Sample records for stabilized dune sand

  1. Sand Dune Albedo Feedback

    Directory of Open Access Journals (Sweden)

    Yosef Ashkenazy


    Full Text Available Sand dunes cover substantial parts of desert areas. Fully active dunes are bare, while fixed dunes are stabilized by vegetation and biogenic crust, and the dune activity is affected by the wind. Here we suggest the following atmosphere-sand dune feedback: spatial differences in the dunes’ vegetation and biogenic crust cover lead to differences in albedo as the albedo of bare sand is larger than that of vegetation and biogenic crust. This leads to a higher temperature over the vegetated area, resulting in air flow from the bare dune area to the vegetated dune area, thus increasing the wind activity over the vegetated dune area. In turn, this leads to enhanced stress on the vegetation and enhanced dune activity and thus to a decrease in vegetation. These changes in vegetation cover affect the surface albedo, leading to a change in wind activity. We examined this feedback using an atmospheric general circulation model, Weather Research and Forecasting (WRF, in selected regions of the northwestern Negev Desert and the Sahara/Sahel region, and we show that changes in surface albedo do indeed lead to significantly enhanced wind activity over the lower albedo region. We then incorporated this feedback into a simple vegetated dune model, showing that the multiple states associated with active and fixed dunes can be obtained for a larger range of parameters and that the stables states become more extreme (i.e., the fixed dune state becomes more vegetated and the active dune state becomes less vegetated.

  2. Complexity confers stability: Climate variability, vegetation response and sand transport on longitudinal sand dunes in Australia's deserts (United States)

    Hesse, Paul P.; Telfer, Matt W.; Farebrother, Will


    The relationship between antecedent precipitation, vegetation cover and sand movement on sand dunes in the Simpson and Strzelecki Deserts was investigated by repeated (up to four) surveys of dune crest plots (≈25 × 25 m) over a drought cycle (2002-2012) in both winter (low wind) and spring (high wind). Vegetation varied dramatically between surveys on vegetated and active dune crests. Indices of sand movement had significant correlations with vegetation cover: the depth of loose sand has a strong inverse relationship with crust (cyanobacterial and/or physical) while the area covered by ripples has a strong inverse relationship with the areal cover of vascular plants. However, the relationship between antecedent rainfall and vegetation cover was found to be complex. We tentatively identify two thresholds; (1) >10 mm of rainfall in the preceding 90 days leads to rapid and near total cover of crust and/or small plants 400 mm of rainfall in the preceding three years leads to higher cover of persistent and longer-lived plants >50 cm tall. These thresholds were used to predict days of low vegetation cover on dune crests. The combination of seasonality of predicted bare-crest days, potential sand drift and resultant sand drift direction explains observed patterns of sand drift on these dunes. The complex vegetation and highly variable rainfall regime confer meta-stability on the dunes through the range of responses to different intervals of antecedent rainfall and non-linear growth responses. This suggests that the geomorphic response of dunes to climate variation is complex and non-linear.

  3. Windblown Sand Dunes (United States)


    MGS MOC Release No. MOC2-557, 27 November 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows sand dunes and large ripples in a crater in the Hellespontus region of Mars. The winds that formed these dunes generally blew from the left/lower-left (west/southwest). Unlike the majority of dunes on Earth, sand dunes on Mars are mostly made up of dark, rather than light, grains. This scene is located near 50.3oS, 327.5oW. The image covers an area 3 km (1.9 mi) wide, and is illuminated by sunlight from the upper left.

  4. Chemical stabilization of baiji sand dunes in iraq 1. Effect of some soil stabilizers on the infiltration rate of sand


    Ahmed, Naif B. [نايف بكر احمد


    In this study, the effect of soil chemical stabilizers including polyvinyl alcohol 125,000 (PVA) (0.2% and 0.4%); ferquatac resin emulsion RB-50 (F.E.) (0.14, 0.18, 0.2 and 0.4 lm'2); bitumen emulsion Al-55 (B.E.) (0.3, 0.4, 0.5 and 1.0 lm"2); aquapol resin 35-0019 (Aql) (0.33% and 0.66%) and aquapol resin 35-0031 (Aq2) (150, 175, 200 and 250 gm m ) on the infiltration rate of Baiji dunes sand was investigated. The results indicated that, both PVA concentrations increased the infiltration rat...

  5. Use of coal ash for enhancing biocrust development in stabilizing sand dunes (United States)

    Zaady, Eli; Katra, Itzhak; Sarig, Shlomo


    In dryland environments, biocrusts are considered ecosystem engineers since they play significant roles in ecosystem processes. In the successional pathway of crust communities, the new areas are colonized after disturbance by pioneers such as filamentous cyanobacteria - Microcoleus spp. This stage is followed by colonization of green algae, mosses, and lichens. Aggregation of soil granules is caused by metabolic polysaccharides secreted by cyanobacteria and green algae, gluing the soil particles to form the crust layer. It was suggested that incorporating dust into the biocrusts encourages the growth of cyanobacteria, leading to a strengthening of the biocrusts' cohesion. Moreover, biocrusts cover a larger portion of the surface when the soil contains finer particles, and it was observed that at least 4-5% of clay and silt is required to support a measurable biocrust. While natural and undisturbed sand dunes are generally stabilized by biocrusts in the north-western Negev desert, stabilization of disturbed and movable sand dunes is one of the main problems in this desertified land, as in vast areas in the world. Daily breezes and seasonal wind storms transport sand particles to populated and agricultural areas causing damages to field crops and livelihood. Moving sand dunes consist of relatively coarse grains (250-2000 μm) with a low percent of clay and silt. This phenomenon negatively affects cyanobacterial colonization rate, even in relatively wet desert areas (100-250 mm rainfalls). In order to face the problem it was suggested to enrich the dune surface by using coal fly-ash. The research was conducted in two stages: first, examining the feasibility in Petri-dishes in laboratory conditions and in Experimental Aeolian Greenhouse conditions. The results showed that adding coal fly-ash and biocrust inoculum increased aggregate stability, penetration resistance and shear strength, as opposed to the control-sand plot. Using mobile wind-tunnel simulations, sand

  6. Singing Sand Dunes

    Indian Academy of Sciences (India)

    ble low-frequency (s. 75–105 Hz), that can some- times be heard up to 10 km away. Scientific in- vestigations suggest that the sustained low fre- quency sound of sand dunes that resembles a pure note from a musical instrument, is due to the synchronized motion of well-sorted dry sand grains when they spontaneously ...

  7. Dark Sand Dunes (United States)


    13 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes in the north polar region of Mars. The dominant winds responsible for these dunes blew from the lower left (southwest). They are located near 76.6oN, 257.2oW. The picture covers an area 3 km (1.9 mi) across; sunlight illuminates the scene from the upper right.

  8. Booming Sand Dunes (United States)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  9. Defrosting Sand Dunes (United States)


    MGS MOC Release No. MOC2-434, 27 July 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows retreating patches of frost on a field of large, dark sand dunes in the Noachis region of Mars. Large, windblown ripples of coarse sediment are also seen on some of the dunes. This dune field is located in a crater at 47.5oS, 326.3oW. The scene is illuminated by sunlight from the upper left.

  10. Investigation of Water Holding Capacity of Sugarcane Mulch for Sand Dune Stabilization in Ahvaz

    Directory of Open Access Journals (Sweden)

    T. Jamili


    sugarcane mulches was also carried out. Materials and Methods: The experiments were conducted in the soil laboratory of Khuzestan-Ramin University of Agricultural and Natural Resources. For this purpose, Vinasse and clay soil samples were used to make sugarcane mulches. Different quantities of Vinase, Filter Kike, and clay samples were mixed in water to select the best batch mix (by trial and error. A mulch sprayer was then used to spray the batch mixes on sand dune beds packed in trays 1054510cm. In addition, the same procedures were employed to choose an oil mulch treatment as control for comparison with sugarcane mulch treatments. Water holding capacity was measured in 100, 333, 1000, 5000, 10000, 15000 hPa suction by pressure plate and Macro elements ( N, P, K and microelements (Fe, Cu, Zn were determined by conventional methods and atomic absorption in each treatment. Experiments were carried out using a factorial experiment with a completely random design in threereplicants. Results and Discussion: The wide range of pH values obtained were dependent on the different batch mixes of Vinase, clay soil, and Filter Kike. Reaction (pH of Vinase was lower (5.00 than those of Filter Kike (7.5 and soil (8.07. EC and SAR values of treatments were both affected by Vinase, soil, and Filter Kike. This could be due to the higher EC and the low level of SAR in Vinase in contrast to soil and Filter Kike. EC and SAR are two major chemical factors known to affect sand dune stabilization (Bresler, 1982. Based on Table 3, N, P, K, Fe, Zn, and Cu in sugarcane mulches varied from 0.15-0.66 (%, 10.82-28.46 (mg.Kg-1, 133.01-633.33 (meq.Li-1, 15.22-36.76 (mg.Kg-1, 2.19-2.93 (mg.Kg-1, and 0.92-4.1 (mg.Kg-1, respectively. The results revealed that sugarcane mulches are rich in N, P, and K that are essential in soil fertility. The results determined that there was significant effect (p

  11. Sand Dunes in Kaiser Crater (United States)


    Full size (780 KBytes) This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) high resolution image shows a field of dark sand dunes on the floor of Kaiser Crater in southeastern Noachis Terra. The steepest slopes on each dune, the slip faces, point toward the east, indicating that the strongest winds that blow across the floor of Kaiser move sand in this direction. Wind features of three different scales are visible in this image: the largest (the dunes) are moving across a hard surface (light tone) that is itself partially covered by large ripples. These large ripples appear not to be moving--the dunes are burying some and revealing others. Another type of ripple pattern is seen on the margins of the dunes and where dunes coalesce. They are smaller (both in their height and in their separation) than the large ripples. These are probably coarse sediments that are moving with the dunes. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated from the upper left.

  12. Impacts of climate change on the formation and stability of late Quaternary sand sheets and falling dunes, Black Mesa region, southern Colorado Plateau, USA (United States)

    Ellwein, Amy L.; Mahan, Shannon; McFadden, Leslie D.


    Detailed geomorphic mapping and analysis of soil-stratigraphy and optically stimulated luminescence (OSL) dating of eolian sand dunes on Black Mesa, Arizona, reveal eolian sediment deposition occurred from 30 to 16 ka, followed by a period of widespread dune stabilization from 12 to 8 ka. Localized reactivation of the previously stabilized dune forms or local changes in sediment supply have occurred in the middle to late Holocene in this region. Cooler, wetter, and more variable climatic conditions during MIS 3 and 2 led to increased channel and floodplain sediment supply. Eolian sediment derived from these sources was transported up to 60 km. Deposition of this material has reduced regional topographic roughness by filling tributary canyon ‘traps’ oriented perpendicular to the dominant wind and sediment transport direction. Topographically controlled falling dunes and sand ramps in this region are preserved because of their geomorphic position and provide evidence of the paleoenvironmental state of the fluvial and eolian systems before, during, and immediately after the last glacial maximum on the southern Colorado Plateau.

  13. The impact of fire on sand dune stability: Surface coverage and biomass recovery after fires on Western Australian coastal dune systems from 1988 to 2016 (United States)

    Shumack, Samuel; Hesse, Paul; Turner, Liam


    This study aims to determine the common response of coastal sand dunes in Western Australia (WA) to fire on decadal time-scales, in terms of ecological-geomorphic-climatic interactions to test the hypothesis that fire plays a role in coastal dune destabilisation. Fires are commonly suggested to have contributed to widespread dune reactivation in Australia and globally, a hypothesis that is relatively untested. We used data from the Landsat Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational Land Imager missions to monitor changes in surface coverage on coastal sand dunes in south-west WA after fires. We analysed 31 fire scars from 1988 to 2016 in two Landsat scenes on the west and south coast of WA. Recovery ratios derived from the Normalised Difference Vegetation Index (NDVI) were used to monitor patterns in post-fire biomass and surface cover. Recovery ratios are correlated with indices of burn severity, and meteorological data to investigate relationships. We also used Maximum Likelihood Classification to monitor changes in bare sand area. Results suggest that recovery followed a strongly consistent pattern, and is characterised by rapid vegetation cover re-establishment within six to twelve months. Prior to this, some aeolian activity may have occurred but without substantial surface changes. Initial germination and/or resprouting were followed by steady growth up to seven years, where NDVI typically neared pre-fire values. Some variation in early recovery occurred between the west and south coast, possibly owing to relative proportions of reseeding and resprouting plants. A log regression explained 75% of the recovery pattern (79% on the south coast). Precipitation had some ability to explain recovery up to nine months post-fire (r2 = 0.29 to 0.54). No relationships were observed between estimates of burn severity and recovery. After nine months, the biggest cause of spatial variation in recovery was the pre-fire community composition and related

  14. Changes in vegetation and biological soil crust communities on sand dunes stabilizing after a century of grazing on San Miguel Island, Channel Island National Park, California (United States)

    Zellman, Kristine L.


    San Miguel Island is the westernmost of the California Channel Islands and one of the windiest areas on the west coast of North America. The majority of the island is covered by coastal sand dunes, which were stripped of vegetation and subsequently mobilized due to droughts and sheep ranching during the late 19th century and early 20th century. Since the removal of grazing animals, vegetation and biological soil crusts have once again stabilized many of the island's dunes. In this study, historical aerial photographs and field surveys were used to develop a chronosequence of the pattern of change in vegetation communities and biological soil crust levels of development (LOD) along a gradient of dune stabilization. Historical aerial photographs from 1929, 1954, 1977, and 2009 were georeferenced and used to delineate changes in vegetation canopy cover and active (unvegetated) dune extent among 5 historical periods (pre-1929, 1929–1954, 1954–1977, 1977–2009, and 2009–2011). During fieldwork, vegetation and biological soil crust communities were mapped along transects distributed throughout San Miguel Island's central dune field on land forms that had stabilized during the 5 time periods of interest. Analyses in a geographic information system (GIS) quantified the pattern of changes that vegetation and biological soil crust communities have exhibited on the San Miguel Island dunes over the past 80 years. Results revealed that a continuing increase in total vegetation cover and a complex pattern of change in vegetation communities have taken place on the San Miguel Island dunes since the removal of grazing animals. The highly specialized native vascular vegetation (sea rocket, dunedelion, beach-bur, and locoweed) are the pioneer stabilizers of the dunes. This pioneer community is replaced in later stages by communities that are dominated by native shrubs (coastal goldenbush, silver lupine, coyote-brush, and giant coreopsis), with apparently overlapping or

  15. Demography and monitoring of Welsh's milkweed (Asclepias welshii) at Coral Pink Sand Dunes (United States)

    Brent C. Palmer; L. Armstrong


    Results are presented of a 12-year monitoring program on the Coral Pink Sand Dunes and Sand Hills populations of the threatened Welsh's milkweed, Asclepias welshii N & P Holmgren. The species is an early sera1 member of the dune flora, colonizing blowouts and advancing with shifting dunes. When an area stabilizes and other vegetation encroaches, A. welshii is...

  16. 'Sharks Teeth' -- Sand Dunes in Proctor Crater (United States)


    Sometimes, pictures received from Mars Global Surveyor's Mars Orbiter Camera (MOC) are 'just plain pretty.' This image, taken in early September 2000, shows a group of sand dunes at the edge of a much larger field of dark-toned dunes in Proctor Crater. Located at 47.9oS, 330.4oW, in the 170 km (106 mile) diameter crater named for 19th Century British astronomer Richard A. Proctor (1837-1888), the dunes shown here are created by winds blowing largely from the east/northeast. A plethora of smaller, brighter ripples covers the substrate between the dunes. Sunlight illuminates them from the upper left.

  17. Sedimentology of Great Sand Dunes, Colorado (United States)

    Andrews, Sarah


    Eolian and adjacent deposits of Great Sand Dunes Colorado form a small but sedimentologically complex deposit Eolian sediments can be subdivided into three provinces trending downwind northeast I low as much as 10 m high alkali cemented dunes forming discontinuous rings around broad flat bottomed ephemeral lakes II undulating vegetated dunes as high as 10 m of barchan parabolic shrub coppice and transverse type with varying interdune types III high as much as 200 m transverse dunes with little or no vegetation and no true interdune deposits Eolian deposits are in contact with or intercalated with fluvial lacustrine and alluvial fan deposits and lap onto crystalline basement rocks of the Sangre de Cristo Range. Analysis of a 40 year-span of aerial photographs and field observation of sand transport and cross bedding dip directions indicate that the main dune mass province III is accreting vertically and that dune types are growing in complexity in particular the star dunes This change from lateral migration to vertical growth most probably reflects Holocene changes in wind regime. The Great Sand Dunes are an example of a localized cool climate intermontane eolian deposit characterized by extensive fluvial reworking With its rapid variation in thicknesses sedimentary structures and associated sedimentary deposits such a deposit would be difficult to interpret accurately in the ancient rock record However such a deposit could be of economic importance in petroleum and uranium exploration and in aquifer evaluation

  18. Layers, Landslides, and Sand Dunes (United States)


    [figure removed for brevity, see original site] Released 27 October 2003This image shows the northern rim of one of the Valles Marineris canyons. Careful inspection shows many interesting features here. Note that the spurs and gullies in the canyon wall disappear some distance below the top of the canyon wall, indicating the presence of some smooth material here that weathers differently from the underlying rocks. On the floor of the canyon, there are remains from a landslide that came hurtling down the canyon wall between two spurs. Riding over the topography of the canyon floor are many large sand dunes, migrating generally from the lower right to upper left.Image information: VIS instrument. Latitude -14.1, Longitude 306.7 East (53.3 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.


    Species diversity of abuscular mycorrhizal fungi (AMF) was assessed along a dunes stabilization gradient (embyonic dune, foredune and fixed dune) at Praia da Joaquina (Joaquina Beach), Ilha de Santa Catarina. These dunes served as a case study to assess whether diversity and myc...

  20. Numerical modeling of subaqueous sand dune morphodynamics (United States)

    Doré, Arnaud; Bonneton, Philippe; Marieu, Vincent; Garlan, Thierry


    The morphodynamic evolution of subaqueous sand dunes is investigated, using a 2-D Reynolds-averaged Navier-Stokes numerical model. A laboratory experiment where dunes are generated under stationary unidirectional flow conditions is used as a reference case. The model reproduces the evolution of the erodible bed until a state of equilibrium is reached. In particular, the simulation exhibits the different stages of the bed evolution, e.g., the incipient ripple generation, the nonlinear bed form growing phase, and the dune field equilibrium phase. The results show good agreement in terms of dune geometrical dimensions and time to equilibrium. After the emergence of the first ripple field, the bed growth is driven by cascading merging sequences between bed forms of different heights. A sequence extracted from the simulation shows how the downstream bed form is first eroded before merging with the upstream bed form. Superimposed bed forms emerge on the dune stoss sides during the simulation. An analysis of the results shows that they emerge downstream of a slight deflection on the dune profile. The deflection arises due to a modification of the sediment flux gradient consecutive to a reduction in the turbulence relaxation length while the upstream bed form height decreases. As they migrate, superimposed bed forms grow on the dune stoss side and eventually provoke the degeneration of the dune crest. Cascading merging sequences and superimposed bed forms dynamics both influence the dune field evolution and size and therefore play a fundamental role in the dune field self-organization process.

  1. Simulation of barchan dynamics with inter-dune sand streams

    International Nuclear Information System (INIS)

    Katsuki, Atsunari; Kikuchi, Macoto


    A group of barchans, crescent sand dunes, exhibit a characteristic flying-geese pattern in deserts on Earth and Mars. This pattern implies that an indirect interaction between barchans, mediated by an inter-dune sand stream, which is released from one barchan's horns and caught by another barchan, plays an important role in the dynamics of barchan fields. We used numerical simulations of a recently proposed cell model to investigate the effects of inter-dune sand streams on barchan fields. We found that a sand stream from a point source moves a downstream barchan laterally until the head of the barchan is finally situated behind the stream. This final configuration was shown to be stable by a linear stability analysis. These results indicate that flying-geese patterns are formed by the lateral motion of barchans mediated by inter-dune sand streams. By using simulations we also found a barchan mono-corridor generation effect, which is another effect of sand streams from point sources.

  2. Simulation of barchan dynamics with inter-dune sand streams

    Energy Technology Data Exchange (ETDEWEB)

    Katsuki, Atsunari [College of Science and Technology, Nihon University, Funabashi 274-8501 (Japan); Kikuchi, Macoto, E-mail: [Cybermedia Center, Osaka University, Toyonaka 560-0043 (Japan)


    A group of barchans, crescent sand dunes, exhibit a characteristic flying-geese pattern in deserts on Earth and Mars. This pattern implies that an indirect interaction between barchans, mediated by an inter-dune sand stream, which is released from one barchan's horns and caught by another barchan, plays an important role in the dynamics of barchan fields. We used numerical simulations of a recently proposed cell model to investigate the effects of inter-dune sand streams on barchan fields. We found that a sand stream from a point source moves a downstream barchan laterally until the head of the barchan is finally situated behind the stream. This final configuration was shown to be stable by a linear stability analysis. These results indicate that flying-geese patterns are formed by the lateral motion of barchans mediated by inter-dune sand streams. By using simulations we also found a barchan mono-corridor generation effect, which is another effect of sand streams from point sources.

  3. Early diagenesis of eolian dune and interdune sands at White Sands, New Mexico (United States)

    Schenk, C.J.; Fryberger, S.G.


    The degree of early diagenesis in eolian dune and interdune sands at White Sands, New Mexico, is largely a function of the relationship between sand location and the water table. Most active and vegetation-stabilized dune sands are in the vadose zone, whereas interdune sands are in the capillary fringe and phreatic zones. Crystallographically controlled dissolution of the framework gypsum grains results in elongate, prismatic etch pits on sand grains from the capillary fringe and phreatic zones, whereas dissolution of sand grains in the vadose zone is slight, causing minute irregularities on grain surfaces. Vadose water percolating through the sand is manifest as meniscus layers. Consequently, dune sands in the vadose zone are cemented mainly by meniscus-shaped gypsum at grain contacts. Pendant cements formed on the lower margins of some sand grains. Cementation in the capillary fringe and the phreatic zone is more extensive than the vadose regardless of strata type. Typically, well-developed gypsum overgrowths form along the entire edge of a grain, or may encompass the entire grain. Complex diagenetic histories are suggested by multiple overgrowths and several episodes of dissolution on single grains, attesting to changing saturation levels with respect to gypsum in the shallow ground water. These changes in saturation are possibly due to periods of dilution by meteoric recharge, alternating with periods of concentration of ions and the formation of cement due to evaporation through the capillary fringe. ?? 1988.

  4. A Mystery Unraveled: Booming Sand Dunes (United States)

    Vriend, N. M.; Hunt, M. L.; Clayton, R. W.


    "Booming" sand dunes have intrigued travelers and scientist for centuries. These dunes emit a persistent, low-frequency sound during a slumping event or a natural avalanche on the leeward face of the dune. The sound can last for several minutes and be audible from miles away. The resulting acoustic emission is characterized by a dominant audible frequency (70 - 105 Hz) and several higher harmonics. In the work of Vriend et al. (2007), seismic refraction experiments proved the existence of a multi-layer internal structure in the dune that acts as a waveguide for the acoustic energy. Constructive interference between the reflecting waves enables the amplification and sets the frequency of each boom. A relationship was established that correctly predicts the measured frequency in terms of the thickness (~ 2.0 m) and the seismic body wave velocity of the loose, dry surficial layer (~ 240 m/s) and the substrate half-space (~ 350 m/s). The current work highlights additional measurements and simulations supporting the waveguide model for booming sand dunes. Experiments with ground penetrating radar continuously display the subsurface features which confirm the layered subsurface structure within the dune. Cross-correlation analysis shows that the booming sound propagates at speeds close to the measured body wave velocity. Squeaking sounds, which are generated during the onset of the slide and precede the sustained booming emission, have been found to have distinctly different characteristics. These short bursts of sound are emitted at a lower frequency (50 - 65 Hz) and propagate at a lower propagation speed (125 m/s) than the booming emission. The acoustic and elastic wave propagation in the dune has been simulated with a finite difference code. The interaction between the air and the ground produces a coupling wave along the surface. The reflections in the surficial layer propagate in a dispersive band at a group velocity that is slower than the phase velocity of the

  5. Provenance of Coastal dune sands along Red Sea, Egypt

    Indian Academy of Sciences (India)


    The average CIA values in SF and QS coastal dune sands are low relative to the range of ..... These values suggest arid climate and a low intensity of chemical weathering. The CIA values of SF and QS coastal dune sand samples are plotted in The ACNK diagram (Fig. 8). .... Alfredo-Morales, E., Santa-Cruz, R.L., (2009).

  6. Provenance of coastal dune sands along Red Sea, Egypt

    Indian Academy of Sciences (India)

    The SF and QS coastal dune sand samples are plotted in the recycled orogen and partly in craton interior fields suggesting recycled older sedimentary and partly metamorphic-plutonic sources. The high content of quartz with shell debris and carbonates in coastal dune sands support the recycled sedimentary beach and ...

  7. Episodic Late Holocene dune movements on the sand-sheet area, Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado, USA (United States)

    Forman, S. L.; Spaeth, M.; Marín, L.; Pierson, J.; Gómez, J.; Bunch, F.; Valdez, A.


    The Great Sand Dunes National Park and Preserve (GSDNPP) in the San Luis Valley, Colorado, contains a variety of eolian landforms that reflect Holocene drought variability. The most spectacular is a dune mass banked against the Sangre de Cristo Mountains, which is fronted by an extensive sand sheet with stabilized parabolic dunes. Stratigraphic exposures of parabolic dunes and associated luminescence dating of quartz grains by single-aliquot regeneration (SAR) protocols indicate eolian deposition of unknown magnitude occurred ca. 1290-940, 715 ± 80, 320 ± 30, and 200-120 yr ago and in the 20th century. There are 11 drought intervals inferred from the tree-ring record in the past 1300 yr at GSDNPP potentially associated with dune movement, though only five eolian depositional events are currently recognized in the stratigraphic record. There is evidence for eolian transport associated with dune movement in the 13th century, which may coincide with the "Great Drought", a 26-yr-long dry interval identified in the tree ring record, and associated with migration of Anasazi people from the Four Corners areas to wetter areas in southern New Mexico. This nascent chronology indicates that the transport of eolian sand across San Luis Valley was episodic in the late Holocene with appreciable dune migration in the 8th, 10-13th, and 19th centuries, which ultimately nourished the dune mass against the Sangre de Cristo Mountains.

  8. Sediment Source Fingerprinting of the Lake Urmia Sand Dunes. (United States)

    Ahmady-Birgani, Hesam; Agahi, Edris; Ahmadi, Seyed Javad; Erfanian, Mahdi


    Aeolian sand dunes are continuously being discovered in inner dry lands and coastal areas, most of which have been formed over the Last Glacial Maximum. Presently, due to some natural and anthropogenic implications on earth, newly-born sand dunes are quickly emerging. Lake Urmia, the world's second largest permanent hypersaline lake, has started shrinking, vast lands comprising sand dunes over the western shore of the lake have appeared and one question has been playing on the minds of nearby dwellers: where are these sand dunes coming from, What there was not 15 years ago!! In the present study, the determination of the source of the Lake Urmia sand dunes in terms of the quantifying relative contribution of each upstream geomorphological/lithological unit has been performed using geochemical fingerprinting techniques. The findings demonstrate that the alluvial and the fluvial sediments of the western upstream catchment have been transported by water erosion and they accumulated in the lower reaches of the Kahriz River. Wind erosion, as a secondary agent, have carried the aeolian sand-sized sediments to the sand dune area. Hence, the Lake Urmia sand dunes have been originating from simultaneous and joint actions of alluvial, fluvial and aeolian processes.

  9. Indirect Interaction of Barchan Dunes by Inter-dune Sand Flow (United States)

    Katsuki, A.


    The most impressive sand structure seen in desert is crescent sand dunes called barchan. Barchan dune has two horns and sand flow release from the tips of them. Seeing aerial photos of deserts, we recognize that barchan dunes tend to align in a characteristic pattern, that is, the horn of one barchan pointing to the center of leeward barchan. As a result, barchans form a convoy with a geese-flying like triangular pattern or align in an slanted line. The pattern has been observed also for barchans found on Mars, and thus there should be some universal mechanism underlying it. Also barchan dunes are highly mobile; human-made structures such as roads or pipelines in their way are sometimes buried in sand. It has been a long-standing problem how we can control this unstoppable march of barchan dunes. There are some interaction such as collision and inter-dune sand flow in marching barchan dunes. Here we investigated interaction dynamics of barchan dunes focusing on the effect of indirect interactions mediated by an inter-dune sand flow using computer simulations. We showed that a barchan is driven laterally by a sand stream to right below the point source of sand.Principal mechanism of this motion is a fast mixing of sand in a barchan that keeps the symmetric shape unchanged.We thereby propose a possibility of controlling the motion of a barchan using a sand stream. In addition,the very same mechanism produces an indirect interaction between barchans mediated by sand stream and can induce the self-organization of the geese-flying like pattern.

  10. Barchan dune mobility in Mauritania related to dune and interdune sand fluxes

    DEFF Research Database (Denmark)

    Ould Ahmedou,, D.; Ould Mahfoudh, A.; Dupont, P


    We present a 1 year study of 50 dunes in a small field of barchan dunes in Mauritania. We documented the morphological evolution of the dunes and their migration rates and measured at 10 min intervals the interdune sand transport, the wind strength, and its direction for the same interval of time....... The dune heights H 0 range between 2 and 5 m, and their celerity c is found to be well approximated by the standard migration law: c = Q 0/H 0, with Q 0 ≈ 50 m3/m yr. From both the interdune sand flux and the migration rate of the dunes we were able to estimate the spatially averaged sand flux at the dune...

  11. Mulitple Origins of Sand Dune-Topography Interactions on Titan (United States)

    Goggin, H.; Ewing, R. C.; Hayes, A.; Cisneros, J.; Epps, J. C.


    The interaction between sand dune patterns and topographic obstacles is a primary signal of sand transport direction in the equatorial region of Saturn's moon, Titan. The streamlined, tear drop appearance of the sand-dune patterns as they wrap around obstacles and a dune-free zone on the east side of many obstacles gives the impression that sand transport is from the west to east at equatorial latitudes. However, the physical mechanism behind the dune-obstacle interaction is not well explained, leaving a gap in our understanding of the equatorial sand transport and implied wind directions and magnitudes on Titan. In order to better understand this interaction and evaluate wind and sand transport direction, we use morphometric analysis of optical images on Earth and Cassini SAR images on Titan combined with analog wind tunnel experiments to study dune-topography interactions. Image analysis is performed in a GIS environment to map spatial variations in dune crestline orientations proximal to obstacles. We also use digital elevation models to and analyze the three-dimensional geometry - height, length, width and slope of the dune-topography relationships on Earth. Preliminary results show that dune patterns are deflected similarly around positive, neutral, or negative topography, where positive topography is greater than the surrounding dune height, neutral topography is at dune height and negative topography is lower than dune heights. In the latter case these are typically intra-dune field playas. The obstacle height, width, slope and wind variability appear to play a primary role in determining if a lee-dune, rather than a dune-free lee-zone, develops. In many cases a dune-free playa with evaporite and mud desiccation polygons forms lee-ward of the obstacle. To support and elaborate on the mapping and spatial characterization of dune-topography interactions, a series of experiments using a wind tunnel were conducted. Wind tunnel experiments examine the formation

  12. Plant functional traits and diversity in sand dune ecosystems across different biogeographic regions (United States)

    Mahdavi, P.; Bergmeier, E.


    Plant species of a functional group respond similarly to environmental pressures and may be expected to act similarly on ecosystem processes and habitat properties. However, feasibility and applicability of functional groups in ecosystems across very different climatic regions have not yet been studied. In our approach we specified the functional groups in sand dune ecosystems of the Mediterranean, Hyrcanian and Irano-Turanian phytogeographic regions. We examined whether functional groups are more influenced by region or rather by habitat characteristics, and identified trait syndromes associated with common habitat types in sand dunes (mobile dunes, stabilized dunes, salt marshes, semi-wet sands, disturbed habitats). A database of 14 traits, 309 species and 314 relevés was examined and trait-species, trait-plot and species-plot matrices were built. Cluster analysis revealed similar plant functional groups in sand dune ecosystems across regions of very different species composition and climate. Specifically, our study showed that plant traits in sand dune ecosystems are grouped reflecting habitat affiliation rather than region and species pool. Environmental factors and constraints such as sand mobility, soil salinity, water availability, nutrient status and disturbance are more important for the occurrence and distribution of plant functional groups than regional belonging. Each habitat is shown to be equipped with specific functional groups and can be described by specific sets of traits. In restoration ecology the completeness of functional groups and traits in a site may serve as a guideline for maintaining or restoring the habitat.

  13. Properties of dune sand concrete containing coffee waste

    Directory of Open Access Journals (Sweden)

    Mohamed Guendouz


    Full Text Available In the last years, an increase of coffee beverages consumption has been observed all over the world; and its consumption increases the waste coffee grounds which will become an environmental problems. Recycling of this waste to produce new materials like sand concrete appears as one of the best solutions for reduces the problem of pollution. This work aims to study the possibility of recycling waste coffee grounds (Spent Coffee Grounds (SCG as a fine aggregate by replacing the sand in the manufacturing of dune sand concrete. For this; sand concrete mixes were prepared with substitution of sand with the spent coffee grounds waste at different percentage (0%, 5%, 10%, 15% and 20% by volume of the sand in order to study the influence of this wastes on physical (Workability, bulk density and porosity, mechanical (compressive and flexural strength and Thermal (Thermal conductivity and thermal diffusivity properties of dune sand concrete. The results showed that the use of spent coffee grounds waste as partial replacement of natural sand contributes to reduce workability, bulk density and mechanical strength of sand concrete mixes with an increase on its porosity. However, the thermal characteristics are improved and especially for a level of 15% and 20% of substitution. So, it is possible to obtain an insulating material which can be used in the various types of structural components. This study ensures that reusing of waste coffee grounds in dune sand concrete gives a positive approach to reduce the cost of materials and solve some environmental problems.

  14. Phase diagrams of dune shape and orientation depending on sand availability


    Gao, Xin; Narteau, Clément; Rozier, Olivier; du Pont, Sylvain Courrech


    New evidence indicates that sand availability does not only control dune type but also the underlying dune growth mechanism and the subsequent dune orientation. Here we numerically investigate the development of bedforms in bidirectional wind regimes for two different conditions of sand availability: an erodible sand bed or a localized sand source on a non-erodible ground. These two conditions of sand availability are associated with two independent dune growth mechanisms and, for both of the...

  15. The dune effect on sand-transporting winds on Mars (United States)

    Jackson, Derek W. T.; Bourke, Mary C.; Smyth, Thomas A. G.


    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface-atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern `wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today.

  16. Provenance of coastal dune sands along Red Sea, Egypt

    Indian Academy of Sciences (India)

    Samir M Zaid


    Jun 7, 2017 ... The average CIA values in SF and QS coastal dune sands are low relative to the range of the PAAS, suggesting an arid .... Skewness (Ski) values of QS vary from 0.04 (near symmetrical) to –0.3 ϕ (coarse ...... Alfredo-Morales E and Santa-Cruz R L 2009 Beach sand composition and provenance in a sector ...

  17. Dew Measurements along a Longitudinal Sand Dune Transect

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Berkowicz, S.


    In a desert environment dew can serve as an important source of moisture for plants, biological crusts, insects and small animals. A measurement programme was carried out within a sand dune belt situated in the northwestern Negev desert, Israel, to measure daily amounts of dew deposition as well as

  18. Analysis of Wind-blown Sand Movement over Transverse Dunes (United States)

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian


    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification.

  19. Mineralogy and Genesis of Heavy Minerals in Coastal Dune Sands, South Eastern Qatar


    Nasir, Sobhi J. [صبحي جابر نصر; El-Kassas, Ibrahim A.; Sadiq, A. Ali M.


    Large amounts of aeolian sand occur in the southeastern coastal zone of Qatar Peninsula as sand dunes accumulated in a vast sand field locally called " Niqyan Qatar ". The present work, carried out on a sand dune belt of this field near Mesaied Industrial City, revealed the distribution of heavy minerals shows a regional variability induced by provenance and local variability reflecting genetic differences. The studied dune sands are rich in shells of pelecypods, with the light mineral assemb...

  20. Developing sustainable land-use options for mined sand dunes

    CSIR Research Space (South Africa)

    De Wet, Benita


    Full Text Available ? Complex social ecological systems approach ? Complex systems of human and ecosystem components and interactions Fertile soil Stream (water source) Crop production local food markets ?Focus is on relationships (linkages) ?Emergent properties...-use options for mined sand dunes 4th Biennial Conference Presented by: Benita de Wet Date: 10 October 2012 ? CSIR 2012 Slide 2 Islands, boundaries, relationships & context What you see on the left and what you see on the right is the same thing...

  1. Laboratory studies of dune sand for the use of construction industry in Sri Lanka (United States)

    de Silva Jayawardena, Upali; Wijesuriya, Roshan; Abayaweera, Gayan; Viduranga, Tharaka


    With the increase of the annual sand demand for the construction industry the excessive excavation of river sand is becoming a serious environmental problem in Sri Lanka. Therefore, it is necessary to explore the possibility for an alternative to stop or at least to minimize river sand mining activities. Dune sand is one of the available alternative materials to be considered instead of river sand in the country. Large quantities of sand dunes occur mainly along the NW and SE coastal belt which belong to very low rainfall Dry Zone coasts. The height of dune deposits, vary from 1m to about 30 meters above sea level. The objective of this paper is to indicate some studies and facts on the dune sand deposits of Sri Lanka. Laboratory studies were carried out for visual observations and physical properties at the initial stage and then a number of tests were carried out according to ASTM standards to obtain the compressive strength of concrete cylinders and mortar cubes mixing dune sand and river sand in different percentages keeping a constant water cement ratio. Next the water cement ratio was changed for constant dune sand and river sand proportion. Microscopic analysis shows that the dune sand consist of 95 % of quartz and 5 % of garnet, feldspar, illmenite and other heavy minerals with clay, fine dust, fine shell fragments and organic matters. Grains are sub-rounded to angular and tabular shapes. The grain sizes vary from fine to medium size of sand with silt. The degree of sorting and particle size observed with dune sands are more suited with the requirement of fine aggregates in the construction industry. The test result indicates that dune sand could be effectively used in construction work without sieving and it is ideal for wall plastering due to its'-uniformity. It could also be effectively used in concrete and in mortars mixing with river sand. The best mixing ratio is 75% dune sand and 25% river sand as the fine aggregate of concrete. For mortar the mixing

  2. Dynamics of Unusual Debris Flows on Martian Sand Dunes (United States)

    Miyamoto, Hideaki; Dohm, James M.; Baker, Victor R.; Beyer, Ross A.; Bourke, Mary


    Gullies that dissect sand dunes in Russell impact crater often display debris flow-like deposits in their distal reaches. The possible range of both the rheological properties and the flow rates are estimated using a numerical simulation code of a Bingham plastic flow to help explain the formation of these features. Our simulated results are best explained by a rapid debris flow. For example, a debris flow with the viscosity of 10(exp 2) Pa s and the yield strength of 10(exp 2) Pa can form the observed deposits with a flow rate of 0.5 cu m/s sustained over several minutes and total discharged water volume on the order of hundreds of cubic meters, which may be produced by melting a surface layer of interstitial ice within the dune deposits to several centimeters depth.

  3. Oscillation-induced sand dunes in a liquid-filled rotating cylinder (United States)

    Dyakova, Veronika; Kozlov, Victor; Polezhaev, Denis


    The dynamics of granular medium in a liquid-filled horizontal cylinder with a time-varying rotation rate is experimentally studied. When the cylinder is purely rotated, the granular medium develops an annular layer near the cylindrical wall. The interface between fluid and sand is smooth and axisymmetric. The time variation of the rotation rate initiates the azimuthal oscillation of the liquid in the cylinder's frame of reference and provokes the onset of quasisteady relief in the form of regular dunes. The stability of the axisymmetric sand surface and dynamics of regular dunes are examined. It is found that the ripple formation is provoked by the quasisteady instability of the Stokes boundary layer. In the range of high Reynolds numbers, the ripple formation occurs at a constant critical Shields number θc≃0.05 . The spatial period of the relief is not sensitive to the fluid viscosity and granule diameter; it is determined by the amplitude of oscillation and ratio between the oscillation frequency and mean rotation rate. Long-term experiments show that there are forward and backward azimuthal drifts of dunes. An initial analysis of the issues related to the dune migration is provided.

  4. Improvements in Soil Carbon and Nitrogen Capacities after Shrub Planting to Stabilize Sand Dunes in China’s Horqin Sandy Land

    Directory of Open Access Journals (Sweden)

    Yuqiang Li


    Full Text Available Caragana microphylla, a native perennial leguminous shrub, is widely used for desertification control in China’s Horqin Sandy Land. We investigated the effects of afforestation using C. microphylla in areas with fixed and active dunes on soil carbon (C and nitrogen (N storage in the soil total and light-fraction (LF organic matter. Compared to the values in the control areas, soil organic carbon (SOC storage to a depth of 100 cm increased by 88%, 74%, and 145% at 9, 15, and 31 years after shrub planting, respectively; the corresponding values were 68%, 61%, and 195% for total nitrogen (TN storage, 109%, 199%, and 202% for LF organic carbon storage, and 203%, 337%, and 342% for LF nitrogen storage. The soil light-fraction (LF organic matter contributed significantly to total SOC and TN storage, despite the low proportion of total soil mass accounted for by the LF dry matter. Thus, afforestation using C. microphylla was an effective way to sequester C and to restore degraded soils, but the process was slow; it would take more than 100 years to fully restore SOC storage in active dunes through afforestation with C. microphylla in the Horqin Sandy Land.

  5. Improvement of Dune Sands by Residual Oil in Order to Use in Construction of Lagoons

    Directory of Open Access Journals (Sweden)

    Alborz Hajian nia


    Full Text Available This research which is based on experimental work, devoted to study the improvement and stabilization of dune sands in order to create strong layer and stabilize slope and floor construction of sewage Lagoons. Materials used stabilizing these soils are residual oil from the refinery. To confirm the effectiveness of the use of residual oil to improve the mechanical properties of the sand, various samples with different percentages were tested. In besides, the geotechnical and environmental tests were done. Results demonstrate that samples made with 5% oil have highest shear and unconfined compaction strength. It revealed that in compare with natural samples, cohesion and loading capacity highly increased and permeability decrease well. Percentage of fine aggregate, minerals and durability of oil in soil material were also investigated. Finally, effects of sewage on the samples were analyzed, and performance the oils were evaluated in order to use in lagoons.

  6. 76 FR 68503 - Ungulate Management Plan/Environmental Impact Statement, Great Sand Dunes National Park and... (United States)


    ... DEPARTMENT OF THE INTERIOR National Park Service [2310-0067-422] Ungulate Management Plan... Ungulate Management Plan, Great Sand Dunes National Park and Preserve. SUMMARY: Pursuant to the National... Impact Statement (EIS) for the Ungulate Management Plan, Great Sand Dunes National Park and Preserve...

  7. Multi-fractal-interslipface angle curves of a morphologically simulated sand dune

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar


    Full Text Available A sand dune is simulated by means of a non-linear mathematical morphological transformation of which the fractal dimensions with corresponding interslipface angles are computed. This exercise has relevance to test the Validity of the model by considering various time series sand dune data that can be retrieved from the robust satellite remote sensing sensors.

  8. On the Internal Structure of Mobile Barchan Sand Dunes due to Granular Processes (United States)

    Vriend, N. M.; Arran, M.; Louge, M. Y.; Hay, A. G.; Valance, A.


    In this work, we visualize the internal structure of mobile barchan desert dunes at the avalanche scale. We reveal an intriguing history of dune building using a novel combination of local sand sampling and advanced geophysical techniques resulting in high resolution measurements of individual avalanche events. Due to progressive rebuilding, granular avalanching, erosional and depositional processes, these marching barchan dunes are reworked every few years and a characteristic zebra-pattern (figure 1a), orientated parallel to the slipface at the angle of repose, appears at regular intervals. We present scientific data on the structure obtained from several mobile barchan dunes of different sizes during recent desert field campaigns (2014, 2015, 2017) in a mobile barchan dune field in Qatar (25.01°N, 51.34°E in the AlWakrah municipality). The site has been equipped with a weather station and has been regularly visited by a multidisciplinary research team in recent years (e.g. [1]). By applying high-frequency (1200 MHz) ground penetrating radar (GPR) transects across the midline (figure 1b) we map the continuous evolution of this cross-bedding at high resolution deep within the dune. The GPR reveals a slope reduction of the slipface near the base of the dune; evidence of irregular wind reversals; and the presence of a harder aeolian cap around the crest and extending to the brink. The data is supplemented with granulometry from layers stabilized by dyed water injection and uncovered by excavating vertical walls perpendicular to old buried avalanches. We attribute visible differences in water penetration between adjacent layers to fine particle segregation processes in granular avalanches. This work was made possible by the support of NPRP grant 6-059-2-023 from the Qatar National Research Fund to MYL and AGH, and a Royal Society Dorothy Hodgkin Research Fellowship to NMV. We thank Jean-Luc Métayer for performing detailed particle size distribution measurements

  9. Long-Term Wind Patterns Derived from Regional Mapping of Sand Dune Fields on Mars (United States)

    Zimbelman, J. R.; Ku, Y.


    Aeolian bedforms such as sand dunes and wind ripples can be used to derive information about the winds that formed these features. Such information is particularly important for Mars, where there is only very limited measurements obtained from sensors on a few landers and rovers. We have used images (6 m/pixel) obtained by the Context Camera (CTX) on the Mars Reconnaissance Orbiter spacecraft to document the types and orientations of sand dunes at forty sites spread around Mars, at locations where other on-going investigations have measured ripple orientations on sand dunes using High Resolution Imaging Science Experiment (HiRISE) images. The study sites come from a wide range of physiographic and topographic settings over within a broad range of latitude and longitude around the planet. Multiple dune types are observed at most sites, suggesting variable or changing wind patterns may have been present over the lifetime of each dune field. Dune types were identified at the 40 dune fields, covering a total of 11,477 km2; barchanoid ridge (30.4%), transverse (27.2%), barchan (13.5%), linear (1.0%), star (sand patch (17.2%), sand sheet (10.2%), and unknown (0.4%). The dune types indicate diverse `long term' wind patterns that produced the distinctive dune shapes observed at each site, which may or may not correlate to the orientation of ripples observed on individual dunes as seen in HiRISE images. These results support the importance of recognizing both short term (`recent') sand-driving formative aeolian processes and long term (time scale unknown) winds that have generated and modified the shape of the sand dunes, consistent with the inferences made from a complementary study of ripples and dunes on Mars as reported by Liu et al. at this conference.

  10. Measurements of Dune Parameters on Titan Suggest Differences in Sand Availability (United States)

    Stewart, Brigitte W.; Radebaugh, Jani


    The equatorial region of Saturn’s moon Titan has five large sand seas with dunes similar to large linear dunes on Earth. Cassini Radar SAR swaths have high enough resolution (300 m) to measure dune parameters such as width and spacing, which helps inform us about formation conditions and long-term evolution of the sand dunes. Previous measurements in locations scattered across Titan have revealed an average width of 1.3 km and spacing of 2.7 km, with variations by location. We have taken over 1200 new measurements of dune width and spacing in the T8 swath, a region on the leading hemisphere of Titan in the Belet Sand Sea, between -5 and -9 degrees latitude. We have also taken over 500 measurements in the T44 swath, located on the anti-Saturn hemisphere in the Shangri-La Sand Sea, between 0 and 20 degrees latitude. We correlated each group of 50 measurements with the average distance from the edge of the dune field to obtain an estimate of how position within a dune field affects dune parameters. We found that in general, the width and spacing of dunes decreases with distance from the edge of the dune field, consistent with similar measurements in sand seas on Earth. We suggest that this correlation is due to the lesser availability of sand at the edges of dune fields. These measurements and correlations could be helpful in determining differences in sand availability across different dune fields, and along the entire equatorial region of Titan.

  11. CFD evaluation of erosion rate around a bridge near a sand dune (United States)

    He, Wei; Huang, Ning; Dun, Hongchao; Wang, Wenbo


    This study performs a series of simulations through solving the Navier-Stokes equations and the RNG k-ε turbulence model to investigate the wind erosion rates around a bridge in a desert area with sand dunes. The digital elevation model of sand dunes and the bridge model are obtained respectively from hypsographic map and construction drawings. Through combining them into the CFD software of Fluent the simulation zone was formed. The data of wind speed obtained from field observation is fitted into a logarithm format, which was imported into Fluent model as a inlet wind speed condition. Then, the effect of Dun-Go railway on wind-blown sand movement of the neighbouring environment is simulated. The results exhibit that affected by both the sand dune and bridge, the flow field is in a complex condition. It is also shown that the bridge in upstream of the sand dune will not increase the sand transport rate intensively, but change both wind velocity gradient and turbulence kinetic energy over surface of sand dune. On the other hand, when the bridge is built downstream the sand dune, simulation results show that sand deposition rate would be decreased in reference region downstream the pier.

  12. Effect of upstream fencing on shelter zone behind solid models simulating sand formations and dunes

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Hassan


    Moreover, results indicate that some dune/fence combinations may cause shifting of the dune upwind (instead of downwind in the absence of fence. This effect means that, with such combinations, a dune would eventually disappear. The distance between the model downwind base line and the location of reattachment (length of shelter zone was plotted against the distance of fence from upwind base line of model to determine the best possible dune/fence combination. Solid fencing (constructed from masonry bricks or stones to shelter isolated sand humps and dunes is effective in alleviating dangers on nearby structures (dune shifting upwind and to less sand drift and saltation downwind. Also, the results indicated that, it is recommended to start by dune fencing and give enough time for the project zone to widen and be effectively protected before starting the construction.

  13. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in Southwestern Saudi Arabian Dune Sand

    KAUST Repository

    Mughal, Iqra


    In arid lands, a major contribution to water loss is by soil water evaporation. Desert sand dunes in arid regions are devoid of runoff and have high rates of infiltration. Rainwater is commonly stored within them because of the low permeability soils in the underlying desert pavement. In such cases, moisture is confined in the sand dune below a depth, termed as the “extinction depth”, where it is protected from evaporation during long dry periods. Moreover, desert sand dunes have sparse vegetation, which results in low transpiration losses from the stored water. The water accumulated below the extinction depth of the sand dunes can be utilized for various purposes such as in irrigation to support desert agriculture. In this study, field experiments were conducted in Western Saudi Arabia to monitor the soil moisture gradients and determine the diffusive extinction depth of dune sand. The dune sand was saturated with water and was exposed to natural conditions (evaporation and precipitation). The decline of the water level in the sand column was continuously recorded using transducers and sensors installed at different depths monitored the temporal variation of temperature and moisture content within the sand. The hydrological simulator HYDRUS-1D was used to construct the vertical profiles of soil water content and temperature and the results obtained from HYDRUS-1D were compared to the gradients monitored by the sensors.

  14. An experiment to restore coastal sand dunes at Miramar beach, Goa: An appraisal

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    sand dunes. Three months later, in July 2007, results obtained were encouraging. Whereas several truckloads of sand were removed from the traffic circle every year, only a negligible amount of sand found its way on the road (in 2007), after the fences...

  15. On the origin and age of the Great Sand Dunes, Colorado (United States)

    Madole, R.F.; Romig, J.H.; Aleinikoff, J.N.; VanSistine, D.P.; Yacob, E.Y.


    Over the past 100??yr, several hypotheses have been proposed for the origin and age of the Great Sand Dunes. These hypotheses differ widely in the descriptions of dune morphometry, the immediate source of eolian sand, and when sand transport occurred. The primary purpose of this paper is to evaluate these hypotheses and, where warranted, to present new ideas about the origin and age of the Great Sand Dunes. To evaluate the previous hypotheses, we had to develop more detailed information about the surficial geology of the northern San Luis Valley. Thus, we mapped the surficial geology of an area extending several tens of kilometers north, south, and west of the Great Sand Dunes and examined subsurface stratigraphy in more than 200 wells and borings. In addition, we used relative-dating criteria and several radiocarbon and OSL ages to establish the chronology of surficial deposits, and we determined the U-Pb ages of detrital zircons to obtain information about the sources of the sand in the Great Sand Dunes. The first principal finding of this study is that the lower part of the closed basin north of the Rio Grande, referred to here as the sump, is the immediate source of the sand in the Great Sand Dunes, rather than the late Pleistocene flood plain of the Rio Grande (the most widely accepted hypothesis). A second principal finding is that the Great Sand Dunes are older than late Pleistocene. They postdate the draining of Lake Alamosa, which began ??? 440??ka, and predate the time when streams draining the west flank of the Sangre de Cristo Mountains were deflected by incipient dunes that formed near the mountain front. Geomorphic and stratigraphic evidence indicate that this deflection occurred prior to the end of the next to last glaciation (Bull Lake), i.e., prior to ??? 130??ka.

  16. Recent near-surface wind directions inferred from mapping sand ripples on Martian dunes (United States)

    Liu, Zac Yung-Chun; Zimbelman, James R.


    The High Resolution Imaging Science Experiment (HiRISE) provides the capability to obtain orbital images of Mars that are of sufficient resolution to record wind ripple patterns on the surfaces of sand dunes. Ripple patterns provide valuable insights into aeolian erosion and deposition on Earth and Mars. In this study, we develop a systematic mapping procedure to examine sand ripple orientations and create surface process maps to evaluate the recent wind flow over the dunes, as well as the interplay of wind and dune shape. By carefully examining the morphology of the dunes and the location of grainflow and grainfall on dune slipfaces, the recent near-surface wind direction (short-term wind) can be identified. Results from the analysis of three dune fields on the floors of craters west of Hellas Basin show regional N, NW, SE, and ESE wind directions. In the three adjacent dune fields, surface process and flow maps suggest a complex wind pattern. The comparison of short-term wind with dune-constructing wind (long-term wind) shows NE and ESE winds may be persistent at least for the past thousands of years. The results also show that the orientation of inferred wind direction on linear dunes is correlated with the crestlines, which suggest that form-flow interaction may take place. The results of local wind flow documentation should improve Martian surface wind modeling and advance our understanding of sand transport, as well as the rates of sand mobility on both Mars and Earth.

  17. Mapping Winds over Martian Sand Dunes from Ripples and Digital Terrain Models (United States)

    Johnson, M. B.; Zimbelman, J. R.


    Sand dunes preserve wind flow patterns in their ripple formations. DTMs can be used with wind modeling software to simulate wind speed and direction over these dunes. Results can be compared and together offer a more complete picture of recent wind.

  18. Sand dune movement in the Victoria Valley, Antarctica (United States)

    Bourke, Mary C.; Ewing, Ryan C.; Finnegan, David; McGowan, Hamish A.


    We use vertical aerial photographs and LiDAR topographic survey data to estimate dune migration rates in the Victoria Valley dunefield, Antarctica, between 1961 and 2001. Results confirm that the dunes migrated an average of 1.5 m/year. These values are consistent with other estimates of dune migration from cold climate deserts and are significantly lower than estimates from warm deserts. Dune migration rates are retarded by the presence of entrained ice, soil moisture and a reversing wind regime. Dune absorption, merging and limb extension are apparent from the time-series images and account for significant changes in dune form and the field-scale dune pattern. Dune-field pattern analysis shows an overall increase in dune-field organization with an increase in mean dune spacing and a reduction in total crest length and defect density. These data suggest that dunes in other cold desert environments on Earth, Mars or Titan, that may also have inter-bedded frozen laminae, still have the potential to migrate and organize, albeit at lower rates than dunes in warm deserts.

  19. An evaluation of flora from coastal sand dunes of India: Rationale for conservation and management

    Digital Repository Service at National Institute of Oceanography (India)

    Rodrigues, R.S.; Mascarenhas, A.; Jagtap, T.G.

    ) pertaining to such habitats forms the basis for developing effective strategies for management. Sand dune vegetation or psammophytes comprise vital components of coastal sand dune habitats owing to their bioengineering role in sediment accumulation... hazards such as cyclones, storms and occasional tsunamis. The likely effect of an eventual sea level rise is predicted [34]. In comparison, most of the rich CSD habitats are located along the central west coast. The major threats arise from...

  20. The Sources of Moisture in the Sand Dunes – The Example of the Western Sahara Dune Field

    Directory of Open Access Journals (Sweden)

    Żmudzka Elwira


    Full Text Available Climatic and meteorological conditions may limit the aeolian transport within barchans. An explanation of that issue was the main goal of the investigation held in Western Sahara dune fields located around Tarfaya and Laâyoune. Particular attention was paid to the factors causing the moisture content rising of the sand dune surface layer, which could influence the wind threshold shear velocity in the aeolian transport. The wetted surface layer of sand, when receiving moisture from precipitation or suspensions, reduces the aeolian transport, even in case of wind velocity above 4-5 m s-1. Fog and dew condensation does not affect the moisture of deeper sand layers, what occurs after rainfall.

  1. Timing and origin for sand dunes in the Green River Lowland of Illinois, upper Mississippi River Valley, USA (United States)

    Miao, X.; Hanson, P.R.; Wang, Hongfang; Young, A.R.


    The recent increase in dune studies in North America has been heavily focused in the Great Plains, while less attention has historically been given to the dune fields east of the Mississippi River. Here we report ages and suggest a potential sediment source for sand dunes in the Green River Lowland, Illinois, which may provide a better understanding of the dynamic interactions between eolian, glacial, lacustrine and fluvial processes that shaped the landscapes of the upper Midwest. Seven coherent optically stimulated luminescence ages (OSL, or optical ages) obtained from four sites suggest that major dune construction in the Green River Lowland occurred within a narrow time window around 17,500 ago. This implies either an enhanced aridity or an episodic increase of sediment supply at 17,500 years ago, or combination of the both. Contrary to previous assertions that dune sand was sourced from the deflation of the underlying outwash sand deposited when the Lake Michigan Lobe retreated from the area, we propose that Green River Lowland dunes sand originated from the Green Bay Lobe through the Rock River. Specifically, sediment supply increased in the Rock River valley during drainage of Glacial Lake Scuppernong, which formed between ???18,000 and 17,000 years ago, when the Green Bay Lobe retreated from its terminal moraine. The lake drained catastrophically through the Rock River valley, providing glacial sediment and water to erode the preexisting sandy sediments. Throughout the remainder of the late Pleistocene, the Laurentide Ice Sheet drained into larger more northerly glacial lakes that in turn drained through other river valleys. Therefore, the dunes in the Green River Lowland formed only during the catastrophic drainage of Glacial Lake Scuppernong, but were stabilized through the remainder of the Pleistocene. This scenario explains the abrupt dune construction around 17,500 years ago, and explains the lack of later dune activity up to the Pleistocene

  2. Radionuclide transfer to invertebrates and small mammals in a coastal sand dune ecosystem

    International Nuclear Information System (INIS)

    Wood, M.D.; Leah, R.T.; Jones, S.R.; Copplestone, D.


    International intercomparisons of models to assess the impact of ionising radiation on wildlife have identified radionuclide transfer assumptions as a significant source of uncertainty in the modelling process. There is a need to improve the underpinning data sets on radionuclide transfer to reduce this uncertainty, especially for poorly-studied ecosystems such as coastal sand dunes. This paper presents the results of the first published study of radionuclide transfer to invertebrates and small mammals in a coastal sand dune ecosystem. Activity concentrations of 137 Cs, 238 Pu, 239+240 Pu and 241 Am are reported for detritivorous, herbivorous, carnivorous and omnivorous biota. Differences in activity concentrations measured in the sand dune biota are related to the trophic level of the organisms and the influence of sea-to-land transfer is apparent in the food chain transfer observed at the site. There are notable differences in the concentration ratios (CRs) calculated for the sand dune biota compared to other terrestrial ecosystems, especially for the small mammals which have CRs that are two orders of magnitude lower than the generic terrestrial ecosystem CRs published by the recent EC EURATOM ERICA project. The lower CRs at the sand dunes may be due to the influence of other cations from the marine environment (e.g. K and Na) on the net radionuclide transfer observed, but further research is required to test this hypothesis.


    Directory of Open Access Journals (Sweden)

    Ratih Fitria Putri


    Full Text Available A big earthquake occurred in the southern coastal of Java on Ju ly 17 th , 2006. The earthquake caused Tsunami waves in the coastal area of West Jav a, Central Java, and Yogyakarta. In particular the potential of Tsunami hazard in so uthern part of Yogyakarta Province is high. Par angtritis is located at the sou thern part of Yogyakarta Province. Sand dune in Parangtritis coastal area has been a nat ural barrier of Tsunami hazard. In this case, minimizing impact of Tsunami can be condu cted by estimating Tsunami hazard zones. In this research, we observed actual cond ition of sand dune and predicted the Tsunami inundation area using Remote Sensing and Geographic Information System application on ALOS PALSAR Differential Inte rferometric Synthetic Aperture Radar (DInSA R technique. We propose a novel sand dune monitoring approach using DInSAR analysis on L-Band. The scenar io on water depth was used to estimate Tsunami inundation area and wave direction . The monitoring accuracy was compared with the r esults of GPS measurements. We argued that the southeast Tsunami wave scenario with 30 meters elevation produc ed big hazard. Based on our study, we propose a sand dune conservation mapping and p rotection management plan of sand dune coastal area that can be used to i mprove awareness of local stakeholders.

  4. Heterogeneous Wireless Sensor Network for Real Time Remote Monitoring of Sand Dynamics on Coastal Dunes (United States)

    Pozzebon, Alessandro; Bove, Carmine; Cappelli, Irene; Alquini, Fernanda; Bertoni, Duccio; Sarti, Giovanni


    In this paper, the architecture of a heterogeneous Wireless Sensor Network (WSN) to be deployed on coastal sand dunes is described, the aim of which is to provide real time measurements of physical parameters to better define the sediment transport in connection with Aeolian processes. The WSN integrates different typologies of sensors and is provided with both local and remote connection. In particular, three different typologies of sensors are integrated in the network: a multilayer anemometric station, a sensor developed ad-hoc to measure the sand dune level and a sand collector capable of measuring the weight of trapped sand and its quantity. Each sensor node is made up at least of a ZigBee radio module that is able to transmit the data collected by the sensor at a distance of about 100 meters. While the sand level sensor and the sand collector are provided only with this transmission module, the anemometric station also integrates a microprocessor board in charge of data processing. A Gateway node provided with a GSM connection for remote data transmission and a Zigbee radio module for Local Area communication has also been developed. This node is in charge of collecting all the data packets sent by the Sensor Nodes and transmit them to a remote server through GPRS connection. A Web server has been set up to collect these packets and store them in a database. The proposed WSN can provide both a static and a dynamic framework of sand transport processes acting on coastal dunes.

  5. 78 FR 36568 - Notice of Availability of the Record of Decision for the Approved Imperial Sand Dunes Recreation... (United States)


    ... Availability of the Record of Decision for the Approved Imperial Sand Dunes Recreation Area Management Plan and... Imperial Sand Dunes Recreation Area Record of Decision (ROD)/ approved Recreation Area Management Plan..., and administration of recreation sites and facilities within Recreation Management Zones; and...

  6. Sand Dune Dynamics on Mars: Integration of Surface Imaging, Wind Measurements, and Orbital Remote Sensing (United States)

    Bridges, N.; Sullivan, R. J., Jr.; Ewing, R. C.; Newman, C. E.; Ayoub, F.; Lapotre, M. G. A.; van Beek, J.


    In early 2016, the Mars Science Laboratory rover completed the first in situ investigation of an active dune field on another planetary body, the "Bagnold Dunes" in Gale Crater. During the campaign, a series of Mastcam and RMI time-series images of local sand patches, dump piles, ripples, and the lee face and margin of Namib Dune (a barchan in the Bagnold field) were acquired. These were at cadences of a sol or more that were generally at nearly the same local time, and intra-sol imaging bridged by continuous wind measurements from REMS. The dune field has also been imaged 16 times by HiRISE since 2008. By combining the two datasets, long term dune dynamics over the whole field can be compared to small-scale and short-term observations on the surface. From HiRISE, Namib Dune and other barchans and longitudinal dunes to the south and west migrate generally toward the south to southeast. The most active sand deposits are the longitudinal and barchans dunes, with the highest ripple migration rates found on the highest elevations. Rippled sand patches exhibit little of no motion. From MSL, the scrambling of grains on the surfaces of local rippled sand patches and Namib Dune is obvious over periods as short as a single sol, with light-toned grains showing the greatest tendency. On the lee face of Namib, images show grain scrambling, one case of modification to a secondary grainflow, and possibly ripple motion over 3-16 sols. At the dune margin, grain scrambling and one major slump on the lee face of a dune ripple are seen. The daytime REMS record shows wind speeds up to 20 m/s with confidence. As yet, we do not have a demonstrable correlation between measured wind speeds and changes, suggesting that short term gusts or non-aeolian processes acting as triggers may precede significant activity. The changes, occurring in a low flux season based on HiRISE analysis and global circulation models, indicate an active surface at all times of the year to some degree.

  7. Surface slope effects for ripple orientation on sand dunes in López crater, Terra Tyrrhena region of Mars (United States)

    Zimbelman, James R.; Johnson, Molly B.


    Ripple orientations on small sand dunes (dunes lacking substantial slip faces) at widely distributed sites across Mars have been documented using High Resolution Imaging Science Experiment (HiRISE) images, in an effort to determine the last formative aeolian sediment transport direction experienced at these locations. Howard (1977) used field measurements and first principles to derive an expression for determining how much the surface slope on a sand dune deflects the orientation of sand ripples with respect to the formative wind direction. A Digital Terrain Model derived from stereo HiRISE images was used to assess the potential deflection of ripples on sand dunes on the floor of López crater on Mars. Three-quarters of the area covered by sand dunes within the DTM has a surface slope sand dunes on Mars that lack large slip faces. Sand ripples therefore should be good indicators of the most recent sand-transporting winds that have blown across sand dunes on Mars, as long as areas on or very near to slip faces are avoided.

  8. Constraints on the age of the Great Sand Dunes, Colorado, from subsurface stratigraphy and OSL dates (United States)

    Madole, Richard F.; Mahan, Shannon; Romig, Joseph H.; Havens, Jeremy C.


    The age of the Great Sand Dunes has been debated for nearly 150 yr. Seven ages ranging from Miocene to late Holocene have been proposed for them. This paper presents new information—chiefly subsurface stratigraphic data, OSL dates, and geomorphic evidence—that indicates that the Great Sand Dunes began to form in the latter part of the middle Pleistocene. The dunes overlie a thick wedge of piedmont-slope deposits, which in turn overlies sediment of Lake Alamosa, a paleolake that began to drain about 440 ka. The wedge of piedmont-slope deposits extends westward for at least 23 km and is as much as 60 m thick at a distance of 10 km from the Sangre de Cristo Range. Ostracodes from one well indicate that the eastern shoreline of Lake Alamosa extended to within 4.3 km of where the Great Sand Dunes eventually formed. The time represented by the wedge of piedmont-slope deposits is not known exactly, but the wedge post-dates 440 ka and was in place prior to 130 ka because by then the dunes overlying it were sufficiently close and tall enough to obstruct streams draining from the Sangre de Cristo Range.

  9. Transport and mixing of eolian sand from local sources resulting in variations in grain size in a gypsum dune field, White Sands, New Mexico, USA (United States)

    Langford, Richard P.; Gill, Thomas E.; Jones, Slade B.


    The White Sands Dune Field, New Mexico (USA), provides a unique opportunity to study sources and eolian transport of sand. End member mixing analysis provides unbiased correlation of the grain size distributions of populations that mix sands from four different local source surface types. Textural differences between sources allow local transport paths to be deduced. In total, 1214 surface samples from 10 dunes and 2 downwind-oriented transects were collected. Neither elevation on the dune, lee or stoss location nor distance downwind correlated with mean grain size, coarsest 10% (D90), or sorting. Instead, grain size distributions are controlled by mixing of locally sourced sand populations. Adjacent dunes can have different mean grain sizes, resulting from different local source populations. Local within-dune and between-dune variability resulting from different sand sources dominates any larger-scale trends across and within dunes. Four sand populations are identified, based on microscopically observable differences in grain size, shape and angularity. Each correlates with high loading of a different statistical factor, derived from End Member Mixing Analysis. End Member 1 (EM1) correlates with well-sorted populations of finer-grained, equant, rounded sands. EM2 correlates with samples that contain moderately sorted populations containing angular blades and crystal aggregates associated with erosional interdunes. EM3 is associated with samples of moderately to poorly sorted fine-grained sand containing fine sand-sized gypsum needles collected from areas of vegetated interdunes, and EM4 is associated with moderately well sorted coarse- and very coarse-grained sands collected from granule ripples. These results suggest that downwind mixing of different populations and segregation by different depositional processes influence grain size distributions in the dune field, rather than by dune-scale or erg-scale transport and sorting.

  10. The sand seas of titan: Cassini RADAR observations of longitudinal dunes (United States)

    Lorenz, R.D.; Wall, S.; Radebaugh, J.; Boubin, G.; Reffet, E.; Janssen, M.; Stofan, E.; Lopes, R.; Kirk, R.; Elachi, C.; Lunine, J.; Mitchell, Ken; Paganelli, F.; Soderblom, L.; Wood, C.; Wye, L.; Zebker, H.; Anderson, Y.; Ostro, S.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Ori, G.G.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; Flamini, E.; West, R.


    The most recent Cassini RADAR images of Titan show widespread regions (up to 1500 kilometers by 200 kilometers) of near-parallel radar-dark linear features that appear to be seas of longitudinal dunes similar to those seen in the Namib desert on Earth. The Ku-band (2.17-centimeter wavelength) images show ???100-meter ridges consistent with duneforms and reveal flow interactions with underlying hills. The distribution and orientation of the dunes support a model of fluctuating surface winds of ???0.5 meter per second resulting from the combination of an eastward flow with a variable tidal wind. The existence of dunes also requires geological processes that create sand-sized (100- to 300-micrometer) particulates and a lack of persistent equatorial surface liquids to act as sand traps.

  11. Sand erosion at the toe of a gabion-protected dune face

    NARCIS (Netherlands)

    Chapman, A.


    The purpose of this research project was to study the manner in which erosion takes place the the toe of a dune slope protected by gabions, and to examine the response of the gabions to this erosion. A sand slope overlaid by model gabions was subjected to wave attack in a hydraulic flume, and

  12. 76 FR 57074 - Transfer of Administrative Jurisdiction at or Near Great Sand Dunes National Park (United States)


    ... National Park Service Transfer of Administrative Jurisdiction at or Near Great Sand Dunes National Park... the Interior has transferred to the appropriate agencies jurisdiction over lands acquired for the... directed the Secretary to transfer administrative jurisdiction of these lands, as appropriate, to the...

  13. View of sand dunes in the San Juan Province of Western Argentina (United States)


    A near vertical view of sand dunes in the San Juan Province of Western Argentina, as photographed from the Apollo spacecraft in Earth orbit during the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) mission. The picture was taken at an altitude of 220 kilometers (136 statute miles). The photograph was taken at an altitude of 228 kilometers (141 statute miles).


    NARCIS (Netherlands)

    OLFF, H; VANTOOREN, BF; Tooren, B.F. van


    1 The present study reports on a primary succession series which started on bare soil on the Dutch island of Schiermonnikoog after the building of a sand dike. Vegetational changes were studied for 18 years by means of permanent transects along a topographic gradient from a moist plain to dry dunes.

  15. How extensive is the effect of modern farming on bird communities in a sand dune desert?

    Directory of Open Access Journals (Sweden)

    Faris Khoury


    Full Text Available Bird community structure and diversity measures in sand dune habitats far from and close to modern farms in Wadi Araba, south-west Jordan, were compared using 52 line transects for breeding birds and habitat variables. A change in the bird community of sand dunes surrounding farming projects was measured to a distance of 1 km, but could neither be related to changes in habitat structure nor to the activity of op- portunistic predators (Red Fox as these did not vary significantly between the two samples. The farms included lines of trees and offered a constant source of water, which attracted a variety of opportunistic species, thus increasing bird diversity and total bird abundances. The absence of characteristic ground-dwelling species of open sand dune habitats in the structurally intact sand dunes surrounding farms was likely to be the result of localized, but effectively far-reaching habitat modification (farms acting as barriers and/or competition with some of the opportunistic species, which were common around farms.

  16. Plant-feeding nematodes in coastal sand dunes: occurrence, host specificity and effects on plant growth

    NARCIS (Netherlands)

    Brinkman, E.P.; Duyts, Henk; Karssen, G.; Van der Stoel, C.D.; Van der Putten, Wim H.


    Aims Coastal sand dunes have a well-established abiotic gradient from beach to land and a corresponding spatial gradient of plant species representing succession in time. Here, we relate the distribution of plant-feeding nematodes with dominant plant species in the field to host specialization and

  17. Morphology and stratigraphic evolution of aeolian protodunes at White Sands Dune Field (United States)

    Ewing, R. C.; Weymer, B. A.; Barrineaux, P.


    Protodunes are low-relief, slipfaceless migrating bed forms thought to represent fundamental emergent bed forms that develop from a flat bed of sand and evolve into dunes. Protodunes at White Sands Dune Field in New Mexico are found at the upwind margin of the field, on dune stoss slopes and in interdune areas. Here we used time-series aerial photos from 1996, 2003, 2005 and 2012 and digital elevation models from 2007, 2008, 2009 and 2010 in conjunction with ground penetrating radar (GPR) to characterize the morphodynamics of protodunes and the stratigraphy generated by protodune migration. Protodunes at the upwind margin of the dune field are larger in wavelength and amplitude and coarser grained than those in the interior of the field. Wind ripples cover protodunes in all areas of the field, but the protodunes at the upwind margin are covered by coarse grained ripples. A consistent progression of ripple patterns occurs over protodunes in which ripples coarsen in wavelength and grain size toward the protodune crest and then decrease in wavelength and grain size toward the troughs. Ripple migration across the protodunes appears to the primary mode by which the protodunes migrate. Trenching and GPR data show low-angle cross-stratification generated by wind ripples migrating down the protodune lee slope of the protodunes. Internal bounding surfaces within the protodunes likely arise from laterally migration and lee slope reactivation in response to the complex wind regime and dune-modified secondary flow within the dune field at White Sands. Understanding the morphology, distribution and genesis of protodunes in dune fields provides a basis to evaluate the significance of protodune strata in the rock record.

  18. Comparisons of Unconsolidated Sediments Analyzed by APXS (MSL-Curiosity) within Gale Crater, Mars: Soils, Sands of the Barchan and Linear Dunes of the Active Bagnold Dune Field, and Ripple-field Sands. (United States)

    Thompson, L. M.; O'Connell-Cooper, C.; Spray, J. G.; Gellert, R.; Boyd, N. I.; Desouza, E.


    The MSL-APXS has analyzed a variety of unconsolidated sediments within the Gale impact crater, including soils, sands from barchan [High, Namib dunes], and linear dunes [Nathan Bridges, Mount Desert dunes], within the active Bagnold dune field, and sands from two smaller ripple fields ("mega-ripples"). The Gale "soils" (unsorted, unconsolidated sediments, ranging from fine-grained particles (including dust) to coarser "pebbly" material [>2 mm]), are, to a large degree, similar to Martian basaltic soils quantified by APXS, at Gusev crater (MER-A_Spirit) and Meridiani Planum (MER-B_Opportunity). Some local contributions are indicated by, for example, the enriched K levels (relative to a martian average basaltic soil [ABS]) within coarser Gale soil samples, and a Cr, Mn, Fe enrichment within finer-grained samples. Sands (grain size 62 µm to 2 mm) of the Bagnold dunes, generally, exhibit elevated Mg and Ni, indicating enrichment from olivine and pyroxene, but depleted S, Cl and Zn, indicating high activity levels and low dust. Compositional differences, related both to position within a dune (i.e., crest versus off-crest sand), and type of dune (linear versus barchan), are identified. Off-crest sands have Na, Al, Si, K, P contents similar to (or slightly depleted, relative to) the ABS, enrichment in Mg, and low dust content, whilst crest sands contain very high Mg and Ni (relative to the ABS), low felsic elemental concentrations and very low dust content. Cr is significantly enriched (and, to a lesser degree, Mn, Fe, Ti) in the off-crest sands of the linear dunes. In contrast, barchan dunes off-crest sands have Cr, Mn, Fe, and Ti abundances similar to those in the Gale soils. Additionally, Ni concentrations in barchan dunes off-crest sands are enriched relative to the linear dunes. Analyses from a small, isolated "mega-ripple" reveal a composition similar to that of the Gale soils, including a high dust content. The second mega-ripple, within a larger ripple field, is

  19. Effects of disturbance on vegetation by sand accretion and erosion across coastal dune habitats on a barrier island. (United States)

    Miller, Thomas E


    Coastal geomorphology and vegetation are expected to be particularly sensitive to climate change, because of disturbances caused by sea-level rise and increased storm frequency. Dunes have critical reciprocal interactions with vegetation; dunes create habitats for plants, while plants help to build dunes and promote geomorphological stability. These interactions are also greatly affected by disturbances associated with sand movement, either in accretion (dune building) or in erosion. The magnitude and intensity of disturbances are expected to vary with habitat, from the more exposed and less stable foredunes, to low-lying and flood-prone interdunes, to the protected and older backdunes. Permanent plots were established at three different spatial scales on St George Island, FL, USA, where the vegetation and dune elevation were quantified annually from 2011 to 2013. Change in elevation, either through accretion or erosion, was used as a measure of year-to-year disturbance over the 2 years of the study. At the scale of different dune habitats, foredunes were found to have the greatest disturbance, while interdunes had the least. Elevation and habitat (i.e. foredune, interdune, backdune) were significantly correlated with plant community composition. Generalized linear models conducted within each habitat show that the change in elevation (disturbance) is also significantly correlated with the plant community, but only within foredunes and interdunes. The importance of disturbance in exposed foredunes was expected and was found to be related to an increasing abundance of a dominant species (Uniola paniculata) in eroding areas. The significant effect of disturbance in the relatively stable interdunes was surprising, and may be due to the importance of flooding associated with small changes in elevation in these low-lying areas. Overall, this study documents changes in the plant community associated with elevation, and demonstrates that the foredune and interdune

  20. Impacts of simulated climate change and fungal symbionts on survival and growth of a foundation species in sand dunes. (United States)

    Emery, Sarah M; Rudgers, Jennifer A


    For many ecosystems, one of the primary avenues of climate impact may be through changes to foundation species, which create habitats and sustain ecosystem services. For plants, microbial symbionts can often act as mutualists under abiotic stress and may mediate foundational plant responses to climate change. We manipulated the presence of endophytes in Ammophila breviligulata, a foundational sand dune species, to evaluate their potential to influence plant responses to climate change. We simulated projected climate change scenarios for temperature and precipitation using a growth chamber experiment. A 5 °C increase in temperature relative to current climate in northern Michigan reduced A. breviligulata survival by 45 %. Root biomass of A. breviligulata, which is critical to dune stabilization, was also strongly reduced by temperature. Plants inoculated with the endophyte had 14 % higher survival than endophyte-free plants. Contrary to our prediction, endophyte symbiosis did not alter the magnitude or direction of the effects of climate manipulations on A. breviligulata survival. However, in the absence of the endophyte, an increase in temperature increased the number of sand grains bound by roots by 80 %, while in symbiotic plants sand adherence did not significantly respond to temperature. Thus, plant-endophyte symbiosis actually negated the benefits in ecosystem function gained under a warmer climate. This study suggests that heat stress related to climate change in the Great Lakes may compromise the ability of A. breviligulata to stabilize dune ecosystems and reduce carbon storage and organic matter build-up in these early-successional systems due to reduced plant survival and root growth.

  1. Effects of prolonged drought on the vegetation cover of sand dunes in the NW Negev Desert: Field survey, remote sensing and conceptual modeling (United States)

    Siegal, Z.; Tsoar, H.; Karnieli, A.


    Luminescence dating of stable sand dunes in the large deserts of the world has shown several episodes of mobility during the last 30 k years. The logical explanation for the mobility of fixed dunes is severe drought. Though drought length can be estimated, the level of precipitation drop is unknown. The stabilized sand dunes of the northwestern Negev Desert, Israel have been under an unprecedented prolonged drought since 1995. This has resulted in a vast decrease of shrubs cover on the fixed sand dunes, which changes along the rainfall gradient. In the north, an average of 27% of the shrubs had wilted by 2009, and in the drier southern area, 68% of the shrubs had withered. This loss of shrubbery is not expected to induce dune remobilization because the existing bio-crust cover is not negatively affected by the drought. Eleven aerial photographs taken over the drier southern area from 1956 to 2005 show the change in shrub cover due to human impact and the recent severe drought.

  2. Utilization of time series airborne LiDAR to quantify patterns of deposition and erosion across dune-dune interactions at White Sands Dune Field, New Mexico (United States)

    Ewing, R. C.; Smith, V. B.; Mohrig, D. C.; Kocurek, G.


    One explanation for the emergence of bedform-field patterns is self-organization via the interactions between the bedforms themselves. Models, remote images, field studies and lab experiments have identified bedform interactions that involve whole bedforms, only bedform defects, or that are remote interactions between bedforms. Observations suggest interactions form a spectrum from constructive to regenerative. Constructive interactions push the system toward fewer, larger, more widely spaced bedforms and regenerative interactions push the system toward a more initial state. Here we use time-series airborne LiDAR from White Sands Dune Field, New Mexico along with wind data from nearby Holloman Air Force Base to show spatial changes in erosion and deposition related to secondary airflow patterns across different types of interactions. Difference maps showing patterns of erosion and deposition of targeted interactions are generated from June 2007, June 2008, January 2009 and September 2009 LiDAR surveys. Secondary airflow maps based upon wind data are superimposed upon the difference maps to show how surface erosion and deposition covary with secondary airflow patterns. Results indicate that the portions of a dune with a crestline transverse to any given wind have the highest rates of deposition and change the fastest, whereas oblique and longitudinal portions of a crestline act primarily as bypassing crestline elements with only minor amounts of erosion and deposition. As the main dune body and defects approach one another secondary airflow patterns are modified to promote deposition or erosion along the downwind crestline. This, in turn, propagates the interaction. Because of the boundary condition of a strong seasonal variation in the wind regime at White Sands a portion of a crestline may be transverse, oblique or longitudinal depending on time of year, which affects the patterns of deposition and erosion through an interaction. Overall, the patterns of secondary

  3. Transcriptomic analysis of a psammophyte food crop, sand rice (Agriophyllum squarrosum) and identification of candidate genes essential for sand dune adaptation


    Zhao, Pengshan; Capella-Guti?rrez, Salvador; Shi, Yong; Zhao, Xin; Chen, Guoxiong; Gabald?n, Toni; Ma, Xiao-Fei


    Background Sand rice (Agriophyllum squarrosum) is an annual desert plant adapted to mobile sand dunes in arid and semi-arid regions of Central Asia. The sand rice seeds have excellent nutrition value and have been historically consumed by local populations in the desert regions of northwest China. Sand rice is a potential food crop resilient to ongoing climate change; however, partly due to the scarcity of genetic information, this species has undergone only little agronomic modifications thr...

  4. Evaluation of simple geochemical indicators of aeolian sand provenance: Late Quaternary dune fields of North America revisited (United States)

    Muhs, Daniel R.


    Dune fields of Quaternary age occupy large areas of the world's arid and semiarid regions. Despite this, there has been surprisingly little work done on understanding dune sediment provenance, in part because many techniques are time-consuming, prone to operator error, experimental, highly specialized, expensive, or require sophisticated instrumentation. Provenance of dune sand using K/Rb and K/Ba values in K-feldspar in aeolian sands of the arid and semiarid regions of North America is tested here. Results indicate that K/Rb and K/Ba can distinguish different river sands that are sediment sources for dunes and dune fields themselves have distinctive K/Rb and K/Ba compositions. Over the Basin and Range and Great Plains regions of North America, the hypothesized sediment sources of dune fields are reviewed and assessed using K/Rb and K/Ba values in dune sands and in hypothesized source sediments. In some cases, the origins of dunes assessed in this manner are consistent with previous studies and in others, dune fields are found to have a more complex origin than previously thought. Use of K/Rb and K/Ba for provenance studies is a robust method that is inexpensive, rapid, and highly reproducible. It exploits one of the most common minerals found in dune sand, K-feldspar. The method avoids the problem of using simple concentrations of key elements that may be subject to interpretative bias due to changes in mineralogical maturity of Quaternary dune fields that occur over time.

  5. Evaluation of Surface Slope Effects on Ripple Orientations Observed on Sand Dunes in the Terra Tyrrhena Region of Mars (United States)

    Zimbelman, J. R.; Johnson, M. B.


    The High Resolution Imaging Science Experiment (HiRISE) has revealed abundant wind ripples on sand dunes across Mars. Ripple orientations have been documented using HiRISE images of sand dunes at 24 widely distributed sites across Mars, in order to identify the last significant wind directions at these locations. Howard (GSAB, 1977) gives a mathematical expression for how surface slopes on a sand dune can affect the orientation of ripples with respect to the formative winds. In order to evaluate this mechanism for measured ripple orientations on Mars, quantitative data for surface slopes on the sand dunes is required. Stereo pairs of HiRISE images are used to generate Digital Terrain Models (DTMs) with postings of one meter. In June 2014 we produced a DTM of sand dunes in the Terra Tyrrhena region of Mars (14.55° S, 97.77° E) using SOCET SET at the Astrogeology Branch, USGS-Flagstaff. Typically it is difficult for feature matching software to work well on sand dunes, but our stereo images (ESP_022609_1655 and ESP_026675_1655) were obtained only six Earth days apart under excellent illumination conditions. The Terra Tyrrhena DTM had remarkably few artifacts on the sand dunes (except at slip faces, where the average slope between slip face crest and base was interpolated) and excellent control from irregular terrain exposed in interdune areas. Slopes on the stoss sides of sand dunes are generally ripple deflection angles should be ripple orientations to account for surface slopes utilizing the DTM data, and so far we do not see major changes to inferred surface wind directions that would be derived directly from the ripple orientations.

  6. Microbial Diversity in Soil, Sand Dune and Rock Substrates of the Thar Monsoon Desert, India. (United States)

    Rao, Subramanya; Chan, Yuki; Bugler-Lacap, Donnabella C; Bhatnagar, Ashish; Bhatnagar, Monica; Pointing, Stephen B


    A culture-independent diversity assessment of archaea, bacteria and fungi in the Thar Desert in India was made. Six locations in Ajmer, Jaisalmer, Jaipur and Jodhupur included semi-arid soils, arid soils, arid sand dunes, plus arid cryptoendolithic substrates. A real-time quantitative PCR approach revealed that bacteria dominated soils and cryptoendoliths, whilst fungi dominated sand dunes. The archaea formed a minor component of all communities. Comparison of rRNA-defined community structure revealed that substrate and climate rather than location were the most parsimonious predictors. Sequence-based identification of 1240 phylotypes revealed that most taxa were common desert microorganisms. Semi-arid soils were dominated by actinobacteria and alpha proteobacteria, arid soils by chloroflexi and alpha proteobacteria, sand dunes by ascomycete fungi and cryptoendoliths by cyanobacteria. Climatic variables that best explained this distribution were mean annual rainfall and maximum annual temperature. Substrate variables that contributed most to observed diversity patterns were conductivity, soluble salts, Ca(2+) and pH. This represents an important addition to the inventory of desert microbiota, novel insight into the abiotic drivers of community assembly, and the first report of biodiversity in a monsoon desert system.

  7. Size distribution and structure of Barchan dune fields

    Directory of Open Access Journals (Sweden)

    O. Durán


    Full Text Available Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a cooperative behavior based on dune interaction. In Duran et al. (2009, we propose that the redistribution of sand by collisions between dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields but fail to reproduce their homogeneity along the wind direction.

  8. Controls on the large-scale spatial variations of dune field properties in the barchanoid portion of White Sands dune field, New Mexico (United States)

    Pelletier, Jon D.


    Previous studies have shown that sediment fluxes and dune sizes are a maximum near the upwind margin of the White Sands dune field and decrease, to first order, with increasing distance downwind. These patterns have alternatively been attributed to a shear-stress overshoot associated with a roughness transition localized at the upwind margin and to the influence of long-wavelength topography on the hydrology and hence erodibility of dune field sediments. I point out an issue that compromises the shear-stress overshoot model and further test the hypothesis that long-wavelength topographic variations, acting in concert with feedbacks among aerodynamic, granulometric, and geomorphic variables, control dune field properties at White Sands. Building upon the existing literature, I document that the mean and variability of grain sizes, sand dryness, aerodynamic roughness lengths, bed shear stresses, sediment fluxes, and ripple and dune heights all achieve local maxima at the crests of the two most prominent scarps in the dune field, one coincident with the upwind margin and the other located 6-7 km downwind. Computational fluid dynamics (CFD) modeling predicts that bed shear stresses, erosion rates, and the supply of relatively coarse, poorly sorted sediments are localized at the two scarps due to flow line convergence, hydrology, and the spatially distributed adjustment of the boundary layer to variations in dune size. As a result, the crests of the scarps have larger ripples due to the granulometric control of ripple size. Larger grain sizes and/or larger ripples lead to larger dunes and hence larger values of bed shear stress in a positive feedback.

  9. Quantifying wind blown landscapes using time-series airborne LiDAR at White Sands Dune Field, New Mexico (United States)

    Ewing, R. C.


    Wind blown landscapes are a default geomorphic and sedimentary environment in our solar system. Wind sand dunes are ubiquitous features on the surfaces of Earth, Mars and Titan and prevalent within the aeolian rock records of Earth and Mars. Dunes are sensitive to environmental and climatic changes and a complete understanding of this system promises a unique, robust and quantitative record of paleoclimate extending to the early histories of these worlds. However, our understanding of how aeolian dune landscapes evolve and how the details of the wind are recorded in cross-strata is limited by our lack of understanding of three-dimensional dune morphodynamics related to changing boundary conditions such as wind direction and magnitude and sediment source area. We use airborne LiDAR datasets over 40 km2 of White Sands Dune Field collected from June 2007, June 2008, January 2009, September 2009 and June 2010 to quantify 1) three-dimensional dune geometries, 2) annual and seasonal patterns of erosion and deposition across dune topography, 3) spatial changes in sediment flux related to position within the field, 4) spatial changes in sediment flux across sinuous crestlines and 5) morphologic changes through dune-dune interactions. In addition to measurements, we use the LiDAR data along with wind data from two near-by weather stations to develop a simple model that predicts depositional and stratigraphic patterns on dune lee slopes. Several challenges emerged using time series LiDAR data sets at White Sands Dune Field. The topography upon which the dunes sit is variable and rises by 16 meters over the length of the dune field. In order to compare individual dune geometries across the field and between data sets a base surface was interpolated from local minima and subtracted from the dune topography. Co-registration and error calculation between datasets was done manually using permanent vegetated features within the active dune field and structures built by the

  10. Biological soil crust as a bio-mediator alters hydrological processes in stabilized dune system of the Tengger Desert, China (United States)

    Li, Xinrong


    Biological soil crust (BSC) is a vital component in the stabilized sand dunes with a living cover up to more than 70% of the total, which has been considered as a bio-mediator that directly influences and regulates the sand dune ecosystem processes. However, its influences on soil hydrological processes have been long neglected in Chinese deserts. In this study, BSCs of different successional stages were chose to test their influence on the hydrological processes of stabilized dune, where the groundwater deep exceeds 30m, further to explore why occur the sand-binding vegetation replacement between shrubs and herbs. Our long-term observation (60 years) shows that cyanobacteria crust has been colonized and developed after 3 years since the sand-binding vegetation has been established and dune fixation using planted xerophytic shrubs and made sand barrier (straw-checkerboard) on shifting dune surface, lichen and moss crust occurred after 20 years, and the cover of moss dominated crust could reach 70 % after 50 years. The colonization and development of BSC altered the initial soil water balance of revegetated areas by influencing rainfall infiltration, soil evaporation and dew water entrapment. The results show that BSC obviously reduced the infiltration that occurred during most rainfall events (80%), when rainfall was greater than 5 mm or less than 20 mm. The presence of BSC reduced evaporation of topsoil after small rainfall (<5 mm) because its high proportion of finer particles slowed the evaporation rate, thus keeping the water in the soil surface longer, and crust facilitated topsoil evaporation when rainfall reached 10 mm. The amount of dew entrapment increases with the succession of BSC. Moreover, the effect of the later successional BSC to dew entrapment, rainfall infiltration and evaporation was more obvious than the early successional BSC on stabilized dunes. In general, BSC reduced the amount of rainfall water that reached deeper soil (0.4-3m), which is

  11. Heavy metal levels in dune sands from Matanzas urban resorts and Varadero beach (Cuba): Assessment of contamination and ecological risks. (United States)

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O; Denis Alpízar, Otoniel


    Concentrations of chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in dune sands from six urban and suburban Matanzas (Cuba) resorts and Varadero beach were estimated by X-ray fluorescence analysis. Ranges of metal contents in dune sands show a strong variation across the studied locations (in mg/kg(-1)): 20-2964 for Cr, 17-183 for Ni, 17-51 for Cu, 18-88 for Zn and 5-29 for Pb. The values of contamination factors and contamination degrees how that two of the studied Matanzas's resorts (Judio and Chirry) are strongly polluted. The comparison with Sediment Quality Guidelines shows that dune sands from Judio resort represent a serious risk for humans, due to polluted Cr and Ni levels, while sands from the rest of the studied resorts, including Varadero beach, do not represent any risk for public use. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Geomechanical properties of lime stabilized clayey sands

    International Nuclear Information System (INIS)

    Arabani, M.; Karami, M. Veis


    Clayey sands that have low plasticity, low compressibility and high strength under loads, are suitable as a base material for any engineering construction projects as well as for roads and building construction. Decrease of plasticity and compressibility as well as increase in strength of these materials can be obtained by many different methods. Of these methods, lime stabilization is a common, applicable, and easy to use approach that can improve geomechanical and geotechnical properties of clayey sand fills. In this study some important geomechanical properties and geotechnical properties of clayey sands including compressive strength, CBR and elastic plastic behavior are investigated. A range of gradations representative of those gradations found in situ in the north of Iran were selected for testing and samples were artificially rebuilt in the laboratory. The mixes were then stabilized with hydrated lime and cured. Different mechanical tests were performed on mature materials. The stress-strain behavior of lime-stabilized mixes was plotted and a parabolic function was used to estimate the trend of stress-strain behavior. The data show that there is a correlation among the results of uniaxial load test, tensile strength, and CBR of the tested specimens. Also, results of the unconfined compression test and the indirect tensile strength test show that an increase in clay content up to a certain percent, in the clay-sand fills, tends to increase the strength of the materials in compression as well as in tension. (author)

  13. Biosystematics of alkaliphilic streptomycetes isolated from seven locations across a beach and dune sand system. (United States)

    Antony-Babu, Sanjay; Goodfellow, Michael


    Alkaliphilic streptomycetes were isolated from composite sand samples collected from six out of seven locations across a beach and dune sand system using starch-casein-nitrate agar supplemented with cycloheximide and buffered to pH 10.5. The isolates had colonial and chemotaxonomic properties consistent with their classification in the genus Streptomyces. They were assigned to 49 multimembered and 114 single-membered colour-groups given their ability to produce pigments on oatmeal and peptone-yeast-extract-iron agars and to corresponding taxa based on whole-genome rep-PCR banding patterns. Twenty-four isolates representing the colour and rep-PCR groups grew well from pH 5 to 11, and optimally at pH 9, as did phylogenetically close members of the Streptomyces griseus 16S rRNA gene clade. One hundred and twelve representative alkaliphilic streptomycetes formed a heterogeneous but distinct clade in the Streptomyces 16S rRNA gene tree. A 3-dimensional representation of 16S rRNA sequence data showed that the alkaliphilic streptomycetes formed a distinct group in multidimensional taxospace. It is evident that alkaliphilic streptomycetes are common in the beach and dune sand system and that representatives of this community form new centers of taxonomic variation within the genus Streptomyces that can be equated with species.

  14. Sand Flux Results for Aeolian Dunes at Current and Candidate Landing Sites on Mars (United States)

    Chojnacki, M.; Urso, A.; Yingling, W.


    It is now known unambiguously that wind-driven bedform activity is occurring on Mars today. It has also been demonstrated the rapid aeolian abrasion of sedimentary deposits that potentially host ancient habitable environments may provide the best mechanism for exposing samples containing relatively undegraded organics (Farley et al. 2014). Thus, current processes operating on the surface of Mars are highly relevant to our understanding of the past. Here, we discuss new sand flux results of active dune across Mars, including several current and candidate landing sites with Meridiani Planum, Gale crater, Valles Marineris, and Mawrth Vallis. For this task, we have utilized multi-temporal images acquired annually by the HiRISE camera (25 cm/pixel) along with co-located HiRISE Digital Terrain Models. Falling dunes in Coprates Chasma (Mars 2020 candidate landing site) measuring 6-10 meters in height were detected migrating on average 0.5 m per Earth year, yielding crest fluxes of 3.1 m3 m-1 yr-1 (units hereafter assumed). Barchans near the MSL rover at Gale crater have slightly lower fluxes of 1.2, while earlier work in Endeavour crater, the current site of the Opportunity Rover, showed dome dunes with fluxes as high as 13 (average of 6.8; Chojnacki et al. 2015). New results of Mawrth Vallis (Mars 2020 candidate) dunes suggest these high rates are not uncommon, as barchans there possess average fluxes of 11.5. Assuming ripple reptation rates are 1/10th that of crest fluxes, total flux (saltation plus reptation) would range 3.2 to 12.7 m3 m-1 yr-1 for all sites studied herein. Active dunes and the abrasion susceptibility (Sa) of local rocks are relevant to assess how sand fluxes modify the landscape. Using the methodology and assumptions (Sa for basalt, mean trajectory height etc.) described in Bridges et al. (2012), we estimated abrasion rates of local basaltic bedrock. For example, sand blasting at Mawrth Vallis is estimated to produce 2-8 μm/yr for flat ground and 15

  15. Water Use for Cultivation Management of Watermelon in Upland Field on Sand Dune (United States)

    Hashimoto, Iwao; Senge, Masateru; Itou, Kengo; Maruyama, Toshisuke

    Early-maturing cultivation of watermelon in a plastic tunnel was invetigated in upland field on sand dune on the coast of the Japan Sea to find water use to control blowing sand and to transplant seedlings. This region has low precipitation, low humidity, and strong wind in March and April, when sand is readily blown in the field. Water is used to control blowing sand on days with precipitation below 5 mm, minimum humidity below the meteorological average in April, and maximum wind velocity above the meteorological average in April. For the rooting and growth of watermelon seedlings, soil temperature needs to be raised because it is low in April. Ridges are mulched with transparent, porous polyethylene films 10 or more days before transplanting the seedlings and irrigated with sprinklers on fine days for the thermal storage of solar energy. The stored heat steams the mulched ridges to raise soil temperature to 15°C or higher on the day of transplanting the seedlings. The total amount of irrigation water used for watermelon cultivation was 432.7 mm, of which 23.6 mm was for blowing sand control and 26.6 mm was for transplanting the seedlings. The combined amount, 50.2 mm, is 11.6% of the total amount of water used for cultivation management.

  16. Sand erosion at the toe of a gabion-protected dune face


    Chapman, A.


    The purpose of this research project was to study the manner in which erosion takes place the the toe of a dune slope protected by gabions, and to examine the response of the gabions to this erosion. A sand slope overlaid by model gabions was subjected to wave attack in a hydraulic flume, and periodic measurements of the bottom profile were taken. The results showed that the gabions performed well, and continued to provide protection to the slope even after a considerable amount of erosion an...

  17. Is coal combustion the last chance for vanishing insects of inland drift sand dunes in Europe?

    Czech Academy of Sciences Publication Activity Database

    Tropek, Robert; Černá, Ilona; Straka, J.; Čížek, Oldřich; Konvička, Martin


    Roč. 162, JUN 20 (2013), s. 60-64 ISSN 0006-3207 R&D Projects: GA ČR GAP504/12/2525 Grant - others:GA JU(CZ) 160/2010/P; GA JU(CZ) 144/2010/P; GA JU(CZ) 168/2013/P Institutional support: RVO:60077344 Keywords : aculeata * drift sand dunes * energy industry Subject RIV: EH - Ecology, Behaviour Impact factor: 4.036, year: 2013

  18. Lizard assemblage from a sand dune habitat from southeastern Brazil: a niche overlap analysis

    Directory of Open Access Journals (Sweden)



    Full Text Available ABSTRACT Communities are structured by interactions of historical and ecological factors, which influence the use of different resources in time and space. We acquired data on time of activity, microhabitat use and diet of a lizard assemblage from a sand dune habitat in a coastal area, southeastern Brazil (Restinga de Jurubatiba. We analyzed the data of niche overlap among species in these three axes (temporal, spatial and trophic using null models. We found a significant overlap within the trophic niche, whereas the overlap for the other axes did not differ from the expected. Based on this result, we discuss the factors acting on the structure of the local lizard community.

  19. Environmental isotopes in North African groundwaters; and the Dahna sand-dune study, Saudi Arabia

    International Nuclear Information System (INIS)

    Sonntag, C.; Thoma, G.; Muennich, K.O.; Dincer, T.; Klitzsch, E.


    I. North Saharian palaeowaters were mainly formed during a long humid period between 50,000 and 20,000 years BP., which was followed by a cool dry period from 20,000 to 14,000 years BP. These palaeowaters show a significant west-east decrease in deuterium and 18 O because of past groundwater formation by local rainfall from the western drift. Sahel zone groundwaters seem to show meridional variation of deuterium and 18 O due to a tropical convective influence. II. A computer model estimate of the alternate play between rainwater infiltration and evaporation in the Dahna sand-dune (near Riyadh, Saudi Arabia) yields a mean annual groundwater recharge of 20 mm annually which agrees with that obtained from bomb tritium vertical profiles of the sand moisture. The model also describes the deuterium and 18 O profiles. (author)

  20. Identification of the volcanic quartz origins from dune sand using a single-grain RTL measurement (United States)

    Yawata, Takashi; Hashimoto, Tetsuo


    In an earlier study, we found that quartz grains extracted from Niigata dune sand all contained red thermoluminescence (RTL) phenomena. This RTL could subsequently be attributed to the volcanic origin of the material. The Agano River is assumed to be the main source of the Niigata dune material. Using the single aliquot regenerative method, which involves the measurement of several hundreds of grains, the measured equivalent doses from the RTL-quartz grains were larger than expected. Consequently, a single-grain method combined with RTL-measurement was developed to determine the equivalent doses from each quartz grain. Placing a biotite plate with a central hole for the sample grain on the sample disk made a significant contribution to keeping background levels as low as possible. The histogram of the equivalent doses evaluated from 72 quartz grains revealed that the Niigata dune originates from at least four different volcanic sources around Agano River. One of them is the Numazawa volcano, because the minimum equivalent dose values from the single grain method are equal to those of quartz grains from the Numazawa pumice.

  1. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    Directory of Open Access Journals (Sweden)

    C. Máguas


    Full Text Available In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy. Species comparison revealed that variability in pre-dawn water potential (Ψpre and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya and phreatophyte (Salix repens species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic

  2. 2005 annual progress report: Elk and bison grazing ecology in the Great Sand Dunes complex of lands (United States)

    Schoenecker, Kate A.; Lubow, Bruce C.; Zeigenfuss, Linda C.; Mao, Julie


    In 2000 the U.S. Congress authorized the expansion of the former Great Sand Dunes National Monument by establishing a new Great Sand Dunes National Park and Preserve in its place, and establishing the Baca National Wildlife Refuge. The establishment of Great Sand Dunes National Park and Preserve and the new Baca National Wildlife Refuge in the San Luis Valley (SLV), Colorado was one of the most significant land conservation actions in the western U.S. in recent years. The action was a result of cooperation between the National Park Service (NPS), U.S. Fish and Wildlife Service (USFWS), Bureau of Land Management (BLM), U.S. Forest Service (USDA-FS), and The Nature Conservancy (TNC). The new national park, when fully implemented, will consist of 107,265 acres, the new national preserve 41,872 acres, and the new national wildlife refuge (USFWS lands) 92,180 acres (fig. 1). The area encompassed by this designation protects a number of natural wonders and features including a unique ecosystem of natural sand dunes, the entire watershed of surface and groundwaters that are necessary to preserve and recharge the dunes and adjacent wetlands, a unique stunted forest, and other valuable riparian vegetation communities that support a host of associated wildlife and bird species.

  3. An annotated list of the mayflies, stoneflies, and caddisflies of the Sand Creek basin, Great Sand Dunes National Park and Preserve, Colorado, 2004 and 2005 (United States)

    Zuellig, Robert E.; Kondratieff, Boris C.; Ruiter, David E.; Thorp, Richard A.


    The U.S. Geological Survey, in conjunction with the Great Sand Dunes National Park and Preserve and its cooperators, did an extensive inventory of certain targeted aquatic-insect groups in the Sand Creek Basin, Great Sand Dunes National Park and Preserve, to establish a species list for future monitoring efforts. Study sites were established to monitor these groups following disturbance events. Such potential disturbances may include, but are not limited to, chemical treatment of perennial stream reaches to remove nonnative fishes and the subsequent reintroduction of native fish species, increased public use of backcountry habitat (such as hiking and fishing), and natural disturbances such as fire. This report is an annotated list of the mayflies, stoneflies, and caddisflies found in the Sand Creek Basin, Great Sand Dunes National Park and Preserve, 2004 and 2005. The primary objective of the study was to qualitatively inventory target aquatic-insect groups in perennial streams, and selected unique standing-water habitats, such as springs, and wetlands associated with the Sand Creek Basin. Efforts focused on documenting the presence of aquatic-insect species within the following taxonomic groups: Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). These insect orders were chosen because published species accounts, geographic distribution, and identification keys exist for many Colorado species. Given the extent of available information for these groups, there existed a potential for identifying new species and documenting range extensions of known species.

  4. The Sands of the Bagnold Dunes, Mars and Volatiles in Mars Soils (United States)

    Ehlmann, B. L.; Edgett, K. S.; Sutter, B.; Achilles, C.; Litvak, M. L.; Lapotre, M. G. A.; Sullivan, R. J., Jr.; Fraeman, A. A.; Arvidson, R. E.; Blake, D. F.; Bridges, N. T.; Conrad, P. G.; Cousin, A.; Downs, R. T.; Gabriel, T. S. J.; Gellert, R.; Hamilton, V. E.; Hardgrove, C. J.; Johnson, J. R.; Kuhn, S.; Mahaffy, P. R.; Maurice, S.; Meslin, P. Y.; McHenry, M.; Ming, D. W.; Minitti, M. E.; Morookian, J.; Morris, R. V.; O'Connell-Cooper, C.; Pinet, P. C.; Rowland, S. K.; Schröder, S.; Siebach, K. L.; Stein, N.; Thompson, L. M.; Vaniman, D.; Vasavada, A. R.; Wellington, D. F.; Wiens, R. C.; Yen, A.


    The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in an active portion of the Bagnold dune field. The composition and grain size information were reviewed in Ehlmann et al. [2017, JGR-Planets and papers referenced therein]. The Bagnold sands are rounded to subrounded, very fine to medium sized ( 45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%) [Achilles et al., 2017]. Like Rocknest, release of CO2 and NO is higher than Gale rocks, implying enrichment in the carrier phases of these volatiles [Sutter et al., 2017]. Yet Bagnold and Rocknest bulk chemistries differ. Bagnold sands are Si-enriched relative to other soils at Gale crater [Cousin et al., 2017; O'Connell-Cooper et al., 2017], and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands [Cousin et al., 2017; O'Connell-Cooper et al., 2017], corroborated by visible/near-infrared spectra that suggest enrichment of olivine [Johnson et al., 2017]. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and

  5. Effects of surfactant treatments on the wettability of the surface layer and the wetting patterns in a water repellent dune sand with grass cover

    NARCIS (Netherlands)

    Dekker, L.W.; Oostindie, K.; Ritsema, C.J.


    This study evaluates the effectiveness of a new surfactant formulation (Primer R604) for amelioration and management of soil water repellency in a dune sand, as measured with the water drop penetration test, and soil moisture content and wetting rate assessments. A dune sand with grass cover with a

  6. Sand-grain micromorphology used as a sediment-source indicator for Kharga Depression dunes (Western Desert, S Egypt) (United States)

    Woronko, B.; Dłużewski, M.; Woronko, D.


    Roundness and surface-feature characteristics of sand grains collected from two dune ridges in Kharga Depression (southern Egypt) were tested for potential use as source-to-sink indicators of dunes movement. Grain examination was accommodated through Scanning Electron Microscope (SEM) analysis. Five grain types were distinguished: A) fresh; B) sheet precipitated with ;raindrop; structures; C) platy precipitated; D) broken; and E) with chemically etched surfaces-each type diagnostic of a specific geomorphic inheritance. Regarding the level of sphericity, these grains were subdivided into nine roundness classes (0.1-0.9), where angular grains are marked by 0.1 and very well-rounded grains by 0.9. Significant roundness and grain-type surface variations are observed both along dune ridges and between them. Poorly and medium-rounded grain populations dominate, along with sheet-precipitated grains. The contribution of well- and very well-rounded grains is low. The northern part of both eastern and western dune ridges is characterized by grains that represent high-energy aqueous environments with well-rounded grains, whereas platy precipitated grains with a lower level of roundness are concentrated in the middle part of the dune ridges. The southern part of the Kharga Depression is again characterized by sheet-precipitated grains. Our results indicate that the northern part of dune ridges in the Kharga Depression is mainly built of sands that originate from beyond the depression (e.g., Ghard Abu-Maharik) and the weathered deposits of the Nubian and Moghra Sandstones. The dunes in central and southern part of the Kharga Depression also derive sand from a local depression bottom comprised of playa and fluvial deposits. The growing importance of the local sand source may be explained by the lowering of the local groundwater table, which resulted in playa drying. This groundwater loss resulted in the degradation of the vegetation cover, facilitating an increase in wind

  7. Visible/near-infrared spectral diversity from in situ observations of the Bagnold Dune Field sands in Gale Crater, Mars (United States)

    Johnson, Jeffrey R.; Achilles, Cherie; Bell, James F.; Bender, Steve; Cloutis, Edward; Ehlmann, Bethany; Fraeman, Abigail; Gasnault, Olivier; Hamilton, Victoria E.; Le Mouélic, Stéphane; Maurice, Sylvestre; Pinet, Patrick; Thompson, Lucy; Wellington, Danika; Wiens, Roger C.


    As part of the Bagnold Dune campaign conducted by Mars Science Laboratory rover Curiosity, visible/near-infrared reflectance spectra of dune sands were acquired using Mast Camera (Mastcam) multispectral imaging (445-1013 nm) and Chemistry and Camera (ChemCam) passive point spectroscopy (400-840 nm). By comparing spectra from pristine and rover-disturbed ripple crests and troughs within the dune field, and through analysis of sieved grain size fractions, constraints on mineral segregation from grain sorting could be determined. In general, the dune areas exhibited low relative reflectance, a weak 530 nm absorption band, an absorption band near 620 nm, and a spectral downturn after 685 nm consistent with olivine-bearing sands. The finest grain size fractions occurred within ripple troughs and in the subsurface and typically exhibited the strongest 530 nm bands, highest relative reflectances, and weakest red/near-infrared ratios, consistent with a combination of crystalline and amorphous ferric materials. Coarser-grained samples were the darkest and bluest and exhibited weaker 530 nm bands, lower relative reflectances, and stronger downturns in the near-infrared, consistent with greater proportions of mafic minerals such as olivine and pyroxene. These grains were typically segregated along ripple crests and among the upper surfaces of grain flows in disturbed sands. Sieved dune sands exhibited progressive decreases in reflectance with increasing grain size, as observed in laboratory spectra of olivine size separates. The continuum of spectral features observed between the coarse- and fine-grained dune sands suggests that mafic grains, ferric materials, and air fall dust mix in variable proportions depending on aeolian activity and grain sorting.

  8. Corridors of barchan dunes: Stability and size selection

    DEFF Research Database (Denmark)

    Hersen, P.; Andersen, Ken Haste; Elbelrhiti, H.


    Barchans are crescentic dunes propagating on a solid ground. They form dune fields in the shape of elongated corridors in which the size and spacing between dunes are rather well selected. We show that even very realistic models for solitary dunes do not reproduce these corridors. Instead, two in...

  9. A new GIS-based model for automated extraction of Sand Dune encroachment case study: Dakhla Oases, western desert of Egypt

    Directory of Open Access Journals (Sweden)

    M. Ghadiry


    Full Text Available The movements of the sand dunes are considered as a threat for roads, irrigation networks, water resources, urban areas, agriculture and infrastructures. The main objectives of this study are to develop a new GIS-based model for automated extraction of sand dune encroachment using remote sensing data and to assess the rate of sand dune movement. To monitor and assess the movements of sand dunes in Dakhla oases area, multi-temporal satellite images and a GIS-developed model, using Python script in Arc GIS, were used. The satellite images (SPOT images, 1995 and 2007 were geo-rectified using Erdas Imagine. Image subtraction was performed using spatial analyst in Arc GIS, the result of image subtraction obtains the sand dune movement between the two dates. The raster and vector shape of sand dune migration was automatically extracted using spatial analyst tools. The frontiers of individual dunes were measured at different dates and movement rates were analyzed in GIS. The ModelBuilder in Arc GIS was used in order to create a user friendly tool. The custom built model window is easy to handle by any user who wishes to adapt the model in his work. It was found that the rate of sand dune movement ranged between 3 and 9 m per year. The majority of sand dunes have a rate movement between 0 and 6 m and very few dunes had a movement rate between 6 and 9 m. Integrating remote sensing and GIS provided the necessary information for determining the minimum, maximum, mean, rate and area of sand dune migration.

  10. Effect of flow rate on stability of unconsolidated producing sands

    Energy Technology Data Exchange (ETDEWEB)

    Tippie, D.B.; Kohlhaas, C.A.


    Stabilization of unconsolidated sand during production by sand arching was confirmed with a sandpack model of a well completion. Fluid was flowed radially through a sand pack which was loaded vertically to simulate overburden pressure. Flow rates were gradually increased to the point at which sand flowed and the arch then examined. Larger arches resulted from higher flow rates. Critical rate for the sand production depended on rate history as well as rate magnitude and arch size.

  11. Laboratory coupling tests for optimum land streamer design over sand dunes surface

    KAUST Repository

    Almalki, Hashim


    The cost of data acquisition in land is becoming a major issue as we strive to cover larger areas with seismic surveys at high resolution. Over sand dunes the problem is compounded by the week coupling obtain using geophones, which often forces us to bury the phone. A major challenge is designing such a land streamer system that combines durability, mobility and the required coupling. We share a couple of such designs and discuss the merits behind such designs and test their capability. The testing includes, the level of coupling, mobility and drag over sand surfaces. For specific designs loose sand can accumulate inside the steamer reducing its mobility. On the other hand, poor coupling will attenuate the high frequencies and cause an effective delay in the signal. The weight of the streamer is also an important factor in both mobility and coupling as it adds to the coupling it reduces the mobility of the streamer. We study the impact of weight and base plate surface area on the seismic signal quality, as well as the friction factor of different designs.

  12. Transcriptomic analysis of a psammophyte food crop, sand rice (Agriophyllum squarrosum) and identification of candidate genes essential for sand dune adaptation. (United States)

    Zhao, Pengshan; Capella-Gutiérrez, Salvador; Shi, Yong; Zhao, Xin; Chen, Guoxiong; Gabaldón, Toni; Ma, Xiao-Fei


    Sand rice (Agriophyllum squarrosum) is an annual desert plant adapted to mobile sand dunes in arid and semi-arid regions of Central Asia. The sand rice seeds have excellent nutrition value and have been historically consumed by local populations in the desert regions of northwest China. Sand rice is a potential food crop resilient to ongoing climate change; however, partly due to the scarcity of genetic information, this species has undergone only little agronomic modifications through classical breeding during recent years. We generated a deep transcriptomic sequencing of sand rice, which uncovers 67,741 unigenes. Phylogenetic analysis based on 221 single-copy genes showed close relationship between sand rice and the recently domesticated crop sugar beet. Transcriptomic comparisons also showed a high level of global sequence conservation between these two species. Conservation of sand rice and sugar beet orthologs assigned to response to salt stress gene ontology term suggests that sand rice is also a potential salt tolerant plant. Furthermore, sand rice is far more tolerant to high temperature. A set of genes likely relevant for resistance to heat stress, was functionally annotated according to expression levels, sequence annotation, and comparisons corresponding transcriptome profiling results in Arabidopsis. The present work provides abundant genomic information for functional dissection of the important traits in sand rice. Future screening the genetic variation among different ecotypes and constructing a draft genome sequence will further facilitate agronomic trait improvement and final domestication of sand rice.

  13. 77 FR 55224 - Notice of Availability of the Proposed Imperial Sand Dunes Recreation Area Management Plan and... (United States)


    ... Availability of the Proposed Imperial Sand Dunes Recreation Area Management Plan and California Desert... California Desert Conservation Area (CDCA) Plan Amendment/Final Environmental Impact Statement (EIS), for the.... District Court in September 2006. Portions of the biological opinion for the Peirson's milkvetch were also...

  14. Plant responses to an edaphic gradient across an active sand dune/desert boundary in the great basin desert.

    NARCIS (Netherlands)

    Rosenthal, D.M.; Ludwig, F.; Donovan, L.A.


    In arid ecosystems, variation in precipitation causes broad-scale spatial heterogeneity in soil moisture, but differences in soil texture, development, and plant cover can also create substantial local soil moisture heterogeneity. The boundary between inland desert sand dunes and adjacent desert

  15. Mediterranean Coastal Sand Dune Vegetation: Influence of Natural and Anthropogenic Factors (United States)

    Ciccarelli, Daniela


    The aim of the present work was to assess the conservation status of coastal dune systems in Tuscany (Italy). Emphasis was given to the presence and abundance of plant communities identified as habitat in accordance with the Directive 92/43/EEC. Twenty transects perpendicular to the shoreline were randomly positioned on the whole coastal area (30 km in length) in order to sample the full spectrum of plant communities. Vegetation zonation and relationships with the most frequent disturbance factors in the study area—beach cleaning, coastline erosion, presence of paths and roads, bathing settlements and trampling—were investigated through principal coordinate analysis and canonical correspondence analysis. Natural factors, such as distance from the sea and total length, were also considered. Differences in the conservation status of the sites were found, ranging from the total disappearance of the foredune habitats to the presence of the complete psammophilous (sand-loving) plant communities. Erosion, trampling, and paths were found to be closely correlated with degradation and habitat loss. Furthermore, the overall plant species diversity of dunes was measured with NHDune, a modified version of the Shannon index; while the incidence of invasive taxa was calculated using N, a naturalness index. However, these diversity indices proved to be a weaker bioindicator of ecosystem integrity than habitat composition along transects. A possible strategy for the conservation and management of these coastal areas could be to protect the foredunes from erosion and limit trampling through the installation of footbridges or the use of appropriate fences.

  16. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes

    NARCIS (Netherlands)

    Kowalchuk, G.A.; De Souza, F.A.; Van Veen, J.A.


    A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach for the detection and characterization of arbuscular mycorrhizal fungi (AMF) 18S ribosomal DNA (rDNA) was developed and applied to the study of AMF communities associated with the main sand-stabilizing plant

  17. Studies of the Terrestrial Molecular Oxygen and Carbon Cycles in Sand Dune Gases and in Biosphere 2. (United States)

    Severinghaus, Jeffrey Peck

    Molecular oxygen in the atmosphere is coupled tightly to the terrestrial carbon cycle by the processes of photosynthesis, respiration, and burning. This dissertation examines different aspects of this coupling in four chapters. Chapter 1 explores the feasibility of using air from sand dunes to reconstruct atmospheric O_2 composition centuries ago. Such a record would reveal changes in the mass of the terrestrial biosphere, after correction for known fossil fuel combustion, and constrain the fate of anthropogenic CO_2. Test drilling in sand dunes shows that sand dunes do contain old air, as shown by the concentrations of chlorofluorocarbons and ^{85}Kr. Diffusion is shown to dominate mixing rather than advection. However, biological respiration in dunes corrupts the signal, and isotopic analysis of O_2 and N _2 shows that fractionation of the gases precludes use of sand dunes as archives. Chapter 2 further explores this fractionation, revealing a previously unknown "water vapor flux fractionation" process. A flux of water vapor out of the moist dune into the dry desert air sweeps out the other gases, forcing them to diffuse back into the dune. The heavy isotopes of N_2 and O_2 diffuse more slowly, creating a steady state depletion of heavy isotopes in the dune interior. Molecular diffusion theory and a laboratory simulation of the effect agree well with the observations. Additional fractionation of the dune air occurs via thermal diffusion and gravitational settling, and it is predicted that soil gases in general will enjoy all three effects. Chapter 3 examines the cause of a mysterious drop in O _2 concentrations in the closed ecosystem of Biosphere 2, located near Tucson, Arizona. The organic -rich soil manufactured for the experiment is shown to be the culprit, with CO_2 produced by bacterial respiration of the organic matter reacting with the extensive concrete surfaces inside. Chapter 4 examines the O_2:C stoichiometry of terrestrial soil respiration and

  18. Mapping the base of sand dunes using a new design of land-streamer for static correction applications

    KAUST Repository

    Almalki, H.


    The complex near-surface structure is a major problem in land seismic data. This is more critical when data acquisition takes place over sand dune surfaces, where the base of the sand acts as a trap for energy and, depending on its shape, can considerably distort conventionally acquired seismic data. Estimating the base of the sand dune surface can help model the sand dune and reduce its harmful influence on conventional seismic data. Among the current methods to do so are drilling upholes and using conventional seismic data to apply static correction. Both methods have costs and limitations. For upholes, the cost factor and their inability to provide a continuous model is well realized. Meanwhile, conventional seismic data lack the resolution necessary to obtain accurate modeling of the sand basement. We developed a method to estimate the sand base from land-streamer seismic acquisition that is developed and geared to sand surfaces. Seismic data acquisition took place over a sand surface in the Al-Thumamah area, where an uphole is located, using the developed land-streamer and conventional spiked geophone systems. Land-streamer acquisition not only provides a more efficient data acquisition system than the conventional spiked geophone approach, but also in our case, the land-streamer provided better quality data with a broader frequency bandwidth. Such data enabled us to do accurate near-surface velocity estimation that resulted in velocities that are very close to those measured using uphole methods. This fact is demonstrated on multiple lines acquired near upholes, and agreement between the seismic velocities and the upholes is high. The stacked depth seismic section shows three layers. The interface between the first and second layers is located at 7 m depth, while the interface between second and third layers is located at 68 m depth, which agrees with the uphole result. 2012 The Author(s).

  19. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    KAUST Repository

    Lopez Valencia, Oliver Miguel


    Planning for use of a dune field aquifer for managed aquifer recharge (MAR) requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size distribution data by employing some type of empirical equation. Over 50 samples from the Wadi Khulays dune field in Western Saudi Arabia were collected and the grain size distribution, porosity, and hydraulic conductivity were measured. An evaluation of 20 existing empirical equations showed a generally high degree of error in the predicted compared to the measured hydraulic conductivity values of these samples. Statistical analyses comparing estimated versus measured hydraulic conductivity demonstrated that there is a significant relationship between hydraulic conductivity and mud percentage (and skewness). The modified Beyer equation, which showed a generally low prediction error, was modified by adding a second term fitting parameter related to the mud concentration based on 25 of the 50 samples analyzed. An inverse optimization process was conducted to quantify the fitting parameter and a new empirical equation was developed. This equation was tested against the remaining 25 samples analyzed and produced an estimated saturated hydraulic conductivity with the lowest error of any empirical equation. This methodology can be used for large dune field hydraulic conductivity estimation and reduce planning costs for MAR systems.

  20. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba. (United States)

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O


    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Mid-Holocene stabilization of the Karakum and Kyzylkum sand seas, central Asia - evidence from OSL ages (United States)

    Maman, Shimrit; Tsoar, Haim; Blumberg, Dan G.; Porat, Naomi


    Sand seas (ergs) are large areas of deserts covered by wind-swept sand with varying degrees of vegetation cover. The Kyzylkum and Karakum ergs have accumulated in the Turan basin, northwest of the Hindu Kush range, and span from south Turkmenistan to the Syrdarya River in Kazakhstan. These ergs are dissected by the Amudarya River; To the north lies the Kyzylkum (red sands) and to the south the Karakum (black sands). This area is understudied, and little information has been published regarding the sands stabilization processes and deposition ages. This research focuses on identifying and mapping the ergs of Central Asia and analyzing the climate factors that set the dunes into motion and that stabilized them. A variety of spaceborne imagery with varying spectral and spatial resolutions was used. These images provide the basis for mapping sand distribution, dune forms, and vegetation cover. Wilson (1973) defined these ergs as active based on precipitation. Our results show that they are mostly stabilized, with an estimated area of ~260,000 sq. Km for Kara-Kum , and ~195,500 sq. Km for the Kyzyl-Kum . Meteorological analysis of wind and precipitation data indicate a low wind energy environment (DP100 mm) to which is essential for vegetation cover. We present the first optically stimulated luminescence (OSL) ages from the upper meter of 14 exposed sections from both ergs. The age of the sand samples was determined as ~Mid-Holocene by OSL, which provides an insight into past climate characteristics. These ages indicate extensive sand and dune stabilization during the Mid-Holocene. GIS analysis was performed in parallel with field work to validate and verify the results. The OSL ages, coupled with a compilation of regional palaeoclimatic data, corroborate and reinforce the previously proposed Mid-Holocene Liavliakan phase, known to reflect a warmer, wetter, less windy climate than persists today and that resulted in dune stabilization around Mid-Holocene. This study

  2. Transient Electromagnetic Soundings Near Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado (2006 Field Season) (United States)

    Fitterman, David V.; de Sozua Filho, Oderson A.


    Time-domain electromagnetic (TEM) soundings were made near Great Sand Dunes National Park and Preserve in the San Luis Valley of southern Colorado to obtain subsurface information of use to hydrologic modeling. Seventeen soundings were made to the east and north of the sand dunes. Using a small loop TEM system, maximum exploration depths of about 75 to 150 m were obtained. In general, layered earth interpretations of the data found that resistivity decreases with depth. Comparison of soundings with geologic logs from nearby wells found that zones logged as having increased clay content usually corresponded with a significant resistivity decrease in the TEM determined model. This result supports the use of TEM soundings to map the location of the top of the clay unit deposited at the bottom of the ancient Lake Alamosa that filled the San Luis Valley from Pliocene to middle Pleistocene time.

  3. Population dynamics of Agriophyllum squarrosum, a pioneer annual plant endemic to mobile sand dunes, in response to global climate change


    Qian, Chaoju; Yin, Hengxia; Shi, Yong; Zhao, Jiecai; Yin, Chengliang; Luo, Wanyin; Dong, Zhibao; Chen, Guoxiong; Yan, Xia; Wang, Xiao-Ru; Ma, Xiao-Fei


    Climate change plays an important role in the transition of ecosystems. Stratigraphic investigations have suggested that the Asian interior experienced frequent transitions between grassland and desert ecosystems as a consequence of global climate change. Using maternally and bi-parentally inherited markers, we investigated the population dynamics of Agriophyllum squarrosum (Chenopodiaceae), an annual pioneer plant endemic to mobile sand dunes. Phylogeographic analysis revealed that A. squarr...

  4. Construction of an Environmentally Sustainable Development on a Modified Coastal Sand Mined and Landfill Site—Part 2. Re-Establishing the Natural Ecosystems on the Reconstructed Beach Dunes

    Directory of Open Access Journals (Sweden)

    Anne-Laure Markovina


    Full Text Available Mimicking natural processes lead to progressive colonization and stabilization of the reconstructed beach dune ecosystem, as part of the ecologically sustainable development of Magenta Shores, on the central coast of New South Wales, Australia. The retained and enhanced incipient dune formed the first line of storm defence. Placement of fibrous Leptospermum windrows allowed wind blown sand to form crests and swales parallel to the beach. Burial of Spinifex seed head in the moist sand layer achieved primary colonization of the reconstructed dune and development of a soil fungal hyphae network prior to introduction of secondary colonizing species. Monitoring stakes were used as roosts by birds, promoting re-introduction of native plant species requiring germination by digestive tract stimulation. Bush regeneration reduced competition from weeds, allowing native vegetation cover to succeed. On-going weeding and monitoring are essential at Magenta Shores until bitou bush is controlled for the entire length of beach. The reconstructed dunes provide enhanced protection from sand movement and storm bite, for built assets, remnant significant vegetation and sensitive estuarine ecosystems.

  5. Origin of the late quaternary dune fields of northeastern Colorado (United States)

    Muhs, D.R.; Stafford, T.W.; Cowherd, S.D.; Mahan, S.A.; Kihl, R.; Maat, P.B.; Bush, C.A.; Nehring, J.


    Stabilized eolian deposits, mostly parabolic dunes and sand sheets, cover much of the landscape of northeastern Colorado and adjacent parts of southwestern Nebraska in four geographically distinct dune fields. Stratigraphic and soil-geomorphic relations and accelerator radiocarbon dating indicate that at least three episodes of eolian sand movement occurred between 27 ka and 11 ka, possibly between 11 ka and 4 ka, and within the past 1.5 ka. Thus, eolian sand deposition took place under both glacial and interglacial climatic conditions. In the youngest episodes of eolian sand movement, Holocene parabolic dunes partially buried Pleistocene sand sheet deposits. Late Holocene sands in the Fort Morgan and Wray dune fields, to the south of the South Platte River, have trace element ratios that are indistinguishable from modern South Platte River sands, but different from Ogallala Formation bedrock, which has previously been cited as the main source of dune sand on the Great Plains. Sands in the Greeley dune field, to the north of the South Platte River, have trace element concentrations that indicate a probable Laramie Formation source. Measurements of parabolic dunes indicate paleowinds from the northwest in all dune fields, in good agreement with resultant drift directions calculated for nearby weather stations. Thus, paleowinds were probably not significantly different from present-day winds, and are consistent with a South Platte River source for the Fort Morgan and Wray dune fields, and a Laramie Formation source for the Greeley dune field. Sand accumulated downwind of the South Platte River to form the Fort Morgan dune field. In addition, sand was also transported farther downwind over the upland formed by the calcrete caprock of the Ogallala Formation, and deposited in die lee of the upland on the southeast side. Because of high wind energy, the upland itself served as a zone of sand transport, but little or no sand accumulation took place on this surface. These

  6. Size distributions and dispersions along a 485-year chronosequence for sand dune vegetation. (United States)

    Waugh, Jennifer M; Aarssen, Lonnie W


    Using a sand dune chronosequence that spans 485 years of primary succession, we collected nearest-neighbor vegetation data to test two predictions associated with the traditional "size-advantage" hypothesis for plant competitive ability: (1) the relative representation of larger species should increase in later stages of succession; and (2) resident species that are near neighbors should, over successional time, become more similar in plant body size and/or seed size than expected by random assembly. The first prediction was supported over the time period between mid to later succession, but the second prediction was not; that is, there was no temporal pattern across the chronosequence indicating that either larger resident species, or larger seeded resident species, increasingly exclude smaller ones from local neighborhoods over time. Rather, neighboring species were generally more different from each other in seed sizes than expected by random assembly. As larger species accumulate over time, some relatively small species are lost from later stages of succession, but species size distributions nevertheless remain strongly right-skewed-even in late succession-and species of disparate sizes are just as likely as in early succession to coexist as immediate neighbors. This local-scale coexistence of disparate sized neighbors might be accounted for-as in traditional interpretations-in terms of species differences in "physical-space-niches" (e.g., involving different rooting depths), combined with possible facilitation effects. We propose, however, that this coexistence may also occur because competitive ability involves more than just a size advantage, with traits associated with survival (tolerance of intense competition) and fecundity (offspring production despite intense competition) being at least equally important.

  7. An experiment on a sand-dune environment in Southern Venetian coast based on GPR, VES and documentary evidence

    Directory of Open Access Journals (Sweden)

    L. Tosi


    Full Text Available The internal structures of some surviving sand dunes and the ancient shore-lines along the coast south of Venice have been investigated integrating Ground Probing Radar (GPR profiles, Vertical Electrical Soundings (VES and water conductivity measurements in some boreholes. The GPR penetration depth has been limited (4-5 m,using a 400 MHz antenna by the high conductivity of salt water saturating pores of the shallow sediments. On the other hand, the excellent spatial resolution of the radar survey provided an estimate of internal dune bedding features, such as cross lamination and forwarding ancient covered coast-lines dated in the Thirties. The interpretation of the data, in particular along one line 360 m long intercepting a sizable sand-dune bank, seems to offer clues to the evolutional history of the coast line and the depth of transition from fresh-water to brackish-salt water. The water table was detected with electrical measurements and direct observations in boreholes, whereas the transition between fresh and salt water (brackish water was pointed out indirectly by the high energy absorption and total back-reflection of the EM waves, encountered at this boundary, and directly by the strong decrease in VES resistivity values.

  8. Dutch studies on coastal sand dune vegetation, especially in the Delta region

    NARCIS (Netherlands)

    Maarel, van der E.


    A short history of Dutch dune vegetation research is presented as an introduction to the present research in the Delta region. Remarkably enough the main results of dune research were presented as dissertations. The classics F. Holkema, L. Vuyck, J. Jeswiet, J. Bijhouwer and W. van Dieren are

  9. Mechanisms Controlling Variability of Lake Salinity in Dune Environments in a Semi-arid Climate: The Nebraska Sand Hills (Invited) (United States)

    Zlotnik, V. A.; Ong, J. T.; Swinehart, J. B.; Fritz, S. C.; Lenters, J. D.; Schmieder, J. U.; Lane, J. W.; Halihan, T.


    Shallow endorheic saline lakes are common in semi-arid environments in North America, Africa, Asia, and Australia. These lakes receive minimal surface runoff and are supported by groundwater seepage. A combination of hydrologic and geologic factors (regional groundwater flow, evaporation, precipitation, lake size, groundwater recharge, and geologic setting) may preclude seepage out of these lakes, even in the presence of ambient regional flow. Solutes from groundwater are captured by these lakes and become enriched over time by evaporation. The importance of understanding lake dynamics in these arid and semi-arid systems is increasing with societal concerns, including water availability and quality, the use of aquatic ecosystems by waterfowl and other biota, and dangers of dust emissions associated with lake desiccation. We consider the salinity of shallow lakes as a useful indicator of hydroclimatic factors operating at centennial and millennial scales. The Nebraska Sand Hills cover 58 000 km2 of the central Great Plains and are the largest dunefield in the Western Hemisphere. The grass-stabilized dunes attain heights up to 130 m and have been modified by soil development and erosion. In an area 4 ha and depths salinity of natural lakes in the Nebraska Sand Hills ranges from fresh (~0.3 g L-1) to hypersaline (>100 g L-1), with pH values as high as ~10. We assess the mechanisms that control lake salinity in a group of lakes with different subsurface flow regimes. Our methods combine aquifer coring, electromagnetic and electrical resistivity tomography geophysics, hydraulic testing, lakebed dating using 14C and optically stimulated luminescence, energy and water balance analysis, and salt crust and dust collection. Our theory and results show that terrain and water-table topography, lithology, and climate control the lake-aquifer solute exchanges. This study also brings attention to an underappreciated mechanism in the area, namely eolian deflation, which has not

  10. Origin of the late Quaternary dune fields of northeastern Colorado (United States)

    Muhs, Daniel R.; Stafford, Thomas W.; Cowherd, Scott D.; Mahan, Shannon A.; Kihl, Rolf; Maat, Paula B.; Bush, Charles A.; Nehring, Jennifer


    Stabilized eolian deposits, mostly parabolic dunes and sand sheets, cover much of the landscape of northeastern Colorado and adjacent parts of southwestern Nebraska in four geographically distinct dune fields. Stratigraphic and soil-geomorphic relations and accelerator radiocarbon dating indicate that at least three episodes of eolian sand movement occurred between 27 ka and 11 ka, possibly between 11 ka and 4 ka, and within the past 1.5 ka. Thus, eolian sand deposition took place under both glacial and interglacial climatic conditions. In the youngest episodes of eolian sand movement, Holocene parabolic dunes partially buried Pleistocene sand sheet deposits. Late Holocene sands in the Fort Morgan and Wray dune fields, to the south of the South Platte River, have trace element ratios that are indistinguishable from modern South Platte River sands, but different from Ogallala Formation bedrock, which has previously been cited as the main source of dune sand on the Great Plains. Sands in the Greeley dune field, to the north of the South Platte River, have trace element concentrations that indicate a probable Laramie Formation source. Measurements of parabolic dunes indicate paleowinds from the northwest in all dune fields, in good agreement with resultant drift directions calculated for nearby weather stations. Thus, paleowinds were probably not significantly different from present-day winds, and are consistent with a South Platte River source for the Fort Morgan and Wray dune fields, and a Laramie Formation source for the Greeley dune field. Sand accumulated downwind of the South Platte River to form the Fort Morgan duen field. In addition, sand was also transported farther downwind over the upland formed by the calcrete caprock of the Ogallala Formation, and deposited in the lee of the upland on the southeast side. Because of high wind energy, the upland itself served as a zone of sand transport, but little or no sand accumulation took place on this surface. These

  11. Studies of the terrestrial O2 and carbon cycles in sand dune gases and in biosphere 2

    Energy Technology Data Exchange (ETDEWEB)

    Severinghaus, Jeffrey Peck [Columbia Univ., New York, NY (United States)


    Molecular oxygen in the atmosphere is coupled tightly to the terrestrial carbon cycle by the processes of photosynthesis, respiration, and burning. This dissertation examines different aspects of this coupling in four chapters. Chapter 1 explores the feasibility of using air from sand dunes to reconstruct atmospheric O2 composition centuries ago. Such a record would reveal changes in the mass of the terrestrial biosphere, after correction for known fossil fuel combustion, and constrain the fate of anthropogenic CO2.

  12. Dune growth under multidirectional wind regimes (United States)

    Gadal, C.; Rozier, O.; Claudin, P.; Courrech Du Pont, S.; Narteau, C.


    Under unidirectional wind regimes, flat sand beds become unstable to produce periodic linear dunes, commonly called transverse dunes because their main ridges are oriented perpendicular to the air flow. In areas of low sediment availability, the same interactions between flow, transport and topography produce barchan dunes, isolated sand-pile migrating over long distances with a characteristic crescentic shape. For the last fifteen years, barchan dunes and the instability at the origin of transverse dunes have been the subject of numerous studies that have identified a set of characteristic length and time scales with respect to the physical properties of both grains and fluid. This is not the case for dunes developing under multidirectional wind regimes. Under these conditions, dune orientation is measured with respect to the direction of the resultant sand flux. Depending on the wind regime, dunes do not always line up perpendicularly to the resultant sand flux, but can also be at an oblique angle or even parallel to it. These oblique and longitudinal dunes are ubiquitous in all deserts on Earth and planetary bodies because of the seasonal variability of wind orientation. They are however poorly constrained by observations and there is still no complete theoretical framework providing a description of their orientation and initial wavelength. Here, we extend the linear stability analysis of a flat sand of bed done in two dimensions for a unidirectional flow to three dimensions and multidirectional flow regimes. We are able to recover transitions from transverse to oblique or longitudinal dune patterns according to changes in wind regimes. We besides give a prediction for the initial dune wavelength. Our results compare well to previous theory of dune orientation and to field, experimental and numerical data.

  13. Holocene eolian activity in the Minot dune field, North Dakota (United States)

    Muhs, D.R.; Stafford, Thomas W.; Been, J.; Mahan, S.A.; Burdett, J.; Skipp, G.; Rowland, Z.M.


    Stabilized eolian sand is common over much of the Great Plains region of the United States and Canada, including a subhumid area of ??? 1500 km2 near Minot, North Dakota. Eolian landforms consist of sand sheets and northwest-trending parabolic dunes. Dunes and sand sheets in the Minot field are presently stabilized by a cover of prairie grasses or oak woodland. Stratigraphic studies and accelerator mass spectrometry radiocarbon dating of paleosols indicate at least two periods of eolian sand movement in the late Holocene. Pedologic data suggest that all of the dune field has experienced late Holocene dune activity, though not all parts of the dune field may have been active simultaneously. Similar immobile element (Ti, Zr, La, Ce) concentrations support the interpretation that eolian sands are derived from local glaciofluvial and glaciolacustrine sediments. However, glaciolacustrine and glaciofluvial source sediments have high Ca concentrations from carbonate minerals, whereas dune sands are depleted in Ca. Because noneolian-derived soils in the area are calcareous, these data indicate that the Minot dune field may have had extended periods of activity in the Holocene, such that eolian abrasion removed soft carbonate minerals. The southwest-facing parts of some presently stabilized dunes were active during the 1930s drought, but were revegetated during the wetter years of the 1940s. These observations indicate that severe droughts accompanied by high temperatures are the most likely cause of Holocene eolian activity.

  14. Coastal sand dune ecosystem services in metropolitan suburbs: effects on the sake brewery environment induced by changing social conditions (United States)

    Kaneko, Korehisa; Matsushima, Hajime


    Chiba Prefecture, Japan, lies very near Tokyo, the capital city of Japan. It borders the sea on three sides and is banded by coastal dunes. Several sake breweries are located near these dunes. Although there are records of sake brewing along the coast of Tokyo Bay since 1925, sake breweries have completely disappeared in several areas. We believe that sake brewing in these areas benefited from the ecosystem services afforded them by their proximity to the coastal ecosystem. We investigated potential environmental factors (e.g., landscape, soil, and groundwater), as well as conditions that could have driven sake brewers away from the coastal area. Many of the sake breweries that no longer exist were located on coastal dunes (i.e., sand, sandbanks, and natural levees) and obtained their water from a freshwater layer located 3-10 m below the surface. We speculate that these sake breweries benefited from using natural ingredients found in the coastal zone. We also investigated the following factors that may have negatively impacted the breweries, driving them out of business: (1) bankruptcies and reconstruction difficulties that followed the destructive 1923 Great Kanto earthquake, (2) industrial wartime adjustments during World War II (1939-1945), (3) development of coastal industries during the period from 1960 to 1975, and (4) increasing choices for other alcoholic drinks (e.g., beer, wine, and whiskey) from the 1960s to the present.[Figure not available: see fulltext.

  15. Antioxidant activity of raw, cooked and Rhizopus oligosporus fermented beans of Canavalia of coastal sand dunes of Southwest India. (United States)

    Niveditha, Vedavyas R; Sridhar, Kandikere R


    The raw and processed (cooked and cooked + solid-state fermented with Rhizopus oligosporus) split beans of two landraces of coastal sand dune wild legumes (Canavalia cathartica and Canavalia maritima) of the southwest coast of India were examined for bioactive compounds (total phenolics, tannins and vitamin C) and antioxidant potential (total antioxidant activity, ferrous-ion chelating capacity, DPPH free radical-scavenging activity and reducing activity). One-way ANOVA revealed significant elevation of bioactive compounds as well as antioxidant activities in fermented beans compared to raw and cooked beans in both legumes (p beans of both legumes were significantly lowest compared to raw and cooked beans (p beans of C. cathartica, while total antioxidant and free radical-scavenging activities of fermented beans of C. maritima were clustered. The present study demonstrated that split beans of coastal sand dune Canavalia fermented by R. oligosporus endowed with high bioactive principles as well as antioxidant potential and thus serve as future nutraceutical source.

  16. APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global Martian average (United States)

    O'Connell-Cooper, C. D.; Spray, J. G.; Thompson, L. M.; Gellert, R.; Berger, J. A.; Boyd, N. I.; Desouza, E. D.; Perrett, G. M.; Schmidt, M.; VanBommel, S. J.


    We present Alpha-Particle X-ray Spectrometer (APXS) data for the active Bagnold dune field within the Gale impact crater (Mars Science Laboratory (MSL) mission). We derive an APXS-based average basaltic soil (ABS) composition for Mars based on past and recent data from the MSL and Mars Exploration Rover (MER) missions. This represents an update to the Taylor and McLennan (2009) average Martian soil and facilitates comparison across Martian data sets. The active Bagnold dune field is compositionally distinct from the ABS, with elevated Mg, Ni, and Fe, suggesting mafic mineral enrichment and uniformly low levels of S, Cl, and Zn, indicating only a minimal dust component. A relationship between decreasing grain size and increasing felsic content is revealed. The Bagnold sands possess the lowest S/Cl of all Martian unconsolidated materials. Gale soils exhibit relatively uniform major element compositions, similar to Meridiani Planum and Gusev Crater basaltic soils (MER missions). However, they show minor enrichments in K, Cr, Mn, and Fe, which may signify a local contribution. The lithified eolian Stimson Formation within the Gale impact crater is compositionally similar to the ABS and Bagnold sands, which provide a modern analogue for these ancient eolian deposits. Compilation of APXS-derived soil data reveals a generally homogenous global composition for Martian soils but one that can be locally modified due to past or extant geologic processes that are limited in both space and time.

  17. Difference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms. (United States)

    Kok, Jasper F


    Much of the surface of Mars is covered by dunes, ripples, and other features formed by the blowing of sand by wind, known as saltation. In addition, saltation loads the atmosphere with dust aerosols, which dominate the Martian climate. We show here that saltation can be maintained on Mars by wind speeds an order of magnitude less than required to initiate it. We further show that this hysteresis effect causes saltation to occur for much lower wind speeds than previously thought. These findings have important implications for the formation of dust storms, sand dunes, and ripples on Mars.

  18. Insights from Askja sand sheet, Iceland, as a depositional analogue for the Bagnold Dune Field, Gale Crater, Mars. (United States)

    Ukstins, I.; Sara, M.; Riishuus, M.; Schmidt, M. E.; Yingst, R. A.; Berger, J.


    Examining the compositional effect of aeolian transport and sorting processes on basaltic sands is significant for understanding the evolution of the Bagnold dune field, as well as other martian soils and sedimentary units. We use the Askja sand sheet, Iceland, as a testbed to quantify the nature of soil production and aeolian transport processes in a mafic system. Basalts from Askja and surrounding volcanic units, which can have high MgO (5-18 wt %) and high Fe2O3 (5-18 wt %), have been weathered to form mafic volcaniclastic deposits which are incorporated into a 40-km long sand sheet to the E-SE of the caldera, ranging from 10 cm to 10 m thick, and covering 240 km2. Ash and lava from the 2014-2015 Holuhraun eruption were emplaced onto the southeastern part of the sand sheet. The SW section is deflationary and defined by very fine to medium grained basaltic sand with ventifact cobbles and boulders. The central part is inflating and dominated by very fine-grained sand, relict lava fields, and small to large sand ripples (1 to 30 cm). The NE portion is also inflating but accumulation is limited to topographic depressions. Bulk chemistry of >200 sand samples are similar to Martian crust (SiO2: 48-52 wt %, MgO: 5-8 wt %, Fe2O3: 13-15 wt %). MgO concentrations vary with distance along the sand sheet, increasing by 1.5% over 10 km in the downwind direction (E, NE), then maintaining a relatively consistent concentration of 6.75 wt % over 18 km. Mean equancy of grains decreases 15 % to the E over 10 km followed by a plateau at 65 to 75 %. Material at depth tends to be of higher sphericity than material on or near the surface. Notably, MgO increases while the sphericity decreases and both data sets level off at 10 km, which suggests these two variables are related. These indicate input of material with prismoidal morphology around 10 km, and may be due to the Holuhraun eruption.

  19. Determination of erosion thresholds and aeolian dune stabilization mechanisms via robotic shear strength measurements (United States)

    Qian, F.; Lee, D. B.; Bodek, S.; Roberts, S.; Topping, T. T.; Robele, Y.; Koditschek, D. E.; Jerolmack, D. J.


    Understanding the parameters that control the spatial variation in aeolian soil erodibility is crucial to the development of sediment transport models. Currently, in-situ measurements of erodibility are time consuming and lack robustness. In an attempt to remedy this issue, we perform field and laboratory tests to determine the suitability of a novel mechanical shear strength method to assess soil erodibility. These tests can be performed quickly ( 1 minute) by a semi-autonomous robot using its direct-drive leg, while environmental controls such as soil moisture and grain size are simultaneously characterized. The robot was deployed at White Sands National Monument to delineate and understand erodibility gradients at two different scales: (1) from dry dune crest to moist interdune (distance 10s m), where we determined that shear strength increases by a factor of three with increasing soil moisture; and (2) from barren barchan dunes to vegetated and crusted parabolics downwind (distance 5 km), where we found that shear strength was enhanced by a factor of two relative to loose sand. Interestingly, shear strength varied little from carbonate-crusted dune surfaces to bio-crust covered interdunes in the downwind parabolic region, indicating that varied surface crusts contribute similarly to erosion resistance. To isolate the control of soil moisture on erodibility, we performed laboratory experiments in a sandbox. These results verify that the observed increase in soil erodibility from barchan crest to interdune at White Sands is dominated by soil moisture, and the variation in parabolic dune and barchan interdune areas results from a combination of soil moisture, bio-activity, and crust development. This study highlights that spatial variation of soil erodibility in arid environments is large enough to significantly affect sediment transport, and that probing soil erodibility with a robot has the potential to improve our understanding of this multifaceted problem.

  20. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas. (United States)


    ... mapping coastal flood hazard areas. (a) General conditions. For purposes of the NFIP, FEMA will consider storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... mapping coastal flood hazard areas. 65.11 Section 65.11 Emergency Management and Assistance FEDERAL...

  1. Computational modeling of dissipation and regeneration of fluvial sand dunes under variable discharges (United States)

    Nabi, M.; Kimura, I.; Hsu, S. M.; Giri, S.; Shimizu, Y.


    It is observed, during flood events, that bed forms initially grow in height and make the riverbed rougher. But later, under high discharge, the bed forms grow longer with the opposite effect of making the riverbed smoother. After the discharge drops to a lower value, new bed forms regenerate on top of the elongated bed forms. This mechanism leads to a significant variation in the bed roughness and the water stage and hence determines the behavior of floods and the risk of flood disasters. This work presents detailed modeling of bed forms under discharge hydrographs and simulates the conditions under which the bed is flattened out in the upper plane bed regime. The flow was simulated by large-eddy simulation, and the sediments were considered as rigid spheres and modeled in a Lagrangian framework. The bed morphodynamics were the result of entrainment and deposition of sediment particles. We examined several discharge hydrographs. In the first case, we increased the discharge linearly and then kept it constant after reaching the upper plane bed condition. The dunes were generated and grew during the rising stage of discharge. When the flow conditions reached the upper plane bed regime, high-frequency ripples were generated and helped to flatten the bed. The results also showed that in contrast with mechanisms in the dune regime, the flattening of the bed was associated with a distinct pattern of sediment transport which deposited sediment mainly in the lee side of the dunes and led to flattening of the bed. After flattening, the sediments were mainly transported in suspension mode. As long as flow conditions stayed in the upper plane bed regime, the bed remained flat with small high-frequency ripples. We also examined two other scenarios: one with an immediate falling stage of discharge after the rising stage and the other with a period of constant discharge between the rising and falling stages. Dunes were regenerated during the falling stage of discharge for both

  2. A Wireless Sensor Network for the Real-Time Remote Measurement of Aeolian Sand Transport on Sandy Beaches and Dunes. (United States)

    Pozzebon, Alessandro; Cappelli, Irene; Mecocci, Alessandro; Bertoni, Duccio; Sarti, Giovanni; Alquini, Fernanda


    Direct measurements of aeolian sand transport on coastal dunes and beaches is of paramount importance to make correct decisions about coast management. As most of the existing studies are mainly based on a statistical approach, the solution presented in this paper proposes a sensing structure able to orient itself according to wind direction and directly calculate the amount of wind-transported sand by collecting it and by measuring its weight. Measurements are performed remotely without requiring human action because the structure is equipped with a ZigBee radio module, which periodically sends readings to a local gateway. Here data are processed by a microcontroller and then transferred to a remote data collection centre, through GSM technology. The ease of installation, the reduced power consumption and the low maintenance required, make the proposed solution able to work independently, limiting human intervention, for all the duration of the expected experimental campaign. In order to analyze the cause-effect relationship between the transported sand and the wind, the sensing structure is integrated with a multi-layer anemoscope-anemometer structure. The overall sensor network has been developed and tested in the laboratory, and its operation has been validated in field through a 48 h measurement campaign.

  3. A Wireless Sensor Network for the Real-Time Remote Measurement of Aeolian Sand Transport on Sandy Beaches and Dunes

    Directory of Open Access Journals (Sweden)

    Alessandro Pozzebon


    Full Text Available Direct measurements of aeolian sand transport on coastal dunes and beaches is of paramount importance to make correct decisions about coast management. As most of the existing studies are mainly based on a statistical approach, the solution presented in this paper proposes a sensing structure able to orient itself according to wind direction and directly calculate the amount of wind-transported sand by collecting it and by measuring its weight. Measurements are performed remotely without requiring human action because the structure is equipped with a ZigBee radio module, which periodically sends readings to a local gateway. Here data are processed by a microcontroller and then transferred to a remote data collection centre, through GSM technology. The ease of installation, the reduced power consumption and the low maintenance required, make the proposed solution able to work independently, limiting human intervention, for all the duration of the expected experimental campaign. In order to analyze the cause-effect relationship between the transported sand and the wind, the sensing structure is integrated with a multi-layer anemoscope-anemometer structure. The overall sensor network has been developed and tested in the laboratory, and its operation has been validated in field through a 48 h measurement campaign.

  4. Characterization and Ecophysiological Observations on Coastal Sand Dune Vegetation from Goa, Central West Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Rodrigues, R.S.

    . Table 1.1: S e dim e n t an d be ach du n e ch ar acter istics on h i gh , m i d an d low lati tu de c o a s t. Lat it ude High M i d Low Cl im at e t y pe P o l a r T e m per at e T r opi c a l Lat i t ud i nal r ange 50º... e r m a f r o s t i n bar r i er s Dune c a l c ar enit e i n ar i d r egi ons l i t h if i e s beac hes and dune s Be a c h ro ck l i t h i f i e s i n t e r t i d a l beac h Dunes Low an d poor l y de v e l oped ow i ng t o...

  5. Climate sensibility and stability of coastal dunes. Final report; Klimasensibilitaet und Stabiltaet nicht regenerierbarer Oekosysteme: Kuestenduenen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Handelmann, D.; Klittmann, T.; Badenhop, J.; Folger, M.


    Coastal dunes have an important function as unique habitats for plants and animals as well as natural barriers against storm tides. Thus, they are of special value for nature conservation and coastal defence issues. Facing their potential endangering due to accelerated climate change profound knowledge of stabilty of coastal dunes is essential. In this context the presented study deals with the impact of climate change on biogenic sand stabilization in coastal dunes, which have to be conceived as an ecosystemic process. Questions of climate affected reactions of organism groups involved in this process (plants, soil microflora, soil fauna) and alterations in soil structure were followed up. Within the scope of a 2-years-lasting field experiment conducted on the Eastfrisian Island Norderney the microclimate near the soil surface was modified by gauze covering, which was set up on field plots. (orig.) [German] In ihrer Funktion als Lebensraum fuer Pflanzen und Tiere sowie als natuerlicher Schutzwall bei Sturmfluten wird den Kuestenduenen eine wichtige Bedeutung im Natur- und Kuestenschutz beigemessen. Angesichts ihrer potentiellen Gefaehrdung durch einen beschleunigten Klimawandel ist ein fundierter Kenntnisstand zur Stabilitaet von Kuestenduenen von elementarem Interesse. Vor diesem Hintergrund befasst sich die vorliegende Studie mit dem Einfluss von Klimaaenderungen auf die biogene Sandstabilisierung in Kuestenduenen, die aufgrund des bestehenden organismischen Beziehungsgeflechtes als oekosystemarer Prozess aufzufassen ist. Dabei wurden Fragen nach klimaabhaengigen Reaktionen der an diesem Prozess beteiligten Organismengruppen (Pflanzen, Bodenmikroflora, Bodenfauna) und Veraenderungen des Bodengefueges bearbeitet. Im Rahmen eines 2-jaehrigen Freilandexperimentes auf der Ostfriesischen Insel Norderney wurde das bodennahe Mikroklima mittels einer Gazeueberspannung auf 4 m{sup 2} grossen und mit Strandhafer (Calammophila baltica) bepflanzten Parzellen experimentell

  6. Compositional variations in sands of the Bagnold Dunes, Gale crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity rover (United States)

    Lapotre, M. G. A.; Ehlmann, B. L.; Minson, S. E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.


    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that X-ray diffraction-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are nonunique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold Dunes, consistent with a mafic enrichment of sands with cumulative aeolian-transport distance by sorting of olivine, pyroxene, and plagioclase grains. Furthermore, the large variations in Fe and Mg abundances ( 20 wt %) at the Bagnold Dunes suggest that compositional variability may be enhanced by local mixing of well-sorted sand with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within Martian aeolian sandstones.

  7. Ground-Water Flow Direction, Water Quality, Recharge Sources, and Age, Great Sand Dunes National Monument, South-Central Colorado, 2000-2001 (United States)

    Rupert, Michael G.; Plummer, Niel


    Great Sand Dunes National Monument is located in south-central Colorado along the eastern edge of the San Luis Valley. The Great Sand Dunes National Monument contains the tallest sand dunes in North America; some rise up to750 feet. Important ecological features of the Great Sand Dunes National Monument are palustrine wetlands associated with interdunal ponds and depressions along the western edge of the dune field. The existence and natural maintenance of the dune field and the interdunal ponds are dependent on maintaining ground-water levels at historic elevations. To address these concerns, the U.S. Geological Survey conducted a study, in collaboration with the National Park Service, of ground-water flow direction, water quality, recharge sources, and age at the Great Sand Dunes National Monument. A shallow unconfined aquifer and a deeper confined aquifer are the two principal aquifers at the Great Sand Dunes National Monument. Ground water in the unconfined aquifer is recharged from Medano and Sand Creeks near the Sangre de Cristo Mountain front, flows underneath the main dune field, and discharges to Big and Little Spring Creeks. The percentage of calcium in ground water in the unconfined aquifer decreases and the percentage of sodium increases because of ionic exchange with clay minerals as the ground water flows underneath the dune field. It takes more than 60 years for the ground water to flow from Medano and Sand Creeks to Big and Little Spring Creeks. During this time, ground water in the upper part of the unconfined aquifer is recharged by numerous precipitation events. Evaporation of precipitation during recharge prior to reaching the water table causes enrichment in deuterium (2H) and oxygen-18 (18O) relative to waters that are not evaporated. This recharge from precipitation events causes the apparent ages determined using chlorofluorocarbons and tritium to become younger, because relatively young precipitation water is mixing with older waters

  8. Origins of late- Pleistocene coastal dune sheets, Magdalena and Guerrero Negro, from continental shelf low-stand supply (70-20 ka), under conditions of southeast littoral- and eolian-sand transport, in Baja California Sur, Mexico (United States)

    Peterson, Curt D.; Murillo-Jiménez, Janette M.; Stock, Errol; Price, David M.; Hostetler, Steve W.; Percy, David


    Shallow morpho-stratigraphic sections (n = 11) in each of two large coastal dune sheets including the Magdalena (7000 km2) and Guerrero Negro (8000 km2) dune sheets, from the Pacific Ocean side of Baja California Sur, Mexico, have been analyzed for dune deposit age. The shallow morpho-stratigraphic sections (∼2-10 m depth) include 11 new TL and 14C ages, and paleosol chronosequences, that differentiate cemented late Pleistocene dune deposits (20.7 ± 2.1 to 99.8 ± 9.4 ka) from uncemented Holocene dune deposits (0.7 ± 0.05 to at least 3.2 ± 0.3 ka). Large linear dune ridges (5-10 m in height) in the dune sheet interiors trend southeast and are generally of late Pleistocene age (∼70-20 ka). The late Pleistocene dune deposits reflect eolian transport of marine sand across the emerged continental shelf (30-50 km southeast distance) from low-stand paleo-shorelines (-100 ± 25 m elevation), which were locally oriented nearly orthogonal to modeled deep-water wave directions (∼300° TN). During the Holocene marine transgression, onshore and alongshore wave transport delivered remobilized shelf-sand deposits to the nearshore areas of the large dune sheets, building extensive barrier islands and sand spits. Submerged back-barrier lagoons generally precluded marine sand supply to dune sheet interiors in middle to late Holocene time, though exceptions occur along some ocean and lagoon shorelines. Reactivation of the late Pleistocene dune deposits in the dune sheet interiors lead to generally thin (1-3 m thickness), but widespread, covers of Holocene dune deposits (0.41 ± 0.05 to 10.5 ± 1.6 ka). Mechanical drilling will be required to penetrate indurated subsoil caliche layers to reach basal Pleistocene dune deposits.

  9. Sand fences: An environment-friendly technique to restore degraded coastal dunes

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    , children’s park and the local school is degraded. However, the problematic part is the large open patch west of the circle (Fig.1). The experimental site comprises a total of ~37200 m2 of beach space from the low water line up to the road. Within this area.... Wind speeds crossed 36 km/h (IMD, on phone). Sand blown landwards got trapped wherever obstructions such as pillars, benches or road dividers were encountered. By estimating the approximate volume of each sand mound, and comparing it with the amount...

  10. Temporal characteristics of coherent flow structures generated over alluvial sand dunes, Mississippi River, revealed by acoustic doppler current profiling and multibeam echo sounding (United States)

    Czuba, John A.; Oberg, Kevin A.; Best, Jim L.; Parsons, Daniel R.; Simmons, S. M.; Johnson, K.K.; Malzone, C.


    This paper investigates the flow in the lee of a large sand dune located at the confluence of the Mississippi and Missouri Rivers, USA. Stationary profiles collected from an anchored boat using an acoustic Doppler current profiler (ADCP) were georeferenced with data from a real-time kinematic differential global positioning system. A multibeam echo sounder was used to map the bathymetry of the confluence and provided a morphological context for the ADCP measurements. The flow in the lee of a low-angle dune shows good correspondence with current conceptual models of flow over dunes. As expected, quadrant 2 events (upwellings of low-momentum fluid) are associated with high backscatter intensity. Turbulent events generated in the lower lee of a dune near the bed are associated with periods of vortex shedding and wake flapping. Remnant coherent structures that advect over the lower lee of the dune in the upper portion of the water column, have mostly dissipated and contribute little to turbulence intensities. The turbulent events that occupy most of the water column in the upper lee of the dune are associated with periods of wake flapping.

  11. Compositional variations in sands of the Bagnold Dunes, Gale Crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity Rover (United States)

    Lapotre, Mathieu G. A.; Ehlmann, B. L.; Minson, Sarah E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.


    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single scattering albedo spectra and a Markov-Chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that XRD-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are non-unique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold dunes, consistent with a mafic enrichment of sands with cumulative transport distance by sorting of olivine, pyroxene, and plagioclase grains during aeolian saltation. Furthermore, the large variations in Fe and Mg abundances (~20 wt%) at the Bagnold Dunes suggest that compositional variability induced by wind sorting may be enhanced by local mixing with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within martian aeolian sandstones.

  12. Beach litter along various sand dune habitats in the southern Adriatic (E Mediterranean). (United States)

    Šilc, Urban; Küzmič, Filip; Caković, Danka; Stešević, Danijela


    Marine litter accumulates on sandy beaches and is an important environmental problem, as well as a threat to habitat types that are among the most endangered according to EU legislation. We sampled 120 random plots (2 × 2 m) in spring 2017 to determine the distribution pattern of beach litter along the zonation of habitat types from sea to the inland. The most frequent litter items were plastic, polystyrene and glass. A clear increase of litter cover along the sea-inland gradient is evident, and foredunes and pine forests have the highest cover of litter. Almost no litter was present in humid dune slacks. Shoreline and recreational activities are the major source of beach litter, while ocean/waterway activities are more important in the aphytic zone and strandline. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Late Pleistocene dune activity in the central Great Plains, USA (United States)

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.


    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of

  14. [Spatial distribution pattern and allometric growth of three common species on moving sand dunes in Horqin Sandy Land, China]. (United States)

    Jia, Mei-yu; Li, Xue-hua; Oh, Choong-hyeon; Park, Hong-chul; Miao, Chun-ping; Han, Xu


    Research on fine scale pattern and characteristics of allometric growth could contribute to better understanding plants' adaptation in moving sandy dunes. The abundance, height and biomass of 3 species Agriophilum aquarrosum, Corispermum candelabrum and Setaria viridis in twenty-eight 1 m x 1 m quadrats of Horqin Sandy Land were identified, mapped and described. The nearest neighbor method and O-ring O(r) function analysis were applied to analyze the spatial patterns. The results showed that the individual spatial pattern was mainly aggregated in 1 m x 1 m quadrat at community level but mainly random at population level. At 0-50 cm individual distance scale, both intraspecific and interspecific relationship were facilitation and aggregated distribution occurred at some scales and varied with increasing plant abundance in 1 m x 1 m quadrat. In 0-40 cm, the aggregated distribution of S. viridis and A. aquarrosum increased obviously; in 10-20 cm, both intraspecific and interspecific aggregation increased; in 10-30 cm, the occurrence possibility of positive correlations between S. viridis and A. aquarrosum, S. viridis and C. candelabrum all increased; in 40-50 cm, the possibility of positive correlations between A. squarrosum and S. viridis, A. squarrosum and C. candelabrum all increased. Research on the three species components indicated that the growth rate of above-ground was faster than that of underground. S. viridis had the highest ratio of under-ground biomass to above-ground biomass but its nutritional organs' biomass ratio was medium. C. candelabrum allocated more biomass to propagative organs and stem, but A. squarrosum allocated more biomass to nutritional organs. Based on the spatial distribution and allometric characteristics, the three common species in moving sand dunes preferred r strategy in their life history.

  15. Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert, northern China. (United States)

    Yang, Haotian; Li, Xinrong; Wang, Zengru; Jia, Rongliang; Liu, Lichao; Chen, Yongle; Wei, Yongping; Gao, Yanhong; Li, Gang


    Reconstructing vegetation in arid and semiarid areas has become an increasingly important management strategy to realize habitat recovery, mitigate desertification and global climate change. To assess the carbon sequestration potential in areas where sand-binding vegetation has been established on shifting sand dunes by planting xeric shrubs located near the southeastern edge of the Tengger Desert in northern China, we conducted a field investigation of restored dune regions that were established at different times (20, 30, 47, and 55 years ago) in the same area. We quantified the total organic carbon (TOC) in each ecosystem by summing the individual carbon contributions from the soil (soil organic carbon; SOC), shrubs, and grasses in each system. We found that the TOC, as well as the amount of organic carbon in the soil, shrubs, and grasses, significantly increased over time in the restored areas. The average annual rate of carbon sequestration was highest in the first 20 years after restoration (3.26 × 10(-2)kg·m(-2) ·year(-1)), and reached a stable rate (2.14 × 10(-2) kg·m(-2) ·year(-1)) after 47 years. Organic carbon storage in soil represented the largest carbon pool for both restored systems and a system containing native vegetation, accounting for 67.6%-85.0% of the TOC. Carbon in grass root biomass, aboveground grass biomass, litter, aboveground shrub biomass, and shrub root biomass account for 10.0%-21.0%, 0.2%-0.6%, 0.1%-0.2%, 1.7%-12.1% and 0.9%-6.2% of the TOC, respectively. Furthermore, we found that the 55-year-old restored system has the capacity to accumulate more TOC (1.02 kg·m(-2) more) to reach the TOC level found in the natural vegetation system. These results suggest that restoring desert ecosystems may be a cost-effective and environmentally friendly way to sequester CO2 from the atmosphere and mitigate the effects of global climate change. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. 21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica. (United States)

    Fink, David; Augustinus, Paul; Rhodes, Ed; Bristow, Charles; Balco, Greg


    The McMurdo Dry Valleys, Antarctica, have been ice-free for at least 10 Ma. In Victoria Valley, the largest of the Dry Valleys, permafrosted yet still actively migrating dune-fields, occupy an area of ~8 km2 with dune thicknesses varying from ~5 to 70 meters. High-resolution ground penetrating radar (GPR) imaging of selected dunes reveal numerous unconformities and complex stratigraphy inferring cycles of sand accretion and deflation from westerly katabatic winter winds sourced from the East Antarctic Ice Sheet and anabatic summer winds sourced from the Ross Sea. Samples above permafrost depth were taken for OSL and cosmogenic 26Al/10Be burial ages. OSL ages from shallow (pre-history independent of depth. Correcting for minor post-burial production based on OSL ages, the minimum (integrated) burial period for these sand grains is 0.51+/- 0.12 Ma which represents the burial age at the time of arrival at the dune. A possible explanation is that this common burial signal reflects recycling episodes of exposure, deposition, burial and deflation, sufficiently frequent to move all grains towards a common pre-dune deposition history. However, it is unclear over what length of time this processes has been active and fraction of time the sand has been buried. Consequently we also analysed purified quartz aliquots of the same samples for a third and stable nuclide, 21Ne, to determine the total surface and burial exposure periods. Using the 21Ne/10Be system we obtain burial ages of 1.10 +/- 0.10 Ma. Further coring below permafrost is planned for austral summer 2015.

  17. Primary sand-dune plant community and soil properties during the west-coast India monsoon

    Directory of Open Access Journals (Sweden)

    Willis A.


    Full Text Available A seven-station interrupted belt transect was established that followed a previously observed plant zonation pattern across an aggrading primary coastal dune system in the dry tropical region of west-coast India. The dominant weather pattern is monsoon from June to November, followed by hot and dry winter months when rainfall is scarce. Physical and chemical soil characteristics in each of the stations were analysed on five separate occasions, the first before the onset of monsoon, three during and the last post-monsoon. The plant community pattern was confirmed by quadrat survey. A pH gradient decreased with distance from the shoreline. Nutrient concentrations were deficient, increasing only in small amounts until the furthest station inland. At that location, there was a distinct and abrupt pedological transition zone from psammite to humic soils. There was a significant increase over previous stations in mean organic matter, ammonium nitrate and soil-water retention, although the increase in real terms was small. ANOVA showed significant variation in electrical conductivity, phosphorus, calcium, magnesium and sodium concentrations over time. There was no relationship between soil chemistry characteristics and plant community structure over the transect. Ipomoea pes-caprae and Spinifex littoreus were restricted to the foredunes, the leguminous forb Alysicarpus vaginalis and Perotis indica to the two stations furthest from the strand. Ischaemum indicum, a C4 perennial grass species adopting an ephemeral strategy was, in contrast, ubiquitous to all stations.

  18. Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: Implications for dunes and dust storms


    Kok, Jasper F.


    Much of the surface of Mars is covered by dunes, ripples, and other features formed by the blowing of sand by wind, known as saltation. In addition, saltation loads the atmosphere with dust aerosols, which dominate the Martian climate. We show here that saltation can be maintained on Mars by wind speeds an order of magnitude less than required to initiate it. We further show that the resulting hysteresis effect causes saltation to occur for much lower wind speeds than previously thought. Thes...

  19. Cross Sections of Wind Ripples on Various Slopes of Sand Dunes(Turkey-Japan Joint Conference on Geomorphology)


    Yoshinori, KODAMA; Hiroaki, KITTAKA; Faculty of Regional Sciences, Tottori University; Mitsui Kaihatsu Co. Lt.


    We collected 684 cross sections of wind ripples from various slopes at the Tottori Sand Dunes, southwest Japan, by adopting a simple method that involves the use of a transparent plate. We analyzed the geometric characteristics of wind ripple shapes in relation to the proceeding (marching, climbing) angles of ripples. The results show that the wave-lengths of ascending wind ripples were larger than those of the descending ones: as the proceeding angles increased, the waves became longer. The ...

  20. Compositional Variations in Sands of the Bagnold Dunes, Gale Crater, Mars, from Visible-Shortwave Infrared Spectroscopy and Comparison to Ground-Truth from the Curiosity Rover


    Lapotre, M. G. A.; Ehlmann, B. L.; Minson, S. E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.


    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity ...

  1. Study of Goa and its environment from space: A report on coastal sand dune ecosystems of Goa: Siginficance, uses and anthropogenic impacts

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    are now flat, bare and devoid of vegetation (January 1998). Figure 12: Calangute - A clear example of how sand dunes are simply flattened and removed, in this case to create an access to the beach for tourists (December 1997). Figure 13: Miramar - A site... forms (Wagle, 1982); temporal variations in the geometric form of beaches over different time scales in response to wind and wave climate by measuring beach profile configurations (Murty et al., 1982); studies on a organic sediment deposit stratified...

  2. Investigation of water quality in the Great Sand Dunes National Monument and Preserve, Saguache County, Colorado, February 1999 through September 2000: Qualifying for outstanding waters designation (United States)

    Ferguson, Sheryl A.


    Great Sand Dunes National Monument and Preserve is located on the eastern side of the San Luis Valley in south-central Colorado. The monument covers 60.4 square miles in Saguache and Alamosa Counties and lies at the base of the Sangre de Cristo Mountains, where a unique combination of climate, topography, and hydrology has created and maintained the Nation?s tallest inland sand dunes. The Sangre de Cristo Mountains, which rise to more than 14,000 feet to the north and east of the dunes, are the source of several streams that flow around the dunes and eventually recharge the aquifer beneath the valley. Sand Creek and Medano Creeks are the largest of the streams in the monument that originate in the Sangre de Cristo Mountains; several ephemeral streams flow into Sand Creek and Medano Creek. Maintaining the high surface-water quality in the Great Sand Dunes National Monument and Preserve is identified as a critical issue by the National Park Service. Additionally, the National Park Service has indicated a desire to pursue an Outstanding Waters Designation, which offers the highest level of water-quality protection available under the Clean Water Act and Colorado regulations. This designation is designed to prevent any degradation from existing conditions (Chatman and others, 1997). Assessment is needed to evaluate whether the water quality of the streams in the monument meets the requirements for an Outstanding Waters Designation. Historically, prospecting and mining activities have occurred in the watersheds of Sand and Medano Creeks; currently, however, there is no mining activity in those watersheds. In addition, the camping and recreation that occur upstream from the monument on national preserve lands and water activities that occur in Medano Creek during the summer are a potential source of human-waste contamination. Figure 1. Location of study area, sampling sites, and indication of sites that meet or exceed instream standards. The U.S. Geological Survey (USGS

  3. Development of a low-cost cement free polymer concrete using industrial by-products and dune sand

    Directory of Open Access Journals (Sweden)

    Ismail Najif


    Full Text Available Alkali-activated polymer concrete (APC can potentially reduce CO2 emissions associated to concrete production by 84%. The binder in APC herein was synthesized using a combined sodium silicate-sodium hydroxide solution (i.e., alkali activator, alumino-silicate rich precursor (fly ash and slag. Light weight expanded clay and desert dune sand were used as aggregates. An overview of an experimental program was presented, which involved evaluation of fresh and mechanical properties of the produced APC and counterpart mortar (APM. Variables investigated were the fly ash to slag ratio and curing conditions. The curing regimes adopted herein included 24 hours of curing at ambient conditions, 30°C, and 60°C. The experimental program was undertaken in two stages, of these the first stage involved physical and chemical testing of constituent materials and the second stage involved testing or produced APM/APC. Reported were the setting times, workability, compression strength, strength development, flexural strength, tensile splitting strength, and plastic shrinkage strains. Relationship between strength results were investigated and effectiveness of codified predictive equations was evaluated.

  4. Dew variability in three habitats of a sand dune transect in a desert oasis ecotone, Northwestern China

    CERN Document Server

    Zhuang, Yanli


    Dew, as a supplementary water source, may have an important ecological role in arid and semi-arid regions. During August and September of 2007 and 2008, measurements were taken to investigate the dew accumulation and evaporation patterns in the very early morning hours, in three different habitats (dunetop, footslope, and interdune lowland) of a fixed sand dune in Northwest China. Dew quantities were measured using the cloth-plate method. The results indicated that there was a positive correlation between dew amounts and relative humidity, but a negative correlation between dew amounts and mean temperature. Clear mornings were characterized by higher dew amounts and longer dew duration, whereas less dew was recorded during cloudy and especially windy mornings. Dew continued to condense even after sunrise, although a shorter warming time after dawn is also of vital importance in dew formation. The higher average maximum dew quantities (0.06mm) and longer average dew duration (2.3h) occurred in the interdune lo...

  5. Diet of the lizard Liolaemus occipitalis in the coastal sand dunes of southern Brazil (Squamata-Liolaemidae

    Directory of Open Access Journals (Sweden)

    L. Verrastro

    Full Text Available Knowledge of a species’ diet provides important information on adaptation and the relationship between the organism and its environment. The genus Liolaemus occurs in the southern region of South America and is an excellent model to investigate the adaptive processes of vertebrate ecology in ecosystems of this region of the world. Liolaemus occipitalis is an endangered species that inhabits the coastal sand dunes of southern Brazil. This species is the most abundant vertebrate in this environment, and it presents unique adaptation characteristics to the restinga environment. The present study analyzed this lizard’s diet to verify similarities or differences between this species and other species of the same genus. Specimens were collected monthly from January 1996 to December 1997. The number of items, frequency of occurrence and volume of each prey taxon were determined. Arthropods were identified to the order level, and plant material was identified as flower, fruit, seed and leaves. Variations in the diet of males and females, adults and juveniles and seasons were also analyzed. The data indicate that Liolaemus occipitalis is a generalist, “sit-and-wait” or ambush predator as well as omnivorous, feeding on both arthropods and plant material. Significant ontogenetic differences were verified. Juveniles are more carnivorous, and the intake of plant material increases with size and age. Seasonal differences in diet composition were also observed. In the spring, arthropod and plant materials were more diversified and, therefore, consumed more often.

  6. Population dynamics of Agriophyllum squarrosum, a pioneer annual plant endemic to mobile sand dunes, in response to global climate change. (United States)

    Qian, Chaoju; Yin, Hengxia; Shi, Yong; Zhao, Jiecai; Yin, Chengliang; Luo, Wanyin; Dong, Zhibao; Chen, Guoxiong; Yan, Xia; Wang, Xiao-Ru; Ma, Xiao-Fei


    Climate change plays an important role in the transition of ecosystems. Stratigraphic investigations have suggested that the Asian interior experienced frequent transitions between grassland and desert ecosystems as a consequence of global climate change. Using maternally and bi-parentally inherited markers, we investigated the population dynamics of Agriophyllum squarrosum (Chenopodiaceae), an annual pioneer plant endemic to mobile sand dunes. Phylogeographic analysis revealed that A. squarrosum could originate from Gurbantunggut desert since ~1.6 Ma, and subsequently underwent three waves of colonisation into other deserts and sandy lands corresponding to several glaciations. The rapid population expansion and distribution range shifts of A. squarrosum from monsoonal climate zones suggested that the development of the monsoonal climate significantly enhanced the population growth and gene flow of A. squarrosum. These data also suggested that desertification of the fragile grassland ecosystems in the Qinghai-Tibetan Plateau was more ancient than previously suggested and will be aggravated under global warming in the future. This study provides new molecular phylogeographic insights into how pioneer annual plant species in desert ecosystems respond to global climate change, and facilitates evaluation of the ecological potential and genetic resources of future crops for non-arable dry lands to mitigate climate change.

  7. Variation of skin damage with flow rate associated with sand flow or stability in unconsolidated sand reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Tippie, D.B.; Kohlhaas, C.A.


    A semi-cylindrical sand-pack model of a cased-and-perforated completion was loaded with an overburden pressure and fluid flowed through the pack to simulate production. Flow rate was gradually increased in each test. Sand arches formed to stabilize sand movement. As reported previously by the same authors, arch size was a function of flow rate. Skin effect caused by arch formation, destruction, and size variation is also a function of flow rate. Minimum skin effects were noted for a particular flow rate. Potentiometric flow models were used to verify sand-pack results. Flow tests in a linear flow cell indicated a significant damage effect (permeability reduction) due to fines migration. The sand-pack completion model indicated that the fines migration and skin effect change are associated with sand instability.

  8. Noachis Dunes (United States)


    22 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes and relatively small, light-toned, windblown ripples on the floor of a crater in central Noachis Terra. Location near: 50.0oS, 353.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  9. Temporal and spatial variation of groundwater in quantity and quality in sand dune at coastal region, Kamisu city, central Japan. (United States)

    Umei, Yohei; Tsujimura, Maki; Sakakibara, Koichi; Watanabe, Yasuto; Minema, Motomitsu


    The role of groundwater in integrated water management has become important in recent 10 years, though the surface water is the major source of drinking water in Japan. Especially, it is remarked that groundwater recharge changed due to land cover change under the anthropogenic and climatic condition factors. Therefore, we need to investigate temporal and spatial variation of groundwater in quantity and quality focusing on the change during recent 10-20 years in specific region. We performed research on groundwater level and quality in sand dune at coastal region facing Pacific Ocean, Kamisu city, Ibaraki Prefecture, which have been facing environmental issues, such as land cover change due to soil mining for construction and urbanization. We compared the present situation of groundwater with that in 2000 using existed data to clarify the change of groundwater from 2000 to 2015. The quality of water is dominantly characterized by Ca2+-HCO3- in both 2000 and 2015, and nitrate was not observed in 2015, though it was detected in some locations in 2000. This may be caused by improvement of the domestic wastewater treatment. The topography of groundwater table was in parallel with that of ground surface in 2015, same as that in 2000. However, a depletion of groundwater table was observed in higher elevation area in 2015 as compared with that in 2000, and this area corresponds to the locations where the land cover has changed due to soil mining and urbanization between 2015 and 2000. In the region of soil mining, the original soil is generally replaced by impermeable soil after mining, and this may cause a decrease of percolation and net groundwater recharge, thus the depletion of groundwater table occurred after the soil mining.

  10. Fine-scale patterns of vegetation assembly in the monitoring of changes in coastal sand-dune landscapes

    Directory of Open Access Journals (Sweden)

    J. Honrado


    Full Text Available Understanding dune ecosystem responses to multi-scale environmental changes can provide the framework for reliable forecasts and cost-efficient protocols for detecting shifts in prevailing coastal dynamics. Based on the hypothesis that stress and disturbance interact as primary community controls in coastal dunes, we studied the fine-scale floristic assembly of foredune vegetation, in its relation to topography, along regional and local environmental gradients in the 200 km long coastline of northern Portugal, encompassing a major biogeographic transition in western Europe. Thirty topographic profiles perpendicular to the shoreline were recorded at ten sites along the regional climate gradient, and vegetation was sampled by recording the frequency of plant species along those profiles. Quantitative topographic attributes of vegetated dune profiles (e.g. length or height exhibited wide variations relatable to differences in prevailing coastal dynamics. Metrics of taxonomic diversity (e.g. total species richness and its additive beta component and of the functional composition of vegetation were highly correlated to attributes of dune topography. Under transgressive dynamics, vegetation profiles have fewer species, increased dominance, lower turnover rates, and lower total vegetation cover. These changes may drive a decrease in structural and functional diversity, with important consequences for resistance, resilience and other ecosystem properties. Moreover, differences in both vegetation assembly (in meta-stable dunes and response to increased disturbance (in eroding dunes between distinct biogeographic contexts highlight a possible decline in facilitation efficiency under extreme physical stress (i.e. under Mediterranean climate and support the significance of functional approaches in the study of local ecosystem responses to disturbance along regional gradients. Our results strongly suggest that assessing fine-scale community assembly can

  11. Modeling elk and bison carrying capacity for Great Sand Dunes National Park, Baca National Wildlife Refuge, and The Nature Conservancy's Medano Ranch, Colorado (United States)

    Wockner, Gary; Boone, Randall; Schoenecker, Kathryn A.; Zeigenfuss, Linda C.


    Great Sand Dunes National Park and Preserve and the neighboring Baca National Wildlife Refuge constitute an extraordinary setting that offers a variety of opportunities for outdoor recreation and natural resource preservation in the San Luis Valley of Colorado. Adjacent to these federal lands, the Nature Conservancy (TNC) manages the historic Medano Ranch. The total land area of these three conservation properties is roughly 121,500 hectares (ha). It is a remote and rugged area in which resource managers must balance the protection of natural resources with recreation and neighboring land uses. The management of wild ungulates in this setting presents challenges, as wild ungulates move freely across public and private landscapes.

  12. Dune mobility in the St. Anthony Dune Field, Idaho, USA: Effects of meteorological variables and lag time (United States)

    Hoover, R. H.; Gaylord, D. R.; Cooper, C. M.


    The St. Anthony Dune Field (SADF) is a 300 km2 expanse of active to stabilized transverse, barchan, barchanoid, and parabolic sand dunes located in a semi-arid climate in southeastern Idaho. The northeastern portion of the SADF, 16 km2, was investigated to examine meteorological influences on dune mobility. Understanding meteorological predictors of sand-dune migration for the SADF informs landscape evolution and impacts assessment of eolian activity on sensitive agricultural lands in the western United States, with implications for semi-arid environments globally. Archival aerial photos from 1954 to 2011 were used to calculate dune migration rates which were subsequently compared to regional meteorological data, including temperature, precipitation and wind speed. Observational analyses based on aerial photo imagery and meteorological data indicate that dune migration is influenced by weather for up to 5-10 years and therefore decadal weather patterns should be taken into account when using dune migration rates as proxies from climate fluctuation. Statistical examination of meteorological variables in this study indicates that 24% of the variation of sand dune migration rates is attributed to temperature, precipitation and wind speed, which is increased to 45% when incorporating lag time.

  13. Sand dunes: An introduction

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    stream_size 5 stream_content_type text/plain stream_name Fish_Curry_Rice_2002_142.pdf.txt stream_source_info Fish_Curry_Rice_2002_142.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  14. The role of vegetation in shaping dune morphology (United States)

    Duran Vinent, O.; Moore, L. J.; Young, D.


    Aeolian dunes naturally emerge under strong winds and sufficient sand supply. They represent the most dynamical feature of the arid and/or coastal landscape and their evolution has the potential to either increase desertification or reduce coastal vulnerability to storms. Although large-scale dune morphology mainly depends on the wind regime and sand availability, vegetation plays an important role in semiarid and/or coastal areas. It is well known that under certain conditions vegetation is able to stabilize dunes, driving a morphological transformation from un-vegetated mobile crescent dunes to static vegetated "parabolic" dunes, de facto paralyzing desertification and initiating land recovery. Furthermore, vegetation is also the primary ingredient in the formation of coastal foredunes, which determine vulnerability to storms, as low dunes are prone to storm-induced erosion and overwash. In both cases, the coupling of biological and geomorphic (physical) processes, in particular vegetation growth and sand transport, governs the evolution of morphology. These processes were implemented in a computational model as part of a previous effort. It was shown that, for a migrating dune, this coupling leads to a negative feedback for dune motion, where an ever denser vegetation implies ever lesser sand transport. The model also predicted the existence of a "mobility index", defined by the vegetation growth rate to sand erosion rate ratio, that fully characterizes the morphological outcome: for indices above a certain threshold biological processes are dominant and dune motion slows after being covered by plants; for lower indices, the physical processes are the dominant ones and the dune remains mobile while vegetation is buried or rooted out. Here, we extend this model to better understand the formation of coastal dunes. We include new physical elements such as the shoreline and water table, as well as different grass species and potential competition among them

  15. Holocene beach buildup and coastal aeolian sand incursions off the Nile littoral cell (United States)

    Roskin, Joel; Sivan, Dorit; Shtienberg, Gilad; Porat, Naomi; Bookman, Revital


    Israel's coastal plain is abundant with sand originating from the Nile littoral cell. The inland windblown loose sand has formed 3-6 km wide lobe-like sand and dune fields currently comprised of foredunes, linear and northeasterly facing transverse and parabolic dunes that are currently stabilized by vegetation. This study reviews the architecture and history of the these dune fields aiming to: (a) Date the timings of beach accretion, and sand and dune incursions. (b) Discriminate between natural and human-induced forcing factors of sand mobilization and stabilization in time and space. (c) Present a model of the dunescape development. (d) Assess scenarios of sand transport in the future charcaterized by intense human impact and climate change. Luminescence ages, radiocarbon dates and relative ages from previously published geological and archaeological reports, historical texts, together with new optically stimulated luminescence (OSL) ages and stratigraphic and sedimentological data are analyzed. The deposition, mobilizations and preservation of the sand bodies, initially induced by the decline in sea level rise at 6-4 ka, were later controlled by historic land-use intensity and modern land-use/negligence practices. At 6 ka, beach sand buildup rapidly started. Where aeolianite ridges bordered the coast, pulses of sand with biogenic carbonate grains unconformably draped the ridges and rapidly consolidated into a distinct sandy calcarenite unit. Further east, sand sheets and low dunes partly pedogenized following their incursion, but did not cement. The water retention capacities of the sand sheets enabled the establishment of a sand-stabilizing vegetation cover that probably became an attractive environment for fuel and grazing. The growing Hellenistic-Roman-Byzantine ( 2.4-1.3 ka) populations probably led to increased consumption and massive destruction of sand stabilizing vegetation, enabling sand erodibility and mobilization during winter storms. The sand



    Prashant Kumar*, Prof. M.C.Paliwal, Prof. A.K.Jain


    Due to various construction development projects undertaken all over the world there is a substantial increase in the production of waste materials like concrete, fly ash, plastic, rice husk, foundry sand etc. which create disposal problems. Foundry waste sand is produced in large quantity in foundry industries and is disposed in open land. Therefore use of foundry waste sand in foundation of buildings and in road constructions to improve bearing capacity of soil and to reduce the area of ope...

  17. Feeding habits of the frog Pleurodema diplolistris (Anura, Leptodactylidae in Quaternary sand dunes of the Middle Rio São Francisco, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    José Wellington Alves dos Santos


    Full Text Available In this work, we investigate the feeding habits of Pleurodema diplolistris, the most abundant anuran species of the São Francisco sand dunes, during a period of slightly over one year. The fieldwork was undertaken during four excursions to a sand dune in the semiarid Caatinga, Brazil, and the analyses were based on stomach contents. Pleurodema diplolistris were not active during the dry season. The important food categories in diet were Isoptera (winged forms, Coleoptera, and Formicidae. Small and large animals had different food comsumption patterns: small frogs showed positive electivity for termites and large frogs, for ants. The pattern was strongly influenced by large male food electivity. High levels of termite comsumption ocurred during the days of greater capture success. The pattern of high comsumption of termites detected here is different from that described in another study on lizards from the same locality and sampled in the same periods. We discuss alternative hypotheses that could explain the observed patterns.

  18. Assessing radiation impact at a protected coastal sand dune site: an intercomparison of models for estimating the radiological exposure of non-human biota

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Michael D., E-mail: [Institute for Sustainable Water Integrated Management and Ecosystem Research (SWIMMER), Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom); School of Biological Sciences, Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom); Beresford, Nicholas A.; Barnett, Catherine L. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, Lancashire LA1 4AP (United Kingdom); Copplestone, David [Environment Agency, PO Box 12, Richard Fairclough House, Knutsford Road, Latchford, Warrington, Cheshire WA4 1HG (United Kingdom); Leah, Richard T. [Institute for Sustainable Water Integrated Management and Ecosystem Research (SWIMMER), Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom); School of Biological Sciences, Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom)


    This paper presents the application of three publicly available biota dose assessment models (the ERICA Tool, R and D128/SP1a and RESRAD-BIOTA) to an assessment of the Drigg coastal sand dunes. Using measured {sup 90}Sr, {sup 99}Tc, {sup 137}Cs, {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am activity concentrations in sand dune soil, activity concentration and dose rate predictions are made for a range of organisms including amphibians, birds, invertebrates, mammals, reptiles, plants and fungi. Predicted biota activity concentrations are compared to measured data where available. The main source of variability in the model predictions is the transfer parameters used and it is concluded that developing the available transfer databases should be a focus of future research effort. The value of taking an informed user approach to investigate the way in which models may be expected to be applied in practice is highlighted and a strategy for the future development of intercomparison exercises is presented.

  19. Classification of Land Use on Sand-Dune Topography by Object-Based Analysis, Digital Photogrammetry, and GIS Analysis in the Horqin Sandy Land, China

    Directory of Open Access Journals (Sweden)

    Takafumi Miyasaka


    Full Text Available Previous field research on the Horqin Sandy Land (China, which has suffered from severe desertification during recent decades, revealed how land use on a sand-dune topography affects both land degradation and restoration. This study aimed to depict the spatial distribution of local land use in order to shed more light on previous field findings regarding policies on a broader scale. We performed the following analyses with Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM and Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2 images of Advanced Land Observing Satellite (ALOS: (1 object-based classification to discriminate preliminary classification of land-use types that were approximately differentiated by ordinary pixel-based analysis with spectral information; (2 digital photogrammetry to generate a digital surface model (DSM with adequately high accuracy to represent undulating sand-dune topography; (3 geographic information system (GIS analysis to classify major topographic types with the digital surface model (DSM; and (4 overlay of the two classification results to depict the local land-use types. The overall accuracies of the object-based and GIS-based classifications were high, at 93% (kappa statistic: 0.84 and 89% (kappa statistic: 0.81, respectively. The resultant local land-use map represents areas covered in previous field studies, showing where and how land degradation and restoration are likely to occur. This research can contribute to future environmental surveys, models, and policies in the study area.

  20. Effect of confining stress and fluid properties on arch stability in unconsolidated sands

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, M.P.; Kohlhaas, C.A.; Melvan, J.J.


    A cylindrical sand pack, 52.75 in. long x 16 in. in diameter, was used to study the stability of unconsolidated sands across casing perforations. Bottom-hole producing conditions were approximated with overburden stresses of 250, 750, 1500, 2250, and 3000 psig. Fluid saturations consisted of an irreducible water phase and liquid hydrocarbons. The sand used was gopher state 20/40 frac sand, and the different hydrocarbon fluids investigated were kerosine and mineral spirits. The observed mechanism of sand stabilization around a well bore was the formation of sand arches across a perforation opening; an observation consistent with those of earlier investigations. Hence, sand instability was recorded at the moment of failure of sand arches. Arch structure is a function of the stress distribution in a sand pack. Maximum arch size and stability were also found to be a function of confining stress. The effect of different hydrocarbons on arch stability manifests itself in the cohesive forces in the pendular saturation of the wetting phase at the arch wall.

  1. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau.

    Directory of Open Access Journals (Sweden)

    Qingxue Li

    Full Text Available The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM, total nitrogen (TN, total phosphorus (TP, total potassium (TK, available nitrogen (AN, available phosphorus (AP and available potassium (AK. The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1 Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2 Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3 Soil "fertile islands" were formed, and the "fertile islands" were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous

  2. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau. (United States)

    Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin


    The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil "fertile islands" were formed, and the "fertile islands" were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous shrub.

  3. Aeolian sand transport and its effects on the stability of Miramar-Caranzalem beach

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, G.V.; Sastry, J.S.

    Removal of sand by wind from the beach at Miramar-Caranzalem, Goa, has been found to effect its stability over a relatively longer time scale. This aeolian sand transport has been computed for this strip of the beach utilising the relation between...

  4. Biotic and abiotic soil factors in the succession of sea buckthorn, Hippophae rhamnoides L. in coastal sand dunes

    NARCIS (Netherlands)

    Zoon, F.


    Decline and succession in dune scrub vegetation of sea buckthorn, Hippophaë rhamnoides L. in the Netherlands was previously found to be stimulated by biotic soil factors. In the present study, the role of plant-parasitic nematodes and root fungi was investigated. A

  5. Dark Polar Dunes (United States)


    20 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer in December 2004, shows dark, windblown sand dunes in the north polar region of Mars. A vast sea of sand dunes nearly surrounds the north polar cap. These landforms are located near 80.3oN, 144.1oW. Light-toned features in the image are exposures of the substrate that underlies the dune field. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  6. Southern high latitude dune fields on Mars: Morphology, aeolian inactivity, and climate change (United States)

    Fenton, L.K.; Hayward, R.K.


    In a study area spanning the martian surface poleward of 50?? S., 1190 dune fields have been identified, mapped, and categorized based on dune field morphology. Dune fields in the study area span ??? 116400km2, leading to a global dune field coverage estimate of ???904000km2, far less than that found on Earth. Based on distinct morphological features, the dune fields were grouped into six different classes that vary in interpreted aeolian activity level from potentially active to relatively inactive and eroding. The six dune field classes occur in specific latitude zones, with a sequence of reduced activity and degradation progressing poleward. In particular, the first signs of stabilization appear at ???60?? S., which broadly corresponds to the edge of high concentrations of water-equivalent hydrogen content (observed by the Neutron Spectrometer) that have been interpreted as ground ice. This near-surface ground ice likely acts to reduce sand availability in the present climate state on Mars, stabilizing high latitude dunes and allowing erosional processes to change their morphology. As a result, climatic changes in the content of near-surface ground ice are likely to influence the level of dune activity. Spatial variation of dune field classes with longitude is significant, suggesting that local conditions play a major role in determining dune field activity level. Dune fields on the south polar layered terrain, for example, appear either potentially active or inactive, indicating that at least two generations of dune building have occurred on this surface. Many dune fields show signs of degradation mixed with crisp-brinked dunes, also suggesting that more than one generation of dune building has occurred since they originally formed. Dune fields superposed on early and late Amazonian surfaces provide potential upper age limits of ???100My on the south polar layered deposits and ???3Ga elsewhere at high latitudes. No craters are present on any identifiable dune

  7. Interpretation Of Wind Regime of Bagnold Dunes In Gale Crater, Guided By Third-Generation Models Of Dune Formation (United States)

    Rubin, D. M.; Courrech Du Pont, S.; Narteau, C.; Newman, C. E.; Bridges, N.; Lapotre, M. G. A.


    HiRISE images show that barchan dunes in the Bagnold dune field merge and change abruptly into linear dunes as they migrate southward (Fig. 1). Models of the conditions required to produce this kind of change have evolved substantially over the past half-century. First-generation models (pre-1980s) generally considered dunes to be either transverse or parallel to the sand-transport direction and interpreted winds accordingly. These models required drastic changes in winds to convert barchans to linear dunes (from unidirectional to bi-directional winds). Second-generation models used experiments and theory to quantify the orientation of transverse, oblique, and longitudinal dunes in bi-directional wind regimes, but these models also require substantial differences in wind regime between barchans and linear dunes (Rubin & Hunter, 1987, Science). Third-generation models—which are still in their infancy—have used lab experiments and stability analysis to show that where the bed is partially starved, a surprisingly weak secondary wind can induce grossly different dune morphology and orientation (Courrech du Pont, et al., 2014, Geology). For example, adding a secondary wind oriented at an angle of 150° to the main wind and having a magnitude of only 20% of it will convert barchans to linear dunes on a partially starved bed. We interpret the wind regime of the Bagnold dunes using lab experiments, third-generation dune models, observations of migration of superimposed ripples, and wind-models. Several characteristics of these dunes make starved-bed models appealing. First, the bed is, in fact, partially starved. Second, the change from barchans to linear dunes coincides with changes in sand coverage and occurs over an extremely short distance ( a single dune wavelength). In this situation, the secondary wind required to produce linear dunes can be nearly an order of magnitude weaker than the main mode, allowing the required abrupt change in winds to be less extreme

  8. Rippled Dune (United States)


    10 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows ripples on the surface of a dune in a crater west of Sinus Meridiani near 2.5oN, 9.3oW. Most martian dune surfaces do not show ripples at the scale of MOC images---a higher resolution (better than 15 cm/pixel) view would be needed. These ripples are probably not typical sand ripples; they may be coarser-grained granule ripples (usually made up, in part, of grains 1-4 millimeters in size). The light-toned features in the image are wind-eroded outcrops of sedimentary rock. The image covers an area about 1.5 km (0.9 mi) wide. Sunlight illuminates the scene from the upper left.

  9. Modification and Mobility of Dunes and Ripples in Middle and High Southern Latitude Dune Fields (United States)

    Banks, M.; Fenton, L. K.; Chojnacki, M.; Silvestro, S.


    Change detection analyses of aeolian bedforms (dunes and ripples), using multi-temporal images (0.25 m/pixel) acquired by the High Resolution Imaging Science Experiment (HiRISE), reveal changes and migration of some bedforms. We now have a database of 200 dune fields with migration rates for bedforms that are mobile. Results show that most northern (N) hemisphere bedforms show movement, while 50% of southern (S) hemisphere bedforms show no detectable changes. In particular, bedforms located >70° N are consistently mobile and exhibit high sand fluxes while S hemisphere bedforms progressively decrease in mobility with proximity to the S pole. We analyze HiRISE image pairs covering dune fields south of 40° S for evidence of movement and apply a dune stability index (SI) based on the presence/lack of superposed non-aeolian features and degree of degradation by non-aeolian processes (0-6, higher numbers indicating increasing evidence of stability/modification). Combining mobility data and SI for 71 dune fields, we find a clear trend of decreasing sand mobility and increasing SI with latitude: 1) both dunes and ripples are more commonly mobile at lower latitudes, although some high-latitude ripples are migrating, 2) dune fields with low SIs (≤3) tend to be active while those with higher SIs tend to be inactive, and 3) ripple migration rates decrease slightly with increasing latitude and SI, although this may be attributable to regional variations. The elevation of dune fields generally increases with increasing S latitude suggesting elevation, and decreasing pressure, may contribute to decreasing mobility. A change in dominance of active to inactive bedforms and a morphological shift to higher SIs (SI=2) both occur at 60º S and coincide with the edge of high concentrations of H2O-equivalent hydrogen content observed by the Neutron Spectrometer. This is consistent with previous studies suggesting stabilizing agents (e.g., ground ice), likely limit sediment movement

  10. Obtaining higher-accuracy estimates of water-rich rocks and water-poor sand dunes on Mars in active neutron experiments (United States)

    Gabriel, T. S. J.; Hardgrove, C.; Litvak, M. L.; Nowicki, S.; Mitrofanov, I. G.; Boynton, W. V.; Fedosov, F.; Golovin, D.; Jun, I.; Mischna, M.; Tate, C. G.; Moersch, J.; Harshman, K.; Kozyrev, A.; Malakhov, A. V.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Vostrukhin, A.; Thompson, L. M.


    The Dynamic Albedo of Neutrons (DAN) experiment on the Mars Science Laboratory Curiosity Rover delivers high-energy (14.1 MeV) pulses of neutrons into the surface when operating in "active" mode. Neutrons are moderated in the subsurface and return to two detectors to provide a time-of-flight profile in 64 time-bins in epithermal and thermal energy ranges. Results are compared to simulations of the experiment in the Monte Carlo N-Particle Transport Code where several aspects are modeled including the DAN detectors, neutron source, rover components, and underlying rock. Models can be improved by increasing the fidelity of the rock geochemistry as informed by instruments including the Alpha Particle X-Ray Spectrometer (APXS). Furthermore, increasing the fidelity of the rock morphology in models is enabled by the suite of imaging instruments on the rover.To rapidly interpret DAN data a set of pre-simulated generic rock density and bulk geochemistry models are compared to several DAN active observations. While, to first order, this methodology provides an indication of significant geochemical changes in the subsurface, higher-fidelity models should be used to provide accurate constraints on water content, depth of geologic layers, or abundance of neutron absorbers. For example, in high-silicon, low-iron rocks observed along the rover's traverse, generic models can differ by several wt%H2O from models that use APXS measurements of nearby drill samples. Accurate measurements of high-silicon targets are necessary in outlining the extent of aqueous alteration and hydrothermal activity in Gale Crater. Additionally, we find that for DAN active experiments over sand dunes best-fit models can differ by greater than 0.5 wt%HO when the upper layer density is reduced by 0.6 g/cm3 to account for the low-bulk density of sand. In areas where the rock geochemistry differs little from generic models the difference in results is expectedly less disparate. We report refined wt%HO values

  11. The Groovy Dunes of Herschel (United States)


    Except for small wind ripples on their surfaces, normal, active sand dunes have very smooth slopes. However, some dunes found in the Herschel Basin of Terra Cimmeria (around 15oS, 228oW) have very rough, grooved surfaces instead. These grooves indicate that the dune surfaces for some reason are cemented--i.e., the sand is not loose--and that wind has actually had to scour the sand to remove it and transport it away from these dunes. What has caused these dunes to become cemented is unknown, and dunes like this are extremely rare on Mars (they have only been seen in Herschel Basin, thus far). This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image was acquired on May 5, 1999, and is illuminated from the upper left.

  12. Dark Barchan Dunes (United States)


    13 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows north polar sand dunes in the summertime. During winter and early spring, north polar dunes are covered with bright frost. When the frost sublimes away, the dunes appear darker than their surroundings. To a geologist, sand has a very specific meaning. A sand grain is defined independently of its composition; it is a particle with a size between 62.5 and 2000 microns. Two thousand microns equals 2 millimeters. The dunes are dark because they are composed of sand grains made of dark minerals and/or rock fragments. Usually, dark grains indicate the presence of unoxidized iron, for example, the dark volcanic rocks of Hawaii, Iceland, and elsewhere. This dune field is located near 71.7oN, 51.3oW. Dune slip faces indicate winds that blow from the upper left toward lower right. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

  13. Assessment of strength development in stabilized soil with CBR PLUS and silica sand

    Directory of Open Access Journals (Sweden)

    Seyed Esmaeil Mousavi


    Full Text Available This paper investigates the potential use of a nano polymer stabilizer, namely CBR PLUS for stabilization of soft clay and formulation of an optimal mix design of stabilized soil with CBR PLUS and silica sand. The highway settlements induced by the soft clay are problematic due to serious damages in the form of cracks and deformation. With respect to this, soil compaction and stabilization is regarded as a viable method to treat shallow soft clayey ground for supporting highway embankment. The objectives of this paper are: i to stabilize the compacted soil with CBR PLUS and silica sand in the laboratory; and ii to evaluate the permeability, strength and California bearing ratio (CBR of the untreated and stabilized soil specimens. The suitability of stabilized soil was examined on the basis of standard Proctor compaction, CBR, unconfined compression, direct shear, and falling head permeability tests. Furthermore, the chemical composition of the materials was determined using X-ray Fluorescence (XRF test. It was found that the optimal mix design of the stabilized soil is 90% clay, 1% CBR PLUS, 9% silica sand. It is further revealed that, stabilization increases the CBR and unconfined compressive strength of the combinations by almost 6-fold and 1.8-fold respectively. In summary, a notable discovery is that the optimum mix design can be sustainably applied to stabilize the shallow clay without failure.

  14. Key Factors Influencing Rapid Development of Potentially Dune-Stabilizing Moss-Dominated Crusts.

    Directory of Open Access Journals (Sweden)

    Chongfeng Bu

    Full Text Available Biological soil crusts (BSCs are a widespread photosynthetic ground cover in arid and semiarid areas. They have many positive ecological functions, such as increasing soil stability, and reducing water and wind erosion. Using artificial technology to achieve the rapid development of BSCs is expected to become a low-cost and highly beneficial ecological restoration measure. In the present study, typical moss-dominated crusts in a region characterized by mobile dunes (Mu Us Sandland, China were collected, and a 40-day cultivation experiment was performed to investigate key factors, including watering frequency, light intensity and a nutrient addition, which affect the rapid development of moss crusts and their optimal combination. The results demonstrated that watering frequency and illumination had a significant positive effect (P=0.049, three-factor ANOVA and a highly significant, complicated effect (P=0.000, three-factor ANOVA, respectively, on the plant density of bryophytes, and a highly significant positive effect on the chlorophyll a and exopolysaccharide contents (P=0.000, P=0.000; P=0.000, P=0.000; one-way ANOVA. Knop nutrient solution did not have a significant positive but rather negative effect on the promotion of moss-dominated crust development (P=0.270, three-factor ANOVA. Moss-dominated crusts treated with the combination of moderate-intensity light (6,000 lx + high watering frequency (1 watering/2 days - Knop had the highest moss plant densities, while the treatment with high-intensity light (12,000 lx + high watering frequency (1 watering/2 days + Knop nutrient solution had higher chlorophyll a contents than that under other treatments. It is entirely feasible to achieve the rapid development of moss crusts under laboratory conditions by regulating key factors and creating the right environment. Future applications may seek to use cultured bryophytes to control erosion in vulnerable areas with urgent needs.

  15. Dark Martian Dunes (United States)


    30 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark, windblown sand dunes in a crater in the Hesperia region of Mars. The steepest slopes on the dunes -- their slipfaces -- point toward the south-southwest, indicating that the winds responsible for the dunes blew from the north-northeast (top/upper right). Location near: 12.4oS, 236.5oW Image width: 3 km (1.9 mi) Illumination from: upper left Season Southern Spring

  16. Sample descriptions and geophysical logs for cored well BP-3-USGS, Great Sand Dunes National Park and Preserve, Alamosa County, Colorado (United States)

    Grauch, V.J.S.; Skipp, Gary L.; Thomas, Jonathan V.; Davis, Joshua K.; Benson, Mary Ellen


    The BP-3-USGS well was drilled at the southwestern corner of Great Sand Dunes National Park in the San Luis Valley, south-central Colorado, 68 feet (ft, 20.7 meters [m]) southwest of the National Park Service’s boundary-piezometer (BP) well 3. BP-3-USGS is located at latitude 37°43ʹ18.06ʺN. and longitude 105°43ʹ39.30ʺW., at an elevation of 7,549 ft (2,301 m). The well was drilled through poorly consolidated sediments to a depth of 326 ft (99.4 m) in September 2009. Water began flowing from the well after penetrating a clay-rich layer that was first intercepted at a depth of 119 ft (36.3 m). The base of this layer, at an elevation of 7,415 ft (2,260 m) above sea level, likely marks the top of a regional confined aquifer recognized throughout much of the San Luis Valley. Approximately 69 ft (21 m) of core was recovered (about 21 percent), almost exclusively from clay-rich zones. Coarser grained fractions were collected from mud extruded from the core barrel or captured from upwelling drilling fluids. Natural gamma-ray, full waveform sonic, density, neutron, resistivity, spontaneous potential, and induction logs were acquired. The well is now plugged and abandoned.

  17. The effects of extreme rainfall events on carbon release from Biological Soil Crusts covered soil in fixed sand dunes in the Tengger Desert, northern China (United States)

    Zhao, Yang; Li, Xinrong; Pan, Yanxia; Hui, Rong


    How soil cover types and extreme rainfall event influence carbon (C) release in temperate desert ecosystems has largely been unexplored. We assessed the effects of extreme rainfall (quantity and intensity) events on the carbon release from soils covered by different types of biological soil crusts (BSCs) in fixed sand dunes in the Tengger Desert, Shapotou regionof northern China. We removed intact crusts down to 10 cm and measured them in PVC mesocosms. A Li-6400-09 Soil Chamber was used to measure the respiration rates of the BSCs immediately after the rainfall stopped, and continued until the respiration rates of the BSCs returned to the pre-rainfall basal rate. Our results showed that almost immediately after extreme rainfall events the respiration rates of algae crust and mixed crust were significantly inhibited, but moss crust was not significantly affected. The respiration rates of algae crust, mixed crust, and moss crust in extreme rainfall quantity and intensity events were, respectively, 0.12 and 0.41 μmolCO2/(m2•s), 0.10 and 0.45 μmolCO2/(m2•s), 0.83 and 1.69 μmolCO2/(m2•s). Our study indicated that moss crust in the advanced succession stage can well adapt to extreme rainfall events in the short term. Keywords: carbon release; extreme rainfall events; biological soil crust

  18. Rapid Sand Filtration for Best Practical Treatment of Domestic Wastewater Stabilization Pond Effluent (United States)

    Boatright, D. T.; Lawrence, C. H.


    The technical and economic feasibility of constructing and operating a rapid sand filtration sewage treatment system as an adjunct to a waste water stabilization pond is investigated. The study concludes that such units are within the technical and economic constraints of a small community and comply with the EPA criteria. (BT)

  19. Effect of class F fly ash on fine sand compaction through soil stabilization. (United States)

    Mahvash, Siavash; López-Querol, Susana; Bahadori-Jahromi, Ali


    This paper presents the results of an experimental investigation carried out to evaluate the effect of fly ash (FA) on fine sand compaction and its suitability as a material for embankments. The literature review demonstrates the lack of research on stabilization of sandy material using FA. The study is concerned with the role of FA content in stabilized soil physical characteristics. The main aim of this paper is to determine the optimum quantity of FA content for stabilization of this type of soil. This is achieved through particle size distribution and compaction (standard proctor) tests. The sand was stabilized with three proportions of FA (5%, 10% and 15%) and constant cement content of 3% was used as an activator. For better comparison, the sand was also stabilized by 3% cement only so that the effect of FA could be observed more clearly. The results were in line with the literature for other types of soil, i.e. as the % of FA increases, reduction in maximum dry density and higher optimum moisture content were observed.

  20. A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples


    Claudin, Philippe; Andreotti, Bruno


    The linear stability analysis of the equations governing the evolution of a flat sand bed submitted to a turbulent shear flow predicts that the wavelength $\\lambda$ at which the bed destabilises to form dunes should scale with the drag length $L_{\\rm drag} = \\frac{\\rho_s}{\\rho_f} d$. This scaling law is tested using existing and new measurements performed in water (subaqueous ripples), in air (aeolian dunes and fresh snow dunes), in a high pressure CO$_2$ wind tunnel reproducing conditions cl...

  1. Intermediate complex morphophysiological dormancy in seeds of the cold desert sand dune geophyte Eremurus anisopterus (Xanthorrhoeaceae; Liliaceae s.l.). (United States)

    Mamut, Jannathan; Tan, Dun Yan; Baskin, Carol C; Baskin, Jerry M


    Little is known about morphological (MD) or morphophysiological (MPD) dormancy in cold desert species and in particular those in Liliaceae sensu lato, an important floristic element in the cold deserts of Central Asia with underdeveloped embyos. The primary aim of this study was to determine if seeds of the cold desert liliaceous perennial ephemeral Eremurus anisopterus has MD or MPD, and, if it is MPD, then at what level. Embryo growth and germination was monitored in seeds subjected to natural and simulated natural temperature regimes and the effects of after-ripening and GA3 on dormancy break were tested. In addition, the temperature requirements for embryo growth and dormancy break were investigated. At the time of seed dispersal in summer, the embryo length:seed length (E:S) ratio was 0·73, but it increased to 0·87 before germination. Fresh seeds did not germinate during 1 month of incubation in either light or darkness over a range of temperatures. Thus, seeds have MPD, and, after >12 weeks incubation at 5/2 °C, both embryo growth and germination occurred, showing that they have a complex level of MPD. Since both after-ripening and GA3 increase the germination percentage, seeds have intermediate complex MPD. Embryos in after-ripened seeds of E. anisopterus can grow at low temperatures in late autumn, but if the soil is dry in autumn then growth is delayed until snowmelt wets the soil in early spring. The ecological advantage of embryo growth phenology is that seeds can germinate at a time (spring) when sand moisture conditions in the desert are suitable for seedling establishment. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email:

  2. The thoracic morphology of the wingless dune cricket Comicus calcaris (Orthoptera: Schizodactylidae): Novel apomorphic characters for the group and adaptations to sand desert environments. (United States)

    Leubner, Fanny; Bradler, Sven; Wipfler, Benjamin


    Schizodactylidae, splay-footed or dune crickets, represents a distinct lineage among the highly diverse orthopteran subgroup Ensifera (crickets, katydids and allies). Only two extant genera belong to the Schizodactylidae: the winged Eurasian genus Schizodactylus, whose ecology and morphology is well documented, and the wingless South African Comicus, for which hardly any studies providing morphological descriptions have been conducted since its taxonomic description in 1888. Based on the first in-depth study of the skeletomuscular system of the thorax of Comicus calcaris Irish 1986, we provide information on some unique characteristics of this character complex in Schizodactylidae. They include a rigid connection of prospinasternite and mesosternum, a T-shaped mesospina, and a fused meso- and metasternum. Although Schizodactylidae is mainly characterized by group-specific anatomical traits of the thorax, its bifurcated profuca supports a closer relationship to the tettigonioid ensiferans, like katydids, wetas, and hump-winged crickets. Some specific features of the thoracic musculature of Comicus seem to be correlated to the skeletal morphology, e.g., due to the rigid connection of the tergites and pleurites in the pterothorax not a single direct flight muscle is developed. We show that many of the thoracic adaptations in these insects are directly related to their psammophilous way of life. These include a characteristic setation of thoracic sclerites that prevent sand grains from intrusion into vulnerable membranous areas, the striking decrease in size of the thoracic spiracles that reduces the respirational water loss, and a general trend towards a fusion of sclerites in the thorax. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in a Dune Sand Aquifer in Western Saudi Arabia: Assessment of Evaporation Loss for Design of an MAR System

    KAUST Repository

    Mughal, Iqra


    A component of designing a managed aquifer recharge system in a dune aquifer is the control of diffusive evaporative loss of water which is governed by the physical properties of the sediments and the position of the water table. A critical water table position is the “extinction depth”, below which no further loss of water occurs via diffusion. Field experiments were conducted to measure the extinction depth of sediments taken from a typical dune field in the region. The soil grain size characteristics, laboratory porosity, and saturated hydraulic conductivity were measured. The sand is classified as well-sorted, very fine sand with a mean grain diameter of 0.15 mm. Soil moisture gradients and diffusion loss rates were measured using sensors in a non-weighing lysimeter that was placed below land surface. The sand was saturated carefully with water from the bottom to the top and was exposed to the natural climate for a period of about two months. The moisture gradient showed a gradual decline during measurement until extinction depth was reached at about 100 cm below surface after 56 days. Diurnal temperature changes were observed in the upper 75 cm of the column and were negligible at greater depth.

  4. Central Asian sand seas climate change as inferred from OSL dating (United States)

    Maman, Shimrit; Tsoar, Haim; Blumberg, Dan; Porat, Naomi


    Luminescence dating techniques have become more accessible, widespread, more accurate and support studies of climate change. Optically stimulated luminescence (OSL) is used to determine the time elapsed since quartz grains were last exposed to sunlight, before they were buried and the dune stabilized. Many sand seas have been dated extensively by luminescence, e.g., the Kalahari, Namib the Australian linear dunes and the northwestern Negev dune field, Israel. However, no ages were published so far from the central Asian sand seas. The lack of dune stratigraphy and numerical ages precluded any reliable assessment of the paleoclimatic significance of dunes in central Asia. Central Asian Sand seas (ergs) have accumulated in the Turan basin, north-west of the Hindu Kush range, and span from south Turkmenistan to the Syr-Darya River in Kazakhstan. These ergs are dissected by the Amu-Darya River; to its north lies the Kyzylkum (red sands) and to its south lies the Karakum (black sands). Combined, they form one of the largest sand seas in the world. This area is understudied, and little information has been published regarding the sands stabilization processes and deposition ages. In this study, OSL ages for the Karakum and Kyzylkum sands are presented and analysis of the implications of these results is provided. Optical dates obtained in this study are used to study the effects climatic changes had on the mobility and stability of the central Asian sand seas. Optically stimulated luminescence ages derived from the upper meter of the interdune of 14 exposed sections from both ergs, indicate extensive sand and dune stabilization during the mid-Holocene. This stabilization is understood to reflect a transition to a warmer, wetter, and less windy climate that generally persisted until today. The OSL ages, coupled with a compilation of regional paleoclimatic data, corroborate and reinforce the previously proposed Mid-Holocene Liavliakan phase, known to reflect a warmer

  5. ASTER Dunes (United States)


    This image of Saudi Arabia shows a great sea of linear dunes in part of the Rub' al Khali, or the Empty Quarter. Acquired on June 25, 2000, the image covers an area 37 kilometers (23 miles) wide and 28 kilometers (17 miles) long in three bands of the reflected visible and infrared wavelength region. The dunes are yellow due to the presence of iron oxide minerals. The inter-dune area is made up of clays and silt and appears blue due to its high reflectance in band 1. The Rub' al Khali is the world's largest continuous sand desert. It covers about 650,000 square kilometers (250,966 square miles) and lies mainly in southern Saudi Arabia, though it does extend into the United Arab Emirates, Oman, and Yemen. One of the world's driest areas, it is uninhabited except for the Bedouin nomads who cross it. The first European to travel through the desert was Bertram Thomas in 1930.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of

  6. Effects of sand burial on the survival and growth of two shrubs dominant in different habitats of northern China. (United States)

    Qu, Hao; Zhao, Ha-Lin; Zhao, Xue-Yong; Zuo, Xiao-An; Wang, Shao-Kun; Chen, Min


    Plants that grow in dune ecosystems always suffer from sand burial. Shrubs play implications on the healthy functioning of dune ecosystems due to control blowing sand. However, the survival and growth responses of shrubs to sand burial remain poorly understood. The survival rate and seedling height of two shrubs (Artemisia halodendron and Lespedeza davurica) along with the soil properties under different burial depths were examined in order to reveal the causing ecophysiological attributes of sand burial on shrubs in the desertified region. It was found that A. halodendron can survive a burial depth of 6 cm greater than its seedling height, which is a dominant shrub in mobile dunes with intense burial, whereas a burial depth equivalent to three fourths of its seedling height is detrimental to L. davurica, which is dominant in fixed dunes with less burial. The reasons for the shrub death under sand burial were associated with the physical barrier to vertical growth and the reduction in photosynthetic area. In conclusion, A. halodendron can facilitate the stabilization of mobile dunes because of their high tolerance to the frequent and intensive sand burial, while L. davurica can be beneficial for the recovery process because of their higher survival rates under shallow burial following restoration of mobile dunes.

  7. Dredging of sand from a creek adjacent to a sand-spit for reclamation: Its impact on spit stability and coastal zone

    Digital Repository Service at National Institute of Oceanography (India)

    Rajagopal, M.D.; Vethamony, P.; Ilangovan, D.; Jayakumar, S.; Sudheesh, K.; Murty, K.S.R.

    material can be used as load bearing fill for low to moderately loaded structure and also as a sub-grade for pavement with a CBR value of 8 to 10. References 1. Anonymous (1998), Comprehensive environmental impact assessment for the proposed marine.../plain; charset=UTF-8 September 8, 2007 5:43 RPS mtec07_new Dredging of Sand from a Creek Adjacent to a Sand-Spit for Reclamation: Its Impact on Spit Stability and Coastal Zone M. D. Rajagopal a,∗ ,P.Vethamony a,† ,D.Ilangovan a,‡ , S. Jayakumar a,§ , K...

  8. Limited change in dune mobility in response to a large decrease in wind power in semi-arid northern China since the 1970s (United States)

    Mason, J.A.; Swinehart, J.B.; Lu, H.; Miao, X.; Cha, P.; Zhou, Y.


    The climatic controls on dune mobility, especially the relative importance of wind strength, remain incompletely understood. This is a key research problem in semi-arid northern China, both for interpreting past dune activity as evidence of paleoclimate and for predicting future environmental change. Potential eolian sand transport, which is approximately proportional to wind power above the threshold for sand entrainment, has decreased across much of northern China since the 1970s. Over the same period, effective moisture (ratio of precipitation to potential evapotranspiration) has not changed significantly. This "natural experiment" provides insight on the relative importance of wind power as a control on dune mobility in three dunefields of northern China (Mu Us, Otindag, and Horqin), although poorly understood and potentially large effects of human land use complicate interpretation. Dune forms in these three regions are consistent with sand transport vectors inferred from weather station data, suggesting that wind directions have remained stable and the stations adequately represent winds that shaped the dunes. The predicted effect of weaker winds since the 1970s would be dune stabilization, with lower sand transport rates allowing vegetation cover to expand. Large portions of all three dunefields remained stabilized by vegetation in the 1970s despite high wind power. Since the 1970s, trends in remotely sensed vegetation greenness and change in mobile dune area inferred from sequential Landsat images do indicate widespread dune stabilization in the eastern Mu Us region. On the other hand, expansion of active dunes took place farther west in the Mu Us dunefield and especially in the central Otindag dunefield, with little overall change in two parts of the Horqin dunes. Better ground truth is needed to validate the remote sensing analyses, but results presented here place limits on the relative importance of wind strength as a control on dune mobility in the

  9. Experimental investigation on ballistic stability of high-speed projectile in sand (United States)

    Zhang, Wei; Qi, Yafei; Huang, Wei; Li, Dacheng; Hypervelocity Impact Research Center Team


    The investigation on ballistic stability of high-speed projectile in granular materials is important to the study of the earth penetrating weapon(EPW). Laboratory-scaled sand entry experiments for the trajectory in the sand have been performed with four different nosed projectiles at a range of velocities from 20 m/s to 250 m/s. The slender projectiles were designed into flat, ogival, hemi-sperical, truncated-ogival nose shapes to make comparisons on the trajectory when those projectiles were launched at vertical and oblique impact angles (0° ~ 25°) along a view window. A high-speed camera placed at the side of the window was employed to capture the entire process of projectiles' penetration. Basing on the comparison of different tests, theoretical analysis is carried out on the relationships between ballistic stability and associated conditions. It can be obtained that projectile with flat nose has the best ballistic stability, followed by truncated-ogival nose, and ogival nose is the least at the same velocity. Additionally, a semi-empirical model based on a corrected drag coefficient is established to predict the depth of penetration. National Natural Science Foundation of China (NO.: 11372088)

  10. Dunes from above: separating the contribution of vegetation and landform morphology to early dune building (United States)

    van Puijenbroek, Marinka; Nolet, Corjan; de Groot, Alma; Suomalainen, Juha; Riksen, Michel; Berendse, Frank; Limpens, Juul


    Development of new coastal foredunes increases nature-based shoreline protection, but relatively little is known about the early phases of dune development taking place at the transition zone between beach and foredune. Here, net dune development is the result of sand accumulation during summer and sand erosion during winter. Understanding the processes affecting accumulation and erosion is necessary to predict future transitions from beach to foredune in a changing climate. Particularly the relative contributions of vegetation and landform morphology on sand accumulation rate and erosion have been poorly quantified. We explored the relative contributions of vegetation characteristics and landform morphology on dune development in a dune field of 8 hectares using 3D image analysis. We monitored changes in dune volume and vegetation characteristics (density, height, and species) of a natural embryonic dune field over 1 year, using a drone with a camera. The area comprised dunes with both pure and mixed vegetation of dune building grasses Ammophila arenaria and Elytrigia juncea at equal distance to the sea. We found significant relationships between dune building species and dune volume, with embryo dune volume peaking for dunes having a mix in species. Changes in dune volume over summer were associated with dune size, displaying size-dependent feedback with big dunes growing faster than small dunes. In addition dunes with mixed vegetation increased more in volume than single-species dunes. Changes in dune volume over winter however were related to vegetation density but not to dune volume: dunes with low vegetation density decreased more in volume than high density dunes. In turn vegetation density was related to dune building species. We show that dune building is modified by both vegetation composition and landform morphology, with their relative contributions depending on season. To our knowledge, our results give the first empirical evidence for relationships

  11. The Effectiveness of Silica Sand in Semi-Aerobic Stabilized Landfill Leachate Treatment

    Directory of Open Access Journals (Sweden)

    Ezlina Othman


    Full Text Available This study examines the suitability of natural silica sand as a low-cost adsorbent for the removal of ammoniacal nitrogen and heavy metals, particularly iron and zinc, from semi-aerobic stabilized landfill leachate. Leachate samples were collected from the Pulau Burung landfill site (PBLS in Penang, Malaysia. The above-mentioned contaminants are highlighted in this study because of their unsafe concentrations at PBLS. The effects of shaking time, settling time, and silica sand dosage on the study parameter removal efficiencies were investigated to predict the performance of the process. The adsorptions of ammoniacal nitrogen, iron, and zinc were judiciously described by Langmuir and Freundlich isotherm models. The optimum removal efficiencies of ammoniacal nitrogen, iron, and zinc obtained were 51%, 44.4%, and 39.2%, respectively, with a shaking time of 90 min, a settling time of 60 min, and with a dosage of 60 g (0.5 kg/L of silica sand. Based on the coefficient of determination (R2 values obtained from Langmuir and Freundlich isotherm models, ammoniacal nitrogen, iron, and zinc adsorption were better fitted to the Freundlich model.

  12. Conservation of Sand Dune Vegetation in Coastal areas of the Valencian Region (Spain); Estado de conservacion de la vegetacion dunar en las costas de la comunidad Valenciana

    Energy Technology Data Exchange (ETDEWEB)

    Albertos, B.; San Miguel, E.; Draper, I.; Garilleti, R.; Lara, F.; Varela, J. M.


    The state of conservation of the coastal dune vegetation in Valencia region has been assessed within a survey of the vegetal communities present in these systems.The conservation status has been evaluated through a qualitative scale which integrates criteria such as dune extension, structure and diversity of the vegetal communities, level of ruderalization, presence of invasive species, and floristic rarity. Special attention has been paid to the usual aggressions to this type of ecosystem and the situation of the most aggressive invasive plants. (Author) 15 refs.

  13. Plant Species Diversity Mediates Ecosystem Stability of Natural Dune Grasslands in Response to Drought

    NARCIS (Netherlands)

    Rooijen, van Nils M.; Keersmaecker, de Wanda; Ozinga, Wim A.; Coppin, Pol; Hennekens, Stephan M.; Schaminée, Joop H.J.; Somers, Ben; Honnay, Olivier


    How plant species diversity can mediate the temporal stability of ecosystem functioning during periods of environmental stress is still a pressing question in ecology, certainly in the context of predicted increasing frequencies and intensities of climate extremes, such as drought. The vast

  14. Ripples or Dunes? (United States)


    This approximate true-color image taken by the Mars Exploration Rover Spirit's panoramic camera shows the windblown waves of soil that characterize the rocky surface of Gusev Crater, Mars. Scientists were puzzled about whether these geologic features were 'ripples' or 'dunes.' Ripples are shaped by gentle winds that deposit coarse grains on the tops or crests of the waves. Dunes are carved by faster winds and contain a more uniform distribution of material. Images taken of these features by the rover's microscopic imager on the 41st martian sol, or day, of the rover's mission revealed their identity to be ripples. This information helps scientists better understand the winds that shape the landscape of Mars. This image was taken early in Spirit's mission. [figure removed for brevity, see original site] Click on image for larger view [Image credit: NASA/JPL/ASU] This diagram illustrates how windblown sediments travel. There are three basic types of particles that undergo different motions depending on their size. These particles are dust, sand and coarse sand, and their sizes approximate flour, sugar, and ball bearings, respectively. Sand particles move along the 'saltation' path, hitting the surface downwind. When the sand hits the surface, it sends dust into the atmosphere and gives coarse sand a little shove. Mars Exploration Rover scientists are studying the distribution of material on the surface of Mars to better understand how winds shaped the landscape.

  15. Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV) imaging (United States)

    van Puijenbroek, Marinka E. B.; Nolet, Corjan; de Groot, Alma V.; Suomalainen, Juha M.; Riksen, Michel J. P. M.; Berendse, Frank; Limpens, Juul


    Dune development along highly dynamic land-sea boundaries is the result of interaction between vegetation and dune size with sedimentation and erosion processes. Disentangling the contribution of vegetation characteristics from that of dune size would improve predictions of nebkha dune development under a changing climate, but has proven difficult due to the scarcity of spatially continuous monitoring data. This study explored the contributions of vegetation and dune size to dune development for locations differing in shelter from the sea. We monitored a natural nebkha dune field of 8 ha, along the coast of the island Texel, the Netherlands, for 1 year using an unmanned aerial vehicle (UAV) with camera. After constructing a digital surface model and orthomosaic we derived for each dune (1) vegetation characteristics (species composition, vegetation density, and maximum vegetation height), (2) dune size (dune volume, area, and maximum height), (3) degree of shelter (proximity to other nebkha dunes and the sheltering by the foredune). Changes in dune volume over summer and winter were related to vegetation, dune size and degree of shelter. We found that a positive change in dune volume (dune growth) was linearly related to initial dune volume over summer but not over winter. Big dunes accumulated more sand than small dunes due to their larger surface area. Exposed dunes increased more in volume (0.81 % per dune per week) than sheltered dunes (0.2 % per dune per week) over summer, while the opposite occurred over winter. Vegetation characteristics did not significantly affect dune growth in summer, but did significantly affect dune growth in winter. Over winter, dunes dominated by Ammophila arenaria, a grass species with high vegetation density throughout the year, increased more in volume than dunes dominated by Elytrigia juncea, a grass species with lower vegetation density (0.43 vs. 0.42 (m3 m-3) week-1). The effect of species was irrespective of dune size or

  16. Aeolian dunes of south-central Sweden (United States)

    Bernhardson, Martin; Alexanderson, Helena


    South-central Sweden is home to a number of small, inactive inland dune fields formed on former glaciofluvial deltas. A characteristic of these dune fields is the generally transverse shape of the dunes, in stark contrast to the rest of Sweden where parabolic dunes are the most common type. One of these dune fields is Bonäsheden in the county of Dalarna. It is the largest continuous dune field in Sweden and covers an area of approximately 15.5 km2. The dune field has the last few years been the target of thorough investigations utilising LiDAR (Light Detection And Ranging) based remote sensing, ground-penetrating radar, luminescence dating and sedimentological field investigations. The results show that the dunes of Bonäsheden and the adjacent dune field of Skattungheden formed mainly by north-westerly winds shortly after the deglaciation of this part of Sweden (10.5 ka), and subsequent events of dune formation were uncommon. Some later episodes of sand drift did occur, but only as minor coversand deposition. The dune field has had a more complex formation than previously thought; a shift in the wind pattern around 10 ka seems to have caused subsequent dunes to have formed by more westerly winds. The reason for this is still not determined, but the increased distance to the Scandinavian Ice Sheet would lessen the capacity of katabatic winds to influence the dune field.

  17. The Holocene evolution of the beach and inland aeolian sand of the north-central Mediterranean coast of Israel (United States)

    Roskin, Joel; Sivan, Dorit; Bookman, Revital; Shteinberg, Gilad


    Israel's coastal geomorphology, situated within a Mediterranean climate zone, is characterized by parallel Pleistocene aeolianite ridges, coastal cliffs of aeolianite, and sandy beaches. Lobe-like fields of predominantly stable transverse and parabolic quartz sand dunes protrude 2-7 km inland from the current Mediterranean Sea coastline. However, their migration and accumulation history is still not well-defined. This study focuses on the Holocene appearance, chronology and drivers of beach sand deposition and inland aeolian sand transport along the Caesarea-Hadera dunefield in the north-central coastal plain of Israel. In order to achieve these goals, a detailed field survey and sampling campaign was carried out along a west-east and southwest-northeast transect, loyal to the advancement orientations of the currently stable dunes and directions of dominant sand transporting winds. Beach sand, a foredune, a linear dune, and interdunes of parabolic and transverse dunes were sampled down to their aeolianite or red loam (locally named hamra) palaeosol substrate by drilling and analyzing exposed sections. The sampled sediments were sedimentologically analyzed and twenty-five were dated by optically stimulated luminescence (OSL). The results indicate that beach sand started to accumulate rapidly around 6 ka probably in response to global sea level stabilization. Until around 4 ka, thin sand sheets encroached 2-3 km inland. Sand ages in the range of 1.2-1.1 ka (8th-9th century CE -- Early Moslem period) were found throughout the study area, suggesting a major mobilization of sand, followed by stabilization around 0.6 ka and pedogenesis. By 1.2 ka, the sands had reached their current extent of 5-7 km inland, suggesting transport in a southwest-northeast orientation similar to the advancement orientation of the current transverse and parabolic dunes. The particle-size distributions of the fine to medium-sized aeolian sand showed minor variation linked to inland transport

  18. Coastal dune dynamics in response to excavated foredune notches (United States)

    Ruessink, B. G.; Arens, S. M.; Kuipers, M.; Donker, J. J. A.


    Dune management along developed coasts has traditionally focussed on the suppression of the geomorphic dynamics of the foredune to improve its role in sea defence. Because a stabilized foredune acts as an almost total barrier to aeolian transport from the beach, the habitat diversity in the more landward dunes has degraded. With the overarching objective to mitigate this undesirable loss in biodiversity, dune management projects nowadays increasingly intend to restore aeolian dynamics by reconnecting the beach-dune system with notches excavated through the foredune. Here, we use repeat topographic survey data to examine the geomorphic response of a coastal dune system in the Dutch National Park Zuid-Kennemerland to five notches excavated in 2012-2013 within an 850-m stretch of the 20-m high established foredune. The notches were dug in a V-shape (viewed onshore), with a width between approximately 50 and 100 m at the top, a (cross-dune) length between 100 and 200 m, and excavation depths between 9 and 12.5 m. The 1 × 1 m digital terrain models, acquired with airborne Lidar and UAV photogrammetry, illustrate that during the 3-year survey period the notches developed into a U-shape because of wall deflation, and that up to 8-m thick and 150-m long depositional lobes formed landward of the notches. Sand budget computations showed that the sand volume of the entire study area increased by about 22,750 m3/year, which, given the 850-m width of the study area, corresponds to an aeolian input from the beach of approximately 26.5 m3/m/year. Between 2006 and 2012 all wind-blown beach sand deposited on the seaward side of the foredune; since 2013, the notches have caused 75% of the sand to be deposited landward of the foredune. This highlights that the notches are highly effective conduits for aeolian transport into the back dunes. Future monitoring is required to determine for how long the notches will stimulate aeolian dynamics and if (and when) vegetation eventually

  19. Earth-like sand fluxes on Mars. (United States)

    Bridges, N T; Ayoub, F; Avouac, J-P; Leprince, S; Lucas, A; Mattson, S


    Strong and sustained winds on Mars have been considered rare, on the basis of surface meteorology measurements and global circulation models, raising the question of whether the abundant dunes and evidence for wind erosion seen on the planet are a current process. Recent studies showed sand activity, but could not determine whether entire dunes were moving--implying large sand fluxes--or whether more localized and surficial changes had occurred. Here we present measurements of the migration rate of sand ripples and dune lee fronts at the Nili Patera dune field. We show that the dunes are near steady state, with their entire volumes composed of mobile sand. The dunes have unexpectedly high sand fluxes, similar, for example, to those in Victoria Valley, Antarctica, implying that rates of landscape modification on Mars and Earth are similar.

  20. Windblown Dunes and Ripples (United States)


    MGS MOC Release No. MOC2-411, 4 July 2003July 4, 2003, is the 6th anniversary of the Mars Pathfinder landing. One of the elements carried to the red planet by Pathfinder was the Wind Sock Experiment. This project was designed to measure wind activity by taking pictures of three aluminum 'wind socks.' While the winds at the Mars Pathfinder site did not blow particularly strong during the course of that mission, dust storms seen from orbit and Earth-based telescopes attest to the fact that wind is a major force of change on the dry, desert surface of Mars today. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) narrow angle image shows dark sand dunes and lighter-toned ripples trapped among the mountainous central peak of an old impact crater in Terra Tyrrhena near 13.9oS, 246.7oW. The dune slip faces--the steepest slope on the larger dunes--indicate sand transport is from the top/upper left toward the bottom/lower right. North is toward the top/upper right; the picture is 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left. This picture was obtained in April 2003.

  1. Dunes and Dust Devil Tracks (United States)


    22 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of dark sand dunes that formed in winds blowing from east (right) to west (left), along with smaller, lighter-toned ripples and many dark dust devil tracks. The dust devil tracks indicate movement from a variety of directions, while the dunes only indicate winds from the east. In the lower left quarter of the image, dune sand has flowed around a layered rock obstacle. This scene is located near 19.9oN, 280.5oW. The image covers an area about 3 km (1.9 mi) across and sunlight illuminates the scene from the lower left.

  2. Observations of Beach-Dune Interaction in Man-Made Trough Blowouts (United States)

    Ruessink, G.; Arens, B.; Kuipers, M.; Van Onselen, E.; Donker, J.


    Dunes act as an indispensable natural safety barrier against marine flooding, are valuable natural environments, serve for the production of drinking water, and offer recreational opportunities. The safety function has dominated dune management in the Netherlands, as well as on other developed shores, for decades. Measures to minimize the seaward loss of foredune sand under storm wave attack have resulted in over-stabilized foredunes and, accordingly, have impoverished natural beauty and degraded biodiversity. Stabilized foredunes are nowadays increasingly reactivated by removing vegetation and by digging trenches that resemble natural trough blowouts as corridors for aeolian transport from the beach into the backdunes. Crucially, such measures see the beach-dune system as an integrated landscape, reconnecting the beach, foredune and backdunes through aeolian transport. This raises questions on how much sand is actually blown into the dunes, which factors affect this amount, and how effective the large-scale dune-restoration measures are. This contribution addresses the evolution of five trenches that were dug through the 20-m high foredune at the Dutch National Park Zuid-Kennemerland. The width of the trenches was 50 - 100 m, their cross-dune length was 60 - 100 m, and the heighest part of the valley floor was 9 m above mean sea level. Since their construction in the 2012/2013 winter the trenches have been surveyed approximately 3 times per year using airborne laser scanning or UAV photography, resulting in a multi-temporal data set of Digital Elevation Models (DEMs) with a 1x1 m resolution. Difference maps illustrate that the sidewalls of the trenches have steepened during the first two years after construction, but that their width and the height of the valley floor have remained largely unaltered. Landward of the trenches large sedimentation lobes have formed, which with time have grown both laterally and vertically. Locally, the lobe thickness now exceeds 5 m

  3. New technique of in-situ soil-moisture sampling for environmental isotope analysis applied at Pilat sand dune near Bordeaux. HETP modelling of bomb tritium propagation in the unsaturated and saturated zones

    International Nuclear Information System (INIS)

    Thoma, G.; Esser, N.; Sonntag, C.; Weiss, W.; Rudolph, J.; Leveque, P.


    A new soil-air suction method with soil-water vapour adsorption by a 4-A molecular sieve provides soil-moisture samples from various depths for environmental isotope analysis and yields soil temperature profiles. A field tritium tracer experiment shows that this in-situ sampling method has an isotope profile resolution of about 5-10cm only. Application of this method in the Pilat sand dune (Bordeaux/France) yielded deuterium and tritium profiles down to 25m depth. Bomb tritium measurements of monthly lysimeter percolate samples available since 1961 show that the tritium response has a mean delay of five months in the case of a sand lysimeter and of 2.5 years for a loess loam lysimeter. A simple HETP model simulates the layered downward movement of soil water and the longitudinal dispersion in the lysimeters. Field capacity and evapotranspiration taken as open parameters yield tritium concentration values of the lysimeters' percolate which agree well with the experimental results. Based on local meteorological data the HETP model applied to tritium tracer experiments in the unsaturated zone yields in addition an individual prediction of the momentary tracer position and of the soil-moisture distribution. This prediction can be checked experimentally at selected intervals by coring. (author)

  4. Transient electromagnetic soundings in the San Luis Valley, Colorado, near the Great Sand Dunes National Park and Preserve and the Alamosa National Wildlife Refuge (field seasons 2007, 2009, and 2011) (United States)

    Fitterman, David V.


    Transient electromagnetic (TEM) soundings were made in the San Luis Valley, Colorado, to map the location of a blue clay unit as well as to investigate the presence of suspected faults. A total of 147 soundings were made near and in Great Sand Dunes National Park and Preserve, and an additional 6 soundings were made near Hansen Bluff on the eastern edge of the Alamosa National Wildlife Refuge. The blue clay is a significant hydrologic feature in the area that separates an unconfined surface aquifer from a deeper confined aquifer. Knowledge of its location is important to regional hydrological models. Previous analysis of well logs has shown that the blue clay has a resistivity of 10 ohm-meters or less, which is in contrast to the higher resistivity of sand, gravel, and other clay units found in the area, making it a very good target for TEM soundings. The top of the blue clay was found to have considerable relief, suggesting the possibility of deformation of the clay during or after deposition. Because of rift activity, deformation is to be expected. Of the TEM profiles made across faults identified by aeromagnetic data, some showed resistivity variations and (or) subsurface elevation relief of resistivity units, suggestive of faulting. Such patterns were not associated with all suspected faults. The Hansen Bluff profile showed variations in resistivity and depth to conductor that coincide with a scarp between the highlands to the east and the floodplain of the Rio Grande to the west.

  5. Herpetofauna of the quaternary sand dunes of the middle Rio São Francisco: Bahia: Brazil. VII.: Typhlops amoipira sp. nov., a possible relative of Typhlops yonenagae (Serpentes, Typhlopidae

    Directory of Open Access Journals (Sweden)

    Miguel Trefaut Rodrigues


    Full Text Available A new species of a small typhlopid snake is described from Ibiraba, in the sand- dune area of the left bank of Rio São Francisco, State of Bahia, Brazil. Typhlops amoipira sp. nov. is a small, light brown, and slightly pigmented Typhlops characterized by an incomplete nasal suture,18 scale rows around the body (SAB, and 212-242 dorsal scales. The geographic and morphologically closer species, Typhlops yonenagae (18 SAB, 259-291 dorsals lives in the same area, in the sands of the opposite side of the river.Descreve-se uma nova espécie de Typhlops de Ibiraba, no campo de dunas da margem esquerda do Rio São Francisco, Bahia, Brasil. Typhlops amoipira sp. nov. é um pequeno tiflopídeo castanho claro, pouco pigmentado, caracterizado por apresentar 18 fileiras de escamas ao redor do corpo e 212 a 242 dorsais. A espécie geográfica e morfologicamente mais próxima, Typhlops yonenagae, ocorre na mesma área, nas areias da margem oposta do rio e, embora também tenha 18 fileiras de escamas ao redor do corpo, apresenta 259 a 291 escamas dorsais.

  6. Minimal size of a barchan dune (United States)

    Parteli, E. J. R.; Durán, O.; Herrmann, H. J.


    Barchans are dunes of high mobility which have a crescent shape and propagate under conditions of unidirectional wind. However, sand dunes only appear above a critical size, which scales with the saturation distance of the sand flux [P. Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. 89, 264301 (2002); B. Andreotti, P. Claudin, and S. Douady, Eur. Phys. J. B 28, 321 (2002); G. Sauermann, K. Kroy, and H. J. Herrmann, Phys. Rev. E 64, 31305 (2001)]. It has been suggested by P. Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. 89, 264301 (2002)] that this flux fetch distance is itself constant. Indeed, this could not explain the protosize of barchan dunes, which often occur in coastal areas of high litoral drift, and the scale of dunes on Mars. In the present work, we show from three-dimensional calculations of sand transport that the size and the shape of the minimal barchan dune depend on the wind friction speed and the sand flux on the area between dunes in a field. Our results explain the common appearance of barchans a few tens of centimeter high which are observed along coasts. Furthermore, we find that the rate at which grains enter saltation on Mars is one order of magnitude higher than on Earth, and is relevant to correctly obtain the minimal dune size on Mars.

  7. Coastal Dune Flora, Nallavadu Village, Puducherry, India

    Directory of Open Access Journals (Sweden)

    Padmavathy, K.


    Full Text Available Coastal sand dunes (CSD are sensitive and fragile ecosystems with variety of specific floral species. Thoughthere are few confined studies on coastal sand dunes in temperate regions, the coastal dunes of tropics, especially the Indiancoramandal coast has received scanty attention. Hence, a detailed vegetation survey of 10 belt transects (5 × 100m alongcoastal dune in December 2008 was done. A total of 41 species belonging to 35 genera and 20 families were identifiedat different distances from the shoreline towards inland where various edaphic factors decline facilitating more floralcolonization. Thus, the coastal dune systems are rich and diverse in their floral composition, even over a small area. CSDconstitute a variety of habitats and gather vital ecological and economic importance. Such unique sensitive systems have tobe protected from habitat degradation in order to protect their native diversity and ecological functioning.

  8. Lateral migration of linear dunes in the Strzelecki Desert, Australia (United States)

    Rubin, D.M.


    Preferential accumulation of sand on east-facing flanks indicates that the dunes migrated eastward several metres during the Holocene. Moreover, the west-facing flanks of some dunes have experienced a minimum of tens of metres of erosion. This asymmetric erosion and deposition were caused by dune obliquity and lateral migration that may have begun as early as the Pleistocene. Dunes in the Strzelecki Desert and in the adjacent Simpson Desert display a variety of grossly different internal structures. -from Author

  9. Cementation and blackening of Holocene sands by peat-derived humates: A case study from the Great Dune of Pilat, Landes des Gascogne, Southwestern France

    Czech Academy of Sciences Publication Activity Database

    Suchý, V.; Sýkorová, Ivana; Havelcová, Martina; Machovič, Vladimír; Zeman, Antonín; Trejtnarová, Hana


    Roč. 114, JUL (2013), s. 19-32 ISSN 0166-5162 R&D Projects: GA ČR GA205/09/1162; GA ČR(CZ) GA13-18482S Institutional support: RVO:67985891 ; RVO:68378297 Keywords : humate * peat * cementation * aeolian sand Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.313, year: 2013

  10. Ripples and Dunes (United States)


    21 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small portion of the floor of Kaiser Crater in the Noachis Terra region, Mars. The terrain in the upper (northern) half of the image is covered by large windblown ripples and a few smoother-surfaced sand dunes. The dominant winds responsible for these features blew from the west/southwest (left/lower left). Location near: 47.2oS, 341.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  11. Sedimentary Rocks and Dunes (United States)


    25 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows buttes composed of light-toned, sedimentary rock exposed by erosion within a crater occurring immediately west of Schiaparelli Basin near 4.0oS, 347.9oW. Surrounding these buttes is a field of dark sand dunes and lighter-toned, very large windblown ripples. The sedimentary rocks might indicate that the crater interior was once the site of a lake. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.


    Directory of Open Access Journals (Sweden)



    Full Text Available Drifting sands in the Netherlands are the result of human over-exploitation (sod-cutting, over-grazing of woodlands and heathlands. The most important association of inland sand dune areas is the Spergulo-Corynephoretum (Corynephorion canescentis, which is poor in vascular plants, but in it older stager rich in mosses and especially lichens. In the Netherlands, the area of drifting sand is reduced dramatically in the last 70 years. mainly by afforestation and spontaneous succession.

  13. Development of cliff-top dunes in the Hengchun Peninsula of the southern Taiwan (United States)

    Ho, Lih-Der; Wong, Yi-Chia; Lüthgens, Christopher; Chyi, Shyhjeng; Yen, Jiun-Yee


    Fung-Chuei-Sha cliff-top dune is located on a 60-meter-high cliff surface in the Hengchun Peninsula of Taiwan. It is still unclear that the history of the aeolian sediment deposition on the top of the cliff, and what factors may influence the evolution of the cliff-top dune. This study aims to investigate the evolutionary history of the Fung-Chuei-Sha cliff-top dune by analyzing the grain size, CaCO3 concentration and absolute dates of the dune sediment, and the land snail species found in the deposit.The results show three phases of aeolian sand accumulation in the Fung-Chuei-Sha cliff-top dune. 1. Phase I: aeolian sediment may accumulate in the bottom of the cliff between 2800 yr BP and 2100 yr BP. 2. Phase II: the cliff-top dune accumulated a 3.1-meter-thick sediment layer from 1500 yr BP to 1300 yr BP. In this phase, dune sediment deposited in a rate of 1.55 cm/yr. The paleoclimate proxy data from the nearby area indicate that the environment was cool and dry, and the Asian winter monsoon was strong during 1500-1300 yr BP. It blew the old coastal dune deposit at the bottom of the cliff up to the cliff top, and induced the C14 age reverse phenomenon. The aeolian deposition began to stabilize because of the wetter environment in the end of the Phase II. At the same time, the stable dune formed the silt and clay layer on the surface of the dune. A layer cemented by CaCO3 may indicate the position of the palaeo-groundwater table. 3. Phase III: the phase stared from 1500-1300 yr BP to the present. A 2.4-meter-thick eolian deposit was accumulated in a rate of 0.18 cm/yr during this phase. Four kinds of land snail shells, Cyclophorus formosensis, Hemiphaedusa similaris, Platyrhaphe swinhoei, Odontartemon heudei, which prefer to live in a relatively humid environment, were commonly observed in the dune deposit, indicating the environment was wet and consequently caused a slower aeolian deposition rate at this phase. Between 1000 yr BP and 500 yr BP, there was a

  14. Seasonal erosion and restoration of Mars' northern polar dunes. (United States)

    Hansen, C J; Bourke, M; Bridges, N T; Byrne, S; Colon, C; Diniega, S; Dundas, C; Herkenhoff, K; McEwen, A; Mellon, M; Portyankina, G; Thomas, N


    Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars' CO(2) seasonal polar caps. Numerous dunes in Mars' north polar region have experienced morphological changes within a Mars year, detected in images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter. Dunes show new alcoves, gullies, and dune apron extension. This is followed by remobilization of the fresh deposits by the wind, forming ripples and erasing gullies. The widespread nature of these rapid changes, and the pristine appearance of most dunes in the area, implicates active sand transport in the vast polar erg in Mars' current climate.

  15. Bedform dynamics in a large sand-bedded river using multibeam echo sounding (United States)

    Elliott, C. M.; Jacobson, R. B.; Erwin, S.; Eric, A. B.; DeLonay, A. J.


    High-resolution repeat multibeam Echo Sounder (MBES) surveys of the Lower Missouri River in Missouri, USA demonstrate sand bedform movement at a variety of scales over a range of discharges. Understanding dune transport rates and the temporal and spatial variability in sizes across the channel has implications for how sediment transport measurements are made and for understanding the dynamics of habitats utilized by benthic organisms over a range of life stages. Nearly 800 miles of the Lower Missouri River has been altered through channelization and bank stabilization that began in the early 1900's for navigation purposes. Channelization of the Lower Missouri River has created a self-scouring navigation channel with large dunes that migrate downstream over a wide range of discharges. Until the use of MBES surveys on the Missouri River the spatial variability of dune forms in the Missouri River navigation channel was poorly understood. MBES surveys allow for visualization of a range of sand bedforms and repeat measurements demonstrate that dunes are moving over a wide range of discharges on the river. Understanding the spatial variability of dunes and dune movement across the channel and in different channel settings (bends, channel cross-overs, near channel structures) will inform emerging methods in sediment transport measurement that use bedform differencing calculations and provide context for physical bedload sediment sampling on large sand-bedded rivers. Multiple benthic fish species of interest including the endangered pallid sturgeon utilize Missouri River dune fields and adjacent regions for migration, feeding, spawning, early development and dispersal. Surveys using MBES and other hydroacoustic tools provide fisheries biologists with broad new insights into the functionality of bedforms as habitat for critical life stages of large river fish species in the Missouri River, and similar sand-bedded systems.

  16. Daily cycles in coastal dunes (United States)

    Hunter, R.E.; Richmond, B.M.


    Daily cycles of summer sea breezes produce distinctive cyclic foreset deposits in dune sands of the Texas and Oregon coasts. In both areas the winds are strong enough to transport sand only during part of the day, reach a peak during the afternoon, and vary little in direction during the period of sand transport. Cyclicity in the foreset deposits is made evident by variations in the type of sedimentary structure, the texture, and the heavy-mineral content of the sand. Some of the cyclic deposits are made up entirely of one basic type of structure, in which the character of the structure varies cyclically; for example, the angle of climb in a climbing-wind-ripple structure may vary cyclically. Other cyclic deposits are characterized by alternations of two or more structural types. Variations in the concentration of fine-grained heavy minerals, which account for the most striking cyclicity, arise mainly because of segregation on wind-rippled depositional surfaces: where the ripples climb at low angles, the coarsegrained light minerals, which accumulate preferentially on ripple crests, tend to be excluded from the local deposit. Daily cyclic deposits are thickest and best developed on small dunes and are least recognizable near the bases of large dunes. ?? 1988.

  17. Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil. (United States)

    Liang, Yan; Bradford, Scott A; Simunek, Jiri; Heggen, Marc; Vereecken, Harry; Klumpp, Erwin


    Column experiments were conducted with undisturbed loamy sand soil under unsaturated conditions (around 90% saturation degree) to investigate the retention of surfactant stabilized silver nanoparticles (AgNPs) with various input concentration (Co), flow velocity, and ionic strength (IS), and the remobilization of AgNPs by changing the cation type and IS. The mobility of AgNPs in soil was enhanced with decreasing solution IS, increasing flow rate and input concentration. Significant retardation of AgNP breakthrough and hyperexponential retention profiles (RPs) were observed in almost all the transport experiments. The retention of AgNPs was successfully analyzed using a numerical model that accounted for time- and depth-dependent retention. The simulated retention rate coefficient (k1) and maximum retained concentration on the solid phase (Smax) increased with increasing IS and decreasing Co. The high k1 resulted in retarded breakthrough curves (BTCs) until Smax was filled and then high effluent concentrations were obtained. Hyperexponential RPs were likely caused by the hydrodynamics at the column inlet which produced a concentrated AgNP flux to the solid surface. Higher IS and lower Co produced more hyperexponential RPs because of larger values of Smax. Retention of AgNPs was much more pronounced in the presence of Ca(2+) than K(+) at the same IS, and the amount of AgNP released with a reduction in IS was larger for K(+) than Ca(2+) systems. These stronger AgNP interactions in the presence of Ca(2+) were attributed to cation bridging. Further release of AgNPs and clay from the soil was induced by cation exchange (K(+) for Ca(2+)) that reduced the bridging interaction and IS reduction that expanded the electrical double layer. Transmission electron microscopy, energy-dispersive X-ray spectroscopy, and correlations between released soil colloids and AgNPs indicated that some of the released AgNPs were associated with the released clay fraction.

  18. Effect of inclusions on mechanical properties of Nb stabilized austenitic stainless steels (316Nb) with centrifugal and sand casting techniques (United States)

    Türker, Mehmet; Çapan, Levon Josef


    In this study, 316Nb stabilized austenitic stainless steel pieces were produced via sand and centrifugal casting method in order to be investigated. Heat treatments were done in two stages, and cooling was made in various quenching mediums. As-cast parts and the parts with only the highest and the lowest tensile strength were investigated. Metallographical analyses were made and the content of non-metallic inclusions was examined. Various types of carbides in microstructures were determined by means of SEM-EDX analysis. The sand casting samples had more non-metallic inclusions than the centrifugal casting ones. After the tensile tests, it was seen that these inclusions had significant effect on the mechanical properties. The tensile strength, the yield strength, the elongation and the hardness values of the centrifugal casting samples were higher than the sand casting ones. Investigating the SEM-EDX analyses, it was determined that the sand cast samples had chromium carbides in small quantities, in addition to niobium carbides. Centrifugal cast parts had niobium carbides.

  19. Climate-driven changes to dune activity since the Last Glacial Maximum in the Mu Us dune field, north-central China (United States)

    Xu, Zhiwei; Lu, Huayu; Yi, Shuangwen; Vandenberghe, Jef; Mason, Joseph A.; Zhou, Yali; Wang, Xianyan


    Dune field dynamics are influenced by the interplay between two variables that are highly sensitive to climate change: surface erodibility (affected by vegetation, moisture, and other factors) and wind transport capacity. This basic connection with climate is clearly important in assessing possible responses of dryland landscapes to climate change in the 21st century, and has also led to many studies utilizing dune sand stratigraphy to reconstruct paleoclimatic change. The relations between the dynamics of the aeolian landscape and its drivers are not yet completely understood, however. In recent ten years, we have been working in the Mu Us dune field, a typical semi-arid dune field in north-central China. Dozens of dune chronstratigraphies have been investigated to reconstruct paleoenvironmental changes in the Mu Us dune field since about 20,000 years, by optical simulated luminescence dating and analysis of proxy indexes. Mechanisms about climatic forcing of dune field variations could then be discussed. In particular, our recent study finds that the evidence of aeolian sand deposition during the Last Glacial Maximum (LGM) is scarce in not only the Mu Us but also many mid-latitude dune fields around the world, whereas abundant evidence exists for aeolian sand accumulation during the deglaciation, i.e. after about 15 ka. We find in the Mu Us dune field, aeolian sands deposited during the LGM are preserved as fills in periglacial sand wedges and beneath loess deposits near the downwind dune field margin. The scarcity of LGM dune sand elsewhere in the dune field is interpreted as the result of intensive aeolian activity without substantial net sand accumulation. Increasing sand accumulation after 15 ka, reflected by much more extensive preservation, signals a change in sand supply relative to sand transportation through the dune field. Reduced wind strength and other environmental changes including regional permafrost degradation after 15 ka transformed the dune

  20. Chronology and geochemistry of late Holocene eolian deposits in the Brandon Sand Hills, Manitoba, Canada (United States)

    Wolfe, S.A.; Muhs, D.R.; David, P.P.; McGeehin, J.P.


    Accelerator mass spectrometry and conventional radiocarbon age determinations of organic matter from paleosols indicate that the Brandon Sand Hills area of southern Manitoba has been subjected to recurrent intervals of eolian activity in the past 5000 years. Although precise regional correlations are precluded by dating uncertainties, periods of most notable paleosol development occurred around 2300 to 2000, 1400 to 1000, and 600 to 500 cal yr BP with eolian activity occurring before and after each of these periods. Episodes of eolian activity may correspond to periods of regional drought, whereas paleosols mark periods of increased moisture availability and stabilization by vegetation. The geochemistry of the eolian sands, paleosols and source sediments indicates that partial leaching of carbonates occurs from pedogenesis during humid climatic phases, and that this is probably the primary mechanism of carbonate depletion of eolian sands in this area. Recent trends in sand dune activity from historic aerial photography and early explorers' accounts indicate that the few active dunes that presently exist have stabilized at a rate of 10-20% per decade, despite several severe droughts in the 20th century. This may be attributed to pre-settlement droughts that were more severe than those in historic times although regional dune stabilization may also be related, in part, to the spread of forest cover in the past few hundred years. Crown copyright (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

  1. The Karakum and Kyzylkum sand seas dynamics; mapping and palaeoclimatic interpretations (United States)

    Maman, Shimrit; Blumberg, Dan G.; Tsoar, Haim; Porat, Naomi


    Sand seas are large basins in deserts that are mantled by wind-swept sand and that exhibit varying degrees of vegetation cover. Wilson (1973) was the first to globally map and classify sand seas. Beyond Wilson's maps, however, little research has been published regarding the Karakum and Kyzylkum sand seas of Central Asia. Wilson's maps delineate active ergs from inactive ergs based solely on precipitation. His assumption of annual average rainfall as a factor determining mobility vs. stability of sand seas is too simplistic and does not take into consideration other factors such as biogenic soil crusts and wind power, both of which are known to have major effects on the dynamics of sand dunes. Literature related to mapping and classifying the Central Asian ergs by remote sensing or sand sea classification state (stable/active) is lacking. Moreover, the palaeoclimatic significance of dunes in Central Asia is difficult to assess, as there has been few studies of dune stratigraphy and numerical ages are lacking. Optically stimulated luminescence (OSL) is a firm optical dating method that is used to determine the elapsed time since quartz grains were last exposed to sunlight, thus, their burial. Yet, absolute ages indicating mobilization and stabilization of these sands, are still inadequately known and are here under discussion. The broad concern of this research was to determine the dynamics of the Central Asian sand seas and study the palaeoclimatic changes that brought to their stabilization. As there are no reliable maps or aeolian discussion of these sands, establishment of a digital data base was initially conducted, focusing on identifying and mapping these sand seas. The vast area and inaccessibility make traditional mapping methods virtually impossible. A variety of space-borne imagery both optical and radar, with varying spectral and spatial resolutions was used. These images provided the basis for mapping sand distribution, dune forms, and vegetation cover

  2. Defrosting of Russell Crater Dunes (United States)


    These two images (at right) were acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) 39 days apart at 19:10 UTC (2:10 PM EST) on December 28, 2006 (upper right) and at 20:06 UTC (3:06 PM EST) on February 5, 2007 (lower right). These CRISM data were acquired in 544 colors covering the wavelength range from 0.36-3.92 micrometers, and show features as small as 20 meters (about 65 feet) across. Both images are false color composites of bands at 2.5, 1.5, and 1.25 micrometers, and are nearly centered at the same location, 54.875oS, 12.919oE (upper right) and 54.895oS, 12.943oE (lower right). Each image is approximately 11 kilometers (7 miles) across at its narrowest. These are part of a series of images capturing the evolution of carbon dioxide frost on the surface of the dunes in Russell Crater. Russell Crater is one of many craters in the southern highland region of Mars that contain large areas of sand dunes. The sand in these dunes has accumulated over a very long time period -- perhaps millions of years -- as wind blows over the highland terrain, picking up sand in some places and depositing in others. The topography of the craters forces the wind to blow up and over the crater rims, and the wind often isn't strong enough to keep the tiny grains suspended. This makes the sand fall to the ground and gradually pile up, and over time the surface breezes shape the sand into ripples and dunes. A similar process is at work at the Great Sand Dunes National Park and Preserve in Colorado, USA. The above left image shows a THEMIS daytime infrared mosaic of Russell Crater and the location of its (approximately) 30-kilometer wide dune field in the northeastern quadrant of the crater floor. Superposed on this view and shown enlarged at the upper right is CRISM image FRT000039DF. This CRISM image was acquired during the late Martian southern winter (solar longitude = 157.7o), and the bright blue in this false color composite indicates the presence of

  3. Field measurement and analysis of climatic factors affecting dune mobility near Grand Falls on the Navajo Nation, southwestern United States (United States)

    Bogle, Rian; Redsteer, Margaret Hiza; Vogel, John M.


    Aeolian sand covers extensive areas of the Navajo Nation in the southwestern United States. Much of this sand is currently stabilized by vegetation, although many drier parts of these Native lands also have active and partly active dunes. Current prolonged drought conditions that started in the mid-1990s are producing significant changes in dune mobility. Reactivation of regional aeolian deposits due to drought or increasing aridity from rising temperatures resulting from climate change could have serious consequences for human and animal populations, agriculture, grazing, and infrastructure. To understand and document the current and future potential for mobility, seasonally repeated surveys were used to track the location of multiple active barchan dunes. By utilizing Real-Time Kinematic GPS field surveys and simultaneously collecting in-situ meteorological data, it is possible to examine climatic parameters and seasonal variations that affect dune mobility and their relative influences. Through analysis of the recorded data, we examined the fit of various climate parameters, and demonstrate that under the current prolonged drought, wind power is the dominant factor controlling dune mobility.

  4. The albedo of martian dunes: Insights into aeolian activity and dust devil formation (United States)

    Bennett, K. A.; Fenton, L.; Bell, J. F.


    Wind is the primary geologic process currently active on the surface of Mars. Albedo variations at eight dune fields were tested based on the hypothesis that a dune's ripple migration rate is correlated to its albedo. On Mars, where the atmospheric pressure is low, dust is removed from the surface of a dune by saltating sand. Therefore, more active dunes should remove dust more efficiently than less active dunes. A dune's albedo was found to be low in the first half of the Mars year (Ls = 0-180°) and high in the second half (Ls = 180-360°) during the dusty season. Both dunes with fast- and slow-moving ripples exhibit low albedos, whereas dunes with ripples that migrate at intermediate speeds exhibit high albedos. A dune's minimum albedo does not have a simple correlation with its ripple migration rate. Instead, we propose that dust devils remove dust on slow-moving and immobile dunes, whereas saltating sand caused by strong winds removes dust on faster dunes. Albedo should not be used as a proxy for migration rate of ripples or dune activity, as it may be difficult to distinguish between fast- and slow-moving ripples on dunes that have the same albedo. The presence of dust devil tracks on a dune could indicate the dune and/or its ripples are either immobile or migrating slowly. We also propose that albedo variations on individual dune fields can reveal insight into the local wind regime.

  5. The physics of wind-blown sand and dust. (United States)

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou


    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  6. 77 FR 36871 - Endangered and Threatened Wildlife and Plants; Withdrawal of the Proposed Rule To List Dunes... (United States)


    ... western Texas, where the dunes sagebrush lizard is found, lies within a small portion of the overall... within the shinnery oak dunes. Preliminary laboratory and field experiments designed to determine sand...

  7. Formation of aeolian dunes on Anholt, Denmark since AD 1560

    DEFF Research Database (Denmark)

    Clemmensen, Lars B; Bjørnsen, Mette; Murray, Andrew


    Sand dunes on the island of Anholt (Denmark) in the middle of Kattegat form a relatively barren, temperate climate Aeolian system, locally termed the "Desert". The dunes have developed on top of a raised beach ridge system under the influence of dominant winds from westerly directions. They are r...

  8. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations (United States)

    Hayward, Rosalyn K.; Fenton, Lori; Titus, Timothy N.


    The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90°N to 90°S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ∼60,000 km2 of medium to large-size dark dune fields and ∼15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ∼70,000 km2), and north pole (NP, ∼845,000 km2) portions of the database, bringing the global total to ∼975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40°S and 80°S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

  9. Coexistence of Dunes and Humid Conditions at Titan's Tropics (United States)

    Radebaugh, Jani; Lorenz, R. D.; Lunine, J. I.; Kirk, R. L.; Ori, G. G.; Farr, T. G.; Malaska, M.; Le Gall, A.; Liu, Z. Y. C.; Encrenaz, P. J.; Paillou, P.; Hayes, A.; Lopes, R. M. C.; Turtle, E. P.; Wall, S. D.; Stofan, E. R.; Wood, C. A.; Cassini RADAR Team


    At Titan's equatorial latitudes there are tens of thousands of dunes, a landform typical of desert environments where sand does not become anchored by vegetation or fluids. Model climate simulations predict generally dry conditions at the equator and humid conditions near the poles of Titan, where lakes of methane/ethane are found. However, moderate relative methane humidity was observed at the Huygens landing site, recent rainfall was seen by Cassini ISS near the Belet Sand Sea, and a putative transient lake in Shangri-La was observed by Cassini VIMS, all of which indicate abundant fluids may be present, at least periodically, at Titan's equatorial latitudes. Terrestrial observations and studies demonstrate dunes can exist and migrate in conditions of high humidity. Active dunes are found in humid climates, indicating the movement of sand is not always prohibited by the presence of fluids. Sand mobility is related to precipitation, evaporation and wind speed and direction. If dune surfaces become wetted by rainfall or rising subsurface fluids, they can become immobilized. However, winds can act to dry the uppermost layers, freeing sands for saltation and enabling dune migration in wet conditions. Active dunes are found in tropical NE Brazil and NE Australia, where there are alternating dry and wet periods, a condition possible for Titan's tropics. Rising and falling water levels lead to the alteration of dune forms, mainly from being anchored by vegetation, but also from cementation by carbonates or clays. Studies of Titan's dunes, which could undergo anchoring of organic sediments by hydrocarbon fluids, could inform the relative strength of vegetation vs. cementation at humid dune regions on Earth. Furthermore, a comprehensive survey of dune morphologies near regions deemed low by SARTopo and stereo, where liquids may collect in wet conditions, could reveal if bodies of liquid have recently existed at Titan's tropics.

  10. Built on Rock or Sand? The Stability of Religiosity and Attitudes Towards Abortion


    Sides, John M.


    This paper examines two questions. First, how stable is religiosity over time? Second, how does religiosity affect the stability of attitudes over time? I begin by discussing several reasons why religiosity might help to stabilize attitudes. Then, drawing on the 1992-94-96 National Election Study panel, I examine the stability of religious tradition, religious movement identification, church attendance, view of scripture, and the overall importance of religion. For the most part, these indica...

  11. Low atmospheric nitrogen loads lead to grass encroachment in coastal dunes, but only on acid soils

    NARCIS (Netherlands)

    Remke, E.; Brouwer, E.; Kooijman, A.; Blindow, I.; Roelofs, J.G.M.


    The impact of atmospheric N-deposition on succession from open sand to dry, lichen-rich, short grassland, and tall grass vegetation dominated by Carex arenaria was surveyed in 19 coastal dune sites along the Baltic Sea. Coastal dunes with acid or slightly calcareous sand reacted differently to

  12. Martian sand sheet characterization and implications for formation: A case study (United States)

    Runyon, Kirby D.; Bridges, Nathan T.; Newman, Claire E.


    Windblown sand and dust dominate surface geologic processes in Mars' current environment. Besides sand dune fields, areally extensive sand sheets are common across Mars, blanketing the underlying topography with several meters of rippled sand. Earth's sand sheets commonly form upwind or cross-wind to dunes and both partially trap and source sediment to downwind dunes. In contrast, Mars' sheets are frequently located downwind of active barchan and dome sand dunes, suggesting they cannot be a sediment source for the dunes as on Earth. Here, we characterize a Martian sand sheet and its geologic context, model the regional atmospheric circulation, and more broadly consider the implications for sand sheet formation on Mars. Our case study sand sheet in central Herschel Crater is dunes, crater rims, and small hills. The sheet has actively migrating superposing ripples with estimated total sand fluxes comparable to total fluxes measured from slip faces on local, regional, and global dunes, some of which have eroded away. A smooth geologic unit interpreted as outcrops of paleo-sand sheets is adjacent to the active sheets. Our observations and atmospheric modeling-which predict wind shear stresses above the sand suspension threshold-indicate that the upwind dunes may be eroding and their sand deposited downwind in sheets in what may be a cyclical process, possibly related to Mars' axial obliquity cycles.

  13. Contribution of laser altimetry images to the geomorphology of the Late Holocene inland drift sands of the European Sand Belt

    NARCIS (Netherlands)

    Jungerius, P.D.; Riksen, M.J.P.M.


    The paper explores the possibilities of applying the analysis of laser altimetry images to Dutch drift sands. All along the European Sand Belt, which stretches from Great Britain to the Ural Mountains, Late Glacial cover sands, river dunes and other ice-age deposits were reactivated as drift sand

  14. Contribution of laser altimetry images to the geomorphology of the Late Holocene inland drift sands of the European Sand Belt

    NARCIS (Netherlands)

    Jungerius, P.D.; Riksen, M.J.P.M.


    The paper explores the possibilities of applying the analysis of laser altimetry images to Dutch drift sands. All along the European Sand Belt, which stretches from Great Britain to the Ural Mountains, Late Glacial cover sands, river dunes and other ice–age deposits were reactivated as drift sand

  15. Observation of density segregation inside migrating dunes. (United States)

    Groh, Christopher; Rehberg, Ingo; Kruelle, Christof A


    Spatiotemporal patterns in nature, such as ripples or dunes, formed by a fluid streaming over a sandy surface show complex behavior despite their simple forms. Below the surface, the granular structure of the sand particles is subject to self-organization processes, exhibiting such phenomena as reverse grading when larger particles are found on top of smaller ones. Here we report results of an experimental investigation with downscaled model dunes revealing that, if the particles differ not in size but in density, the heavier particles, surprisingly, accumulate in the central core close to the top of the dune. This finding contributes to the understanding of sedimentary structures found in nature and might be helpful to improve existing dating methods for desert dunes.

  16. Reorientation Timescales and Pattern Dynamics for Titan's Dunes: Does the Tail Wag the Dog or the Dragon? (United States)

    Hayes, A. G.; Ewing, R. C.; Cassini Radar Science Team, T.


    Fields of bedform patterns persist across many orders of magnitude, from cm-scale sub-aqueous current ripples to km-scale aeolian dunes, and form with surprisingly little difference in expression despite a range of formative environments. Because of the remarkable similarity between and among patterns, extracting information about climate and environment from these patterns is a challenge. For example, crest orientation is not diagnostic of a particular flow regime; similar patterns form under many different flow configurations. On Titan, these challenges have played out with many attempts to reconcile dune-field patterns with modeled and expected wind regimes. We propose that thinking about the change in dune orientation, rather than the orientation itself, can provide new insights on the long-term stability of the dune-field patterns and the formative wind regime. In this work, we apply the re-orientation model presented by Werner and Kocurek [Geology, 1997] to the equatorial dune fields of Titan. We measure variations in pattern parameters (crest spacing, crest length and defect density, which is the number of defect pairs per total crest length) both within and between Titan's dune fields to describe pattern maturity and identify areas where changes in dune orientation are likely to occur (or may already be occurring). Measured defect densities are similar to Earth's largest linear dune fields, such as the Namib Sand Sea and the Simpson Desert. We use measured defect densities in the Werner and Kocurek model to estimate crestline reorientation rates. We find reorientation timescales varying from ten to a hundred thousand times the average migration timescale (time to migrate a bedform one meter, ~1 Titan year according to Tokano (Aeolian Research, 2010)). Well organized patterns have the longest reorientation time scales (~10^5 migration timescales), while the topographically or spatially isolated patches of dunes show the shortest reorientation times (~10

  17. Exploring inner structure of Titan's dunes from Cassini Radar observations (United States)

    Sharma, P.; Heggy, E.; Farr, T. G.


    Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (σ0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive

  18. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars


    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M.; Stein, N.; Rubin, D. M.; Sullivan, R.; Banham, S.; Lamb, M. P.; Bridges, N. T.; Gupta, S.; Fischer, W. W.


    The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were pre...

  19. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars


    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M.; Stein, N.; Rubin, D. M.; Sullivan, R.; Banham, S.; Lamb, M. P.; Bridges, N. T.; Gupta, S.; Fischer, W. W.


    Abstract The Mars Science Laboratory rover Curiosity visited two active wind‐blown sand dunes within Gale crater, Mars, which provided the first ground‐based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial‐like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples...

  20. Aeolian sedimentation in the middle buntsandstein in the eifel north-south depression zone: Summary of the variability of sedimentary processes in a buntsandstein erg as a base for evaluation of the mutual relationships between aeolian sand seas and fluvial river systems in the mid-european buntsandstein (United States)

    Mader, Detlef

    representing residual sand not having been incorporated into larger dunes of the surrounding sand sea. Damp interdune deposits originate by trapping of loose sand that is blown across a moist playa surface as adhesion ripples and warts. The adhesion structures form both in aeolian sheet sand environments with increasing moisture of the substrate and on fluvial channel bars and stream bottoms with declining dampness during subaerial exposure. Wet interdune deposits originate by settling of suspension fines in periodic shallow lakes between the dunes following heavy ephemeral rainfall or forming by rising ground water table, and by aquatic redeposition of aeolian sand due to washout after atmospheric precipitation and alluvial invasion. Deflationary interdune deposits form by winnowing of the sandy matrix from fluvial sheet or bar conglomerates thereby leaving the dispersed gravel as more or less tightly-packed residual veneer on the degradation surface providing bed armour against further aeolian or aquatic erosion. Aeolian deposition is at the top of the Middle Buntsandstein rather rapidly terminated by fluvial inundation of the erg, erosion and partial resedimentation of dune sands and burial of the more or less degraded aeolian bedforms under a carpet of alluvial deposits. At the beginning of the Upper Buntsandstein, a change to semi-arid climate results in stabilization of emerging overbank plains and channels by palaeosol formation and plant growth thus completely inhibiting further accumulation of aeolian sands. The range of modes of origin of dune sands and interdune deposits, the spatial and temporal variability of their accumulation and preservation and the distribution of water-laid intercalations provide a base for independent evaluation of the dynamics of the aeolian system and its controls as well as for comparative assessment of the behaviour of the aeolian environment and the fluvial milieu in a system of intertonguing sand sea and river belt and of the

  1. On the formation and pattern coarsening of subaqueous ripples and dunes (United States)

    Jarvis, P.; Vriend, N. M.


    The physical mechanisms governing formation, evolution and co-interaction of sand ripples and dunes are an active topic of investigation. Previous studies employed a variety of experimental and field observations and numerical and theoretical modelling, but a unified description of the physical mechanisms governing bedform morphology remains elusive. Specifically, the interactions between bedforms are poorly understood and experimental data for validation is scarce. We present results from a novel experimental setup where we study both (1) the early stage of subaqueous ripple formation from a flat, erodible bed, and (2) the later-time evolution of the system. Experiments are carried out in a periodic 2 m diameter circular channel of width 9 cm, containing a flat bed of sand overlain by water. Counter-rotation between the channel and a submerged paddle assembly drives a shear flow eroding and transporting sediment, thereby creating bed instabilities that evolve over time. By measuring the bed profile under varying grain size and flow velocity, we calculate the initial distribution of wavelengths in the bed disturbance, the growth rate of perturbations and the temporal evolution of the wavelength spectrum. We compare the early-time results with predictions from linear stability models as well as statistically quantifying the later-time coarsening behaviour. During the coarsening stage, we observe different modes of bedform interaction: coalescence and ejection. A further set of experiments are performed to investigate this in detail, whereby we study the interaction between a pair of dunes migrating on a non-erodible surface. By varying the sizes of the two dunes, we produce a phase-diagram for the coalescence and ejection modes. Combining the results of these binary collisions with the coarsening statistics from the flat-bed experiments we can develop a more complete understanding of the physics of dune interactions, as well as how interactions govern the

  2. The fate of sand dunes of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A

    stream_size 1 stream_content_type text/plain stream_name Voices_Oceans_1996_111.pdf.txt stream_source_info Voices_Oceans_1996_111.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  3. Latitudinal and altitudinal controls of Titan's dune field morphometry (United States)

    Le Gall, A.; Hayes, A. G.; Ewing, R.; Janssen, M. A.; Radebaugh, J.; Savage, C.; Encrenaz, P.; the Cassini Radar Team


    Dune fields dominate ˜13% of Titan's surface and represent an important sink of carbon in the methane cycle. Herein, we discuss correlations in dune morphometry with altitude and latitude. These correlations, which have important implications in terms of geological processes and climate on Titan, are investigated through the microwave electromagnetic signatures of dune fields using Cassini radar and radiometry observations. The backscatter and emissivity from Titan's dune terrains are primarily controlled by the amount of interdune area within the radar footprint and are also expected to vary with the degree of the interdunal sand cover. Using SAR-derived topography, we find that Titan's main dune fields (Shangri-La, Fensal, Belet and Aztlan) tend to occupy the lowest elevation areas in Equatorial regions occurring at mean elevations between ˜-400 and ˜0 m (relative to the geoid). In elevated dune terrains, we show a definite trend towards a smaller dune to interdune ratio and possibly a thinner sand cover in the interdune areas. A similar correlation is observed with latitude, suggesting that the quantity of windblown sand in the dune fields tends to decrease as one moves farther north. The altitudinal trend among Titan's sand seas is consistent with the idea that sediment source zones most probably occur in lowlands, which would reduce the sand supply toward elevated regions. The latitudinal preference could result from a gradual increase in dampness with latitude due to the asymmetric seasonal forcing associated with Titan's current orbital configuration unless it is indicative of a latitudinal preference in the sand source distribution or wind transport capacity.

  4. Intermontane eolian sand sheet development, Upper Tulum Valley, central-western Argentina

    Directory of Open Access Journals (Sweden)

    Patrick Francisco Fuhr Dal' Bó

    Full Text Available ABSTRACTThe intermontane Upper Tulum eolian sand sheet covers an area of ca. 125 km² at north of the San Juan Province, central-western Argentina. The sand sheet is currently an aggrading system where vegetation cover, surface cementation and periodic flooding withhold the development of dunes with slipfaces. The sand sheet surface is divided into three parts according to the distribution of sedimentary features, which reflects the variation in sediment budget, water table level and periodic flooding. The central sand sheet part is the main area of eolian deposition and is largely stabilized by vegetation. The sedimentary succession is 4 m thick and records the vertical interbedding of eolian and subaqueous deposits, which have been deposited for at least 3.6 ky with sedimentation rates of 86.1 cm/ky. The construction of the sand sheet is associated with deflation of the sand-graded debris sourced by San Juan alluvial fan, which is available mainly in drier fall-winter months where water table is lower and wind speeds are periodically above the threshold velocity for sand transport. The accumulation of sedimentary bodies occurs in a stabilized eolian system where vegetation cover, thin mud veneers and surface cementation are the main agents in promoting accumulation. The preservation of the sand sheet accumulations is enabled by the progressive creation of the accommodation space in a tectonically active basin and the continuous burial of geological bodies favored by high rates of sedimentation.

  5. Seafloor Dunes: Viability as an Analog to Venusian Dunes (United States)

    Neakrase, L. D.; Titus, T. N.


    Dune fields on Venus have been limited to two potential sites discovered during the analysis of Magellan Synthetic Aperture Radar (SAR) data acquired in the 1990s. Several other potential locations could also contain possible dunes but are indistinguishable from other bedforms in the SAR data. Exact morphologies of Venusian dunes are in part speculation due to radar resolution limits that in turn mask the exact formation conditions based on radar data alone. However, near surface winds measured by the Soviet Venera landers were similar to seafloor current speeds (1-2 m s-1) responsible for ripple and dune formation on the seafloor. This similarity suggests that there is a potential for material to be moved on the Venusian surface if present, though most likely for different shear stress conditions. We examine the viability of using terrestrial seafloor dunes and ripples as a possible analog to Venus by comparison of fluid properties of traditional aeolian dune formation with that of the Venusian near-surface atmosphere and seafloor ocean current conditions throughout the literature. Typical surface materials could range in density from 2600 to 3000+ kg m-3 for carbonates or silica (seafloor) to basaltic sands (Venus?) with particle sizes on the order of 100 µm. Similarity of the flow regimes rests heavily on the density/viscosity of the flow medium as shown in historic wind tunnel studies of ripple and dune formation across planetary environments on Earth, Mars, and Venus. Kinematic velocity values could vary from 1.5x10-5 m2 s-1 for Earth atmosphere to values approaching 10-6 m2 s-1 for subaqueous or 2.5x10-7 m2 s-1 for Venus (or Venus analog wind tunnel studies). These values lead to particle Reynolds numbers (Re = Dp*u*t / nu; Dp-particle diameter, u*t-friction velocity, nu-kinematic velocity of fluid) on order of 1.7 for Earth air, 5 for water, and 10 for Venus. We plan to explore how these values affect the drag forces for a range of conditions pertaining to


    Directory of Open Access Journals (Sweden)

    M. A. Azzaoui


    Full Text Available Barchan dunes are the fastest moving sand dunes in the desert. We developed a process to detect barchans dunes on High resolution satellite images. It consisted of three steps, we first enhanced the image using histogram equalization and noise reduction filters. Then, the second step proceeds to eliminate the parts of the image having a texture different from that of the barchans dunes. Using supervised learning, we tested a coarse to fine textural analysis based on Kolomogorov Smirnov test and Youden’s J-statistic on co-occurrence matrix. As an output we obtained a mask that we used in the next step to reduce the search area. In the third step we used a gliding window on the mask and check SURF features with SVM to get barchans dunes candidates. Detected barchans dunes were considered as the fusion of overlapping candidates. The results of this approach were very satisfying in processing time and precision.

  7. Dark Streaks Over-riding Inactive Dunes (United States)


    Not all sand dunes on Mars are active in the modern martian environment. This example from the Lycus Sulci (Olympus Mons'aureole') region shows a case where small windblown dunes at the base of a slope have been over-ridden by more recent dark streaks (arrows). The dark streaks are most likely caused by what geologists call mass wasting or mass movement (landslides and avalanches are mass movements). Dark slope streaks such as these are common in dustier regions of Mars, and they appear to result from movement of extremely dry dust or sand in an almost fluidlike manner down a slope. This movement disrupts the bright dust coating on the surface and thus appears darker than the surrounding terrain.In this case, the dark slope streaks have moved up and over the dunes at the bottom of the slope, indicating that the process that moves sediment down the slope is more active (that is, it has occurred more recently and hence is more likely to occur) in the modern environment than is the movement of dunes and ripples at this location on Mars. The dunes, in fact, are probably mantled by dust. This October 1997 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture is illuminated from the left and located near 31.6oN, 134.0oW.

  8. Sand waves in environmental flows: Insights gained by coupling large-eddy simulation with morphodynamics (United States)

    Sotiropoulos, Fotis; Khosronejad, Ali


    Sand waves arise in subaqueous and Aeolian environments as the result of the complex interaction between turbulent flows and mobile sand beds. They occur across a wide range of spatial scales, evolve at temporal scales much slower than the integral scale of the transporting turbulent flow, dominate river morphodynamics, undermine streambank stability and infrastructure during flooding, and sculpt terrestrial and extraterrestrial landscapes. In this paper, we present the vision for our work over the last ten years, which has sought to develop computational tools capable of simulating the coupled interactions of sand waves with turbulence across the broad range of relevant scales: from small-scale ripples in laboratory flumes to mega-dunes in large rivers. We review the computational advances that have enabled us to simulate the genesis and long-term evolution of arbitrarily large and complex sand dunes in turbulent flows using large-eddy simulation and summarize numerous novel physical insights derived from our simulations. Our findings explain the role of turbulent sweeps in the near-bed region as the primary mechanism for destabilizing the sand bed, show that the seeds of the emergent structure in dune fields lie in the heterogeneity of the turbulence and bed shear stress fluctuations over the initially flatbed, and elucidate how large dunes at equilibrium give rise to energetic coherent structures and modify the spectra of turbulence. We also discuss future challenges and our vision for advancing a data-driven simulation-based engineering science approach for site-specific simulations of river flooding.

  9. Influence green sand system by core sand additions

    Directory of Open Access Journals (Sweden)

    N. Špirutová


    Full Text Available Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this contribution is: “How the green sand systems are influenced by core sands?”This effect is considered by determination of selected technological properties and degree of green sand system re-bonding. From the studies, which have been published yet, there is not consistent opinion on influence of core sand dilution on green sand system properties. In order to simulation of the effect of core sands on the technological properties of green sands, there were applied the most common used technologies of cores production, which are based on bonding with phenolic resin. Core sand concentration added to green sand system, was up to 50 %. Influence of core sand dilution on basic properties of green sand systems was determined by evaluation of basic industrial properties: moisture, green compression strength and splitting strength, wet tensile strength, mixture stability against staling and physical-chemistry properties (pH, conductivity, and loss of ignition. Ratio of active betonite by Methylene blue test was also determined.

  10. Changes of Bulgarian Coastal Dune Landscape under Anthropogenic Impact (United States)

    Palazov, A.; Young, R.; Stancheva, M.; Stanchev, H.


    At one time large sand dune formations were widely distributed along the Bulgarian coast. However, due to increased urbanization in the coastal zone, the areas of total dune landscape has been constantly reduced. Dunes presently comprise only 10% of the entire 412 km long coastline of Bulgaria: they embrace a total length of 38.57 km and a total area of 8.78 km2 Important tasks in dune protection are identification of landscape changes for a certain period of time and accurate delineation of sand dune areas. The present research traces sand dune changes along the Bulgarian Black Sea coast over a 27 year period (1983-2010). This period includes also the time of expanded tourist boom and overbuilding of the coastal zone, and respectively presents the largest dune changes and reductions. Based on the landscape change analyst in GIS environment the study also aims to explore the importance of different natural and human factors in driving the observed dune alterations and destruction. To detect and assess dune changes during the last 3 decades, we used data for sand dunes derived from several sources at different time periods in order to compare changes in shoreline positions, dune contours and areas: i) Topographic maps in 1:5,000 scale from 1983; ii) Modern Very High Resolution orthophotographs from 2006 and 2010; iii) QuickBird Very High Resolution satellite images from 2009; iv) Statistical information for population and tourist infrastructure is also used to consider the influence of human pressure and hotel developments on the dune dynamics. In addition, for more detailed description and visualization of main dune types, digital photos have been taken at many parts of the Bulgarian coast. The study was performed in GIS environment. Based on the results obtained the dunes along the Bulgarian coast were divided into three main groups with relation to the general factors responsible for their alterations: i) Dunes that have decreased in result of shoreline retreat

  11. Dune erosion above revetments

    NARCIS (Netherlands)

    Van Thiel de Vries, J.S.M.


    In a situation with a narrow dune, the dune base can be protected with a revetment to reduce dune erosion during extreme events. To quantify the effects of a revetment on storm impact, the functionality of the numerical storm impact model XBeach (Roelvink et al., 2009) is extended to account for the

  12. A Comparative Analysis of Sediment Transport and Deposition Trends of the Sand Seas of Titan and the Namib (United States)

    Lewis, Corbin; Bishop, Bradley; Radebaugh, Jani; Christiansen, Eric


    Despite different atmospheric and grain compositional differences, the similarity in the shape, size and spatial trends of linear dunes of the Belet Sand Sea of Titan and the Namib Sand Sea suggest that comparisons of dune parameters between them will yield a better understanding of dune forming processes. Titan’s main dune fields occupy the lowest elevation areas in the equatorial regions, with the exception of the lower Xanadu. New analyses of dune widths in the Belet Sand Sea support the correlation between dune width and latitude. Furthermore, dunes with larger widths and spacings are concentrated towards Belet’s center. This may suggest that the elevation in the topographic basin constrains dune size, or instead, that proximity to the sand sea margin influences dune size. There are larger dune-to-interdune ratios at lower elevations across Titan. This could be a result of lower wind velocities which would cause greater sediment accumulation as opposed to bypassing. In the Namib, new analyses of dune width and spacing suggest elevation exerts little to no control on general dune morphology. However, there is an increase in the variability of dune spacing as elevation increases. Our results corroborate previous studies indicating a concentration of larger linear dunes in the center of the Namib Sand Sea. This may suggest influence by variables other than elevation, such as proximity to the dune field margin or varying sand supply and wind parameters across the dune field. It’s possible that sediment supply and wind are more consistent on Titan’s surface than on Earth because we observe a predominance of linear dunes on Titan. Further analyses of dune parameters in relation to these controls, and the further delineation of these variables, will allow for a better understanding of sediment transport and deposition patterns in sand seas on Earth and Titan.

  13. Parabolic dune development modes according to shape at the southern fringes of the Hobq Desert, Inner Mongolia, China (United States)

    Guan, Chao; Hasi, Eerdun; Zhang, Ping; Tao, Binbin; Liu, Dan; Zhou, Yanguang


    Since the 1970s, parabolic dunes at the southern fringe of the Hobq Desert, Inner Mongolia, China have exhibited many different shapes (V-shaped, U-shaped, and palmate) each with a unique mode of development. In the study area, parabolic dunes are mainly distributed in Regions A, B, and C with an intermittent river running from the south to the north. We used high-resolution remote-sensing images from 1970 to 2014 and RTK-GPS measurements to study the development modes of different dune shapes; the modes are characterized by the relationship between the intermittent river and dunes, formation of the incipient dune patterns, the predominant source supply of dunes, and the primary formation of different shapes (V-shaped, U-shaped, and palmate). Most parabolic dunes in Region A are V-shaped and closer to the bank of the river. The original barchans in this region exhibit "disconnected arms" behavior. With the sand blown out of the riverbed through gullies, the nebkhas on the disconnected arms acquire the external sand source through the "fertile island effect", thereby developing into triangular sand patches and further developing into V-shaped parabolic dunes. Most parabolic dunes in Regions B and C are palmate. The residual dunes cut by the re-channelization of river from transverse dune fields on the west bank are the main sand source of Region B. The parabolic dunes in Region C are the original barchans having then been transformed. The stoss slopes of V-shaped parabolic dunes along the riverbank are gradual and the dunes are flat in shape. The dune crest of V-shaped parabolic dune is the deposition area, which forms the "arc-shaped sand ridge". Their two arms are non-parallel; the lateral airflow of the arms jointly transport sand to the middle part of dunes, resulting in a narrower triangle that gradually becomes V-shaped. Palmate parabolic dunes have a steeper stoss slope and height. The dune crest of the palmate parabolic dune is the erosion area, which forms

  14. Aeolian dune sediment flux heterogeneity in Meridiani Planum, Mars. (United States)

    Chojnacki, Matthew; Urso, Anna; Fenton, Lori K; Michaels, Timothy I


    It is now known unambiguously that wind-driven bedform activity is occurring on the surface of Mars today, including early detections of active sand dunes in Meridiani Planum's Endeavour crater. Many of these reports are only based on a few sets of observations of relatively isolated bedforms and lack regional context. Here, we investigate aeolian activity across central Meridiani Planum and test the hypothesis that dune sites surrounding Endeavour crater are also active and part of region-wide sediment migration driven by northwesterly winds. All 13 dune fields investigated clearly showed evidence for activity and the majority exhibited dune migration (average rates of 0.6 m/Earth-year). Observations indicate substantial geographic and temporal heterogeneity of dune crest fluxes across the area and per site. Locations with multiple time steps indicate dune sand fluxes can vary by a factor of five, providing evidence for short periods of rapid migration followed by near-stagnation. In contrast, measurements at other sites are nearly identical, indicating that some dunes are in a steady-state as they migrate. The observed sediment transport direction was consistent with a regional northeasterly-to-northwesterly wind regime, revealing more variations than were appreciated from earlier, more localized studies. Craters containing shallow, degraded, flat-floored interiors tended to have dunes with high sediment fluxes/activity, whereas local kilometer-scale topographic obstructions (e.g., central peaks, yardangs) were found to be inversely correlated with dune mobility. Finally, the previous, more limited detections of dune activity in Endeavour crater have been shown to be representative of a broader, region-wide pattern of dune motion.

  15. Aeolian dune sediment flux heterogeneity in Meridiani Planum, Mars (United States)

    Chojnacki, Matthew; Urso, Anna; Fenton, Lori K.; Michaels, Timothy I.


    It is now known unambiguously that wind-driven bedform activity is occurring on the surface of Mars today, including early detections of active sand dunes in Meridiani Planum's Endeavour crater. Many of these reports are only based on a few sets of observations of relatively isolated bedforms and lack regional context. Here, we investigate aeolian activity across central Meridiani Planum and test the hypothesis that dune sites surrounding Endeavour crater are also active and part of region-wide sediment migration driven by northwesterly winds. All 13 dune fields investigated clearly showed evidence for activity and the majority exhibited dune migration (average rates of 0.6 m/Earth-year). Observations indicate substantial geographic and temporal heterogeneity of dune crest fluxes across the area and per site. Locations with multiple time steps indicate dune sand fluxes can vary by a factor of five, providing evidence for short periods of rapid migration followed by near-stagnation. In contrast, measurements at other sites are nearly identical, indicating that some dunes are in a steady-state as they migrate. The observed sediment transport direction was consistent with a regional northeasterly-to-northwesterly wind regime, revealing more variations than were appreciated from earlier, more localized studies. Craters containing shallow, degraded, flat-floored interiors tended to have dunes with high sediment fluxes/activity, whereas local kilometer-scale topographic obstructions (e.g., central peaks, yardangs) were found to be inversely correlated with dune mobility. Finally, the previous, more limited detections of dune activity in Endeavour crater have been shown to be representative of a broader, region-wide pattern of dune motion.

  16. Late Holocene dune mobilizations in the northwestern Negev dunefield, Israel: A response to combined anthropogenic activity and short-term intensified windiness (United States)

    Roskin, Joel; Katra, Itzhak; Blumberg, Dan G.


    The study of the effects of past climates on ancient cultures is usually based on geologic records pertaining to rainfall and temperature fluctuations and shifts. This study proposes a paradigm of anthropogenic activity and windiness fluctuations to explain aeolian sedimentation and dune mobilization in the northwestern (NW) Negev Desert dunefield (Israel). The proposed paradigm contributes a different approach to estimating the effect of climate changes on the unprecedented agricultural and urban settlement expansion during the late Roman to Early Islamic period in the northern and central Negev Desert. This study builds upon the late Holocene cluster of luminescence ages of Roskin et al. (Age, origin and climatic controls on vegetated linear dunes in the northwestern Negev Desert (Israel), Quaternary Science Reviews 30 (2011), 1649-1674) coupled with analysis of archaeological finds and historical texts. We suggest that whereas the NW Negev dunefield was generally stable during the Holocene, intermittent dune mobilization during the late Holocene, at ~1.8 ka and mostly 1.4-1.1 ka (~600-900 CE), are linked to periods of human occupation. The idea that the last glacial dune encroachments alone that formed the NW Negev dunefield is connected to cold-event windy climates that may have intensified East Mediterranean cyclonic winter storms, cannot explain the late Holocene dune mobilizations. We conceptually model a connection between late Holocene dune mobilization, widespread anthropogenic occupation and activity, and windiness. We maintain that historic grazing and uprooting shrubs for fuel in the past by nomads and sedentary populations led to decimation of dune stabilizers, biogenic soil crusts and vegetation, causing dune erodibility and low-grade activity. Short-term events of amplified wind power in conjunction with periods of augmented anthropogenic activity that triggered major events of dune mobilization (elongation) and accretion have been preserved in the

  17. Aeolian sedimentary processes at the Bagnold Dunes, Mars: Implications for modern dune dynamics and sedimentary structures in the aeolian stratigraphic record of Mars (United States)

    Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev


    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.

  18. Mars Global Digital Dune Database; MC-1 (United States)

    Hayward, R.K.; Fenton, L.K.; Tanaka, K.L.; Titus, T.N.; Colaprete, A.; Christensen, P.R.


    The Mars Global Digital Dune Database presents data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey (USGS) Open-File Reports. The first release (Hayward and others, 2007) included dune fields from 65 degrees N to 65 degrees S ( The current release encompasses ~ 845,000 km2 of mapped dune fields from 65 degrees N to 90 degrees N latitude. Dune fields between 65 degrees S and 90 degrees S will be released in a future USGS Open-File Report. Although we have attempted to include all dune fields, some have likely been excluded for two reasons: (1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or (2) resolution of THEMIS IR coverage (100m/pixel) certainly caused us to exclude smaller dune fields. The smallest dune fields in the database are ~ 1 km2 in area. While the moderate to large dune fields are likely to constitute the largest compilation of sediment on the planet, smaller stores of sediment of dunes are likely to be found elsewhere via higher resolution data. Thus, it should be noted that our database excludes all small dune fields and some moderate to large dune fields as well. Therefore, the absence of mapped dune fields does not mean that such dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS), Mars Orbiter Camera narrow angle (MOC NA), or Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images allowed, we classified dunes and included some dune slipface measurements, which were derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. It was beyond the scope of this report to look at the detail needed to discern subtle dune modification. It was also

  19. Reorientation Timescales and Pattern Dynamics for Titan's Dunes: Does the Tail Wag the Dog or the Dragon? (United States)

    Ewing, R. C.; Hayes, A. G.; McCormick, C.; Ballard, C.; Troy, S. A.


    Fields of bedform patterns persist across many orders of magnitude, from cm-scale sub-aqueous current ripples to km-scale aeolian dunes, and form with surprisingly little difference in expression despite a range of formative environments. Because of the remarkable similarity among bedform patterns, extracting information about climate and environment from these patterns is a challenge. For example, crestline orientation is not diagnostic of a particular flow regime; similar patterns form under many different flow configurations. On Titan, these challenges have played out with many attempts to reconcile dune crestline orientation with modeled and expected wind regimes. We propose that thinking about the time-scale of the change in dune orientation, rather than the orientation itself, can provide new insights on the long-term stability of the dune-field patterns and the formative wind regime. In this work, we apply the crestline re-orientation model developed by Werner and Kocurek [Geology, 1997] to the equatorial dune fields of Titan. We use Cassini Synthetic Aperture Radar images processed through a de-noising algorithm recently developed by Lucas et al. [LPSC, 2012] to measure variations in pattern parameters (crest spacing, crest length and defect density, which is the number of defect pairs per total crest length) both within and between Titan's dune fields to describe pattern maturity and identify areas where changes in dune orientation are likely to occur (or may already be occurring). Measured defect densities are similar to Earth's largest linear dune fields, such as the Namib Sand Sea and the Simpson Desert. We use measured defect densities in the Werner and Kocurek model to estimate crestline reorientation rates. We find reorientation timescales varying from ten to a hundred thousand times the average migration timescale (time to migrate a bedform one meter, ~1 Titan year according to Tokano (Aeolian Research, 2010)). Well-organized patterns have the

  20. Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand

    NARCIS (Netherlands)

    Nolet, Corjan; Poortinga, Ate; Roosjen, Peter; Bartholomeus, Harm; Ruessink, Gerben|info:eu-repo/dai/nl/169093360


    Surface moisture is an important supply limiting factor for aeolian sand transport, which is the primary driver of coastal dune development. As such, it is critical to account for the control of surface moisture on available sand for dune building. Optical remote sensing has the potential to measure

  1. Coastal dunes of South Africa

    CSIR Research Space (South Africa)

    Tinley, KL


    Full Text Available . The descriptive section is divided into geographic setting, physical features, ecological features and dune dynamics. Emphasis is placed on the factors affecting dune formation and erosion and the biogeography and dynamics of dune vegetation. Current use...

  2. The physics of wind-blown sand and dust


    Kok, Jasper F.; Parteli, Eric J. R.; Michaels, Timothy I.; Karam, Diana Bou


    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This article presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devil...

  3. Looking Back at 'Purgatory Dune' (United States)


    The wheels of NASA's Mars Exploration Rover Opportunity dug more than 10 centimeters (4 inches) deep into the soft, sandy material of a wind-shaped ripple in Mars' Meridiani Planum region during the rover's 446th martian day, or sol (April 26, 2005). Getting the rover out of the ripple, dubbed 'Purgatory Dune,' required more than five weeks of planning, testing, and carefully monitored driving. Opportunity used its navigation camera to capture this look back at the ripple during sol 491 (June 11, 2005), a week after the rover drove safely onto firmer ground. The ripple that became a sand trap is about one-third meter (one foot) tall and 2.5 meters (8 feet) wide.

  4. Dunes, above and beyond

    NARCIS (Netherlands)

    Puijenbroek, Marinka E.B.


    Coastal dunes occur along the sandy shores of most continents where they serve as coastal defence against flooding, provide areas for recreation, store drinking water and harbour unique biodiversity. Coastal dunes and the services they provide are threatened by climate-induced sea-level rise.

  5. Barrier island morphology and sediment characteristics affect the recovery of dune building grasses following storm-induced overwash. (United States)

    Brantley, Steven T; Bissett, Spencer N; Young, Donald R; Wolner, Catherine W V; Moore, Laura J


    Barrier islands are complex and dynamic systems that provide critical ecosystem services to coastal populations. Stability of these systems is threatened by rising sea level and the potential for coastal storms to increase in frequency and intensity. Recovery of dune-building grasses following storms is an important process that promotes topographic heterogeneity and long-term stability of barrier islands, yet factors that drive dune recovery are poorly understood. We examined vegetation recovery in overwash zones on two geomorphically distinct (undisturbed vs. frequently overwashed) barrier islands on the Virginia coast, USA. We hypothesized that vegetation recovery in overwash zones would be driven primarily by environmental characteristics, especially elevation and beach width. We sampled species composition and environmental characteristics along a continuum of disturbance from active overwash zones to relict overwash zones and in adjacent undisturbed environments. We compared species assemblages along the disturbance chronosequence and between islands and we analyzed species composition data and environmental measurements with Canonical Correspondence Analysis to link community composition with environmental characteristics. Recovering and geomorphically stable dunes were dominated by Ammophila breviligulata Fernaud (Poaceae) on both islands while active overwash zones were dominated by Spartina patens (Aiton) Muhl. (Poaceae) on the frequently disturbed island and bare sand on the less disturbed island. Species composition was associated with environmental characteristics only on the frequently disturbed island (p = 0.005) where A. breviligulata was associated with higher elevation and greater beach width. Spartina patens, the second most abundant species, was associated with larger sediment grain size and greater sediment size distribution. On the less frequently disturbed island, time since disturbance was the only factor that affected community

  6. Barrier island morphology and sediment characteristics affect the recovery of dune building grasses following storm-induced overwash.

    Directory of Open Access Journals (Sweden)

    Steven T Brantley

    Full Text Available Barrier islands are complex and dynamic systems that provide critical ecosystem services to coastal populations. Stability of these systems is threatened by rising sea level and the potential for coastal storms to increase in frequency and intensity. Recovery of dune-building grasses following storms is an important process that promotes topographic heterogeneity and long-term stability of barrier islands, yet factors that drive dune recovery are poorly understood. We examined vegetation recovery in overwash zones on two geomorphically distinct (undisturbed vs. frequently overwashed barrier islands on the Virginia coast, USA. We hypothesized that vegetation recovery in overwash zones would be driven primarily by environmental characteristics, especially elevation and beach width. We sampled species composition and environmental characteristics along a continuum of disturbance from active overwash zones to relict overwash zones and in adjacent undisturbed environments. We compared species assemblages along the disturbance chronosequence and between islands and we analyzed species composition data and environmental measurements with Canonical Correspondence Analysis to link community composition with environmental characteristics. Recovering and geomorphically stable dunes were dominated by Ammophila breviligulata Fernaud (Poaceae on both islands while active overwash zones were dominated by Spartina patens (Aiton Muhl. (Poaceae on the frequently disturbed island and bare sand on the less disturbed island. Species composition was associated with environmental characteristics only on the frequently disturbed island (p = 0.005 where A. breviligulata was associated with higher elevation and greater beach width. Spartina patens, the second most abundant species, was associated with larger sediment grain size and greater sediment size distribution. On the less frequently disturbed island, time since disturbance was the only factor that affected

  7. Relating sedimentary processes in the Bagnold Dunes to the development of crater basin aeolian stratification (United States)

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M. D.; Stein, N.; Rubin, D. M.; Sullivan, R. J., Jr.; Banham, S.; Thomas, N. M.; Lamb, M. P.; Gupta, S.; Fischer, W. W.


    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under martian conditions. Exploration of the Bagnold Dunes by the Curiosity Rover in Gale Crater, Mars provided the first opportunity to make in situ observations of martian dunes from the grain-to-dune scale. We used the suite of cameras on Curiosity, including Navigation Camera, Mast Camera, and Mars Hand Lens Imager. We measured grainsize and identified sedimentary processes similar to processes on terrestrial dunes, such as grainfall, grainflow, and impact ripples. Impact ripple grainsize had a median of 0.103 mm. Measurements of grainflow slopes indicate a relaxation angle of 29° and grainfall slopes indicate critical angles of at least 32°. Dissimilar to terrestrial dunes, large, meter-scale ripples form on all slopes of the dunes. The ripples form both sinuous and linear crestlines, have symmetric and asymmetric profiles, range in height between 12cm and 28cm, and host grainfall, grainflow, and impact ripples. The largest ripples are interpreted to integrate the annual wind cycle within the crater, whereas smaller large ripples and impact ripples form or reorient to shorter term wind cycling. Assessment of sedimentary processes in combination with dune type across the Bagnold Dunes shows that dune-field pattern development in response to a complex crater-basin wind regime dictates the distribution of geomorphic processes. From a stratigraphic perspective, zones of highest potential accumulation correlate with zones of wind convergence, which produce complex winds and dune field patterns thereby

  8. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack


    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  9. Dune mobility and aridity at the desert margin of northern China at a time of peak monsoon strength (United States)

    Mason, J.A.; Lu, H.; Zhou, Y.; Miao, X.; Swinehart, J.B.; Liu, Z.; Goble, R.J.; Yi, S.


    Wind-blown sands were mobile at many sites along the desert margin in northern China during the early Holocene (11.5-8 ka ago), based on extensive new numerical dating. This mobility implies low effective moisture at the desert margin, in contrast to growing evidence for greater than modern monsoon precipitation at the same time in central and southern China. Dry conditions in the early Holocene at the desert margin can be explained through a dynamic link between enhanced diabatic heating in the core region of the strengthened monsoon and increased subsidence in drylands to the north, combined with high evapotranspiration rates due to high summer temperatures. After 8 ka ago, as the monsoon weakened and lower temperatures reduced evapotranspiration, eolian sands were stabilized by vegetation. Aridity and dune mobility at the desert margin and a strengthened monsoon can both be explained as responses to high summer insolation in the early Holocene. ?? 2009 Geological Society of America.

  10. Provenance and recycling of Arabian desert sand (United States)

    Garzanti, Eduardo; Vermeesch, Pieter; Andò, Sergio; Vezzoli, Giovanni; Valagussa, Manuel; Allen, Kate; Kadi, Khalid A.; Al-Juboury, Ali I. A.


    This study seeks to determine the ultimate origin of aeolian sand in Arabian deserts by high-resolution petrographic and heavy-mineral techniques combined with zircon U-Pb geochronology. Point-counting is used here as the sole method by which unbiased volume percentages of heavy minerals can be obtained. A comprehensive analysis of river and wadi sands from the Red Sea to the Bitlis-Zagros orogen allowed us to characterize all potential sediment sources, and thus to quantitatively constrain provenance of Arabian dune fields. Two main types of aeolian sand can be distinguished. Quartzose sands with very poor heavy-mineral suites including zircon occupy most of the region comprising the Great Nafud and Rub' al-Khali Sand Seas, and are largely recycled from thick Lower Palaeozoic quartzarenites with very minor first-cycle contributions from Precambrian basement, Mesozoic carbonate rocks, or Neogene basalts. Instead, carbonaticlastic sands with richer lithic and heavy-mineral populations characterize coastal dunes bordering the Arabian Gulf from the Jafurah Sand Sea of Saudi Arabia to the United Arab Emirates. The similarity with detritus carried by the axial Tigris-Euphrates system and by transverse rivers draining carbonate rocks of the Zagros indicates that Arabian coastal dunes largely consist of far-travelled sand, deposited on the exposed floor of the Gulf during Pleistocene lowstands and blown inland by dominant Shamal northerly winds. A dataset of detrital zircon U-Pb ages measured on twelve dune samples and two Lower Palaeozoic sandstones yielded fourteen identical age spectra. The age distributions all show a major Neoproterozoic peak corresponding to the Pan-African magmatic and tectonic events by which the Arabian Shield was assembled, with minor late Palaeoproterozoic and Neoarchean peaks. A similar U-Pb signature characterizes also Jafurah dune sands, suggesting that zircons are dominantly derived from interior Arabia, possibly deflated from the Wadi al

  11. Silica nanoparticles for fines stabilization in Ottawa sand packed beds; Uso de nanopartículas de sílice para la estabilización de finos en lechos empacados de arena Ottawa

    Directory of Open Access Journals (Sweden)

    Farid Bernardo Cortes

    Full Text Available To determine the problem of fines migration on packed beds and offer a possible solution for this issue, an adsorptive system of packed beds was developed for experimental simulation of fines migration and stabilization by using silica nanoparticles. The adsorbent beds were prepared with Ottawa sand and glass spheres (average radius of 0.53 mm. Three different sand beds were used in the investigation: clean sand (water- wet system, sand submitted to a damage process using an extra-heavy Colombian crude oil (oil-wet system and sand treated with silica nanoparticles (5-15 nm. Fines suspension was prepared with alumina nanoparticles (50 nm and distilled water. Results show that beds treated with silica nanoparticles present idealized patterns for the rupture curve, indicating that silica nanoparticles capture and retain fines, decreasing fines migration due to their adsorption capacity.

  12. Parabolic dune reactivation and migration at Napeague, NY, USA: Insights from aerial and GPR imagery (United States)

    Girardi, James D.; Davis, Dan M.


    Observations from mapping since the 19th century and aerial imagery since 1930 have been used to study changes in the aeolian geomorphology of coastal parabolic dunes over the last ~ 170 years in the Walking Dune Field, Napeague, NY. The five large parabolic dunes of the Walking Dune Field have all migrated across, or are presently interacting with, a variably forested area that has affected their migration, stabilization and morphology. This study has concentrated on a dune with a particularly complex history of stabilization, reactivation and migration. We have correlated that dune's surface evolution, as revealed by aerial imagery, with its internal structures imaged using 200 MHz and 500 MHz Ground Penetrating Radar (GPR) surveys. Both 2D (transect) and high-resolution 3D GPR imagery image downwind dipping bedding planes which can be grouped by apparent dip angle into several discrete packages of beds that reflect distinct decadal-scale episodes of dune reactivation and growth. From aerial and high resolution GPR imagery, we document a unique mode of reactivation and migration linked to upwind dune formation and parabolic dune interactions with forest trees. This study documents how dune-dune and dune-vegetation interactions have influenced a unique mode of blowout deposition that has alternated on a decadal scale between opposite sides of a parabolic dune during reactivation and migration. The pattern of recent parabolic dune reactivation and migration in the Walking Dune Field appears to be somewhat more complex, and perhaps more sensitive to subtle environmental pressures, than an idealized growth model with uniform deposition and purely on-axis migration. This pattern, believed to be prevalent among other parabolic dunes in the Walking Dune Field, may occur also in many other places where similar observational constraints are unavailable.

  13. Inside ProtoDune

    CERN Multimedia

    Brice, Maximilien


    The protoDUNE experimental program is designed to test and validate the technologies and design that will be applied to the construction of the DUNE Far Detector at the Sanford Underground Research Facility (SURF). The protoDUNE detectors will be run in a dedicated beam line at the CERN SPS accelerator complex. The rate and volume of data produced by these detectors will be substantial and will require extensive system design and integration effort. As of Fall 2015, "protoDUNE" is the official name for the two apparatuses to be used in CERN beam test: single-phase and dual-phase LArTPC detectors. Each received a formal CERN experiment designation: NP02 for the dual-phase detector. NP04 for single-phase detector.

  14. Late Quaternary Soil Development Enhances Aeolian Landform Stability, Moenkopi Plateau, Southern Colorado Plateau, USA

    Directory of Open Access Journals (Sweden)

    Amy L. Ellwein


    Full Text Available The Moenkopi dune field in northeastern Arizona covers roughly 1250 km2, but most of the field is inactive. Dune deposits on the Moenkopi Plateau (MP have remained inactive throughout the Holocene despite periods of elevated aridity or historical reductions of vegetation cover by livestock grazing. We argue that this inactivity is not because of any diminishment of driving forces in the aeolian system (e.g., insufficient winds, but rather because of increased cohesion due to soil development that enhances resistance to wind erosion. Abundant aeolian sediments were supplied to the Black Mesa region by the Little Colorado River and its tributaries during the late Pleistocene (MIS 2 and 3, which enabled the development of climbing dunes and transport of sand over the Adeii Eechii Cliffs and onto the MP. These deposits (Qe1 stabilized during the Pleistocene/Holocene climatic transition (~12–7.5 ka because of reduced sediment supply and high dust flux which resulted in rapid soil formation. Erosion of climbing dunes/sand ramps from the Adeii Eechii Cliffs eliminated delivery of large quantities of new sand to the MP during the mid to late Holocene. Soil development within the Qe1 mantle increased sediment cohesion and prevented widespread aeolian reactivation during the Holocene, despite the occurrence of conditions (wind speed, climate, etc. under which dune reactivation would be expected. Drylands comprise roughly 40% of the land cover of earth and climate models predict their expansion. Pedogenic stability is not commonly considered in climate-based models used to predict aeolian activity. To improve predictions of future dune activity in drylands, the degree of soil development in aeolian deposits should be considered when evaluating sediment availability in aeolian systems.

  15. The Mediterranean Coastal Dunes in Egypt: An Endangered Landscape (United States)

    Batanouny, K. H.


    The Mediterranean coast in Egypt extends almost 900 km, the major part of which is bordered by sand dunes of different natures and types. Along the coastline between Alexandria and El-Alamein, a distance of some 100 km, the sand dunes represent a particular landscape with special characteristics and features, and consequently plants with particular attributes. In this area, the belt of sand dunes has developed immediately south of the shore and these dunes may rise up to 10 m in height and extend about 0·5-1·5 km inland from the shore. These dunes are famous as a habitat for the fig (Ficus carica L.) cultivation depending on the irregular rainfall. They also represent a landing station and a cross-road for birds such as quail migrating from Europe in the north. In the past, summer resort areas were confined to limited areas with few people, these same areas support the growth of some important plant species, for example, sand binders, medicinal and range plants. For more than two decades, there has been considerable socio-economic change and an open-door policy in the economy of the country has been adopted. One of the consequences of this change is that a great part of the coastal dune belt west of Alexandria till El-Alamein, has been subjected to destruction, due to the continuous construction of summer resort villages. These were built at a distance of about 100 m of the shoreline, extending 400-600 m inland and a breadth of 400 m or more along the shoreline. The area already covered by the dunes is now almost occupied by new buildings, gardens and other infrastructure. The consequences of these human activities are numerous and include impacts on the soil, water resources, the flora and the fauna, migrating birds, trends of the indigenous people, and the cultural environment. The present paper gives a concise environmental setting of the dune belt before the advent of the new activities, and the socio-economic and political attitudes which threaten the dunes

  16. Monitoring of desert dune topography by multi angle sensors (United States)

    Yun, J.; Kim, J.; Choi, Y.; Yun, H.


    Nowadays, the sandy desert is rapidly expanding world widely and results in a lot of risks in the socio-econimical aspects as well as the anthropogenic activities. For example, the increasing occurrences of mineral dust storm which presumably originated from the sandy deserts in northwest China become a serious threat in human activities as well as public health over Far East Asian area as the interpretation by the MODIS analysis (Zhang et al., 2007) and the particle trajectory simulation with HYSPLYT (HYbrid Single-Particle Lagrangian Integrated Trajectory) (Kim et al., 2011) identified. Since the sand dune activity has been recognized as an essential indicator of the progressive desertification, it is important to establish the monitoring method for the variations of topographic properties by the dune activities such as local roughness. Thus it will provide the crucial data about the extent and the transition of sandy desert. For example, it is well known the aerodynamic roughness lengths Zo which can be driven from the specialized sensor such as POLDER (POLarization and Directionality of the Earth's Reflectances) is essential to understand desert dune characteristics. However, for the multi temporal observation of dune fields, the availability of data set to extract Zo is limited. Therefore, we employed MISR (Multi angle imaging Spectro Radiometer) image sequence to extract multi angle topographic parameters such as NDAI (Normalized Difference Angular Index) or the variation of radiance with the viewing geometry which are representing the characteristics of target desert topography instead of Zo. In our approach, NDAI were expanded to the all viewing angles and then compared over the target sandy desert and the surrounding land covers. It showed very strong consistencies according to the land cover type and especially over the dynamic dune fields. On the other hands, the variation of NDAIs of sandy desert combining with the metrological observations were

  17. Ecologia do forrageio por Cyphomyrmex morschi Emery (Hymenoptera, Formicidae em vegetação de restinga no Sul do Brasil Foraging ecology of Cyphomyrmex morschi Emery (Hymenoptera, Formicidae in sand dune vegetation at Southern Brazil

    Directory of Open Access Journals (Sweden)

    Benedito Cortês Lopes


    Full Text Available Foram amostrados 400 ninhos de Cyphomyrmex morschi Emery, 1887 entre 1997 e 1998, nas dunas da praia da Joaquina, Florianópolis, SC, para a verificação do material transportado ao ninho. Estas formigas utilizam material de origem vegetal ou animal (fezes de lagartas de Lepidoptera ou partes de corpos de besouros ou formigas ou mesmo material não identificado que são introduzidos no ninho para o cultivo do fungo. Assim, do ponto de vista do papel ecológico desempenhado, pode-se considerar C. morschi como uma espécie detritófaga.A total of 400 nests of Cyphomyrmex morschi Emery, 1887 was evaluated between 1997 and 1998 at the dunes of the Joaquina Beach, Florianópolis, Santa Catarina, in order to verify the substrate brought back to the nests. These ants use vegetable or animal material (excrements of lepidopteran larvae or carcasses of beetles or ants or even not identified material that are used to culture the fungus. Thus, ecologically speaking, C. morschi can be considered a detritiphagous species.

  18. Martian Dune Ripples as Indicators of Recent Surface Wind Patterns (United States)

    Johnson, M.; Zimbelman, J. R.


    Sand dunes have been shown to preserve the most recent wind patterns in their ripple formations. This investigation continues the manual documentation of ripples on Martian dunes in order to assess surface wind flow. Study sites investigated must have clear HiRISE frames and be able to represent diverse locations across the surface, decided primarily by their spread of latitude and longitude values. Additionally, frames with stereo pairs are preferred because of their ability to create digital terrain models. This will assist in efforts to relate dune slopes and obstacles to ripple patterns. The search and analysis period resulted in 40 study sites with mapped ripples. Lines were drawn perpendicular to ripple crests across three adjacent ripples in order to document both ripple wavelength from line length and inferred wind direction from azimuth. It is not possible to infer a unique wind direction from ripple orientation alone and therefore these inferred directions have a 180 degree ambiguity. Initial results from all study sites support previous observations that the Martian surface has many dune types in areas with adequate sand supply. The complexity of ripple patterns varies greatly across sites as well as within individual sites. Some areas of uniform directionality for hundreds of kilometers suggest a unimodal wind regime while overlapping patterns suggest multiple dominant winds or seasonally varying winds. In most areas, form flow related to dune shape seems to have a large effect on orientation and must be considered along with the dune type. As long as the few steep slip faces on these small dunes are avoided, form flow can be considered the dominant cause of deviation from the regional wind direction. Regional results, wind roses, and comparisons to previous work will be presented for individual sites.

  19. White Sands, New Mexico as seen from STS-60 (United States)


    White Sands National Monument (Park) is easily recognized in the center of this near-vertical color photograph. White Sands is the world's largest gypsum dune field. It represents an alabaster sea that covers nearly 300 square miles. At the southwest corner of the White Sands is dry lake, Lucero. In terms of cultural features the city of Alamogordo and Holloman Air Force Base can be seen with great clarity on this photograph.

  20. The Influence of Physical & Biological Cohesion on Dune Development (United States)

    Schindler, Robert; Parsons, Daniel; Ye, Leiping; Baas, Jaco; Hope, Julie; Manning, Andy; Malarkey, Jonathan; Aspden, Rebecca; Lichtman, Dougal; Thorne, Peter; Peakall, Jeff; Patterson, David; Davies, Alan; Bass, Sarah; O'Boyle, Louise


    Existing predictions for dune bedforms are based on simplified physical parameters, with assumptions that sediment consists only of cohesionless sand. They do not include the complexities of mud: physical cohesion is imparted by cohesive clays and biological cohesion is created by the presence of organisms which, among other things, generate extra-cellular polymers (EPS). Using controlled experiments we show the profound influence on the size, development and equilibrium morphology of dune bedforms of both physical and biological cohesion. Experiments were completed at the Total Environment Simulator facility at Hull University, UK in a 10 x 2 m channel. A flat sediment bed was laid to 0.15 m depth. A unidirectional flow of 0.25 m depth was passed over the sediment for 10 h. In Phase 1 eight different sand:clay mixes were examined, where clay content was 18.0 - 2.1%. In Phase 2, the same mixtures were used with additions of EPS. A velocity of 0.8 m s-1 was used throughout, corresponding to the dune regime for the selected sand. Bedform development was monitored via ultrasonic ranging transducers, sediment cores and water samples. Phase 1 showed substantial differences in bedform type with clay content, with size inversely related to clay content, e.g. Run 1 (18.0% clay) generated 2D ripples; Run 7 (2.1% clay) generated 3D dunes. Transitional forms, included dunes with superimposed ripples, were present between these extremes. In Phase 2, EPS contents equivalent to only 1/30th of 1% by mass prevented the development of bedforms. Bedforms were generated in sediments with 1/20th and 1/10th of 1%, with an inverse relationship between bedform size and EPS content. Comparison of Phase 1 and Phase 2 runs with equal sand:mud ratios reveals that EPS acts to severely inhibit bedform development compared with the mud-only case. We can conclude that (1) the ripple-dune transition can occur under constant flow conditions, i.e. clay content may dictate bedform type, that (2) EPS

  1. Linking restoration ecology with coastal dune restoration (United States)

    Lithgow, D.; Martínez, M. L.; Gallego-Fernández, J. B.; Hesp, P. A.; Flores, P.; Gachuz, S.; Rodríguez-Revelo, N.; Jiménez-Orocio, O.; Mendoza-González, G.; Álvarez-Molina, L. L.


    Restoration and preservation of coastal dunes is urgently needed because of the increasingly rapid loss and degradation of these ecosystems because of many human activities. These activities alter natural processes and coastal dynamics, eliminate topographic variability, fragment, degrade or eliminate habitats, reduce diversity and threaten endemic species. The actions of coastal dune restoration that are already taking place span contrasting activities that range from revegetating and stabilizing the mobile substrate, to removing plant cover and increasing substrate mobility. Our goal was to review how the relative progress of the actions of coastal dune restoration has been assessed, according to the ecosystem attributes outlined by the Society of Ecological Restoration: namely, integrity, health and sustainability and that are derived from the ecological theory of succession. We reviewed the peer reviewed literature published since 1988 that is listed in the ISI Web of Science journals as well as additional references, such as key books. We exclusively focused on large coastal dune systems (such as transgressive and parabolic dunefields) located on natural or seminatural coasts. We found 150 articles that included "coastal dune", "restoration" and "revegetation" in areas such as title, keywords and abstract. From these, 67 dealt specifically with coastal dune restoration. Most of the studies were performed in the USA, The Netherlands and South Africa, during the last two decades. Restoration success has been assessed directly and indirectly by measuring one or a few ecosystem variables. Some ecosystem attributes have been monitored more frequently (ecosystem integrity) than others (ecosystem health and sustainability). Finally, it is important to consider that ecological succession is a desirable approach in restoration actions. Natural dynamics and disturbances should be considered as part of the restored system, to improve ecosystem integrity, health and

  2. Planet-wide sand motion on mars (United States)

    Bridges, N.T.; Bourke, M.C.; Geissler, P.E.; Banks, M.E.; Colon, C.; Diniega, S.; Golombek, M.P.; Hansen, C.J.; Mattson, S.; McEwen, A.S.; Mellon, M.T.; Stantzos, N.; Thomson, B.J.


    Prior to Mars Reconnaissance Orbiter data, images of Mars showed no direct evidence for dune and ripple motion. This was consistent with climate models and lander measurements indicating that winds of sufficient intensity to mobilize sand were rare in the low-density atmosphere. We show that many sand ripples and dunes across Mars exhibit movement of as much as a few meters per year, demonstrating that Martian sand migrates under current conditions in diverse areas of the planet. Most motion is probably driven by wind gusts that are not resolved in global circulation models. A past climate with a thicker atmosphere is only required to move large ripples that contain coarse grains. ?? 2012 Geological Society of America.

  3. Probabilistic estimation of dune retreat on the Gold Coast, Australia (United States)

    Palmsten, Margaret L.; Splinter, Kristen D.; Plant, Nathaniel G.; Stockdon, Hilary F.


    Sand dunes are an important natural buffer between storm impacts and development backing the beach on the Gold Coast of Queensland, Australia. The ability to forecast dune erosion at a prediction horizon of days to a week would allow efficient and timely response to dune erosion in this highly populated area. Towards this goal, we modified an existing probabilistic dune erosion model for use on the Gold Coast. The original model was trained using observations of dune response from Hurricane Ivan on Santa Rosa Island, Florida, USA (Plant and Stockdon 2012. Probabilistic prediction of barrier-island response to hurricanes, Journal of Geophysical Research, 117(F3), F03015). The model relates dune position change to pre-storm dune elevations, dune widths, and beach widths, along with storm surge and run-up using a Bayesian network. The Bayesian approach captures the uncertainty of inputs and predictions through the conditional probabilities between variables. Three versions of the barrier island response Bayesian network were tested for use on the Gold Coast. One network has the same structure as the original and was trained with the Santa Rosa Island data. The second network has a modified design and was trained using only pre- and post-storm data from 1988-2009 for the Gold Coast. The third version of the network has the same design as the second version of the network and was trained with the combined data from the Gold Coast and Santa Rosa Island. The two networks modified for use on the Gold Coast hindcast dune retreat with equal accuracy. Both networks explained 60% of the observed dune retreat variance, which is comparable to the skill observed by Plant and Stockdon (2012) in the initial Bayesian network application at Santa Rosa Island. The new networks improved predictions relative to application of the original network on the Gold Coast. Dune width was the most important morphologic variable in hindcasting dune retreat, while hydrodynamic variables, surge and

  4. Geochemical evidence for a complex origin for the Kelso dunes, Mojave National Preserve, California USA (United States)

    Muhs, Daniel; Lancaster, Nicholas; Skipp, Gary L.


    The Kelso Dune field in southern California is intriguing because although it is of limited areal extent (~ 100 km2), it has a wide variety of dune forms and contains many active dunes (~ 40 km2), which is unusual in the Mojave Desert. Studies over the past eight decades have concluded that the dunes are derived primarily from a single source, Mojave River alluvium, under a dominant, westerly-to-northwesterly wind regime. The majority of these studies did not, however, present data to support the Mojave River as the only source. We conducted mineralogical and geochemical studies of most of the 14 geomorphically defined dune groups of the Kelso Dune field as well as potential sand sources, alluvial sediments from the surrounding mountain ranges. Results indicate that sands in the nine western dune groups have K/Rb and K/Ba (primarily from K-feldspar) compositions that are indistinguishable from Mojave River alluvium (westerly/northwesterly winds) and Budweiser Wash alluvium (southwesterly winds), permitting an interpretation of two sources. In contrast, sands from the five eastern dune groups have K/Rb and K/Ba values that indicate significant inputs from alluvial fan deposits of the Providence Mountains. This requires either rare winds from the east or southeast or, more likely, aeolian reworking of distal Providence Mountain fan sediments by winds from the west, at a rate greater than input from the Mojave River or other western sources. The results indicate that even a small dune field can have a complex origin, either from seasonally varying winds or complex alluvial-fan-dune interaction. Application of K/Rb and K/Ba in K-feldspar as a provenance indicator could be used in many of the world's ergs or sand seas, where dune origins are still not well understood or are controversial. Four examples are given from Africa and the Middle East where such an approach could yield useful new information about dune sand provenance.

  5. Effect of curing time on selected properties of soil stabilized with fly ash, marble dust and waste sand for road sub-base materials. (United States)

    Firat, Seyhan; Khatib, Jamal M; Yilmaz, Gulgun; Comert, A T


    The properties of sub-base filling materials in highway construction are essential, as they can determine the performance of the road in service. Normally, the existing materials are removed and replaced with new materials that have adequate load-bearing capacity. Rising environmental concern and new environmental legislations have made construction professionals consider other methods. These methods include stabilizing the existing materials with other additives to improve their performance. Additives can be waste materials generated by different industries. In this work, the existing excavated soil is stabilized with waste materials. The wastes consisted of fly ash, marble dust and waste sand. The percentage addition of waste materials was 5%, 10%, 15% and 20% (by mass) of the existing soil. The soil/waste specimens were cured for 1, 7, 28, 56, 90 and 112 days before testing. Testing included the dry unit weight and unconfined compressive strength ( q u ) as well as X-ray diffraction analysis and scanning electron microscopy observation. Also, the California Bearing Ratio values were obtained and are reported in this investigation. The results showed that the q u values increased with the increase in waste materials content. Also, there is tendency for the dry unit weight to increase with the increase in waste materials.

  6. A complex origin for the Kelso Dunes, Mojave National Preserve, California, USA: A case study using a simple geochemical method with global applications (United States)

    Muhs, Daniel R.; Lancaster, Nicholas; Skipp, Gary L.


    The Kelso Dune field in southern California is intriguing because although it is of limited areal extent ( 100 km2), it has a wide variety of dune forms and contains many active dunes ( 40 km2), which is unusual in the Mojave Desert. Studies over the past eight decades have concluded that the dunes are derived primarily from a single source, Mojave River alluvium, under a dominant, westerly-to-northwesterly wind regime. The majority of these studies did not, however, present data to support the Mojave River as the only source. We conducted mineralogical and geochemical studies of most of the 14 geomorphically defined dune groups of the Kelso Dune field as well as potential sand sources, alluvial sediments from the surrounding mountain ranges. Results indicate that sands in the nine western dune groups have K/Rb and K/Ba (primarily from K-feldspar) compositions that are indistinguishable from Mojave River alluvium (westerly/northwesterly winds) and Budweiser Wash alluvium (southwesterly winds), permitting an interpretation of two sources. In contrast, sands from the five eastern dune groups have K/Rb and K/Ba values that indicate significant inputs from alluvial fan deposits of the Providence Mountains. This requires either rare winds from the east or southeast or, more likely, aeolian reworking of distal Providence Mountain fan sediments by winds from the west, at a rate greater than input from the Mojave River or other western sources. The results indicate that even a small dune field can have a complex origin, either from seasonally varying winds or complex alluvial-fan-dune interaction. Application of K/Rb and K/Ba in K-feldspar as a provenance indicator could be used in many of the world's ergs or sand seas, where dune origins are still not well understood or are controversial. Four examples are given from Africa and the Middle East where such an approach could yield useful new information about dune sand provenance.

  7. Geomorphology and drift potential of major aeolian sand deposits in Egypt (United States)

    Hereher, Mohamed E.


    Aeolian sand deposits cover a significant area of the Egyptian deserts. They are mostly found in the Western Desert and Northern Sinai. In order to understand the distribution, pattern and forms of sand dunes in these dune fields it is crucial to analyze the wind regimes throughout the sandy deserts of the country. Therefore, a set of wind data acquired from twelve meteorological stations were processed in order to determine the drift potential (DP), the resultant drift potential (RDP) and the resultant drift direction (RDD) of sand in each dune field. The study showed that the significant aeolian sand deposits occur in low-energy wind environments with the dominance of linear and transverse dunes. Regions of high-energy wind environments occur in the south of the country and exhibit evidence of deflation rather than accumulation with the occurrence of migratory crescentic dunes. Analysis of the sand drift potentials and their directions help us to interpret the formation of major sand seas in Egypt. The pattern of sand drift potential/direction suggests that the sands in these seas might be inherited from exogenous sources.

  8. Barchan dunes on Pluto?

    Directory of Open Access Journals (Sweden)

    Parteli Eric J. R.


    Full Text Available We show that the orientation and morphology of bedforms occurring on top of Pluto’s smooth ice coats are consistent with an aeolian origin under conditions of unidirectional flow. From scaling relations for dune size as a function of attributes of atmosphere and sediments, we find that the average diameter of the granular particles constituting such bedforms — assuming an aeolian origin — lies within the range 600 μm< d < 750 μm. Our findings show that, owing to the effect of hysteresis in the minimal threshold wind velocity for saltation, dune migration on Pluto can occur under wind speeds that are common to Earth and Mars.

  9. The Geologic Exploration of the Bagnold Dune Field at Gale Crater by the Curiosity Rover (United States)

    Chojnacki, Matthew; Fenton, Lori K.


    The Mars Science Laboratory rover Curiosity engaged in a monthlong campaign investigating the Bagnold dune field in Gale crater. What represents the first in situ investigation of a dune field on another planet has resulted in a number of discoveries. Collectively, the Curiosity rover team has compiled the most comprehensive survey of any extraterrestrial aeolian system visited to date with results that yield important insights into a number of processes, including sediment transport, bed form morphology and structure, chemical and physical composition of aeolian sand, and wind regime characteristics. These findings and more are provided in detail by the JGR-Planets Special Issue Curiosity's Bagnold Dunes Campaign, Phase I.

  10. The Geologic Exploration of the Bagnold Dune Field at Gale Crater by the Curiosity Rover (United States)

    Chojnacki, Matthew; Fenton, Lori K.


    The Mars Science Laboratory rover Curiosity engaged in a monthlong campaign investigating the Bagnold dune field in Gale crater. What represents the first in situ investigation of a dune field on another planet has resulted in a number of discoveries. Collectively, the Curiosity rover team has compiled the most comprehensive survey of any extraterrestrial aeolian system visited to date with results that yield important insights into a number of processes, including sediment transport, bed form morphology and structure, chemical and physical composition of aeolian sand, and wind regime characteristics. These findings and more are provided in detail by the JGR-Planets Special Issue Curiosity’s Bagnold Dunes Campaign, Phase I.

  11. Dune-Yardang Interactions in Becquerel Crater, Mars (United States)

    Urso, Anna; Chojnacki, Matthew; Vaz, David A.


    Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr-1) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.

  12. A test of a climatic index of dune mobility using measurements from the southwestern United States (United States)

    Lancaster, N.; Helm, P.


    The climatic index of dune mobility developed by Lancaster (1988) has been applied to a variety of different environments. The index is, however, untested and unverified. We tested the index by comparison of values of the dune mobility index calculated from climate data with rates of sand transport measured at three stations in Arizona and New Mexico over the period 1985 to 1997. Our results show that changes in measured rates of sand transport closely parallel temporal changes in the dune mobility index. The mobility index is, however, a relatively poor predictor of the magnitude of actual sand transport on a year-to-year basis. This discrepancy is probably due to the fact that sand transport rates at these sites are strongly influenced by vegetation cover, the state of which may lag changes in annual precipitation. There is, however, a good relation between the mean annual mobility index and mean annual rates of sand transport. This indicates that the dune mobility index is a valid predictor of the long-term state of the aeolian system and can be used confidently for the purposes for which it was originally intended. Copyright (C) 2000 John Wiley and Sons, Ltd.

  13. Observations Regarding Small Eolian Dunes and Large Ripples on Mars (United States)

    Edgett, Kenneth S.


    Eolian bedforms occur at the interface between a planetary surface and its atmosphere; they present a proxy record of the influence of climate, expressed in sediment transport, over that surface. High resolution images (1.5 - 12 m/pixel) from the Mars Global Surveyor (MGS) Mars Orbiter Camera provide glimpses of the most recent events shaping the martian landscape. Thousands of images exhibit small transverse dunes or large eolian ripples that have crest-to-crest spacings of 10 to 60 m, heights of a few to 10 m. Bedforms of the size and patterns seen in the Mars photographs are rarely described among Earth's eolian landforms; in terms of size and morphology, most of these fall between traditional definitions of "ripples" and "dunes". Dunes are composed chiefly of materials transported by saltation, ripples are smaller forms moved along by the impact of saltating grains (traction). The largest reported eolian ripples on Earth (granule ripples, megaripples) are typically smaller than the bedforms observed on Mars; likewise, most dunes are typically larger. The small dunes and large ripples on Mars come in a variety of relative albedos, despite an early MGS impression that they are all of high albedo. Some ripples occur on the surfaces of sand dunes; these are most likely true granule ripples. However, most of these bedforms occur in troughs, pits, craters, and on deflated plains. Despite impressions early in the MGS mission, they do not occur everywhere (e.g., they are rare on the northern plains) but they do occur at a range of elevations from the highest volcanoes to the deepest basins. Where they occur on a hard substrate among larger sand dunes, the big dunes have over-ridden the smaller bedforms, indicating that the smaller features are older and perhaps indurated or very coarse-grained. At other locales, the small bedforms have been mantled by material settled from suspension, in other cases they are being exhumed and may be lithified. Still other examples are

  14. Comunidade de abelhas (Hymenoptera, Apoidea em ecossistema de dunas na Praia de Panaquatira, São José de Ribamar, Maranhão, Brasil Community of bees (Hymenoptera, Apoidea in the coastal sand dunes at Panaquatira beach, São José de Ribamar, Maranhão, Brazil

    Directory of Open Access Journals (Sweden)

    Fabiana S. Oliveira


    abundance pattern and the richness were very similar to other sand dunes habitats in northeast Brazil. Of the total of bees sampled, 61% were represented by less than 36 individuals. The five most abundant species (more than 177 indivuduals were: Apis mellifera Linnaeus, Centris (Centris leprieuri Spinola, Eulaema nigrita Lepeletier, Eufriesea surinamensis Linnaeus and Xylocopa (Neoxylocopa cearensis Ducke. Bees were active throughout the year, with abundance peaks in the highest rainfall periods. Daily activity was greatest between 06:00 and 11:00 a.m., when relative humidity decreased and the temperature increased.

  15. Dune and ripple migration along Curiosity's traverse in Gale Crater on Mars (United States)

    Silvestro, S.; Vaz, D.; Ewing, R. C.; Fenton, L. K.; Michaels, T. I.; Ayoub, F.; Bridges, N. T.


    The NASA Mars Science Laboratory (MSL) rover, Curiosity, has safely landed near a 35-km-long dark dune field in Gale Crater on Mars. This dune field lies along Curiosity's traverse to Aeolis Mons (Mt. Sharp). Here we present new evidence of aeolian activity and further estimate wind directions within the dune field through analysis of ripple migration with the COSI-Corr technique, which provides precise measurements of ripple displacement at the sub-pixel scale.The area analyzed is located ~10 km southwest of rover Curiosity's current position and ~4 km SW of its selected path through Aeolis Mons (Mt. Sharp) (Fig. 1a). Here barchan dunes with elongated horns and seif dunes coexist with more typical barchan and dome dunes (Fig. 1a, b), with slopes sculpted by two intersecting ripple crestline orientations trending at 45° and 330°. The range of dune types and ripple orientations indicate the dune field morphology is influenced by at least two winds from the NW and the NE. The direction of migration is toward the SW, suggesting the most recent sand transporting winds were from the NE (Fig. 1c). These results match previous predictions and can be used to forecast the wind conditions close to the entry point to Mt. Sharp. Fig. 1: a-b) Study area c) Ripple migration direction computed using the COSI-Corr technique

  16. Remobilization of southern African desert dune systems by twenty-first century global warming. (United States)

    Thomas, David S G; Knight, Melanie; Wiggs, Giles F S


    Although desert dunes cover 5 per cent of the global land surface and 30 per cent of Africa, the potential impacts of twenty-first century global warming on desert dune systems are not well understood. The inactive Sahel and southern African dune systems, which developed in multiple arid phases since the last interglacial period, are used today by pastoral and agricultural systems that could be disrupted if climate change alters twenty-first century dune dynamics. Empirical data and model simulations have established that the interplay between dune surface erodibility (determined by vegetation cover and moisture availability) and atmospheric erosivity (determined by wind energy) is critical for dunefield dynamics. This relationship between erodibility and erosivity is susceptible to climate-change impacts. Here we use simulations with three global climate models and a range of emission scenarios to assess the potential future activity of three Kalahari dunefields. We determine monthly values of dune activity by modifying and improving an established dune mobility index so that it can account for global climate model data outputs. We find that, regardless of the emission scenario used, significantly enhanced dune activity is simulated in the southern dunefield by 2039, and in the eastern and northern dunefields by 2069. By 2099 all dunefields are highly dynamic, from northern South Africa to Angola and Zambia. Our results suggest that dunefields are likely to be reactivated (the sand will become significantly exposed and move) as a consequence of twenty-first century climate warming.

  17. Sand Drift Potential by Wind in Shileh Plain of Sistan

    Directory of Open Access Journals (Sweden)

    S. Poormand


    Full Text Available Introduction: Wind erosion is one of the most important factors in desert environments. Prevailing winds can shift sand dunes and affect their accumulation and morphology. Also, wind regime determines the direction of sand dune mobility in different ways. Therefore, the wind regime, frequency, direction and velocity are supposed to be the most important factors to form the morphology of sand dunes. Wind energy and changes in different directions (wind regime have large impacts on the morphology, maintenance and transformation of wind features. Having a global knowledge of the magnitude of aeolian processes, we can assess the powerful impact of sand dune mobility on residential areas and infrastructures. The most important factors including the frequency, magnitude and directional mobility of aeolian processes have a very important effect on the entrainment and form of sand dunes. Materials and Methods: To understand and identify the wind erosion regions, wind regime is a useful way since there is a strong correlation between wind regimes and sand dune morphology and structure. Sand rose and wind rose are assumed to be easy, fast and most accurate methods for the identification of wind erosion. Wind regimes processes have been studied by many researchers who believed that investigating wind regimes and sand dune mobility gives a measure of drift potential. Drift potential is a measure of the sand-moving capability by wind; derived from reduction of surface-wind data through a weighting equation. To predict drift potential, wind velocity and direction data from meteorological synoptic stations were used. Regarding the estimation of sand transport rate by wind, many formulas exist such as Bagnold, Kawamura, and Lattau. Also, many software applications have been suggested. However, among these formulas, Fryberger’s is the best and has been widely used since 1979. Results and Discussion: The aim of this study was to analyze wind velocities and

  18. Production and global transport of Titan's sand particles (United States)

    Barnes, Jason W.; Lorenz, Ralph D.; Radebaugh, Jani; Hayes, Alexander G.; Arnold, Karl; Chandler, Clayton


    Previous authors have suggested that Titan's individual sand particles form by either sintering or by lithification and erosion. We suggest two new mechanisms for the production of Titan's organic sand particles that would occur within bodies of liquid: flocculation and evaporitic precipitation. Such production mechanisms would suggest discrete sand sources in dry lakebeds. We search for such sources, but find no convincing candidates with the present Cassini Visual and Infrared Mapping Spectrometer coverage. As a result we propose that Titan's equatorial dunes may represent a single, global sand sea with west-to-east transport providing sources and sinks for sand in each interconnected basin. The sand might then be transported around Xanadu by fast-moving Barchan dune chains and/or fluvial transport in transient riverbeds. A river at the Xanadu/Shangri-La border could explain the sharp edge of the sand sea there, much like the Kuiseb River stops the Namib Sand Sea in southwest Africa on Earth. Future missions could use the composition of Titan's sands to constrain the global hydrocarbon cycle.

  19. Morphology and Sediment Transport Dynamics of a Trough-Blowout Dune, Bodega Marine Reserve, Northern California (United States)

    Jorgenson, D.; Dunleavy, C. J.; Smith, M. E.


    Blowout dunes are a primary mechanism for transporting sand within vegetated coastal dune systems. Understanding the fine-scale variation in sediment transport within these systems is critical to predicting their formation and migration. Previous investigations of a coastal dune system located at the Bodega Marine Reserve, on the Sonoma Coast of Northern California have indicated that aeolian sand flux in unvegetated sand is ~450x greater than in vegetated areas. To better understand sand flux and its relationship with wind speed, direction and precipitation, we deployed an array of 12 sand traps within a single blowout area adjacent to the BOON marine climatology station. The blowout is trough- shaped, approximately 50 meters long and 15 meters wide. Its main 'fairway' is 5-10 meters below the surrounding beach grass (Ammophila)-covered land surface. Surface sediment within the blowout is fine-grained to granule-sized lithic to sub-lithic sand, and is coarsest in the center. Dune sediment in the Bodega Marine Reserve has been transported by aeolian processes from Salmon Creek Beach to the NW. Within the blowout, typical bedforms include 15-25 cm-wavelength, ~10 cm high sinuous to lingoid ripples arranged perpendicularly to the dominant wind direction (~280 degrees). An 8-10 meter-high mound at the downwind end has accumulated due to the trapping of sand flux by vegetation. Sediment flux across the studied blowout was sampled monthly over a 10-month period of 2013-2014. Sand traps were constructed using modified PVC cylinders, and are 0.5 meter high and 0.3 meter in diameter, with a 0.74-micron mesh screen. Based on measured sand flux, the sites can be categorized into three groups-axial, medial, and peripheral. Rates increase downwind within the blowout. Inter-site sand flux variability within unvegetated locations of the blowout is greater than two orders of magnitude. Axial sites, which experience the greatest sand flux, occur on the edge of the blowout adjacent

  20. Recharge in karst and dune elements of a semi-arid landscape as indicated by natural isotopes and chloride (United States)

    Allison, G. B.; Stone, W. J.; Hughes, M. W.


    The rates and mechanisms of local recharge in a semi-arid environment have been investigated beneath two major landscape settings in the Murray Basin in South Australia; these were calcrete flats with sinkholes and sand dunes in adjacent landscape settings. Five minor settings were investigated and identified as undisturbed calcrete, primary (older) sinkholes, secondary (younger) sinkholes, sand dunes with native vegetation and sand dunes with introduced pasture. Data from a limited series of boreholes were interpreted to suggest that recharge varied from in excess of 100 mm yr. -1 for secondary sinkholes to less than 0.1 mm yr. -1 beneath sand dunes with native vegetation. The data suggest that recharge under sand dunes has increased by more than two orders of magnitude following clearing of the native vegetation ˜ 50 yr. ago. As ˜ 90% of an area of 10,000 km 2 has been cleared, this clearing has ensured that inflow of saline groundwater to the adjacent River Murray will increase and, in view of the amount of salt stored in both the unsaturated and saturated zones, will continue for a very long time. At sites where the inferred recharge is lowest, profiles of the chloride concentration of soil water are consistent with the hypothesis that there is in excess of 50,000-yr. recharge stored in the thick unsaturated zone. Some evidence for changes in recharge rate over this time scale is seen.

  1. Provenance of coastal dune sands along Red Sea, Egypt

    Indian Academy of Sciences (India)

    Samir M Zaid


    Jun 7, 2017 ... 8(12) 10,481–10,496. Zolezzi-Ruiz H 2007 Modelo Composicional de las Dunas de Bahıa Sebastián Vizcaıno, México: Distribución de. Tama˜no de Grano, Petrografıa, Geoquımica e Implica- ciones de la Procedencia del Sedimento: Mexico, D.F.,. Universidad Nacional Autónoma de México, Tesis De.

  2. Woody plants in dry sands : life history traits and population dynamics

    NARCIS (Netherlands)

    Li, S.|info:eu-repo/dai/nl/304849324


    Inland dune ecosystems are harsh environment for long-lived woody plants because of poor water and nutrient availability and frequent sand. As a result, long-lived woody plants have a high risk of being killed by sand movement or a long period of drought and this may occur even before they reach

  3. Flume experiments on the alignment of transverse, oblique, and longitudinal dunes in directionally varying flows (United States)

    Rubin, David M.; Ikeda, Hiroshi


    For more than a century geologists have wondered why some bedforms are orientated roughly transverse to flow, whereas others are parallel or oblique to flow. This problem of bedform alignment was studied experimentally using subaqueous dunes on a 3–6-m-diameter sand-covered turntable on the floor of a 4-m-wide flume.

  4. Titan's Sand Seas properties from the modelling of microwave-backscattered signal of Cassini/SAR (United States)

    Lucas, Antoine; Rodriguez, Sébastien; Lommonier, Florentin; Ferrari, Cécile; Paillou, Philippe; Le Gall, Alice; Narteau, Clément


    Titan's sand seas may reflect the current and past surface conditions. Assessing the physicochemical properties and the morphodynamics of the equatorial linear dunes is a milestone in our comprehension of the climatic and geological history of the largest Saturn's moon. Based on enhanced SAR processing leading to despeckled Cassini RADAR data sets, we analyzed quantitatively the surface properties (e.g., slopes, texture, composition...) over the sand seas. First, using a large amount of overlaps and a wide range of incidence angle and azimuths, we show that the radar cross-section over the inter-dunes strongly differs from the one over the dunes. This strongly suggests significant difference in the physical properties between these two geomorphic units. Then, we derived quantitatively the surface properties from the modelling of microwave-backscattered signal using a Monte-Carlo inversion. Our results show that dunes are globally more microwaves absorbent than the inter-dunes. The inter-dunes are smoother with a higher dielectric constant than the dunes. Considering the composition, the inter-dunes are in between the dunes and the bright inselbergs mainly composed of water ice, suggesting the presence of a shallow layer of sediment in between the dunes. This may suggest that Titan dunes are developing over a coarser sediment bed similarly to what is observed in some terrestrial sand seas such as in Ténéré desert (Niger, see also contribution #EGU2016-13383). Additionally, potential secondary bedforms (such as ripples) as well as avalanche faces may have been detected.

  5. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars (United States)

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M.; Stein, N.; Rubin, D. M.; Sullivan, R.; Banham, S.; Lamb, M. P.; Bridges, N. T.; Gupta, S.; Fischer, W. W.


    The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large-ripple lee slopes. Lee slopes were 29° where grainflows were present and 33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 μm and 350 μm with an intermediate axis mean size of 113 μm (median: 103 μm). Dissimilar to dune eolian processes on Earth, large, meter-scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune-field pattern dynamics and basin-scale boundary conditions will dictate the style and distribution of sedimentary processes.

  6. The remarkable endemism of moths at White Sands National Monument in New Mexico, USA, with special emphasis on Gelechioidea (Lepidoptera

    Directory of Open Access Journals (Sweden)

    Eric H. Metzler


    Full Text Available The white sands formation, a snow-white gypsum dunes system, is the world's largest gypsum dune field. White Sands National Monument protects about 40% of the dunes; the dunes formation as it is known today was formed ca. 8,000 years BP. Prior to 8,000 years BP, the area covered by the dunes was a wet cool forest of the last glacial maximum in North America. The dunes were formed as a result of the hypsithermal, a warming and drying period which followed the most recent glacial maximum. The white sands formation is located in south central New Mexico in the Tularosa Basin of southwestern United States. A 10-year study of moths at the dunes was commissioned by the U. S. National Park Service in 2006. Almost immediately species new to science were detected. In the period of 6 years, 30 new species were discovered in the dunes. Several of the new species are white or very pale in color, and are endemic to the dunes. The focus of the 10 year project was modified to emphasize naming the undescribed species which helps the National Park Service catalog and manage the habitats. The data should encourage other researchers to explore the interactions of the animals with the plants and the harsh desert environment, to study DNA and evolution, and to study the rapid adaptation which seems to be occurring.

  7. Advances in DUNE : Proceedings of the DUNE User Meeting

    CERN Document Server

    Flemisch, Bernd; Klöfkorn, Robert


    DUNE, the Distributed and Unified Numerics Environment, is an open-source modular toolbox for solving partial differential equations with grid-based methods. This book covers recent advances in the development and usage of DUNE.  It consists of a collection of 13 articles which mainly evolved from talks  given at the First DUNE User Meeting in Stuttgart, Germany, 6.-8.10.2010. The articles nicely illustrate the advanced capabilities and the strong versatility of the DUNE framework. The first part presents extensions of the DUNE core modules, including the construction of local finite element spaces, a discretization toolbox, and two meta-grids, as well as a discussion of performance pitfalls. The second part introduces several external DUNE modules dealing with, e.g., reduced basis methods, unfitted discontinuous Galerkin methods, optimal control problems, and porous media applications. Specific methods and applications are subject of the third part, ranging from two-phase flow in porous media over the impl...

  8. Deep learning for the detection of barchan dunes in satellite images (United States)

    Azzaoui, A. M.; Adnani, M.; Elbelrhiti, H.; Chaouki, B. E. K.; Masmoudi, L.


    Barchan dunes are known to be the fastest moving sand dunes in deserts as they form under unidirectional winds and limited sand supply over a firm coherent basement (Elbelrhiti and Hargitai,2015). They were studied in the context of natural hazard monitoring as they could be a threat to human activities and infrastructures. Also, they were studied as a natural phenomenon occurring in other planetary landforms such as Mars or Venus (Bourke et al., 2010). Our region of interest was located in a desert region in the south of Morocco, in a barchan dunes corridor next to the town of Tarfaya. This region which is part of the Sahara desert contained thousands of barchans; which limits the number of dunes that could be studied during field missions. Therefore, we chose to monitor barchan dunes with satellite imagery, which can be seen as a complementary approach to field missions. We collected data from the Sentinel platform (; we used a machine learning method as a basis for the detection of barchan dunes positions in the satellite image. We trained a deep learning model on a mid-sized dataset that contained blocks representing images of barchan dunes, and images of other desert features, that we collected by cropping and annotating the source image. During testing, we browsed the satellite image with a gliding window that evaluated each block, and then produced a probability map. Finally, a threshold on the latter map exposed the location of barchan dunes. We used a subsample of data to train the model and we gradually incremented the size of the training set to get finer results and avoid over fitting. The positions of barchan dunes were successfully detected and deep learning was an effective method for this application. Sentinel-2 images were chosen for their availability and good temporal resolution, which will allow the tracking of barchan dunes in future work. While Sentinel images had sufficient spatial resolution for the

  9. Dune-like dynamic of Martian Aeolian large ripples (United States)

    Silvestro, S.; Vaz, D. A.; Yizhaq, H.; Esposito, F.


    Martian dunes are sculpted by meter-scale bed forms, which have been interpreted as wind ripples based on orbital data. Because aeolian ripples tend to orient and migrate transversely to the last sand-moving wind, they have been widely used as wind vanes on Earth and Mars. In this report we show that Martian large ripples are dynamically different from Earth's ripples. By remotely monitoring their evolution within the Mars Science Laboratory landing site, we show that these bed forms evolve longitudinally with minimal lateral migration in a time-span of ~ six terrestrial years. Our observations suggest that the large Martian ripples can record more than one wind direction and that in certain cases they are more similar to linear dunes from a dynamic point of view. Consequently, the assumption of the transverse nature of the large Martian ripples must be used with caution when using these features to derive wind directions.

  10. Functions of biological soil crusts on central European inland dunes: Water repellency and pore clogging influence water infiltration (United States)

    Fischer, Thomas; Spröte, Roland; Veste, Maik; Wiehe, Wolfgang; Lange, Philipp; Bens, Oliver; Raab, Thomas; Hüttl, Reinhard F.


    Biological soil crusts play a key role for hydrological processes in many open landscapes. They seal and stabilize the topsoil and promote surface run-off. Three crust types were identified on two inland dunes in Brandenburg, North-East Germany: A natural, active dune, located in a former military training area near Lieberose, and an artificial dune, which was constructed in 2001 and which serves as a study area for geo-ecological monitoring of flora and fauna from the forefield of an opencast-mine ("Neuer Lugteich"). Both dunes consisted of Quarternary, carbonate-free, siliceous sandy substrate. Utilization of the mineral substrate at early stages of microbiotic crust development was assessed using chlorophyll concentrations, scanning electron (SEM) and optical microscopy. Water repellency indices, which are an indication of surface polarity and wettability, were measured using the ethanol/water microinfiltrometer method, and steady state water flow was determined on the dry crusts and after 0, 300, 600, 1200 and 1800 seconds of wetting, thus allowing to follow pore clogging through swelling of extracellular polymeric substances (EPS). Chlorophyll concentrations indicated early stages of crust development at both sites. In crust type 1, dominating sand grains were physically stabilized in their contact zones by accumulated organic matter and by few filamentous cyanobacteria and filamentous green algae. The pore space was defined by the mineral matrix only. In crust type 2, filamentous cyanobacteria and algae partially filled in the matrix pores and enmeshed sand grains. In the dry sample, the pore space was dominated by crust organisms but still micropore channels, which are known to increase water infiltration, were left. Crust type 3 was characterized by intense growth of filamentous and coccoid algae and cyanobacteria, and by few mosses, which covered less than 5% of the surface. Crust organisms completely utilized the substrate and clogged the pores between

  11. Relationship between vegetation dynamics and dune mobility in an arid transgressive coastal system, Maspalomas, Canary Islands (United States)

    Hernández-Cordero, Antonio I.; Hernández-Calvento, Luis; Espino, Emma Pérez-Chacón


    area at higher rates. The L. arborescens community endures dune migration rates of at least 1.8 m/year. However, different distances between the dune front and the vegetated area also significant factor, because these can compensate for the effects of displacement rates. Thus, the closer a vegetated area is to a dune front, the lower the rates of displacement must be to produce a greater reduction in the surface vegetation. Plant communities present two patterns of plant colonization to resist burial by sand, one vertical and the other horizontal. The horizontal pattern is employed by C. laevigatus and L. arborescens communities and consists of locating new generations of plants in progressive alignment with the dune front migration. The vertical pattern is employed by the T. canariensis community, and consists of increasing the heights of the plants. The T. moquinii community can utilize both patterns because it reacts positively to some degree of burial since it is located in areas where the dunes reach different heights.

  12. Uav Application in Coastal Environment, Example of the Oleron Island for Dunes and Dikes Survey (United States)

    Guillot, B.; Pouget, F.


    The recent evolutions in civil UAV ease of use led the University of La Rochelle to conduct an UAV program around its own potential costal application. An application program involving La Rochelle University and the District of Oleron Island began in January 2015 and lasted through July of 2015. The aims were to choose 9 study areas and survey them during the winter season. The studies concerned surveying the dikes and coastal sand dunes of Oleron Island. During each flight, an action sport camera fixed on the UAV's brushless gimbal took a series of 150 pictures. After processing the photographs and using a 3D reconstruction plugin via Photoscan, we were able to export high-resolution ortho-imagery, DSM and 3D models. After applying GIS treatment to these images, volumetric evolutions between flights were revealed through a DDVM (Difference of Digital volumetric Model), in order to study sand movements on coastal sand dunes.


    Directory of Open Access Journals (Sweden)

    B. Guillot


    Full Text Available The recent evolutions in civil UAV ease of use led the University of La Rochelle to conduct an UAV program around its own potential costal application. An application program involving La Rochelle University and the District of Oleron Island began in January 2015 and lasted through July of 2015. The aims were to choose 9 study areas and survey them during the winter season. The studies concerned surveying the dikes and coastal sand dunes of Oleron Island. During each flight, an action sport camera fixed on the UAV’s brushless gimbal took a series of 150 pictures. After processing the photographs and using a 3D reconstruction plugin via Photoscan, we were able to export high-resolution ortho-imagery, DSM and 3D models. After applying GIS treatment to these images, volumetric evolutions between flights were revealed through a DDVM (Difference of Digital volumetric Model, in order to study sand movements on coastal sand dunes.

  14. Aeolian sands and buried soils in the Mecklenburg Lake District, NE Germany: Holocene land-use history and pedo-geomorphic response (United States)

    Küster, Mathias; Fülling, Alexander; Kaiser, Knut; Ulrich, Jens


    The present study is a pedo-geomorphic approach to reconstructing Holocene aeolian sand dynamics in the Mecklenburg Lake District (NE Germany). Stratigraphical, sedimentological and soil research supplemented by morphogenetic interpretations of the genesis of dunes and aeolian sands are discussed. A complex Late Holocene aeolian stratigraphy within a drift sand area was developed at the shore of Lake Müritz. The results were confirmed using palynological records, archaeological data and regional history. Accelerated aeolian activity was triggered by the intensification of settlement and land-use activities during the 13th and in the 15th to 16th century AD. After a period of stability beginning with population decline during the ‘Thirty Years War' and continuing through the 18th century, a final aeolian phase due to the establishment of glassworks was identified during the 19th century AD. We assume a direct link between Holocene aeolian dynamics and human activities. Prehistoric Holocene drift sands on terrestrial sites have not been documented in the Mecklenburg Lake District so far. This might be explained either by erosion and incorporation of older aeolian sediments during younger aeolian phases and/or a lower regional land-use intensity in older periods of the Holocene. The investigated drift sands are stratigraphically and sedimentologically characterised by a high degree of heterogeneity, reflecting the spatial and temporal variability of Holocene human impact.

  15. A ˜200 ka record of climatic change and dune activity in the Thar Desert, India (United States)

    Singhvi, A. K.; Williams, M. A. J.; Rajaguru, S. N.; Misra, V. N.; Chawla, S.; Stokes, S.; Chauhan, N.; Francis, T.; Ganjoo, R. K.; Humphreys, G. S.


    An 18.4 m excavated dune section in the Thar Desert of India with a chronology based on 12 TL ages and a basal age of ˜190 ka has preserved 12 cycles of dune accretion, soil formation, calcrete development, and subsequent erosion, together with the presence of stone artefacts ranging in age from Lower Palaeolithic to Mesolithic, coeval with more humid climatic interludes. Phases of soil development and carbonate precipitation were relatively wet and phases of dune accretion relatively dry, so that there were 12 significant moist intervals separated by 11 drier intervals during the past ˜190 ka. The calculated time interval between successive phases of dune sand accumulation ranged from 22.2 ka to 15.8 ka, with a mean of 19.0 ka. These values are consistent with a precessional influence on dune activity and on the associated onset of early monsoonal activity in this region. Carbon isotopes measured on organic matter within the sand profiles show consistent values close to -21.6 ± 1‰, pointing to deposition during a transitional climatic regime characterized by a change from open C3 grassland to C4 woodland or forest.

  16. A late Pleistocene linear dune dam record of aeolian-fluvial dynamics at the fringes of the northwestern Negev dunefield (United States)

    Roskin, Joel; Bookman, Revital; Friesem, David E.; Vardi, Jacob


    A late Pleistocene aeolian-fluvial record within a rare vegetated linear dune-like structure at the fringe of the northwestern Negev dunefield, Israel, provides direct evidence of dune-damming dynamics within the structure and its environs. Study methods included high resolution morphology and stratigraphy, micromorphology and sedimentological analyses. Chronology was based on eight archaeological sites from the structure and the INQUA Dune Atlas chronologic database. Low-energy fine-grained fluvial deposits underlying the structure and extending from its flanks indicate deposition by low energy hyper-concentrated flows in a floodplain environment and later in water bodies that formed by dune-damming of a mid-sized drainage basin. Interbedded sand with fine-grained deposits within the linear structure indicates interchanging dominances between aeolian sand incursion and seasonal floods. Sand deposition during dune elongation led to structure growth and dune-damming of its drainage system that in turn formed water bodies and upstream fine-grained deposition following seasonal floods. Calculations of current sediment yields indicate that fine-grained deposits accretion up to the structure's brim could possibly have rapidly occurred over a total time span of decades. However, artifacts dating to the Geometric Kebaran ( 17.5-12.9 cal kyr BP) and Harifian (12.9-11.2 cal kyr BP) archaeological periods on the structure's surface indicates intermittent, repetitive, and short-term camping, utilizing adjacent water bodies over a time period of 4000-5000 years. Fluctuating high winds and precipitation during a time window of increased fluvial availability of fine-grained sediment from the hinterland generated ample fine-grained deposition. After 11 cal kyr BP, the abundance and recurrence of dammed water bodies decreased when reduced wind power constrained dune-dam maintenance. After sediment accommodation space dissipated, fluvial flow of the drainage basin led to dune

  17. A unifying model for planform straightness of ripples and dunes in air and water (United States)

    Rubin, David M.


    Geologists, physicists, and mathematicians have studied ripples and dunes for more than a century, but despite considerable effort, no general model has been proposed to explain perhaps the most fundamental property of their morphology: why are some bedforms straight, continuous, parallel, and uniform in planform geometry (i.e. two-dimensional) whereas others are irregular (three-dimensional)? Here we argue that physical coupling along the crest of a bedform is required to produce straight crests and that along-crest flow and sand transport provide effective physical mechanisms for that coupling. Ripples and dunes with the straightest and most continuous crests include longitudinal and oblique dunes in unidirectional flows, wave ripples, dunes in reversing flows, wind ripples, and ripples migrating along a slope. At first glance, these bedforms appear quite different (ripples and dunes; air and water; transverse, oblique, and longitudinal orientations relative to the net sand-transport direction), but they all have one property in common: a process that increases the amount of along-crest sand transport (that lengthens and straightens their crests) relative to the across-crest transport (that makes them migrate and take the more typical and more three-dimensional planform geometry). In unidirectional flows that produce straight bedforms, along-crest transport of sand is caused by along-crest flow (non-transverse bedform orientation), gravitational transport along an inclined crest, or ballistic splash in air. Bedforms in reversing flows tend to be straighter than their unidirectional counterparts, because reverse transport across the bedform crest reduces the net across-crest transport (that causes the more typical irregular geometry) relative to the along-crest transport (that smoothes and straightens planform geometry).

  18. The Bagnold Dunes in Southern Summer: Active Sediment Transport on Mars Observed by the Curiosity rover (United States)

    Baker, M. M.; Lapotre, M. G. A.; Bridges, N. T.; Minitti, M. E.; Newman, C. E.; Ehlmann, B. L.; Vasavada, A. R.; Edgett, K. S.; Lewis, K. W.


    Since its landing at Gale crater five years ago, the Curiosity rover has provided us with unparalleled data to study active surface processes on Mars. Repeat imaging campaigns (i.e. "change-detection campaigns") conducted with the rover's cameras have allowed us to study Martian atmosphere-surface interactions and characterize wind-driven sediment transport from ground-truth observations. Utilizing the rover's periodic stops to image identical patches of ground over multiple sols, these change-detection campaigns have revealed sediment motion over a wide range of grain sizes. These results have been corroborated in images taken by the rover's hand lens imager (MAHLI), which have captured sand transport occurring on the scale of minutes. Of particular interest are images collected during Curiosity's traverse across the Bagnold Dune Field, the first dune field observed to be active in situ on another planet. Curiosity carried out the first phase of the Bagnold Dunes campaign (between Ls 72º and 109º) along the northern edge of the dune field at the base of Aeolis Mons, where change-detection images showed very limited sediment motion. More recently, a second phase of the campaign was conducted along the southern edge of the dune field between Ls 312º to 345º; here, images captured extensive wind-driven sand motion. Observations from multiple cameras show ripples migrating to the southwest, in agreement with predicted net transport within the dune field. Together with change-detection observations conducted outside of the dune field, the data show that ubiquitous Martian landscapes are seasonally active within Gale crater, with the bulk of the sediment flux occurring during southern summer.

  19. The role of sexual vs. asexual recruitment of Artemisia wudanica in transition zone habitats between inter-dune lowlands and active dunes in Inner Mongolia, China (United States)

    Wang, Yongcui; Alberto, Busso Carlos; Jiang, Deming; Ala, Musa; Li, Xuehua; Zhou, Quanlai; Lin, Jixiang; Ren, Guohua; Jia, Lian


    Artemisia wudanica is an endemic, perennial, pioneering psammophyte species in the sand dune ecosystems of western Horqin Sand Land in northern China. However, no studies have addressed how sexual and asexual reproduction modes of A. wudanica perform at the transitional zones between active dune inter-dune lowlands and active dunes. In early spring, quadrats were randomly set up in the study area to monitor surviving seedling and/or ramet density and frequency coming from sexual/asexual reproduction of A. wudanica. Iron sticks were inserted near each quadrat to determine wind erosion intensity (WE). Additionally, soil samples were collected nearby each quadrat to test for soil moisture (SM), organic matter (OM) and pH. Surviving seedlings of A. wudanica showed an inverse response in comparison with ramets to SM, OM and WE. Soil moisture showed the most positive effect, and WE the negative effect, on surviving, sexual reproduction seedlings. Contrarily, WE had the most positive effect, and SM the negative effect, on asexual reproduction ramets. This suggests that increases in SM and decreases in WE should benefit recruitment of A. wudanica seedlings. On the contrary, ramets coming from asexual reproduction showed a different response to environmental factors in transition zone habitats. While SM was not a key constraint for the survival of seedlings, they showed a better, positive response to wind erosion environments. Overall, various study environmental parameters could be improved to foster A. wudanica invasion and settlement in the plant community through different reproductive modes, thereby promoting vegetation restoration and rehabilitation.

  20. Implementation of an ex situ stabilization technique at the Sand Springs superfund site to solidify and stabilize acid tar sludges involving a quick-lime based stabilization process and innovative equipment design

    International Nuclear Information System (INIS)

    McManus, R.W.; Grajczak, P.; Wilcoxson, J.C.; Webster, S.D.


    An old refinery site was safely remediated a year before schedule and for 25% less than final engineering estimates for the stabilization remedy thanks to energetic project management and innovative design involving ex situ stabilization/solidification of acid tar sludges. A quicklime based process, Dispersion by Chemical Reaction (DCR trademark), was employed to solidify and stabilize (SS) over 103,000 cubic meters (135,000 cubic yards) of petroleum waste, mostly acidic tarry sludge. The SS process was selected over competing methods because it afforded minimal volume increase, could readily achieve Record of Decision (ROD) specified physical and chemical treatment goals, could be implemented with treatment equipment that minimized emissions, and could be performed with low reagent usage and at low cost. To ensure treatment goals were achieved and an accelerated schedule met, a custom designed and fabricated transportable treatment unit (TTU) was employed to implement the process. The treated material was visually soil-like in character, it was left in stockpiles for periods of time, and it was placed and compacted in the on site landfill using standard earth-moving equipment

  1. Sand resistance of sunscreens. (United States)

    Caswell, Michael; Wood, Caryl; Martinez, Alexa


    Like water resistance in sunscreens, sand resistance in sunscreens is the ability of the sunscreen to retain its effectiveness while undergoing sand treatment. The influence of the type of sand on the sand resistance of sunscreens has not been described. The sand resistance of a control standard sunscreen, P2, and data on three grades of Quickrete commercial grade sand, #1961, #1962, and #1152, are described. These sands represent a fine sand, a medium sand, and an all-purpose sand. Using the methodology described in the 2007 proposed amendment of the Final Monograph (1) with one exception, we obtained an SPF of 16.5 (1.6) for the control standard, compared to the expected SPF of 16.3 (3.4). After a five-minute treatment of sand #1961, #1962, or #1151, the SPF of the control standard was 18.3 (1.6), 18.4 (2.0), and 17.5 (2.2), respectively. Thus, all three sands exhibited a similar sand-resistance response. Thus, there was no significant difference in the average SPF with and without sand. The medium grade sand, Quickrete commercial grade #1962, was preferred for sand-resistance testing because the fine sand was difficult to remove from the subject's backs and the coarse sand was unpleasant to the subjects.

  2. Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes (United States)

    Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.


    Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.

  3. Remote Sensing of Desert Loess and Dune Fields Aids Revealing Proximal Loess Sources (United States)

    Crouvi, O.; Gillespie, A.; Amit, R.; Enzel, Y.


    Loess is an eolian deposit composed mostly of silt-sized quartz, which serves as an important archive of Quaternary climate changes. Despite the long term support for the 'classical' glacial concept of loess formation, there have been challenges to this model focusing on the formation of silt grains in deserts, which is still controversial. The aim of this study is to trace the proximal dust sources of the Negev loess, Israel, using comprehensive remote-sensing mapping, field surveys, and laboratory analyses of hilltop, primary loess sequences. Based on field and spectral characterization of primary and secondary loess, we developed remote-sensing methodology to: 1) distinguish and classify loess types to better choose hilltop, un-reworked loess study sites; 2) map loess regionally and examine its spatial association with potential dust sources. The different loess types are spectrally distinguishable by using the difference in the magnitude of chlorophyll, ferric, Al-OH, and carbonate absorptions features that vary systematically by the relative abundance of clasts, loessial biogenic crust, and vegetation. We used band ratios and liner un-mixing techniques on ASTER and Landsat TM reflectance and thermal data to successfully map the different loess types and the regional loess distribution. We conclude that the border between the loess and the adjacent, upwind sand dunes exhibit gradual patterns of grain size, mineralogy, and spectral characteristics. These findings, together with detailed analyses of loess sequences show that the proximal dust source of the Negev loess is the adjacent sand dunes, and suggest that the silt grains were formed through eolian abrasion of sand grains. Applying the remote-sensing methodology on other desert loess (e.g. Tunisia) indicates similar pattern of gradual transition from sand dunes to loess, and suggests that this association is not unique to the Negev. Our findings imply that sand dunes are much more important proximal dust

  4. Stratigraphy and landsnail faunas of Late Holocene coastal dunes, Tokerau Beach, northern New Zealand

    International Nuclear Information System (INIS)

    Brook, F.J.


    At least four depositional episodes, each involving cycles of dune instability and sand accumulation followed by stabilisation and soil formation, are represented in a Holocene dune sequence at Tokerau Beach. The first depositional episode followed the maximum post-glacial sea level rise at 6500 years BP, probably with formation of a narrow dune belt landward of the present coastline. The second depositional episode resulted in extensive progradation of the dune belt to about the present coastline from c. 3000-2000 years BP, followed by dune stabilisation and soil formation from c. 2000-900 years BP. The third depositional episode involved vertical dune accretion at c. 900-600 years BP, followed by stabilisation and soil formation after c. 600 years BP. The fourth depositional episode, after 240 years BP, resulted in further vertical dune accretion and localised extensive erosion and reworking of pre-existing dune deposits. Fossil landsnail faunas indicate that there was patchy sandfield and shrubland vegetation of the dune belt from c. 3000-2000 years BP, followed by a mosaic of shrubland and forest from c. 2000-900 years BP. After 900 years BP there was a progressive reversion to patchy shrubland vegetation, but an extensive shrubland cover again became established at c. 600 years BP and persisted until c. 450 years BP, when it was replaced by patchy shrubland and sandfield vegetation. Dune progradational phases in the first two depositional episodes correlate with and probably developed primarily in response to changes in sea level, whereas subsequent alternating phases of dune stabilisation and build-up are inferred to have resulted in part from the influence of long term cyclical variation in prevailing local wind and wave regimes in Doubtless Bay. Two stratigraphically distinct, exotic, sea-rafted pumice units are represented in the Tokerau dune sequence: Tokerau pumice (new), which has a primary depositional age of c. 3000 years BP, and Loisels pumice, which

  5. The north-eastern aeolian 'European Sand Belt' as potential record of environmental changes: A case study from Eastern Latvia and Southern Estonia

    DEFF Research Database (Denmark)

    Kalińska-Nartiša, Edyta; Thiel, Christine; Nartišs, Maris


    The Latvian and Estonian inland dunes belong to the north-eastern part of the 'European Sand Belt' (ESB). These dunes are widely distributed over broad glaciolacustrine plains and Late Glacial alluvial deltas, considered to be potential sources for the aeolian material. Little is known about thes...

  6. Episodes of aeolian sand movement on a large spit system (Skagen Odde, Denmark) and North Atlantic storminess during the Little Ice Age

    DEFF Research Database (Denmark)

    Clemmensen, Lars B.; Glad, Aslaug C.; Hansen, Kristian W. T.


    understanding of storminess variation and climate change in the North Atlantic during the later part of the Holocene. In this study, coastal cliff sections of Holocene dune sand were investigated in the north-western part of the Skagen Odde spit system in northern Denmark. Four units of aeolian sand were....... A change in the atmospheric circulation, so that both the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO) were negative, apparently led to an increased number of intense cyclones causing inland sand movement and dune building. The second and third phase of aeolian sand...

  7. Episodes of aeolian sand movement on a large spit system (Skagen Odde, Denmark) and North Atlantic storminess during the Little Ice Age

    DEFF Research Database (Denmark)

    Clemmensen, Lars B.; Glad, Aslaug C.; Hansen, Kristian W. T.


    Late Holocene coastal dune successions in north-western Europe contain evidence of episodic aeolian sand movement in the recent past. If previous periods of increased sand movement can be dated sufficiently precisely and placed in a correct cultural and geomorphological context, they may add to our...... understanding of storminess variation and climate change in the North Atlantic during the later part of the Holocene. In this study, coastal cliff sections of Holocene dune sand were investigated in the north-western part of the Skagen Odde spit system in northern Denmark. Four units of aeolian sand were...

  8. Numerical modeling of wind-blown sand on Mars. (United States)

    Huang, HaoJie; Bo, TianLi; Zheng, XiaoJing


    Recent observation results show that sand ripples and dunes are movable like those on Earth under current Martian climate. And the aeolian process on Mars therefore is re-attracting the eyes of scientific researchers in different fields. In this paper, the spatial and temporal evolution of wind-blown sand on Mars is simulated by the large-eddy simulation method. The simulations are conducted under the conditions of both friction wind speed higher and lower than the "fluid threshold", respectively. The fluid entrainment of the sand particles, the processes among saltation sand particles and sand bed, and the negative feedback of sand movement to flow field are considered. Our results show that the "overshoot" phenomenon also exists in the evolution of wind-blown sand on Mars both temporally and spatially; impact entrainment affects the sand transport rate on Mars when the wind speed is smaller or larger than the fluid threshold; and both the average saltation length and height are one order of magnitudes larger than those on Earth. Eventually, the formulas describing the sand transport rate, average saltation length and height on Mars are given, respectively.

  9. The Mars Science Laboratory (MSL) Bagnold Dunes Campaign, Phase I: Overview and introduction to the special issue (United States)

    Bridges, Nathan T.; Ehlmann, Bethany L.


    The Bagnold dunes in Gale Crater, Mars, are the first active aeolian dune field explored in situ on another planet. The Curiosity rover visited the Bagnold dune field to understand modern winds, aeolian processes, rates, and structures; to determine dune material composition, provenance, and the extent and type of compositional sorting; and to collect knowledge that informs the interpretation of past aeolian processes that are preserved in the Martian sedimentary rock record. The Curiosity rover conducted a coordinated campaign of activities lasting 4 months, interspersed with other rover activities, and employing all of the rover's science instruments and several engineering capabilities. Described in 13 manuscripts and summarized here, the major findings of the Bagnold Dunes Campaign, Phase I, include the following: the characterization of and explanation for a distinctive, meter-scale size of sinuous aeolian bedform formed in the high kinetic viscosity regime of Mars' thin atmosphere; articulation and evaluation of a grain splash model that successfully explains the occurrence of saltation even at wind speeds below the fluid threshold; determination of the dune sands' basaltic mineralogy and crystal chemistry in comparison with other soils and sedimentary rocks; and characterization of chemically distinctive volatile reservoirs in sand-sized versus dust-sized fractions of Mars soil, including two volatile-bearing types of amorphous phases.

  10. Natural and anthropogenic factors affecting freshwater lenses in coastal dunes of the Adriatic coast (United States)

    Cozzolino, Davide; Greggio, Nicolas; Antonellini, Marco; Giambastiani, Beatrice Maria Sole


    This study characterizes the near-shore portion of the shallow coastal aquifer included in the Ravenna area (Northern Italy) with special attention to the roles of coastal dunes as freshwater reservoirs and their buffer on groundwater salinity. The paper focuses on the presence and evolution of freshwater lenses below coastal dunes and highlights the existing differences between preserved natural dunes and dunes strongly affected by human intervention. The influence that multiple natural and anthropogenic factors, such as land cover, local drainage network, and beach erosion have on the presence, size and evolution of the freshwater lenses in the aquifer is quantified and discussed. The methodology includes multiple seasonal monitoring and sampling campaigns of physical (water level, salinity, and temperature) and chemical (major cations and anions) groundwater parameters. Results indicate that freshwater lenses, where existing, are limited in thickness (about 1-2 m). Proximity to drainage ditches as well as limited dune elevation and size do not allow the formation and permanent storage of large freshwater lenses in the aquifer below the dunes. The pine forest land cover, that replaced the typical bush or sand cover, intensifies evapotranspiration reducing net infiltration and freshwater storage. The cation species distribution in the water shows that a freshening process is ongoing in preserved natural sites with stable or advancing beaches, whereas a salinization process is ongoing in anthropogenic-impacted areas with strongly-fragmented dune systems. Currently, the thin freshwater lenses in the shallow Ravenna coastal aquifer are limited in space and have no relevance for irrigation or any other human activity. The dune-beach system, however, is the recharge zone of the coastal aquifer and its protection is important to reduce water and soil salinization, which in turn control the health of the whole coastal ecosystem.

  11. Overview of Initial Results From Studies of the Bagnold Dune Field on Mars by the Curiosity Rover (United States)

    Bridges, Nathan; Ehlmann, Bethany; Ewing, Ryan; Newman, Claire; Sullivan, Robert; Conrad, Pamela; Cousin, Agnes; Edgett, Kenneth; Fisk, Martin; Fraeman, Abigail; Johnson, Jeffrey; Lamb, Michael; Lapotre, Mathieu; Le Mouélic, Stéphane; Martinez, German; Meslin, Pierre-Yves; Thompson, Lucy; van Beek, Jason; Vasavada, Ashwin; Wiens, Roger


    The Curiosity Rover is currently studying the Bagnold Dunes in Gale Crater. Here we provide a general overview of results and note that other EGU presentations will focus on specific aspects. The in situ activities have not yet occurred as of this writing, but other analyses have been performed approaching and within the dunefield. ChemCam passive spectra of Bagnold Dune sands are consistent with the presence of olivine. Two APXS spots on the High Dune stoss slope margin, and two others in an engineering test sand patch, show less inferred dust, greater Si, and higher Fe/Mn than other "soils" in Gale Crater. ChemCam analyses of more than 300 soils along the Curiosity traverse show that both fine and coarse soils have increasing iron and alkali content as the Bagnold Dunes are approached, a trend that may reflect admixtures of local rocks (alkalis + iron) to the fines, but also a contribution of Bagnold-like sand (iron) that increases toward the dunefield. MAHLI images of sands on the lower east stoss slope of High Dune show medium and coarse sand in ripple forms, and very fine and fine sand in ripple troughs. Most grains are dark gray, but some are also brick-red/brown, white, green translucent, yellow, brown" colorless translucent, or vitreous spheres HiRISE orbital images show that the Bagnold Dunes migrate on the order of decimeters or more per Earth year. Prior to entering the dune field, wind disruption of dump piles and grain movement was observed over multi-sol time spans, demonstrating that winds are of sufficient strength to mobilize unconsolidated material, either through direct aerodynamic force or via the action of smaller impacting grains. Within the dune field, we are, as of this writing, engaged in change detection experiments with Mastcam and ChemCam's RMI camera. Data we have so far, spanning 8 sols from the same location, shows no changes. Mastcam and RMI images of the stoss sides of Namib, Noctivaga, and High Dune show that the "ripples" seen

  12. Water and solute fluxes in dry coastal dune grasslands: the effects of grazing and increased nitrogen deposition

    NARCIS (Netherlands)

    ten Harkel, M.J.; van Boxel, J.H.; Verstraten, J.M.


    A five-year monitoring study has been carried out to examine the combined effects of grazing and atmospheric nitrogen deposition on water and solute fluxes in dry coastal dune grasslands. Two vegetation types were studied: (a) a short, species-rich stand on calcareous sand (foredune site) and (b) a

  13. Correlation between Hurricane Sandy damage along the New Jersey coast with land use, dunes and other local attributes. (United States)


    The goal of this study was to evaluate the effectiveness of sand dunes along New Jerseys Coast in reducing damage during Sandy. The study area included eight selected zones with different damage levels from Ocean County. A model to independently p...

  14. Why do sand furrow distributions vary in the North Polar latitudes on Mars? (United States)

    Bourke, Mary; McGaley-Towle, Zoe


    Sand dunes on Mars display geomorphic evidence of an active and dynamic sediment flux. Barchan dunes migrate, ripples move and the slipface morphology changes annually. Aeolian sediment transport is seasonally constrained and linked to cryogenic processes. Sand furrows are geomorphic features that are eroded into the surface of dunes. They form during sublimation of the seasonal carbon dioxide deposit which moves gas and sand through vents in the ice (cryo-venting) (Bourke, 2013). They are visible on the surface of dunes using the highest resolution images available for Mars. Previous work has noted that the distribution of furrows varies spatially both on individual dunes and at different Polar locations. Here we report on the preliminary findings of a mapping project that seeks to confirm this previous qualitative observation. In addition, we aim to explain the observed spatial and temporal variation in sand furrows on North Polar dunes. Ten polar sites that reflect a latitudinal range of 9.5º are being analysed. The HiRISE images were acquired between 16/2/2012 and 31/05/2012, over a period of 105 Earth days or 102 Sols. We have completed mapping of 1711 sand furrows in an 84 km2 area of sand dunes, i.e. at four of the ten sites. The data confirm that there is variability in the distribution of sand furrows in the Polar Region. While data from all ten sites will be required to fully test the assertion of a latitudinal control, it is worth noting that the two most northerly sites have a significantly higher density of furrows compared to the two lower latitude sites. As the seasonal ice thickness is known to increases pole-ward on Mars, our data suggest that effective furrow formation may be linked to ice deposit thickness. In particular, it suggests that a threshold in ice thickness must be crossed in order for effective cryo-venting to occur. Bourke, M.C., 2013. Sand Furrows: A new surface feature on Martian dunes, EGU, EGU2013-11859, Vienna.

  15. Experiment Simulation Configurations Used in DUNE CDR

    Energy Technology Data Exchange (ETDEWEB)

    Alion, T. [Univ. of South Carolina, Columbia, SC (United States); Black, J. J. [Univ. of Warwick, Coventry (United Kingdom); Bashyal, A. [Oregon State Univ., Corvallis, OR (United States); Bass, M. [Univ. of Oxford (United Kingdom); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cherdack, D. [Colorado State Univ., Fort Collins, CO (United States); Diwan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Evans, J. [Univ. of Manchester (United Kingdom); Fernandez-Martinez, E. [Madrid Autonama Univ. (Spain); Fields, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Gran, R. [Univ. of Minnesota, Duluth, MN (United States); Guenette, R. [Univ. of Oxford (United Kingdom); Hewes, J. [Univ. of Manchester (United Kingdom); Hogan, M. [Colorado State Univ., Fort Collins, CO (United States); Hylen, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Junk, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kohn, S. [Univ. of California, Berkeley, CA (United States); LeBrun, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lundberg, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Marchionni, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Morris, C. [Univ. of California, Berkeley, CA (United States); Papadimitriou, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rameika, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rucinski, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Soldner-Rembold, S. [Univ. of Manchester (United Kingdom); Sorel, M. [Spanish National Research Council (CSIC), Valencia (Spain). Univ. of Valencia (UV), Inst. de Fisica Corpuscular; Urheim, J. [Indiana Univ., Bloomington, IN (United States); Viren, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Whitehead, L. [Univ. of Houston, TX (United States); Wilson, R. [Colorado State Univ., Fort Collins, CO (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zeller, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)


    The LBNF/DUNE CDR describes the proposed physics program and experimental design at the conceptual design phase. Volume 2, entitled The Physics Program for DUNE at LBNF, outlines the scientific objectives and describes the physics studies that the DUNE collaboration will perform to address these objectives. The long-baseline physics sensitivity calculations presented in the DUNE CDR rely upon simulation of the neutrino beam line, simulation of neutrino interactions in the far detector, and a parameterized analysis of detector performance and systematic uncertainty. The purpose of this posting is to provide the results of these simulations to the community to facilitate phenomenological studies of long-baseline oscillation at LBNF/DUNE. Additionally, this posting includes GDML of the DUNE single-phase far detector for use in simulations. DUNE welcomes those interested in performing this work as members of the collaboration, but also recognizes the benefit of making these configurations readily available to the wider community.

  16. Increasing of Mechanical Parameters of Desert Sand Using Pozzolanic Materia (United States)

    Mahdi Sajjadi, Seyed; Fakhraldin Sajjadi, Seyed; Beheshti, Seyed Mohammad; Mehmannavaz, Taha


    Research on roads to increase the resistance of weak soils to build structures on it has been increased in recent years. The present article provide the effects of different mixtures containing microsilica, cement, polypropylene waste fiber and dune sand on mechanical parameters such as, compressibility, compressive strength, bending strength and durability characteristic. In this study also is investigated evaluation the effect of road subgrade based on proposed material. The used dune sand in this research was obtained from Kashan city where is located in central desert of Iran. The obtained results show that the microsilica and cement could play a major role in reducing the cost and required time for building roads and also building foundation on these types of soils.

  17. The Dunes of Shangri-La : New Cassini RADAR results on patterns of aeolian features and the influence of topography (United States)

    Lorenz, R. D.; Radebaugh, J.; Wall, S. D.; Kirk, R.; Le Gall, A.; Janssen, M. A.; Zebker, H.; Paganelli, F.; Wye, L.; Lunine, J.


    Recent flybys (T43, T44 - and just prior to this meeting, T48) provide SAR imagery of northern Shangri-La, the large dark region just to the WNW of Xanadu. Previous imaging of SE Shangri-La (T13) showed that dunes there take a pronounced southward dip compared with the E-W direction seen elsewhere. The new data show rather different directions for dunes in northern Shangri-La, and confirm a blocking or divergent influence of Xanadu. Application of monopulse radar methods to retrieve elevations from Cassini SAR images ('SARTopo') now allows us to explore the influence of topography on the local dune (and by implication, wind) patterns, and the relationship between elevation and sediment accumulation. The lack of large positive relief at Xanadu makes its influence on the dunes somewhat surprising. We consider the possible mechanisms of Xanadu's effect on the winds, using terrestrial analogs as a guide. We review the global pattern of dune orientations and their implications for atmospheric circulation: this orientation map presents a challenging constraint for modelers. We note preliminary indications that scatterometry of Titan's dunefields yields azimuth-dependent radar cross-sections (as is the case for terrestrial sand seas) and note future plans for dune studies on Titan with multi-angle observations that will provide constraints on dune-scale slopes and duneforms too small to resolve.

  18. Self-similar evolution of 2D aquatic dunes over an erodible bed (United States)

    Doppler, Delphine; Lagrée, Pierre Yves; Gondret, Philippe; Rabaud, Marc


    Scale invariance of shape is a common feature of erosion patterns, such as barchan dunes, sand ripples under shoaling waves or scour holes. Due to their universal and fascinating crescentic shape, barchans dunes have received much attention and scaling laws have been deduced from field observations, satellite images and laboratory experiments. On the other hand, the dynamical long term evolution of ripples and dunes formed over an erodible bed has been far less studied while the temporal behavior of erosion patterns contains substantial information on the physical processes involved. Here, we present experimental results obtained in a linear, quasi-2D closed water channel. When a granular bed is submitted to a uniform shear flow, periodic sand ripples appear all along the channel. We found that the first ripple near the channel inlet exhibit unreported long-term scale-invariant growth. The self-similar dune shape and power-law growth exponent are extracted by image processing for several flow velocity. A simple linear model is built using mass conservation and a granular flux law, so that the bed form is described by a self-similar order 2 linear system. Experimental data fit nicely with the model results.

  19. Hydraulic properties of dune sand–bentonite mixtures of insulation barriers for hazardous waste facilities

    Directory of Open Access Journals (Sweden)

    M.K. Gueddouda


    Full Text Available This paper presents a study on the valorization of local materials such as desert dune sand obtained from Laghouat region in the South Algeria and mine bentonite intended for the realization of liner base layers in the conception of insulation barriers for hazardous waste facilities. In practice, an economical mixture satisfying the hydraulic requirements is generally concerned. First, in order to get an adequate dune sand–bentonite mixture compacted to the optimum Proctor condition, an investigation on saturated hydraulic behavior is carried out in this study for different mixtures. Using oedometer test (indirect measurement, the adequate mixture of 85% dune sand and 15% bentonite satisfies the conditions of saturated hydraulic conductivity (k  3 MPa. This technique is conducted based on the exploitation of the water retention curve in order to establish the relationships between hydraulic conductivity, degree of saturation, and suction. It shows that the hydraulic conductivity increases with the degree of saturation and decreases with the suction. However, the hydraulic conductivity has a constant value for suctions larger than 20 MPa. The selected dune sand–bentonite mixture satisfies the regulation requirements and hence constitutes a good local and economical material for the conception of barrier base liners.

  20. High Sand Fluxes and Abrasion Rates on Mars Determined from HiRISE Images


    Bridges, N. T.; Ayoub, F.; Avouac, J.-P.; Leprince, S.; Lucas, A.; Mattson, S.


    The volumetric transport rate of sand, or flux, is a fundamental parameter that controls the rate of landscape modification. This process is responsible for the movement of ripples and dunes, as well as the abrasion of rocks and landforms. Measuring sand flux on Mars was previously not possible because of the lack of high spatial and temporal resolution images, and appropriate techniques, for making displacement and accurate topographic measurements. These limitations have now been overcome b...

  1. Eastern Scheldt Sand, Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Andersen, A. T; Madsen, E. B.; Schaarup-Jensen, A. L.

    The present data report contains data from 13 drained triaxial tests, performed on two different sand types in the Soil Mechanics Laboratory at Aalborg University in March, 1997. Two tests have been performed on Baskarp Sand No. 15, which has already ken extensively tested in the Soil Mechanics L...

  2. Laboratory evaluation of selected tar sand asphalts

    Energy Technology Data Exchange (ETDEWEB)

    Button, J.W.; Epps, J.A.; Gallaway, B.M.


    Three tar sand asphalts of similar grades prepared from one syncrude by three different refining methods were characterized by tests commonly used to specify paving asphalts together with certain special tests. Asphalt-aggregate mixtures were prepared using these asphalts and tested in the laboratory to determine strength stiffness stability, tensile properties, temperature effects and water susceptibility. Comparison of the tar sand asphalt properties to conventional petroleum asphalt properties reveal no striking differences.

  3. Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Bødker, Lars Bødker

    The Soil Mechanics Laboratory has started performing tests with a new sand, Baskarp No 15. Baskarp No 15 is a graded sand from Sweden. The shapes of the largest grains are round, while the small grains have sharp edges. The main part of of Baskarp No 15 is quarts, but it also contains feldspar an...... and biotit. Mainly the sand will be used for tests concerning the development of the theory of building up pore pressure in sand....

  4. protoDUNE-Single Phase and protDUNE-DualPhase

    CERN Multimedia

    Brice, Maximilien


    At the EHN1 two big 8m x 8m x8m detector prototypes (protoDUNE-Single Phase and protDUNE-DualPhase) are being constructed. The aim is to test technologies and detector performances for DUNE, a new generation of LBN neutr

  5. Understanding river dune splitting through flume experiments and analysis of a dune evolution model

    NARCIS (Netherlands)

    Warmink, Jord Jurriaan; Dohmen-Janssen, Catarine M.; Lansink, Jord; Naqshband, Suleyman; van Duin, Olav; Paarlberg, Andries; Termes, A.P.P.; Hulscher, Suzanne J.M.H.


    Forecasts of water level during river floods require accurate predictions of the evolution of river dune dimensions, because the hydraulic roughness of the main channel is largely determined by the bed morphology. River dune dimensions are controlled by processes like merging and splitting of dunes.

  6. Lund Sand No 0

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Jakobsen, Finn Rosendal

    During the last 15 years the Geotechnical Engineering Group (GEG) at Aalborg University has performed triaxial tests with a sand called Lund No 0. Lund No 0 is a graded sand from a gravel pit near Horsens in Denmark. For the classification of the sand the following tests have been performed: Sieve...

  7. Very large dune formation along the Ebro outer continental shelf (Western Mediterranean) (United States)

    Lo Iacono, Claudio; Guillén, Jorge; Puig, Pere; Ribó, Marta; Ballesteros, Maria; Palanques, Albert; Farrán, Marcelli; Acosta, Juan


    Large and very large subaqueous dunes have been observed in a number of outer shelf regions around the world, tipically developing on fossil sand bodies and ridges. Dunes observed on outer shelves usually display large dimensions with maximum wavelength reaching up to 500 m and heights up to 20 m. Forcing mechanisms able to induce their formation have been described as strong bottom currents related to tidal variations and water masses flowing under geostrophic conditions, generally controlled and enhanced by local geomorphologic configurations. In this study, such bed features have been recognized, mapped and measured around the Columbretes Islands (Ebro continental shelf - Western Mediterranean) with the aim to reconstruct which are the potential forcing processes that could generate them in relation to the local settings of the area. Swath-bathymetry around the Columbretes Islands was collected using 30 kHz and 180 kHz Multi Beam echo-sounders for a 50-400 m water depth range. Bathymetric data revealed the presence of three main relict sand bodies along the outer shelf, for a 80-116 m depth range, above which asymmetrical, slightly asymmetrical and symmetrical large and very large 2D and 3D subaqueous dunes were observed. Dunes range from 150 to 760 m in wavelength and from tens of cm to 6 m in height. These bedforms are composed of sandy sediments, presumably coming from the degraded relict sand bodies on which they developed, mixed to the fine fractions coming from the recent draping holocenic sediments. The orientation of the dunes is SSW and progressively turns to W directions moving towards the southernmost sector of the area, following the trend of the shelf-edge. Observed dunes display a strong asymmetric profile for those occurring along the shelf-edge (Symmetry Index (SI): 2.6) and lose progressively their asymmetry towards the inner portion of the shelf (SI: 0.5), being 0.6 the minimum SI value to classify the dunes as asymmetric. The subaqueous dunes

  8. The influence of rainfall on transport of beach sand by wind.

    NARCIS (Netherlands)

    Dijk, van P.M.; Stroosnijder, L.; Lima, de J.L.M.P.


    This paper deals with the effect of rainfall on the process of wind erosion of beach sands and presents results from both field and wind tunnel experiments. Although sediment transport by splash is of secondary importance on coastal dunes, splash-saltation processes can move sediments in conditions

  9. Composition And Geometry Of Titan'S Dunes (United States)

    Le Gall, Alice; Janssen, M. A.; Wye, L. C.; Lorenz, R. D.; Radebaugh, J.; Cassini RADAR Team


    Fields of linear dunes cover a large portion of Titan's equatorial regions. As the Cassini mission continues, more of them are unveiled and examined by the microwave Titan RADAR Mapper both in the active and passive modes of operation of the instrument and with an increasing variety of observational geometries. In this presentation, we will show that the joint analysis of the SAR (Synthetic Aperture Radar) and radiometry observations of the dunes at closest approach supports the idea of different composition between the dunes and the interdunes. It suggests that the icy bedrock of Titan may be exposed, or partially exposed, in the interdunes. We also see regional differences among dune fields. Dunes are highly directional features; their visibility is controlled by the look direction and the incidence angle. We have developed a backscatter and emissivity model that takes into account the topography of the dunes relative to the geometry of observation as well as the composition of the dunes and interdunes. Compared to observations and, in particular, to multiple observations of areas at the overlap of several swaths, we argue the need for a diffuse scattering mechanism. The presence of ripples in the dunes and/or interdunes might account for the recorded backscatter. In this presentation we will also report the results of the T61 experiment. The T61 HiSAR sequence (on August 25, 2009) was designed to examine a small region of the Shangri-La dune field with a substantial sampling of incidence angles around the direction perpendicular to the dunes long axis. The spot in question was already observed during the T55 SAR swath and the T61 experiment should allow us to determine the slope of the dunes.

  10. Irregular fog as a water source for desert dune beetles. (United States)

    Seely, M K


    Three methods of fog-water uptake have been observed in three tribes of Namib desert dune tenebrionid beetles, Adesmiini, Eurychorini and Zophosini. The methods used correlate with distribution and gross morphology of each species but cut across phylogenetic affinities. Of the three methods described, none involve obvious fine anatomical or physical adaptations of the beetles for fog-water uptake. Rather, the beetles have evolved specific behavioural patterns for drinking water condensed on vegetation, their own dorsum or sand.Use of fog-water necessitates surface activity at times when surface temperatures and wind velocities are not optimal for these diurnal or crepuscular species. Behavioural adaptation has enabled these beetles to use irregular and unpredictable fogs as a moisture source.

  11. Fungal symbiosis and precipitation alter traits and dune building by the ecosystem engineer, Ammophila breviligulata. (United States)

    Emery, Sarah M; Bell-Dereske, Lukas; Rudgers, Jennifer A


    Ecosystem engineer species influence their community and ecosystem by creating or altering the physical structure of habitats. The function of ecosystem engineers is variable and can depend on both abiotic and biotic factors. Here we make use of a primary successional system to evaluate the direct and interactive effects of climate change (precipitation) and fungal endophyte symbiosis on population traits and ecosystem function of the ecosystem engineering grass species, Ammophila breviligulata. We manipulated endophyte presence in A. breviligulata in combination with rain-out shelters and rainfall additions in a factorial field experiment established in 2010 on Lake Michigan sand dunes. We monitored plant traits, survival, growth, and sexual reproduction of A. breviligulata from 2010-2013, and quantified ecosystem engineering as the sand accumulation rate. Presence of the endophyte in A. breviligulata increased vegetative growth by up to 19%, and reduced sexual reproduction by up to 46% across all precipitation treatments. Precipitation was a less significant factor than endophyte colonization for A. breviligulata growth. Reduced precipitation increased average leaf number per tiller but had no other effects on plant traits. Changes in A. breviligulata traits corresponded to increases in sand accumulation in plots with the endophyte as well as in plots with reduced precipitation. Sand accumulation is a key ecosystem function in these primary successional habitats, and so microbial symbiosis in this ecosystem engineer could lead to direct effects on the value of these dune habitats for humans.

  12. Accumulation of nitrogen and organic matter during primary succession of Leymus arenarius dunes on the volcanic island Surtsey, Iceland (United States)

    Stefansdottir, G.; Aradottir, A. L.; Sigurdsson, B. D.


    The volcanic island of Surtsey has been a natural laboratory where the primary succession of flora and fauna has been monitored, since it emerged from the N-Atlantic Ocean in 1963. We quantified the accumulation rates of nitrogen (N) and soil organic matter (SOM) in a 37 year long chronosequence of Leymus arenarius dunes in order to illuminate the spatiotemporal patterns in their build-up in primary succession. The Leymus dune area, volume and height grew exponentially over time. Aboveground plant biomass, cover or number of shoots per unit area did not change significantly with time, but root biomass accumulated with time, giving a root-shoot ratio of 19. The dunes accumulated on average 6.6 kg N ha-1 year-1, which was 3.5 times more than is received annually by atmospheric deposition. The extensive root system of Leymus seems to effectively retain and accumulate large part of the annual N deposition, not only deposition directly on the dunes but also from the adjacent unvegetated areas. SOM per unit area increased exponentially with dune age, but the accumulation of roots, aboveground biomass and SOM was more strongly linked to soil N than time: 1 g m-2 increase in soil N led on the average to 6 kg C m-2 increase in biomass and SOM. The Leymus dunes, where most of the N has been accumulated, will therefore probably act as hot-spots for further primary succession of flora and fauna on the tephra sands of Surtsey.

  13. Morphology and mechanism of the very large dunes in the tidal reach of the Yangtze River, China (United States)

    Shuwei, Zheng; Heqin, Cheng; Shuaihu, Wu; Shengyu, Shi; Wei, Xu; Quanping, Zhou; Yuehua, Jiang


    High-resolution multibeam data was used to interpret the surface morphology of very large dunes (VLDs) in the tidal reach of the Yangtze River, China. These VLDs can be divided into three categories according to their surface morphological characteristics. (1) VLDs-I: those with a smooth surface and cross-section; (2) VLDs-II: those accompanied by secondary dunes; (3) VLDs-III: those accompanied by secondary dunes and numerous elliptical pits. Parameters and spatial distribution of VLDs, and bed surface sediment were analyzed in the laboratory. Overall, channel morphology is an important factor affecting the development of VLDs, and channels with narrow and straight and certain water surface slope are facilitating the development of VLDs by constraining stream power. Meanwhile, distribution density of VLDs depicts a decreasing trend from Chizhou towards the estuary, are probably influenced by channel morphology and width. Associated pits in VLDs-III change the 3D dune morphology by distributing in secondary dunes as beads. The Three Gorges Dam project (TGP) leads to the bed surface sediment activity frequently and leads to the riverbed surface sediment coarsens, which promotes the further development of dunes. Moreover, other human activities, such as river regulation project, sand mining and Deep Water Channel Regulation Project have changed the regional river boundary conditions and hydrodynamic conditions are influential on the development of VLDs.

  14. Erosion and its rate on an accumulative Polish dune coast: the effects of the January 2012 storm surge

    Directory of Open Access Journals (Sweden)

    Tomasz A. Łabuz


    Full Text Available The Polish coast is a non-tidal area; its shores are affected mainly by autumn-winter storm surges. Those of 6 and 14 January 2012 are representative of the forces driving the erosion of normally accumulative sections of coastal dunes, monitored by the author since 1997. The sea level maximum during these two storm surges reached 1.2 to 1.5 m amsl along the Polish coast. Land forms up to 3 m amsl were inundated. Beaches and low parts of the coast up to this height were rebuilt by sea waves attacking the coast for almost 12 days. Quantitative analyses of the morphological dynamics of the coastal dunes are presented for 57 profiles located along the coast. Only those accumulative sections of the Polish coast are analysed where sand accumulation did occur and led to new foredune development. The mean rate of dune erosion was 2.5 m3 per square metre with an average toe retreat of 1.4 m. Erosion understood as dune retreat was greater when a beach was lower (correlation coefficient 0.8. Dune erosion did not occur on coasts with beaches higher than 3.2 m or on lower ones covered by embryo dunes.

  15. Recent greening in the Mu Us dune field, north-central China, and influential factors (United States)

    Xu, Zhiwei; Hu, Rui; Wang, Kexin; Mason, Joseph A.; Wu, Shuang-Ye; Lu, Huayu


    Land desertification in arid and semi-arid environments is a severe environmental problem of fundamental importance. Better understanding of the development of desertification in the context of changing climate and human intervention is essential for policy-making on desertification control strategies and land-use management in these environmentally sensitive areas. The state, change and trend of vegetation cover and dune activity in the Mu Us dune field, a typical semi-arid dune field in north-central China, are analyzed over the years 1981-2013 by remote sensing techniques and geomorphic analysis. NDVI served as an indicator of vegetation cover, showing a significant increasing trend, while a dune mobility index indicates a reduced degree of desertification during the observation period. The transformation of dune morphologies can potentially be used to detect the long-term trend in desertification, suggesting that the dunes are being stabilized under vegetation growth. By a detailed analysis of both climatic and socioeconomic data, we found that vegetation change in the study area can be largely explained by long-term variation and short-term fluctuation of the climate, however, anthropogenic perturbations that superimposed on the natural tendency are also important at both local and regional scales. This study implies that current climatic conditions probably offer a window of opportunity for land regeneration in semi-arid northern China.

  16. Sudan challenges the sand dragon. (United States)

    Tinker, J


    Formerly productive areas have become wasteland as the desert advances in the Sudan. To understand how desertification is undermining the very survival of the Sahel, one ecosystem is reviewed in detail here: the gum arabic zone of Kordofan. After cotton, gum arabic is Sudan's largest export, worth from $14-26 million in recent years. In this zone the ecologically balanced cycle of gum gardens, fire, grain crops, and fallow is now breaking down; the 1968-1973 drought having in many areas delivered the final blow. Because of a growing population, the cultivation period is extended, and the soil becomes impoverished. Overgrazing in the fallow period, and the lopping of gum trees for firewood is producing a low return on the gum trees. Without this gum to harvest for cash, farmers must repeatedly replant their subsistence crops until the land becomes useless sand. The Sudanese have recognized the problem earlier than most, and a number of imaginative and practicable pilot projects are already in use: 1) waterpoint management; 2) construction of firebreaks; 3) land threatened by shifting dunes has been enclosed by stockproof fence and afforested with local trees; and 4) shelter belts have been planted around town perimeters where old gum tree stumps have started to sprout and the grass is reseeding itself. Out of these pilot projects, and with the advice of the U.N. Environment Program, the U.N. Development Program, and FAO, the Sudanese have developed a modest $26 million desert encroachment control and rehabilitation program (DECARP).

  17. Early Islamic inter-settlement agroecosystems in coastal sand, Yavneh dunefield, eastern Mediterranean coast, Israel (United States)

    Roskin, Joel; Taxel, Itamar


    This study reveals an attempt to condition agriculture in coastal aeolian sand holding a high water table. Twenty-six small sites, clustering in topographic lows of the Yavneh dunefield, southern Israeli coastal plain, yield surficial Early Islamic finds, and eroded 1-2 m high berms built of grey sand partially covered by parabolic and transverse dunes. Small winter ponds develop by some of the sites. A clay loam 2.5 m beneath the surface retains the water table at a depth of 2.2 m. Between the berms, a 10-50 cm thick grey sand unit dating by OSL to 0.9 ka (11th-12th century AD) underlays a loose aeolian sand cover and overlays sand whose upper parts date to 1.1 ka (9th-10th century AD). The grey unit displays slightly improved fertility (phosphate, potassium, nitrogen and calcium carbonate) in relation to the underlying sand suggesting an anthropogenic enrichment of ash and refuse. Particle size is similar to the sand. Organic carbon and magnetic susceptibility values (0-5 SI) values are quite low (0.4-0.8%) for both units. The artifact assemblage is mixed and comprised of small (animal bones, seashells, and coins dated between the 8th and 10th century. The artifacts pre-date the OSL age of the underlying grey sand. The pottery shares many characteristics with the rich ceramic assemblage of nearby inland Yavneh. The establishment of the sites may have been executed by the inhabitants of either Yavneh (or another major inland settlement) or the seashore Muslim military stronghold of Yavneh-Yam (Taxel, 2013). The density of the sites is remarkable compared with the paucity of Byzantine sites in the same region, indicating a distinct spatial pattern that served a specific purpose. The lack of buried artifacts and structures suggests that the sites did not serve for permanent/intensive occupation. The widespread utilization of the rich assortment of Early Islamic artifacts but the relatively younger OSL ages of the underlying grey sand and absence of older Byzantine

  18. Linking marine resources to ecotonal shifts of water uptake by terrestrial dune vegetation. (United States)

    Greaver, Tara L; Sternberg, Leonel L da S


    As evidence mounts that sea levels are rising, it becomes increasingly important to understand the role of ocean water within terrestrial ecosystem dynamics. Coastal sand dunes are ecosystems that occur on the interface of land and sea. They are classic ecotones characterized by zonal distribution of vegetation in response to strong gradients of environmental factors from the ocean to the inland. Despite the proximity of the dune ecosystem to the ocean, it is generally assumed that all vegetation utilizes only freshwater and that water sources do not change across the ecotone. Evidence of ocean water uptake by vegetation would redefine the traditional interpretation of plant-water relations in the dune ecosystem and offer new ideas for assessing maritime influences on function and spatial distribution of plants across the dune. The purpose of this study was to identify sources of water (ocean, ground, and rain) taken up by vegetation using isotopic analysis of stem water and to evaluate water uptake patterns at the community level based on the distribution and assemblage of species. Three coastal dune systems located in southern Florida, USA, and the Bahamian bank/platform system were investigated. Plant distributions across the dune were zonal for 61-94% of the 18 most abundant species at each site. Species with their highest frequency on the fore dune (nearest the ocean) indicate ocean water uptake as evidenced by delta 18O values of stem water. In contrast, species most frequent in the back dune show no evidence of ocean water uptake. Analysis of species not grouped by frequency, but instead sampled along a transect from the ocean toward the inland, indicates that individuals from the vegetation assemblage closest to the ocean had a mixed water-harvesting strategy characterized by plants that may utilize ocean, ground-, and/or rainwater. In contrast, the inland vegetation relies mostly on rainwater. Our results show evidence supporting ocean water use by dune

  19. Dune Morphology and Sediment Budget Responses to Varying Vegetation Cover and Restoration: Humboldt Bay National Wildlife Refuge, Northern California. (United States)

    Rader, A. M.; Walker, I. J.; Pickart, A.


    This study examines morphodynamic and sedimentation responses of a stretch of coastal foredune undergoing removal of invasive vegetation (Ammophila arenaria) to restore ecosystem dynamics at Humboldt Bay National Wildlife Refuge. Seasonal topographic and vegetation transect surveys and historical aerial photography are analyzed to assess interannual to decadal geomorphic responses of the foredune and sediment budget changes. Relationships between sedimentation and geomorphic change are explored between dominant vegetation cover types as possible. The foredune maintained a near balanced position (+0.004 m a-1) between 1939 and 2014 across the study site. However, there is a general N to S trend from progradation to retreat of the foredune with a maximum change of +1.34 m a-1 in the northern A. arenaria dominated areas to a max retreat of -0.49 m a-1 in the southern sites with a lower and more hummocky foredune dominated by native plants. From 2004 to 2014, percent active sand surface and average aerial change of blowouts remained relatively stable across the study site, with average change values of -0.97% and +0.01% respectively. Positive statistical correlations exist between seasonal beach and foredune volume changes across all sites, yet no significant differences are observed in total volumetric change over the observation period or volume changes within beach and foredune between different vegetation cover types. Survey and aerial photography results suggest that the increased density of A. arenaria has contributed to foredune stabilization over recent decades. However, there is no observed significant difference in seasonal sand volume change in relation to differing dominant vegetation covers. Rather, strong positive correlations exist between seasonal beach volumes and foredune sedimentation, which suggests that foredune sediment budgets may be driven primarily by littoral and aeolian supply variations. Future research will explore vegetation

  20. The contribution of Corynephorus canescens to the geodiversity of inland drift sands (United States)

    Jungerius, Pieter Dirk; Riksen, Michel; van den Ancker, Hanneke; Kooistra, Maja


    Most dunes in the Netherlands are phytogenic, which means that plants are essential in their formation. This applies also to the dunes of the inland drift sand areas, which are nicknamed Atlantic deserts on account of their extreme climatic conditions. Daily temperatures on the bare sand surfaces may run up to 60° C on sunny summer days, dropping as low as below freezing point at night. Apart from blue and green algae, Corynephorus canescens, Grey hair-grass, it is the first conqueror of these active sands and plays an important role in the geomorphological development of the inland drift sands. C. canescens is a rapid colonizer and flourishes when it receives a regular supply of fresh sand, but is soon succeeded by competitor species. Like Ammophila arenaria (Marram grass), its vigour declines after some time, because its roots are affected. Therefore the plant requires a regular supply of fresh sand to outgrow the affected root zone. The growth of C. canescens is stimulated by two different geomorphological processes: aeolian and pluvial processes. Aboveground, the tussock architecture of the plant helps to trap sand and form small initial dunes. When formed by wind, these are called nabkahs; when formed by splash bush mounds. In a micro-morphological thin section both processes can often be recognized in one dune. The decline of C. canescens is caused by two soil-forming processes: reduction of permeability and accumulation of organic matter. Poor aeration and compaction restrict the growth of its roots. Increase in organic matter hampers the rate of root respiration and promotes conditions for the establishment of competitor species. In the nabkahs, thin slides show on the positive side for C. canescens there is little blown-in organic matter, but on the negative side that the grains upon aging develop a colourless organic coating formed by cyanobacteria (algae. For splashed sands on the positive side for Grey hairgrass there are few organic coatings, but on

  1. The Influence of Emulgator on Stability of Emulsion H3PO4 in Topo-Kerosene and Efficiency at Emulsion Membrane Extraction of La and Nd Concentrate Product of Monazite Sand Treatment

    International Nuclear Information System (INIS)

    Purwani, MV.; Bintarti, AN.; Subagiono, R.


    The making of La and Nd concentrate from monazite sand have been done. The separation of La and Nd by emulsion 1M H 3 PO 4 in 5 % TOPO-Kerosene membrane extraction. The feed or aqueous phase was La and Nd concentrate in 1M HNO 3 . Emulgator Span-80 and Tween-80 were used to stabilize emulsion membrane. The influence parameters were percentage of Span-80 and ratio of Span-80 and Tween-80. After formation of emulsion membrane, the extraction process was carried out. Ratio of volume of feed : volume membrane phase = 1 : 1, ratio of volume of 5% TOPO - Kerosene : ratio of volume of 1M H 3 PO 4 1 : 1. The best yield were obtained time of emulsification was 10 minutes with the speed of emulsion was 6000 rpm and concentration of span-80 was 5%. At this condition was obtained the extraction efficiency of La was 55.55%, the extraction efficiency of Nd was 41.6% the stripping efficiency of La was 35.05%, the stripping efficiency of Nd was 87.32 %, the total efficiency of La was 19.46%, the total efficiency of Nd was 36.30% and Separation factor of Nd and La = 1.87. (author)

  2. Sand incursion into temperate (Lithuania) and tropical (the Bahamas) maritime vegetation: Georadar visualization of target-rich aeolian lithosomes (United States)

    Buynevich, Ilya V.; Savarese, Michael; Curran, H. Allen; Bitinas, Albertas; Glumac, Bosiljka; Pupienis, Donatas; Kopcznski, Karen; Dobrotin, Nikita; Gnivecki, Perry; Boush, Lisa Park; Damušytė, Aldona


    Interaction of windblown sand with maritime vegetation, either as dune migration or episodic grain transport is a common phenomenon along many sandy coasts. Vegetation introduces antecedent surface roughness, especially when scaled to the landform height, but its role may be concealed if overwhelmed by aeolian incursion and burial. Where field observations and cores lack detail for characterizing this complex process, ground-penetrating radar (GPR) offers continuous visualization of aeolian sequences. Along the Curonian Spit, Lithuania, dune reactivation phases resulted in massive invasion of siliciclastic sand triggered by natural perturbations and land clearance. Massive (>30 m high) dunes entombed mature pine, oak, and alder stands and this process is ongoing. Mid-frequency (200 MHz) georadar surveys reveal landward-dipping lateral accretion surfaces interrupted by high-amplitude point-source anomalies produced by recently buried trees. In tropical regions, dense vegetation and potential for rapid lithification of carbonate sand results in more complex internal structures. Along the windward coast of San Salvador Island, the Bahamas, a massive dune has buried several generations of maritime scrubland, resulting in highly chaotic reflection pattern and high target density. On a nearby Little Exuma Island, numerous reentrants in aeolianites promoted formation of blowouts and incursion of windblown sand 10-25 m into a silver thatch palm forest. High-frequency (800 MHz) GPR images resolve diffractions from trunks and roots buried by > 2 m of oolitic sand. Basal refection morphology helps differentiate the irregular dune/beachrock surface from a smooth palm-frond mat. Aside from detecting and mapping buried vegetation, geophysical images capture its effect on sediment accumulation. This has the potential for differentiating its effect from other discordant structures within dunes (clasts, dissolution voids, trunk molds, burrows, and cultural remains).

  3. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations (United States)

    Ehlmann, B. L.; Edgett, K. S.; Sutter, B.; Achilles, C. N.; Litvak, M. L.; Lapotre, M. G. A.; Sullivan, R.; Fraeman, A. A.; Arvidson, R. E.; Blake, D. F.; Bridges, N. T.; Conrad, P. G.; Cousin, A.; Downs, R. T.; Gabriel, T. S. J.; Gellert, R.; Hamilton, V. E.; Hardgrove, C.; Johnson, J. R.; Kuhn, S.; Mahaffy, P. R.; Maurice, S.; McHenry, M.; Meslin, P.-Y.; Ming, D. W.; Minitti, M. E.; Morookian, J. M.; Morris, R. V.; O'Connell-Cooper, C. D.; Pinet, P. C.; Rowland, S. K.; Schröder, S.; Siebach, K. L.; Stein, N. T.; Thompson, L. M.; Vaniman, D. T.; Vasavada, A. R.; Wellington, D. F.; Wiens, R. C.; Yen, A. S.


    The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized ( 45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.

  4. Tidal River Elbe - a sediment budget for the grain size fraction of medium sand (United States)

    Winterscheid, Axel


    sand. Currently, the Weichselion deposit is the active source for medium sand, but due to the lack of medium sand fluxes from upstream this at the cost of having an ongoing deepening of the main channel. The presumed cause for this deficit situation is the current management of the sandy dredged material. First of all, dredging and subsequent extraction of the dredged material is strongly affecting the longitudinal transport of medium sandy sediments from upstream through the Port of Hamburg in seaward direction. Further downstream in the river section in deficit, all dredged material, which is about 1 Mio m³/a solely for the fraction of medium sand, is transported by hopper dredgers over a long distance up to 40 km in seaward direction and disposed on a single site near Brunsbuettel. This 1 Mio m³/a is a similar volume in comparison to the loss in bed volume. From an analysis of the geometry of the subaquatic dunes we know for sandy sediments a seaward net transport that exists for large parts of this river section. All in one, there is an irretrievable and ongoing loss of medium sandy sediments. Vice versa for the river section next to Brunsbuettel, which is the location of the disposal site, the data show an increase of bed volumes and dredging amounts at the same time. For the Elbe case study we could demonstrate that maintenance dredging (and the subsequent disposal) could have a significant impact on the large scale sediment budget. Appropriate measures to stabilize the sediment budget in the inner part of the Tidal River Elbe for medium sand is (a) to dispose all medium sandy dredged material as close as possible to the location of dredging and (b) to reduce the extraction of medium sand in the Hamburg Port area.

  5. The importance of three dimensional dune morphology on the time dependent flow field (United States)

    Hardy, Richard; Parsons, Dan; Reesink, Arnold; Best, Jim


    The flow field over dunes has been extensively studied and there is general understanding of the nature of the flow over dunes formed over two dimensional dunes under equilibrium flow conditions. This model is typically used to explain flow fields over all dunes fields. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly reorganizing to form complex three-dimensional morphologies (ripples, dunes and bar forms). Here we investigate how flow over natural three dimensional dunes differs from the accepted model of flow of two dimensional dunes. A series of experiments were undertaken in a flume where fine sand was water worked under a range of unsteady hydraulic conditions to generate quasi-equilibrium three dimensional bed forms. On four occasions, the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models (DEM). Here to demonstrate the approach we choose the DEM with the greatest topographic variation and apply a new Large Eddy Simulation model with an wall-adapting local eddy-viscosity (WALE) turbulence model and a non-linear higher-order numerical differencing scheme. This provided a three dimensional time dependent prediction of the flow field over the static three-dimensional dune morphology at millimeter and hertz scale resolution. The numerically predicted flows were analyzed by standard Reynolds decomposition approaches and Eulerian and Lagrangian coherent flow structure identification methods. The results show that the superimposed bed forms can cause changes in the nature of the classical separated flow regions, in particularly the number of locations where vortices are shed and the points of flow reattachment. Coalescence of vortices generated downstream and can be seen to move to the free surface and form kolk signatures. These structures also correlate in space and time showing a clear flow morphology feedback. The modified flow field

  6. Drought drove forest decline and dune building in eastern upper Michigan, USA, as the upper Great Lakes became closed basins (United States)

    Loope, Walter L.; Loope, Henry M.; Goble, Ronald J.; Fisher, Timothy G.; Lytle, David E.; Legg, Robert J.; Wysocki, Douglas A.; Hanson, Paul R.; Young, Aaron R.


    Current models of landscape response to Holocene climate change in midcontinent North America largely reconcile Earth orbital and atmospheric climate forcing with pollen-based forest histories on the east and eolian chronologies in Great Plains grasslands on the west. However, thousands of sand dunes spread across 12,000 km2 in eastern upper Michigan (EUM), more than 500 km east of the present forest-prairie ecotone, present a challenge to such models. We use 65 optically stimulated luminescence (OSL) ages on quartz sand deposited in silt caps (n = 8) and dunes (n = 57) to document eolian activity in EUM. Dune building was widespread ca. 10–8 ka, indicating a sharp, sustained decline in forest cover during that period. This decline was roughly coincident with hydrologic closure of the upper Great Lakes, but temporally inconsistent with most pollen-based models that imply canopy closure throughout the Holocene. Early Holocene forest openings are rarely recognized in pollen sums from EUM because faint signatures of non-arboreal pollen are largely obscured by abundant and highly mobile pine pollen. Early Holocene spikes in nonarboreal pollen are recorded in cores from small ponds, but suggest only a modest extent of forest openings. OSL dating of dune emplacement provides a direct, spatially explicit archive of greatly diminished forest cover during a very dry climate in eastern midcontinent North America ca. 10–8 ka.

  7. Environmental Impacts of Sand Exploitation. Analysis of Sand Market


    Marius Dan Gavriletea


    Sand is an indispensable natural resource for any society. Despite society’s increasing dependence on sand, there are major challenges that this industry needs to deal with: limited sand resources, illegal mining, and environmental impact of sand mining. The purpose of this paper is twofold: to present an overview of the sand market, highlighting the main trends and actors for production, export and import, and to review the main environmental impacts associated with sand exploitation process...

  8. Herpetofauna, Coastal Dunes, Buenos Aires Province, Argentina


    Kacoliris, Federico; Horlent, Nathalie; Williams, Jorge


    Coastal dunes habitats at Buenos Aires province are in a fragmentation and habitat loss process due to related human activities. Knowledge on the herpetofauna of Buenos Aires province coast habitats is plentiful for some species of lizards and scarce for most amphibians and snakes. With the aim to present a list on the amphibians and reptiles of the coastal dune habitats in Buenos Aires province we recorded species coming from field work, cited in literature, and vouchers specimens deposited ...

  9. Martian aeolian activity at the Bagnold Dunes, Gale Crater: The view from the surface and orbit (United States)

    Bridges, N. T.; Sullivan, R.; Newman, C. E.; Navarro, S.; van Beek, J.; Ewing, R. C.; Ayoub, F.; Silvestro, S.; Gasnault, O.; Le Mouélic, S.; Lapotre, M. G. A.; Rapin, W.


    The first in situ investigation of an active dune field on another planetary surface occurred in 2015-2016 when the Mars Science Laboratory Curiosity rover investigated the Bagnold Dunes on Mars. High Resolution Imaging Science Experiment images show clear seasonal variations that are in good agreement with atmospheric model predictions of intra-annual sand flux and migration directions that together indicate that the campaign occurred during a period of low wind activity. Curiosity surface images show that limited changes nevertheless occurred, with movement of large grains, particularly on freshly exposed surfaces, two occurrences of secondary grain flow on the slip face of Namib Dune, and a slump on a freshly exposed surface of a large ripple. These changes are seen at Martian solar day (sol)-to-sol time scales. Grains on a rippled sand deposit and unconsolidated dump piles show limited movement of large grains over a few hours during which mean friction speeds are estimated at 0.3-0.4 m s-1. Overall, the correlation between changes and peak Rover Environmental Monitoring Station (REMS) winds is moderate, with high wind events associated with changes in some cases, but not in others, suggesting that other factors are also at work. The distribution of REMS 1 Hz wind speeds shows a significant tail up to the current 20 m s-1 calibration limit, indicating that even higher speed winds occur. Nonaeolian triggering mechanisms are also possible. The low activity period at the dunes documented by Curiosity provides clues to processes that dominated in the Martian past under conditions of lower obliquity.

  10. The response and recovery of coastal beach-dune systems to storms (United States)

    Farrell, Eugene; Lynch, Kevin; Wilkes Orozco, Sinead; Castro Camba, Guillermo


    This two year field monitoring project examines the response and recovery of a coastal beach-dune system in the west coast of Ireland (The Maharees, Co. Kerry) to storms. Historic analyses were completed using maps, aerial photography, and DGPS surveys with the Digital Shoreline Analysis System. The results establish that the average shoreline recession along the 1.2 km site is 72 m during the past 115 years. The coastal monitoring experiment aims to link micro-scale aeolian processes and meso-scale beach-dune behaviour to identify and quantify sediment exchange between the beach and dune under different meteorological and hydrodynamic conditions. Geomorphological changes on the beach and near-shore bar migration were monitored using repeated monthly DGPS surveys and drone technology. Topographical data were correlated with atmospheric data obtained from a locally installed Campbell Scientific automatic weather station, oceanographic data from secondary sources, and photogrammetry using a camera installed at the site collecting pictures every 10 minutes during daylight hours. Changes in surface elevation on the top of the foredune caused by aeolian processes are measured using erosion pin transects. The preliminary results illustrate that natural beach building processes initiate system recovery post storms including elevated foreshores and backshores and nearshore sand bar migration across the entire 1.2 km stretch of coastline. In parallel with the scientific work, the local community have mobilized and are working closely with the lead scientists to implement short term coastal management strategies such as signage, information booklets, sand trap fencing, walkways, wooden revetments, dune planting in order to support the end goal of obtaining financial support from government for a larger, long term coastal protection plan.

  11. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars


    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary


    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that ...

  12. Changes in Microbial Community Structure and Soil Biological Properties in Mined Dune Areas During Re-vegetation. (United States)

    Escobar, Indra Elena C; Santos, Vilma M; da Silva, Danielle Karla A; Fernandes, Marcelo F; Cavalcante, Uided Maaze T; Maia, Leonor C


    The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas.

  13. Petrochemicals from oil sands

    International Nuclear Information System (INIS)

    Du Plessis, M.P.; McCann, T.J.


    The petrochemical industry in Alberta developed rapidly during the 1980s and 1990s. However, projected diminishing gas production from the Western Canadian Sedimentary Basin has raised concerns about the future growth of the industry in Alberta. A joint industry/government study has been conducted to evaluate new feedstocks from Alberta's vast oil sands resources to supplement natural gas liquids. Having both gas and oil sands feedstock options should increase the long-term competitiveness of Alberta's petrochemical industry.This paper presents a framework for evaluating and optimizing schemes for helping Alberta develop synergies for its oil sands and petrochemical industries through cost effective integration of oil sands, upgrading, refining and petrochemical development from 2005 to 2020. The paper places emphasis on specific locations and market conditions. It demonstrates that phased integration of oil sands and petrochemical developments is technically and economically feasible to co-produce high grade fuels and petrochemicals, assuming a new pipeline is built between Edmonton and Vancouver. Alberta has the potential to become a world-scale energy and petrochemical cluster. Alberta's oil sands facilities are potentially capable of supporting new world-scale plants producing ethylene, propylene, benzene, para-xylene, and other high-value-added derivatives. The products can be produced by integrating existing and new oil sands upgrading plants, refineries and petrochemical plants within the next 5 to 10 years. 3 refs., 2 tabs., 7 figs

  14. Large Eddy Simulation of turbulent flow fields over three- dimensional alluvial dunes (United States)

    Hardy, R. J.; Parsons, D. R.; Best, J.; Reesink, A. J. H.; Ockelford, A.


    Flow over fluvial dunes has been extensively studied and there is general understanding of the nature of the flow field over two dimensional dunes under equilibrium flow conditions. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly reorganizing to form complex three-dimensional morphologies (ripples, dunes and bar forms). Here we report on a numerical experiment which predicts flow over three dimensional dunes using Large Eddy Simulation (LES). Bed topography generated through flume experiments, where fine sand was water worked under a range of unsteady hydraulic conditions to generate quasi-equilibrium three dimensional bed forms, was measured with terrestrial LiDAR to create digital elevation models. This topography was then incorporated into a LES model, with a wall-adapting local eddy-viscosity turbulence model, through a Mass Flux Scaling algorithm, to generate three dimensional, high resolution space time prediction of flow over naturally formed dunes. The numerically predicted flows were analysed by standard Reynolds decomposition approaches, Eulerian and Lagrangian coherent flow structure identification methods and proper orthogonal decomposition. The results show that superimposed bed forms can cause changes in the nature of the classical separated flow regions and turbulence field. In particular, the number of locations where vortices are shed increase which causes coalescence of vortices. This increases the rate of transfer of turbulent kinetic energy into smaller scales. This has significant implications for the time dependent prediction of shear stress and as such for sediment transport dynamics which are required for an improved process understanding of three-dimensional bed form adjustment.

  15. Modeling flow and shear stress fields over unsteady three dimensional dunes (United States)

    Hardy, Richard; Parsons, Dan; Ashworth, Phil; Reesink, Arjan; Best, Jim


    The flow field over dunes has been extensively measured in laboratory conditions and there is general understanding on the nature of the flow over dunes formed under equilibrium flow conditions. This has allowed an understanding of bed shear stress to be derived and the development of morpho-dynamic models. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly responding and reorganizing to these unsteady flows and stresses, over a range of both spatial and temporal scales. This is primarily through the adjustment of bed forms (including ripples, dunes and bar forms) which then subsequently alter the flow field. This paper investigates, through the application of a numerical model, the influence of these roughness elements on the overall flow and bed shear stress. A series of physical experiments were undertaken in a flume, 16m long and 2m wide, where a fine sand (D50 of 239µm) was water worked under a range of unsteady hydraulic conditions to generate a series of quasi-equilibrium three dimensional bed forms. During the experiments flow was measured with acoustic Doppler velocimeters, (aDv's). On four occasions the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models. This data provide the necessary boundary conditions and validation data for a numerical three dimensional flow model. The prediction of flow over the four static beds demonstrates the spatial distribution of shear stress and the potential sediment transport paths between the dune crests. These appear to be associated with coherent flow structures formed by localized shear flow. These flow predictions are currently being used to develop a fully three dimensional morphodynamic model to further understand dune dynamics under unsteady flow conditions.

  16. Ripples and Dunes in Directionally Varying Flows--Three Decades of Experiments, Theory, and Modeling (Invited) (United States)

    Rubin, D. M.


    The morphology and dynamics of ripples and dunes have received considerable study for the past half-century, but most studies have focused on only the small subset of flows that are convenient to study in a lab: using flumes with flows that are constant in direction or wave tanks with flows that reverse by 180°. Many natural flows are free to change in direction by other angles (seasonal or daily cycles in wind direction; reversing wave-generated flows combined with alongshore currents; reversing tidal currents in curved channels; unsteady separated flows). A handful of studies have addressed a broader set of such flows using specialized lab setups (rotating beds in unidirectional flows; oscillating or pulsed beds in static or flowing water; unsteady flows that arise in channel expansions or topographic depressions). Other studies have applied theory or modeling (usually incorporating simplified relations between topography, flow, and sediment transport) to bedform morphology and orientation. The studies that have addressed this broader variety of natural flows have found that compared to the relatively sinuous barchanoid morphology of ripples and dunes in unidirectional flows, bedforms in bi-directional flows can have relatively long straight crests (wave ripples or linear dunes); and multi-directional flows have been shown to produce brick- or tile-pattern ripples under interfering waves, star dunes in deserts, and polygonal dunes within craters on Mars. The topic receiving most study in directionally varying flows is bedform orientation in bi-directional flows. A number of lab, field, theoretical, and modeling studies have found that bedforms arise with the orientation subject to maximum gross-normal transport, but some recent results suggest other orientations are possible where a bed is only partially covered in sand.

  17. Seed mucilage improves seedling emergence of a sand desert shrub.

    Directory of Open Access Journals (Sweden)

    Xuejun Yang

    Full Text Available The success of seedling establishment of desert plants is determined by seedling emergence response to an unpredictable precipitation regime. Sand burial is a crucial and frequent environmental stress that impacts seedling establishment on sand dunes. However, little is known about the ecological role of seed mucilage in seedling emergence in arid sandy environments. We hypothesized that seed mucilage enhances seedling emergence in a low precipitation regime and under conditions of sand burial. In a greenhouse experiment, two types of Artemisia sphaerocephala achenes (intact and demucilaged were exposed to different combinations of burial depth (0, 5, 10, 20, 40 and 60 mm and irrigation regimes (low, medium and high, which simulated the precipitation amount and frequency in May, June and July in the natural habitat, respectively. Seedling emergence increased with increasing irrigation. It was highest at 5 mm sand burial depth and ceased at burial depths greater than 20 mm in all irrigation regimes. Mucilage significantly enhanced seedling emergence at 0, 5 and 10 mm burial depths in low irrigation, at 0 and 5 mm burial depths in medium irrigation and at 0 and 10 mm burial depths in high irrigation. Seed mucilage also reduced seedling mortality at the shallow sand burial depths. Moreover, mucilage significantly affected seedling emergence time and quiescence and dormancy percentages. Our findings suggest that seed mucilage plays an ecologically important role in successful seedling establishment of A. sphaerocephala by improving seedling emergence and reducing seedling mortality in stressful habitats of the sandy desert environment.

  18. Légionellose compliquée d'une rhabdomyolyse et d'une ...

    African Journals Online (AJOL)

    Légionellose compliquée d'une rhabdomyolyse et d'une insuffisance rénale aiguë: à propos d'un cas. Arnaud Bac, Ahmed Sabry Ramadan, Pierre Youatou, Pierre Mols, Dominique Cerf, William Ngatchou ...

  19. Facies architecture and stratigraphic evolution of aeolian dune and interdune deposits, Permian Caldeirão Member (Santa Brígida Formation), Brazil (United States)

    Jones, Fábio Herbert; Scherer, Claiton Marlon dos Santos; Kuchle, Juliano


    The Permian Caldeirão Member (Santa Brígida Formation), located in the Tucano Central Basin, northeast region of Brazil, is characterized by a sandstone succession of aeolian origin that comprises the preserved deposits of dunes and interdunes. Grainflow and translatent wind-ripple strata, and frequent presence of reactivation surface, compose the cross-bedding of crescent aeolian dune deposits. The aeolian cross-strata show a mean dip toward the ENE. In places, interlayered with dune cross-beds, occur interdune units composed of facies indicative of dry, damp and wet condition of the substrate, suggesting spatial and/or temporal variations in the moisture content of the interdune accumulation surface. The presence of NNW current ripple cross-lamination in wet interdune areas indicates streamflows confined to interdune corridors and oriented perpendicular to aeolian transport direction. Lenses of damp and wet interdune strata exhibit mainly interdigitated and transitional relationships with the toe-sets of overlying aeolian dune units in sections parallel to aeolian transport, indicating that dune migration was contemporaneous with accumulation in adjacent interdunes. Lateral variations in the preserved thickness of the interdune units and the associated rare occurrence of abrupt and erosive contacts between interdune and overlying dune sets, suggest temporal variations in the angle of dune and interdune climb that may be related to high-frequency changes in water table position. Four stratigraphic intervals in the Caldeirão Member can be identified, two intervals showing cross-bedding of aeolian dunes without wet interdune areas and two intervals exhibiting aeolian dunes separated by wet interdune areas, marking the transition between dry aeolian systems (Intervals I and III) and wet aeolian systems (Intervals II and IV). The temporal alternations between dry and wet aeolian systems reflect changes in the availability of dry sand and/or the rate in the water

  20. Aeolian sand ripples: experimental study of fully developed states. (United States)

    Andreotti, Bruno; Claudin, Philippe; Pouliquen, Olivier


    We report an experimental investigation of aeolian sand ripples, performed both in a wind tunnel and on stoss slopes of dunes. Starting from a flat bed, we can identify three regimes: appearance of an initial wavelength, coarsening of the pattern, and finally saturation of the ripples. We show that both initial and final wavelengths, as well as the propagative speed of the ripples, are linear functions of the wind velocity. Investigating the evolution of an initially corrugated bed, we exhibit nonlinear stable solutions for a finite range of wavelengths, which demonstrates the existence of a saturation in amplitude. These results contradict most of the models.

  1. Flow and suspended-sand behavior in large rivers after dredging. (United States)

    Yuill, B. T.; Wang, Y.; Allison, M. A.; Meselhe, E. A.


    Dredging is commonly used in large rivers to promote navigation and provide sediment for engineering projects. Channel bars typically have thicker, coarser sediment deposits than elsewhere on the channel bed and are often the focus of dredging projects. Bar dredging may create deep pits ("borrow pits") that significantly alter flow and sediment transport. Locally, the pit acts as a large bedform, contracting and expanding the flow field and enhancing turbulence. At the reach scale, the pit acts as a new sediment sink and disrupts the sediment budget which may have consequences for channel stability and aquatic ecosystem health. In this study, we focus on the local impact of the borrow pit and how it, similar to dunes, creates a turbulent wake within the downstream flow column. We hypothesize that this wake may have implications for the overlapping suspended-sediment transport fields. Efficient dredging operations requires the ability to predict channel infilling/recovery timescales and in large, sandy rivers, a substantial fraction of the sediment infilling results from the settling of suspended sediment. However, if the turbulent wake significantly alters pathways of sediment settling within the borrow pit, typical models of sediment deposition that do not account for the wake effects may not apply. To explore this problem, we use numerical modelling to predict sand behavior with and without resolving the effects of wake turbulence. Wake turbulence is resolved using detached-eddy simulation and sand settling is simulated using Lagrangian particle tracking. Our study area is a >1 km2 channel bar in the lower Mississippi River, which was dredged in October 2016. We used vessel-based measurements (MBES, ADCP) to characterize the post-dredge hydrodynamic environment. Study results indicate that the turbulent wake significantly impacted suspended-sand behavior as it entered the borrow pit and large eddies increased the vertical grain velocities, mean grain settling was

  2. Multiple episodes of aggradation and calcrete formation in Late Quaternary aeolian sands, Central Thar Desert, Rajasthan, India (United States)

    Dhir, R. P.; Singhvi, A. K.; Andrews, J. E.; Kar, A.; Sareen, B. K.; Tandon, S. K.; Kailath, A.; Thomas, J. V.


    A 12 m thick section in a dune-sandy plain terrain of the Central Thar in Rajasthan, has provided a near continuous record of environmental change for the past 160 ka. The site presently receives ˜280 mm rainfall, almost entirely from the summer monsoon. The base of this section comprises a gravel bed of an ephemeral stream and the overlying six litho-units, each with discrete boundaries, comprise a succession of aeolian sands. Luminescence dating provided an estimate of the timing of the sand aggradation periods to ˜160, ˜90, ˜60, 27 and 17-14 ka and helped constrain the timing of calcrete formation periods. In each aggradation unit, discrete nodular calcretes formed by the leaching of carbonate from the overlying solum. This is analogous to present-day conditions in sandy plains during periods of increased rainfall and landscape stability. Several of these calcretes are, however, devoid of their donor solum, suggesting solum removal during a subsequent period of decreased rainfall and resultant surface instability. This is supported by the presence of reworked nodules on the surfaces of some calcretes. A prominent phase of calcrete development followed the aeolian sand aggradation at ˜60 ka, suggesting climate amelioration that also caused the formation of groundwater-related calcrete and mottling. The study suggests that stage II calcrete nodules form in a time frame of ˜10-20 ka, and confirms limited data on the duration and stage of calcrete development in the literature. The δ 13C values of calcrete carbonate lie in a narrow range (+0.5 to -1.1‰) suggesting formation under soils with C4 vegetation. This implies that even during phases of climatic amelioration, the high temperatures and increased seasonality of rainfall did not permit significant development of C3 plants in the Central Thar.

  3. Sand and Gravel Deposits (United States)

    Vermont Center for Geographic Information — This dataset is a statewide polygon coverage of sand, gravel, and stone resources. This database includes the best data available from the VT Agency of Natural...

  4. Sand and Gravel Operations (United States)

    Department of Homeland Security — This map layer includes sand and gravel operations in the United States. These data were obtained from information reported voluntarily to the USGS by the aggregate...

  5. Diurnal Ekman layer cycles at White Sands, New Mexico observed with Doppler lidar (United States)

    Gunn, Andrew; Jerolmack, Douglas


    Atmospheric boundary layer turbulence is produced by shear and buoyancy, which are forced by larger-scale geostrophic and solar controls. Their absolute and relative inputs result in a nonlinear response of boundary-normal flow deflection within the Ekman layer. Classical analytical solutions for the deflection were found by assuming extrema of the shear-buoyancy phase space. At the chosen field site, a low-roughness long-fetch salt flat upwind of White Sands dune field, we employ a ground-based upward-facing Doppler lidar to observe the layer's dynamics throughout a continuous 70-day time series of wind vector measurements between 10 and 300 metres aloft. Within this domain we identify transition path bifurcation in the shear-buoyancy phase space, where deflection transience and the associated transformation of the vertical extent of the Ekman layer, are dependent on the daily stability cycle. Our analysis probes the natural system that is often modelled with idealised theory, revealing non-equilibrium dynamics that have implications within atmospheric science and geomorphology.

  6. Changes in active eolian sand at northern Coachella Valley, California (United States)

    Katra, Itzhak; Scheidt, Stephen; Lancaster, Nicholas


    Climate variability and rapid urbanization have influenced the sand environments in the northern Coachella Valley throughout the late 20th century. This paper addresses changes in the spatial relationships among different sand deposits at northern Coachella Valley between two recent time periods by using satellite data acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The approach employed here, involving multispectral thermal infrared (TIR) data and spectral mixture analysis, has shown that the major sand deposits can be spatially modeled at northern Coachella Valley. The "coarse-grained (quartz-rich) sand" deposit is associated with active eolian sand, and the "mixed sandy soil" and "fine-grained (quartz-rich) sand" deposits are associated with inactive eolian sand. The fractional abundance images showed a significant decrease between 2000 and 2006 in the percentage of active sand in the major depositional area for fluvial sediment, the Whitewater River, but also in two downwind areas: the Whitewater and Willow Hole Reserves. The pattern of the active sand appears to be related to variations in annual precipitation (wet and dry years) and river discharge in the northern Coachella Valley. We suggest here that recent human modifications to the major watercourses that supply sand affect the capability of fluvial deposition areas to restore sediments over time and consequently the responses of the sand transport system to climate change, becoming more sensitive to dry years where areas of active sand may shrink, degrade, and/or stabilize faster. The approach utilized in this study can be advantageous for future monitoring of sand in the northern Coachella Valley for management of these and similar environments.

  7. Rate of dune formation and sediment transfer in the past few hundred years on the Danube-Tisza Interfluve, Hungary (United States)

    Schubert, Gábor; Sipos, György


    Environmental change let it be induced either by climatic or anthropogenic factors has had a key role in determining the rate of aeolian sediment transfer, on the highly sensitive landscape of the Danube-Tisza Interfluve, Hungary. The study area is located on a former alluvial fan of the Danube, abandoned by the river in the Late Pleistocene, and then reshaped by aeolian activity. The resultant dune fields were time to time reactivated during the Holocene and historical times. As this part of the Carpathian Basin is often stricken by droughts, anthropogenic factors, such as forest clearances and/or overgrazing could easily lead to the disturbance of morphological stability. These effects acted on a local level, however in certain historical periods they supposedly were more extended and general. An era of this type was the time of Turkish occupation (16th-17th c.) and the following two centuries. During the Turkish rule the territory was cleared of forests and became deserted. Following the slow recolonisation by people and vegetation the land was mainly used for grazing. There are numerous historical reports on repeated sand storms and wind erosional events. However, we have no concept on the true amount of sediment reworked these times and the rate of geomorphic change. The major aim of the present study is therefore to quantify the possible amount of sediment transfer in a wind blown depression-hummock system on the central part of the Danube-Tisza Interfluve during the past 500 years. The determination of dune formation and migration rate provides further insight into the active morphological processes of the region, and also highlights the possible geomorphic responses to environmental changes (mostly climatic) currently affecting the central part of the Carpathian Basin. Seven drillings were made on the chosen hummock and the adjacent blow out to set up the chronological framework of dune formation by the means of luminescence dating (OSL). The relatively


    Directory of Open Access Journals (Sweden)

    D. I. Gnir


    Full Text Available The experimental activation of the sand regenerator of the firm SINTO is carried out at ОАО “MZOO". It is shown that sand grains are cleared from films of binding agents, that allows to use the treated sand for preparation of agglutinant and core sands.

  9. Mars Rover Curiosity Traverses of Sand Ripples (United States)

    Stein, N.; Arvidson, R. E.; Zhou, F.; Heverly, M.; Maimone, M.; Hartman, F.; Bellutta, P.; Iagnemma, K.; Senatore, C.


    Martian sand ripples present a challenge for rover mobility, with drives over ripples often characterized by high wheel sinkage and slippage that can lead to incipient embedding. Since landing in Gale Crater, Curiosity has traversed multiple sand ripples, including the transverse aeolian ridge (TAR) straddling Dingo Gap on sols 533 and 535. On sol 672, Curiosity crossed backward over a series of sand ripples before ending its drive after high motor currents initiated visual odometry (VO) processing, which detected 77% slip, well in excess of the imposed 60% slip limit. At the end of the drive, the right front wheel was deeply embedded at the base of a ripple flank with >20 cm sinkage and the rear wheels were near a ripple crest. As Curiosity continues its approach to Mount Sharp it will have to cross multiple ripples, and thus it is important to understand Curiosity's performance on sol 672 and over similar ripples. To this end the sol 672 drive was simulated in ARTEMIS (Adams-Based Rover Terramechanics Interaction Simulator), a software tool consisting of realistic rover mechanical models, a wheel-terrain interaction module for deformable and non-deformable surfaces, and realistic terrain models. ARTEMIS results, Dumont Dunes tests performed in the Mojave Desert using the Scarecrow test rover, and single wheel tests performed at MIT indicate that the high slip encountered on sol 672 likely occurred due to a combination of rover attack angle, ripple geometry, and soil properties. When ripple wavelength approaches vehicle length, the rover can reach orientations in which the leading wheels carry minimal normal loads and the trailing wheels sink deeply, resulting in high slippage and insufficient thrust to propel the rover over ripples. Even on relatively benign (i.e. low tilt) terrains, local morphology can impose high sinkage, thus impeding rover motion. Work is underway to quantify Curiosity's drive performance over various ripple geometries to retrieve soil

  10. Reuse of waste cutting sand at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Mathews, S.; Wilson, K.


    Lawrence Livermore National Laboratory (LLNL) examined the waste stream from a water jet cutting operation, to evaluate the possible reuse of waste garnet sand. The sand is a cutting agent used to shape a variety of materials, including metals. Nearly 70,000 pounds of waste sand is generated annually by the cutting operation. The Environmental Protection Department evaluated two potential reuses for the spent garnet sand: backfill in utility trenches; and as a concrete constituent. In both applications, garnet waste would replace the sand formerly purchased by LLNL for these purposes. Findings supported the reuse of waste garnet sand in concrete, but disqualified its proposed application as trench backfill. Waste sand stabilized in a concrete matrix appeared to present no metals-leaching hazard; however, unconsolidated sand in trenches could potentially leach metals in concentrations high enough to threaten ground water quality. A technical report submitted to the San Francisco Bay Regional Water Quality Control Board was reviewed and accepted by that body. Reuse of waste garnet cutting sand as a constituent in concrete poured to form walkways and patios at LLNL was approved

  11. Oil sands tax expenditures

    International Nuclear Information System (INIS)

    Ketchum, K; Lavigne, R.; Plummer, R.


    The oil sands are a strategic Canadian resource for which federal and provincial governments provide financial incentives to develop and exploit. This report describes the Oil Sands Tax Expenditure Model (OSTEM) developed to estimate the size of the federal income tax expenditure attributed to the oil sands industry. Tax expenditures are tax concessions which are used as alternatives to direct government spending for achieving government policy objectives. The OSTEM was developed within the business Income Tax Division of Canada's Department of Finance. Data inputs for the model were obtained from oil sands developers and Natural Resources Canada. OSTEM calculates annual revenues, royalties and federal taxes at project levels using project-level projections of capital investment, operating expenses and production. OSTEM calculates tax expenditures by comparing taxes paid under different tax regimes. The model also estimates the foregone revenue as a percentage of capital investment. Total tax expenditures associated with investment in the oil sands are projected to total $820 million for the period from 1986 to 2030, representing 4.6 per cent of the total investment. 10 refs., 2 tabs., 7 figs

  12. A Mathematical Model for the Flow Resistance and the Related Hydrodynamic Dispersion Induced by River Dunes

    Directory of Open Access Journals (Sweden)

    Marilena Pannone


    Full Text Available Present work is aimed at the derivation of a simply usable equation for the total flow resistance associated with river bedforms, by a unifying approach allowing for bypassing some of the limiting restrictions usually adopted in similar types of studies. Specifically, we focused on the effect induced by the out-of-phase free surface undulations appearing in presence of sand dunes. The proposed expression, obtained by combining the balance of momentum referred to the control volume whose longitudinal dimension coincides with the dune wavelength and the energy balance integrated between its extreme sections, was tested by comparison with some laboratory experimental measurements available in the literature and referred to steady flow past fixed, variably rough bedforms. In terms of shear stress or friction factor, the proposed theory provides estimates in good agreement with the real data, especially if evaluated against the performances provided by other classical similar approaches. Moreover, when analyzed in terms of hydrodynamic dispersive properties as a function of the skin roughness on the basis of a previously derived analytical solution, the dune-covered beds seem to behave like meandering channels, responsible for a globally enhanced fluid particles longitudinal spreading, with a relatively reduced effect in the presence of less pronounced riverbed modelling.

  13. Modeling grain size variations of aeolian gypsum deposits at White Sands, New Mexico, using AVIRIS imagery (United States)

    Ghrefat, H.A.; Goodell, P.C.; Hubbard, B.E.; Langford, R.P.; Aldouri, R.E.


    Visible and Near-Infrared (VNIR) through Short Wavelength Infrared (SWIR) (0.4-2.5????m) AVIRIS data, along with laboratory spectral measurements and analyses of field samples, were used to characterize grain size variations in aeolian gypsum deposits across barchan-transverse, parabolic, and barchan dunes at White Sands, New Mexico, USA. All field samples contained a mineralogy of ?????100% gypsum. In order to document grain size variations at White Sands, surficial gypsum samples were collected along three Transects parallel to the prevailing downwind direction. Grain size analyses were carried out on the samples by sieving them into seven size fractions ranging from 45 to 621????m, which were subjected to spectral measurements. Absorption band depths of the size fractions were determined after applying an automated continuum-removal procedure to each spectrum. Then, the relationship between absorption band depth and gypsum size fraction was established using a linear regression. Three software processing steps were carried out to measure the grain size variations of gypsum in the Dune Area using AVIRIS data. AVIRIS mapping results, field work and laboratory analysis all show that the interdune areas have lower absorption band depth values and consist of finer grained gypsum deposits. In contrast, the dune crest areas have higher absorption band depth values and consist of coarser grained gypsum deposits. Based on laboratory estimates, a representative barchan-transverse dune (Transect 1) has a mean grain size of 1.16 ??{symbol} (449????m). The error bar results show that the error ranges from - 50 to + 50????m. Mean grain size for a representative parabolic dune (Transect 2) is 1.51 ??{symbol} (352????m), and 1.52 ??{symbol} (347????m) for a representative barchan dune (Transect 3). T-test results confirm that there are differences in the grain size distributions between barchan and parabolic dunes and between interdune and dune crest areas. The t-test results

  14. Sand transport by wind, erosion and deposition and the origin of aeolian bedforms (United States)

    Duran Vinent, Orencio


    Aeolian processes involve the wind action on a sedimentary substrate, namely erosion, sand transport and deposition. They are responsible for the emergence of aeolian dunes and ripples. Here, we discuss the physics of aeolian sediment transport from a physical point of view. Relevant time and length scales associated to turbulent wind fluctuations are summarized using aerodynamic theory. At the microscopic scale, the main forces acting on the grains are detailed. Sand transport is then studied using two phase numerical simulations based on a discrete element method for particles coupled to a continuum Reynolds averaged description of hydrodynamics. We then introduce the concepts - e.g. saturated flux, saturation length - and the relevant framework for the development of a continuum (macroscopic) quantitative description of transport at the core of our current understanding of aeolian dunes formation. At smaller scales, aeolian ripples arise from the interaction of sediment transport and topography. At larger scales, the nonlinear nature of the interaction between dunes leads to the formation of dune fields.

  15. Water repellency and infiltration of biological soil crusts on an arid and a temperate dunes (United States)

    Fischer, Thomas; Yair, Aaron; Geppert, Helmut; Veste, Maik


    properties of biological soil crusts on sand dunes studied by 13C-CP/MAS-NMR: a comparison between an arid and a temperate site. Catena 110:155-160 Breckle, S.-W, Yair, A., Veste, M. (eds.), Arid Dune Ecosystems - The Nizzana Sands in the Negev Desert, Ecological Studies 200, Springer, Berlin Heidelberg New York.

  16. Wet dune slacks : decline and new opportunities

    NARCIS (Netherlands)

    Dijk, H.W.J. van; Grootjans, A.P.


    For a number of infiltrated coastal dune areas it is discussed to what extent artificial infiltration for the public water supply affects the quality of soil, groundwater and vegetation around pools and ponds, and what its effect is on the vegetation. Further, the results of investigations into the

  17. CO2 sequestration in two mediterranean dune areas subjected to a different level of anthropogenic disturbance (United States)

    Bonito, Andrea; Ricotta, Carlo; Iberite, Mauro; Gratani, Loretta; Varone, Laura


    Coastal sand dunes are among the most threatened habitats, especially in the Mediterranean Basin, where the high levels of human pressure impair the presence of plant species, putting at risk the maintenance of the ecosystem services, such as CO2 sequestration provided by these habitats. The aim of this study was to analyze how disturbance-induced changes in plant species abundance patterns account for variations in annual CO2 sequestration flow (CS) of Mediterranean sand dune areas. Two sites characterized by a high (site HAD) and a lower (site LAD) anthropogenic disturbance level were selected. At both sites, plant species number, cover, height and CS based on net photosynthesis measurements were sampled. At the plant species level, our results highlighted that Ammophila arenaria and Pancratium maritimum, had a key role in CS. Moreover, the results revealed a patchy species assemblage in both sites. In particular, HAD was characterized by a higher extension of the anthropogenic aphytoic zone (64% of the total transect length) than LAD. In spite of the observed differences in plant species composition, there were not significant differences between HAD and LAD in structural and functional traits, such as plant height and net photosynthesis. As a consequence, HAD and LAD had a similar CS (443 and 421 Mg CO2 ha-1 y-1, respectively). From a monetary point of view, our estimates based on the social costs of carbon revealed that the flow of sequestered CO2 valued on an average 3181 ± 114 ha-1 year-1 (mean value for the two sites). However, considering also the value of the CO2 negative flow related to loss of vegetated area, the annual net benefit arising from CO2 sequestration amounted to 1641 and 1772 for HAD and LAD, respectively. Overall, the results highlighted the importance to maximize the efforts to preserve dune habitats by applying an effective management policy, which could allow maintaining also a regulatory ecosystem service such as CO2 sequestration.

  18. Provenance of Holocene calcareous beach-dune sediments, Western Eyre Peninsula, Great Australian Bight, Australia (United States)

    James, Noel P.; Bone, Yvonne


    Much of western Eyre Peninsula adjacent to the Great Australian Bight is veneered with siliceous and calcareous Quaternary aeolian dunes. The lengthy coastline adjacent to this cool-water carbonate factory is a series of Precambrian crystalline bedrock-Pleistocene aeolianite headlands that separate many long, sweeping, Holocene carbonate sand beaches and their backbeach dunes. Incessant SW waves, rolling swells, and onshore winds have resulted in > 350 km of semi-continuous calcareous strandline aeolian sands. The sediment is composed of quartz grains, Cenozoic limestone clasts, and relict particles (extraclasts) but the deposits are overwhelmingly dominated by contemporaneous biofragments from offshore. These skeletal grains are, in order of relative abundance, molluscs > benthic foraminifers > coralline algae > bryozoans, and echinoids. Benthic foraminifers are mostly small (especially rotaliids and miliolids) but the large relict symbiont-bearing protistMarginopora vertebralis, which grew in the latter stages of MIS 2, is present locally. There are no significant onshore-offshore trends within individual beach-dune complexes. There is, however, a prominent spatial partitioning, with extraclast-rich sediments in the north and biofragment-rich deposits in the south. This areal trend is interpreted to result from more active seafloor carbonate production in the south, an area of conspicuous seasonal nutrient upwelling and profound nektic and benthic biological productivity. The overall system is strikingly similar to Holocene and Pleistocene aeolianites along the inboard margin of the Lacepede Shelf and Bonney Coast some 500 km to the southeast, implying a potential universality to the nature of cool-water carbonate aeolianite deposition. The composition of these cool-water aeolianites is more multifaceted than those formed on warm-water, shallow flat-topped platforms, largely because of the comparatively deep, temperate shelf, the high-energy wave and swell

  19. Documenting the global impacts of beach sand mining (United States)

    Young, R.; Griffith, A.


    For centuries, beach sand has been mined for use as aggregate in concrete, for heavy minerals, and for construction fill. The global extent and impact of this phenomenon has gone relatively unnoticed by academics, NGOs, and major news sources. Most reports of sand mining activities are found at the very local scale (if the mining is ever documented at all). Yet, sand mining in many localities has resulted in the complete destruction of beach (and related) ecosystems along with severe impacts to coastal protection and tourism. The Program for the Study of Developed Shorelines at Western Carolina University and have initiated the construction of a global database of beach sand mining activities. The database is being built through a combination of site visits and through the data mining of media resources, peer reviewed papers, and reports from private and governmental entities. Currently, we have documented sand mining in 35 countries on 6 continents representing the removal of millions of cubic meters of sand. Problems extend from Asia where critical infrastructure has been disrupted by sand mining to the Caribbean where policy reform has swiftly followed a highly publicized theft of sand. The Program for the Study of Developed Shorelines recently observed extensive sand mining in Morocco at the regional scale. Tens of kilometers of beach have been stripped of sand and the mining continues southward reducing hope of a thriving tourism-based economy. Problems caused by beach sand mining include: destruction of natural beaches and the ecosystems they protect (e.g. dunes, wetlands), habitat loss for globally important species (e.g. turtles, shorebirds), destruction of nearshore marine ecosystems, increased shoreline erosion rates, reduced protection from storms, tsunamis, and wave events, and economic losses through tourist abandonment and loss of coastal aesthetics. The threats posed by sand mining are made even more critical given the prospect of a

  20. The Single-Phase ProtoDUNE Technical Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Abi, B. [Univ. of Padova (Italy); et al.


    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report.

  1. Danos socioambientais originados pelas usinas eólicas nos campos de dunas do Nordeste brasileiro e critérios para definição de alternativas locacionais Dommages socio-environnementaux causés par les parcs éoliens dans les champs de dunes de sable du nord-est du Brésil et critères pour la définition d'alternatives de localisation Socio-environmental damage caused by wind farms in sand dunes fields of northeastern Brazil and criteria for definition of locational alternatives

    Directory of Open Access Journals (Sweden)

    Antonio Jeovah de Andrade Meireles


    Full Text Available O potencial eólico brasileiro é uma importante alternativa para a produção de energia renovável para enfrentar as emissões de poluentes atmosféricos com a utilização de energia limpa. Uma excelente política ambiental para minimizar as consequências previstas pelo aquecimento global, perante as emissões de dióxido de carbono e poluentes relacionados com a utilização de carvão mineral e outros combustíveis fósseis. Este artigo enumerou as consequências ambientais das usinas eólicas sobre os campos de dunas através da fragmentação dos sistemas ambientais provocado pelas obras de engenharia. Ao final foi possível analisar os impactos cumulativos tomando como exemplo o litoral cearense, definir alternativas locacionais e ações adequadas para o planejamento de ambientes costeiros diante esta nova forma de geração de energia limpa.En ce qui concerne la production d'énergies renouvelables au Brésil, le potentiel éolien  est une alternative prometteuse pour la réduction d’émissions de polluants atmosphériques, la mise en pratique d’une politique environnementale sensible aux conséquences du phénomène de réchauffement global. Cependant, la localisation de projets de cette nature dans les champs de dunes, suscite  un changement drastique de la dynamique géomorphologique de la zone côtière, avec  des impacts environnementaux que ce texte vise à d’évaluer, surtout dans le cas du Ceará. La localisation des parcs éoliens dans les champs de dunes y est une conséquence des politiques d’aménagement mises en place dans la zone côtière et d’après la logique de production d'énergie propre.The wind potential in Brazil is an important alternative for the production of renewable energy, reducing the emission of air pollutants with the use of clean energy. An environmental policy to minimize the consequences of global warming.  This article evaluated the environmental impacts of wind farms on the dune



    M. Darshana*1 & S. P. R. Samanthika2


    This report has been discussed sea sand and river sand mining in Sri Lanka. To find out the consequences of the present situation regarding sand market and problems arise due to high demand. Currently, Sri lanka is facing sever environmental problems due to sand mining such as river bank erosion, saline water intrusion, destroying of coastal, loss of land and loss of live hood due to flooding. Beside all there are production related problems and marketing problems also can be seen in thi...

  3. Growth of Chitinolytic Dune Soil β-Subclass Proteobacteria in Response to Invading Fungal Hyphae† (United States)

    De Boer, Wietse; Klein Gunnewiek, Paulien J. A.; Kowalchuk, George A.; Van Veen, Johannes A.


    It has frequently been reported that chitinolytic soil bacteria, in particular biocontrol strains, can lyse living fungal hyphae, thereby releasing potential growth substrate. However, the conditions used in such assays (high bacterial density, rich media, fragmented hyphae) make it difficult to determine whether mycolytic activity is actually of importance for the growth and survival of chitinolytic bacteria in soils. An unidentified group of β-subclass Proteobacteria (CβPs) was most dominant among the culturable nonfilamentous chitinolytic bacteria isolated from Dutch sand dune soils. Here we demonstrate that the CβPs grew at the expense of extending fungal mycelium of three dune soil fungi (Chaetomium globosum, Fusarium culmorum, and Mucor hiemalis) under nutrient-limiting, soil-like conditions. Aggregates of CβPs were also often found attached to fungal hyphae. The growth of a control group of dominant nonchitinolytic dune soil bacteria (β- and γ-subclass Proteobacteria) was not stimulated in the mycelial zone, indicating that growth-supporting materials were not independently released in appreciable amounts by the extending hyphae. Therefore, mycolytic activities of CβPs have apparently been involved in allowing them to grow after exposure to living hyphae. The chitinase inhibitor allosamidin did not, in the case of Mucor, or only partially, in the cases of Chaetomium and Fusarium, repress mycolytic growth of the CβPs, indicating that chitinase activity alone could not explain the extent of bacterial proliferation. Chitinolytic Stenotrophomonas-like and Cytophaga-like bacteria, isolated from the same dune soils, were only slightly stimulated by exposure to fungal hyphae. PMID:11472904

  4. Growth of chitinolytic dune soil beta-subclass Proteobacteria in response to invading fungal hyphae. (United States)

    De Boer, W; Klein Gunnewiek, P J; Kowalchuk, G A; Van Veen, J A


    It has frequently been reported that chitinolytic soil bacteria, in particular biocontrol strains, can lyse living fungal hyphae, thereby releasing potential growth substrate. However, the conditions used in such assays (high bacterial density, rich media, fragmented hyphae) make it difficult to determine whether mycolytic activity is actually of importance for the growth and survival of chitinolytic bacteria in soils. An unidentified group of beta-subclass Proteobacteria (CbetaPs) was most dominant among the culturable nonfilamentous chitinolytic bacteria isolated from Dutch sand dune soils. Here we demonstrate that the CbetaPs grew at the expense of extending fungal mycelium of three dune soil fungi (Chaetomium globosum, Fusarium culmorum, and Mucor hiemalis) under nutrient-limiting, soil-like conditions. Aggregates of CbetaPs were also often found attached to fungal hyphae. The growth of a control group of dominant nonchitinolytic dune soil bacteria (beta- and gamma-subclass Proteobacteria) was not stimulated in the mycelial zone, indicating that growth-supporting materials were not independently released in appreciable amounts by the extending hyphae. Therefore, mycolytic activities of CbetaPs have apparently been involved in allowing them to grow after exposure to living hyphae. The chitinase inhibitor allosamidin did not, in the case of Mucor, or only partially, in the cases of Chaetomium and Fusarium, repress mycolytic growth of the CbetaPs, indicating that chitinase activity alone could not explain the extent of bacterial proliferation. Chitinolytic Stenotrophomonas-like and Cytophaga-like bacteria, isolated from the same dune soils, were only slightly stimulated by exposure to fungal hyphae.

  5. Recommendations for a barrier island breach management plan for Fire Island National Seashore, including the Otis Pike High Dune Wilderness Area, Long Island, New York (United States)

    Williams, S. Jeffress; Foley, Mary K.


    The U.S Army Corps of Engineers, New York District is developing engineering plans, including economic costs and benefits, for storm damage reduction along an 83 mile stretch of the coastal barrier islands and beaches on the south shore of Long Island, NY from Fire Island Inlet east to the Montauk Point headland. The plan, expected to include various alternatives for storm protection and erosion mitigation, is referred to as the Fire Island to Montauk Point Reformulation Plan (FIMP). These plans are expected to follow the Corps of Engineers’ Environmental Operating Principles striving for long term environmental sustainability and balance between environmental protection and protection of human health and property. Fire Island National Seashore (FIIS), a 19,579 acre unit of the National Park System includes a 32 mile long coastal barrier island located within the FIMP project area. A seven-mile section of the park, Otis Pike Fire Island High Dune Wilderness Area, is also a designated Federal Wilderness Area. The FIIS includes not only the barrier island and sand dunes, but also several islands, sand flats and wetlands landward of the barrier, submerged parts of Great South Bay shoreface, extending approximately 4,000 feet into the bay with the inner shelf region extending approximately 1,000 feet seaward of the Fire Island shoreline. The Fire Island barrier islands, a sand-starved system dominated by highly dynamic processes, are struggling to maintain their integrity in the face of sea-level rise and storms. Adding to the dilemma is that development on the barriers and the mainland has increased greatly during the past 50 years. As such, managers and decision makers in federal agencies, state agencies and local governments are challenged to balance tradeoffs between protection of lives and property, public access and long term conservation of natural habitats and processes and the plants and animals that depend on these habitats. National Park Service (NPS

  6. Speleothems and Sand Castles (United States)

    Hance, Trevor; Befus, Kevin


    The idea of building sand castles evokes images of lazy summer days at the beach, listening to waves crash, enjoying salty breezes, and just unplugging for a while to let our inner child explore the wonderful natural toys beneath our feet. The idea of exploring caves might evoke feelings and images of claustrophobia or pioneers and Native…

  7. Sand Pine Symposium Proceedings (United States)

    USDA Forest Service Southern Forest Experiment Station


    Sand pine, a species well suited to the excessively drained soils common to several million acres in the Southeast, was the subject of this well-attended 3-day meeting. Papers presented included a review of the literature plus results of current research related to this species. Subjects covered ranged from seeds and seedlings to final harvest and conversion...

  8. Differences and commonalities impregnation of dry and wet sand

    Directory of Open Access Journals (Sweden)



    Full Text Available The article is devoted to research new methods of physic-chemical methods of preventing deflation to protect railways and highways from such phenomena as exogenous sand drifts. In particular, first studied the possibility of using binders in sand wet state. Results can significantly extend the scope of the method, and identified with particular impregnation maintaining stability requirements protective cover reduces both the concentration previously recommended binders, and their costs, thereby securing implementation in practice of shifting sands resource-saving technology.

  9. Are the different gully morphologies due to different formation processes on the Kaiser dune field on Mars? (United States)

    Pasquon, K.; Gargani, J.; Nachon, M.; Conway, S. J.; Massé, M.; Jouannic, G.; Balme, M. R.; Costard, F.; Vincendon, M.


    Diverse gully morphologies are seen on Mars and differences are often neglected for simplification. Here we describe in detail the morphology and present-day activity of two gully-systems on the Kaiser dune field in the southern hemisphere of Mars. We then compare their activity with that of the morphologically distinct linear dune gullies present on the same dunes. The studied gully-systems have large depositional aprons (named "large apron gullies") and occur on dune faces oriented westward. They are active from mid-autumn to late winter (i.e. from Ls 50° to Ls 180°) coinciding with CO2 ice condensation/sublimation cycles. Sandy material collapses from the alcove flanks onto the alcove floor sporadically throughout this period. This accumulated sand is remobilized by punctuated mass flows which we estimate to be up to 7100 m3 in volume. These flows run out on to the apron and occur between Ls 120° and Ls 160°. These mass flow events occur when the number of "digitate flows" is at its seasonal maximum. Digitate flows are characterized by long-narrow zig-zagging low-albedo tracks and do not seem to transport appreciable sediment, and they can number in the hundreds. Small pits appear at their termini or midway along and sometimes these pits are re-deepened by subsequent flows. These events repeat every year and using volume balance calculations we find that the whole system could be built on a timescale of hundreds of martian ears. These large apron gullies differ in morphology and timing from the linear dune gullies. The linear dune gullies are active in late winter, or beginning of spring when the CO2 frost finally sublimates, which occurs after the activity of the large apron gullies. Due to the difference of orientation between large apron gullies and linear dune as well as timing, we infer that insolation, which may influence (i) the depth to ground ice, (ii) the amount of volatiles deposits, is the main cause their differences. Sediment transport by CO2

  10. Environmental Impacts of Sand Exploitation. Analysis of Sand Market

    Directory of Open Access Journals (Sweden)

    Marius Dan Gavriletea


    Full Text Available Sand is an indispensable natural resource for any society. Despite society’s increasing dependence on sand, there are major challenges that this industry needs to deal with: limited sand resources, illegal mining, and environmental impact of sand mining. The purpose of this paper is twofold: to present an overview of the sand market, highlighting the main trends and actors for production, export and import, and to review the main environmental impacts associated with sand exploitation process. Based on these findings, we recommend different measures to be followed to reduce negative impacts. Sand mining should be done in a way that limits environmental damage during exploitation and restores the land after mining operations are completed.

  11. Age and dynamics of the Namib Sand Sea: A review of chronological evidence and possible landscape development models (United States)

    Stone, A. E. C.


    The Namib Sand Sea constitutes a major physiographic feature of the Namib Desert on the west of Namibia, covering a 50-160 km wide region of the coast between Lüderitz and Walvis Bay. It is widely considered to be one of the oldest desert regions, with a Tertiary-aged fossil desert underlying the modern sand sea. The sand sea has been well studied, benefiting from the presence of the Gobabeb Training and Research Centre during the past 50 years. Whilst much is understood about its sediments and geomorphology, it is only recently that new chronological information, using cosmogenic-nuclide burial dating and optically stimulated luminescence dating have offered new insights, and this calls for an updated review of the age and landscape development of the sand sea. This assessment of the geomorphological and Quaternary dynamics of the region is complemented by developments in the description and analysis of sediment composition. New age control from cosmogenic dating indicates that the sand sea is in excess of a million years old. Initial data from luminescence dating yields depositional ages for dune sediments from three broad areas of the sand sea that include MIS 5, later in the Pleistocene around the Last Glacial Maximum and the Holocene, although it is not expected that these will be the only, or discrete age groupings. Detailed dating and application of ground penetrating radar in the far northern reaches reveals extensive dune migration and deposition during the Holocene. It is important to stress that the upper limit of luminescence dating here is about ˜200 ka (depending on the environmental dose rate of the site) and that migration and reworking of dunes resets the luminescence signal (so what is recorded is(are) the last phase(s) of preserved sediment accumulation). Whilst there are three potential sources of material for the Namib Sand Sea (reworked Tsondab Sandstone (TSS), material from the Great Escarpment derived by rivers and water and wind

  12. Responses of dune activity and desertification in China to global warming in the twenty-first century (United States)

    Wang, Xunming; Yang, Yi; Dong, Zhibao; Zhang, Caixia


    Most areas of arid and semiarid China are covered by aeolian sand dunes, sand sheets, and desert steppes, and the existence of the nearly 80 million people who live in this region could be seriously jeopardized if climate change increases desertification. However, the expected trends in desertification during the 21st century are poorly understood. In the present study, we selected the ECHAM4 and HadCM3 global climate models (after comparing them with the results of the GFDL-R30, CGCM2, and CSIRO-Mk2b models) and used simulations of a dune mobility index under IPCC SRES climate scenarios A1FI, A2a, A2b, A2c, B1a, B2a, and B2b to estimate future trends in dune activity and desertification in China. Although uncertainties in climate predictions mean that there is still far to go before we can develop a comprehensive dune activity estimation system, HadCM3 simulations with most greenhouse forcing scenarios showed decreased desertification in most western region of arid and semiarid China by 2039, but increased desertification thereafter, whereas ECHAM4 simulation results showed that desertification will increase during this period. Inhabitants of thecentral region will benefit from reversed desertification from 2010 to 2099, whereas inhabitants of the eastern region will suffer from increased desertification from 2010 to 2099. From 2010 to 2039, most regions will not be significantly affected by desertification, but from 2040 to 2099, the environments of the western and eastern regions will deteriorate due to the significant effects of global warming (particularly the interaction between precipitation and potential evapotranspiration), leading to decreased livestock and grain yields and possibly threatening China's food security.

  13. Dune Management Challenges on Developed Coasts (United States)


    passive (aesthetic, psy- chological, cultural and environmental heritage, and educational ) benefits. The ability of dunes to provide natural and human...the Environment 13: 203-210. Folke, C.T., P. Hahn, P.L.H. Olsson, and J. Nor- berg 2005. “Adaptive governance of social- ecological knowledge.” Annual...Review of Environment and Resources 30: 441–473. Godfrey, P.J, and M.M. Godfrey 1973. “Comparison of ecological and geomorphic interactions between

  14. Probing Majorana neutrino textures at DUNE (United States)

    Bora, Kalpana; Borah, Debasish; Dutta, Debajyoti


    We study the possibility of probing different texture zero neutrino mass matrices at the long baseline neutrino experiment DUNE, particularly focusing on its sensitivity to the octant of atmospheric mixing angle θ23 and leptonic Dirac C P phase δcp. Assuming a diagonal charged lepton basis and Majorana nature of light neutrinos, we first classify the possible light neutrino mass matrices with one and two texture zeros and then numerically evaluate the parameter space which satisfies the texture zero conditions. Apart from using the latest global fit 3 σ values of neutrino oscillation parameters, we also use the latest bound on the sum of absolute neutrino masses (∑i |mi|) from the Planck mission data and the updated bound on effective neutrino mass Me e from neutrinoless double beta decay (0 ν β β ) experiments to find the allowed Majorana texture zero mass matrices. For the allowed texture zero mass matrices from all these constraints, we then feed the corresponding light neutrino parameter values satisfying the texture zero conditions into the numerical analysis in order to study the capability of DUNE to allow or exclude them once it starts taking data. We find that DUNE will be able to exclude some of these texture zero mass matrices which restrict (θ23-δcp) to a very specific range of values, depending on the values of the parameters that nature has chosen.

  15. Use of remote sensing techniques to determine the effects of grazing on vegetation cover and dune elevation at assateague island national seashore: Impact of horses (United States)

    De Stoppelaire, G. H.; Gillespie, T.W.; Brock, J.C.; Tobin, G.A.


    The effects of grazing by feral horses on vegetation and dune topography at Assateague Island National Seashore were investigated using color-infrared imagery, lidar surveys, and field measurements. Five pairs of fenced and unfenced plots (300 m2) established in 1993 on sand flats and small dunes with similar elevation, topography, and vegetation cover were used for this study. Color-infrared imagery from 1998 and field measurements from 2001 indicated that there was a significant difference in vegetation cover between the fenced and unfenced plot-pairs over the study period. Fenced plots contained a higher percentage of vegetation cover that was dominated by American beachgrass (Ammophila breviligulata). Lidar surveys from 1997, 1999, and 2000 showed that there were significant differences in elevation and topography between fenced and unfenced plot-pairs. Fenced plots were, on average, 0.63 m higher than unfenced plots, whereas unfenced plots had generally decreased in elevation after establishment in 1993. Results demonstrate that feral horse grazing has had a significant impact on dune formation and has contributed to the erosion of dunes at Assateague Island. The findings suggest that unless the size of the feral horse population is reduced, grazing will continue to foster unnaturally high rates of dune erosion into the future. In order to maintain the natural processes that historically occurred on barrier islands, much larger fenced exclosures would be required to prevent horse grazing. ?? 2004 Springer Science+Business Media, Inc.

  16. Sedimentary differentiation of aeolian grains at the White Sands National Monument, New Mexico, USA (United States)

    Fenton, Lori K.; Bishop, Janice L.; King, Sara; Lafuente, Barbara; Horgan, Briony; Bustos, David; Sarrazin, Philippe


    Gypsum (CaSO4·2H2O) has been identified as a major component of part of Olympia Undae in the northern polar region of Mars, along with the mafic minerals more typical of Martian dune fields. The source and age of the gypsum is disputed, with the proposed explanations having vastly different implications for Mars' geological history. Furthermore, the transport of low density gypsum grains relative to and concurrently with denser grains has yet to be investigated in an aeolian setting. To address this knowledge gap, we performed a field study at White Sands National Monument (WSNM) in New Mexico, USA. Although gypsum dominates the bulk of the dune field, a dolomite-rich [CaMg(CO3)2] transport pathway along the northern border of WSNM provides a suitable analog site to study the transport of gypsum grains relative to the somewhat harder and denser carbonate grains. We collected samples along the stoss slope of a dune and on two coarse-grained ripples at the upwind margin of the dune field where minerals other than gypsum were most common. For comparison, additional samples were taken along the stoss slope of a dune outside the dolomite transport pathway, in the center of the dune field. Visible and near-infrared (VNIR), X-ray powder diffraction (XRD), and Raman analyses of different sample size fractions reveal that dolomite is only prevalent in grains larger than ∼1 mm. Other minerals, most notably calcite, are also present in smaller quantities among the coarse grains. The abundance of these coarse grains, relative to gypsum grains of the same size, drops off sharply at the upwind margin of the dune field. In contrast, gypsum dominated the finer fraction (dune field formative friction velocity (0.39 m/s) proposed by Jerolmack et al. (2011): winds significantly weaker than this value would not lift the large grains into differentiation-inducing saltation, whereas the observed differentiated trend would be obliterated by significantly stronger winds. When applied

  17. Geotechnical properties of cemented sands in steep slopes (United States)

    Collins, B.D.; Sitar, N.


    An investigation into the geotechnical properties specific to assessing the stability of weakly and moderately cemented sand cliffs is presented. A case study from eroding coastal cliffs located in central California provides both the data and impetus for this study. Herein, weakly cemented sand is defined as having an unconfined compressive strength (UCS) of less than 100 kPa, and moderately cemented sand is defined as having UCS between 100 and 400 kPa. Testing shows that both materials fail in a brittle fashion and can be modeled effectively using linear Mohr-Coulomb strength parameters, although for weakly cemented sands, curvature of the failure envelope is more evident with decreasing friction and increasing cohesion at higher confinement. Triaxial tests performed to simulate the evolving stress state of an eroding cliff, using a reduction in confinement-type stress path, result in an order of magnitude decrease in strain at failure and a more brittle response. Tests aimed at examining the influence of wetting on steep slopes show that a 60% decrease in UCS, a 50% drop in cohesion, and 80% decrease in the tensile strength occurs in moderately cemented sand upon introduction to water. In weakly cemented sands, all compressive, cohesive, and tensile strength is lost upon wetting and saturation. The results indicate that particular attention must be given to the relative level of cementation, the effects of groundwater or surficial seepage, and the small-scale strain response when performing geotechnical slope stability analyses on these materials. ?? 2009 ASCE.

  18. New species of Stenodactylus (Squamata: Gekkonidae) from the Sharqiyah Sands in northeastern Oman. (United States)

    Metallinou, Margarita; Carranza, Salvador


    A new species of gecko of the genus Stenodactylus (Squamata: Gekkonidae) is described from the dune desert of Al Sharqiyah Sands in northeastern Oman. Stenodactylus sharqiyahensis sp. nov. is characterized morphologically by its small size, snout shape, webbing between fingers not very extended, relatively short limbs, and scalation. It is genetically distinct in the mitochondrial DNA and the nuclear MC1R gene from Stenodactylus arabicus to which it has previously been referred. The new species seems to have a restricted distribution confined to the Sharqiyah Sands, which remain isolated from other sand deserts in Arabia. In addition, the data presented herein confirm new locality records for Stenodactylus arabicus in the easternmost limit of its distribution range in western central Oman. 

  19. Assessment of Anticancer Properties of Essential Oils from sand dunes of Peniche (Portugal

    Directory of Open Access Journals (Sweden)

    Juliana Poças


    Finally, the data here presented indicates that these EOs have an anti-proliferative effect on the cell lines used. Further work needs to be undertaken to investigate the effect of the EOs in known signalling pathways that regulate cell proliferation and viability, such as apoptosis, DNA damage-induced cell cycle arrest or by decreased proliferation signalling.

  20. Invasive Acacia longifolia induce changes in the microbial catabolic diversity of sand dunes

    DEFF Research Database (Denmark)

    Marchante, Elizabete; Kjøller, Annelise; Struwe, Sten


    and to the groups of amino acids and plant polymers were similar in both invaded areas and different in the non-invaded. The responses to tartaric acid, gallic acid, fumaric acid, Cistus litter, and Acacia litter were the same in long- and non-invaded areas, but different from recently invaded areas. The duration...... diversity. Five substrate groups were tested: amino acids, carbohydrates, carboxylic acids, plant litters, and plant polymers. CRP clearly discriminated between the three different areas. Respiratory responses to the individual substrates a-ketoglutaric acid, oxalic acid, starch, citric acid, and xylose...

  1. Localization in Dutch dune sand and organic clay. New insight into localization mechanisms

    NARCIS (Netherlands)

    Cheng, X.


    One of the challenging research puzzles in soil mechanics is the subject of strain localization. The investigation of the physico-chemical mechanisms and the conditions under which the strain will localize has been going on for more than a century. The focus of these studies was continuously adapted

  2. Influensce of grain fabric and lamination on the anisotropy of hydrolic conductivity in unconsolidated dune sands.

    NARCIS (Netherlands)

    van den Berg, E.H.; de Vries, J.J.


    In local-scale groundwater flow problems, like for instance in contaminated groundwater studies, it becomes increasingly important for proper prediction of contaminant migration to incorporate small-scale geological and associated parameter heterogeneity in groundwater flow models. Of the

  3. Cross-Platform JavaScript Coding: Shifting Sand Dunes and Shimmering Mirages. (United States)

    Merchant, David


    Most libraries don't have the resources to cross-platform and cross-version test all of their JavaScript coding. Many turn to WYSIWYG; however, WYSIWYG editors don't generally produce optimized coding. Web developers should: test their coding on at least one 3.0 browser, code by hand using tools to help speed that process up, and include a simple…

  4. Establishment, growth and degeneration of Ammophila arenaria in coastal sand dunes

    NARCIS (Netherlands)

    Putten, van der W.H.



    This study deals with the establishment, growth, and degeneration of Ammophila arenaria (marram grass), a grass species that dominates the vegetation in coastal foredunes. Following natural

  5. Two centuries of vegetation succession in an inland sand dune area, central Netherlands

    Czech Academy of Sciences Publication Activity Database

    Ujházy, K.; Fanta, J.; Prach, Karel


    Roč. 14, č. 3 (2011), 316-325 ISSN 1402-2001 R&D Projects: GA ČR(CZ) GAP505/11/0256 Institutional research plan: CEZ:AV0Z60050516 Keywords : primary succession * relief types * vegetation mapping Subject RIV: EH - Ecology, Behaviour Impact factor: 1.678, year: 2011

  6. Growth responses of maritime sand dune plant species to arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Mariusz Tadych


    Full Text Available In a pot experiment conducted in a greenhouse, the response of 6 plant species dominating in the succession of vegetation of a deflation hollow of the Łeba Bar to inoculation with arbuscular mycorrhizal fungi (AMF was investigated. The inoculum was a mixture of soil, roots and spores of 5 species of AMF with the dominant species Glomus aggregatum. Except for Corynephorus canescens and Festuca rubra subsp. arenaria, both the growth and the dry matter of above-ground parts of plants of Agrostis stolonifera, Ammophila arenaria, Corynephorus canescens, Juncus articulatus and J. balticus inoculated with AMF were higher than those growing in soils lacking infection propagules of these fungi. Inoculation with AMF decreased the dry matter of root: shoot ratios in 5 plant species. This property was not determined in Festuca rubra subsp. arenaria due to the death of all control plants. The level of mycorrhizal infection was low and did not correlate with the growth responses found. The high growth reaction of Juncus spp. to AMF found in this study suggests that the opinion of non-mycotrophy or low dependence of plants of Juncaceae on AMF was based on results of investigations of plants growing in wet sites known to inhibit the formation of mycorrhizae.

  7. Restoration of sand dunes along human-altered coasts: a scheme for Miramar beach, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    coastal tourism, competition between developed and promoters of real estate and coastal resorts to utilize coastal spaces, and rapid migration of population towards the coasts, extensive use of coasts for recreation has resulted in a dramatic...

  8. Effects of an invasive plant on a desert sand dune landscape (United States)

    Barrows, C.W.; Allen, E.B.; Brooks, M.L.; Allen, M.F.


    Given the abundance of non-native species invading wildland habitats, managers need to employ informed triage to focus control efforts on weeds with the greatest potential for negative impacts. Our objective here was to determine the level of threat Sahara mustard, Brassica tournefortii, represents to meeting regional goals for protecting biodiversity. Sahara mustard has spread throughout much of the Mojave and lower Sonoran Deserts. It has occurred in southern California's Coachella Valley for nearly 80 years, punctuated by years of extremely high abundance following high rainfall. In those years the mustard has clear negative impacts on the native flora. Using mustard removal experiments we identified reductions in native plant reproduction, shifting composition increasingly toward Sahara mustard while decreasing the fraction of native species. High between-year variance in precipitation may be a key to maintaining biodiversity as the mustard is less abundant in drier years. Sahara mustard impacts to the native fauna were much less evident. Of the animal species evaluated, only the Coachella Valley fringe-toed lizard, Uma inornata, demonstrated a negative response to mustard abundance; however the impacts were short-lived, lasting no more than a year after the mustard's dominance waned. Without control measures the long-term impacts to desert biodiversity may rest on the changing climate. Wetter conditions or increased periodicity of high rainfall years will favor Sahara mustard and result in reduced biodiversity, especially of native annual plants. Drier conditions will keep the mustard from becoming dominant but may have other negative consequences on the native flora and fauna. ?? 2008 Springer Science+Business Media B.V.

  9. Hydrology and erosion impacts of mining derived coastal sand dunes, Chanaral Bay, Chile (United States)

    Daniel G. Neary; Pablo Garcia-Chevesich


    Chile has an economy strongly based on the exploitation of its natural resources. Copper mining represents the main export monetary income, employing thousands of people all along the country. The Chilean Copper Corporation (CODELCO), El Salvador branch, has been the primary mining company, but it will be ending most of its activities by 2011 unless copper prices stay...

  10. Impact d'une modulation duale sur les performances d'une liaison ...

    African Journals Online (AJOL)

    Le présent document présente la technique de modulation duale Fréquence - Amplitude dans le cas d'une liaison optique du type IM-DD. Ce travail révèle que la modulation duale Fréquence - Amplitude permet de générer un signal à bande latérale unique. Les performances d'une liaison optique IM-DD basée sur cette ...

  11. Terrestrial subaqueous seafloor dunes: Possible analogs for Venus (United States)

    Neakrase, Lynn D. V.; Klose, Martina; Titus, Timothy N.


    Dunes on Venus, first discovered with Magellan Synthetic Aperture Radar (SAR) in the early 1990s, have fueled discussions about the viability of Venusian dunes and aeolian grain transport. Confined to two locations on Venus, the existence of the interpreted dunes provides evidence that there could be transportable material being mobilized into aeolian bedforms at the surface. However, because of the high-pressure high-temperature surface conditions, laboratory analog studies are difficult to conduct and results are difficult to extrapolate to full-sized, aeolian bedforms. Field sites of desert dunes, which are well-studied on Earth and Mars, are not analogous to what is observed on Venus because of the differences in the fluid environments. One potentially underexplored possibility in planetary science for Venus-analog dune fields could be subaqueous, seafloor dune fields on Earth. Known to the marine geology communities since the early 1960s, seafloor dunes are rarely cited in planetary aeolian bedform literature, but could provide a necessary thick-atmosphere extension to the classically studied aeolian dune environment literature for thinner atmospheres. Through discussion of the similarity of the two environments, and examples of dunes and ripples cited in marine literature, we provide evidence that subaqueous seafloor dunes could serve as analogs for dunes on Venus. Furthermore, the evidence presented here demonstrates the usefulness of the marine literature for thick-atmosphere planetary environments and potentially for upcoming habitable worlds and oceanic environment research program opportunities. Such useful cross-disciplinary discussion of dune environments is applicable to many planetary environments (Earth, Mars, Venus, Titan, etc.) and potential future missions.

  12. Seasonal habitat use by the European rabbit (Oryctolagus cuniculus in a coastal dune system in SW Spain

    Directory of Open Access Journals (Sweden)

    Dellafiore, C. M.


    Full Text Available We studied habitat use by the wild European rabbit (Oryctolagus cuniculus in a coastal sand dune system in the south–western Iberian peninsula. Our goals were to define the use of this habitat by rabbits in relation to food and shelter availability between seasons. Rabbit density, food availability and refuge abundance were analysed using multiple regression analyses. We found that, independently of season, habitat selection was principally related to cover by the woody shrub Retama monosperma which rabbits use both as a food resource and as protection against predators. Although it is an invasive native plant, the benefits that R. monosperma provides

  13. Equinoctial Activity Over Titan Dune Fields Revealed by Cassini/vims (United States)

    Rodriguez, S.; Le Mouelic, S.; Barnes, J. W.; Hirtzig, M.; Rannou, P.; Sotin, C.; Brown, R. H.; Bow, J.; Vixie, G.; Cornet, T.; Bourgeois, O.; Narteau, C.; Courrech Du Pont, S.; Le Gall, A.; Reffet, E.; Griffith, C. A.; Jaumann, R.; Stephan, K.; Buratti, B. J.; Clark, R. N.; Baines, K. H.; Nicholson, P. D.; Coustenis, A.


    2010. In this paper, we will discuss the possibility that these singular events may have occurred very close to the surface, having a strong link with the underlying dune fields. Radiative transfer calculations indeed show that these singular brightenings are due to the transient appearance of an additional atmospheric layer, confined at very low altitudes and loaded with few but large particles. Gathering all the observational and modeling constraints, we conclude that the most probable explanation for these events is the local and transient occurrence of huge sand storms, directly originating from the underlying dune fields. We will also discuss the possible implications of the equinoctial occurrence of such events for Titan's tropical wind regimes and for the present-day activity of equatorial dunes.

  14. Multi-spatial analysis of aeolian dune-field patterns (United States)

    Ewing, Ryan C.; McDonald, George D.; Hayes, Alex G.


    Aeolian dune-fields are composed of different spatial scales of bedform patterns that respond to changes in environmental boundary conditions over a wide range of time scales. This study examines how variations in spatial scales of dune and ripple patterns found within dune fields are used in environmental reconstructions on Earth, Mars and Titan. Within a single bedform type, different spatial scales of bedforms emerge as a pattern evolves from an initial state into a well-organized pattern, such as with the transition from protodunes to dunes. Additionally, different types of bedforms, such as ripples, coarse-grained ripples and dunes, coexist at different spatial scales within a dune-field. Analysis of dune-field patterns at the intersection of different scales and types of bedforms at different stages of development provides a more comprehensive record of sediment supply and wind regime than analysis of a single scale and type of bedform. Interpretations of environmental conditions from any scale of bedform, however, are limited to environmental signals associated with the response time of that bedform. Large-scale dune-field patterns integrate signals over long-term climate cycles and reveal little about short-term variations in wind or sediment supply. Wind ripples respond instantly to changing conditions, but reveal little about longer-term variations in wind or sediment supply. Recognizing the response time scales across different spatial scales of bedforms maximizes environmental interpretations from dune-field patterns.

  15. Oil sands development update

    International Nuclear Information System (INIS)


    A detailed review and update of oil sands development in Alberta are provided covering every aspect of the production and economic aspects of the industry. It is pointed out that at present oil sands account for 28 per cent of Canadian crude oil production, expected to reach 50 per cent by 2005. Based on recent announcements, a total of 26 billion dollars worth of projects are in progress or planned; 20 billion dollars worth of this development is in the Athabasca area, the remainder in Cold Lake and other areas. The current update envisages up to 1,800,000 barrels per day by 2008, creating 47,000 new jobs and total government revenues through direct and indirect taxes of 118 billion dollars. Provinces other than Alberta also benefit from these development, since 60 per cent of all employment and income created by oil sands production is in other parts of Canada. Up to 60 per cent of the expansion is for goods and services and of this, 50 to 55 per cent will be purchased from Canadian sources. The remaining 40 per cent of the new investment is for engineering and construction of which 95 per cent is Canadian content. Aboriginal workforce by common consent of existing operators matches regional representation (about 13 per cent), and new developers are expected to match these standards. Planned or ongoing development in environmental protection through improved technologies and optimization, energy efficiency and improved tailings management, and active support of flexibility mechanisms such as emission credits trading, joint implementation and carbon sinks are very high on the industry's agenda. The importance of offsets are discussed extensively along with key considerations for international negotiations, as well as further research of other options such as sequestration, environmentally benign disposal of waste, and enhanced voluntary action

  16. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)


    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  17. Self-Synchronization of Numerical Granular Flows: A Key to Musical Sands? (United States)

    Staron, L.


    In some rare circumstances, sand flows at the surface of dunes are able to produce a loud sound known as "the song of dunes". The complex mechanisms at the source of these singing properties are far from fully understood. In this study, granular flows are simulated in two dimensions using the discrete Contact Dynamics algorithm. We show that the motion of grains at the surface of the flows exhibits a well-defined oscillation, the frequency of which is not described by the natural frequencies of the system, and does not depend on the rigid or erodible bottom condition. To explain this oscillation, we propose a simple synchronization model based on the existence of coherent structures, or clusters, at the surface of the flow, which yields successful prediction of the numerically observed frequencies. Our analysis gives consistent results when compared with field data from booming dunes, offers a possible explanation for the field observation of sound-generation velocity threshold, and provides new keys to the understanding of musical sands.

  18. Sand fly-borne viruses


    Nedvědová Cvanová, Lucie


    Sand flies (Diptera: Psychodidae) are important vectors of protozoan, bacterial and viral patogens causing diseases in humans and domestic animals. This thesis summarizes the current knowledge on sand fly-born viruses, their distribution in the World, infection symptoms and life cycle in the nature. These viruses are transmitted by sand flies of genera Phlebotomus, Lutzomyia and Sergentomyia and they can be found on every continent except for Antarctica. They belong into four families, Bunyav...

  19. Convergent Phenotypic Evolution despite Contrasting Demographic Histories in the Fauna of White Sands. (United States)

    Rosenblum, Erica Bree; Parent, Christine E; Diepeveen, Eveline T; Noss, Clay; Bi, Ke


    When are evolutionary outcomes predictable? Cases of convergent evolution can shed light on when, why, and how different species exhibit shared evolutionary trajectories. In particular, studying diverse species in a common environment can illuminate how different factors facilitate or constrain adaptive evolution. Here we integrate studies of pattern and process in the fauna at White Sands (New Mexico) to understand the determinants of convergent evolution. Numerous animal species at White Sands exhibit phenotypic convergence in response to a novel-and shared-selective environment: geologically young gypsum dunes. We synthesize 15 years of research on White Sands lizards to assess the contribution of natural selection, genetic architecture, and population demography to patterns of phenotypic evolution. We also present new data for two species of White Sands arthropods, Ammobaenetes arenicolus and Habronattus ustulatus. Overall, we find dramatic phenotypic convergence across diverse species at White Sands. Although the direction of phenotypic response is parallel, the magnitude of phenotypic response varies among species. We also find that species exhibit strikingly different demographic patterns across the ecotone. The species with the most genetic structure between White Sands and dark-soil populations generally exhibit the least phenotypic divergence, suggesting population demography as a key modulator of adaptation. Comparative studies are particularly important for understanding the determinants of convergence in natural systems.

  20. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars (United States)

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary


    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography.

  1. Research and practice of the impulse sand fracturing technology

    Directory of Open Access Journals (Sweden)

    Bin Qian


    Full Text Available With the deep development of tight sand gas reservoirs, problems such as short stable production period and quick production decline of gas wells after fracturing have become increasingly prominent. Consequently, there is an increasing demand for the effective penetration and conductivity of artificial fractures. Impulse sand fracturing technology introduces a concept of discrete multilayer sanding inside fractures; joint application of pulse blender which can be switched at high frequency, intensive multi-cluster perforation and special fibrous material made it possible to ensure the flow stability of proppant slug, and placement of nonuniformly-laid sand pinnacles and grooves, which markedly upgraded the capacity of the fracture conductivity to several orders of magnitude more than the conventional method. Laboratory engineering simulation evaluation and field test show that pre-fracturing reservoir evaluation, pulse time design and the optimization of degradable fiber and support equipment are the keys to the success of impulse sand fracturing. Compared with the conventional fracturing, this technique can effectively increase well production, decrease the volume of fracturing proppant, and lower sand plugging risks. An independent sand fracturing pilot test has been conducted in 6 layers of 3 wells for the first time in Block Tao 7 of the Sulige Gasfield, Ordos Basin, as a result, the average volume of fracturing proppant dropped by 28.3%, the average sand intensity dropped by 21.88%, and the post-fracturing average daily gas output increased by 26.8%. This technology provides an efficient and environmentally friendly reservoir stimulation option for tight sand gas reservoirs in China.

  2. The Dunes and Rivers of Titan and Earth : An overview of comparative landscapes and processes (United States)

    Lorenz, R. D.


    Cassini has shown Titan to have a strikingly varied and Earth-like landscape with extensive regions modified by aeolian and fluvial sediment transport. The formation of large linear sand dunes, apparently occupying most of the low-latitude low-albedo regions such as Shangri-La and Belet, is something of a surprise, given how weak thermally-driven winds were expected to be. The explanation appears to be the gravitational tide due to Saturn, which may be the dominant driver of near-surface winds. The linear dunes observed with the Cassini RADAR are strikingly similar to such dunes seen in areas with seasonally-changing winds on Earth, such as Namibia and Arabia. Instructive comparisons may be made as excellent spaceborne radar images and in-situ studies exist of these features, giving us a window into how Titan works. The weak solar flux implies average rainfall on Titan is low, perhaps only 1cm per year. Yet like many terrestrial arid regions, the landscape is nonetheless significantly altered (at least in some places) by pluvial and fluvial processes, because when it does rain, it does so violently. Models of thunderstorms, and of sediment transport, integrate neatly with Cassini observations of fluvial networks. A recent development is the detection of probable lakes : these demand an understanding of littoral processes and, in turn, wind-wave generation. Titan is an energy-poor environment, but one in which it is easier to transport materials. Many of the factors in sediment generation and transport appear to cancel out. It remains to be seen whether Titan, as an exotic laboratory, will teach us more about Earth, or whether our home planet, as an accessible analog, will teach us more about Titan. The comparisons only make both worlds seem all the more intriguing.

  3. Holocene coastal dune development and environmental changes in Helis area (NW Peloponnese, Greece

    Directory of Open Access Journals (Sweden)



    Full Text Available The coastal area of western Peloponnese is characterized by Pleistocene and Holocene marine deposits. The study area shows the effects of different phases of coastal morphology evolution and is located along a wave-dominated and microtidal coast in the northwestern Peloponnese, 40 km southwest of Patras city. Three significant morphogenetic phases occurred during the Holocene. The first was radiometrically aged from 7000 to 3810 years BP, marking the end of the rapid postglacial transgression. The second, between 3810 and 1400 years BP, was characterized by high rates of sedimentation, possibly because of the proximity of the mouth of the Peneus River, and resulted in the accumulation of predominantly fluvial sediments. During the third and younger phase, from 1400 years BP to the present, landward migration of the coast and deposition of aeolian sands occurred. Archaeological and morphological evidences suggest that this last phase should be related to a low sea-level stand followed by a slow sea-level rise, up to the present-day position and by humid-temperate climate. The collected data concerning the Holocene coastal dune belts, suggest that main phases of dune development could be related to the effects of sea-level changes, climatic conditions, and in a subordinate way, to human activity.

  4. Occurrence of amphibians in northern California coastal dune drainages (United States)

    Halstead, Brian J.; Kleeman, Patrick M.


    Many coastal dune ecosystems have been degraded by non-native dune vegetation, but these systems might still provide valuable habitat for some taxa, including amphibians. Because restoration of degraded dune systems is occurring and likely to continue, we examined the occurrence of amphibians in drainages associated with a coastal dune ecosystem degraded by invasive plants (European Beachgrass, Ammophila arenaria, and Iceplant, Carpobrotus edulis). We found that occupancy of 3 amphibian species (California Red-legged Frog, Rana draytonii; Sierran Treefrog, Hyliola sierra; and Rough-skinned Newt, Taricha granulosa) among 21 coastal-dune drainages was high, with most coastal-dune drainages occupied by all 3 species. Furthermore, reproduction of Sierran Treefrogs and California Red-legged Frogs was estimated to occur in approximately ½ and ⅓ of the drainages, respectively. The probability of occurrence of Rough-skinned Newts and pre-metamorphic life stages of both anurans decreased during the study, perhaps because of ongoing drought in California or precipitation-induced changes in phenology during the final year of the study. Maintaining structural cover and moist features during dune restoration will likely benefit native amphibian populations inhabiting coastal-dune ecosystems.

  5. 36 CFR 7.80 - Sleeping Bear Dunes National Lakeshore. (United States)


    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Sleeping Bear Dunes National Lakeshore. 7.80 Section 7.80 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.80 Sleeping Bear Dunes National...

  6. Hydro-geochemical analysis of a degraded dune slack

    NARCIS (Netherlands)

    Grootjans, AP; Sival, FP; Stuyfzand, PJ

    A hydrochemical analysis of the groundwater composition was carried out in a degraded dune slack complex in order to assess the prospects for regeneration of low productivity, basiphilous vegetation types, typical of natural dune slacks. Two hundred and fifty water samples, most of them obtained

  7. Planetary dune workshop expands to include subaqueous processes (United States)

    Titus, Timothy N.; Bryant, Gerald; Rubin, David M.


    Dune-like structures appear in the depths of Earth’s oceans, across its landscapes, and in the extremities of the solar system beyond. Dunes rise up under the thick dense atmosphere of Venus, and they have been found under the almost unimaginably ephemeral atmosphere of a comet.

  8. Namibia : triaxial test on sand

    DEFF Research Database (Denmark)

    Steenfelt, Jørgen S.; Jacobsen, Kim P.

    In connection with a harbour project the friction angle of a fine sand is required. On Friday 13 March 1998 the Danish Geotechnical Institute (DGI) delivered app. 2.5 kg sand for testing at the Geotechnical Engineering Laboratory, Aalborg University. The present Data Report summarises the results...

  9. Triaxial tests in Fontainebleau sand

    DEFF Research Database (Denmark)

    Latini, Chiara; Zania, Varvara


    The purpose of this internal report is to examine the influence of relative density on the strength and deformation characteristics of Fontainebleau sand. Compression triaxial tests were performed on saturated sand samples with different densities and initial confining pressure. Note...... that the testing procedure and the data processing were carried out according to the specifications of ETCS-F1.97....

  10. Sensitivity Analysis of Dune Height Measurements Along Cross-shore Profiles Using a Novel Method for Dune Ridge Extraction (United States)

    Hardin, E.; Mitasova, H.; Overton, M.


    In barrier islands where communities are subjected to hazards including storm surge and high wave height, coastal dunes offer the first line of defense to property and vital infrastructure. When dunes are over-washed, substantial damage, including complete destruction of buildings and roads can occur. For this reason, dunes are an integral aspect of coastal hazard management. As new, more efficient mapping and analysis technologies evolve, currently used methodologies should be regularly be reexamined in order to ensure the development of the most effective coastal management strategies. Currently, topographical parameters, such as dune height, are usually measured along evenly spaced, shore-perpendicular beach profiles. In previous studies, profile spacing has varied from 20m to over 500m, however, it has been shown that dune height can vary substantially over tens of meters. Profile spacing is a compromise between the resources needed to perform high-resolution measurements and ensuring the capture of meaningful dune features. While it is often clear how the choice of profile spacing will affect the resources needed to perform the analysis, it is often unclear how spacing affects the ability to capture significant dune variation and prevent omission of a narrow dune breach that can open the way for significant flooding. In this study, the structure of alongshore variation in dune height is investigated. The studied dune ridge is located in the Outer Banks, North Carolina, USA and stretches 18km from south of Oregon Inlet (75:31:19W, 35:46:03N) to Rodanthe (75:27:56W, 35:36:31N). The dune ridge is extracted from a 0.5m resolution Digital Elevation Model (DEM) that was interpolated from airborne lidar data using regularized spline with tension. The lidar data was collected in March 2008 by the National Oceanic and Atmospheric Administration. A dune ridge is usually identified as the highest elevation along a shore-perpendicular profile or where ocean-facing slope

  11. Effects of Posidonia oceanica beach-cast on germination, growth and nutrient uptake of coastal dune plants.

    Directory of Open Access Journals (Sweden)

    Silvia Del Vecchio

    Full Text Available Seagrass meadows play an important role in marine ecosystems. A part of seagrass production is also exported to adjacent coastal terrestrial systems, possibly influencing their functioning. In this work we experimentally analyzed the effect of Posidonia oceanica beach-cast on plant germination, growth, and nutrient uptake of two plant species (Cakile maritima and Elymus farctus that grow on upper beaches and fore dunes along the Mediterranean coasts. We compared plants growing in simple sand (control with those growing in a substrate enriched with P. oceanica wrack (treatment in laboratory. P. oceanica wrack doubled the N substrate pool and kept the substrate humid. Plants growing in the treated substrate grew faster, were twice as large as those growing in the control substrate, while tissues were enriched in N and P (Cakile by the 1.3 fold in N and 2.5 fold in P; Elymus by 1.5 fold in N and 2 fold in P. Our results suggest a positive effect of seagrass litter for the enhancing of dune species, highlighting its role for the conservation of coastal dune ecosystems.

  12. 2010 oil sands performance report

    Energy Technology Data Exchange (ETDEWEB)



    With the depletion of traditional energy resources and the rising demand for energy, oil sands have become an important energy resource for meeting energy needs. Oil sands are a mixture of water, sand, clay and bitumen which is recovered either through open pit mining or in situ drilling techniques. The bitumen is then converted into syncrude or sold to refineries for the production of gasoline, diesel or other products. Shell has oil sands operations in Alberta and the aim of this report is to present its 201