the aim of justifying the high efficiency of in-situ slaughterhouse sludge recycling and its usage in Lolium perenne cultures. Stabilized slaughterhouse sludge was used to complete the high deficiency in nutrients of the poor terrains. Slaughterhouse sludge represents an excessive, final by product from a meat-processing unit in Western Romania. It contains 59.78-90.77% easily bio-degradable organic substances. Moreover, it has compounds containing nitrogen and phosphorus, total N=1.922-3.318%, total P=1107-1126mg•kg-1D.M. The experimental variants have been prepared, having the following characteristics: control variants of non-fertilized soils and variants of soils fertilized with slaughterhouse sludge, 50t•ha-1. The experimental variants used were arranged in a completely randomized block design, with three replicates each. The efficiency of fertilization with slaughterhouse sludge was a 30-35% rise in the quantity of grass harvested vs. the quantities harvested from the control variants. The quantity of Cd and Pb has been determined from the aerial parts of the harvested plants and they were below the maximum limit admitted by the sanitary regulations in Romania. Cr didn’t bio-accumulate in plants at a detection limit. The quantity of other metals determined from the aerial parts of the plants was low: i.e. <10mg•kg-1D.M. for Cu or Ni <50mg•kg-1D.M. for Zn, <150mg•kg-1D.M.for Mn. Green feed harvested from fields fertilized with slaughterhouse sludge can be part of animal nutrition.

  4. Environmental sustainability of wastewater sludge treatments

    DEFF Research Database (Denmark)

    Boyer-Souchet, Florence; Larsen, Henrik Fred

    treatment for municipal waste water. A special focus area in Neptune is sludge handling because the sludge amount is expected to increase due to advanced waste water treatment. The main sludge processing methods assessed in Neptune can be divided into two categories: disintegration processes before...... anaerobic digestion (thermal hydrolysis and ultrasound disintegration) and inertisation processes performed at high temperatures (incineration, pyrolysis, gasification, wet oxidation) but they all aim at volume reduction and removal of biodegradable compounds before safe sludge disposal or reuse of its...... resources. As part of a sustainability assessment (or “best practice evaluation”), a comparison between the existing and new sludge handling techniques have been done by use of life cycle assessment (LCA).The concept of induced impacts as compared to avoided impacts when introducing a new sludge treatment...

  5. Sustainable measures for sewage sludge treatment - evaluating the effects on P reaction in soils and plant P uptake

    Science.gov (United States)

    Shenker, Moshe; Einhoren, Hana

    2016-04-01

    Wastewater treatment, whether for water reusing or for releasing into the environment, results in sewage sludge rich in organic matter and nutrients. If free of pathogens and pollutants, this waste material is a widely used as soil amendment and source of valuable nutrients for agronomic use. Nevertheless, its P/N ratio largely exceeds plant P/N demand. Limiting its application rates according to the P demand of crops will largely limit its application rates and its beneficial effect as a soil amendment and as a source for other nutrients. An alternative approach, in which P is stabilized before application, was evaluated in this study. Anaerobically digested fresh sewage sludge (FSS) was stabilized by aluminum sulfate, ferrous sulfate, and calcium oxide (CaO), as well as by composting with shredded woody yard-waste to produce Al-FSS, Fe-FSS, CaO-FSS, and FSS-compost, respectively. Defined organic-P sources (glucose-1-phosphate and inositol-hexa-phosphate) and a P fertilizer (KH2PO4) were included as well and a control with no P amendments was included as a reference. Each material was applied at a fixed P load of 50 mg kg-1 to each of three soils and P speciation and plants P uptake were tested along 112 days of incubation at moderate (near field capacity) water content. Tomato seedlings were used for the P uptake test. The large set of data was used to evaluate the effect of each treatment on P reactions and mechanisms of retention in the tested soils and to correlate various P indices to P availability for plants. Plant P uptake was highly correlated to Olsen-P as well as to water-soluble inorganic-P, but not to water-soluble organic-P and not to total P or other experimentally-defined stable P fractions. We conclude that the P stabilization in the sludge will allow beneficial and sustainable use of sewage sludge as a soil amendment and source of nutrients, but the stabilization method should be selected in accordance with the target soil properties.

  6. Activated Sludge Rheology

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Horn, Willi; Helmus, Frank

    2013-01-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and filtr...... rheological measurements. Moreover, the rheological models are not very trustworthy and remain very “black box”. More insight in the physical background needs 30 to be gained. A model-based approach with dedicated experimental data collection is the key to address this.......Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling......, leading to varying results and conclusions. In this paper, a vast amount of papers are critically reviewed with respect to this and important flaws are highlighted with respect to rheometer choice, rheometer settings and measurement protocol. The obtained rheograms from experimental efforts have...

  7. Ultrasonic sludge disintegration for enhanced methane production in anaerobic digestion: effects of sludge hydrolysis efficiency and hydraulic retention time.

    Science.gov (United States)

    Kim, Dong-Jin; Lee, Jonghak

    2012-01-01

    Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.

  8. Radioactive contamination of sewage sludge

    International Nuclear Information System (INIS)

    Soeder, C.J.; Zanders, E.; Raphael, T.

    1986-01-01

    Because of the radioactivity released through the explosion of the nuclear reactor near Chernobyl radionuclides have been accumulated to a significant extent in sewage sludge in the Federal Republic of Germany. This is demonstrated for samples from four activated sludge plants according to a recent recommendation of the German Commission for Radiation Protection, there is until now no reason to deviate from the common practices of sludge disposal or incineration. The degree of radioactive contamination of plant materials produced on farm lands on which sewage sludge is being spread cannot be estimated with sufficient certainty yet. Additional information is required. (orig.) [de

  9. Sewage sludge disposal in Austria

    International Nuclear Information System (INIS)

    Koch, F.

    1997-01-01

    Sewage systems serve about 70% of the Austrian population, producing 6 million m 3 of sewage sludge per year with a dry matter content of 4-5%. At present about 52% of this sludge is disposed of in land fills, 33% is incinerated, and only about 15 % is used in agriculture. Although agricultural utilization is becoming increasingly important, several problems, especially those related to public opinion, need to be resolved before increased use will be possible. In this paper, wastewater treatment and sewage-sludge production in Austria, and problems associated with sludge disposal are discussed. (author)

  10. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.

    1977-01-01

    There is an hygienic risk in using biological sewage sludges for agriculture. Systematic analysis carried out on sludges samples obtained from purification plants in East and South part of France, show the almost uniform presence of pathogenic microorganisms. Some of it survive more than 9 months after soil application. Conventional process for disinfection: liming and heat are not suitable for agricultural use. On the other hand, irradiation involves no modification in structure and composition of sludges. Radiation doses required for disinfection vary according to microorganisms. If some of them are eliminated with rather light doses (200 krad) mycobacteria, viruses and eggs of worms resist to more important doses. Security dose is estimated around 1000 krad

  11. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor.

    Science.gov (United States)

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-10-15

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria.

  12. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor

    Science.gov (United States)

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-01-01

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria. PMID:26555802

  13. Development of the chemical stabilization and solidification process for the treatment of radioactive raffinate sludges at the DOE Weldon Spring Site Remedial Action Project

    International Nuclear Information System (INIS)

    Cole, P.M.; Kakaria, V.; Enger, J.

    1996-01-01

    Chemical Solidification and Stabilization (CSS) is the mixing of chemical reagents with waste to solidify and chemically stabilize the contaminated material. The resulting product is resistant to leaching of certain contaminants. CSS treatment using Class C fly ash and Portland cement was chosen as the most feasible method for treatment of the chemically and radioactively contaminated sludge (raffinate) contained in raffinate pits on the Weldon Spring Site Remedial Action Project (WSSRAP) located outside of St. Louis, Missouri. Due to the uniqueness of the material, substantial bench-scale testing was performed on the raffinate to better understand its properties. Similarly, due to mixed results in the application of CSS treatment to radioactive materials, a pilot-scale testing facility was built to verify bench testing results and to establish and quantify design parameters for the full-scale CSS production facility. This paper discusses the development of the pilot-scale testing facility, the testing plan, and the results of the testing activities. Particular attention has been given to the applicability of the CSS treatment method and to the value of pilot-scale testing

  14. 40 CFR Appendix A to Part 503 - Procedure To Determine the Annual Whole Sludge Application Rate for a Sewage Sludge

    Science.gov (United States)

    2010-07-01

    ... Whole Sludge Application Rate for a Sewage Sludge A Appendix A to Part 503 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Pt... a Sewage Sludge Section 503.13(a)(4)(ii) requires that the product of the concentration for each...

  15. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    International Nuclear Information System (INIS)

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-01-01

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO 3 ) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the dissolver

  16. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-yong, E-mail: www053991@126.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Li, Xiao-ming [Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510330 (China); Chen, Tao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Luo, Guang-qian [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Xie, Wu-ming; Wang, Yu-jie; Zhuo, Zhong-xu; Fu, Jie-wen [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2015-04-15

    Highlights: • A thermodynamic equilibrium calculation was carried out. • Effects of three types of sulfurs on Pb distribution were investigated. • The mechanism for three types of sulfurs acting on Pb partitioning were proposed. • Lead partitioning and species in bottom ash and fly ash were identified. - Abstract: Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na{sub 2}S and Na{sub 2}SO{sub 4}) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na{sub 2}SO{sub 4} and Na{sub 2}S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO{sub 4}(s) at low temperatures (<1000 K). The equilibrium calculation prediction also suggested that SiO{sub 2}, CaO, TiO{sub 2}, and Al{sub 2}O{sub 3} containing materials function as condensed phase solids in the temperature range of 800–1100 K as sorbents to stabilize Pb. However, in the presence of sulfur or chlorine or the co-existence of sulfur and chlorine, these sorbents were inactive. The effect of sulfur on Pb partitioning in the sludge incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the

  17. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    Energy Technology Data Exchange (ETDEWEB)

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-03-24

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO{sub 3}) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the

  18. PBDEs in Italian sewage sludge and environmental risk of using sewage sludge for land application

    International Nuclear Information System (INIS)

    Cincinelli, Alessandra; Martellini, Tania; Misuri, Lorenza; Lanciotti, Eudes; Sweetman, Andy; Laschi, Serena; Palchetti, Ilaria

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) were determined in sewage sludge samples collected from eight Italian wastewater treatment plants (WWTPs) between June 2009 and March 2010. Total PBDE concentrations ranged from 158.3 to 9427 ng g −1 dw, while deca-BDE (BDE-209) (concentrations ranging from 130.6 to 9411 ng g −1 dw) dominated the congener profile in all the samples, contributing between 77% and 99.8% of total PBDE. The suitability of using a magnetic particle enzyme-linked immunoassay (ELISA) to analyse PBDEs in sewage sludge was also tested. The ELISA results, expressed as BDE-47 equivalents, were well correlated with those obtained by GC–NCI–MS, with correlation coefficients (r 2 ) of 0.899 and 0.959, depending on the extraction procedure adopted. The risk assessment of PBDEs in sewage sludge addressed to land application was calculated. PEC soil values compared to the relative PNEC soil for penta and deca-BDE suggests that there is a low risk to the soil environment. - Highlights: ► PBDEs in sewage sludge were determined in eight Italian WWTPs for the first time. ► PBDEs concentrations showed differences between the eight investigated WWTPs. ► Deca-BDE (BDE-209) was the dominant congener in all samples. ► The suitability of using ELISA method to analyse PBDEs in sewage sludge was tested. ► The risk assessment of using sewage sludge for land application was evaluated. - Determination of PBDEs in sewage sludge by GC–NCI–MS and ELISA test and risk assessment when sewage sludge is used for land application.

  19. Agricultural yields of irradiated sewage sludge

    International Nuclear Information System (INIS)

    Magnavacca, Cecilia; Miranda, E.; Sanchez, M.

    1999-01-01

    Lettuce, radish and ryegrass have been used to study the nitrogen fertilization of soil by sewage sludge. The results show that the irradiated sludge improve by 15 - 30 % the production yield, compared to the non-irradiated sludge. (author)

  20. Sustainability of Domestic Sewage Sludge Disposal

    Directory of Open Access Journals (Sweden)

    Claudia Bruna Rizzardini

    2014-04-01

    Full Text Available Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a secondary role in terms of their degree of diffusion. The agronomical value of domestic sewage sludge is a proved question, which may be hidden by the presence of several pollutants such as heavy metals, organic compounds and pathogens. In this way, the sustainability of sewage sludge agricultural disposal requires a value judgment based on knowledge and evaluation of the level of pollution of both sewage sludge and soil. The article analyzed a typical Italian case study, a water management system of small communities, applying the criteria of evaluation of the last official document of European Union about sewage sludge land application, the “Working Document on Sludge (3rd draft, 2000”. The report brought out good sewage sludge from small wastewater treatment plants and soils quality suggesting a sustainable application.

  1. Virological investigations on inadiated sewage sludge

    International Nuclear Information System (INIS)

    Epp, C.

    1980-08-01

    The virusinactivating activity of a Co 60 -irradiation pilot plant at Geiselbullach/Munich was to be examined. We investigated 16 impure sewage water, 15 purified sewage water, 32 raw sladge samples, 62 digested sludge samples before irradiation, 52 digested sludge samples after irradiation and 9 raw sludge samples after irradiation. We completed these investigations by adding poliovaccinevirus type 1 to the digested sludge before irradiation and by adding suspensions of pure virus in MEM + 2% FBS packed in synthetic capsules and mixtures of virus and sludge packed in synthetic capsules to the digested sludge. After the irradiation we collected the capsules and determined the virustiter. The testviruses were poliovaccinevirus type 1, poliowildvirus type 1, echovirus type 6, coxsackie-B-virus type 5, coxsackie-A-virus type 9 and adenovirus type 1. In the field trial the irradiation results were like the laboratory results assuming that the sewage sludge was homogenized enough by digestion and the solid particle concentration was not more than 3%. The D-value was 300-400 krad for enteroviruses and 700 krad for adenovirus. (orig.) [de

  2. A review on sludge dewatering indices.

    Science.gov (United States)

    To, Vu Hien Phuong; Nguyen, Tien Vinh; Vigneswaran, Saravanamuth; Ngo, Huu Hao

    2016-01-01

    Dewatering of sludge from sewage treatment plants is proving to be a significant challenge due to the large amounts of residual sludges generated annually. In recent years, research and development have focused on improving the dewatering process in order to reduce subsequent costs of sludge management and transport. To achieve this goal, it is necessary to establish reliable indices that reflect the efficiency of sludge dewatering. However, the evaluation of sludge dewaterability is not an easy task due to the highly complex nature of sewage sludge and variations in solid-liquid separation methods. Most traditional dewatering indices fail to predict the maximum cake solids content achievable during full-scale dewatering. This paper reviews the difficulties in assessing sludge dewatering performance, and the main techniques used to evaluate dewatering performance are compared and discussed in detail. Finally, the paper suggests a new dewatering index, namely the modified centrifugal index, which is demonstrated to be an appropriate indicator for estimating the final cake solids content as well as simulating the prototype dewatering process.

  3. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    Science.gov (United States)

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

  5. Modeling Aspects Of Activated Sludge Processes Part I: Process Modeling Of Activated Sludge Facilitation And Sedimentation

    International Nuclear Information System (INIS)

    Ibrahim, H. I.; EI-Ahwany, A.H.; Ibrahim, G.

    2004-01-01

    Process modeling of activated sludge flocculation and sedimentation reviews consider the activated sludge floc characteristics such as: morphology viable and non-viable cell ratio density and water content, bio flocculation and its kinetics were studied considering the characteristics of bio flocculation and explaining theory of Divalent Cation Bridging which describes the major role of cations in bio flocculation. Activated sludge flocculation process modeling was studied considering mass transfer limitations from Clifft and Andrew, 1981, Benefild and Molz 1983 passing Henze 1987, until Tyagi 1996 and G. Ibrahim et aI. 2002. Models of aggregation and breakage of flocs were studied by Spicer and Pratsinis 1996,and Biggs 2002 Size distribution of floes influences mass transfer and biomass separation in the activated sludge process. Therefore, it is of primary importance to establish the role of specific process operation factors, such as sludge loading dynamic sludge age and dissolved oxygen, on this distribution with special emphasis on the formation of primary particles

  6. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    International Nuclear Information System (INIS)

    Wan Caixia; Zhou Quancheng; Fu Guiming; Li Yebo

    2011-01-01

    Highlights: → Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). → Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. → FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. → Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS added when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH 4 and CO 2 content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

  7. Preliminary results of lab-scale investigations of products of incomplete combustion during incineration of primary and mixed digested sludge.

    Science.gov (United States)

    Braguglia, C M; Bagnuolo, G; Gianico, A; Mininni, G; Pastore, C; Mascolo, G

    2016-03-01

    Separation between primary and secondary sludge treatment could be a valuable solution for sludge management. According to this approach, secondary sludge can be conveniently used in agriculture while primary sludge could be easily dried and incinerated. It follows that some concern may arise from incinerating primary sludge with respect to the current practice to incinerate mixed digested sludge. Incineration of primary and mixed digested municipal sludge was investigated with a lab-scale equipment in terms of emissions of products of incomplete combustion (PICs) during incineration failure modes. PICs can be grouped in three sub-categories, namely aliphatic hydrocarbons (alkanes and alkenes), compounds with a single aromatic ring, and polycyclic aromatic hydrocarbons (PAHs). After-burning temperature was the most important parameter to be controlled in order to minimize emissions of alkanes and alkenes. As for mono-aromatic compounds, benzene and toluene are the most thermally resistant compounds, and in some cases, an after-burning temperature of 1100 °C was not enough to get the complete destruction of benzene leading to a residual emission of 18 mg/kgsludge. PAHs showed an opposite trend with respect to aliphatic and mono-aromatic hydrocarbons being the thermal failure mode the main responsible of PIC emissions. A proper oxygen concentration is more important than elevated temperature thus reflecting the high thermal stability of PAHs. Overall, obtained results, even though obtained under flameless conditions that are different from those of the industrial plants, demonstrated that separation of primary and secondary sludge does not pose any drawbacks or concern regarding primary sludge being disposed of by incineration even though it is more contaminated than mixed digested sludge in terms of organic pollutants.

  8. Elementary analysis and energetic potential of the municipal sewage sludges from the Gdańsk and Kościerzyna WWTPs

    Directory of Open Access Journals (Sweden)

    Ostojski Arkadiusz

    2018-01-01

    Full Text Available This paper aims to present municipal sewage sludge (MSS elementary analysis and energetic potential based on measurement of heat of combustion (higher heating value HHV and calculation of calorific values (lower heating value LHV. The analysis takes into the consideration water content in sewage sludge, at different utilization stages, in wastewater treatment plants in Gdańsk Wschód and Kościerzyna – Pomeranian Voivodeship. The study yielded the following results (in % dry matter: ash 19÷31 %, C - 31÷36 %, H - 5÷6 %, N - 4÷6 %, O - 28÷32 %, S – 1 %. Calorific value of stabilized sludges in Gdańsk was on average 13.8÷15 MJ/kg. In case of sludges not undergoing digestion from Kościerzyna WWTP, the calorific value was at the level of 17.5 MJ/kg. Thus, sewage sludges are good energy carriers. High water content though is the problem, as it lowers the useful effect of heat. There is no alternative for thermal sewage sludge neutralization, which is in conformity with valid Polish National Waste Management Plan (KPGO 2022.

  9. Impact of sludge retention time on sludge characteristics and microbial community in MBR.

    Science.gov (United States)

    Su, Yuchun; Pan, Jill Ruhsing; Huang, Chihpin; Chang, Chialing

    2011-01-01

    In this study, the impact of sludge retention time (SRT) on sludge characteristics and microbial community and the effect on membrane fouling in membrane bioreactor (MBR) was investigated. The results show that MBR with longer SRT has less fouling propensity, in agreement with other studies, despite the fact that the MBR with longer SRT contained higher MLSS and smaller particle size. However, much more soluble microbial products (SMPs) were released in MBR with shorter SRT. More slime on the membrane surface was observed in MBR with shorter SRT while sludge cakes formed on the membrane surface in MBR with longer SRT. The results show that SMP contributes to the severe fouling observed in MBR with shorter SRT, which is in agreement with other studies showing that SMPs were the major foulants in MBR. Under different SRTs of operation, the bacterial community structures of the sludge obtained by use of polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were almost identical, but those on the membrane surface differed substantially. It suggests that, although SRT has impact on sludge characteristics, it doesn't affect the microbial community in the suspension.

  10. An Experimental Study Of The Stability Of Vessel-Spanning Bubbles In Cylindrical, Annular, Obround and Conical Containers

    International Nuclear Information System (INIS)

    Dhaliwal, T.K.

    2010-01-01

    This report provides a summary of experiments that were performed by Fauske and Associates on the stability of vessel-spanning bubbles. The report by Fauske and Associates, An Experimental Study of the Stability of Vessel-Spanning Bubbles in Cylindrical, Annular, Obround and Conical Containers, is included in Appendix A. Results from the experiments confirm that the gravity yield parameter, Y G , correctly includes container size and can be applied to full-scale containers to predict the possibility of the formation of a stable vessel spanning bubble. The results also indicate that a vessel spanning bubble will likely form inside the STSC for KE, KW, and Settler sludges if the shear strengths of these sludges exceed 1820, 2080, and 2120 Pa, respectively. A passive mechanism installed in the STSC is effective at disrupting a rising sludge plug and preventing the sludge from plugging the vent filter or being forced out of the container. The Sludge Treatment Project for Engineered Container and Settler Sludge (EC/ST) Disposition Subproject is being conducted in two phases. Phase 1 of the EC/ST Disposition Subproject will retrieve the radioactive sludge currently stored in the K West (KW) Basin into Sludge Transport and Storage Containers (STSCs) and transport the STSCs to T-Plant for interim storage. Phase 2 of the EC/ST Disposition Subproject will retrieve the sludge from interim storage, treat and package sludge for disposal at the Waste Isolation Pilot Plant. The STSC is a cylindrical container; similar to previously used large diameter containers. A STSC (Figure 1) with a diameter of 58 inches will be used to transport KE and KW originating sludge (located in Engineered Containers 210, 220, 240, 250, and 260) to T-Plant. A STSC with an annulus (Figure 2) will be used to transport Settler Tank sludge, located in Engineered Container 230. An obround small canister design was previously considered to retrieve sludge from the basin. The obround design was selected in

  11. REDUCTION OF EXCESS SLUDGE PRODUCTION IN AN ACTIVATED SLUDGE SYSTEM BASED ON LYSIS-CRYPTIC GROWTH, UNCOUPLING METABOLISM AND FOLIC ACID ADDITION

    Directory of Open Access Journals (Sweden)

    V. F. Velho

    Full Text Available Abstract The following sludge reduction alternatives were tested in wastewater biological reactors: oxic-settling-anaerobic (OSA-process; ultrasonic disintegration (UD; chlorination (CH; 3,3',4',5-tetrachlorosalicylanilide (TCS; and folic acid (FA. Compared to the control system, UD reduced 55% of the sludge production, and greater substrate and nutrient removal efficiency was achieved. CH worsened the sludge settleability and increased the SVI values; the system achieved 25% of sludge reduction. OSA showed 50% and 60% of sludge reduction after 16 and 10 hours under anaerobic conditions, respectively. The observed sludge yield during TCS addition was decreased by 40%, and the sludge settleability worsened. FA presented the highest sludge reduction (75%, and the system improved the nutrient removal efficiency by 30% compared to the control system and maintained the sludge properties. Acute toxicity conducted with Daphnia magna classified the effluent from the sludge reduction systems as non-toxic for discharge into water sources.

  12. Hexavalent chromium removal using aerobic activated sludge batch ...

    African Journals Online (AJOL)

    The following Cr(VI) removal systems were tested: activated sludge alone; activated sludge with an external electron donor (5 g/. of lactose); activated sludge with PAC addition (4 g/.); activated sludge with both PAC and lactose; and PAC alone. The results reported here showed that activated sludges are capable of ...

  13. First-order hydrothermal oxidation kinetics of digested sludge compared with raw sludge.

    Science.gov (United States)

    Shanableh, A; Imteaz, M

    2008-09-01

    This article presents an assessment of the first-order hydrothermal oxidation kinetics of a selected digested sludge at subcritical ( 374 degrees C) temperatures in the range of 250-460 degrees C. Furthermore, the results were compared with reported oxidation kinetics of raw sludge treated under identical experimental conditions. In the assessment, oxidation was considered to proceed in two steps: (1) decomposition of the particulate, or non-filterable, chemical oxygen demand (PCOD); followed by (2) ultimate oxidation and removal of the total, particulate and soluble, COD. The accumulation and removal of soluble COD (SCOD) was determined from the difference between the rates of sludge decomposition and ultimate oxidation. Using results from batch and continuous-flow hydrothermal treatment experiments, the reacting organic ingredients were separated into groups according to the ease or difficulty at which they were decomposed or removed, with Arrhenius-type activation energy levels assigned to the different groups. The analysis confirmed that within the treatment range of 75% to more than 97% COD removal, the oxidation kinetics of the digested and raw sludges were nearly identical despite differences in the proportions of their original organic ingredients. The original organic ingredients were mostly removed above 75% COD removal, and the oxidation kinetics appeared to be dominated by the removal of acetic acid, an intermediate by-product which constituted 50% to more than 80% of the remaining COD. Furthermore, the oxidation kinetics of both sludge types were consistent with reported first-order oxidation kinetics of pure acetic acid solutions. The resulting kinetic models adequately represented hydrothermal oxidation of digested sludge, in terms of COD and PCOD removals, as well as accumulation and removal of the soluble SCOD.

  14. Cement manufacture and sludge; Semento seizo to gesui odei. Semento kojo deno antei shori {center{underscore}dot} yuko riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Yoji; Yamazaki, Masayasu; Hashimoto, Koichi [Mitsubishi Materials Corp., Tokyo (Japan)

    1998-11-10

    There was the percussion of the sludge processing from the Kitakyushu City in 1995. Within various waste treatment technology cultivated to it, the technology (direct combustion system) of cement raw material by the direct injection of sludge dehydrated cake to cement baking furnace was adopted. It became dealing with in cement baking furnace of the Kurosaki factory in our company. Through the processing by the present, it is not completely finding even in cement quality of the product, environmental side and on the problem. It was confirmed to be the processing technology of sewage dewatered sludge in which this technology was safely stabilized. In addition, the superiority in much global environmental protection has also been confirmed. (NEDO)

  15. Electrodialytic removal of cadmium from wastewater sludge

    DEFF Research Database (Denmark)

    Jakobsen, M. R.; Fritt-Rasmussen, Janne; Nielsen, S.

    2004-01-01

    This paper presents for the first time laboratory results demonstrating electrodialytic removal of Cd from wastewater sludge, which is a method originally developed for soil remediation. During the remediation a stirred suspension of wastewater sludge was exposed to an electric dc field. The liquid....../solid (ml/g fresh sludge) ratio was between 1.4 and 2. Three experiments were performed where the sludge was suspended in distilled water, citric acid or HNO"3. The experimental conditions were otherwise identical. The Cd removal in the three experiments was 69, 70 and 67%, respectively, thus the removal...... was approximately the same. Chemical extraction experiments with acidic solutions showed that 5-10 times more Cd could be extracted from decomposed sludge than from fresh sludge. It is likely that the mobilization of Cd during decomposition of the sludge contributes to the efficient removal of Cd...

  16. Respirometry in activated sludge

    NARCIS (Netherlands)

    Spanjers, H.

    1993-01-01

    The purpose of the study was (1) to develop a respiration meter capable of continuously measuring, using different procedures, the oxygen uptake rate of activated sludge and (2) to expand knowledge about respiration related characteristics of wastewater and activated sludge.

    A

  17. Sustainable sludge management in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, B.; Barrios, J.A.; Mendez, J.M.; Diaz, J.

    2003-07-01

    Worldwide, unsanitary conditions are responsible of more than three million deaths annually. One of the reasons is the low level of sanitation in developing countries. Particularly, sludge from these regions has a high parasite concentration and low heavy metal content even though the available information is limited. Different issues needed to achieve a sustainable sludge management in developing nations are analysed. Based on this analysis some conclusions arise: sludge management plays an important role in sanitation programs by helping reduce health problems and associated risks; investments in sanitation should consider sludge management within the overall projects; the main restriction for reusing sludge is the high microbial concentration, which requires a science-based decision of the treatment process, while heavy metals are generally low; the adequate sludge management needs the commitment of those sectors involved in the development and enforcement of the regulations as well as those that are directly related to its generation, treatment, reuse or disposal; current regulations have followed different approaches, based mainly on local conditions, but they favour sludge reuse to fight problems like soil degradation, reduced crop production, and the increased use of inorganic fertilizers. This paper summarises an overview of theses issues. (author)

  18. Pressurized Fluidized Bed Combustion of Sewage Sludge

    Science.gov (United States)

    Suzuki, Yoshizo; Nojima, Tomoyuki; Kakuta, Akihiko; Moritomi, Hiroshi

    A conceptual design of an energy recovering system from sewage sludge was proposed. This system consists of a pressurized fluidized bed combustor, a gas turbine, and a heat exchanger for preheating of combustion air. Thermal efficiency was estimated roughly as 10-25%. In order to know the combustion characteristics of the sewage sludge under the elevated pressure condition, combustion tests of the dry and wet sewage sludge were carried out by using laboratory scale pressurized fluidized bed combustors. Combustibility of the sewage sludge was good enough and almost complete combustion was achieved in the combustion of the actual wet sludge. CO emission and NOx emission were marvelously low especially during the combustion of wet sewage sludge regardless of high volatile and nitrogen content of the sewage sludge. However, nitrous oxide (N2O) emission was very high. Hence, almost all nitrogen oxides were emitted as the form of N2O. From these combustion tests, we judged combustion of the sewage sludge with the pressurized fluidized bed combustor is suitable, and the conceptual design of the power generation system is available.

  19. Hydrogen Evolution and Sludge Suspension During the Preparation of the First Batch of Sludge at the Savannah River Site

    International Nuclear Information System (INIS)

    Hay, M.S.; Lee, E.D.

    1995-01-01

    The first batch of High Level Radioactive Sludge for the Defense Waste Processing Facility is being prepared in two 4.9 million liter waste tanks. The preparation involves removing water soluble salts by washing (water addition, sludge suspension, settling and decantation). Sludge suspension is accomplished using long shafted slurry pumps that are mounted on rotating turntables. During the sludge suspension runs in 1993 and 1994, the slurry pumps' cleaning radius was determined to be less than that expected from previous determinations using synthetic sludge in a full size waste tank mockup. Hydrogen concentrations in the tanks' vapor space were monitored during the sludge suspension activities. As expected, the initial agitation of the sludge increased the hydrogen concentration, however, with the controls in place the hydrogen concentration was maintained below seven percent of the lower flammability limit

  20. Development of a test method to access the sludge reduction potential of aquatic organisms in activated sludge

    NARCIS (Netherlands)

    Buijs, B.R.; Klapwijk, A.; Elissen, H.J.H.; Rulkens, W.H.

    2008-01-01

    This article shows the development of a quantitative sludge reduction test method, which uses the sludge consuming aquatic worm Lumbriculus variegatus (Oligochaeta, Lumbriculidae). Essential for the test are sufficient oxygen supply and the presence of a non-stirred layer of sludge for burrowing of