WorldWideScience

Sample records for stabilize relative equilibria

  1. Stability of relative equilibria of three vortices

    DEFF Research Database (Denmark)

    Aref, Hassan

    2009-01-01

    Three point vortices on the unbounded plane have relative equilibria wherein the vortices either form an equilateral triangle or are collinear. While the stability analysis of the equilateral triangle configurations is straightforward, that of the collinear relative equilibria is considerably mor...

  2. Lagrangian relative equilibria for a gyrostat in the three-body problem: bifurcations and stability

    Energy Technology Data Exchange (ETDEWEB)

    Guirao, Juan L G; Vera, Juan A, E-mail: juan.garcia@upct.e, E-mail: juanantonio.vera@upct.e [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Hospital de Marina, 30203 Cartagena, Region de Murcia (Spain)

    2010-05-14

    In this paper we consider the non-canonical Hamiltonian dynamics of a gyrostat in the frame of the three-body problem. Using geometric/mechanic methods we study the approximate dynamics of the truncated Legendre series representation of the potential of an arbitrary order. Working in the reduced problem, we study the existence of relative equilibria that we refer to as Lagrange type following the analogy with the standard techniques. We provide necessary and sufficient conditions for the linear stability of Lagrangian relative equilibria if the gyrostat morphology form is close to a sphere. Thus, we generalize the classical results on equilibria of the three-body problem and many results on them obtained by the classic approach for the case of rigid bodies.

  3. Shallow-water vortex equilibria and their stability

    Energy Technology Data Exchange (ETDEWEB)

    Plotka, H; Dritschel, D G, E-mail: hanna@mcs.st-andrews.ac.uk, E-mail: dgd@mcs.st-andrews.ac.uk [School of Mathematics and Statistics, University of St Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom)

    2011-12-22

    We first describe the equilibrium form and stability of steadily-rotating simply-connected vortex patches in the single-layer quasi-geostrophic model of geophysical fluid dynamics. This model, valid for rotating shallow-water flow in the limit of small Rossby and Froude numbers, has an intrinsic length scale L{sub D} called the 'Rossby deformation length' relating the strength of stratification to that of the background rotation rate. Specifically, L{sub D} = c/f where c={radical}gH is a characteristic gravity-wave speed, g is gravity (or 'reduced' gravity in a two-layer context where one layer is infinitely deep), H is the mean active layer depth, and f is the Coriolis frequency (here constant). We next introduce ageostrophic effects by using the full shallow-water model to generate what we call 'quasi-equilibria'. These equilibria are not strictly steady, but radiate such weak gravity waves that they are steady for all practical purposes. Through an artificial ramping procedure, we ramp up the potential vorticity anomaly of the fluid particles in our quasi-geostrophic equilibria to obtain shallow-water quasi-equilibria at finite Rossby number. We show a few examples of these states in this paper.

  4. On the stability of dissipative MHD equilibria

    International Nuclear Information System (INIS)

    Teichmann, J.

    1979-04-01

    The global stability of stationary equilibria of dissipative MHD is studied uisng the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian system with the full dissipative operators are given. The case of the two-fluid isentropic flow is discussed. (orig.)

  5. On the stochastic stability of MHD equilibria

    International Nuclear Information System (INIS)

    Teichmann, J.

    1979-07-01

    The stochastic stability in the large of stationary equilibria of ideal and dissipative magnetohydrodynamics under the influence of stationary random fluctuations is studied using the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian systems are given. The destabilizing effect of stochastic fluctuations is demonstrated. (orig.)

  6. Stability of the n = 1 internal kink mode in equilibria with flows

    International Nuclear Information System (INIS)

    Aydemir, A.Y.; Waelbroeck, F.L.

    1996-01-01

    Stabilizing influence of mass flows, either directly or through their shearing action, on various modes is now generally recognized. Here we examine linear and nonlinear stability of the n = 1 internal kink mode in equilibria with toroidal rotation, using our nonlinear, initial-value MHD code CTD, which can be used to generate self-consistent equilibria with flows in arbitrary geometries. It is well known that equilibrium mass flows introduce complications in determination of MHD equilibria and their stability properties, such as the loss of self-adjointness and an increase in the number of conditions required to uniquely determine the equilibria. Thus, even with purely toroidal flows, an implicit statement about the equation of state is needed, in addition to a knowledge of the magnetic field and velocity profiles; rotation in an adiabatic plasma leads to a different equilibrium than, for example, in an isothermal one, with possibly quite different stability properties. We find that the expected stabilizing influence of toroidal rotation on n = 1 is generally absent in adiabatically generated equilibria in which, of all the relevant thermodynamic variables, only the specific entropy is a flux function, s = s (ψ). Fortunately, physically more relevant isothermal case where the temperature is constant on flux surfaces, T = T(ψ), has more favorable stability characteristics. On the other hand, an inconsistent but common practice of ignoring density perturbations, a benign omission for static equilibria, leads to overly optimistic results when equilibrium flows axe present, predicting stability when there may not be any. The crucial role played by the equation of state in determining equilibrium raises questions regarding the role of parallel transport in stability calculations; this and other nonideal effects, along with the role of plasma β vs. the rotational β, and nonlinear stability when the mode is pushed beyond marginality, will be discussed

  7. Ballooning mode second stability region for sequences of tokamak equilibria

    International Nuclear Information System (INIS)

    Sugiyama, L.; Mark, J.W.K.

    A numerical study of several sequences of tokamak equilibria derived from two flux conserving sequences confirms the tendency of high n ideal MHD ballooning modes to stabilize for values of the plasma beta greater than a second critical beta, for sufficiently favorable equilibria. The major stabilizing effect of increasing the inverse rotational transform profile q(Psi) for equilibria with the same flux surface geometry is shown. The unstable region shifts toward larger shear d ln q/d ln γ and the width of the region measured in terms of the poloidal beta or a pressure gradient parameter, for fixed shear, decreases. The smaller aspect ratio sequences are more sensitive to changes in q and have less stringent limits on the attainable value of the plasma beta in the high beta stable region. Finally, the disconnected mode approximation is shown to provide a reasonable description of the second high beta stability boundary

  8. Ideal MHD stability of high poloidal beta equilibria in TFTR

    International Nuclear Information System (INIS)

    Sabbagh, S.A.; Mauel, M.E.; Navratil, G.A.; Bell, M.G.; Budny, R.V.; Chance, M.S.; Fredrickson, E.D.; Jardin, S.C.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Wieland, R.M.; Zarnstorff, M.C.; Phillips, M.W.; Hughes, M.H.; Kesner, J.

    1991-01-01

    Recent experiments in TFTR have expanded the operating space of the device to include plasmas with values of var-epsilon β p dia ≡ 2μ 0 var-epsilon perpendicular >/ p >> 2 as large as 1.6, and Troyon normalized diamagnetic beta β N dia ≡ β t perpendicular aB t /10 -8 I p as large as 4.7. At values of var-epsilon β p dia ≥ 1.3, a separatrix was observed to enter the vacuum vessel, producing a naturally diverted discharge. Plasmas with large values of var-epsilon β p dia were created with both the plasma current, I p , held constant and with I p decreased, or ramped down, before the start of neutral beam injection. A convenient characterization of the change in I p using experimental parameters can be defined by the ratio of I p before the ramp down, to I p during the neutral beam heating phase, F I p . The ideal MHD stability of these equilibria is investigated to determine their location in stability space, and to study the role of plasma current and pressure profile modification in the creation of these high var-epsilon β p and β N plasmas. The evolution of these plasmas is modelled from experimental data using the TRANSP code. Two-dimensional equilibria are computed from the TRANSP results and used as input to both high and low-n stability codes including PEST. The high var-epsilon β p equilibria, which generally have an oblate cross-sectional shape, are in the first stability region to high-n ballooning modes. At constant I p , these equilibria generally have maximum pressure gradients near the magnetic axis and are stable to n=1 modes without a stabilizing conducting wall. The effect of the current profile shape on the stability of low-n kink/ballooning modes and the requirements for these plasmas to access the second stability region are examined. 6 refs

  9. Stability and attractive basins of multiple equilibria in delayed two-neuron networks

    International Nuclear Information System (INIS)

    Huang Yu-Jiao; Zhang Hua-Guang; Wang Zhan-Shan

    2012-01-01

    Multiple stability for two-dimensional delayed recurrent neural networks with piecewise linear activation functions of 2r (r ≥ 1) corner points is studied. Sufficient conditions are established for checking the existence of (2r + 1) 2 equilibria in delayed recurrent neural networks. Under these conditions, (r + 1) 2 equilibria are locally exponentially stable, and (2r + 1) 2 — (r + 1) 2 — r 2 equilibria are unstable. Attractive basins of stable equilibria are estimated, which are larger than invariant sets derived by decomposing state space. One example is provided to illustrate the effectiveness of our results. (general)

  10. MHD stability of vertically asymmetric tokamak equilibria

    International Nuclear Information System (INIS)

    Dalhed, H.E.; Grimm, R.C.; Johnson, J.L.

    1981-03-01

    The ideal MHD stability properties of a special class of vertically asymmetric tokamak equilibria are examined. The calculations confirm that no major new physical effects are introduced and the modifications can be understood by conventional arguments. The results indicate that significant departures from up-down symmetry can be tolerated before the reduction in β becomes important for reactor operation

  11. Control Algorithms Along Relative Equilibria of Underactuated Lagrangian Systems on Lie Groups

    DEFF Research Database (Denmark)

    Nordkvist, Nikolaj; Bullo, F.

    2008-01-01

    We present novel algorithms to control underactuated mechanical systems. For a class of invariant systems on Lie groups, we design iterative small-amplitude control forces to accelerate along, decelerate along, and stabilize relative equilibria. The technical approach is based upon a perturbation...

  12. Control algorithms along relative equilibria of underactuated Lagrangian systems on Lie groups

    DEFF Research Database (Denmark)

    Nordkvist, Nikolaj; Bullo, Francesco

    2007-01-01

    We present novel algorithms to control underactuated mechanical systems. For a class of invariant systems on Lie groups, we design iterative small-amplitude control forces to accelerate along, decelerate along, and stabilize relative equilibria. The technical approach is based upon a perturbation...

  13. Stability of nonlinear Vlasov-Poisson equilibria through spectral deformation and Fourier-Hermite expansion.

    Science.gov (United States)

    Siminos, Evangelos; Bénisti, Didier; Gremillet, Laurent

    2011-05-01

    We study the stability of spatially periodic, nonlinear Vlasov-Poisson equilibria as an eigenproblem in a Fourier-Hermite basis (in the space and velocity variables, respectively) of finite dimension, N. When the advection term in the Vlasov equation is dominant, the convergence with N of the eigenvalues is rather slow, limiting the applicability of the method. We use the method of spectral deformation introduced by Crawford and Hislop [Ann. Phys. (NY) 189, 265 (1989)] to selectively damp the continuum of neutral modes associated with the advection term, thus accelerating convergence. We validate and benchmark the performance of our method by reproducing the kinetic dispersion relation results for linear (spatially homogeneous) equilibria. Finally, we study the stability of a periodic Bernstein-Greene-Kruskal mode with multiple phase-space vortices, compare our results with numerical simulations of the Vlasov-Poisson system, and show that the initial unstable equilibrium may evolve to different asymptotic states depending on the way it was perturbed. © 2011 American Physical Society

  14. Pierce instability and bifurcating equilibria

    International Nuclear Information System (INIS)

    Godfrey, B.B.

    1981-01-01

    The report investigates the connection between equilibrium bifurcations and occurrence of the Pierce instability. Electrons flowing from one ground plane to a second through an ion background possess a countable infinity of static equilibria, of which only one is uniform and force-free. Degeneracy of the uniform and simplest non-uniform equilibria at a certain ground plan separation marks the onset of the Pierce instability, based on a newly derived dispersion relation appropriate to all the equilibria. For large ground plane separations the uniform equilibrium is unstable and the non-uniform equilibrium is stable, the reverse of their stability properties at small separations. Onset of the Pierce instability at the first bifurcation of equilibria persists in more complicated geometries, providing a general criterion for marginal stability. It seems probable that bifurcation analysis can be a useful tool in the overall study of stable beam generation in diodes and transport in finite cavities

  15. Edge stability and pedestal profile sensitivity of snowflake diverted equilibria in the TCV Tokamak

    International Nuclear Information System (INIS)

    Medvedev, S.Yu.; Ivanov, A.A.; Martynov, A.A.; Poshekhonov, Yu.Yu.; Behn, R.; Martin, Y.R.; Moret, J.M.; Piras, F.; Pitzschke, A.; Pochelon, A.; Sauter, O.; Villard, L.

    2010-01-01

    A second order null divertor (snowflake) has been successfully created and controlled in the TCV tokamak[1] (F. Piras et al., Plasma Phys. Control. Fusion, 2009). The results of ideal MHD edge stability computations show an enhancement of the edge stability properties of the snowflake equilibria compared to standard x-point configurations[2] (S. Yu. Medvedev et al., 36th EPS Conference on Plasma Physics, 2009). However, a sensitivity study of the stability limits to variations of the pedestal profiles is essential for making conclusions about possibilities of ELM control in snowflake plasmas. Variations of the edge stability and beta limits for several types of snowflake equilibria, different values of triangularity and various pedestal profiles are investigated (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Unifying dynamical and structural stability of equilibria

    Science.gov (United States)

    Arnoldi, Jean-François; Haegeman, Bart

    2016-09-01

    We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.

  17. Stability of highly shifted equilibria in a large aspect ratio low-field tokamak

    International Nuclear Information System (INIS)

    Gourdain, P.-A.; Leboeuf, J.-N.; Neches, R. Y.

    2007-01-01

    In the long run, the economics of fusion will dictate that reactors confine large plasma pressure rather efficiently. A possible route manifests itself as equilibria with large shift of the plasma magnetic axis. This shift compresses the flux surfaces on the outer part of the plasma, hereby increasing the allowable plasma pressure a machine can confine for a given toroidal magnetic field, which is the main cost of the device. As a first step toward a reactor, we propose investigating the stability of such configurations in a low magnetic field high aspect ratio machine. By focusing our arguments solely on the shape of the toroidal plasma current density profile we discuss the stability of highly shifted equilibria and their robustness to current profile variations that could occur in actual experiments. The evolution of the plasma parameters, as the beta poloidal is increased, is also examined to give a better understanding of the difference in performance between the various regimes

  18. Graphical Derivatives and Stability Analysis for Parameterized Equilibria with Conic Constraints

    Czech Academy of Sciences Publication Activity Database

    Mordukhovich, B. S.; Outrata, Jiří; Ramírez, H. C.

    2015-01-01

    Roč. 23, č. 4 (2015), s. 687-704 ISSN 1877-0533 R&D Projects: GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : Variational analysis and optimization * Parameterized equilibria * Conic constraints * Sensitivity and stability analysis * Solution maps * Graphical derivatives * Normal and tangent cones Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2015 http://library.utia.cas.cz/separaty/2015/MTR/outrata-0449259.pdf

  19. EFFECT OF PROFILES AND SHAPE ON IDEAL STABILITY OF ADVANCED TOKAMAK EQUILIBRIA

    International Nuclear Information System (INIS)

    MAKOWSKI, M.A.; CASPER, T.A.; FERRON, J.R.; TAYLOR, T.S.; TURNBULL, A.D.

    2003-01-01

    OAK-B135 The pressure profile and plasma shape, parameterized by elongation (κ), triangularity ((delta)), and squareness (ζ), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P 0 / ∼ 2.0-4.5, weak negative central shear, high q min (> 2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs

  20. EFFECT OF PROFILES AND SHAPE ON IDEAL STABILITY OF ADVANCED TOKAMAK EQUILIBRIA

    Energy Technology Data Exchange (ETDEWEB)

    MAKOWSKI,MA; CASPER,TA; FERRON,JR; TAYLOR,TS; TURNBULL,AD

    2003-08-01

    OAK-B135 The pressure profile and plasma shape, parameterized by elongation ({kappa}), triangularity ({delta}), and squareness ({zeta}), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P{sub 0}/

    {approx} 2.0-4.5, weak negative central shear, high q{sub min} (> 2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs.

  1. Effect of Profiles and Space on Ideal Stability of Advanced Tokamak Equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Makowski, M A; Casper, T A; Ferron, J R; Taylor, T S; Turnbull, A D

    2003-07-07

    The pressure profile and plasma shape, parameterized by elongation ({kappa}), triangularity ({delta}), and squareness ({zeta}), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P{sub 0}/{l_angle}P{r_brace} {approx} 2.0-4.5, weak negative central shear, high q{sub min} (>2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs.

  2. Effect of Profiles and Space on Ideal Stability of Advanced Tokamak Equilibria

    International Nuclear Information System (INIS)

    Makowski, M A; Casper, T A; Ferron, J R; Taylor, T S; Turnbull, A D

    2003-01-01

    The pressure profile and plasma shape, parameterized by elongation (κ), triangularity ((delta)), and squareness (ζ), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P 0 /(l a ngle)P} ∼ 2.0-4.5, weak negative central shear, high q min (>2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs

  3. Recent progress in the relative equilibria of point vortices — In memoriam Hassan Aref

    DEFF Research Database (Denmark)

    Beelen, Peter; Brøns, Morten; Krishnamurthy, Vikas S.

    2013-01-01

    Hassan Aref, who sadly passed away in 2011, was one of the world's leading researchers in the dynamics and equilibria of point vortices. We review two problems on the subject of point vortex relative equilibria in which he was engaged at the time of his death: bilinear relative equilibria...

  4. Some stable hydromagnetic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J L; Oberman, C R; Kulsrud, R M; Frieman, E A [Project Matterhorn, Princeton University, Princeton, NJ (United States)

    1958-07-01

    We have been able to find and investigate the properties of equilibria which are hydromagnetically stable. These equilibria can be obtained, for example, by wrapping conductors helically around the stellarator tube. Systems with I = 3 or 4 are indicated to be optimum for stability purposes. In some cases an admixture of I = 2 fields can be advantageous for achieving equilibrium. (author)

  5. Lyapunov stability analysis of magnetohydrodynamic plasma equilibria with axisymmetric toroidal flow

    International Nuclear Information System (INIS)

    Almaguer, J.A.; Hameiri, E.; Herrera, J.; Holm, D.D.

    1988-01-01

    Lyapunov stability conditions for ideal magnetohydrodynamic (MHD) plasmas with mass flow in axisymmetric toroidal geometry are determined in the Eulerian representation. Axisymmetric equilibrium solutions of ideal MHD are associated to critical points of a nonlinearly conserved Lyapunov functional consisting of the sum of the total energy and the following flux-weighted quantities: the circulation along field lines, the angular momentum, the toroidal flux, and the mass content within each flux tube. Conditions sufficient for Lyapunov stability of these equilibria against axisymmetric perturbations are found by taking advantage of the Hamiltonian formalism for ideal MHD. In particular [see Eq. (60)], it is sufficient for Lyapunov stability under linearized dynamics that an axisymmetric equilibrium be subsonic in the appropriate rotating frame, lie in the first elliptic regime of the Bernoulli--Grad--Shafranov (BGS) system of equations, and satisfy one additional, more complicated, condition. Effects of boundary conditions, nonlinearity, and three-dimensionality on MHD stability are also discussed

  6. Multiple equilibria of divertor plasmas

    International Nuclear Information System (INIS)

    Vu, H.X.; Prinja, A.K.

    1993-01-01

    A one-dimensional, two-fluid transport model with a temperature-dependent neutral recycling coefficient is shown to give rise to multiple equilibria of divertor plasmas (bifurcation). Numerical techniques for obtaining these multiple equilibria and for examining their stability are presented. Although these numerical techniques have been well known to the scientific community, this is the first time they have been applied to divertor plasma modeling to show the existence of multiple equilibria as well as the stability of these solutions. Numerical and approximate analytical solutions of the present one-dimensional transport model both indicate that there exists three steady-state solutions corresponding to (1) a high-temperature, low-density equilibrium, (2) a low-temperature, high-density equilibrium, and (3) an intermediate-temperature equilibrium. While both the low-temperature and the high-temperature equilibria are stable, with respect to small perturbations in the plasma conditions, the intermediate-temperature equilibrium is physically unstable, i.e., any small perturbation about this equilibrium will cause a transition toward either the high-temperature or low-temperature equilibrium

  7. Lyapunov stability of ideal compressible and incompressible fluid equilibria in three dimensions

    International Nuclear Information System (INIS)

    Holm, D.D.

    1985-08-01

    Linearized stability of ideal compressible and incompressible fluid equilibria in three dimensions is analyzed using Lyapunov's direct method. An action principle is given for the Eulerian and Lagrangian fluid descriptions and the family of constants of motion due to symmetry under fluid-particle relabelling is derived in the form of Ertel's theorem for each description. In an augmented Euleriah description, the steady equilibrium flows of these two fluids theories are identified as critical points of the conserved Lyapunov functionals defined by the sum, H + C, of the energy H, and the Ertel constants of motion, C. It turns out that unconditional linear Lyapunov stability of these flows in the norm provided by the second variation of H + C is precluded by vortex-particle stretching, even for otherwise shear-stable flows. Conditional Lyapunov stability of these flows is discussed. 24 refs

  8. Ideal MHD beta-limits of poloidally asymmetric equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in ..beta../sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is ..beta../sub critical/ approx. = 6.5%.

  9. Ideal MHD beta-limits of poloidally asymmetric equilibria

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in β/sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is β/sub critical/ approx. = 6.5%

  10. A note on relative equilibria in a rotating shallow water layer

    KAUST Repository

    Ait Abderrahmane, Hamid

    2013-05-08

    Relative equilibria of two and three satellite vortices in a rotating shallow water layer have been recorded via particle image velocimetry (PIV) and their autorotation speed was estimated. This study shows that these equilibria retain the fundamental characteristics of Kelvin\\'s equilibria, and could be adequately described by the classical idealized point vortex theory. The same conclusion can also be inferred using the experimental dataset of Bergmann et al. (J. Fluid Mech., vol. 679, 2011, pp. 415-431; J. Fluid Mech., vol. 691, 2012, pp. 605-606) if the assigned field\\'s contribution to pattern rotation is included. © 2013 Cambridge University Press.

  11. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.; Aarts, D. G. A. L.; Howell, P. D.; Majumdar, A.

    2017-01-01

    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  12. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.

    2017-01-16

    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  13. Close pairs of relative equilibria for identical point vortices

    DEFF Research Database (Denmark)

    Dirksen, Tobias; Aref, Hassan

    2011-01-01

    Numerical solution of the classical problem of relative equilibria for identical point vortices on the unbounded plane reveals configurations that are very close to the analytically known, centered, symmetrically arranged, nested equilateral triangles. New numerical solutions of this kind are fou...

  14. Magnetohydrodynamic equilibria and local stability of axisymmetric tokamak plasmas

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Dory, R.A.; Nelson, D.B.; Sayer, R.O.

    1976-07-01

    Axisymmetric magnetohydrodynamic equilibria are evaluated in terms of the Mercier Stability Criterion. The parameters of interest include poloidal beta (β/sub p/), current and pressure profile widths, D-shaped and doublet plasmas with elongation (sigma) and triangularity (delta), and the aspect ratio (A). For marginal local stability, the critical values of β, plasma current, and the safety factor q with fixed toroidal field at the geometric center of the plasma are obtained. It is shown that for a wide range of profiles in a D-shaped plasma with A = 3, the highest critical β occurs at β/sub p/ = 2.4, sigma = 1.65, and delta = 0.5. If the toroidal field at the coil surface is fixed, the highest critical pressure occurs near A approximately 3 to 4, given reasonable distance between the coils and the plasma edge. Calculations for a Doublet II-A plasma with sigma = 3 show that with similar pressure profile the highest critical β occurs at β/sub p/ = 1 and is 84 percent of the highest critical β for the D-shaped plasmas. Critical values of ohmic heating power density are also found to be comparable for the two plasma shapes. A D-shaped plasma with the above parameters is suggested for use in future high-β tokamak devices

  15. Free-boundary perturbed MHD equilibria

    International Nuclear Information System (INIS)

    Nührenberg, C

    2012-01-01

    The concept of perturbed ideal MHD equilibria [Boozer A H and Nuhrenberg C 2006 Phys. Plasmas 13 102501] is employed to study the influence of external error-fields and of small plasma-pressure changes on toroidal plasma equilibria. In tokamak and stellarator free-boundary calculations, benchmarks were successful of the perturbed-equilibrium version of the CAS3D stability code [Nührenberg C et al. 2009 Phys. Rev. Lett. 102 235001] with the ideal MHD equilibrium code NEMEC [Hirshman S P et al. 1986 Comput. Phys. Commun. 43 143].

  16. The Pierce diode with an external circuit: II, Non-uniform equilibria

    International Nuclear Information System (INIS)

    Lawson, W.S.

    1987-01-01

    The non-uniform (non-linear) equilibria of the classical (short circuit) Pierce diode and the extended (series RLC external circuit) Pierce diode are described theoretically, and explored via computer simulation. It is found that most equilibria are correctly predicted by theory, but that the continuous set of equilibria of the classical Pierce diode at α = 2π are not observed. The stability characteristics of the non-uniform equilibria are also worked out, and are consistent with the simulations. 8 refs., 22 figs., 3 tabs

  17. On the stability of some systems of exponential difference equations

    Directory of Open Access Journals (Sweden)

    N. Psarros

    2018-01-01

    Full Text Available In this paper we prove the stability of the zero equilibria of two systems of difference equations of exponential type, which are some extensions of an one-dimensional biological model. The stability of these systems is investigated in the special case when one of the eigenvalues is equal to -1 and the other eigenvalue has absolute value less than 1, using centre manifold theory. In addition, we study the existence and uniqueness of positive equilibria, the attractivity and the global asymptotic stability of these equilibria of some related systems of difference equations.

  18. Magnetic coordinates for equilibria with a continuous symmetry

    International Nuclear Information System (INIS)

    Dewar, R.L.; Monticello, D.A.; Sy, W.N.C.

    1983-08-01

    Magnetic coordinates for hydromagnetic equilibria are defined which treat toroidal and straight helical plasmas equivalently yet exploit the existence of a continuous symmetry to derive relations between various geometrical and physical quantities. This allows the number of equilibrium quantities which must be known to be reduced to a minimal, or primitive set. Practical formulae for various quantities required in hydromagnetic stability calculations (interchange, ballooning, and global) are given in terms of this primitive set

  19. A note on the energy of relative equilibria of point vortices

    DEFF Research Database (Denmark)

    Aref, Hassan

    2007-01-01

    Analytical formulas are derived for the energy of simple relative equilibria of identical point vortices such as the regular polygons, both open and centered, and the various known configurations consisting of nested regular polygons with or without a vortex at the center. ©2007 American Institute...

  20. On Pure and (approximate) Strong Equilibria of Facility Location Games

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Telelis, Orestis A.

    2008-01-01

    We study social cost losses in Facility Location games, where n selfish agents install facilities over a network and connect to them, so as to forward their local demand (expressed by a non-negative weight per agent). Agents using the same facility share fairly its installation cost, but every...... agent pays individually a (weighted) connection cost to the chosen location. We study the Price of Stability (PoS) of pure Nash equilibria and the Price of Anarchy of strong equilibria (SPoA), that generalize pure equilibria by being resilient to coalitional deviations. For unweighted agents on metric...

  1. Stability of equilibria for a two-phase osmosis model

    NARCIS (Netherlands)

    Lippoth, F.; Prokert, G.

    2012-01-01

    For a two-phase moving boundary problem modelling the motion of a semipermeable membrane by osmotic pressure and surface tension, we prove that the manifold of equilibria is locally exponentially attractive. Our method relies on maximal regularity results for parabolic systems with relaxation type

  2. Confinement Effects on Chemical Equilibria: Pentacyano(PyrazineFerrate(II Stability Changes within Nanosized Droplets of Water

    Directory of Open Access Journals (Sweden)

    Teofilo Borunda

    2018-04-01

    Full Text Available Nanoscale confinement is known to impact properties of molecules and we observed changes in the reactivity of an iron coordination complex, pentacyano(pyrazineferrate(II. The confinement of two coordination complexes in a sodium AOT/isooctane reverse micellar (RM water droplet was found to dramatically increase the hydrolysis rate of [Fe(CN5pyz]3− and change the monomer-dimer equilibria between [Fe(CN5pyz]3− and [Fe2(CN10pyz]6−. Combined UV-Vis and 1H-NMR spectra of these complexes in RMs were analyzed and the position of the monomer-dimer equilibrium and the relative reaction times were determined at three different RM sizes. The data show that the hydrolysis rates (loss of pyrazine are dramatically enhanced in RMs over bulk water and increase as the size of the RM decreases. Likewise, the monomer-dimer equilibrium changes to favor the formation of dimer as the RM size decreases. We conclude that the effects of the [Fe(CN5pyz]3− stability is related to its solvation within the RM.

  3. Kinetic stability constraints on magnetized plasma equilibria: Quasi-particle approach

    International Nuclear Information System (INIS)

    Sosenko, P.; Weiland, J.

    1996-01-01

    Macroscopic adiabatic invariants for the magnetized plasma are studied within the context of the quasi-particle description, as well as constraints which they impose on energy transfer and stable plasma equilibria. 6 refs

  4. Stability of high-beta tokamak equilibria and transport in Belt-Pinch IIa

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G; Gruber, O; Krause, H; Mast, F; Wilhelm, R [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.)

    1978-01-01

    In Belt-Pinch IIa, highly elongated equilibria with poloidal beta values up to the aspect ratio have been achieved. In these tokamak-like configurations, no fast-growing MHD instabilities such as external kink and ballooning modes have been observed. Rigid displacement instabilities have been stabilized by an appropriate poloidal magnetic field configuration and by a conducting shell. By comparing simulation experiments using the Garching high-beta transport code with measurements, it has been found that in the collision-dominated plasma no anomalously enhanced transport occurs. Transport theory in the Pfirsch-Schlueter regime, which includes elongation and high-beta effects, has been confirmed by the experiment. In particular, it has been shown that the perpendicular electrical conductivity is also classical. Detailed investigations of oxygen and carbon impurity losses demonstrated that the impurity subprograms commonly used for tokamaks underestimate the radiation losses in the range Tsub(e)=10 to 30 eV.

  5. Nonlinear stability of ideal fluid equilibria

    International Nuclear Information System (INIS)

    Holm, D.D.

    1988-01-01

    The Lyapunov method for establishing stability is related to well- known energy principles for nondissipative dynamical systems. A development of the Lyapunov method for Hamiltonian systems due to Arnold establishes sufficient conditions for Lyapunov stability by using the energy plus other conserved quantities, together with second variations and convexity estimates. When treating the stability of ideal fluid dynamics within the Hamiltonian framework, a useful class of these conserved quantities consists of the Casimir functionals, which Poisson-commute with all functionals of the dynamical fluid variables. Such conserved quantities, when added to the energy, help to provide convexity estimates that bound the growth of perturbations. These convexity estimates, in turn, provide norms necessary for establishing Lyapunov stability under the nonlinear evolution. In contrast, the commonly used second variation or spectral stability arguments only prove linearized stability. As ideal fluid examples, in these lectures we discuss planar barotropic compressible fluid dynamics, the three-dimensional hydrostatic Boussinesq model, and a new set of shallow water equations with nonlinear dispersion due to Basdenkov, Morosov, and Pogutse[1985]. Remarkably, all three of these samples have the same Hamiltonian structure and, thus, possess the same Casimir functionals upon which their stability analyses are based. We also treat stability of modified quasigeostrophic flow, a problem whose Hamiltonian structure and Casimirs closely resemble Arnold's original example. Finally, we discuss some aspects of conditional stability and the applicability of Arnold's development of the Lyapunov technique. 100 refs

  6. Numerical computation of FCT equilibria by inverse equilibrium method

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Tsunematsu, Toshihide; Takeda, Tatsuoki

    1986-11-01

    FCT (Flux Conserving Tokamak) equilibria were obtained numerically by the inverse equilibrium method. The high-beta tokamak ordering was used to get the explicit boundary conditions for FCT equilibria. The partial differential equation was reduced to the simultaneous quasi-linear ordinary differential equations by using the moment method. The regularity conditions for solutions at the singular point of the equations can be expressed correctly by this reduction and the problem to be solved becomes a tractable boundary value problem on the quasi-linear ordinary differential equations. This boundary value problem was solved by the method of quasi-linearization, one of the shooting methods. Test calculations show that this method provides high-beta tokamak equilibria with sufficiently high accuracy for MHD stability analysis. (author)

  7. Attractive evolutionary equilibria

    NARCIS (Netherlands)

    Joosten, Reinoud A.M.G.; Roorda, Berend

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary

  8. A development of the direct Lyapunov method for the analysis of transient stability of a system of synchronous generators based on the determination of non- stable equilibria on a multidimensional sphere

    Directory of Open Access Journals (Sweden)

    A. V. Stepanov

    2014-01-01

    Full Text Available A development of the direct Lyapunov method for the analysis of transient stability of a system of synchronous generators based on the determination of non- stable equilibria on a multidimensional sphere.We consider the problem of transient stability analysis for a system of synchronous generators under the action of strong perturbations. The aim of our work is to develop methods to analyze a transient stability of the system of synchronous generators, which allow getting trustworthy results on reserve transient stability under different perturbations. For the analysis of transient stability, we use the direct Lyapunov method.One of the problems for this method application is to find the Lypunov function that well reflects the properties of a parallel system of synchronous generators. The most reliable results were obtained when the analysis of transient stability was performed with a Lyapunov function of energy type. Another problem for application of the direct Lyapunov method is to determine the critical value of the Lyapunov function, which requires finding the non-stable equilibria of the system. Determination of the non-stable equilibria requires studying the Lyapunov function in a multidimensional space in a neighborhood of a stable equilibrium for the post-breakdown system; this is a complicated non-linear problem.In the paper, we propose a method for determination of the non-stable equilibria on a multidimensional sphere. The method is based on a search of a minimum of the Lyapunov function on a multidimensional sphere the center of which is a stable equilibrium. Our method allows, comparing with the other, e.g., gradient methods, reliable finding a non-stable equilibrium and calculating the critical value. The reliability of our method is proved by numerical experiments. The developed methods and a program realized in a MATLAB package can be recommended for design of a post-breakdown control system of synchronous generators or as a

  9. Axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows

    International Nuclear Information System (INIS)

    Tasso, H.; Throumoulopoulos, G.N.

    1997-12-01

    It is shown that the ideal MHD equilibrium states of an axisymmetric plasma with incompressible flows are governed by an elliptic partial differential equation for the poloidal magnetic flux function ψ containing five surface quantities along with a relation for the pressure. Exact equilibria are constructed including those with non vanishing poloidal and toroidal flows and differentially varying radial electric fields. Unlike the case in cylindrical incompressible equilibria with isothermal magnetic surfaces which should have necessarily circular cross sections [G. N. Throumoulopoulos and H. Tasso, Phys. Plasmas 4, 1492 (1997)], no restriction appears on the shapes of the magnetic surfaces in the corresponding axisymmetric equilibria. The latter equilibria satisfy a set of six ordinary differential equations which for flows parallel to the magnetic field B can be solved semianalytically. In addition, it is proved the non existence of incompressible axisymmetric equilibria with (a) purely poloidal flows and (b) non-parallel flows with isothermal magnetic surfaces and vertical stroke B vertical stroke = vertical stroke B vertical stroke (ψ) (omnigenous equilibria). (orig.)

  10. Tokamak equilibria with non-parallel flow in a triangularity-deformed axisymmetric toroidal coordinate system

    Directory of Open Access Journals (Sweden)

    Ap Kuiroukidis

    2018-01-01

    Full Text Available We consider a generalized Grad–Shafranov equation (GGSE in a triangularity-deformed axisymmetric toroidal coordinate system and solve it numerically for the generic case of ITER-like and JET-like equilibria with non-parallel flow. It turns out that increase of the triangularity improves confinement by leading to larger values of the toroidal beta and the safety factor. This result is supported by the application of a criterion for linear stability valid for equilibria with flow parallel to the magnetic field. Also, the parallel flow has a weaker stabilizing effect.

  11. Attractive evolutionary equilibria

    OpenAIRE

    Roorda, Berend; Joosten, Reinoud

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary dynamics. For instance, each attractive evolutionarily stable strategy is an attractive evolutionarily stable equilibrium for certain barycentric ray-projection dynamics, and vice versa.

  12. Phase equilibria and stability of the B2 phase in the Ni-Mn-Al and Co-Mn-Al systems

    International Nuclear Information System (INIS)

    Kainuma, R.; Ise, M.; Ishikawa, K.; Ohnuma, I.; Ishida, K.

    1998-01-01

    The phase equilibria and ordering reactions in the composition region up to 50 at.% Al have been investigated in the Ni-Mn-Al and Co-Mn-Al systems at temperatures in the interval 850-1200 C mainly by the diffusion couple method. The compositions of the γ (A1: fcc-Ni, -Co, γ-Mn), γ' (L1 2 : Ni 3 Al), β (B2: NiAl, CoAl, NiMn), β-Mn (A13: β-Mn type), δ-Mn (A2: bcc-Mn) and ε (A3: hcp-(Mn, Al)) phases in equilibrium and the critical boundaries of the A2/B2 continuous ordering transition in the bcc phase region have been determined. It is shown that in the Mn-rich portion of the ternary systems both continuous and discontinuous A2 to B2 ordering transitions exist. The A2+B2 two-phase region in the isothermal sections has a lenticular shape and exists over a wide temperature range. The phase equilibria between the γ, γ', β, β-Mn, δ-Mn and ε phases are presented and the stability of the ordered bcc aluminides is discussed. (orig.)

  13. Inverse plasma equilibria

    International Nuclear Information System (INIS)

    Hicks, H.R.; Dory, R.A.; Holmes, J.A.

    1983-01-01

    We illustrate in some detail a 2D inverse-equilibrium solver that was constructed to analyze tokamak configurations and stellarators (the latter in the context of the average method). To ensure that the method is suitable not only to determine equilibria, but also to provide appropriately represented data for existing stability codes, it is important to be able to control the Jacobian, tilde J is identical to delta(R,Z)/delta(rho, theta). The form chosen is tilde J = J 0 (rho)R/sup l/rho where rho is a flux surface label, and l is an integer. The initial implementation is for a fixed conducting-wall boundary, but the technique can be extended to a free-boundary model

  14. Fac–mer equilibria of coordinated iminodiacetate (ida ) in ternary Cu ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Fac–mer equilibria; CuII-iminodiacetate-imidazole/benzimidazole ternary complexes; stability constants. 1. Introduction. Mixed ligand complexes of transition metal ions with amino acids, peptides or their derivatives or analogues, and heterocyclic N-bases can serve as model compounds of bioinorganic interests ...

  15. Equilibria in aqueous cadmium-chloroacetate-glycinate systems. A convolution-deconvolution cyclic voltammetric study

    International Nuclear Information System (INIS)

    Abdel-Hamid, R.; Rabia, M.K.M.

    1994-01-01

    Stability constants and composition of cadmium-glycinate binary complexes were determined using cyclic voltammetry. Furthermore, binary and ternary complex equilibria for chloroacetates and glycinate with cadmium in 0.1 M aqueous KNO 3 at pH 10.4 and 298 K were investigated. Cadmium forms binary complexes with chloroacetates of low stability and ternary ones with chloroacetate-glycinate of significant stability. (author)

  16. Thermodynamics and phase equilibria of ternary systems relevant to contact materials for compound semiconductors

    International Nuclear Information System (INIS)

    Ipser, H.; Richter, K.; Micke, K.

    1997-01-01

    In order to investigate the stability of ohmic contacts to compound semiconductors, it is necessary to know the phase equilibria in the corresponding multi-component systems. We are currently studying the phase equilibria and thermophysical properties of several ternary systems which are of interest in view of the use of nickel, palladium and platinum as contact materials for GaSb and InSb compound semiconductors: Ga-Ni-Sb, In-Ni-Sb, Ga-Pd-Sb and Ga-Pt-Sb. Phase equilibria are investigated by thermal analyses, X-ray powder diffraction methods as well as electron microprobe analysis. Thermodynamic properties are derived from vapour pressure measurements using an isopiestic method. It is planned to combine all information on phase equilibria and thermochemistry for the ternary and the limiting binary systems to perform an optimization of the ternary systems by computer calculations using standard software. (author)

  17. Geostrophic tripolar vortices in a two-layer fluid: Linear stability and nonlinear evolution of equilibria

    Science.gov (United States)

    Reinaud, J. N.; Sokolovskiy, M. A.; Carton, X.

    2017-03-01

    We investigate equilibrium solutions for tripolar vortices in a two-layer quasi-geostrophic flow. Two of the vortices are like-signed and lie in one layer. An opposite-signed vortex lies in the other layer. The families of equilibria can be spanned by the distance (called separation) between the two like-signed vortices. Two equilibrium configurations are possible when the opposite-signed vortex lies between the two other vortices. In the first configuration (called ordinary roundabout), the opposite signed vortex is equidistant to the two other vortices. In the second configuration (eccentric roundabouts), the distances are unequal. We determine the equilibria numerically and describe their characteristics for various internal deformation radii. The two branches of equilibria can co-exist and intersect for small deformation radii. Then, the eccentric roundabouts are stable while unstable ordinary roundabouts can be found. Indeed, ordinary roundabouts exist at smaller separations than eccentric roundabouts do, thus inducing stronger vortex interactions. However, for larger deformation radii, eccentric roundabouts can also be unstable. Then, the two branches of equilibria do not cross. The branch of eccentric roundabouts only exists for large separations. Near the end of the branch of eccentric roundabouts (at the smallest separation), one of the like-signed vortices exhibits a sharp inner corner where instabilities can be triggered. Finally, we investigate the nonlinear evolution of a few selected cases of tripoles.

  18. Synchronization of delay-coupled nonlinear oscillators: an approach based on the stability analysis of synchronized equilibria.

    Science.gov (United States)

    Michiels, Wim; Nijmeijer, Henk

    2009-09-01

    We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the paper starts from an exact stability analysis in a (gain, delay) parameter space of a synchronized equilibrium and extracts insights from an analysis of its bifurcations and from the corresponding emerging behavior. Instrumental to this analysis a factorization of the characteristic equation is employed that not only facilitates the analysis and reduces computational cost but also allows to determine the precise role of the individual agents and the topology of the network in the (in)stability mechanisms. The study provides an algorithm to perform a stability and bifurcation analysis of synchronized equilibria. Furthermore, it reveals fundamental limitations to synchronization and it explains under which conditions on the topology of the network and on the characteristics of the coupling the systems are expected to synchronize. In the second part of the paper the results are applied to coupled Lorenz systems. The main results show that for sufficiently large coupling gains, delay-coupled Lorenz systems exhibit a generic behavior that does not depend on the number of systems and the topology of the network, as long as some basic assumptions are satisfied, including the strong connectivity of the graph. Here the linearized stability analysis is strengthened by a nonlinear stability analysis which confirms the predictions based on the linearized stability and bifurcation analysis. This illustrates the usefulness of the exact linearized analysis in a situation where a direct nonlinear stability analysis is not possible or where it yields conservative conditions from which it is hard to get qualitative insights in the synchronization mechanisms and their scaling properties

  19. Modified Poisson eigenfunctions for electrostatic Bernstein--Greene--Kruskal equilibria

    International Nuclear Information System (INIS)

    Ling, K.; Abraham-Shrauner, B.

    1981-01-01

    The stability of an electrostatic Bernstein--Greene--Kruskal equilibrium by Lewis and Symon's general linear stability analysis for spatially inhomogeneous Vlasov equilibria, which employs eigenfunctions and eigenvalues of the equilibrium Liouville operator and the modified Poisson operator, is considered. Analytic expressions for the Liouville eigenfuctions and eigenvalues have already been given; approximate analytic expressions for the dominant eigenfunction and eigenvalue of the modified Poisson operator are given. In the kinetic limit three methods are given: (i) the perturbation method, (ii) the Rayleigh--Ritz method, and (iii) a method based on a Hill's equation. In the fluid limit the Rayleigh--Ritz method is used. The dominant eigenfunction and eigenvalue are then substituted in the dispersion relation and the growth rate calculated. The growth rate agrees very well with previous results found by numerical simulation and by modified Poisson eigenfunctions calculated numerically

  20. Phase diagrams and heterogeneous equilibria a practical introduction

    CERN Document Server

    Predel, Bruno; Pool, Monte

    2004-01-01

    This graduate-level textbook provides an introduction to the practical application of phase diagrams. It is intended for students and researchers in chemistry, metallurgy, mineralogy, and materials science as well as in engineering and physics. Heterogeneous equilibria are described by a minimum of theory illustrated by practical examples and realistic case discussions from the different fields of application. The treatment of the physical and energetic background of phase equilibria leads to the discussion of the thermodynamics of mixtures and the correlation between energetics and composition. Thus, tools for the prediction of energetic, structural, and physical quantities are provided. The authors treat the nucleation of phase transitions, the production and stability of technologically important metastable phases, and metallic glasses. Furthermore, the text also concisely presents the thermodynamics and composition of polymer systems.

  1. Analysis of rotation-vibration relative equilibria on the example of a tetrahedral four atom molecule

    NARCIS (Netherlands)

    Efstathiou, K; Sadovskii, DA; Zhilinskii, BI

    2004-01-01

    We study relative equilibria ( RE) of a nonrigid molecule, which vibrates about a well-defined equilibrium configuration and rotates as a whole. Our analysis unifies the theory of rotational and vibrational RE. We rely on the detailed study of the symmetry group action on the initial and reduced

  2. Equilibria of the three-body problem with rigid dumb-bell satellite

    International Nuclear Information System (INIS)

    Elipe, A.; Palacios, M.; Pretka-Ziomek, H.

    2008-01-01

    This paper is concerned with the orbital-rotational motion of an asymmetric dumb-bell (two masses with fixed distance among them) under the attraction of a central body. For this model, we find some equilibria and give sufficient conditions for their stability

  3. Survey of linear MHD stability in tokamak configurations

    International Nuclear Information System (INIS)

    Wakatani, M.

    1977-01-01

    The results found by MHD stability studies for both low-beta and high-beta tokamaks are reviewed. The stability against kink-ballooning modes in equilibria surrounded by vacuum or a layer of force free currents is considered. Internal kink modes and the relation to interchange modes, which should be considered after external kink modes are suppressed, are surveyed

  4. Multiple equilibria in a simple elastocapillary system

    KAUST Repository

    Taroni, Michele

    2012-09-28

    We consider the elastocapillary interaction of a liquid drop placed between two elastic beams, which are both clamped at one end to a rigid substrate. This is a simple model system relevant to the problem of surface-tension-induced collapse of flexible micro-channels that has been observed in the manufacture of microelectromechanical systems (MEMS). We determine the conditions under which the beams remain separated, touch at a point, or stick along a portion of their length. Surprisingly, we show that in many circumstances multiple equilibrium states are possible. We develop a lubrication-type model for the flow of liquid out of equilibrium and thereby investigate the stability of the multiple equilibria. We demonstrate that for given material properties two stable equilibria may exist, and show via numerical solutions of the dynamic model that it is the initial state of the system that determines which stable equilibrium is ultimately reached. © 2012 Cambridge University Press.

  5. Extrap interchange stability

    International Nuclear Information System (INIS)

    Scheffel, J.

    1989-05-01

    This is a non-linear MHD study of Extrap interchange stability. The closed-line stability criterion d(pgγ)/dψ ≥ 0 is used for fully 2-D numerical calculations of marginally stable equilibria. It is found that Extrap has a stabilzing effect on these modes. The reason for this is that q = Ιdl/B diverges towards the separatrix, which forms a boundary for the pinch. Consequently, in comparison with the 1-D Z-pinch, the Extrap octupole field allows steeper pressure profile in the boundary region. This stabilizing effect is shown to diminish in equilibria with an externally imposed axial magnetic field. It is also shown how the shape of the plasma cross-section depends on the relative direction of plasma current and external rod currents, when the current density j is finite on the boundary. Unfavourable curvature and higher values of j at the boundary are obtained in the case of parallel currents. Only when j vanishes at the separatrix, the cross-section can be truly square-shaped. The type of singularity of q at the separatrix is derived, as well as criteria for j to become singular

  6. Learning efficient correlated equilibria

    KAUST Repository

    Borowski, Holly P.

    2014-12-15

    The majority of distributed learning literature focuses on convergence to Nash equilibria. Correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However, there are no existing distributed learning algorithms that converge to specific correlated equilibria. In this paper, we provide one such algorithm which guarantees that the agents\\' collective joint strategy will constitute an efficient correlated equilibrium with high probability. The key to attaining efficient correlated behavior through distributed learning involves incorporating a common random signal into the learning environment.

  7. Learning efficient correlated equilibria

    KAUST Repository

    Borowski, Holly P.; Marden, Jason R.; Shamma, Jeff S.

    2014-01-01

    The majority of distributed learning literature focuses on convergence to Nash equilibria. Correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However, there are no existing distributed learning algorithms that converge to specific correlated equilibria. In this paper, we provide one such algorithm which guarantees that the agents' collective joint strategy will constitute an efficient correlated equilibrium with high probability. The key to attaining efficient correlated behavior through distributed learning involves incorporating a common random signal into the learning environment.

  8. Exogenous empirical-evidence equilibria in perfect-monitoring repeated games yield correlated equilibria

    KAUST Repository

    Dudebout, Nicolas; Shamma, Jeff S.

    2014-01-01

    This paper proves that exogenous empirical-evidence equilibria (xEEEs) in perfect-monitoring repeated games induce correlated equilibria of the associated one-shot game. An empirical-evidence equilibrium (EEE) is a solution concept for stochastic games. At equilibrium, agents' strategies are optimal with respect to models of their opponents. These models satisfy a consistency condition with respect to the actual behavior of the opponents. As such, EEEs replace the full-rationality requirement of Nash equilibria by a consistency-based bounded-rationality one. In this paper, the framework of empirical evidence is summarized, with an emphasis on perfect-monitoring repeated games. A less constraining notion of consistency is introduced. The fact that an xEEE in a perfect-monitoring repeated game induces a correlated equilibrium on the underlying one-shot game is proven. This result and the new notion of consistency are illustrated on the hawk-dove game. Finally, a method to build specific correlated equilibria from xEEEs is derived.

  9. Exogenous empirical-evidence equilibria in perfect-monitoring repeated games yield correlated equilibria

    KAUST Repository

    Dudebout, Nicolas

    2014-12-15

    This paper proves that exogenous empirical-evidence equilibria (xEEEs) in perfect-monitoring repeated games induce correlated equilibria of the associated one-shot game. An empirical-evidence equilibrium (EEE) is a solution concept for stochastic games. At equilibrium, agents\\' strategies are optimal with respect to models of their opponents. These models satisfy a consistency condition with respect to the actual behavior of the opponents. As such, EEEs replace the full-rationality requirement of Nash equilibria by a consistency-based bounded-rationality one. In this paper, the framework of empirical evidence is summarized, with an emphasis on perfect-monitoring repeated games. A less constraining notion of consistency is introduced. The fact that an xEEE in a perfect-monitoring repeated game induces a correlated equilibrium on the underlying one-shot game is proven. This result and the new notion of consistency are illustrated on the hawk-dove game. Finally, a method to build specific correlated equilibria from xEEEs is derived.

  10. Phase equilibria in the KFeS2-Fe-S system at 300-600 °C and bartonite stability

    Science.gov (United States)

    Osadchii, Valentin O.; Voronin, Mikhail V.; Baranov, Alexander V.

    2018-05-01

    The article deals with phase relations in the KFeS2-Fe-S system studied by the dry synthesis method in the range of 300-600 °C and at a pressure of 1 bar. At the temperature below 513 ± 3 °C, pyrite coexists with rasvumite and there are pyrite-rasvumite-KFeS2 and pyrite-rasvumite-pyrrhotite equilibria established. Above 513 ± 3 °C pyrite and rasvumite react to form KFeS2 and pyrrhotite, limiting the pyrite-rasvumite association to temperatures below this in nature. The experiments also outline the compositional stability range of the copper-free analog of murunskite (K x Fe2- y S2) and suggest that mineral called bartonite is not stable in the Cl-free system, at least at atmospheric pressure and the temperature in the experiments. Chlorbartonite could be easily produced after adding KCl in the experiment. Possible parageneses in the quaternary K-Fe-S-Cl system were described based on the data obtained in this research and found in the previous studies. The factors affecting the formation of potassium-iron sulfides in nature were discussed.

  11. Theory of Perturbed Equilibria for Solving the Grad-Shafranov Equation

    International Nuclear Information System (INIS)

    Pletzer, A.; Zakharov, L.E.

    1999-01-01

    The theory of perturbed magnetohydrodynamic equilibria is presented for different formulations of the tokamak equilibrium problem. For numerical codes, it gives an explicit Newton scheme for solving the Grad-Shafranov equation subject to different constraints. The problem of stability of axisymmetric modes is shown to be a particular case of the equilibrium perturbation theory

  12. Ballooning stable high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Tuda, Takashi; Azumi, Masafumi; Kurita, Gen-ichi; Takizuka, Tomonori; Takeda, Tatsuoki

    1981-04-01

    The second stable regime of ballooning modes is numerically studied by using the two-dimensional tokamak transport code with the ballooning stability code. Using the simple FCT heating scheme, we find that the plasma can locally enter this second stable regime. And we obtained equilibria with fairly high beta (β -- 23%) stable against ballooning modes in a whole plasma region, by taking into account of finite thermal diffusion due to unstable ballooning modes. These results show that a tokamak fusion reactor can operate in a high beta state, which is economically favourable. (author)

  13. Partial Cooperative Equilibria: Existence and Characterization

    Directory of Open Access Journals (Sweden)

    Amandine Ghintran

    2010-09-01

    Full Text Available We study the solution concepts of partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria. The partial cooperative Cournot-Nash equilibrium is axiomatically characterized by using notions of rationality, consistency and converse consistency with regard to reduced games. We also establish sufficient conditions for which partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria exist in supermodular games. Finally, we provide an application to strategic network formation where such solution concepts may be useful.

  14. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    Science.gov (United States)

    Faghihi, M.; Scheffel, J.

    1987-12-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m ≥ 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for P > P and large β

  15. Stability of small axial wavelength internal kink modes of an anisotropic plasma

    International Nuclear Information System (INIS)

    Faghihi, M.; Scheffel, J.

    1987-03-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m>=1)modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also constant current density equilibria can be stabilized for P per >P par and large β per . (authors)

  16. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    International Nuclear Information System (INIS)

    Faghihi, M.; Schefffel, J.

    1987-01-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m ≥ 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for Psub(perpendicular) > Psub(parallel) and large βsub(perpendicular). (author)

  17. A note on relative equilibria in a rotating shallow water layer

    KAUST Repository

    Ait Abderrahmane, Hamid; Fayed, Mohamed; Ng, Hoidick; Vatistas, Georgios H.

    2013-01-01

    the fundamental characteristics of Kelvin's equilibria, and could be adequately described by the classical idealized point vortex theory. The same conclusion can also be inferred using the experimental dataset of Bergmann et al. (J. Fluid Mech., vol. 679, 2011

  18. Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization

    KAUST Repository

    Canale, Eduardo A.; Monzó n, Pablo

    2015-01-01

    © 2015 AIP Publishing LLC. This work is concerned with stability of equilibria in the homogeneous (equal frequencies) Kuramoto model of weakly coupled oscillators. In 2012 [R. Taylor, J. Phys. A: Math. Theor. 45, 1-15 (2012)], a sufficient condition

  19. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, M.; Schefffel, J.

    1987-12-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m greater than or equal to 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for Psub(perpendicular) > Psub(parallel) and large ..beta..sub(perpendicular).

  20. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D

    1998-01-01

    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  1. Quantum equilibria for macroscopic systems

    International Nuclear Information System (INIS)

    Grib, A; Khrennikov, A; Parfionov, G; Starkov, K

    2006-01-01

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered

  2. Jump conditions in transonic equilibria

    International Nuclear Information System (INIS)

    Guazzotto, L.; Betti, R.; Jardin, S. C.

    2013-01-01

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that “standard” (low-β, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-β, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large β, while they agree with the results obtained with the old implementation of FLOW in lower-β equilibria.

  3. Quantum equilibria for macroscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)

    2006-06-30

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.

  4. Relation of vertical stability and aspect ratio in tokamaks

    International Nuclear Information System (INIS)

    Stambaugh, R.D.; Lao, L.L.; Lazarus, E.A.

    1992-01-01

    It is evaluated how the upper limit to plasma elongation κ, caused by vertical stability, varies with the aspect ratio A=R/a of the tokamak. Equilibria were generated with EFITD and the vertical stability was assessed by GATO. For a 'generic' tokamak with a superconducting wall conformal to the plasma shape and a distance 0.5 a away from the plasma edge and a constant current profile (q 0 =1.0, l i ≅1.0, q 95 =3.2) it is found that the maximum stable κ decreased only slowly from 2.65 at A=2.0 to 2.4 at A=6.0. To first order, a reasonable assumption in trade-off studies of new machine designs is no dependence of κ max on A. (author). Letter-to-the-editor. 13 refs, 3 figs, 1 tab

  5. Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization

    KAUST Repository

    Canale, Eduardo A.

    2015-02-01

    © 2015 AIP Publishing LLC. This work is concerned with stability of equilibria in the homogeneous (equal frequencies) Kuramoto model of weakly coupled oscillators. In 2012 [R. Taylor, J. Phys. A: Math. Theor. 45, 1-15 (2012)], a sufficient condition for almost global synchronization was found in terms of the minimum degree-order ratio of the graph. In this work, a new lower bound for this ratio is given. The improvement is achieved by a concrete infinite sequence of regular graphs. Besides, non standard unstable equilibria of the graphs studied in Wiley et al. [Chaos 16, 015103 (2006)] are shown to exist as conjectured in that work.

  6. Coexistence of equilibria in a New Keynesian model with heterogeneous beliefs

    International Nuclear Information System (INIS)

    Agliari, Anna; Pecora, Nicolò; Spelta, Alessandro

    2015-01-01

    The recent macroeconomic literature has been stressing the importance of considering heterogeneous expectations while addressing monetary policy. In this paper we consider a standard New Keynesian model, described by a two-dimensional nonlinear map, to analyze the bifurcation structure when agents have heterogeneous expectations and update their beliefs based on past performance. Depending on the degree of reactivity of the monetary policy to inflation and output deviations from the target equilibrium, different kind of dynamics may occur. We find that multiple equilibria and complicated dynamics, associated to codimension-2 bifurcations, may arise even if the monetary policy is set to respond more than point for point to inflation, as the Taylor principle prescribes. We show that if the monetary policy accommodates for a sufficient degree of output stabilization, complicated dynamics can be avoided and the number of coexisting equilibria reduces.

  7. Institutions, Equilibria and Efficiency

    DEFF Research Database (Denmark)

    Competition and efficiency is at the core of economic theory. This volume collects papers of leading scholars, which extend the conventional general equilibrium model in important ways. Efficiency and price regulation are studied when markets are incomplete and existence of equilibria in such set......Competition and efficiency is at the core of economic theory. This volume collects papers of leading scholars, which extend the conventional general equilibrium model in important ways. Efficiency and price regulation are studied when markets are incomplete and existence of equilibria...... in such settings is proven under very general preference assumptions. The model is extended to include geographical location choice, a commodity space incorporating manufacturing imprecision and preferences for club-membership, schools and firms. Inefficiencies arising from household externalities or group...... membership are evaluated. Core equivalence is shown for bargaining economies. The theory of risk aversion is extended and the relation between risk taking and wealth is experimentally investigated. Other topics include: determinacy in OLG with cash-in-advance constraints, income distribution and democracy...

  8. A numerical algorithm to find all feedback Nash equilibria in scalar affine quadratic differential games

    NARCIS (Netherlands)

    Engwerda, Jacob

    2015-01-01

    This note deals with solving scalar coupled algebraic Riccati equations. These equations arise in finding linear feedback Nash equilibria of the scalar N-player affine quadratic differential game. A numerical procedure is provided to compute all the stabilizing solutions. The main idea is to

  9. MHD equilibria in a straight system with a non-planar magnetic axis

    International Nuclear Information System (INIS)

    Harafuji, Kenji; Tsunematsu, Toshihide; Azumi, Masafumi; Takeda, Tatsuoki

    1984-03-01

    Numerical investigations of equilibria with free boundary are made in the straight syste m with a three dimensional magnetic axis. Grad-Shafranov equation is solved by both iterative SOR method and direct method on the basis of LU matrix decomposition. From the standpoint of CPU time, SOR method is better than direct method, when number of outer iterations is executed. A part of the ''Self-Stabilization Effect'' due to the increase of plasma pressure is successfully simulated. On the parameter space where the relation between the rotational transform due to the plasma current and that due to the torsion of helical magnetic axis is subtractive, the convergence region is very small. (author)

  10. Hermite Polynomials and the Inverse Problem for Collisionless Equilibria

    Science.gov (United States)

    Allanson, O.; Neukirch, T.; Troscheit, S.; Wilson, F.

    2017-12-01

    It is long established that Hermite polynomial expansions in either velocity or momentum space can elegantly encode the non-Maxwellian velocity-space structure of a collisionless plasma distribution function (DF). In particular, Hermite polynomials in the canonical momenta naturally arise in the consideration of the 'inverse problem in collisionless equilibria' (IPCE): "for a given macroscopic/fluid equilibrium, what are the self-consistent Vlasov-Maxwell equilibrium DFs?". This question is of particular interest for the equilibrium and stability properties of a given macroscopic configuration, e.g. a current sheet. It can be relatively straightforward to construct a formal solution to IPCE by a Hermite expansion method, but several important questions remain regarding the use of this method. We present recent work that considers the necessary conditions of non-negativity, convergence, and the existence of all moments of an equilibrium DF solution found for IPCE. We also establish meaningful analogies between the equations that link the microscopic and macrosopic descriptions of the Vlasov-Maxwell equilibrium, and those that solve the initial value problem for the heat equation. In the language of the heat equation, IPCE poses the pressure tensor as the 'present' heat distribution over an infinite domain, and the non-Maxwellian features of the DF as the 'past' distribution. We find sufficient conditions for the convergence of the Hermite series representation of the DF, and prove that the non-negativity of the DF can be dependent on the magnetisation of the plasma. For DFs that decay at least as quickly as exp(-v^2/4), we show non-negativity is guaranteed for at least a finite range of magnetisation values, as parameterised by the ratio of the Larmor radius to the gradient length scale. 1. O. Allanson, T. Neukirch, S. Troscheit & F. Wilson: From one-dimensional fields to Vlasov equilibria: theory and application of Hermite polynomials, Journal of Plasma Physics, 82

  11. Free-Boundary 3D Equilibria and Resistive Wall Instabilities with Extended-MHD

    Science.gov (United States)

    Ferraro, N. M.

    2015-11-01

    The interaction of the plasma with external currents, either imposed or induced, is a critical element of a wide range of important tokamak phenomena, including resistive wall mode (RWM) stability and feedback control, island penetration and locking, and disruptions. A model of these currents may be included within the domain of extended-MHD codes in a way that preserves the self-consistency, scalability, and implicitness of their numerical methods. Such a model of the resistive wall and non-axisymmetric coils is demonstrated using the M3D-C1 code for a variety of applications, including RWMs, perturbed non-axisymmetric equilibria, and a vertical displacement event (VDE) disruption. The calculated free-boundary equilibria, which include Spitzer resistivity, rotation, and two-fluid effects, are compared to external magnetic and internal thermal measurements for several DIII-D discharges. In calculations of the perturbed equilibria in ELM suppressed discharges, the tearing response at the top of the pedestal is found to correlate with the onset of ELM suppression. Nonlinear VDE calculations, initialized using a vertically unstable DIII-D equilibrium, resolve in both space and time the currents induced in the wall and on the plasma surface, and also the currents flowing between the plasma and the wall. The relative magnitude of these contributions and the total impulse to the wall depend on the resistive wall time, although the maximum axisymmetric force on the wall over the course of the VDE is found to be essentially independent of the wall conductivity. This research was supported by US DOE contracts DE-FG02-95ER54309, DE-FC02-04ER54698 and DE-AC52-07NA27344.

  12. Phase equilibria basic principles, applications, experimental techniques

    CERN Document Server

    Reisman, Arnold

    2013-01-01

    Phase Equilibria: Basic Principles, Applications, Experimental Techniques presents an analytical treatment in the study of the theories and principles of phase equilibria. The book is organized to afford a deep and thorough understanding of such subjects as the method of species model systems; condensed phase-vapor phase equilibria and vapor transport reactions; zone refining techniques; and nonstoichiometry. Physicists, physical chemists, engineers, and materials scientists will find the book a good reference material.

  13. Neoclassical MHD equilibria with ohmic current

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Takeda, Tatsuoki; Okamoto, Masao.

    1989-01-01

    MHD equilibria of tokamak plasmas with neoclassical current effects (neoclassical conductivity and bootstrap current) were calculated self-consistently. Neoclassical effects on JFT-2M tokamak plasmas, sustained by ohmic currents, were studied. Bootstrap currents flow little for L-mode type equilibria because of low attainable values of poloidal beta, β J . H-mode type equilibria give bootstrap currents of 30% ohmic currents for β J attained by JFT-2M and 100% for β J ≥ 1.5, both of which are sufficient to change the current profiles and the resultant MHD equilibria. Neoclassical conductivity which has roughly half value of the classical Spitzer conductivity brings peaked ohmic current profiles to yield low safety factor at the magnetic axis. Neoclassical conductivity reduces the value of effective Z(Z eff ) which is necessary to give the observed one-turn voltage but it needs impurities accumulating at the center when such peaked current profiles are not observed. (author)

  14. Equilibrium, confinement and stability of runaway electrons in tokamaks

    International Nuclear Information System (INIS)

    Spong, D.A.

    1976-03-01

    Some of the ramifications of the runaway population in tokamak experiments are investigated. Consideration is given both to the normal operating regime of tokamaks where only a small fraction of high energy runaways are present and to the strong runaway regime where runaways are thought to carry a significant portion of the toroidal current. In particular, the areas to be examined are the modeling of strong runaway discharges, single particle orbit characteristics of runaways, macroscopic beam-plasma equilibria, and stability against kink modes. A simple one-dimensional, time-dependent model has been constructed in relation to strong runaway discharges. Single particle orbits are analyzed in relation to both the strong runaway regime and the weak regime. The effects of vector E x vector B drifts are first considered in strong runaway discharges and are found to lead to a slow inward shrinkage of the beam. Macroscopic beam-plasma equilibria are treated assuming a pressureless relativistic beam with inertia and using an ideal MHD approximation for the plasma. The stability of a toroidal relativistic beam against kink perturbations is examined using several models

  15. Learning to Play Efficient Coarse Correlated Equilibria

    KAUST Repository

    Borowski, Holly P.; Marden, Jason R.; Shamma, Jeff S.

    2018-01-01

    The majority of the distributed learning literature focuses on convergence to Nash equilibria. Coarse correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However

  16. Non-existence of Normal Tokamak Equilibria with Negative Central Current

    International Nuclear Information System (INIS)

    Hammett, G.W.; Jardin, S.C.; Stratton, B.C.

    2003-01-01

    Recent tokamak experiments employing off-axis, non-inductive current drive have found that a large central current hole can be produced. The current density is measured to be approximately zero in this region, though in principle there was sufficient current-drive power for the central current density to have gone significantly negative. Recent papers have used a large aspect-ratio expansion to show that normal MHD equilibria (with axisymmetric nested flux surfaces, non-singular fields, and monotonic peaked pressure profiles) can not exist with negative central current. We extend that proof here to arbitrary aspect ratio, using a variant of the virial theorem to derive a relatively simple integral constraint on the equilibrium. However, this constraint does not, by itself, exclude equilibria with non-nested flux surfaces, or equilibria with singular fields and/or hollow pressure profiles that may be spontaneously generated

  17. Learning to Play Efficient Coarse Correlated Equilibria

    KAUST Repository

    Borowski, Holly P.

    2018-03-10

    The majority of the distributed learning literature focuses on convergence to Nash equilibria. Coarse correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However, there are no existing distributed learning algorithms that converge to specific coarse correlated equilibria. In this paper, we provide one such algorithm, which guarantees that the agents’ collective joint strategy will constitute an efficient coarse correlated equilibrium with high probability. The key to attaining efficient correlated behavior through distributed learning involves incorporating a common random signal into the learning environment.

  18. Ternary equilibria in bismuth--indium--lead alloys

    International Nuclear Information System (INIS)

    Liao, K.C.; Johnson, D.L.; Nelson, R.C.

    1975-01-01

    The liquidus surface is characterized by three binary equilibria. One binary extends from the Pb--Bi peritectic to the Pb--In peritectic. The other two extend from In--Bi eutectics, merge at 50 at. percent Bi and 30 at. percent Pb, and end at the Bi--Pb eutectic. Based on analysis of ternary liquidus contours and vertical sections, it is suggested that solidification for high lead and very high indium alloys occurs from two-phase equilibria. Solidification from all other alloys occurs from three-phase equilibria. Four-phase solidification does not occur in this system

  19. Multiple Equilibria in Noisy Rational Expectations Economies

    DEFF Research Database (Denmark)

    Pálvölgyi, Dömötör; Venter, Gyuri

    with a continuous price function. However, we also construct a tractable class of equilibria with discontinuous prices that have very different economic implications, including (i) jumps and crashes, (ii) significant revisions in uninformed belief due to small changes in the market price, (iii) “upward......-sloping” demand curves, (iv) higher prices leading to future returns that are higher in expectation (price drift) and (v) more positively skewed. Discontinuous equilibria can be arbitrarily close to being fully-revealing. Finally, discontinuous equilibria with the same construction also exist in Hellwig (1980)....

  20. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2000-2004)

    DEFF Research Database (Denmark)

    Dohrn, Ralf; Peper, Stephanie; Fonseca, José

    2010-01-01

    As a part of a series of reviews, a compilation of systems for which high-pressure phase-equilibrium data were published between 2000 and 2004 is given. Vapor-liquid equilibria, liquid-liquid equilibria, vapor-liquid-liquid equilibria,solid-liquid equilibria, solid-vapor equilibria, solid-vapor-l...

  1. Gyrokinetic magnetohydrodynamics and the associated equilibria

    Science.gov (United States)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-12-01

    The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee ["Magnetohydrodynamics for collisionless plasmas from the gyrokinetic perspective," Phys. Plasmas 23, 070705 (2016)], and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, ϕ, and the vector potential, A , and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when ϕ→0 and A becomes constant in time, which, in turn, gives ∇.(J∥+J⊥)=0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. These gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.

  2. Existence of pareto equilibria for multiobjective games without compactness

    OpenAIRE

    Shiraishi, Yuya; Kuroiwa, Daishi

    2013-01-01

    In this paper, we investigate the existence of Pareto and weak Pareto equilibria for multiobjective games without compactness. By employing an existence theorem of Pareto equilibria due to Yu and Yuan([10]), several existence theorems of Pareto and weak Pareto equilibria for the multiobjective games are established in a similar way to Flores-B´azan.

  3. Axisymmetric Plasma Equilibria in General Relativity

    Science.gov (United States)

    Elsässer, Klaus

    Axisymmetric plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species; they remain arbitrary if no gain and loss processes are considered, in close analogy to the free flux functions in ideal magnetohydrodynamics. Several simplifying assumptions allow the reduction of the basic equations to one single scalar equation for the stream function χ of positrons or ions, respectively, playing the rôle of the Grad/Shafranov equation in magnetohydrodynamics; in particular, Maxwell's equations can be solved analytically for a quasineutral plasma when both the charge density and the toroidal electric current density are negligible (in contrast to the Tokamak situation). The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio me/mi. The χ-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  4. Computing Nash equilibria through computational intelligence methods

    Science.gov (United States)

    Pavlidis, N. G.; Parsopoulos, K. E.; Vrahatis, M. N.

    2005-03-01

    Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection.

  5. Stochastic Equilibria under Imprecise Deviations in Terminal-Reward Concurrent Games

    Directory of Open Access Journals (Sweden)

    Patricia Bouyer

    2016-09-01

    Full Text Available We study the existence of mixed-strategy equilibria in concurrent games played on graphs. While existence is guaranteed with safety objectives for each player, Nash equilibria need not exist when players are given arbitrary terminal-reward objectives, and their existence is undecidable with qualitative reachability objectives (and only three players. However, these results rely on the fact that the players can enforce infinite plays while trying to improve their payoffs. In this paper, we introduce a relaxed notion of equilibria, where deviations are imprecise. We prove that contrary to Nash equilibria, such (stationary equilibria always exist, and we develop a PSPACE algorithm to compute one.

  6. On finite larmor radius stabilization of Z-pinches

    International Nuclear Information System (INIS)

    Hellsten, T.

    1982-12-01

    Finite Larmor radius stabilization of Z-pinches is discussed. Stability criteria can be derived for a class of equilibria having constant mass and current density. The internal modes can be stabilized provided the line density not exceed a critical value of the order of 10 18 ions/m. (Author)

  7. Magnetoacoustic heating and FCT-equilibria in the belt pinch

    International Nuclear Information System (INIS)

    Erckmann, V.

    1983-02-01

    In the HECTOR belt pinch of high β plasma is produced by magnetic compression in a Tokamak geometry. After compresseion the initial β value can be varied between 0.2 and 0.8. During 5 μs the plasma is further heated by a fast magnetoacoustic wave with a frequency near the first harmonic of the ion cyclotronfrequency. For the first time the β-value of a pinch plasma could be increased further from 0.34 after compression to 0.46 at the end of the rf-heating cycle. By proper selection of the final β-value the region for resonance absorption of the heating wave can be shifted. Strong heating (200 MW) has been observed in the cases, where the resonance region has been located in the center of the plasma. In deuterium discharges an increase in ion temperature is observed during the heating process, whereas the electrons are energetically decoupled, showing no temperature increase. Strong plasma losses are found in the 200 MW range after the rf-heating process. The dominant mechanisms are charge exchange collisions with neutral gas atoms. During rf-heating and the subsequent cooling phase the magnetic flux is frozen due to the high conductivity of the plasma. The observed equilibria could be identified as flux conserving Tokamak (FCT) equilibria. Based on a two-dimensional code the time-evolution of the equilibria has been calculated. The q-profiles are time-independent, with increasing β the magnetic axis of the plasma is shifted towards the outer boundary of the torus, and finally the linear relation between β and βsub(pol), which is characteristic for low-β-equilibria, is no longer valid. Thus for the first time the existence of FCT-equilibria at high β has been demonstrated experimentally together with a qualitative agreement with FCT-theory. (orig./AH) [de

  8. MHD equilibrium and stability in heliotron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ichiguchi, Katsuji [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-09-01

    Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode, effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused. (author)

  9. Kinetic stability of field-reversed configurations

    International Nuclear Information System (INIS)

    Staudenmeier, J.L.; Hsiao, M.-Y.

    1991-01-01

    The internal tilt mode is considered to be the biggest threat to Field-Reversed Configuration (FRC) global stability. The tilt stability of the FRC is studied using the MHD, Hall MHD, and the Vlasov-fluid (Vlasov ions, cold massless fluid electrons) models. Nonlinear Hall MHD calculations showed that the FRC was stable to the tilt mode when the s value of the FRC was below a critical value that was dependent on plasma length. The critical s value is larger for longer plasma equilibria. The stability of FRC's with toroidal field was studied with a linear initial value MHD code. The calculations showed an axial perturbation wavelength of the most unstable eigenfunction that was consistent with internal probe measurements made on translated FRC's. Linear Vlasov-fluid eigenvalue calculations showed that kinetic ion effects can change both the growth rate and the structure of the eigenfunctions when compared to the corresponding MHD modes. Calculations on short FRC equilibria indicate that MHD is not the appropriate small gyroradius limit of the Vlasov-fluid model because the axial transit time of a thermal ion is approximately equal to an MHD growth time for the tilt mode. Calculations were done using a small number of unstable MHD eigenfunctions as basis functions in order to reduce the dimensionality of the stability problem. The results indicated that this basis set can produce inaccurate growth rates at large value for s for some equilibria

  10. Predicting phase equilibria in one-component systems

    Science.gov (United States)

    Korchuganova, M. R.; Esina, Z. N.

    2015-07-01

    It is shown that Simon equation coefficients for n-alkanes and n-alcohols can be modeled using critical and triple point parameters. Predictions of the phase liquid-vapor, solid-vapor, and liquid-solid equilibria in one-component systems are based on the Clausius-Clapeyron relation, Van der Waals and Simon equations, and the principle of thermodynamic similarity.

  11. Strong Nash Equilibria and the Potential Maimizer

    NARCIS (Netherlands)

    van Megen, F.J.C.; Facchini, G.; Borm, P.E.M.; Tijs, S.H.

    1996-01-01

    A class of non cooperative games characterized by a `congestion e ect' is studied, in which there exists a strong Nash equilibrium, and the set of Nash equilibria, the set of strong Nash equilibria and the set of strategy pro les maximizing the potential function coincide.The structure of the class

  12. Surface current equilibria from a geometric point of view

    International Nuclear Information System (INIS)

    Kaiser, R.; Salat, A.

    1993-04-01

    This paper addresses the inverse problem of the existence of surface current MHD equilibria in toroidal geometry with vanishing magnetic field inside. Inverse means that the plasma-vacuum interface rather than the external wall or conductors are given and the latter remain to be determined. This makes a reformulation of the problem possible in geometric terms: What toroidal surfaces with analytic parameterization allow a simple analytic covering by geodesics? If such a covering by geodesics (field lines) exists, their orthogonal trajectories (current lines) also form a simple covering and are described by a function satisfying a nonlinear partial differential equation of the Hamilton-Jacobi type whose coefficients are combinations of the metric elements of the surface. All known equilibria - equilibria with zero and infinite rotational transform and the symmetric ones in the case of finite rotational transform - turn out to be solutions of separable cases of that equation and allow a unified description if the toroidal surface is parametrized in the moving trihedral associated with a closed curve. Analogously to volume current equilibria, the only continuous symmetries compatible with separability are plane, helical and axial symmetry. In the nonseparable case numerical evidence is presented for cases with chaotic behaviour of geodesics, thus restricting possible equilibria for these surfaces. For weak deviation from axisymmetry KAM-type behaviour is observed, i.e. destruction of geodesic coverings with a low rational rotational transform and preservation of those with irrational rotational transform. A previous attempt to establish three-dimensional surface current equilibria on the basis of the KAM theorem is rejected as incomplete, and a complete proof of the existence of equilibria in the weakly nonaxisymmetric case, based on the twist theorem for mappings, is given. Finally, for a certain class of strong deviations from axisymmetry an analytic criterion is

  13. Nash Equilibria in Fisher Market

    Science.gov (United States)

    Adsul, Bharat; Babu, Ch. Sobhan; Garg, Jugal; Mehta, Ruta; Sohoni, Milind

    Much work has been done on the computation of market equilibria. However due to strategic play by buyers, it is not clear whether these are actually observed in the market. Motivated by the observation that a buyer may derive a better payoff by feigning a different utility function and thereby manipulating the Fisher market equilibrium, we formulate the Fisher market game in which buyers strategize by posing different utility functions. We show that existence of a conflict-free allocation is a necessary condition for the Nash equilibria (NE) and also sufficient for the symmetric NE in this game. There are many NE with very different payoffs, and the Fisher equilibrium payoff is captured at a symmetric NE. We provide a complete polyhedral characterization of all the NE for the two-buyer market game. Surprisingly, all the NE of this game turn out to be symmetric and the corresponding payoffs constitute a piecewise linear concave curve. We also study the correlated equilibria of this game and show that third-party mediation does not help to achieve a better payoff than NE payoffs.

  14. Isotope effects in ion-exchange equilibria in aqueous and mixed solvent systems

    International Nuclear Information System (INIS)

    Gupta, A.R.

    1979-01-01

    Isotope effects in ion-exchange equilibria in aqueous and mixed solvents are analyzed in terms of the general features of ion-exchange equilibria and of isotope effects in chemical equilibria. The special role of solvent fractionation effects in ion-exchange equilibria in mixed solvents is pointed out. The various situations arising in isotope fractionation in ion exchange in mixed solvents due to solvent fractionation effects are theoretically discussed. The experimental data on lithium isotope effects in ion-exchange equilibria in mixed solvents are shown to conform to the above situations. The limitations of ion-exchange equilibria in mixed solvents for isotope fractionation are pointed out. 3 tables

  15. Competition and equilibria in electricity markets based on two-settlement system: A conjectural variation approach

    Science.gov (United States)

    Watts, David

    This dissertation studies electricity markets based on two-settlement systems and applies the concept of conjectural variation (CV) as a tool for representing different levels of competitiveness in the market. Some recent theoretical works are addressed to support the use of CV as a solution concept. A notion of consistency is introduced to make the level of competitiveness of the market endogenous, and allows finding consistent CV equilibria and the corresponding conditions for existence of equilibria. First, a case is studied in which firms hold exogenous levels of forward commitments. Then, backward induction and sub-game perfection are used to solve sequentially for the spot and forward market equilibrium. This allows analyzing how firms take positions in the forward market, based on considering their later impact on the spot market. It is concluded that positions taken in the forward market depend largely on firms expectations about the competitiveness of both the spot and the forward market. Forward markets are welfare enhancing even if they are not as competitive as the associated spot market as long as they are not too oligopolistie. The above formulation is used to model a dynamic scenario to analyze market stability, linking this research to Dr. Alvarado's earlier research on market stability. This brings about interesting trade offs between market power and market stability.

  16. Stable equilibria for bootstrap-current-driven low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Miller, R.L.; Lin-Liu, Y.R.; Turnbull, A.D.; Chan, V.S.; Pearlstein, L.D.; Sauter, O.; Villard, L.

    1997-01-01

    Low aspect ratio tokamaks (LATs) can potentially provide a high ratio of plasma pressure to magnetic pressure β and high plasma current I at a modest size. This opens up the possibility of a high-power density compact fusion power plant. For the concept to be economically feasible, bootstrap current must be a major component of the plasma current, which requires operating at high β p . A high value of the Troyon factor β N and strong shaping is required to allow simultaneous operation at a high-β and high bootstrap fraction. Ideal magnetohydrodynamic stability of a range of equilibria at aspect ratio 1.4 is systematically explored by varying the pressure profile and shape. The pressure and current profiles are constrained in such a way as to assure complete bootstrap current alignment. Both β N and β are defined in terms of the vacuum toroidal field. Equilibria with β N ≥8 and β∼35%endash 55% exist that are stable to n=∞ ballooning modes. The highest β case is shown to be stable to n=0,1,2,3 kink modes with a conducting wall. copyright 1997 American Institute of Physics

  17. On Nash-Equilibria of Approximation-Stable Games

    Science.gov (United States)

    Awasthi, Pranjal; Balcan, Maria-Florina; Blum, Avrim; Sheffet, Or; Vempala, Santosh

    One reason for wanting to compute an (approximate) Nash equilibrium of a game is to predict how players will play. However, if the game has multiple equilibria that are far apart, or ɛ-equilibria that are far in variation distance from the true Nash equilibrium strategies, then this prediction may not be possible even in principle. Motivated by this consideration, in this paper we define the notion of games that are approximation stable, meaning that all ɛ-approximate equilibria are contained inside a small ball of radius Δ around a true equilibrium, and investigate a number of their properties. Many natural small games such as matching pennies and rock-paper-scissors are indeed approximation stable. We show furthermore there exist 2-player n-by-n approximation-stable games in which the Nash equilibrium and all approximate equilibria have support Ω(log n). On the other hand, we show all (ɛ,Δ) approximation-stable games must have an ɛ-equilibrium of support O(Δ^{2-o(1)}/ɛ2{log n}), yielding an immediate n^{O(Δ^{2-o(1)}/ɛ^2log n)}-time algorithm, improving over the bound of [11] for games satisfying this condition. We in addition give a polynomial-time algorithm for the case that Δ and ɛ are sufficiently close together. We also consider an inverse property, namely that all non-approximate equilibria are far from some true equilibrium, and give an efficient algorithm for games satisfying that condition.

  18. Marginal Stability Boundaries for Infinite-n Ballooning Modes in a Quasi-axisymmetric Stellarator

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.

    2003-01-01

    A method for computing the ideal-MHD stability boundaries in three-dimensional equilibria is employed. Following Hegna and Nakajima [Phys. Plasmas 5 (May 1998) 1336], a two-dimensional family of equilibria are constructed by perturbing the pressure and rotational-transform profiles in the vicinity of a flux surface for a given stellarator equilibrium. The perturbations are constrained to preserve the magnetohydrodynamic equilibrium condition. For each perturbed equilibrium, the infinite-n ballooning stability is calculated. Marginal stability diagrams are thus constructed that are analogous to (s; a) diagrams for axisymmetric configurations. A quasi-axisymmetric stellarator is considered. Calculations of stability boundaries generally show regions of instability can occur for either sign of the average magnetic shear. Additionally, regions of second-stability are present

  19. Entropy production and multiple equilibria: the case of the ice-albedo feedback

    Directory of Open Access Journals (Sweden)

    C. Herbert

    2011-02-01

    Full Text Available Nonlinear feedbacks in the Earth System provide mechanisms that can prove very useful in understanding complex dynamics with relatively simple concepts. For example, the temperature and the ice cover of the planet are linked in a positive feedback which gives birth to multiple equilibria for some values of the solar constant: fully ice-covered Earth, ice-free Earth and an intermediate unstable solution. In this study, we show an analogy between a classical dynamical system approach to this problem and a Maximum Entropy Production (MEP principle view, and we suggest a glimpse on how to reconcile MEP with the time evolution of a variable. It enables us in particular to resolve the question of the stability of the entropy production maxima. We also compare the surface heat flux obtained with MEP and with the bulk-aerodynamic formula.

  20. Stability of axisymmetric plasmas in closed line magnetic fields

    International Nuclear Information System (INIS)

    Simakov, A.N.; Vernon Wong, H.; Berk, H.L.

    2003-01-01

    The stability of axisymmetric plasmas confined by closed poloidal magnetic field lines is considered. The results are relevant to plasmas in the dipolar fields of stars and planets, as well as the Levitated Dipole Experiment, multipoles, Z pinches and field reversed configurations. The ideal MHD energy principle is employed to study the stability of pressure driven shear Alfven modes. A point dipole is considered in detail to demonstrate that equilibria exist which are MHD stable for arbitrary beta. Effects of sound waves and plasma resistivity are investigated for Z pinch and point dipole equilibria by means of resistive MHD theory. Kinetic theory is used to study drift frequency modes and their interaction with MHD modes near the ideal stability boundary for different collisionality regimes. Effects of collisional dissipation on drift mode stability are explicitly evaluated and applied to a Z pinch. The role of finite Larmor radius effects and drift reversed particles in modifying ideal stability thresholds is examined. (author)

  1. The Spectral Web of stationary plasma equilibria. II. Internal modes

    Science.gov (United States)

    Goedbloed, J. P.

    2018-03-01

    The new method of the Spectral Web to calculate the spectrum of waves and instabilities of plasma equilibria with sizeable flows, developed in the preceding Paper I [Goedbloed, Phys. Plasmas 25, 032109 (2018)], is applied to a collection of classical magnetohydrodynamic instabilities operating in cylindrical plasmas with shear flow or rotation. After a review of the basic concepts of the complementary energy giving the solution path and the conjugate path, which together constitute the Spectral Web, the cylindrical model is presented and the spectral equations are derived. The first example concerns the internal kink instabilities of a cylindrical force-free magnetic field of constant α subjected to a parabolic shear flow profile. The old stability diagram and the associated growth rate calculations for static equilibria are replaced by a new intricate stability diagram and associated complex growth rates for the stationary model. The power of the Spectral Web method is demonstrated by showing that the two associated paths in the complex ω-plane nearly automatically guide to the new class of global Alfvén instabilities of the force-free configuration that would have been very hard to predict by other methods. The second example concerns the Rayleigh-Taylor instability of a rotating theta-pinch. The old literature is revisited and shown to suffer from inconsistencies that are remedied. The most global n = 1 instability and a cluster sequence of more local but much more unstable n =2 ,3 ,…∞ modes are located on separate solution paths in the hydrodynamic (HD) version of the instability, whereas they merge in the MHD version. The Spectral Web offers visual demonstration of the central position the HD flow continuum and of the MHD Alfvén and slow magneto-sonic continua in the respective spectra by connecting the discrete modes in the complex plane by physically meaningful curves towards the continua. The third example concerns the magneto-rotational instability

  2. On Equilibria of the Two-fluid Model in Magnetohydrodynamics

    International Nuclear Information System (INIS)

    Frantzeskakis, Dimitri J.; Stratis, Ioannis G.; Yannacopoulos, Athanasios N.

    2004-01-01

    We show how the equilibria of the two-fluid model in magnetohydrodynamics can be described by the double curl equation and through the study of this equation we study some properties of these equilibria

  3. A unifying approach to existence of Nash equilibria

    NARCIS (Netherlands)

    Balder, E.J.

    1997-01-01

    An approach initiated in [4] is shown to unify results about the existence of (i) Nash equilibria in games with at most countably many players, (ii) Cournot-Nash equilibrium distributions for large, anonymous games, and (iii) Nash equilibria (both mixed and pure) for continuum games. A new, central

  4. Two-fluid equilibria with flow

    International Nuclear Information System (INIS)

    Steinhauer, L.

    1999-01-01

    The formalism is developed for flowing two-fluid equilibria. The equilibrium system is governed by a pair of second order partial differential equations for the magnetic stream function and the ion stream function plus a Bernoulli-like equation for the density. There are six arbitrary surface function. There are separate characteristic surfaces for each species, which are the guiding-center surfaces. This system is a generalization of the familiar Grad-Shafranov system for a single-fluid equilibrium without flow, which has only one equation and two arbitrary surface functions. In the case of minimum energy equilibria, the six surface functions take on particular forms. (author)

  5. Robustness and flexibility in compact quasiaxial stellarators: Global ideal MHD stability and energetic particle transport

    International Nuclear Information System (INIS)

    Redi, M.H.; Diallo, A.; Cooper, W.A.; Fu, G.Y.

    2000-01-01

    Concerns about the flexibility and robustness of a compact quasiaxial stellarator design are addressed by studying the effects of varied pressure and rotational transform profiles on expected performance. For thirty, related, fully three-dimensional configurations the global, ideal magnetohydrodynamic stability is evaluated as well as energetic particle transport. It is found that tokamak intuition is relevant to understanding the magnetohydrodynamic stability, with pressure gradient driving terms and shear stabilization controlling both the periodicity preserving, N=0, and the non-periodicity preserving, N=1, unstable kink modes. Global kink modes are generated by steeply peaked pressure profiles near the half radius and edge localized kink modes are found for plasmas with steep pressure profiles at the edge as well as with edge rotational transform above 0.5. Energetic particle transport is not strongly dependent on these changes of pressure and current (or rotational transform) profiles, although a weak inverse dependence on pressure peaking through the corresponding Shafranov shift is found. While good transport and MHD stability are not anticorrelated in these equilibria, stability only results from a delicate balance of the pressure and shear stabilization forces. A range of interesting MHD behaviors is found for this large set of equilibria, exhibiting similar particle transport properties

  6. Evaluation of a Mathematical Model for Single Component Adsorption Equilibria with Reference to the Prediction of Multicomponent Adsorption Equilibria

    DEFF Research Database (Denmark)

    Krøll, Annette Elisabeth; Marcussen, Lis

    1997-01-01

    An equilibrium equation for pure component adsorption is compared to experiments and to the vacancy solution theory. The investigated equilibrium equation is a special case of a model for prediction of multicomponent adsorption equilibria.The vacancy solution theory for multicomponent systems...... requires binary experimental data for determining the interaction parameters of the Wilson equation; thus a large number of experiments are needed. The multicomponent equilibria model which is investigated for single component systems in this work is based on pure component data only. This means...... that the requirement for experimental data is reduced significantly.The two adsorption models are compared, using experimental pure gas adsorption data found in literature. The results obtained by the models are in close agreement for pure component equilibria and they give a good description of the experimental data...

  7. Stability of twisted rods, helices and buckling solutions in three dimensions

    KAUST Repository

    Majumdar, Apala; Raisch, Alexander

    2014-01-01

    © 2014 IOP Publishing Ltd & London Mathematical Society. We study stability problems for equilibria of a naturally straight, inextensible, unshearable Kirchhoff rod allowed to deform in three dimensions (3D), subject to terminal loads. We investigate the stability of the twisted, straight state in 3D for three different boundary-value problems, cast in terms of Dirichlet and Neumann boundary conditions for the Euler angles, with and without isoperimetric constraints. In all cases, we obtain explicit stability estimates in terms of the twist, external load and elastic constants and in the Dirichlet case, we compute bifurcation diagrams for the Euler angles as a function of the external load. In the same vein, we obtain explicit stability estimates for a family of prototypical helical equilibria in 3D and demonstrate that they are stable for a range of tensile and compressive forces. We propose a numerical L2-gradient flow model to study the stability and dynamical evolution (in viscous model situations) of Kirchhoff rod equilibria. In Nizette and Goriely 1999 J. Math. Phys. 40 2830-66, the authors construct a family of localized buckling solutions. We apply our L2-gradient flow model to these localized buckling solutions, demonstrate that they are unstable, study their evolution and the simulations demonstrate rich spatio oral patterns that strongly depend on the boundary conditions and imposed isoperimetric constraints.

  8. Stability of twisted rods, helices and buckling solutions in three dimensions

    KAUST Repository

    Majumdar, Apala

    2014-11-03

    © 2014 IOP Publishing Ltd & London Mathematical Society. We study stability problems for equilibria of a naturally straight, inextensible, unshearable Kirchhoff rod allowed to deform in three dimensions (3D), subject to terminal loads. We investigate the stability of the twisted, straight state in 3D for three different boundary-value problems, cast in terms of Dirichlet and Neumann boundary conditions for the Euler angles, with and without isoperimetric constraints. In all cases, we obtain explicit stability estimates in terms of the twist, external load and elastic constants and in the Dirichlet case, we compute bifurcation diagrams for the Euler angles as a function of the external load. In the same vein, we obtain explicit stability estimates for a family of prototypical helical equilibria in 3D and demonstrate that they are stable for a range of tensile and compressive forces. We propose a numerical L2-gradient flow model to study the stability and dynamical evolution (in viscous model situations) of Kirchhoff rod equilibria. In Nizette and Goriely 1999 J. Math. Phys. 40 2830-66, the authors construct a family of localized buckling solutions. We apply our L2-gradient flow model to these localized buckling solutions, demonstrate that they are unstable, study their evolution and the simulations demonstrate rich spatio oral patterns that strongly depend on the boundary conditions and imposed isoperimetric constraints.

  9. Convergence in gradient systems with branching of equilibria

    International Nuclear Information System (INIS)

    Galaktionov, V A; Pohozaev, Stanislav I; Shishkov, A E

    2007-01-01

    The basic model is a semilinear elliptic equation with coercive C 1 non-linearity: Δψ+f(ψ)=0 in Ω, ψ=0 on ∂Ω, where Ω subset of R N is a bounded smooth domain. The main hypothesis (H R ) about resonance branching is as follows: if a branching of equilibria occurs at a point ψ with k-dimensional kernel of the linearized operator Δ+f'(ψ)I, then the branching subset S k at ψ is a locally smooth k-dimensional manifold. For N=1 the first result on the stabilization to a single equilibrium is due to Zelenyak (1968). It is shown that Zelenyak's approach, which is based on the analysis of Lyapunov functions, can be extended to general gradient systems in Hilbert spaces with smooth resonance branching. The case of asymptotically small non-autonomous perturbations of such systems is also considered. The approach developed here represents an alternative to Hale's stabilization method (1992) and other similar techniques in the theory of gradient systems. Bibliography: 32 titles.

  10. High beta and second stability region transport and stability analysis

    International Nuclear Information System (INIS)

    Hughes, M.H.; Phillps, M.W.; Todd, A.M.M.; Krishnaswami, J.; Hartley, R.

    1992-09-01

    This report describes ideal and resistive studies of high-beta plasmas and of the second stability region. Emphasis is focused on ''supershot'' plasmas in TFIR where MHD instabilities are frequently observed and which spoil their confinement properties. Substantial results are described from the analysis of these high beta poloidal plasmas. During these studies, initial pressure and safety factor profiles were obtained from the TRANSP code, which is used extensively to analyze experimental data. Resistive MBD stability studies of supershot equilibria show that finite pressure stabilization of tearing modes is very strong in these high βp plasmas. This has prompted a detailed re-examination of linear tearing mode theory in which we participated in collaboration with Columbia University and General Atomics. This finite pressure effect is shown to be highly sensitive to small scale details of the pressure profile. Even when an ad hoc method of removing this stabilizing mechanism is implemented, however, it is shown that there is only superficial agreement between resistive MBD stability computation and the experimental data. While the mode structures observed experimentally can be found computationally, there is no convincing correlation with the experimental observations when the computed results are compared with a large set of supershot data. We also describe both the ideal and resistive stability properties of TFIR equilibria near the transition to the second region. It is shown that the highest β plasmas, although stable to infinite-n ideal ballooning modes, can be unstable to the so called ''infernal'' modes associated with small shear. The sensitivity of these results to the assumed pressure and current density profiles is discussed. Finally, we describe results from two collaborative studies with PPPL. The first involves exploratory studies of the role of the 1/1 mode in tokamaks and, secondly, a study of sawtooth stabilization using ICRF

  11. Uniqueness of Nash equilibria in a quantum Cournot duopoly game

    International Nuclear Information System (INIS)

    Sekiguchi, Yohei; Sakahara, Kiri; Sato, Takashi

    2010-01-01

    A quantum Cournot game whose classical form game has multiple Nash equilibria is examined. Although the classical equilibria fail to be Pareto optimal, the quantum equilibrium exhibits the following two properties: (i) if the measurement of entanglement between strategic variables chosen by the competing firms is sufficiently large, the multiplicity of equilibria vanishes, and (ii) the more strongly the strategic variables are entangled, the more closely the unique equilibrium approaches to the optimal one.

  12. Hall magnetohydrodynamics: Conservation laws and Lyapunov stability

    International Nuclear Information System (INIS)

    Holm, D.D.

    1987-01-01

    Hall electric fields produce circulating mass flow in confined ideal-fluid plasmas. The conservation laws, Hamiltonian structure, equilibrium state relations, and Lyapunov stability conditions are presented here for ideal Hall magnetohydrodynamics (HMHD) in two and three dimensions. The approach here is to use the remarkable array of nonlinear conservation laws for HMHD that follow from its Hamiltonian structure in order to construct explicit Lyapunov functionals for the HMHD equilibrium states. In this way, the Lyapunov stability analysis provides classes of HMHD equilibria that are stable and whose linearized initial-value problems are well posed (in the sense of possessing continuous dependence on initial conditions). Several examples are discussed in both two and three dimensions

  13. Kinetic description of linear theta-pinch equilibria

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Davidson, R.C.

    1975-01-01

    Equilibrium properties of linear theta-pinch plasmas are studied within the framework of the steady-state (o/x=0) Vlasov-Maxwell equations. The analysis is carried out for an infinitely long plasma column aligned parallel to an externally applied axial magnetic field Bsub(z)sup(ext)esub(z). Equilibrium properties are calculated for the class of rigid-rotor Vlasov equilibria, in which the th component distribution function (Hsub(perpendicular), Psub(theta), upsilonsub(z) depends on perpendicular energy H and canonical angular momentum Psub(theta), exclusively through the linear combination Hsub(perpendicular)-ωsub(j)Psub(theta), where ω;=const.=angular velocity of mean rotation. General equilibrium relations that pertain to the entire class of rigid-rotor Vlasov equilibria are discussed; and specific examples of sharp- and diffuse-boundary equilibrium configurations are considered. Rigid-rotor density and magnetic field profiles are compared with experimentally observed profiles. A general prescription is given for determining the functional dependence of the equilibrium distribution function on Hsub(perpendicular)-ωsub(j)Psub(theta) in circumstances, where the density profile or magnetic field profile is specified. (author)

  14. Phase equilibria of didecyldimethylammonium nitrate ionic liquid with water and organic solvents

    International Nuclear Information System (INIS)

    Domanska, Urszula; Lugowska, Katarzyna; Pernak, Juliusz

    2007-01-01

    The phase diagrams for binary mixtures of an ammonium ionic liquid, didecyldimethylammonium nitrate, [DDA][NO 3 ], with: alcohols (propan-1-ol, butan-1-ol, octan-1-ol, and decan-1-ol): hydrocarbons (toluene, propylbenzene, hexane, and hexadecane) and with water were determined in our laboratory. The phase equilibria were measured by a dynamic method from T 220 K to either the melting point of the ionic liquid, or to the boiling point of the solvent. A simple liquidus curve in a eutectic system was observed for [DDA][NO 3 ] with: alcohols (propan-1-ol, butan-1-ol, and octan-1-ol); aromatic hydrocarbons (toluene and propylbenzene) and with water. (Solid + liquid) equilibria with immiscibility in the liquid phase were detected with the aliphatic hydrocarbons heptane and hexadecane and with decan-1-ol. (Liquid + liquid) equilibria for the system [DDA][NO 3 ] with hexadecane was observed for the whole mole fraction range of the ionic liquid. The observation of the upper critical solution temperature in binary mixtures of ([DDA][NO 3 ] + decan-1-ol, heptane, or hexadecane) was limited by the boiling temperature of the solvent. Characterisation and purity of the compounds were determined by elemental analysis, water content (Fisher method) and differential scanning microcalorimetry (d.s.c.) analysis. The d.s.c. method of analysis was used to determine melting temperatures and enthalpies of fusion. The thermal stability of the ionic liquid was resolved by the thermogravimetric technique-differential thermal analysis (TG-DTA) technique over a wide temperature range from (200 to 780) K. The thermal decomposition temperature of 50% of the sample was greater than 500 K. The (solid + liquid) phase equilibria, curves were correlated by means of different G Ex models utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular

  15. Two-dimensional magnetohydrodynamic equilibria with flow and studies of equilibria fluctuations

    International Nuclear Information System (INIS)

    Agim, Y.Z.

    1989-08-01

    A set of reduced ideal MHD equations is derived to investigate equilibria of plasmas with mass flow in general two-dimensional geometry. These equations provide a means of investigating the effects of flow on self-consistent equilibria in a number of new two-dimensional configurations such as helically symmetric configurations with helical axis, which are relevant to stellarators, as well as axisymmetric configurations. It is found that as in the axisymmetric case, general two-dimensional flow equilibria are governed by a second-order quasi-linear partial differential equation for a magnetic flux function, which is coupled to a Bernoulli-type equation for the density. The equation for the magnetic flux function becomes hyperbolic at certain critical flow speeds which follow from its characteristic equation. When the equation is hyperbolic, shock phenomena may exist. As a particular example, unidirectional flow along the lines of symmetry is considered. In this case, the equation mentioned above is always elliptic. An exact solution for the case of helically symmetric unidirectional flow is found and studied to determine flow effects on the magnetic topology. In second part of this thesis, magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10 -10

  16. Construction of Subgame-Perfect Mixed Strategy Equilibria in Repeated Games

    NARCIS (Netherlands)

    Berg, Kimmo; Schoenmakers, Gijsbertus

    2017-01-01

    This paper examines how to construct subgame-perfect mixed-strategy equilibria in discounted repeated games with perfect monitoring.We introduce a relatively simple class of strategy profiles that are easy to compute and may give rise to a large set of equilibrium payoffs. These sets are called

  17. On tokamak equilibria with a zero current or negative current central region

    International Nuclear Information System (INIS)

    Chu, M.S.; Parks, P.B.

    2002-01-01

    Several tokamak experiments have reported the development of a central region with vanishing currents (the current hole). The straightforward application of results from the work of Greene, Johnson and Weimer [Phys. Fluids 14, 671 (1971)] on a tokamak equilibrium to these plasmas leads to the apparent singularities in several physical quantities including the Shafranov shift and casts doubts on the existence of this type of equilibria. In this paper, the above quoted equilibrium theory is re-examined and extended to include equilibria with a current hole. It is shown that singularities can be circumvented and that equilibria with a central current hole do satisfy the magnetohydrodynamic equilibrium condition with regular behavior for all the physical quantities and do not lead to infinitely large Shafranov shifts. Isolated equilibria with negative current in the central region could exist. But equilibria with negative currents in general do not have neighboring equilibria and thus cannot have experimental realization, i.e., no negative currents can be driven in the central region

  18. The Pierce diode with an external circuit. I. Oscillations about nonuniform equilibria

    International Nuclear Information System (INIS)

    Lawson, W.S.

    1989-01-01

    The nonuniform (nonlinear) equilibria of the classical (short circuit) Pierce diode and the extended (series RLC external circuit) Pierce diode are described, and the spectrum of oscillations (stable and unstable) about these equilibria are worked out. It is found that only the external capacitance alters the equilibria, though all elements alter the spectrum. In particular, the introduction of an external capacitor destabilizes some equilibria that are marginally stable without the capacitor. Computer simulations are performed to test the theoretical predictions for the case of an external capacitor only. It is found that most equilibria are correctly predicted by theory, but that the continuous set of equilibria of the classical Pierce diode at Pierce parameters (α=ω/sub pL//v 0 ) that are multiples of 2π are not observed. This appears to be a failure of the simulation method under the rather singular conditions rather than a failure of the theory

  19. Numerical calculation of axisymmetric non-neutral plasma equilibria

    International Nuclear Information System (INIS)

    Spencer, R.L.; Rasband, S.N.; Vanfleet, R.R.

    1993-01-01

    Efficient techniques for computing axisymmetric non-neutral plasma equilibria are described. These equilibria may be obtained either by requiring global thermal equilibrium, by specifying the midplane radial density profile, or by specifying the radial profile of ∫n dz. Both splines and finite-differences are used, and the accuracy of the two is compared by using a new characterization of the thermal equilibrium density profile which gives a simple formula for estimating the radial and axial gradient scale lengths of thermal equilibria. It is found that for global thermal equilibrium 1% accuracy is achieved with splines if the distance between neighboring splines is about two Debye lengths while finite differences require a grid spacing of about one-half Debye length to achieve the same accuracy

  20. Stability model for one-dimensional FRCs

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Hewitt, T.G.; Lewis, H.R.; Seyler, C.E.; Symon, K.R.

    1982-01-01

    The subject of transport near the separatrix in FRC devices is important for determining the performance to be expected from an FRC reactor or from FRC experiments. A computer code was constructed for studying the micro-stability properties of FRCs near the separatrix as a first step in obtaining quasilinear transport coefficients that can be used in a transport code. We consider collisionless ions and electrons, without an expansion in powers of a parameter, like the electron or ion gyroradius, and we approximate the equilibrium with an infinitely long axially and translationally symmetric equilibrium. Thus, in our equilibria, there are only an axial magnetic field and a radial electric field. Our equilibria are collisionless, two-species, diffuse-profile, one-dimensional, theta-pinch equilibria. We allow the possibility that there be a magnetic field null in order to be able to model FRC devices more realistically

  1. Relational Stability in the Expression of Normality, Variation, and Control of Thyroid Function

    Science.gov (United States)

    Hoermann, Rudolf; Midgley, John E. M.; Larisch, Rolf; Dietrich, Johannes W.

    2016-01-01

    Thyroid hormone concentrations only become sufficient to maintain a euthyroid state through appropriate stimulation by pituitary thyroid-stimulating hormone (TSH). In such a dynamic system under constant high pressure, guarding against overstimulation becomes vital. Therefore, several defensive mechanisms protect against accidental overstimulation, such as plasma protein binding, conversion of T4 into the more active T3, active transmembrane transport, counter-regulatory activities of reverse T3 and thyronamines, and negative hypothalamic–pituitary–thyroid feedback control of TSH. TSH has gained a dominant but misguided role in interpreting thyroid function testing in assuming that its exceptional sensitivity thereby translates into superior diagnostic performance. However, TSH-dependent thyroid disease classification is heavily influenced by statistical analytic techniques such as uni- or multivariate-defined normality. This demands a separation of its conjoint roles as a sensitive screening test and accurate diagnostic tool. Homeostatic equilibria (set points) in healthy subjects are less variable and do not follow a pattern of random variation, rather indicating signs of early and progressive homeostatic control across the euthyroid range. In the event of imminent thyroid failure with a reduced FT4 output per unit TSH, conversion efficiency increases in order to maintain FT3 stability. In such situations, T3 stability takes priority over set point maintenance. This suggests a concept of relational stability. These findings have important implications for both TSH reference limits and treatment targets for patients on levothyroxine. The use of archival markers is proposed to facilitate the homeostatic interpretation of all parameters. PMID:27872610

  2. Comparison of the calculations of the stability properties of a specific stellarator equilibrium with different MHD stability codes

    International Nuclear Information System (INIS)

    Nakamura, Y.; Matsumoto, T.; Wakatani, M.; Ichiguchi, K.; Garcia, L.; Carreras, B.A.

    1995-04-01

    A particular configuration of the LHD stellarator with an unusually flat pressure profile has been chosen to be a test case for comparison of the MHD stability property predictions of different three-dimensional and averaged codes for the purpose of code comparison and validation. In particular, two relatively localized instabilities, the fastest growing modes with toroidal mode number n = 2 and n = 3 were studied using several different codes, with the good agreement that has been found providing justification for the use of any of them for equilibria of the type considered

  3. Stability of high β large aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Cowley, S.C.

    1991-10-01

    High β(β much-gt ε/q 2 ) large aspect ratio (ε much-gt 1) tokamak equilibria are shown to be always stable to ideal M.H.D. modes that are localized about a flux surface. Both the ballooning and interchange modes are shown to be stable. This work uses the analytic high β large aspect ratio tokamak equilibria developed by Cowley et.al., which are valid for arbitrary pressure and safety factor profiles. The stability results make no assumption about these profiles or the shape of the boundary. 14 refs., 4 figs

  4. Three-dimensional equilibria and Mercier stability calculations

    International Nuclear Information System (INIS)

    Lynch, V.E.; Dominguez, N.; Carreras, B.A.; Varias, A.; Alejaldre, C.; Fraguas, A.L.

    1989-01-01

    It is well known that an equilibrium to be used for stability calculations must be extremely accurate. These high accuracy requirements, in a fixed boundary calculation, are translated into high accuracy in the representation of the boundary. These requirements are even stricter for stellarator configurations, for which all the information about the magnetic configuration is given externally through the boundary. Many Fourier components are required to accurately represent the boundary input from a realistic coil system. For torsatron-type configurations, as many as 50 components can be needed to describe the last closed magnetic surface for the vacuum field. For a heliac configuration, the number of components can go up to 200. For 3-D calculations, there is another question of accuracy that does not apply to stability calculations for axisymmetric systems. This is the role of resonant components in the calculation of the geodesic curvature or the Pfirsch-Schlueter current. As Boozer argues, local flattening of the pressure profile eliminates the singularities generated by the resonant components. However, to implement it in a numerical calculation and to eliminate the resonant components, it is necessary to work in a coordinate system with straight magnetic field lines. This creates another problem, since the equilibrium representation in a straight magnetic field lines coordinate system requires many more components than the optimal equilibrium representation developed by Hirshman and co-workers over the last decade and implemented in the VMEC equilibrium code. In this paper, we use the VMEC equilibrium code and tranform the results to the straight magnetic field line coordinate system to calculate the input for the stability analysis. The accuracy of the transformation and the convergence of the equilibrium in the new coordinate system are the major points discussed in this paper. 6 refs., 1 fig

  5. Tilt and shift mode stability in a spheromak with a flux core

    Energy Technology Data Exchange (ETDEWEB)

    Finn, J.M.; Jardin, S.C.

    1984-07-01

    The stability of spheromak equilibria with a flux core, or reversal coil, is studied by means of an ideal MHD code. Results depend critically upon whether the flux hole region (the current free area just inside the separatrix) is treated as perfectly conducting plasma or as vacuum. This indicates that the tilt and shift modes persist as resistive instabilities if they are stable in ideal MHD. Specifically, for nonoptimally shaped equilibria, the flux core must nearly touch the current channel if the flux hole is vacuum, whereas the core may be slightly outside the separatrix if the flux hole has conducting plasma. A larger margin exists for optimally shaped equilibria.

  6. Relation of wave energy and momentum with the plasma dispersion relation in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Berk, H.L.; Pfirsch, D.

    1988-01-01

    The expressions for wave energy and angular momentum commonly used in homogeneous and near-homogeneous media is generalized to inhomogeneous media governed by a nonlocal conductivity tensor. The expression for wave energy applies to linear excitations in an arbitrary three-dimensional equilibrium, while the expression for angular momentum applies to linear excitations of azimuthally symmetric equilibria. The wave energy E-script/sub wave/ is interpreted as the energy transferred from linear external sources to the plasma if there is no dissipation. With dissipation, such a simple interpretation is lacking as energy is also thermally absorbed. However, for azimuthally symmetric equilibria, the expression for the wave energy in a frame rotating with a frequency ω can be unambiguously separated from thermal energy. This expression is given by E-script/sub wave/ -ωL/sub wave/ l, where L/sub wave/ is the wave angular momentum defined in the text and l the azimuthal wavenumber and it is closely related to the real part of a dispersion relation for marginal stability. The imaginary part of the dispersion is closely related to the energy input into a system. Another useful quantity discussed is the impedance form, which can be used for three-dimensional equilibrium without an ignorable coordinate and the expression is closely related to the wave impedance used in antenna theory. Applications to stability theory are also discussed

  7. Stability analysis of cylindrical Vlasov equilibria

    International Nuclear Information System (INIS)

    Short, R.W.

    1979-01-01

    A general method of stability analysis is described which may be applied to a large class of such problems, namely those which are described dynamically by the Vlasov equation, and geometrically by cylindrical symmetry. The method is presented for the simple case of the Vlasov-Poisson (electrostatic) equations, and the results are applied to a calculation of the lower-hybrid-drift instability in a plasma with a rigid rotor distribution function. The method is extended to the full Vlasov-Maxwell (electromagnetic) equations. These results are applied to a calculation of the instability of the extraordinary electromagnetic mode in a relativistic E-layer interacting with a background plasma

  8. Stability analysis of cylindrical Vlasov equilibria

    International Nuclear Information System (INIS)

    Short, R.W.

    1979-01-01

    A general method of stability analysis is described which may be applied to a large class of such problems, namely those which are described dynamically by the Vlasov equation, and geometrically by clindrical symmetry. The method is presented for the simple case of the Vlasov-Poisson (electrostatic) equations, and the results are applied to a calculation of the lower-hybrid-drift instability in a plasma with a rigid rotor distribution function. The method is extended to the full Vlasov-Maxwell (electromagnetic) equations. These results are applied to a calculation of the instability of the extraordinary electromagnetic mode in a relativistic E-layer interacting with a background plasma

  9. Stability of DIII-D high-performance, negative central shear discharges

    Science.gov (United States)

    Hanson, J. M.; Berkery, J. W.; Bialek, J.; Clement, M.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Navratil, G. A.; Olofsson, K. E. J.; Strait, E. J.; Turco, F.; Turnbull, A. D.

    2017-05-01

    Tokamak plasma experiments on the DIII-D device (Luxon et al 2005 Fusion Sci. Tech. 48 807) demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor {{q}\\text{min}} exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89  =  2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long as a threshold minimum safety factor value {{q}\\text{min}}>2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to {β\\text{N}} values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to {β\\text{N}}>4 by broadening the current profile. This path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.

  10. Axisymmetric MHD stability of sharp-boundary Tokamaks

    International Nuclear Information System (INIS)

    Rebhan, E.; Salat, A.

    1976-09-01

    For a sharp-boundary, constant pressure plasma model of axisymmetric equilibria the MHD stability problem of axisymmetric perturbations is solved by analytic reduction to a one-dimensional problem on the boundary and subsequent numerical treatment, using the energy principle. The stability boundaries are determined for arbitrary aspect ratio, arbitrary βsub(p) and elliptical, triangular and rectangular plasma cross-sections, wall stabilization not being taken into account. It is found that the axisymmetric stability strongly depends on the plasma shape and is almost independent of the safety factor q. (orig.) [de

  11. Computed phase equilibria for burnable neutron absorbing materials for advanced pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Corcoran, E.C. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada)], E-mail: emily.corcoran@rmc.ca; Lewis, B.J.; Thompson, W.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada); Hood, J. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada); Akbari, F.; He, Z. [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ont., K0J 1J0 (Canada); Reid, P. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada)

    2009-03-31

    Burnable neutron absorbing materials are expected to be an integral part of the new fuel design for the Advanced CANDU [CANDU is as a registered trademark of Atomic Energy of Canada Limited.] Reactor. The neutron absorbing material is composed of gadolinia and dysprosia dissolved in an inert cubic-fluorite yttria-stabilized zirconia matrix. A thermodynamic model based on Gibbs energy minimization has been created to provide estimated phase equilibria as a function of composition and temperature. This work includes some supporting experimental studies involving X-ray diffraction.

  12. Equilibrium and stability studies for high beta plasmas in torsatron/heliotron devices

    International Nuclear Information System (INIS)

    Carreras, B.A.; Cooper, W.A.; Charlton, L.A.

    1983-01-01

    The equilibrium and stability properties of high β plasmas in torsatron/heliotron devices have been investigated. Three numerical approaches have been used to study plasma equilibria for a range of coil configurations. The method of averaging permits fast equilibrium and stability calculations. Two fully 3-D codes, namely the Chodura-Schluter code, and the NEAR code recently developed at ORNL, are used to explore selected regions of parameter space. The resulting equilibria calculated with different methods are in good agreement. This validates the average method approach and enhances its usefulness. Results are presented for configurations with different aspect ratios and number of field periods. The role of the vertical field has also been studied in detail. The main conclusion is that for moderate aspect ratios (Asub(p) <= 8), the self-stabilizing effect of the magnetic axis shift is large enough to open a direct path to the second stability regime. (author)

  13. Computation of Stackelberg Equilibria of Finite Sequential Games

    DEFF Research Database (Denmark)

    Bosanski, Branislav; Branzei, Simina; Hansen, Kristoffer Arnsfelt

    2015-01-01

    The Stackelberg equilibrium is a solution concept that describes optimal strategies to commit to: Player~1 (the leader) first commits to a strategy that is publicly announced, then Player~2 (the follower) plays a best response to the leader's choice. We study Stackelberg equilibria in finite...... sequential (i.e., extensive-form) games and provide new exact algorithms, approximate algorithms, and hardness results for finding equilibria for several classes of such two-player games....

  14. Bifurcated equilibria in two-dimensional MHD with diamagnetic effects

    International Nuclear Information System (INIS)

    Ottaviani, M.; Tebaldi, C.

    1998-12-01

    In this work we analyzed the sequence of bifurcated equilibria in two-dimensional reduced magnetohydrodynamics. Diamagnetic effects are studied under the assumption of a constant equilibrium pressure gradient, not altered by the formation of the magnetic island. The formation of an island when the symmetric equilibrium becomes unstable is studied as a function of the tearing mode stability parameter Δ' and of the diamagnetic frequency, by employing fixed-points numerical techniques and an initial value code. At larger values of Δ' a tangent bifurcation takes place, above which no small island solutions exist. This bifurcation persists up to fairly large values of the diamagnetic frequency (of the order of one tenth of the Alfven frequency). The implications of this phenomenology for the intermittent MHD dynamics observed in tokamaks is discussed. (authors)

  15. The phase equilibria and thermal stability of the long-period stacking ordered phase in the Mg–Cu–Y system

    International Nuclear Information System (INIS)

    Jiang, Min; Su, Xiulan; Li, Hongxiao; Ren, Yuping; Qin, Gaowu

    2014-01-01

    Highlights: • 14H LPSO structure has been confirmed to be stable in the Mg–Cu–Y system. • Partial isothermal sections of the Mg–Cu–Y system from 300 to 450 °C have been established. • Reaction L + α-Mg ↔ 14H + Mg 2 Cu has been determined in the Mg–Cu–Y system. • The thermal stability of the 14H phase in the Mg–Cu–Y system has been well studied. - Abstract: Phase equilibria in the Mg-rich Mg–Cu–Y system at 300, 400 and 450 °C have been experimentally investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), electron probe micro-analyzer (EPMA) and transmission electron microscope (TEM). The results show that a long-period stacking ordered (LPSO) phase 14H is stable in the Mg–Cu–Y system, which is the only one ternary intermetallic compound that gets a thermodynamic equilibrium with the a-Mg phase. The equilibrium 14H phase has a very limited solid solution range, and can be nearly regarded as a ternary stoichiometric compound with a formulae as Mg 91 Cu 4 Y 5 . The thermal stability of the 14H phase in the Mg–Cu–Y system has been well studied, which shows that the 14H phase disappears varying from 442 °C to 490 °C depending on the alloy composition. The isothermal sections of the Mg-rich Mg–Cu–Y system at 300, 400 and 450 °C have been finally established, and moreover, a quasi-peritectic reaction L + α-Mg ↔ 14H + Mg 2 Cu has been determined occurring at 442 °C with an estimated liquid composition of Mg 77 Cu 18 Y 5

  16. Equilibrium and stability studies for high-beta plasmas in torsatron/heliotron devices

    International Nuclear Information System (INIS)

    Carreras, B.A.; Charlton, L.A.; Cooper, W.A.

    1983-01-01

    The equilibrium and stability properties of high-#betta# plasmas in torsatron/heliotron devices have been investigated. Three numerical approaches have been used to study plasma equilibria for a range of coil configurations. The method of averaging permits fast equilibrium and stability calculations. Two fully 3-D codes, namely the Chodura-Schluter code, and the NEAR code recently developed at ORNL, are used to explore selected regions of parameter space. The resulting equilibria calculated with different methods are in good agreement. This validates the average method approach and enhances its usefulness. Results are presented for configurations with different aspect ratios and number of field periods. The role of the vertical field has also been studied in detail. The main conclusion is that for moderate aspect ratios (A/sub p/ less than or equal to 8), the self-stabilizing effect of the magnetic-axis shift is large enough to open a direct path to the second-stability regime

  17. Field line diversion properties of finite β-helias equilibria

    International Nuclear Information System (INIS)

    Hayashi, Takaya; Schwenn, Ulrich; Strumberger, Erika.

    1992-01-01

    The diversion properties of the magnetic field outside the last closed magnetic surface of a Helias stellarator configuration are investigated for finite pressure equilibria. The results indicate that a divertor concept which has been developed from the diversion properties of the corresponding vacuum field can be maintained for finite pressure equilibria. Cross-field particle transport is simulated by a simplified scrape-off layer (SOL) model. (author)

  18. Mathematical Model for Multicomponent Adsorption Equilibria Using Only Pure Component Data

    DEFF Research Database (Denmark)

    Marcussen, Lis

    2000-01-01

    A mathematical model for nonideal adsorption equilibria in multicomponent mixtures is developed. It is applied with good results for pure substances and for prediction of strongly nonideal multicomponent equilibria using only pure component data. The model accounts for adsorbent...

  19. Nash Equilibria in Symmetric Games with Partial Observation

    DEFF Research Database (Denmark)

    Bouyer, Patricia; Markey, Nicolas; Vester, Steen

    2014-01-01

    We investigate a model for representing large multiplayer games, which satisfy strong symmetry properties. This model is made of multiple copies of an arena; each player plays in his own arena, and can partially observe what the other players do. Therefore, this game has partial information...... and symmetry constraints, which make the computation of Nash equilibria difficult. We show several undecidability results, and for bounded-memory strategies, we precisely characterize the complexity of computing pure Nash equilibria (for qualitative objectives) in this game model....

  20. Variational-moment method for computing magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Lao, L.L.

    1983-08-01

    A fast yet accurate method to compute magnetohydrodynamic equilibria is provided by the variational-moment method, which is similar to the classical Rayleigh-Ritz-Galerkin approximation. The equilibrium solution sought is decomposed into a spectral representation. The partial differential equations describing the equilibrium are then recast into their equivalent variational form and systematically reduced to an optimum finite set of coupled ordinary differential equations. An appropriate spectral decomposition can make the series representing the solution coverge rapidly and hence substantially reduces the amount of computational time involved. The moment method was developed first to compute fixed-boundary inverse equilibria in axisymmetric toroidal geometry, and was demonstrated to be both efficient and accurate. The method since has been generalized to calculate free-boundary axisymmetric equilibria, to include toroidal plasma rotation and pressure anisotropy, and to treat three-dimensional toroidal geometry. In all these formulations, the flux surfaces are assumed to be smooth and nested so that the solutions can be decomposed in Fourier series in inverse coordinates. These recent developments and the advantages and limitations of the moment method are reviewed. The use of alternate coordinates for decomposition is discussed

  1. Long-term Nash equilibria in electricity markets

    International Nuclear Information System (INIS)

    Pozo, David; Contreras, Javier; Caballero, Angel; de Andres, Antonio

    2011-01-01

    In competitive electricity markets, companies simultaneously offer their productions to obtain the maximum profits on a daily basis. In the long run, the strategies utilized by the electric companies lead to various long-term equilibria that can be analyzed with the appropriate tools. We present a methodology to find plausible long-term Nash equilibria in pool-based electricity markets. The methodology is based on an iterative market Nash equilibrium model in which the companies can decide upon their offer strategies. An exponential smoothing of the bids submitted by the companies is applied to facilitate the convergence of the iterative procedure. In each iteration of the model the companies face residual demand curves that are accurately modeled by Hermite interpolating polynomials. We introduce the concept of meta-game equilibrium strategies to allow companies to have a range of offer strategies where several pure and mixed meta-game Nash equilibria are possible. With our model it is also possible to model uncertainty or to generate price scenarios for financial models that assess the value of a generating unit by real options analysis. The application of the proposed methodology is illustrated with several realistic case studies. (author)

  2. Institutions, Equilibria and Efficiency

    DEFF Research Database (Denmark)

    Competition and efficiency is at the core of economic theory. This volume collects papers of leading scholars, which extend the conventional general equilibrium model in important ways. Efficiency and price regulation are studied when markets are incomplete and existence of equilibria in such set...... in OLG, learning in OLG and in games, optimal pricing of derivative securities, the impact of heterogeneity...

  3. X-point effect on edge stability

    International Nuclear Information System (INIS)

    Saarelma, S; Kirk, A; Kwon, O J

    2011-01-01

    We study the effects of the X-point configuration on edge localized mode (ELM) triggering peeling and ballooning modes using fixed boundary equilibria and modifying the plasma shape to approach the limit of a true X-point. The current driven pure peeling modes are asymptotically stabilized by the X-point while the stabilizing effect on ballooning modes depends on the poloidal location of the X-point. The coupled peeling-ballooning modes experience the elimination of the peeling component as the X-point is introduced. This can significantly affect the edge stability diagrams used to analyse the ELM triggering mechanisms.

  4. The Zr-Ti-Cr system. Equilibria at 900 and 1100 C degrees

    International Nuclear Information System (INIS)

    Arico, Sergio F.; Gribaudo, Luis M.

    2003-01-01

    Main contributions to the knowledge of the ternary system Zr-Ti-Cr were published in the sixties. Stability domains of phases at temperatures between 500 and 1400 C degrees were there presented. Here, results related to the phase diagram at 900 and 1100 C degrees are informed. Three alloys with 40 at.% Cr and different Zr/Ti ratios and one more, richer in Cr, were elaborated. Specimens of the alloys were heat treated 1000 and 800 h at 900 and 1100 C degrees respectively. Phase characterizations were performed by optic metallography and X-ray diffraction analysis. Compositions were determined by microprobe. Alloys with 40 at.% Cr at both temperatures have biphasic equilibria between the intermetallic Laves phase AB 2 and the body-centered cubic solid solution containing principally zirconium and titanium. The Cr-rich alloy presents equilibrium of the AB 2 compound and the Cr-rich solid solution. Results of the present and previous works are used in order to propose new isothermal sections at 900 and 1100 C degrees. (author)

  5. Tearing-mode stability of a forming Spheromak plasma

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Jardin, S.C.; Chance, M.S.

    1981-10-01

    The results of numerical calculations of Δ' for a class of equilibria typical of those encountered during the early formation stage of the S1 Spheromak are presented. The equilibrium plasma is assumed to be cylindrically symmetric and pressureless. It encloses a current carrying perfect conductor (flux core) and is surrounded by a vacuum with zero longitudinal field. Stability boundaries in the space formed by the equilibrium parameters are mapped. The plasma is tearing mode stable provided B/sub z//B/sub theta/ at the flux core is below a certain critical value which depends on the equilibrium parameters. For typical equilibria, this critical value is 0.65

  6. Systematic identification method for data analysis and phase equilibria modelling for lipids systems

    DEFF Research Database (Denmark)

    Perederic, Olivia A.; Cunico, Larissa P.; Kalakul, Sawitree

    2018-01-01

    Industrial use of lipids has been increasing as a consequence of increased developments related to biobased economies. In addition to applications in food-products, lipids are used by many industrial sectors, for example, biodiesel, edible oil, health, and personal care. Phase equilibria...

  7. A relation between Liapunov stability, non-wanderingness and Poisson stability

    International Nuclear Information System (INIS)

    Ahmad, K.H.

    1985-07-01

    In this work, some of the relations among Liapunov stability, non-wanderingness and Poisson stability are considered. In particular it is shown that for a non-wandering point in a set, positive (resp. negative) Liapunov stability in that set implies positive (resp. negative) Poisson stability in the same set. (author)

  8. The study of complex equilibria of uranium(VI) with selenate

    International Nuclear Information System (INIS)

    Lubal, P.; Havel, J.

    1997-01-01

    Uranyl (M)-selenate (L) complex equilibria in solution were investigated by spectrophotometry in visible range and potentiometry by means of uranyl ion selective electrode. The formation ML and ML 2 species was proved and the corresponding stability constants calculated were: log β 1 = 1.57 6 ± 0.01 6 , log β 2 = 2.42 3 ± 0.01 3 (I 3.0 mol 1 -1 Na(ClO 4 , SeO 4 ) (spectrophotometry) at 298.2 K. Using potentiometry the values for infinite dilution (I → 0 mol 1 -1 ) were: log β 1 = 2.64 ± 0.01, log β 2 ≤ 3.4 at 298.2 K. Absorption spectra of the complexes were calculated and analysed by deconvolution technique. Derivative spectrophotometry for the chemical model determination has also been successfully applied. (author)

  9. On the uniqueness of fully informative rational expectations equilibria

    OpenAIRE

    Peter DeMarzo; Costis Skiadas

    1998-01-01

    This paper analyzes two equivalent equilibrium notions under asymmetric information: risk neutral rational expectations equilibria (rn-REE), and common knowledge equilibria. We show that the set of fully informative rn-REE is a singleton, and we provide necessary and sufficient conditions for the existence of partially informative rn-REE. In a companion paper (DeMarzo and Skiadas (1996)) we show that equilibrium prices for the larger class of quasi-complete economies can be characterized as r...

  10. Stackelberg equilibria and horizontal differentiation

    OpenAIRE

    Lambertini, Luca

    1993-01-01

    This paper proposes a taxonomy of the Stackelberg equilibria emerging from a standard game of horizontal differentiation à la Hotelling in which the strategy set of the sellers in the location stage is the real axis. Repeated leadership appears the most advantageous position. Furthermore, this endogenously yields vertical differentiation between products at equilibrium.

  11. Sensitivity of ITER MHD global stability to edge pressure gradients

    International Nuclear Information System (INIS)

    Hogan, J.T.; Martynov, A.

    1994-01-01

    In view of the preliminary nature of boundary models for reactor tokamaks, the sensitivity to edge gradients of the global mode MHD stability of the ITER EDA configuration has been examined. The POLAR-2D equilibrium and TORUS stability codes developed by the Keldysh Institute have been used. Transport-related profiles from the PRETOR transport code (developed by the ITER Joint Central Team) and axisymmetric equilibria for these profiles from the TEQ code (L.D. Pearlstein, LLNL) were taken as a starting point for the study. These baseline profiles are found to have quite high global stability limits, in the range g(Troyon) = 4-5. The major focus of this study is to examine global mode stability assuming small variations about the baseline profiles, changing the pressure gradients near the boundary. Such changes can be expected with an improved boundary model. Reduced stability limits are found in such cases, and unstable cases with g = 2-3 are found. Thus, the assumption of ITER stability limits higher than g = 2 must be treated with caution

  12. Thermodynamic Equilibria and Extrema Analysis of Attainability Regions and Partial Equilibria

    CERN Document Server

    Gorban, Alexander N; Kaganovich, Boris M; Keiko, Alexandre V; Shamansky, Vitaly A; Shirkalin, Igor A

    2006-01-01

    This book discusses mathematical models that are based on the concepts of classical equilibrium thermodynamics. They are intended for the analysis of possible results of diverse natural and production processes. Unlike the traditional models, these allow one to view the achievable set of partial equilibria with regards to constraints on kinetics, energy and mass exchange and to determine states of the studied systems of interest for the researcher. Application of the suggested models in chemical technology, energy and ecology is illustrated in the examples.

  13. Identification of, and transition to, the second region of ideal MHD stability in tokamaks

    International Nuclear Information System (INIS)

    Sabbagh, S.A.

    1990-01-01

    The second region of ideal MHD stability in tokamaks is studied by considering the behavior of the second region boundary for self- consistently calculated, marginally stable, second region equilibria and the characteristics of numerically computed transport sequences that achieve second stability. Equilibria with pressure profiles, p(ψ), that are marginally stable to the second region on each flux surface are generated numerically. This constraint eliminates p(ψ) as an independent variable, and reduces the predictor variables to the tokamak parameters and the q profile. The primary response functions considered are the plasma figures of merit, β and var-epsilon β p , and the normalized pressure gradient, α. Variations of the radial wavenumber in the ballooning equation negligibly affect the second region boundary for these equilibria. The second region boundary is sensitive to variations in the q profile at small aspect ratio, A, and will stabilize or destabilize depending on the balance of higher order var-epsilon = A -1 modifications of the normal field line curvature, κ n . These effects are a competition between the stabilizing geometric magnetic well of the toroidal field component of κ n and the destabilizing poloidal field component of κ n . The latter term becomes competitive in high var-epsilon β p plasmas with large Shafranov shifts. Simple analytic models are presented that reproduce the scaling of the marginally stable second region values of α and var-epsilon β p , and stability diagrams illustrating the behavior of the high-n unstable region for various parameters are shown

  14. Determination of 3D Equilibria from Flux Surface Knowledge Only

    International Nuclear Information System (INIS)

    Mynick, H.E.; Pomphrey, N.

    2001-01-01

    We show that the method of Christiansen and Taylor, from which complete tokamak equilibria can be determined given only knowledge of the shape of the flux surfaces, can be extended to 3-dimensional equilibria, such as those of stellarators. As for the tokamak case, the given geometric knowledge has a high degree of redundancy, so that the full equilibrium can be obtained using only a small portion of that information

  15. Nash Equilibria in Symmetric Graph Games with Partial Observation

    DEFF Research Database (Denmark)

    Bouyer, Patricia; Markey, Nicolas; Vester, Steen

    2017-01-01

    We investigate a model for representing large multiplayer games, which satisfy strong symmetry properties. This model is made of multiple copies of an arena; each player plays in his own arena, and can partially observe what the other players do. Therefore, this game has partial information...... and symmetry constraints, which make the computation of Nash equilibria difficult. We show several undecidability results, and for bounded-memory strategies, we precisely characterize the complexity of computing pure Nash equilibria for qualitative objectives in this game model....

  16. The feasibility of parameterizing four-state equilibria using relaxation dispersion measurements

    International Nuclear Information System (INIS)

    Li Pilong; Martins, Ilídio R. S.; Rosen, Michael K.

    2011-01-01

    Coupled equilibria play important roles in controlling information flow in biochemical systems, including allosteric molecules and multidomain proteins. In the simplest case, two equilibria are coupled to produce four interconverting states. In this study, we assessed the feasibility of determining the degree of coupling between two equilibria in a four-state system via relaxation dispersion measurements. A major bottleneck in this effort is the lack of efficient approaches to data analysis. To this end, we designed a strategy to efficiently evaluate the smoothness of the target function surface (TFS). Using this approach, we found that the TFS is very rough when fitting benchmark CPMG data to all adjustable variables of the four-state equilibria. After constraining a portion of the adjustable variables, which can often be achieved through independent biochemical manipulation of the system, the smoothness of TFS improves dramatically, although it is still insufficient to pinpoint the solution. The four-state equilibria can be finally solved with further incorporation of independent chemical shift information that is readily available. We also used Monte Carlo simulations to evaluate how well each adjustable parameter can be determined in a large kinetic and thermodynamic parameter space and how much improvement can be achieved in defining the parameters through additional measurements. The results show that in favorable conditions the combination of relaxation dispersion and biochemical manipulation allow the four-state equilibrium to be parameterized, and thus coupling strength between two processes to be determined.

  17. Active feedback stabilization of axisymmetric modes in highly elongated tokamak plasmas

    International Nuclear Information System (INIS)

    Ward, D.J.; Hofmann, F.

    1993-07-01

    Active feedback stabilization of the vertical instability is studied for highly elongated tokamak plasmas (1≤κ≤3), and evaluated in particular for the TCV configuration. It is shown that the feedback can strongly affect the form of the eigenfunction for these highly elongated equilibria, and this can have detrimental effects on the ability of the feedback system to properly detect and stabilize the plasma. A calculation of the vertical displacement that uses poloidal flux measurements, poloidal magnetic field measurements, and corrections for the vessel eddy currents and active feedback currents was found to be effective even in the cases with the worst deformations of the eigenfunction. We also examine how these deformations affect differently shaped equilibria, and it is seen that the magnitude of the deformation of the eigenfunction is strongly function of the plasma elongation. (author) 15 figs., 13 refs

  18. Intermediates and Generic Convergence to Equilibria

    DEFF Research Database (Denmark)

    Marcondes de Freitas, Michael; Wiuf, Carsten; Feliu, Elisenda

    2017-01-01

    Known graphical conditions for the generic and global convergence to equilibria of the dynamical system arising from a reaction network are shown to be invariant under the so-called successive removal of intermediates, a systematic procedure to simplify the network, making the graphical conditions...

  19. Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels.

    Science.gov (United States)

    Seo, Yongwon; Lee, Seungmin; Cha, Inuk; Lee, Ju Dong; Lee, Huen

    2009-04-23

    In the present study, we examined the active role of porous silica gels when used as natural gas storage and transportation media. We adopted the dispersed water in silica gel pores to substantially enhance active surface for contacting and encaging gas molecules. We measured the three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria of C(2)H(6) and C(3)H(8) hydrates in 6.0, 15.0, 30.0, and 100.0 nm silica gel pores to investigate the effect of geometrical constraints on gas hydrate phase equilibria. At specified temperatures, the hydrate stability region is shifted to a higher pressure region depending on pore size when compared with those of bulk hydrates. Through application of the Gibbs-Thomson relationship to the experimental data, we determined the values for the C(2)H(6) hydrate-water and C(3)H(8) hydrate-water interfacial tensions to be 39 +/- 2 and 45 +/- 1 mJ/m(2), respectively. By using these values, the calculation values were in good agreement with the experimental ones. The overall results given in this study could also be quite useful in various fields, such as exploitation of natural gas hydrate in marine sediments and sequestration of carbon dioxide into the deep ocean.

  20. Equilibrium and Stability Properties of Low Aspect Ratio Mirror Systems: from Neutron Source Design to the Parker Spiral

    Science.gov (United States)

    Peterson, Ethan; Anderson, Jay; Clark, Mike; Egedal, Jan; Endrizzi, Douglass; Flanagan, Ken; Harvey, Robert; Lynn, Jacob; Milhone, Jason; Wallace, John; Waleffe, Roger; Mirnov, Vladimir; Forest, Cary

    2017-10-01

    Equilibrium reconstructions of rotating magnetospheres in the lab are computed using a user-friendly extended Grad-Shafranov solver written in Python and various magnetic and kinetic measurements. The stability of these equilibria are investigated using the NIMROD code with two goals: understand the onset of the classic ``wobble'' in the heliospheric current sheet and demonstrating proof-of-principle for a laboratory source of high- β turbulence. Using the same extended Grad-Shafranov solver, equilibria for an axisymmetric, non-paraxial magnetic mirror are used as a design foundation for a high-field magnetic mirror neutron source. These equilibria are numerically shown to be stable to the m=1 flute instability, with higher modes likely stabilized by FLR effects; this provides stability to gross MHD modes in an axisymmetric configuration. Numerical results of RF heating and neutral beam injection (NBI) from the GENRAY/CQL3D code suite show neutron fluxes promising for medical radioisotope production as well as materials testing. Synergistic effects between NBI and high-harmonic fast wave heating show large increases in neutron yield for a modest increase in RF power. work funded by DOE, NSF, NASA.

  1. (Liquid + liquid) equilibria of perfluorocarbons with fluorinated ionic liquids

    International Nuclear Information System (INIS)

    Martinho, S.; Araújo, J.M.M.; Rebelo, L.P.N.; Pereiro, A.B.; Marrucho, I.M.

    2013-01-01

    Highlights: • (Liquid + liquid) equilibria perfluorocarbons and fluorinated ionic liquids. • Non-Random Two Liquid model was successfully applied. • Thermodynamic functions that describe the solvation process were calculated. -- Abstract: In order to evaluate the feasibility of partially replace perfluorocarbons (PFCs) with fluorinated ionic liquids (FILs) in PFCs-in-water emulsions, usually used for biomedical purposes, herein the (liquid + liquid) phase equilibria of FILs containing fluorinated chains longer than four carbons with PFCs were carried out in a wide range of temperatures. With this goal in mind, two PFCs (perfluorooctane and perfluorodecalin) were selected and the (liquid + liquid) equilibria of the binary mixtures of these PFCs and FILs were studied at atmospheric pressure in a temperature range from T (293.15 to 343.15) K. For these studies, FILs containing ammonium, pyridinium and imidazolium cations and different anions with fluorocarbon alkyl chains between 4 and 8 were included. Additionally, Non-Random Two Liquid (NRTL) thermodynamic model was successfully applied to correlate the behaviour of the PFCs + FILs binary mixtures. Moreover, thermodynamic functions that describe the solvation process were calculated from the experimental data

  2. Toroidal Extrap Equilibria

    International Nuclear Information System (INIS)

    Scheffel, J.

    1982-04-01

    Ideal MHD-equilibria for the toroidal EXTRAP configuration have been computed with an equilibrium code. The free-boundary prob- lem is solved by using the condition that the current density is proportional to r on a flux surface. It is found that the toroidal Z-pinch, initially induced in the central zero-field region of a transverse octupole field, drifts radially outwards producing an inverse -D shaped cross-section. The plasma current of this high- beta equilibrium may be increased if the plasma is pushed back by altering the external confining magnetic field as demonstrated. (Author)

  3. Experimental investigation of phase equilibria in the Cu–Ni–Si ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingjun; Xiang, Shulin; Yang, Shuiyuan; Shi, Rongpei; Wang, Cuiping, E-mail: wangcp@xmu.edu.cn

    2013-11-25

    Highlights: •Three isothermal sections of the Cu–Ni–Si system have been investigated. •The ternary compound τ{sub 1} and the liquid phase are confirmed at 1073 K. •The γ (Cu{sub 5}Si) and θ (Ni{sub 2}Si) phases can be stabilized at higher or lower temperatures. -- Abstract: The phase equilibria in the Cu–Ni–Si ternary system have been investigated experimentally by means of electron probe microanalysis (EPMA), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis on equilibrated ternary alloys. Three isothermal sections at 1073, 1173 and 1273 K are determined in the whole composition range. The existence of liquid phase and the ternary compound τ{sub 1} is confirmed at 1073 K. The binary γ (Cu{sub 5}Si), γ (Ni{sub 31}Si{sub 12}), δ (Ni{sub 2}Si) and θ (Ni{sub 2}Si) phases exhibit a considerable solubility of a third element. In addition, the γ (Cu{sub 5}Si) and θ (Ni{sub 2}Si) phases can be stabilized by the addition of Ni and Cu, respectively.

  4. Multiple equilibria in a simple elastocapillary system

    KAUST Repository

    Taroni, Michele; Vella, Dominic

    2012-01-01

    properties two stable equilibria may exist, and show via numerical solutions of the dynamic model that it is the initial state of the system that determines which stable equilibrium is ultimately reached. © 2012 Cambridge University Press.

  5. The empirical content of models with multiple equilibria in economies with social interactions

    OpenAIRE

    Alberto Bisin; Andrea Moro; Giorgio Topa

    2011-01-01

    We study a general class of models with social interactions that might display multiple equilibria. We propose an estimation procedure for these models and evaluate its efficiency and computational feasibility relative to different approaches taken to the curse of dimensionality implied by the multiplicity. Using data on smoking among teenagers, we implement the proposed estimation procedure to understand how group interactions affect health-related choices. We find that interaction effects a...

  6. How hard is it to find extreme Nash equilibria in network congestion games?

    NARCIS (Netherlands)

    Gassner, E.; Hatzl, J.; Krumke, S.O.; Sperber, H.; Woeginger, G.J.; Papadimitriou, C.; Zhang, S.

    2008-01-01

    We study the complexity of finding extreme pure Nash equilibria in symmetric (unweighted) network congestion games. In our context best and worst equilibria are those with minimum respectively maximum makespan. On series-parallel graphs a worst Nash equilibrium can be found by a Greedy approach

  7. Hydrostatic Equilibria of Rotating Stars with Realistic Equation of State

    Science.gov (United States)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Okawa, Hirotada; Yamada, Shoichi

    Stars rotate generally, but it is a non-trivial issue to obtain hydrostatic equilibria for rapidly rotating stars theoretically, especially for baroclinic cases, in which the pressure depends not only on the density, but also on the temperature and compositions. It is clear that the stellar structures with realistic equation of state are the baroclinic cases, but there are not so many studies for such equilibria. In this study, we propose two methods to obtain hydrostatic equilibria considering rotation and baroclinicity, namely the weak-solution method and the strong-solution method. The former method is based on the variational principle, which is also applied to the calculation of the inhomogeneous phases, known as the pasta structures, in crust of neutron stars. We found this method might break the balance equation locally, then introduce the strong-solution method. Note that our method is formulated in the mass coordinate, and it is hence appropriated for the stellar evolution calculations.

  8. Theory of hot particle stability

    International Nuclear Information System (INIS)

    Berk, H.L.; Wong, H.V.; Tsang, K.T.

    1986-10-01

    The investigation of stabilization of hot particle drift reversed systems to low frequency modes has been extended to arbitrary hot beta, β/sub H/ for systems that have unfavorable field line curvature. We consider steep profile equilibria where the thickness of the pressure drop, Δ, is less than plasma radius, r/sub p/. The analysis describes layer modes which have mΔ/r/sub p/ 2/3. When robust stability conditions are fulfilled, the hot particles will have their axial bounce frequency less than their grad-B drift frequency. This allows for a low bounce frequency expansion to describe the axial dependence of the magnetic compressional response

  9. The CHEASE code for toroidal MHD equilibria

    International Nuclear Information System (INIS)

    Luetjens, H.

    1996-03-01

    CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function Ψ. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs

  10. The CHEASE code for toroidal MHD equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)

    1996-03-01

    CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.

  11. DETERMINATION OF MIXED STABILITY CONSTANTS OF LEAD(II ...

    African Journals Online (AJOL)

    A method involving the use of paper ionophoresis is described for the study of equilibria in mixed – ligand complex systems in solution. The technique is based on the movement of a spot of metal ion under an electric field with the complexants added to the background electrolyte at pH 8.5. The stability constants of the ...

  12. Stability of the field-reversed mirror

    International Nuclear Information System (INIS)

    Morse, E.C.

    1979-01-01

    The stability of a field reversed mirror plasma configuration is studied with an energy principle derived from the Vlasov equation. Because of finite orbit effects, the stability properties of a field-reversed mirror are different from the stability properties of similar magnetohydrodynamic equilibria. The Vlasov energy principle developed here is applied to a computer simulation of an axisymmetric field-reversed mirror state. It has been possible to prove that the l = 0 modes, called tearing modes, satisfy a sufficient condition for stability. Precessional modes, with l = 1, 2, are found to be unstable at low growth rate. This suggests possible turbulent behavior (Bohm confinement) in the experimental devices aiming at field reversal. Techniques for suppressing these instabilities are outlined, and the applicability of the Vlasov energy principle to more complicated equilibrium models is shown

  13. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2010-08-01

    Full Text Available Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008. This model allows the reliable computation of the liquid-liquid coexistence curve (binodal, corresponding tie-lines, the limit of stability/metastability (spinodal, and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six

  14. Global robust stability of delayed recurrent neural networks

    International Nuclear Information System (INIS)

    Cao Jinde; Huang Deshuang; Qu Yuzhong

    2005-01-01

    This paper is concerned with the global robust stability of a class of delayed interval recurrent neural networks which contain time-invariant uncertain parameters whose values are unknown but bounded in given compact sets. A new sufficient condition is presented for the existence, uniqueness, and global robust stability of equilibria for interval neural networks with time delays by constructing Lyapunov functional and using matrix-norm inequality. An error is corrected in an earlier publication, and an example is given to show the effectiveness of the obtained results

  15. Phase equilibria of carbohydrates in polar solvents

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Rasmussen, Peter

    1999-01-01

    A method for calculating interaction energies and interaction parameters with molecular mechanics methods is extended to predict solid-liquid equilibria (SLE) for saccharides in aqueous solution, giving results in excellent agreement with experimental values. Previously, the method has been shown...

  16. Proceeding of 1998-workshop on MHD computations. Study on numerical methods related to plasma confinement

    International Nuclear Information System (INIS)

    Kako, T.; Watanabe, T.

    1999-04-01

    This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)

  17. Proceeding of 1998-workshop on MHD computations. Study on numerical methods related to plasma confinement

    Energy Technology Data Exchange (ETDEWEB)

    Kako, T.; Watanabe, T. [eds.

    1999-04-01

    This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)

  18. Some axisymmetric equilibria for certain ideal and resistive magnetohydrodynamics with incompressible flows

    Directory of Open Access Journals (Sweden)

    S.M. Moawad

    Full Text Available In this paper, the equilibrium properties of some ideal and resistive magnetohydrodynamics (MHD are investigated. The governing equations are taken in the steady state for parallel and non-parallel flow to magnetic filed. The governing equations are reduced to Bernoulli-Grad-Shafranov system. The problem of finding exact equilibria to the governing equations in the presence of incompressible mass flows is studied. Several nonlinear equilibria of the governing equations are obtained with aid of constructed constraints. The obtained results cover several previously configurations and include new considerations about the nonlinearity of magnetic flux stream variables. The possibility of applying the obtained results to magnetic confinement devices are discussed. Keywords: Magnetohydrodynamics, Axisymmetric plasma, Resistivity, Incompressible flows, Exact equilibria, Magnetic confinement devices

  19. Resurrecting Equilibria Through Cycles

    DEFF Research Database (Denmark)

    Barnett, Richard C.; Bhattacharya, Joydeep; Bunzel, Helle

    equilibria because they asymptotically violate some economic restriction of the model. The literature has always ruled out such paths. This paper studies a pure-exchange monetary overlapping generations economy in which real balances cycle forever between momentary equilibrium points. The novelty is to show...... that segments of the offer curve that have been previously ignored, can in fact be used to produce asymptotically valid cyclical paths. Indeed, a cycle can bestow dynamic validity on momentary equilibrium points that had erstwhile been classified as dynamically invalid....

  20. Experimental vapor-liquid equilibria data for binary mixtures of xylene isomers

    Directory of Open Access Journals (Sweden)

    W.L. Rodrigues

    2005-09-01

    Full Text Available Separation of aromatic C8 compounds by distillation is a difficult task due to the low relative volatilities of the compounds and to the high degree of purity required of the final commercial products. For rigorous simulation and optimization of this separation, the use of a model capable of describing vapor-liquid equilibria accurately is necessary. Nevertheless, experimental data are not available for all binaries at atmospheric pressure. Vapor-liquid equilibria data for binary mixtures were isobarically obtained with a modified Fischer cell at 100.65 kPa. The vapor and liquid phase compositions were analyzed with a gas chromatograph. The methodology was initially tested for cyclo-hexane+n-heptane data; results obtained are similar to other data in the literature. Data for xylene binary mixtures were then obtained, and after testing, were considered to be thermodynamically consistent. Experimental data were regressed with Aspen Plus® 10.1 and binary interaction parameters were reported for the most frequently used activity coefficient models and for the classic mixing rules of two cubic equations of state.

  1. Sloshing-ion equilibria in the TARA endplugs

    International Nuclear Information System (INIS)

    Hokin, S.; Kesner, J.

    1983-11-01

    We have employed a modified version of the LLNL Bounce-average Fokker-Planck code to model neutral beam-produced sloshing-ion equilibria in the TARA endplugs. The questions we have addressed concern the effect of deuterium beam operation as opposed to hydrogen operation, and the advantage of using full-energy beams rather than the usual three-component beams. We find that, for the expected base case TARA operating parameters, a 40% savings in required beam power is attained by using deuterium beams rather than hydrogen beams, and that the use of full-energy beams results in an additional 26% power savings for these parameters. For higher plasma temperatures the use of full-energy beams becomes significantly advantagous. We have also investigated the equilibria of two possible alternate mirror configurations for the TARA endplugs, believed to be more stable to trapped particle modes, and report those results here

  2. (Liquid plus liquid) equilibria of binary polymer solutions using a free-volume UNIQUAC-NRF model

    DEFF Research Database (Denmark)

    Radfarnia, H.R.; Ghotbi, C.; Taghikhani, V.

    2006-01-01

    + liquid) equilibria (LLE) for a number of binary polymer solutions at various temperatures. The values for the binary characteristic energy parameters for the proposed model and the FV-UNIQUAC model along with their average relative deviations from the experimental data were reported. It should be stated...

  3. Structural Stability of Tokamak Equilibrium: Transport Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Solano, E. R.

    2001-07-01

    A generalised theory of structural stability of differential equations is introduced and applied to the Grad-Shafranov equation. It is discussed how the formation and loss of transport barrier could be associated with the appearance/disappearance of equilibria. The equilibrium conjecture is presented: transport barriers are associated with locally diamagnetic regions in the plasma, and affected by the paramagnetism of the bootstrap current. (Author) 18 refs.

  4. Marginal Stability Diagrams for Infinite-n Ballooning Modes in Quasi-symmetric Stellarators

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.; Torasso, R.; Ware, A.

    2003-01-01

    By perturbing the pressure and rotational-transform profiles at a selected surface in a given equilibrium, and by inducing a coordinate variation such that the perturbed state is in equilibrium, a family of magnetohydrodynamic equilibria local to the surface and parameterized by the pressure gradient and shear is constructed for arbitrary stellarator geometry. The geometry of the surface is not changed. The perturbed equilibria are analyzed for infinite-n ballooning stability and marginal stability diagrams are constructed that are analogous to the (s; alpha) diagrams constructed for axi-symmetric configurations. The method describes how pressure and rotational-transform gradients influence the local shear, which in turn influences the ballooning stability. Stability diagrams for the quasi-axially-symmetric NCSX (National Compact Stellarator Experiment), a quasi-poloidally-symmetric configuration and the quasi-helically-symmetric HSX (Helically Symmetric Experiment) are presented. Regions of second-stability are observed in both NCSX and the quasi-poloidal configuration, whereas no second stable region is observed for the quasi-helically symmetric device. To explain the different regions of stability, the curvature and local shear of the quasi-poloidal configuration are analyzed. The results are seemingly consistent with the simple explanation: ballooning instability results when the local shear is small in regions of bad curvature. Examples will be given that show that the structure, and stability, of the ballooning mode is determined by the structure of the potential function arising in the Schroedinger form of the ballooning equation

  5. Re-analysis of exponential rigid-rotor astron equilibria

    International Nuclear Information System (INIS)

    Lovelace, R.V.; Larrabee, D.A.; Fleischmann, H.H.

    1978-01-01

    Previous studies of exponential rigid-rotor astron equilibria include particles which are not trapped in the self-field of the configuration. The modification of these studies required to exclude untrapped particles is derived

  6. Relational Stability of Thyroid Hormones in Euthyroid Subjects and Patients with Autoimmune Thyroid Disease

    Science.gov (United States)

    Hoermann, Rudolf; Midgley, John E.M.; Larisch, Rolf; Dietrich, Johannes W.

    2016-01-01

    Background/Aim Operating far from its equilibrium resting point, the thyroid gland requires stimulation via feedback-controlled pituitary thyrotropin (TSH) secretion to maintain adequate hormone supply. We explored and defined variations in the expression of control mechanisms and physiological responses across the euthyroid reference range. Methods We analyzed the relational equilibria between thyroid parameters defining thyroid production and thyroid conversion in a group of 271 thyroid-healthy subjects and 86 untreated patients with thyroid autoimmune disease. Results In the euthyroid controls, the FT3-FT4 (free triiodothyronine-free thyroxine) ratio was strongly associated with the FT4-TSH ratio (tau = −0.22, p < 0.001, even after correcting for spurious correlation), linking T4 to T3 conversion with TSH-standardized T4 production. Using a homeostatic model, we estimated both global deiodinase activity and maximum thyroid capacity. Both parameters were nonlinearly and inversely associated, trending in opposite directions across the euthyroid reference range. Within the panel of controls, the subgroup with a relatively lower thyroid capacity (<2.5 pmol/s) displayed lower FT4 levels, but maintained FT3 at the same concentrations as patients with higher functional and anatomical capacity. The relationships were preserved when extended to the subclinical range in the diseased sample. Conclusion The euthyroid panel does not follow a homogeneous pattern to produce random variation among thyroid hormones and TSH, but forms a heterogeneous group that progressively displays distinctly different levels of homeostatic control across the euthyroid range. This suggests a concept of relational stability with implications for definition of euthyroidism and disease classification. PMID:27843807

  7. Equilibrator: Modeling Chemical Equilibria with Excel

    Science.gov (United States)

    Vander Griend, Douglas A.

    2011-01-01

    Equilibrator is a Microsoft Excel program for learning about chemical equilibria through modeling, similar in function to EQS4WIN, which is no longer supported and does not work well with newer Windows operating systems. Similar to EQS4WIN, Equilibrator allows the user to define a system with temperature, initial moles, and then either total…

  8. Nash equilibria via duality and homological selection

    Indian Academy of Sciences (India)

    1Quantitative Methods and Information Systems Area, Indian Institute ... The original proof of existence of Nash equilibria [13] uses fairly ...... The fiber over a regular point a of the disk Di consists of three inverse images (labeled. A1,A2,A3 in ...

  9. Recent developments in Bayesian inference of tokamak plasma equilibria and high-dimensional stochastic quadratures

    International Nuclear Information System (INIS)

    Von Nessi, G T; Hole, M J

    2014-01-01

    We present recent results and technical breakthroughs for the Bayesian inference of tokamak equilibria using force-balance as a prior constraint. Issues surrounding model parameter representation and posterior analysis are discussed and addressed. These points motivate the recent advancements embodied in the Bayesian Equilibrium Analysis and Simulation Tool (BEAST) software being presently utilized to study equilibria on the Mega-Ampere Spherical Tokamak (MAST) experiment in the UK (von Nessi et al 2012 J. Phys. A 46 185501). State-of-the-art results of using BEAST to study MAST equilibria are reviewed, with recent code advancements being systematically presented though out the manuscript. (paper)

  10. Extended Group Contribution Model for Polyfunctional Phase Equilibria

    DEFF Research Database (Denmark)

    Abildskov, Jens

    of physical separation processes. In a thermodynamic sense, design requires detailed knowledge of activity coefficients in the phases at equilibrium. The prediction of these quantities from a minimum of experimental data is the broad scope of this thesis. Adequate equations exist for predicting vapor......Material and energy balances and equilibrium data form the basis of most design calculations. While material and energy balances may be stated without much difficulty, the design engineer is left with a choice between a wide variety of models for describing phase equilibria in the design......-liquid equilibria from data on binary mixtures, composed of structurally simple molecules with a single functional group. More complex is the situation with mixtures composed of structurally more complicated molecules or molecules with more than one functional group. The UNIFAC method is extended to handle...

  11. Ballooning stability of JET discharges

    International Nuclear Information System (INIS)

    Huysmans, G.T.A.; Goedbloed, J.P.; Galvao, R.M.O.; Lazzaro, E.; Smeulders, P.

    1989-01-01

    Conditions under which ballooning modes are expected to be excited have recently been obtained in two different types of discharges in JET. In the first type, extremely large pressure gradients have been produced in the plasma core through pellet injections in the current rise phase followed by strong additional heating. In the second type, the total pressure of the discharge is approaching the Troyon limit. The stability of these discharges with respect to the ideal MHD ballooning modes has been studied with the stability code HBT. The equilibria are reconstructed with the IDENTC code using the external magnetic measurements and the experimental pressure profile. The results show that the evaluated high beta discharge is unstable in the central region of the plasma. This instability is related to the low shear and not to a large pressure gradient, as expected at the Troyon limit. In the pellet discharges the regions with the large pressure gradients are unstable to ballooning modes at the time of the beta decay, which ends the period of enhanced performance. The maximum pressure gradient in these discharges is limited by the boundary of the first region of stability. The observed phenomena at the beta decay are similar to those observed at the beta limit in DIII-D and TFTR. (author)

  12. Dynamic data evaluation for solid-liquid equilibria

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Kang, Jeong Won

    The accuracy and reliability of the measured data sets to be used in regression of model parameters is an important issue related to modeling of phase equilibria. It is clear that good parameters for any model cannot be obtained from low quality data. A thermodynamic consistency test for solid...... and parameter regression. The paper will highlight the data collection, the data analysis for SLE data and the thermodynamic model performance (such as NRTL, UNIQUAC and original UNIFAC)....... studies considering the methodology proposed for SLE thermodynamic consistency tests and data from open literature and databases such as NIST-TDE®, DIPPR® and DECHEMA® are presented. The SLE consistency test and data evaluation is performed in a software containing option for data analysis, model analysis...

  13. A Continuous Family of Equilibria in Ferromagnetic Media are Ground States

    Science.gov (United States)

    Su, Xifeng; de la Llave, Rafael

    2017-09-01

    We show that a foliation of equilibria (a continuous family of equilibria whose graph covers all the configuration space) in ferromagnetic transitive models are ground states. The result we prove is very general, and it applies to models with long range and many-body interactions. As an application, we consider several models of networks of interacting particles including models of Frenkel-Kontorova type on Z^d and one-dimensional quasi-periodic media. The result above is an analogue of several results in the calculus of variations (fields of extremals) and in PDE's. Since the models we consider are discrete and long range, new proofs need to be given. We also note that the main hypothesis of our result (the existence of foliations of equilibria) is the conclusion (using KAM theory) of several recent papers. Hence, we obtain that the KAM solutions recently established are minimizers when the interaction is ferromagnetic and transitive (these concepts are defined later).

  14. A study of electron-positron pair equilibria in models of compact X- and gamma-ray sources

    International Nuclear Information System (INIS)

    Bjoernsson, G.

    1990-01-01

    Thermal electron-positron pair equilibria in two temperature models of compact x ray and gamma ray sources are studied. The pairs are assumed to be heated by Coulomb interaction with the much hotter protons and cooled by bremsstrahlung emission, Compton scattering, and annihilation. Two parameters, the proton optical depth and the compactness, characterize each equilibrium state. It is shown that a careful account of the energy balance is very important when the stability properties of the pair equilibria in a spherical plasma cloud are determined. The equilibria are found to be unstable in a very limited range of compactness and proton optical depth. This particular instability is unlikely to be the cause of the observed variability of the compact sources and implies that it is possible to build up high pair densities by a thermal mechanism in two temperature environments. The most important result considers the effects of pairs on the structure of geometrically and effectively optically thin accretion disks. A new approach for solving for the equilibrium structure of the disks is presented. In effect, the pair equilibrium states are projected into the space spanned by the disk structure parameters. This allows a direct visualization of all possible disk solutions at once. Each solution profile needs to be calculated only once and a complete disk solution is obtained by a simple radial coordinate transformation. The disk solutions are thus seen to be scale free in terms of the radial coordinate as well as in terms of the mass of the central object and the accretion rate. Two particular disk solutions are given. It is shown that including electron-positron pairs in the disk structure calculations leads to a breakdown of the thin disk assumptions and that more detailed disk modeling is required before electron-positron pairs can be self-consistently included

  15. stability results of a mathematical model for the control of hiv/aids ...

    African Journals Online (AJOL)

    DJFLEX

    Subthreshold Domain of Bistable Equilibria for a Model of. HIV Epidemiology. International Journal of Mathematics and Mathematical Sciences, 58, 3679-3698. David R. M., 1997. Introduction to Theory of Stability. Springer-Verlag, New York, Inc. USA. Family Health International, 2007. How the Female Condom Affects Male ...

  16. Axisymmetric stability of vertically asymmetric tokamaks at large beta poloidal

    International Nuclear Information System (INIS)

    Yamazaki, K.; Fishman, H.; Okabayashi, M.; Todd, A.M.M.

    1981-09-01

    The stability of high-β vertically asymmetric tokamak equilibria to rigid displacements is investigated analytically. It is found that vertical stability at large beta poloidal is mainly determined by a coupling between the shape of the plasma surface and the Shafranov shift of the magnetic axis. To the lowest order, symmetric components of the plasma surface shape are found to be the critical destabilizing elements. Asymmetric components have little effect. The inclusion of higher order terms in the high β tokamak expansion leads to further destabilization. Qualitative agreement between these analytic results and numerical stability calculations using the PEST code is demonstrated

  17. Looking for multiple equilibria when geography matters : German city growth and the WWII shock

    NARCIS (Netherlands)

    Bosker, Maarten; Brakman, Steven; Garretsen, Harry; Schramm, Marc

    Based on the methodology of Davis and Weinstein, we look for multiple equilibria in German city growth. Bytaking the bombing of Germany during WWII as an example of a large, temporary shock, we analyze whether German city growth is characterized by multiple equilibria. In doing so, we allow for

  18. Influence of the temperature on the (liquid + liquid) phase equilibria of (water + 1-propanl + linalool or geraniol)

    International Nuclear Information System (INIS)

    Wan, Li; Li, Hengde; Huang, Cheng; Feng, Yuqing; Chu, Guoqiang; Zheng, Yuying; Tan, Wei; Qin, Yanlin; Sun, Dalei; Fang, Yanxiong

    2017-01-01

    Highlights: • Ternary LLEs containing linalool and geraniol are presented. • Distribution ratios of 1-propanol in the mixtures are examined. • Influence of the temperature on the LLE is studied. • The LLE data were correlated using the NRTL and UNIQUAC models. - Abstract: Linalool and geraniol are the primary components of rose oil, palmarosa oil, and citronella oil and many other essential oils, and two important compounds used in the flavour and fragrance, cosmetic or pharmaceutical industries. Phase equilibria (LLE, VLE, solubility, etc.) and related thermodynamic properties of a mixture are essential in the processes design and control of mass transfer process. In this work, experimental (liquid + liquid) equilibria data of the systems (water + 1-propanl + linalool) and (water + 1-propanl + geraniol) are presented. The (liquid + liquid) equilibria of both systems were determined with a tie-line method at T = (283.15, 298.15 and 313.15) K under atmospheric pressure. The well-known Hand, Bachman and Othmer–Tobias equations were used to test the reliability of the experimental values. The influence of the temperature on the (liquid + liquid) phase equilibria of the mixtures, the binodal curves and distribution ratios of 1-propanl are shown and discussed. Moreover, the NRTL and UNIQUAC models were applied to fit the data for both ternary systems. The interaction parameters obtained from both models successfully correlated the equilibrium compositions. Furthermore, the ternary systems could be represented using the binary parameters of the thermodynamic model with a function of temperature.

  19. Effect of temperature on acid–base equilibria in separation techniques. A review

    International Nuclear Information System (INIS)

    Gagliardi, Leonardo G.; Tascon, Marcos; Castells, Cecilia B.

    2015-01-01

    Studies on the theoretical principles of acid–base equilibria are reviewed and the influence of temperature on secondary chemical equilibria within the context of separation techniques, in water and also in aqueous-organic solvent mixtures, is discussed. In order to define the relationships between the retention in liquid chromatography or the migration velocity in capillary electrophoresis and temperature, the main properties of acid–base equilibria have to be taken into account for both, the analytes and the conjugate pairs chosen to control the solution pH. The focus of this review is based on liquid–liquid extraction (LLE), liquid chromatography (LC) and capillary electrophoresis (CE), with emphasis on the use of temperature as a useful variable to modify selectivity on a predictable basis. Simplified models were evaluated to achieve practical optimizations involving pH and temperature (in LLE and CE) as well as solvent composition in reversed-phase LC. - Highlights: • The study of theoretical principles of acid–base equilibrium has been reviewed. • The proton transfer process is often present in the analytical separation practice. • The influence of temperature on secondary chemical equilibria is examined. • The focus is laid on liquid chromatography and capillary electrophoresis. • Temperature can be a useful variable to modify selectivity under predictable basis

  20. Measurement and modeling of high-pressure (vapor + liquid) equilibria of (CO2 + alkanol) binary systems

    International Nuclear Information System (INIS)

    Bejarano, Arturo; Gutierrez, Jorge E.; Araus, Karina A.; Fuente, Juan C. de la

    2011-01-01

    Research highlights: → (Vapor + liquid) equilibria of three (CO 2 + C 5 alcohol) binary systems were measured. → Complementary data are reported at (313, 323 and 333) K and from (2 to 11) MPa. → No liquid immiscibility was observed at the temperatures and pressures studied. → Experimental data were correlated with the PR-EoS and the van de Waals mixing rules. → Correlation results showed relative deviations ≤8 % (liquid) and ≤2 % (vapor). - Abstract: Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO 2 + 3-methyl-2-butanol), (CO 2 + 2-pentanol), and (CO 2 + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO 2 + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.

  1. Spectrophotometric study of the complexation equilibria of lanthanum(III) with 1,4-bis(4'-methylanilino)anthraquinone and the determination of lanthanum(III)

    International Nuclear Information System (INIS)

    Idriss, K.A.-R; El-Shahawy, A.S.; Sedaira, H.; Harfoush, A.A.

    1985-01-01

    The complexation equilibria of lanthanum(III) with 1,4-bis(4'-methylanilino)anthraquinone (Quinizarin Green) were studied spectrophotometrically in 40% V/V dimethylformamide using graphical analysis of the absorbance curves. The reaction mechanism of lanthanum with the bisarylaminoanthraquinone dye within the pH range 6 to 9.25 was demonstrated. The thermodynamic stabilities and the molar absorptivities of the complexes formed were determined. The optimum conditions for the spectrophotometric determination of La(III) with this reagent were found. (author)

  2. Multiple equilibria in a stochastic implementation of DICE with abrupt climate change

    International Nuclear Information System (INIS)

    Lempert, Robert J.; Sanstad, Alan H.; Schlesinger, Michael E.

    2006-01-01

    Integrated assessment modeling of global climate change has focused primarily on gradually occurring changes in the climate system. However, atmospheric and earth scientists have become increasingly concerned that the climate system may be subject to abrupt, discontinuous changes on short time scales, and that anthropogenic greenhouse-gas emissions could trigger such shifts. Incorporating this type of climate dynamics into economic or integrated assessment models can result in model non-convexity and multiple equilibria, and thus complicate policy analysis relative to models with unique, globally optimal policies. Using a version of the Nordhaus DICE model amended in previous research by Keller et al. (2004) [Keller, Klaus, Benjamin M. Bolker, David F. Bradford, 2004. Uncertain climate thresholds and optimal economic growth. Journal of environmental economics and management 48 (1), 723-741], in conjunction with a stochastic global optimization algorithm, we generate 'level sets' of solutions, which helps identify multiple equilibria resulting from the potential abrupt cessation of the North Atlantic Thermohaline Circulation. We discuss the implications of this model geometry for formulating greenhouse-gas abatement policy under uncertainty and suggest that this general approach may be useful for addressing a wide range of model non-convexities including those related to endogenous technological change

  3. On the application of the NRTL method to ternary (liquid + liquid) equilibria

    International Nuclear Information System (INIS)

    Alvarez Julia, Jorge; Barrero, Carmen R.; Corso, Maria E.; Grande, Maria del Carmen; Marschoff, Carlos M.

    2005-01-01

    The use of the NRTL method for correlating experimental data in ternary (liquid + liquid) equilibria is considered. It is concluded that parameters obtained by direct correlation techniques have not a direct physical meaning. Also, it is shown that the resulting values for these parameters depend on the number of experimental points considered and on the particular calculation method employed. Thus, it is very risky to employ such parameters in predicting equilibria of other ternary mixtures

  4. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    DEFF Research Database (Denmark)

    Marcussen, Lis; Krøll, A.

    1999-01-01

    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems....

  5. Pressure driven currents near magnetic islands in 3D MHD equilibria: Effects of pressure variation within flux surfaces and of symmetry

    Science.gov (United States)

    Reiman, Allan H.

    2016-07-01

    In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B

  6. Magnetohydrodynamic stability of tokamak plasmas with poloidal mode coupling

    International Nuclear Information System (INIS)

    Shigueoka, H.; Sakanaka, P.H.

    1987-01-01

    The stability behavior with respect to internal modes is examined for a class of tokamak equilibria with non-circular cross sections. The surfaces of the constant poloidal magnetic flux ψ (R,Z) are obtained numerically by solving the Grad-Shafranov's equation with a specified shape for the outmost plasma surface. The equation of motion for ideal MHD stability is written in a ortogonal coordinate system (ψ, χ, φ). Th e stability analysis is performance numerically in a truncated set of coupled m (poloidal wave number) equations. The calculations involve no approximations, and so all parameters of the equilibrium solution can be arbitrarily varied. (author) [pt

  7. New investigation of phase equilibria in the system Al-Cu-Si.

    Science.gov (United States)

    Ponweiser, Norbert; Richter, Klaus W

    2012-01-25

    The phase equilibria and invariant reactions in the system Al-Cu-Si were investigated by a combination of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and electron probe micro analysis (EPMA). Isothermal phase equilibria were investigated within two isothermal sections. The isothermal section at 500 °C covers the whole ternary composition range and largely confirms the findings of previous phase diagram investigations. The isothermal section at 700 °C describes phase equilibria only in the complex Cu-rich part of the phase diagram. A new ternary compound τ was found in the region between (Al,Cu)-γ(1) and (Cu,Si)-γ and its solubility range was determined. The solubility of Al in κ-CuSi was found to be extremely high at 700 °C. In contrast, no ternary solubility in the β-phase of Cu-Al was found, although this phase is supposed to form a complete solid solution according to previous phase diagram assessments. Two isopleths, at 10 and 40 at.% Si, were investigated by means of DTA and a partial ternary reaction scheme (Scheil diagram) was constructed, based on the current work and the latest findings in the binary systems Al-Cu and Cu-Si. The current study shows that the high temperature equilibria in the Cu-rich corner are still poorly understood and additional studies in this area would be favorable.

  8. Stability of multihelical tearing modes in shaped tokamaks

    International Nuclear Information System (INIS)

    Kerner, W.; Tasso, H.

    1982-03-01

    The stability of multihelical tearing modes in tokamaks with shaped cross-sections is determined numerically. The method allows inclusion of a large number of singular surfaces resolved with high accuracy. Poloidal and radial couplings are discussed and the convergence is well understood. High poloidal m number modes are found to be unstable for typical equilibria. Completely stable current distributions have been constructed for D-shaped plasmas. (orig.)

  9. Computing Proper Equilibria of Zero-Sum Games

    DEFF Research Database (Denmark)

    Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2007-01-01

    We show that a proper equilibrium of a matrix game can be found in polynomial time by solving a linear (in the number of pure strategies of the two players) number of linear programs of roughly the same dimensions as the standard linear programs describing the Nash equilibria of the game....

  10. Computational study of the influence of mirror parameters on FRC (field-reversed configuration) equilibria:

    International Nuclear Information System (INIS)

    Fuentes, N.O.; Sakanaka, P.H.

    1990-01-01

    Field-reversed configuration equilibria are studied by solving the Grad-Shafranov equation. A multiple coil system (main coil and end mirrors) is considered to simulate the coil geometry of CNEA device. First results are presented for computed two-dimensional FRC equilibria produced varying the mirror coil current with two different mirror lenghts. (Author)

  11. Signaling equilibria in sensorimotor interactions.

    Science.gov (United States)

    Leibfried, Felix; Grau-Moya, Jordi; Braun, Daniel A

    2015-08-01

    Although complex forms of communication like human language are often assumed to have evolved out of more simple forms of sensorimotor signaling, less attention has been devoted to investigate the latter. Here, we study communicative sensorimotor behavior of humans in a two-person joint motor task where each player controls one dimension of a planar motion. We designed this joint task as a game where one player (the sender) possesses private information about a hidden target the other player (the receiver) wants to know about, and where the sender's actions are costly signals that influence the receiver's control strategy. We developed a game-theoretic model within the framework of signaling games to investigate whether subjects' behavior could be adequately described by the corresponding equilibrium solutions. The model predicts both separating and pooling equilibria, in which signaling does and does not occur respectively. We observed both kinds of equilibria in subjects and found that, in line with model predictions, the propensity of signaling decreased with increasing signaling costs and decreasing uncertainty on the part of the receiver. Our study demonstrates that signaling games, which have previously been applied to economic decision-making and animal communication, provide a framework for human signaling behavior arising during sensorimotor interactions in continuous and dynamic environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets

    Energy Technology Data Exchange (ETDEWEB)

    Loizu, J. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany); Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States); Hudson, S. R.; Bhattacharjee, A.; Lazerson, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States); Helander, P. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2015-09-15

    We consider the linear and nonlinear ideal plasma response to a boundary perturbation in a screw pinch. We demonstrate that three-dimensional, ideal-MHD equilibria with continuously nested flux-surfaces and with discontinuous rotational-transform across the resonant rational-surfaces are well defined and can be computed both perturbatively and using fully nonlinear equilibrium calculations. This rescues the possibility of constructing MHD equilibria with current sheets and continuous, smooth pressure profiles. The results predict that, even if the plasma acts as a perfectly conducting fluid, a resonant magnetic perturbation can penetrate all the way into the center of a tokamak without being shielded at the resonant surface.

  13. Nash equilibria in quantum games with generalized two-parameter strategies

    International Nuclear Information System (INIS)

    Flitney, Adrian P.; Hollenberg, Lloyd C.L.

    2007-01-01

    In the Eisert protocol for 2x2 quantum games [J. Eisert, et al., Phys. Rev. Lett. 83 (1999) 3077], a number of authors have investigated the features arising from making the strategic space a two-parameter subset of single qubit unitary operators. We argue that the new Nash equilibria and the classical-quantum transitions that occur are simply an artifact of the particular strategy space chosen. By choosing a different, but equally plausible, two-parameter strategic space we show that different Nash equilibria with different classical-quantum transitions can arise. We generalize the two-parameter strategies and also consider these strategies in a multiplayer setting

  14. Vapor-liquid equilibria for the acetone-ethanol-n-propanol-tert-butanol-water system

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Uchida, K.; Kojima, K.

    1981-12-01

    This study deals with the measurement of vapor-liquid equilibria for the five-component system acetone-ethanol-n-propanol-tert-butanol-water at 760 mmHg and prediction of vapor-liquid equilibria by the ASOG group contribution method. The five-component system in this work is composed of a part of the components obtained during ethanol production by vapor-phase hydration of ethylene. 6 refs.

  15. Strategic trade between two regions with partial local consumer protection - General setup and nash equilibria

    Science.gov (United States)

    Iordanov, Iordan V.; Vassilev, Andrey A.

    2017-12-01

    We construct a model of the trade relations between two regions for the case when the trading entities (consumers) compete for a scarce good and there is an element of strategic interdependence in the trading process. Additionally, local consumers enjoy partial protection in the form of guaranteed access to a part of the locally-supplied quantity of the good. The model is formulated for the general asymmetric case, where the two regions differ in terms of parameters such as income, size of the local market supply, degree of protection and transportation costs. For this general model we establish the existence of Nash equilibria and obtain their form as a function of the model parameters, producing a typology of the equilibria. This is a required step in order to rigorously study various types of price dynamics for the model.

  16. Global stability of a two-mediums rumor spreading model with media coverage

    Science.gov (United States)

    Huo, Liang'an; Wang, Li; Song, Guoxiang

    2017-09-01

    Rumor spreading is a typical form of social communication and plays a significant role in social life, and media coverage has a great influence on the spread of rumor. In this paper, we present a new model with two media coverage to investigate the impact of the different mediums on rumor spreading. Then, we calculate the equilibria of the model and construct the reproduction number ℜ0. And we prove the global asymptotic stability of equilibria by using Lyapunov functions. Finally, we can conclude that the transition rate of the ignorants between two mediums has a direct effect on the scale of spreaders, and different media coverage has significant effects on the dynamics behaviors of rumor spreading.

  17. Density-functional study on the equilibria in the ThDP activation.

    Science.gov (United States)

    Delgado, Eduardo J; Alderete, Joel B; Jaña, Gonzalo A

    2011-11-01

    The equilibria among the various ionization and tautomeric states involved in the activation of ThDP is addressed using high level density functional theory calculations, X3LYP/6-311++G(d,p)//X3LYP(PB)/6-31++G(d,p). This study provides the first theoretically derived thermodynamic data for the internal equilibria in the activation of ThDP. The role of the medium polarity on the geometry and thermodynamics of the diverse equilibria of ThDP is addressed. The media chosen are cyclohexane and water, as paradigms of apolar and polar media. The results suggest that all ionization and tautomeric states are accessible during the catalytic cycle, even in the absence of substrate, being APH(+) the form required to interconvert the AP and IP tautomers; and the generation of the ylide proceeds via the formation of the IP form. Additionally, the calculated ΔG° values allow to calculate all the equilibrium constants, including the pK(C2) for the thiazolium C2 atom whose ionization is believed to initiate the catalytic cycle.

  18. Measurement and modeling of high-pressure (vapor + liquid) equilibria of (CO{sub 2} + alkanol) binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Gutierrez, Jorge E. [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Araus, Karina A. [Departamento de Ingenieria Quimica y Bioprocesos, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Macul, Santiago (Chile); Fuente, Juan C. de la, E-mail: juan.delafuente@usm.c [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Centro Regional de Estudios en Alimentos Saludables, Blanco 1623, Valparaiso (Chile)

    2011-05-15

    Research highlights: (Vapor + liquid) equilibria of three (CO{sub 2} + C{sub 5} alcohol) binary systems were measured. Complementary data are reported at (313, 323 and 333) K and from (2 to 11) MPa. No liquid immiscibility was observed at the temperatures and pressures studied. Experimental data were correlated with the PR-EoS and the van de Waals mixing rules. Correlation results showed relative deviations {<=}8 % (liquid) and {<=}2 % (vapor). - Abstract: Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO{sub 2} + 3-methyl-2-butanol), (CO{sub 2} + 2-pentanol), and (CO{sub 2} + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO{sub 2} + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.

  19. Effect of temperature on acid-base equilibria in separation techniques. A review.

    Science.gov (United States)

    Gagliardi, Leonardo G; Tascon, Marcos; Castells, Cecilia B

    2015-08-19

    Studies on the theoretical principles of acid-base equilibria are reviewed and the influence of temperature on secondary chemical equilibria within the context of separation techniques, in water and also in aqueous-organic solvent mixtures, is discussed. In order to define the relationships between the retention in liquid chromatography or the migration velocity in capillary electrophoresis and temperature, the main properties of acid-base equilibria have to be taken into account for both, the analytes and the conjugate pairs chosen to control the solution pH. The focus of this review is based on liquid-liquid extraction (LLE), liquid chromatography (LC) and capillary electrophoresis (CE), with emphasis on the use of temperature as a useful variable to modify selectivity on a predictable basis. Simplified models were evaluated to achieve practical optimizations involving pH and temperature (in LLE and CE) as well as solvent composition in reversed-phase LC. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Global kink and ballooning modes in high-beta systems and stability of toroidal drift modes

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Goedbloed, J.P.; Rem, J.; Sakanaka, P.H.; Schep, T.J.; Venema, M.

    1983-01-01

    A numerical code (HBT) has been developed which solves for the equilibrium, global stability and high-n stability of plasmas with arbitrary cross-section. Various plasmas are analysed for their stability to these modes in the high-beta limit. Screw-pinch equilibria are stable to high-n ballooning modes up to betas of 18%. The eigenmode equation for drift waves is analysed numerically. The toroidal branch is shown to be destabilized by the non-adiabatic response of trapped and circulating particles. (author)

  1. Computation of tokamak equilibria with steady flow

    International Nuclear Information System (INIS)

    Kerner, W.; Tokuda, Shinji

    1987-08-01

    The equations for ideal MHD equilibria with stationary flow are reexamined and addressed as numerically applied to tokamak configurations with a free plasma boundary. Both the isothermal (purely toroidal flow) and the poloidal flow cases are treated. Experiment-relevant states with steady flow (so far only in the toroidal direction) are computed by the modified SELENE40 code. (author)

  2. Ternary (liquid + liquid) equilibria of {trifluorotris(perfluoroethyl)phosphate based ionic liquids + thiophene + heptane}

    International Nuclear Information System (INIS)

    Marciniak, Andrzej; Królikowski, Marek

    2012-01-01

    Highlights: ► Ternary (liquid + liquid) equilibria for 3 ionic liquid + thiophene + heptane systems. ► The influence of ionic liquid structure on phase diagrams is discussed. ► High selectivity for separation of heptane/thiophene is observed. - Abstract: Ternary (liquid + liquid) equilibria for three systems containing ionic liquids {(4-(2-methoxyethyl)-4-methylmorpholinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpiperidinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpyrrolidinium trifluorotris(perfluoroethyl)phosphate) + thiophene + heptane} have been determined at T = 298.15 K. All systems showed high solubility of thiophene in the ionic liquid and low solubility of heptane. The solute distribution coefficient and the selectivity were calculated for all systems. High values of selectivity were obtained. The experimental results have been correlated using NRTL model. The influence of ionic liquid structure on phase equilibria is discussed.

  3. Stability analysis of sharp-boundary Vlasov-fluid screw-pinch equilibria

    International Nuclear Information System (INIS)

    Lewis, H.R.; Turner, L.

    1975-01-01

    The Vlasov-fluid model is being used to study the linear stability of sharp-boundary screw pinches numerically. The numerical method appears to work well, and some preliminary results are reported. The sharp-boundary calculation is useful for gaining insight and for comparing with known MHD results. (auth)

  4. (Vapour + liquid) equilibria for (2,2-dimethoxypropane + methanol) and (2,2-dimethoxypropane + acetone)

    International Nuclear Information System (INIS)

    Jiang Hui; Li Haoran; Wang Congmin; Tan Taijun; Han Shijun

    2003-01-01

    The isothermal and isobaric (vapour + liquid) equilibria for (2,2-dimethoxypropane + methanol) and (2,2-dimethoxypropane + acetone) measured with an inclined ebulliometer are presented. The experimental results are analysed using the UNIQUAC equation with the temperature-dependent binary parameters with satisfactory results. Isobaric (vapour + liquid) equilibria data for these systems at p=99.99 kPa are compared with the literature data. Experimental vapour pressure of 2,2-dimethoxypropane are also included

  5. Collisionality dependence of Mercier stability in LHD equilibria with bootstrap currents

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji.

    1997-02-01

    The Mercier stability of the plasmas carrying bootstrap currents with different plasma collisionality is studied in the Large Helical Device (LHD). In the LHD configuration, the direction of the bootstrap current depends on the collisionality of the plasma through the change in the sign of the geometrical factor. When the beta value is raised by increasing the density of the plasma with a fixed low temperature, the plasma becomes more collisional and the collisionality approaches the plateau regime. In this case, the bootstrap current can flow in the direction so as to decrease the rotational transform. Then, the large Shafranov shift enhances the magnetic well and the magnetic shear, and therefore, the Mercier stability is improved. On the other hand, when the beta value is raised by increasing the temperature of the plasma with a fixed low density, the plasma collisionality becomes reduced to enter the 1/ν collisionality regime and the bootstrap current flows so that the rotational transform should be increased, which is unfavorable for the Mercier stability. Hence, the beta value should be raised by increasing the density rather than the temperature in order to obtain a high beta plasma. (author)

  6. Critical bias fields for tilting stability in the BETA-II experiment

    International Nuclear Information System (INIS)

    Dalhed, H.E.

    1981-01-01

    The PEST equilibrium code and the GATO ideal MHD stability code have been modified to study stability properties of Spheromak configurations. Of particular interest is the effect on tilting modes of perfectly conducting walls which do not link the plasma. This paper makes use of equilibria and conducting walls specifically designed to model the BETA-II experiment at LLNL. Onset of the tilting mode is determined as a function of the bias magnetic field. Comparison with available experimental data shows promising agreement with the numerical results

  7. From Singularity Theory to Finiteness of Walrasian Equilibria

    DEFF Research Database (Denmark)

    Castro, Sofia B.S.D.; Dakhlia, Sami F.; Gothen, Peter

    The paper establishes that for an open and dense subset of smooth exchange economies, the number of Walrasian equilibria is finite. In particular, our results extend to non-regular economies; it even holds when restricted to the subset of critical ones. The proof rests on concepts from singularity...... theory....

  8. Second region of stability

    International Nuclear Information System (INIS)

    Greene, J.M.; Chance, M.S.

    1980-10-01

    A new type of axisymmetric magnetohydrodynamic equilibrium is presented. It is characterized by a region of pressure and safety factor variation with a short scale length imposed as a perturbation. The equilibrium consistent with these profile variations can be calculated by means of an asymptotic expansion. The flexibility obtained by generating such equilibria allows for a close examination of the mechanisms that are relevant to ballooning instabilities - ideal MHD modes with large toroidal mode number. The so-called first and second regions of stability against these modes are seen well within the limits of validity of the asymptotic expansion. It appears that the modes must be localized in regions with small values of the local shear of the magnetic field. The second region of stability occurs where the local shear is large throughout the range where the magnetic field line curvature is destabilizing

  9. Stabilization of ballooning modes with sheared toroidal rotation

    International Nuclear Information System (INIS)

    Miller, R.L.; Waelbroeck, F.W.; Lao, L.L.; Taylor, T.S.

    1994-11-01

    A new code demonstrates the stabilization of MHD ballooning modes by sheared toroidal rotation. A shifted model is used to elucidate the physics and numerically reconstructed equilibria are used to analyze DIII-D discharges. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and, in the shifted circle model, direct stable access to the second stability regime occurs when this frequency is a fraction of the Alfven frequency ω A = V A /qR. Shear stabilization is also demonstrated for an equilibrium reconstruction of a DIII-D VH-mode

  10. Stability analysis of pest-predator interaction model with infectious disease in prey

    Science.gov (United States)

    Suryanto, Agus; Darti, Isnani; Anam, Syaiful

    2018-03-01

    We consider an eco-epidemiological model based on a modified Leslie-Gower predator-prey model. Such eco-epidemiological model is proposed to describe the interaction between pest as the prey and its predator. We assume that the pest can be infected by a disease or pathogen and the predator only eats the susceptible prey. The dynamical properties of the model such as the existence and the stability of biologically feasible equilibria are studied. The model has six type of equilibria, but only three of them are conditionally stable. We find that the predator in this system cannot go extinct. However, the susceptible or the infective prey may disappear in the environment. To support our analytical results, we perform some numerical simulations with different scenario.

  11. On stability relative to vector elements of the orbit in general relativity motion

    International Nuclear Information System (INIS)

    Abdil'din, M.M.; Bejsenova, N.A.

    2002-01-01

    In this work a question of a new type of stability - stability relative to vector elements of the orbit is considered in general relativity mechanics in case of the Lenze-Thirring and two body rotation. (author)

  12. Equilibria of perceptrons for simple contingency problems.

    Science.gov (United States)

    Dawson, Michael R W; Dupuis, Brian

    2012-08-01

    The contingency between cues and outcomes is fundamentally important to theories of causal reasoning and to theories of associative learning. Researchers have computed the equilibria of Rescorla-Wagner models for a variety of contingency problems, and have used these equilibria to identify situations in which the Rescorla-Wagner model is consistent, or inconsistent, with normative models of contingency. Mathematical analyses that directly compare artificial neural networks to contingency theory have not been performed, because of the assumed equivalence between the Rescorla-Wagner learning rule and the delta rule training of artificial neural networks. However, recent results indicate that this equivalence is not as straightforward as typically assumed, suggesting a strong need for mathematical accounts of how networks deal with contingency problems. One such analysis is presented here, where it is proven that the structure of the equilibrium for a simple network trained on a basic contingency problem is quite different from the structure of the equilibrium for a Rescorla-Wagner model faced with the same problem. However, these structural differences lead to functionally equivalent behavior. The implications of this result for the relationships between associative learning, contingency theory, and connectionism are discussed.

  13. Finite-β stabilization of a diffuse helical l = MHD equilibrium

    International Nuclear Information System (INIS)

    Herrnegger, F.; Nuehrenberg, J.

    1975-04-01

    The stability of helically symmetric finite-β, l = 1 magnetohydrostatic equilibria with arbitrary pressure profile and vanishing longitudinal current is investigated by means of Mercier's criterion, a sufficient criterion by Lortz, Rebhan and Spies, and Shafranov's condition for a high-β magnetic well. The new finite-β effects are that 1) a magnetic well is created throughout the plasma region for 0.2 approximately [de

  14. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks

    Science.gov (United States)

    Faria, Teresa; Oliveira, José J.

    This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.

  15. Proceeding of 1999-workshop on MHD computations 'study on numerical methods related to plasma confinement'

    International Nuclear Information System (INIS)

    Kako, T.; Watanabe, T.

    2000-06-01

    This is the proceeding of 'study on numerical methods related to plasma confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. There are also various lectures on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. Separate abstracts were presented for 13 of the papers in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)

  16. Axisymmetric stability of vertically asymmetric Tokamaks at large beta poloidal

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K.; Fishman, H.; Okabayashi, M. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Todd, A.M.M. (Grumman Aerospace Corp., Princeton, NJ (USA))

    1983-11-01

    The rigid-mode stability of high-..beta.. vertically asymmetric Tokamak equilibria with quasi-uniform current profile is investigated analytically using toroidicity-shaping double expansion method. It is found that vertical stability at large beta poloidal is mainly determined by a coupling between the shape of the plasma surface and the Shafranov shift of the magnetic axis. To the lowest order, symmetric components of the plasma surface shape are found to be the critical destabilizing elements. Asymmetric components have little effect. The inclusion of higher order terms in the high-..beta.. Tokamak expansion leads to further destabilization. These analytic insights are qualitatively confirmed by numerical stability calculations using the PEST code with parabolic safety-factor profile.

  17. A periodic point-based method for the analysis of Nash equilibria in 2 x 2 symmetric quantum games

    International Nuclear Information System (INIS)

    Schneider, David

    2011-01-01

    We present a novel method of looking at Nash equilibria in 2 x 2 quantum games. Our method is based on a mathematical connection between the problem of identifying Nash equilibria in game theory, and the topological problem of the periodic points in nonlinear maps. To adapt our method to the original protocol designed by Eisert et al (1999 Phys. Rev. Lett. 83 3077-80) to study quantum games, we are forced to extend the space of strategies from the initial proposal. We apply our method to the extended strategy space version of the quantum Prisoner's dilemma and find that a new set of Nash equilibria emerge in a natural way. Nash equilibria in this set are optimal as Eisert's solution of the quantum Prisoner's dilemma and include this solution as a limit case.

  18. MOMCON: A spectral code for obtaining three-dimensional magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Lee, D.K.

    1986-01-01

    A new code, MOMCON (spectral moments code with constraints), is described that computes three-dimensional ideal magnetohydrodynamic (MHD) equilibria in a fixed toroidal domain using a Fourier expansion for the inverse coordinates (R, Z) representing nested magnetic surfaces. A set of nonlinear coupled ordinary differential equations for the spectral coefficients of (R, Z) is solved using an accelerated steepest descent method. A stream function, lambda, is introduced to improve the mode convergence properties of the Fourier series for R and Z. The convergence rate of the R-Z spectra is optimized on each flux surface by solving nonlinear constraint equations relating the m>=2 spectral coefficients of R and Z. (orig.)

  19. Development and testing of a new apparatus for the measurement of high-pressure low-temperature phase equilibria

    DEFF Research Database (Denmark)

    Fonseca, José M.S.; von Solms, Nicolas

    2012-01-01

    A new apparatus for the study of high-pressure phase equilibria at low temperatures using an analytical method was designed, assembled and tested. The apparatus was specially developed for the study of multi-phase equilibria in systems containing hydrocarbons, water and hydrate inhibitors, at tem...

  20. On pure-strategy Nash equilibria in price-quantity games

    NARCIS (Netherlands)

    Bos, I.; Vermeulen, A.J.

    2015-01-01

    This paper examines the existence and characteristics of pure-strategy Nash equilibria in oligopoly models in which firms set both prices and quantities. Existence is proved for a broad and natural class of price-quantity games. With differentiated products, the equilibrium outcome is similar to

  1. Stability of binary complexes of Pb(II), Cd(II) and Hg(II) with maleic ...

    African Journals Online (AJOL)

    The trend in variation of complex stability constants with change in the mole fraction of the medium is explained on the basis of prevailing electrostatic and non-electrostatic forces. The species distribution as a function of pH at different compositions of TX100-water mixtures and plausible speciation equilibria are presented ...

  2. Global Asymptotic Stability of a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes

    Directory of Open Access Journals (Sweden)

    Shengbin Yu

    2012-01-01

    Full Text Available We study the predator-prey model proposed by Aziz-Alaoui and Okiye (Appl. Math. Lett. 16 (2003 1069–1075 First, the structure of equilibria and their linearized stability is investigated. Then, we provide two sufficient conditions on the global asymptotic stability of a positive equilibrium by employing the Fluctuation Lemma and Lyapunov direct method, respectively. The obtained results not only improve but also supplement existing ones.

  3. Theoretical models of non-Maxwellian equilibria for one-dimensional collisionless plasmas

    Science.gov (United States)

    Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.

    2016-12-01

    It is ideal to use exact equilibrium solutions of the steady state Vlasov-Maxwell system to intialise collsionless simulations. However, exact equilibrium distribution functions (DFs) for a given macroscopic configuration are typically unknown, and it is common to resort to using `flow-shifted' Maxwellian DFs in their stead. These DFs may be consistent with a macrosopic system with the target number density and current density, but could well have inaccurate higher order moments. We present recent theoretical work on the `inverse problem in Vlasov-Maxwell equilibria', namely calculating an exact solution of the Vlasov equation for a specific given magnetic field. In particular, we focus on one-dimensional geometries in Cartesian (current sheets) coordinates.1. From 1D fields to Vlasov equilibria: Theory and application of Hermite Polynomials: (O. Allanson, T. Neukirch, S. Troscheit and F. Wilson, Journal of Plasma Physics, 82, 905820306 (2016) [28 pages, Open Access] )2. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta: (O. Allanson, T. Neukirch, F. Wilson and S. Troscheit, Physics of Plasmas, 22, 102116 (2015) [11 pages, Open Access])3. Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field (O. Allanson, F. Wilson and T. Neukirch, (2016)) (accepted, Physics of Plasmas)

  4. A periodic point-based method for the analysis of Nash equilibria in 2 x 2 symmetric quantum games

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, David, E-mail: schneide@tandar.cnea.gov.ar [Departamento de Fisica, Comision Nacional de EnergIa Atomica. Av. del Libertador 8250, 1429 Buenos Aires (Argentina)

    2011-03-04

    We present a novel method of looking at Nash equilibria in 2 x 2 quantum games. Our method is based on a mathematical connection between the problem of identifying Nash equilibria in game theory, and the topological problem of the periodic points in nonlinear maps. To adapt our method to the original protocol designed by Eisert et al (1999 Phys. Rev. Lett. 83 3077-80) to study quantum games, we are forced to extend the space of strategies from the initial proposal. We apply our method to the extended strategy space version of the quantum Prisoner's dilemma and find that a new set of Nash equilibria emerge in a natural way. Nash equilibria in this set are optimal as Eisert's solution of the quantum Prisoner's dilemma and include this solution as a limit case.

  5. Asset pricing puzzles explained by incomplete Brownian equilibria

    DEFF Research Database (Denmark)

    Christensen, Peter Ove; Larsen, Kasper

    We examine a class of Brownian based models which produce tractable incomplete equilibria. The models are based on finitely many investors with heterogeneous exponential utilities over intermediate consumption who receive partially unspanned income. The investors can trade continuously on a finit...... markets. Consequently, our model can simultaneously help explaining the risk-free rate and equity premium puzzles....

  6. Spectrophotometric study of the complexation equilibria of uranium(VI) with 1,4-bis(4'-methylanilino)anthraquinone and determination of uranium(VI)

    International Nuclear Information System (INIS)

    Idriss, K.A.; Seleim, M.M.; Abu-Bakr, M.S.; Sedaira, H.

    1985-01-01

    The reaction of U(VI) with 1,4-bis(4'-methylanilino)anthraquinone (quinizarin green) in water-dimethylformamide medium was investigated spectrophotometrically. The complexation equilibria in solution were demonstrated. The study of the reaction in presence of equimolar concentrations or in solutions containing metal or ligand excess gave evidence for the formation of complexes with stoichiometric ratios of UO 2 :L = 1:1 and 1:2 in dependence on the pH of the medium. Their thermodynamic stabilities and the values of their molar absorption coefficients were determined. The optimum conditions for spectrophotometric determination of U(VI) with this reagent were found. (author)

  7. General methods for determining the linear stability of coronal magnetic fields

    Science.gov (United States)

    Craig, I. J. D.; Sneyd, A. D.; Mcclymont, A. N.

    1988-01-01

    A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak.

  8. Electronic structure and phase equilibria in ternary substitutional alloys

    International Nuclear Information System (INIS)

    Traiber, A.J.S.; Allen, S.M.; Waterstrat, R.M.

    1996-01-01

    A reliable, consistent scheme to study phase equilibria in ternary substitutional alloys based on the tight-binding approximation is presented. With electronic parameters from linear muffin-tin orbital calculations, the computed density of states and band structures compare well with those from more accurate abinitio calculations. Disordered alloys are studied within the tight-binding coherent-potential approximation extended to alloys; energetics of ordered systems are obtained through effective pair interactions computed with the general perturbation method; and partially ordered alloys are studied with a novel simplification of the molecular coherent-potential approximation combined with the general perturbation method. The formalism is applied to bcc-based Zr-Ru-Pd alloys which are promising candidates for medical implant devices. Using energetics obtained from the above scheme, we apply the cluster- variation method to study phase equilibria for particular pseudo- binary alloys and show that results are consistent with observed behavior of electronic specific heat coefficient with composition for Zr 0.5 (Ru, Pd) 0.5

  9. High temperature interdiffusion and phase equilibria in U-Mo

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1988-01-01

    Experimental data for interdiffusion and phase equilibria in the U-Mo system have been obtained over the temperature range 1400 to 1525 K as a fallout from compatibility experiments in which UO 2 was decomposed by lithium in closed molybdenum capsules. Composition-position, x-ray diffraction and microstructural data from the interdiffusion zones indicate that the intermediate phase U 2 Mo is found in this temperature range, contrary to the currently accepted equilibrium U-Mo phase diagram. The U-Mo interdiffusion data are in good agreement with published values. Inclusion of the U 2 Mo phase in a theoretical correlation of interdiffusion and phase equilibria data using Darken's equation indicate that high temperature interdiffusion of uranium and molybdenum follows the usual thermodynamic rules. Significant changes in the value of the thermodynamic based Darken factor near the U 2 Mo phase boundary on the high uranium side are indicated from both the new and published interdiffusion data. 9 refs., 10 figs., 3 tabs

  10. Quota Swapping, Relative Stability, and Transparency

    NARCIS (Netherlands)

    Hoefnagel, E.W.J.; Vos, de B.I.; Buisman, F.C.

    2015-01-01

    One of the oldest elements of the Common Fisheries Policy (CFP) is the principle of ‘relative stability’. Relative stability means that yearly established Total Allowable Catches (TACs) for each fish stock are divided between the Member States of the European Union (EU) according to a fixed

  11. Implications of climate variability for the detection of multiple equilibria and for rapid transitions in the atmosphere-vegetation system

    Energy Technology Data Exchange (ETDEWEB)

    Bathiany, S. [Max Planck Institute for Meteorology, Hamburg (Germany); Claussen, M. [Max Planck Institute for Meteorology, Hamburg (Germany); Universitaet Hamburg, Meteorologisches Institut, Hamburg (Germany); Fraedrich, K. [Universitaet Hamburg, Meteorologisches Institut, Hamburg (Germany)

    2012-05-15

    Paleoclimatic records indicate a decline of vegetation cover in the Western Sahara at the end of the African Humid Period (about 5,500 years before present). Modelling studies have shown that this phenomenon may be interpreted as a critical transition that results from a bifurcation in the atmosphere-vegetation system. However, the stability properties of this system are closely linked to climate variability and depend on the climate model and the methods of analysis. By coupling the Planet Simulator (PlaSim), an atmosphere model of intermediate complexity, with the simple dynamic vegetation model VECODE, we assess previous methods for the detection of multiple equilibria, and demonstrate their limitations. In particular, a stability diagram can yield misleading results because of spatial interactions, and the system's steady state and its dependency on initial conditions are affected by atmospheric variability and nonlinearities. In addition, we analyse the implications of climate variability for the abruptness of a vegetation decline. We find that a vegetation collapse can happen at different locations at different times. These collapses are possible despite large and uncorrelated climate variability. Because of the nonlinear relation between vegetation dynamics and precipitation the green state is initially stabilised by the high variability. When precipitation falls below a critical threshold, the desert state is stabilised as variability is then also decreased. (orig.)

  12. A thermodynamic solution model for calcium carbonate: Towards an understanding of multi-equilibria precipitation pathways

    OpenAIRE

    Donnet, Marcel; Bowen, Paul; Lemaître, Jacques

    2009-01-01

    Thermodynamic solubility calculations are normally only related to thermodynamic equilibria in solution. In this paper, we extend the use of such solubility calculations to help elucidate possible precipitation reaction pathways during the entire reaction. We also estimate the interfacial energy of particles using only solubility data by a modification of Mersmann’s approach. We have carried this out by considering precipitation reactions as a succession of small quasi-equilibrium states. Thu...

  13. A Multistep Equilibria-Redox-Complexation Demonstration to Illustrate Le Chatelier's Principle.

    Science.gov (United States)

    Berger, Tomas G.; Mellon, Edward K.

    1996-01-01

    Describes a process that can be used to illustrate a number of chemical principles including Le Chatelier's principle, redox chemistry, equilibria versus steady state situations, and solubility of species. (JRH)

  14. Equilibrium and stability of high-beta toroidal plasmas with toroidal and poloidal flow in reduced magnetohydrodynamic models

    International Nuclear Information System (INIS)

    Ito, A.; Nakajima, N.

    2010-11-01

    Effects of flow, finite ion temperature and pressure anisotropy on equilibrium and stability of a high-beta toroidal plasma are studied in the framework of reduced magnetohydrodynamics (MHD). A set of reduced equilibrium equations for high-beta tokamaks with toroidal and poloidal flow comparable to the poloidal sound velocity is derived in a unified form of single-fluid and Hall MHD models and a two-fluid MHD model with ion finite Larmor radius (FLR) terms. Pressure anisotropy is introduced with equations for the parallel heat flux which are closed by a fluid closure model. It is solved analytically for the single-fluid model and the solutions shows complicated characteristics in the region around the poloidal sound velocity due to pressure anisotropy and the parallel heat flux. Numerical solutions are found by using the finite element method for the two-fluid model with FLR effects in the case of isotropic, adiabatic pressure and indicate the following features of two-fluid equilibria: the isosurfaces of the magnetic flux, the pressure and the ion stream function do not coincide with each other, and the solutions depend on the sign of the radial electric field. Reduced single-fluid MHD equations with time evolution that are consistent with the above equilibria are also derived in order to study their stability. They conserve the energy up to the order required by the equilibria. (author)

  15. High-pressure phase equilibria in the (carbon dioxide + 1-hexanol) system

    International Nuclear Information System (INIS)

    Secuianu, Catinca; Feroiu, Viorel; Geana, Dan

    2010-01-01

    (Vapour + liquid) equilibria (VLE) and (vapour + liquid + liquid) equilibria (VLLE) data for the (carbon dioxide + 1-hexanol) system were measured at (293.15, 303.15, 313.15, 333.15, and 353.15) K. Phase behaviour measurements were made in a high-pressure visual cell with variable volume, based on the static-analytic method. The pressure range under investigation was between (0.6 and 14.49) MPa. The Soave-Redlich-Kwong (SRK) equation of state (EOS) with classical van der Waals mixing rules (two-parameters conventional mixing rule, 2PCMR), was used in a semi-predictive approach, in order to represent the complex phase behaviour (critical curve, LLV line, isothermal VLE, LLE, and VLLE) of the system. The topology of phase behaviour is reasonably well predicted.

  16. Effects of q and high beta on tokamak stability

    International Nuclear Information System (INIS)

    Brickhouse, N.S.; Callen, J.D.; Dexter, R.N.

    1984-08-01

    In the Columbia University Torus II tokamak plasmas have been studied with volume averaged toroidal beta values as high as 15%. Experimental equilibria have been compared with a 2D free boundary MHD equilibrium code PSEC. The stability of these equilibria has been computed using PEST, the predictions of which are compatible with an observed instability in Torus II which may be characterized as a high toroidal mode number ballooning fluctuation. In the University of Wisconsin Tokapole II tokamak disruptive instability behavior is investigated, with plasma able to be confined on closed magnetic surfaces in the scrape-off region, as the cylindrical edge safety factor is varied from q approx. 3 to q approx. 0.5. It is observed that at q/sub a/ approx. 3 major disruption activity occurs without current terminations, at q/sub a/ less than or equal to 2 well-confined plasmas are obtained without major disruption, and at q/sub a/ approx. 0.5 only partial reconnection accompanies minor disruptions

  17. Phase equilibria and thermodynamic functions for Ag–Hg and Cu–Hg binary systems

    International Nuclear Information System (INIS)

    Liu, Yajun; Wang, Guan; Wang, Jiang; Chen, Yang; Long, Zhaohui

    2012-01-01

    Highlights: ► The thermodynamic properties of Ag–Hg and Cu–Hg are explored in order to facilitate dental materials design. ► A self-consistent set of thermodynamic parameters is obtained. ► The experimental information can be well reproduced by the optimized thermodynamic data. - Abstract: In order to facilitate the computational design of new amalgams for novel dental alloys, the phase equilibria, phase diagrams and thermodynamic functions for Ag–Hg and Cu–Hg binary systems are explored in this work, based on the CALPHAD framework and experimental characterizations. The Gibbs free energies of the solution phases as well as the stoichiometric phases are calculated, with the aid of enthalpies of mixing, activities, enthalpies of formation, and phase equilibrium data. The thermodynamic descriptions provided in this work enable the stabilities of each phase at various temperatures and compositions to be well described, which contribute to the establishment of a general database to design novel metallic dental materials.

  18. Phase equilibria and thermodynamic functions for Ag-Hg and Cu-Hg binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yajun, E-mail: yajunliu@gatech.edu [School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wang, Guan [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wang, Jiang [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Chen, Yang [Mining, Metallurgy and Materials Research Department, General Research Institute for Nonferrous Metals, Beijing 100088 (China); Long, Zhaohui [School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2012-11-10

    Highlights: Black-Right-Pointing-Pointer The thermodynamic properties of Ag-Hg and Cu-Hg are explored in order to facilitate dental materials design. Black-Right-Pointing-Pointer A self-consistent set of thermodynamic parameters is obtained. Black-Right-Pointing-Pointer The experimental information can be well reproduced by the optimized thermodynamic data. - Abstract: In order to facilitate the computational design of new amalgams for novel dental alloys, the phase equilibria, phase diagrams and thermodynamic functions for Ag-Hg and Cu-Hg binary systems are explored in this work, based on the CALPHAD framework and experimental characterizations. The Gibbs free energies of the solution phases as well as the stoichiometric phases are calculated, with the aid of enthalpies of mixing, activities, enthalpies of formation, and phase equilibrium data. The thermodynamic descriptions provided in this work enable the stabilities of each phase at various temperatures and compositions to be well described, which contribute to the establishment of a general database to design novel metallic dental materials.

  19. Phase equilibria, phases and compounds in the Ti-C system

    International Nuclear Information System (INIS)

    Gusev, A.I.

    2002-01-01

    The results of experimental and theoretical investigations related to the phase equilibria in the titanium-carbon system are generalized. The generalized thermodynamic characteristics of the disordered titanium carbide TiC y are given. The crystal structure of all the discovered and hypothetical compounds of titanium with carbon are considered in detail. The x-ray diffraction patterns which allow one to identify all these compounds are given. The phase diagrams of the Ti-C system constructed with allowance for atomic ordering of non-stoichiometric TiC y carbide and for the existence of the compounds Ti 8 C 12 and Ti 13 C 22 (TiC 2 ) of the molecule cluster type are discussed [ru

  20. Quantum correlations and Nash equilibria of a bi-matrix game

    International Nuclear Information System (INIS)

    Iqbal, Azhar

    2004-01-01

    Playing a symmetric bi-matrix game is usually physical implemented by sharing pairs of 'objects' between two players. A new setting is proposed that explicitly shows effects of quantum correlations between the pairs on the structure of payoff relations and the 'solutions' of the game. The setting allows a re-expression of the game such that the players play the classical game when their moves are performed on pairs of objects having correlations that satisfy Bell's inequalities. If players receive pairs having quantum correlations the resulting game cannot be considered another classical symmetric bi-matrix game. Also the Nash equilibria of the game are found to be decided by the nature of the correlations. (letter to the editor)

  1. Analysis of stability and Hopf bifurcation for a viral infectious model with delay

    International Nuclear Information System (INIS)

    Sun Chengjun; Cao Zhijie; Lin Yiping

    2007-01-01

    In this paper, a four-dimensional viral infectious model with delay is considered. The stability of the two equilibria and the existence of Hopf bifurcation are investigated. It is found that there are stability switches and Hopf bifurcations occur when the delay τ passes through a sequence of critical values. Using the normal form theory and center manifold argument [Hassard B, Kazarino D, Wan Y. Theory and applications of Hopf bifurcation. Cambridge: Cambridge University Press; 1981], the explicit formulaes which determine the stability, the direction and the period of bifurcating periodic solutions are derived. Numerical simulations are carried out to illustrate the validity of the main results

  2. Critical beta for analytical spheromak equilibria

    International Nuclear Information System (INIS)

    Freire, E.M.; Clemente, R.A.

    1985-01-01

    The Mercier criterion is applied to two analytical spheromak equilibria, one with a spherical separatrix and the other with a cylindrical one of variable elongation. The maximum beta, defined as the ratio between the plasma pressure and the magnetic pressure averaged over the plasma volume, for which the criterion is satisfied on every magnetic surface, has been obtained. In the spherical model the critical beta is 0.003, while in the cylindrical case it is a function of the elongation of the separatrix with a maximum of 0.083. (author)

  3. Solid-phase equilibria on Pluto's surface

    Science.gov (United States)

    Tan, Sugata P.; Kargel, Jeffrey S.

    2018-03-01

    Pluto's surface is covered by volatile ices that are in equilibrium with the atmosphere. Multicomponent phase equilibria may be calculated using a thermodynamic equation of state and, without additional assumptions, result in methane-rich and nitrogen-rich solid phases. The former is formed at temperature range between the atmospheric pressure-dependent sublimation and condensation points, while the latter is formed at temperatures lower than the sublimation point. The results, calculated for the observed 11 μbar atmospheric pressure and composition, are consistent with recent work derived from observations by New Horizons.

  4. Application of the 3D Iced-Ale method to equilibrium and stability problems of a magnetically confined plasma

    International Nuclear Information System (INIS)

    Barnes, D.C.; Brackbill, J.U.

    1977-01-01

    A numerical study of the equilibrium and stability properties of the Scyllac experiment at Los Alamos is described. The formulation of the numerical method, which is an extension of the ICED-ALE method to magnetohydrodynamic flow in three dimensions, is given. The properties of the method are discussed, including low computational diffusion, local conservation, and implicit formulation in the time variable. Also discussed are the problems encountered in applying boundary conditions and computing equilibria. The results of numerical computations of equilibria indicate that the helical field amplitudes must be doubled from their design values to produce equilibrium in the Scyllac experiment. This is consistent with other theoretical and experimental results

  5. Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model

    Science.gov (United States)

    Ni, Wenjie; Shi, Junping; Wang, Mingxin

    2018-06-01

    A diffusive Lotka-Volterra competition model with nonlocal intraspecific and interspecific competition between species is formulated and analyzed. The nonlocal competition strength is assumed to be determined by a diffusion kernel function to model the movement pattern of the biological species. It is shown that when there is no nonlocal intraspecific competition, the dynamics properties of nonlocal diffusive competition problem are similar to those of classical diffusive Lotka-Volterra competition model regardless of the strength of nonlocal interspecific competition. Global stability of nonnegative constant equilibria are proved using Lyapunov or upper-lower solution methods. On the other hand, strong nonlocal intraspecific competition increases the system spatiotemporal dynamic complexity. For the weak competition case, the nonlocal diffusive competition model may possess nonconstant positive equilibria for some suitably large nonlocal intraspecific competition coefficients.

  6. Phase equilibria in the iron oxide-cobalt oxide-phosphorus oxide system

    Science.gov (United States)

    De Guire, Mark R.; Prasanna, T. R. S.; Kalonji, Gretchen; O'Handley, Robert C.

    1987-01-01

    Two novel ternary compounds are noted in the present study of 1000 C solid-state equilibria in the Fe-Co-P-O system's Fe2O3-FePO4-Co3(Po4)2-CoO region: CoFe(PO4)O, which undergoes incongruent melting at 1130 C, and Co3Fe4(PO4)6, whose incongruent melting occurs at 1080 C. The liquidus behavior-related consequences of rapidly solidified cobalt ferrite formation from cobalt ferrite-phosphate melts are discussed with a view to spinel formation. It is suggested that quenching from within the spinel-plus-liquid region may furnish an alternative to quenching a homogeneous melt.

  7. Calculation of ethanol refining by means of extractive distillation with water using simulated data on phase equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Rosak, J; Mertl, I; Huml, M; Wichterle, I

    1980-01-01

    Available data on phase equilibria in binary mixtures pertaining to the system ethanol - water - impurities (7 compounds that represent the main impurities present in raw synthetic or fermentation ethanol) have been gathered for the computer calculation of a column to be used for the refining of ethanol. Missing experimental data on phase equilibria were supplied by simulation using the increment method UNIFAC which predicts phase equilibria on the basis of the chemical structure. All data about the behavior of binary mixtures were correlated by means of the NRTL method and the sets of constants thus obtained were then used in calculations of the column for the refining of ethanol. The results were compared with reality verified on industrial scale.

  8. Phase equilibria in the niobium-vanadium-hydrogen system

    Energy Technology Data Exchange (ETDEWEB)

    Bethin, J. (Grumman Aerospace Corp., Bethpage, NY (USA)); Welch, D.O. (Brookhaven National Lab., Upton, NY (USA)); Pick, M.A. (Commission of the European Communities, Abingdon (UK). JET Joint Undertaking)

    1990-01-01

    The effect of vanadium additions to niobium on the metal-hydrogen phase equilibria has been studied. Measurements of the equilibrium H{sub 2}(D{sub 2}) pressure-composition-temperature isotherms for Nb{sub 1-x}V{sub x} alloys with 0{le}x<0.2 were used to determine the depression of the {alpha} - {alpha}' critical temperature with increasing vanadium concentration. A simple lattice-fluid model guided reduction of the data. Changes in the triple point temperature as well as the shift of the {zeta} {yields} {epsilon} phase transition were determined by differential scanning calorimetry measurements. A rapid overall depression was found, of the order of 7 K (at.% substituted V){sup -1}, for the metal-hydrogen (deuterium) phase boundary structure when compared with the Nb-H system in the hydrogen concentration range of interest. The results explain the enhanced terminal solubility of hydrogen in this system found previously by other authors. The changes in the phase equilibria are discussed in terms of the effect of hydrogen trapping and compared with the results of a cluster-variation calculation for random-field systems of previous authors, taking into account a distribution of H-site energies due to alloying. (author).

  9. Cryptographically Blinded Games: Leveraging Players' Limitations for Equilibria and Profit

    DEFF Research Database (Denmark)

    Hubacek, Pavel; Park, Sunoo

    2014-01-01

    In this work we apply methods from cryptography to enable mutually distrusting players to implement broad classes of mediated equilibria of strategic games without trusted mediation. Our implementation uses a pre-play 'cheap talk' phase, consisting of non- binding communication between players...

  10. Proceeding of 1999-workshop on MHD computations 'study on numerical methods related to plasma confinement'

    Energy Technology Data Exchange (ETDEWEB)

    Kako, T.; Watanabe, T. [eds.

    2000-06-01

    This is the proceeding of 'study on numerical methods related to plasma confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. There are also various lectures on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. Separate abstracts were presented for 13 of the papers in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)

  11. High-pressure fluid phase equilibria phenomenology and computation

    CERN Document Server

    Deiters, Ulrich K

    2012-01-01

    The book begins with an overview of the phase diagrams of fluid mixtures (fluid = liquid, gas, or supercritical state), which can show an astonishing variety when elevated pressures are taken into account; phenomena like retrograde condensation (single and double) and azeotropy (normal and double) are discussed. It then gives an introduction into the relevant thermodynamic equations for fluid mixtures, including some that are rarely found in modern textbooks, and shows how they can they be used to compute phase diagrams and related properties. This chapter gives a consistent and axiomatic approach to fluid thermodynamics; it avoids using activity coefficients. Further chapters are dedicated to solid-fluid phase equilibria and global phase diagrams (systematic search for phase diagram classes). The appendix contains numerical algorithms needed for the computations. The book thus enables the reader to create or improve computer programs for the calculation of fluid phase diagrams. introduces phase diagram class...

  12. Ideal and resistive MHD stability of internal kink modes in circular and shaped tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.; Luetjens, H.; Vlad, G.

    1992-01-01

    Recent results for the MHD stability of internal kink modes in tokamaks are reviewed. In general, ideal stability is more restrictive than the conventionally cited limit β p p is the poloidal beta at the q = 1 surface). This holds, in particular, for shaped equilibria, where low shear in combination with elliptic shaping can drastically reduce the pressure limit. Also in resistive MHD, interchange effects are frequently destabilizing, and resistive stability at β p ≥0.05 is achieved, for circular section, only with a very restricted class of current profiles, and not at all for JET-shaped cross section. (author) 9 figs., 24 refs

  13. Phase equilibria of the Mo-Al-Ho ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yitai; Chen, Xiaoxian; Liu, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry

    2017-08-15

    Investigation into the reactions and phase equilibria of transition metal elements (i.e. Mo, Zr, Cr, V and Ti), Al and rare earths is academically and industrially important for the development of both refractory alloys and lightweight high-temperature materials. In this work, the equilibria of the Mo-Al-Ho ternary system at 773 K have been determined by using X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray analysis. A new ternary phase Al{sub 4}Mo{sub 2}Ho has been found and the other ternary phase Al{sub 43}Mo{sub 4}Ho{sub 6} is observed. Ten binary phases in the Al-Mo and Al-Ho systems, including Al{sub 17}Mo{sub 4} rather than Al{sub 4}Mo, have been determined to exist at 773 K. The homogeneity ranges of AlMo{sub 3} and Al{sub 8}Mo{sub 3} phase are 7.5 at.% and 1 at.%, respectively. According to the phase-disappearing method, the maximum solubility of Al in Mo is about 16 at.%.

  14. Ballooning mode stability for self-consistent pressure and current profiles at the H-mode edge

    International Nuclear Information System (INIS)

    Miller, R.L.; Lin-Liu, Y.R.; Osborne, T.H.; Taylor, T.S.

    1997-11-01

    The edge pressure gradient (H-mode pedestal) for computed equilibria in which the current density profile is consistent with the bootstrap current may not be limited by the first regime ballooning limit. The transition to second stability is easier for: higher elongation, intermediate triangularity, larger ratio, pedestal at larger radius, narrower pedestal width, higher q 95 , and lower collisionality

  15. Study of critical beta non-circular tokamak equilibria sustained in steady state by beam driven currents

    International Nuclear Information System (INIS)

    Okano, K.; Ogawa, Y.; Naitou, H.

    1988-07-01

    A new MHD-equilibrium/current-drive analysis code was developed to analyse the high beta tokamak equilibria consistent with the beam driven current profiles. In this new code, the critical beta equilibrium, which is stable against the ballooning mode, the kink mode and the Mercier mode, is determined first using MHD equilibrium and stability analysis codes (EQLAUS/ERATO). Then, the current drive parameters and the plasma parameters, required to sustain this critical beta equilibrium, are determined by iterative calculations. The beam driven current profiles are evaluated by the Fokker-Planck calculations on individual flux surfaces, where the toroidal effects on the beam ion and plasma electron trajectories are considered. The pressure calculation takes into account the beam ion and fast alpha components. A peculiarity of our new method is that the obtained solution is not only consistent with the MHD equilibrium but also consistent with the critical beta limit conditions, in the current profile and the pressure profile. Using this new method, β ∼ 21 % bean and β ∼ 6 % D-type critical beta equilibria were scanned for various parameters; the major radius, magnetic field, temperature, injection energy, etc. It was found that the achievable Q value for the bean type was always about 30 % larger than for the D-type cases, where Q = fusion power/beam power. With strong beanness, Q ∼ 6 for DEMO type tokamaks (∼500 MWth) and Q ∼ 20 for power reactor size (4.5 GWth) are achievable. On the other hand, the Q value would not exceed sixteen for the D-type machines. (author)

  16. Evolutionary stability concepts in a stochastic environment

    Science.gov (United States)

    Zheng, Xiu-Deng; Li, Cong; Lessard, Sabin; Tao, Yi

    2017-09-01

    Over the past 30 years, evolutionary game theory and the concept of an evolutionarily stable strategy have been not only extensively developed and successfully applied to explain the evolution of animal behaviors, but also widely used in economics and social sciences. Nonetheless, the stochastic dynamical properties of evolutionary games in randomly fluctuating environments are still unclear. In this study, we investigate conditions for stochastic local stability of fixation states and constant interior equilibria in a two-phenotype model with random payoffs following pairwise interactions. Based on this model, we develop the concepts of stochastic evolutionary stability (SES) and stochastic convergence stability (SCS). We show that the condition for a pure strategy to be SES and SCS is more stringent than in a constant environment, while the condition for a constant mixed strategy to be SES is less stringent than the condition to be SCS, which is less stringent than the condition in a constant environment.

  17. A Numerical Algorithm to find All Scalar Feedback Nash Equilibria

    NARCIS (Netherlands)

    Engwerda, J.C.

    2013-01-01

    Abstract: In this note we generalize a numerical algorithm presented in [9] to calculate all solutions of the scalar algebraic Riccati equations that play an important role in finding feedback Nash equilibria of the scalar N-player linear affine-quadratic differential game. The algorithm is based on

  18. Field line diversion properties of finite β Helias equilibria

    International Nuclear Information System (INIS)

    Hayashi, T.; Schwenn, U.; Strumberger, E.

    1992-03-01

    The diversion properties of the magnetic field outside the last closed magnetic surface of a Helias stellarator configuration are investigated for finite β-equilibria. The results support a divertor concept which has been developed from the diversion properties of the corresponding vacuum field. Cross-field transport is simulated by a simplified scrape-off layer (SOL) model. (author)

  19. Ternary (liquid + liquid) equilibria of {bis(trifluoromethylsulfonyl)-amide based ionic liquids + butan-1-ol + water}

    International Nuclear Information System (INIS)

    Marciniak, Andrzej; Wlazło, Michał; Gawkowska, Joanna

    2016-01-01

    Highlights: • Ternary (liquid + liquid) equilibria for 3 ionic liquid + butanol + water systems. • The influence of ionic liquid structure on phase diagrams is discussed. • Influence of IL structure on S and β for butanol/water separation is discussed. - Abstract: Ternary (liquid + liquid) phase equilibria for 3 systems containing bis(trifluoromethylsulfonyl)-amide ionic liquids (1-buthyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide, 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide, {1-(2-methoxyethyl)-1-methylpyrrolidinium bis(trifluorylsulfonyl)-amide) + butan-1-ol + water} have been determined at T = 298.15 K. The selectivity and solute distribution ratio were calculated for investigated systems and compared with literature data for other systems containing ionic liquids. In each system total solubility of butan-1-ol and low solubility of water in the ionic liquid is observed. The experimental results have been correlated using NRTL model. The influence of the structure of ionic liquid on phase equilibria, selectivity and solute distribution ratio is shortly discussed.

  20. A novel grid multiwing chaotic system with only non-hyperbolic equilibria

    Science.gov (United States)

    Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le

    2018-05-01

    The structure of the chaotic attractor of a system is mainly determined by the nonlinear functions in system equations. By using a new saw-tooth wave function and a new stair function, a novel complex grid multiwing chaotic system which belongs to non-Shil'nikov chaotic system with non-hyperbolic equilibrium points is proposed in this paper. It is particularly interesting that the complex grid multiwing attractors are generated by increasing the number of non-hyperbolic equilibrium points, which are different from the traditional methods of realising multiwing attractors by adding the index-2 saddle-focus equilibrium points in double-wing chaotic systems. The basic dynamical properties of the new system, such as dissipativity, phase portraits, the stability of the equilibria, the time-domain waveform, power spectrum, bifurcation diagram, Lyapunov exponents, and so on, are investigated by theoretical analysis and numerical simulations. Furthermore, the corresponding electronic circuit is designed and simulated on the Multisim platform. The Multisim simulation results and the hardware experimental results are in good agreement with the numerical simulations of the same system on Matlab platform, which verify the feasibility of this new grid multiwing chaotic system.

  1. Relative stability constants of the uranyl tropolonate system with neutral ligands in benzene

    Energy Technology Data Exchange (ETDEWEB)

    Degetto, S; Baracco, L; Marangoni, G [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi; Celon, E

    1976-01-01

    The relative formation constants K*sub(L) of some uranyl tropolonate adducts with neutral ligands L (L = cyclopentanone, pyridine, dimethyl sulphoxide, 4-chloropyridine N-oxide, 4-methylpyridine N-oxide, triphenylphosphine oxide, and triphenylarsine oxide) of general formula (U0/sub 2/(trop)/sub 2/L) (Htrop = tropolone) have been determined spectrophotometrically by studying the equilibria ((UO/sub 2/(trop)/sub 2/)/sub 2/) + 2L = 2 (UO/sub 2/(trop)/sub 2/L) in the benzene at 25/sup 0/C. The K*sub(L) sequence obtained can be used as a quantitative scale of donor ability of the various neutral ligands toward the common substrate. Other attempted qualitative correlations based on i.r., /sup 1/H n.m.r., and thermal measurements are compared and discussed.

  2. Helical equilibria and criteria for the kink instability of cylindrical tokamak

    International Nuclear Information System (INIS)

    Inoue, Sanae; Itoh, Kimitaka; Yoshikawa, Shoichi.

    1974-10-01

    Helical equilibria and criteria for the kink instability have been obtained numerically for various current distribution, including camel hump distribution. It is found that the unstable region expressed by q(a) is the largest in the case of uniform current. (auth.)

  3. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    Science.gov (United States)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  4. Relative Lyapunov Center Bifurcations

    DEFF Research Database (Denmark)

    Wulff, Claudia; Schilder, Frank

    2014-01-01

    Relative equilibria (REs) and relative periodic orbits (RPOs) are ubiquitous in symmetric Hamiltonian systems and occur, for example, in celestial mechanics, molecular dynamics, and rigid body motion. REs are equilibria, and RPOs are periodic orbits of the symmetry reduced system. Relative Lyapunov...... center bifurcations are bifurcations of RPOs from REs corresponding to Lyapunov center bifurcations of the symmetry reduced dynamics. In this paper we first prove a relative Lyapunov center theorem by combining recent results on the persistence of RPOs in Hamiltonian systems with a symmetric Lyapunov...... center theorem of Montaldi, Roberts, and Stewart. We then develop numerical methods for the detection of relative Lyapunov center bifurcations along branches of RPOs and for their computation. We apply our methods to Lagrangian REs of the N-body problem....

  5. Reduction of Islands in Full-pressure Stellarator Equilibria

    International Nuclear Information System (INIS)

    Hudson, S.R.; Monticello, D.A.; Reiman, A.H.

    2001-01-01

    The control of magnetic islands is a crucial issue in designing Stellarators. Islands are associated with resonant radial magnetic fields at rational rotational-transform surfaces and can lead to chaos and poor plasma confinement. In this article, we show that variations in the resonant fields of a full-pressure stellarator equilibrium can be related to variations in the boundary via a coupling matrix, and inversion of this matrix determines a boundary modification for which the island content is significantly reduced. The numerical procedure is described and the results of island optimization are presented. Equilibria with islands are computed using the Princeton Iterative Equilibrium Solver, and resonant radial fields are calculated via construction of quadratic-flux-minimizing surfaces. A design candidate for the National Compact Stellarator Experiment [Phys. Plasmas 8, 2001], which has a large island, is used to illustrate the technique. Small variations in the boundary shape are used to reduce island size and to reverse the phase of a major island chain

  6. Phase equilibria and phase structures of polymer blends

    International Nuclear Information System (INIS)

    Chalykh, Anatolii E; Gerasimov, Vladimir K

    2004-01-01

    Experimental, methodical and theoretical studies dealing with phase equilibria and phase structures of polymer blends are generalised. The general and specific features of the change in solubility of polymers with changes in the molecular mass and copolymer composition and upon the formation of three-dimensional cross-linked networks are described. The results of the effect of the prehistory on the phase structure and the non-equilibrium state of polymer blends are considered in detail.

  7. The stability of Z-pinches with equilibrium flows

    International Nuclear Information System (INIS)

    Howell, D.F.

    1999-01-01

    According to Ideal Magnetohydrodynamic (MHD) theory the Z-pinch is an inherently unstable magnetic configuration. However it is possible that there exist regimes of operation whereby the predicted instabilities may be reduced or even eliminated. We must look to effects normally ignored in the Ideal MHD model in order to predict such regimes. In this thesis various non-ideal effects will be studied, namely the inclusion of equilibrium flow and finite Larmor radius effects. Astrophysical jets, for example those seen to be emitted from active galactic nuclei, are seen to persist for a greater time than suggested by Ideal MHD before the onset of instabilities. It is postulated that one of the contributing factors to this enhanced stability is the presence of a sheared axial flow. In this thesis we study the stability properties of the Z-pinch where flow is present in the equilibrium. It is found that a sheared axial flow generally has a stabilising effect, the degree of which is determined by the equilibrium and flow profiles, but that absolute stability cannot be achieved due to the onset of the Kelvin-Helmholtz instability. The effect of adding rotation has also been studied. It is found that adding rotation changes the equilibrium density profiles from the static case, and that it always has a destabilising effect. Another postulated method of stabilising the Z-pinch is by increasing the ratio of the ion Larmor radius to the pinch radius, and it is seen to have a stabilising effect for some equilibria in the collisionless regime. In this thesis we study the effects of increasing the Larmor radius in the collisional regime using the Hall fluid model. It is found that for free boundary modes the stability properties are unchanged for experimentally realistic values of the Larmor radius, but for fixed boundary modes a small stabilising effect is noted for some equilibria. (author)

  8. Stability and Sensitive Analysis of a Model with Delay Quorum Sensing

    Directory of Open Access Journals (Sweden)

    Zhonghua Zhang

    2015-01-01

    Full Text Available This paper formulates a delay model characterizing the competition between bacteria and immune system. The center manifold reduction method and the normal form theory due to Faria and Magalhaes are used to compute the normal form of the model, and the stability of two nonhyperbolic equilibria is discussed. Sensitivity analysis suggests that the growth rate of bacteria is the most sensitive parameter of the threshold parameter R0 and should be targeted in the controlling strategies.

  9. Guiding Center Equations in Toroidal Equilibria

    International Nuclear Information System (INIS)

    White, Roscoe; Zakharov, Leonid

    2002-01-01

    Guiding center equations for particle motion in a general toroidal magnetic equilibrium configuration are derived using magnetic coordinates. Previous derivations made use of Boozer coordinates, in which the poloidal and toroidal angle variables are chosen so that the Jacobian is inversely proportional to the square of the magnetic field. It is shown that the equations for guiding center motion in any equilibrium possessing nested flux surfaces have exactly the same simple form as those derived in this special case. This allows the use of more spatially uniform coordinates instead of the Boozer coordinates, greatly increasing the accuracy of calculations in large beta and strongly shaped equilibria

  10. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  11. The free energy of Maxwell-Vlasov equilibria

    International Nuclear Information System (INIS)

    Morrison, P.J.; Pfirsch, D.

    1989-10-01

    A previously derived expression for the energy of arbitrary perturbations about arbitrary Vlasov-Maxwell equilibria is transformed into a very compact form. The new form is also obtained by a canonical transformation method for solving Vlasov's equation, which is based on Lie group theory. This method is simpler than the one used before and provides better physical insight. Finally a procedure is presented for determining the existence of negative-energy modes. In this context the question of why there is an accessibility constraint for the particles, but not for the fields, is discussed. 16 refs

  12. Phase Equilibria Relationships of High-Tc Superconductors

    International Nuclear Information System (INIS)

    Wong-Ng, Winnie

    2011-01-01

    As an integral part of a R and D program partially supported by the Electricity Delivery and Energy Reliability Office of DOE, we have determined phase equilibria data and phase diagrams for the three generations of superconductor materials: 1st generation, (Bi,Pb)-Sr-Ca- Cu-O systems; 2nd generation, Ba-R-Cu-O systems (R=lanthanides and yttrium); and 3rd generation, MgB2 systems. Our studies involved bulk materials, single crystals and thin films. This report gives a summary of our accomplishments, a list of publications, and 15 selected journal publications.

  13. Profile stabilization of tilt mode in a Field Reversed Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.W.; Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Barnes, D.C. [Los Alamos National Lab., NM (United States)

    1993-06-01

    The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.

  14. Profile stabilization of tilt mode in a Field Reversed Configuration

    International Nuclear Information System (INIS)

    Cobb, J.W.; Tajima, T.

    1993-06-01

    The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P(Ψ), are chosen, including ''hollow'' profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, β sep . The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed

  15. Principles and equations for measuring and interpreting protein stability: From monomer to tetramer.

    Science.gov (United States)

    Bedouelle, Hugues

    2016-02-01

    The ability to measure the thermodynamic stability of proteins with precision is important for both academic and applied research. Such measurements rely on mathematical models of the protein denaturation profile, i.e. the relation between a global protein signal, corresponding to the folding states in equilibrium, and the variable value of a denaturing agent, either heat or a chemical molecule, e.g. urea or guanidinium hydrochloride. In turn, such models rely on a handful of physical laws: the laws of mass action and conservation, the law that relates the protein signal and concentration, and the one that relates stability and denaturant value. So far, equations have been derived mainly for the denaturation profiles of homomeric proteins. Here, we review the underlying basic physical laws and show in detail how to derive model equations for the unfolding equilibria of homomeric or heteromeric proteins up to trimers and potentially tetramers, with or without folding intermediates, and give full demonstrations. We show that such equations cannot be derived for pentamers or higher oligomers except in special degenerate cases. We expand the method to signals that do not correspond to extensive protein properties. We review and expand methods for uncovering hidden intermediates of unfolding. Finally, we review methods for comparing and interpreting the thermodynamic parameters that derive from stability measurements for cognate wild-type and mutant proteins. This work should provide a robust theoretical basis for measuring the stability of complex proteins. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Construction of Subgame-Perfect Mixed-Strategy Equilibria in Repeated Games

    Directory of Open Access Journals (Sweden)

    Kimmo Berg

    2017-11-01

    Full Text Available This paper examines how to construct subgame-perfect mixed-strategy equilibria in discounted repeated games with perfect monitoring. We introduce a relatively simple class of strategy profiles that are easy to compute and may give rise to a large set of equilibrium payoffs. These sets are called self-supporting sets, since the set itself provides the continuation payoffs that are required to support the equilibrium strategies. Moreover, the corresponding strategies are simple as the players face the same augmented game on each round but they play different mixed actions after each realized pure-action profile. We find that certain payoffs can be obtained in equilibrium with much lower discount factor values compared to pure strategies. The theory and the concepts are illustrated in 2 × 2 games.

  17. Measurement and modeling of high-pressure (vapour + liquid) equilibria of (CO{sub 2} + alcohol) binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Jorge E.; Bejarano, Arturo [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Fuente, Juan C. de la, E-mail: juan.delafuente@usm.c [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Centro Regional de Estudios en Alimentos Saludables, Blanco 1623, Valparaiso (Chile)

    2010-05-15

    An apparatus based on a static-analytic method assembled in this work was utilized to perform high pressure (vapour + liquid) equilibria measurements with uncertainties estimated at <5%. Complementary isothermal (vapour + liquid) equilibria results are reported for the (CO{sub 2} + 1-propanol), (CO{sub 2} + 2-methyl-1-propanol), (CO{sub 2} + 3-methyl-1-butanol), and (CO{sub 2} + 1-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 12) MPa. For all the (CO{sub 2} + alcohol) systems, it was visually monitored to insure that there was no liquid immiscibility at the temperatures and pressures studied. The experimental results were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapour + liquid) equilibria compositions were found to be in good agreement with the experimental values with deviations for the mol fractions <0.12 and <0.05 for the liquid and vapour phase, respectively.

  18. Complete mode-set stability analysis of magnetically insulated ion diode equilibria

    International Nuclear Information System (INIS)

    Slutz, S.A.; Lemke, R.W.

    1993-01-01

    We present the first analysis of the stability of magnetically insulated ion diodes that is fully relativistic and includes electromagnetic perturbations both parallel and perpendicular to the applied magnetic field. Applying this formalism to a simple diode equilibrium model that neglects velocity shear and density gradients, we find a fast growing mode that has all of the important attributes of the low frequency mode observed in numerical simulations of magnetically insulated ion diodes, which may be a major cause of ion divergence. We identify this mode as a modified two-stream instability. Previous stability analyses indicate a variety of unstable modes, but none of these exhibit the same behavior as the low frequency mode observed in the simulations. In addition, we analyze a realistic diode equilibrium model that includes velocity shear and an electron density profile consistent with that observed in the numerical simulations. We find that the diocotron instability is reduced, but not fully quenched by the extension of the electron sheath to the anode. However, the inclusion of perturbations parallel to the applied magnetic field with a wavelength smaller than the diode height does eliminate growth of this instability. This may explain why the diocotron mode has been observed experimentally with proton sources, but not with LiF, since the turn on of LiF is not uniform

  19. Assessment of solid/liquid equilibria in the (U, Zr)O

    NARCIS (Netherlands)

    Mastromarino, S.; Seibert, AF; Hashem, E.; Ciccioli, A.; Prieur, Damien; Scheinost, Andreas C.; Stohr, S.; Lajarge, P; Boshoven, JG; Robba, D.; Ernstberger, M; Bottomley, D.; Manara, D

    2017-01-01

    Solid/liquid equilibria in the system UO2–ZrO2 are revisited in this work by laser heating coupled with fast optical thermometry. Phase transition points newly measured under inert gas are in fair agreement with the early measurements performed by Wisnyi et al., in 1957, the

  20. Studies of feedback stabilization of axisymmetric modes in deformable tokamak plasmas

    International Nuclear Information System (INIS)

    Ward, D.J.

    1991-01-01

    A new linear MHD stability code, NOVA-W, is described and applied to the study of the feedback stabilization of the axisymmetric mode in deformable tokamak plasma. The NOVA-W code is a modification of the non-variational MHD stability code NOVA that includes the effects of resistive passive conductors and active feedback circuits. The vacuum calculation has been reformulated in terms of the perturbed poloidal flux to allow the inclusion of perturbed toroidal currents outside the plasma. The boundary condition at the plasma-vacuum interface relates the instability displacement to the perturbed poloidal flux. This allows a solution of the linear MHD stability equations with the feedback effects included. The code has been tested for the case of passive stabilization against a simplified analytic model and against a different numerical calculation for a realistic tokamak configuration. The comparisons demonstrate the accuracy of the NOVA-W results. The NOVA-W code is used to examine the effects of plasma deformability on feedback stabilization. It is seen that plasmas with shaped cross sections have unstable motion different from a rigid shift. Plasma equilibria with large triangularity show particularly significant deviations from a uniform rigid shift. Furthermore, the placement of passive conductors is shown to modify the non-rigid components of the motion in a way that reduces the stabilizing effects of these conductors. The eigenfunction is also modified under the effects of active feedback. This deformation is seen to depend strongly on the position of the flux loops. These non-rigid components of the eigenfunction always serve to reduce the stabilizing effect of the active feedback system by reducing the measurable poloidal flux at the flux-loop locations

  1. Surface currents on the plasma-vacuum interface in MHD equilibria

    Science.gov (United States)

    Hanson, James

    2017-10-01

    The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the interface. While this surface current may be small in MHD equilibrium, it is readily computed in terms of the magnetic potentials in both the interior and exterior regions, evaluated on the surface. If only the external magnetic potential is known (as in VMEC), then the surface current can be computed from the discontinuity of the tangential field across the interface. Examples of the surface current for VMEC equilibria will be shown for a zero-pressure stellarator equilibrium. Field-line following of the vacuum magnetic field shows magnetic islands within the plasma region.

  2. Collisionless current sheet equilibria

    Science.gov (United States)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  3. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    International Nuclear Information System (INIS)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun

    2017-01-01

    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr 7 Ni 10 , ZrNi, ZrNi 5 , Zr 14 Cu 51 , and Zr 2 Cu 9 , show a remarkable ternary solubility. A new ternary compound named τ 3 (Zr 31.1-30.7 . Cu 28.5-40.3 Ni 40.4-29.0 ) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  4. Experimental investigation of phase equilibria in the Ni-Nb-V ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingjun; Yang, Shuiyuan; Wang, Cuiping [Xiamen Univ. (China). Dept. of Materials Science and Engineering; Xiamen Univ. (China). Fujian Provincial Key Lab. of Materials Genome; Zhang, Xianjie; Jiang, Hengxing; Shi, Zhan [Xiamen Univ. (China). Dept. of Materials Science and Engineering

    2017-09-15

    The phase equilibria of the Ni-Nb-V ternary system at 1000 C and 1200 C were established using electron probe microanalysis, X-ray diffraction and differential scanning calorimetry. The results of the investigation revealed that: (1) The Nb solubility in (Ni) and σ{sup '} phases was less than 10 at.%; (2) A ternary compound τ (NiNbV) was confirmed, in which V had a large solubility; (3) A new liquid region was evident at 1200 C, but was absent at 1000 C; (4) The lattice constants of Ni{sub 3}Nb and Ni{sub 6}Nb{sub 7} phase decreased with increase in V content in the Ni{sub 3}Nb and Ni{sub 6}Nb{sub 7}. The phase equilibria of the Ni-Nb-V ternary system will contribute to its thermodynamic assessment.

  5. Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks

    Directory of Open Access Journals (Sweden)

    Andreas Koulouris

    2013-01-01

    Full Text Available This article investigates the Multiple Equilibria Regulation (MER model, i.e., an agent-based simulation model, to represent opinion dynamics in social networks. It relies on a small set of micro-prerequisites (intra-individual balance and confidence bound, leading to emergence of (nonstationary macro-outcomes. These outcomes may refer to consensus, polarization or fragmentation of opinions about taxation (e.g., congestion pricing or other policy measures, according to the way communication is structured. In contrast with other models of opinion dynamics, it allows for the impact of both the regulation of intra-personal discrepancy and the interpersonal variability of opinions on social learning and network dynamics. Several simulation experiments are presented to demonstrate, through the MER model, the role of different network structures (complete, star, cellular automata, small-world and random graphs on opinion formation dynamics and the overall evolution of the system. The findings can help to identify specific topological characteristics, such as density, number of neighbourhoods and critical nodes-agents, that affect the stability and system dynamics. This knowledge can be used to better organize the information diffusion and learning in the community, enhance the predictability of outcomes and manage possible conflicts. It is shown that a small-world organization, which depicts more realistic aspects of real-life and virtual social systems, provides increased predictability and stability towards a less fragmented and more manageable grouping of opinions, compared to random networks. Such macro-level organizations may be enhanced with use of web-based technologies to increase the density of communication and public acceptability of policy measures.

  6. Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices

    International Nuclear Information System (INIS)

    Liao Shu; Wang Jin

    2012-01-01

    Highlights: ► Global dynamics of high dimensional dynamical systems. ► A systematic approach for global stability analysis. ► Epidemiological models of environment-dependent diseases. - Abstract: In this paper, we study the global dynamics of a class of mathematical epidemiological models formulated by systems of differential equations. These models involve both human population and environmental component(s) and constitute high-dimensional nonlinear autonomous systems, for which the global asymptotic stability of the endemic equilibria has been a major challenge in analyzing the dynamics. By incorporating the theory of Volterra–Lyapunov stable matrices into the classical method of Lyapunov functions, we present an approach for global stability analysis and obtain new results on some three- and four-dimensional model systems. In addition, we conduct numerical simulation to verify the analytical results.

  7. Stability and Hopf bifurcation in a delayed model for HIV infection of CD4{sup +}T cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai Liming [Department of Mathematics, Xinyang Normal University, Xinyang, 464000 Henan (China); Beijing Institute of Information Control, Beijing 100037 (China)], E-mail: lmcai06@yahoo.com.cn; Li Xuezhi [Department of Mathematics, Xinyang Normal University, Xinyang, 464000 Henan (China)

    2009-10-15

    In this paper, we consider a delayed mathematical model for the interactions of HIV infection and CD4{sup +}T cells. We first investigate the existence and stability of the Equilibria. We then study the effect of the time delay on the stability of the infected equilibrium. Criteria are given to ensure that the infected equilibrium is asymptotically stable for all delay. Moreover, by applying Nyquist criterion, the length of delay is estimated for which stability continues to hold. Finally by using a delay {tau} as a bifurcation parameter, the existence of Hopf bifurcation is also investigated. Numerical simulations are presented to illustrate the analytical results.

  8. Stability analysis of internal ideal modes in low-shear tokamaks

    International Nuclear Information System (INIS)

    Wahlberg, C.; Graves, J. P.

    2007-01-01

    The stability of internal, ideal modes in tokamaks with low magnetic shear in the plasma core is analyzed. For equilibria with large aspect ratio, a parabolic pressure profile and a flat q profile in the core, an exact solution of the ideal magnetohydrodynamic (MHD) stability equations is found. The solution includes the eigenfunctions and the complete spectra of two distinctly different MHD phenomena: A family of fast-growing, Mercier-unstable global eigenmodes localized in a low-shear region with q 1 in the core. In the latter case the solution in addition includes one unstable eigenmode, if beta is larger than a critical value depending on the width of the low-shear region and on the q-profile in the edge region

  9. Modelling of phase equilibria of glycol ethers mixtures using an association model

    DEFF Research Database (Denmark)

    Garrido, Nuno M.; Folas, Georgios; Kontogeorgis, Georgios

    2008-01-01

    Vapor-liquid and liquid-liquid equilibria of glycol ethers (surfactant) mixtures with hydrocarbons, polar compounds and water are calculated using an association model, the Cubic-Plus-Association Equation of State. Parameters are estimated for several non-ionic surfactants of the polyoxyethylene ...

  10. Resistive toroidal stability of internal kink modes in circular and shaped tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.; Luetjens, H.; Vlad, G.

    1991-12-01

    The linear resistive magnetohydrodynamical (MHD) stability of the n=1 internal kink mode in tokamaks is studied by toroidal computations. The stabilizing influence of small aspect ratio is confirmed, but it is found that shaping of the cross section influences the internal kink mode significantly. For finite pressure and small resistivity, curvature effects at the q=1 surface make the stability sensitively dependent on shape, and ellipticity (including JET shape) is destabilizing. Only a very restricted set of finite pressure equilibria is completely stable for q 0 <1. A typical result is that the resistive kink mode is slowed down by toroidal effects to a weak tearing/resistive interchange mode. It is suggested that weak resistive instabilities are stabilized during the ramp phase of the sawteeth by effects not included in the linear resistive MHD model. Possible mechanisms for triggering a sawtooth crash are discussed. (author) 18 figs., 34 refs

  11. Magnetohydrodynamic stability of spheromak plasma in spheroidal flux conserver

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Kamitani, Atsushi.

    1985-11-01

    The MHD equilibrium configurations of spheromak plasmas in a spheroidal flux conserver are determined by use of a pressure distribution whose derivative dp/dψ vanishes on the magnetic axis, and by use of an optimized distribution. Here p is the pressure and ψ is the flux function. These equilibria are shown to be stable for symmetric modes. The stability for localized modes is investigated by the Mercier criterion. The values of the maximum beta ratio β max are evaluated for both pressure distributions and are shown to become about two times larger by optimization. If the condition, q axis max are found to be less than 30 %. The oblate spheroidal flux conserver is shown to be better than the toroidal conserver with a rectangular cross section from the standpoint of stability. (author)

  12. The prediction and representation of phase equilibria and physicochemical properties in complex coal ash slag systems

    Energy Technology Data Exchange (ETDEWEB)

    E. Jak; A. Kondratiev; S. Christie; P.C. Hayes [Centre for Coal in Sustainable Development (CCSD), Brisbane (Australia)

    2003-07-01

    A range of problems in coal utilisation technologies, including ash slag flow in slagging gasifiers, deposit formation, slagging, fouling, fusibility tests, fluxing, blending etc, are related to the melting behaviour of the mineral matter in the coal. To assist with solving these practical issues i) thermodynamic modelling of phase equilibria, and ii) viscosity modelling studies are being undertaken at the Pyrometallurgy Research Centre (The University of Queensland, Australia) with support from the Collaborative Research Centre for Coal in Sustainable Development (CCSD). The thermodynamic modelling has been carried out using the computer system FactSage, which is used for the calculation of multi-phase slag / solid / gas / matte / alloy / salt equilibria in multi-component systems of industrial interest. A modified quasi-chemical solution model is used for the liquid slag phase. New model optimisations have been carried out, which have significantly improved the accuracy of the thermodynamic models for coal combustion processes. Viscosity modelling, using a modified Urbain formalism, is carried out in conjunction with FactSage calculations to predict the viscosities of fully liquid as well as heterogeneous, partly crystallised slags. Custom designed software packages are developed using these fundamental models for wider use by industrial researchers and engineers, and for incorporation as process control modules. The new custom-designed computer software package can be used to produce limiting operability diagrams for slag systems. These diagrams are used to describe phase equilibria and physico-chemical properties in complex slag systems. The approach is illustrated with calculations on the system SiO{sub 2}-Al{sub 2}O{sub 3}-FeO-Fe{sub 2}O{sub 3}-CaO at metallic iron saturation, slags produced in coal slagging gasifiers. 28 refs., 7 figs., 1 tab.

  13. A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry

    Science.gov (United States)

    Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew

    2012-01-01

    In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…

  14. Phase equilibria of Al3(Ti,V,Zr) intermetallic system

    International Nuclear Information System (INIS)

    Park, S.I.; Han, S.Z.; Choi, S.K.; Lee, H.M.

    1996-01-01

    Trialuminides such as DO 22 -structured Al 3 Ti are promising candidates as potential materials for elevated temperature applications because of their attractive high temperature strength and excellent oxidation resistance along with their low density. However, in the tetragonal structure, slip systems are restricted due to low symmetry and the primary deformation mode is twinning. And, therefore, monolithic trialuminide compounds have been very impractical to be used as structural materials. When transition elements such as Ti, V and Zr which constitute trialuminides are alloyed in aluminum, they have low solubilities and low diffusion coefficients in the Al matrix. If precipitated as trialuminide intermetallics, they maintain a small lattice mismatch with the Al matrix, which reduces the interfacial energy between matrix and precipitates. As a result, these precipitates would have a large coarsening resistance in the matrix. As most of the previous works have been concentrated on the microstructural stability and mechanical properties, thermochemical properties will be treated in this work. In this study, phase equilibria and diagrams of Al 3 (Ti,V,Zr) systems will be experimentally determined and then thermodynamically analyzed with a hope to extend to the Al-Al 3 (Ti,V,Zr) composite system. This approach will then be used as a guide for alloy design of Al-Al 3 (Ti,V,Zr) composite system

  15. Nash points, Ky Fan inequality and equilibria of abstract economies in Max-Plus and -convexity

    Science.gov (United States)

    Briec, Walter; Horvath, Charles

    2008-05-01

    -convexity was introduced in [W. Briec, C. Horvath, -convexity, Optimization 53 (2004) 103-127]. Separation and Hahn-Banach like theorems can be found in [G. Adilov, A.M. Rubinov, -convex sets and functions, Numer. Funct. Anal. Optim. 27 (2006) 237-257] and [W. Briec, C.D. Horvath, A. Rubinov, Separation in -convexity, Pacific J. Optim. 1 (2005) 13-30]. We show here that all the basic results related to fixed point theorems are available in -convexity. Ky Fan inequality, existence of Nash equilibria and existence of equilibria for abstract economies are established in the framework of -convexity. Monotone analysis, or analysis on Maslov semimodules [V.N. Kolokoltsov, V.P. Maslov, Idempotent Analysis and Its Applications, Math. Appl., volE 401, Kluwer Academic, 1997; V.P. Litvinov, V.P. Maslov, G.B. Shpitz, Idempotent functional analysis: An algebraic approach, Math. Notes 69 (2001) 696-729; V.P. Maslov, S.N. Samborski (Eds.), Idempotent Analysis, Advances in Soviet Mathematics, Amer. Math. Soc., Providence, RI, 1992], is the natural framework for these results. From this point of view Max-Plus convexity and -convexity are isomorphic Maslov semimodules structures over isomorphic semirings. Therefore all the results of this paper hold in the context of Max-Plus convexity.

  16. Spectroscopic studies on U(VI)-salicylate complex formation with multiple equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Cha, W.; Cho, H.R.; Jung, E.C.; Park, K.K.; Kim, W.H.; Song, K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of). Nuclear Chemistry Research Div.

    2012-07-01

    This study investigates multiple equilibria related to the formation of the U(VI)-salicylate complex in a pH range of 3.0-5.5 using UV-Vis absorption and fluorescence measurement techniques. The absorbance changes at the characteristic charge-transfer bands of the complex were monitored, and the results indicated the presence of multiple equilibria and the formation of both 1:1 and 1:2 (U(VI):salicylate) complexes possessing bi-dentate chelate structures. The determined step-wise formation constants (log K{sub 1:1} and log K{sub 1:2}) are as follows: 12.5 {+-} 0.1 and 11.4 {+-} 0.2 for salicylate, 11.2 {+-} 0.1 and 10.1 {+-} 0.2 for 5-sulfosalicylate, and 12.4 {+-} 0.1 and 11.4 {+-} 0.1 for 2,6-dihydroxybenzoate, respectively. The molar absorptivities of the complexes are also provided. Furthermore, time-resolved laser-induced luminescence spectra of U(VI) species demonstrate the presence of both a dynamic and static quenching process upon the addition of a salicylate ligand. Particularly for the luminescent hydroxouranyl species, a strong static quenching effect is observed. The results suggest that both the UO{sub 2}(HSal){sup +} and the U(VI)-Sal chelate complexes serve as ground-state complexes that induce static quenching. The Stern-Volmer parameters were derived based on the measured luminescent intensity and lifetime data. The static quenching constants (log K{sub S}) obtained are 3.3 {+-} 0.1, 4.9 {+-} 0.1, and 4.4 {+-} 0.1 for UO{sub 2}{sup 2+}, (UO{sub 2}){sub 2}(OH){sub 2}{sup 2+} and (UO{sub 2}){sub 3}(OH){sub 5}{sup +}, respectively. (orig.)

  17. Spectroscopic studies on U(VI)-salicylate complex formation with multiple equilibria

    International Nuclear Information System (INIS)

    Cha, W.; Cho, H.R.; Jung, E.C.; Park, K.K.; Kim, W.H.; Song, K.

    2012-01-01

    This study investigates multiple equilibria related to the formation of the U(VI)-salicylate complex in a pH range of 3.0-5.5 using UV-Vis absorption and fluorescence measurement techniques. The absorbance changes at the characteristic charge-transfer bands of the complex were monitored, and the results indicated the presence of multiple equilibria and the formation of both 1:1 and 1:2 (U(VI):salicylate) complexes possessing bi-dentate chelate structures. The determined step-wise formation constants (log K 1:1 and log K 1:2 ) are as follows: 12.5 ± 0.1 and 11.4 ± 0.2 for salicylate, 11.2 ± 0.1 and 10.1 ± 0.2 for 5-sulfosalicylate, and 12.4 ± 0.1 and 11.4 ± 0.1 for 2,6-dihydroxybenzoate, respectively. The molar absorptivities of the complexes are also provided. Furthermore, time-resolved laser-induced luminescence spectra of U(VI) species demonstrate the presence of both a dynamic and static quenching process upon the addition of a salicylate ligand. Particularly for the luminescent hydroxouranyl species, a strong static quenching effect is observed. The results suggest that both the UO 2 (HSal) + and the U(VI)-Sal chelate complexes serve as ground-state complexes that induce static quenching. The Stern-Volmer parameters were derived based on the measured luminescent intensity and lifetime data. The static quenching constants (log K S ) obtained are 3.3 ± 0.1, 4.9 ± 0.1, and 4.4 ± 0.1 for UO 2 2+ , (UO 2 ) 2 (OH) 2 2+ and (UO 2 ) 3 (OH) 5 + , respectively. (orig.)

  18. Acquisition and evaluation of thermodynamic data for morenosite-retgersite equilibria at 0.1 MPa

    Science.gov (United States)

    Chou, I.-Ming; Seal, R.R.

    2003-01-01

    Metal-sulfate salts in mine drainage environments commonly occur as solid solutions containing Fe, Cu, Mg, Zn, Al, Mn, Ni, Co, Cd, and other elements. Thermodynamic data for some of the end-member salts containing Fe, Cu, Zn, and Mg have been collected and evaluated previously, and the present study extends to the system containing Ni. Morenosite (NiSO4-7H2O)-retgersite (NiSO4-6H2O) equilibria were determined along five humidity buffer curves at 0.1 MPa and between 5 and 22??C. Reversals along these humidity-buffer curves yield In K = 17.58-6303.35/T, where K is the equilibrium constant, and T is temperature in K. The derived standard Gibbs free energy of reaction is 8.84 kJ/mol, which agrees very well with the values of 8.90, 8.83, and 8.85 kJ/mol based on the vapor pressure measurements of Schumb (1923), Bonnell and Burridge (1935), and Stout et al. (1966). respectively. This value also agrees reasonably well with the values of 8.65 and 9.56 kJ/mol calculated from the data compiled by Wagman et al. (1982) and DeKock (1982), respectively. The temperature-humidity relationships defined by this study for dehydration equilibria between morenosite and retgersite explain the more common occurrence of retgersite relative to morenosite in nature.

  19. Thermodynamic modelling of phase equilibria in Al–Ga–P–As system

    Indian Academy of Sciences (India)

    A generalized thermodynamic expression of the liquid Al–Ga–P–As alloys is used in conjunction with the solid solution model in determining the solid–liquid equilibria at 1173 K and 1273 K. The liquid solution model contains thirtyseven parameters. Twentyfour of them pertain to those of the six constituent binaries, twelve ...

  20. Social Interactions under Incomplete Information: Games, Equilibria, and Expectations

    Science.gov (United States)

    Yang, Chao

    My dissertation research investigates interactions of agents' behaviors through social networks when some information is not shared publicly, focusing on solutions to a series of challenging problems in empirical research, including heterogeneous expectations and multiple equilibria. The first chapter, "Social Interactions under Incomplete Information with Heterogeneous Expectations", extends the current literature in social interactions by devising econometric models and estimation tools with private information in not only the idiosyncratic shocks but also some exogenous covariates. For example, when analyzing peer effects in class performances, it was previously assumed that all control variables, including individual IQ and SAT scores, are known to the whole class, which is unrealistic. This chapter allows such exogenous variables to be private information and models agents' behaviors as outcomes of a Bayesian Nash Equilibrium in an incomplete information game. The distribution of equilibrium outcomes can be described by the equilibrium conditional expectations, which is unique when the parameters are within a reasonable range according to the contraction mapping theorem in function spaces. The equilibrium conditional expectations are heterogeneous in both exogenous characteristics and the private information, which makes estimation in this model more demanding than in previous ones. This problem is solved in a computationally efficient way by combining the quadrature method and the nested fixed point maximum likelihood estimation. In Monte Carlo experiments, if some exogenous characteristics are private information and the model is estimated under the mis-specified hypothesis that they are known to the public, estimates will be biased. Applying this model to municipal public spending in North Carolina, significant negative correlations between contiguous municipalities are found, showing free-riding effects. The Second chapter "A Tobit Model with Social

  1. Thermodynamic stability and guest distribution of CH4/N2/CO2 mixed hydrates for methane hydrate production using N2/CO2 injection

    International Nuclear Information System (INIS)

    Lim, Dongwook; Ro, Hyeyoon; Seo, Yongwon; Seo, Young-ju; Lee, Joo Yong; Kim, Se-Joon; Lee, Jaehyoung; Lee, Huen

    2017-01-01

    Highlights: • We examine the thermodynamic stability and guest distribution of CH 4 /N 2 /CO 2 mixed hydrates. • Phase equilibria of the CH 4 /N 2 /CO 2 mixed hydrates were measured to determine the thermodynamic stability. • The N 2 /CO 2 ratio of the hydrate phase is almost constant despite the enrichment of CO 2 in the hydrate phase. • 13 C NMR results indicate the preferential occupation of N 2 and CO 2 in the small and large cages of sI hydrates, respectively. - Abstract: In this study, thermodynamic stability and cage occupation behavior in the CH 4 – CO 2 replacement, which occurs in natural gas hydrate reservoirs by injecting flue gas, were investigated with a primary focus on phase equilibria and composition analysis. The phase equilibria of CH 4 /N 2 /CO 2 mixed hydrates with various compositions were measured to determine the thermodynamic stability of gas hydrate deposits replaced by N 2 /CO 2 gas mixtures. The fractional experimental pressure differences (Δp/p) with respect to the CSMGem predictions were found to range from −0.11 to −0.02. The composition analysis for various feed gas mixtures with a fixed N 2 /CO 2 ratio (4.0) shows that CO 2 is enriched in the hydrate phase, and the N 2 /CO 2 ratio in the hydrate phase is independent of the feed CH 4 fractions. Moreover, 13 C NMR measurements indicate that N 2 molecules preferentially occupy the small 5 12 cages of sI hydrates while the CO 2 molecules preferentially occupy the large 5 12 6 2 cages, resulting in an almost constant area ratio of CH 4 molecules in the large to small cages of the CH 4 /N 2 /CO 2 mixed hydrates. The overall experimental results provide a better understanding of stability conditions and guest distributions in natural gas hydrate deposits during CH 4 – flue gas replacement.

  2. Simulation of the high-pressure phase equilibria of hydrocarbon-water/brine systems

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan; Guo, Tian-Min

    1996-01-01

    The major objectives of this work are: (1) extend the modified Patel-Teja (MPT) equation of state proposed for aqueous electrolyte systems (Zuo and Guo, 1991) to describe the liquid-liquid and vapor-liquid-liquid equilibria of hydrocarbon-water/brine systems through introducing an unconventional...

  3. Analysis of stability and Hopf bifurcation for a delayed logistic equation

    International Nuclear Information System (INIS)

    Sun Chengjun; Han Maoan; Lin Yiping

    2007-01-01

    The dynamics of a logistic equation with discrete delay are investigated, together with the local and global stability of the equilibria. In particular, the conditions under which a sequence of Hopf bifurcations occur at the positive equilibrium are obtained. Explicit algorithm for determining the stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation are derived by using the theory of normal form and center manifold [Hassard B, Kazarino D, Wan Y. Theory and applications of Hopf bifurcation. Cambridge: Cambridge University Press; 1981.]. Global existence of periodic solutions is also established by using a global Hopf bifurcation result of Wu [Symmetric functional differential equations and neural networks with memory. Trans Amer Math Soc 350:1998;4799-38.

  4. Binary liquid-liquid equilibria of aniline-paraffin and furfural-paraffin systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, S.C.; Maity, S.; Ganguli, K.; Ray, P. (Calcutta Univ., (India))

    1991-12-01

    Liquid-liquid-equilibria (L-L-E) of hydrocarbon containing systems are of considerable commercial importance to refineries. But prediction of L-L-E of such systems is extremely difficult owing to the complex nature of the petroleum fluids. For treating such complex mixtures, a continuous component method is appropriate and for representing such liquids, a group contribution model like the UNIFAC is extremely convenient. It is, however, necessary to determine the appropriate group interaction parameters, and also to test the applicability of the UNIFAC method to these cases. Binary liquid-liquid-equilibria data for several aniline-paraffin and furfural-paraffin systems have been taken. These data along with data for other aniline-hydrocarbon and furfural-hydrocarbon systems from literature have been correlated using the UNIFAC model. The UNIFAC group interaction parameters have been found to have a linear temperature dependence. The CH{sub 2} groups in cyclo and non-cyclo paraffins require different interaction parameters. It was also found that a scaling of the combinatorial term is necessary for higher molecular weight hydrocarbons. 13 refs., 12 figs., 5 tabs.

  5. Fusion burn equilibria sensitive to the ratio between energy and helium transport

    NARCIS (Netherlands)

    Jakobs, M.A.; Lopes Cardozo, N.J.; Jaspers, R.J.E.

    2014-01-01

    An analysis of the burn equilibria of fusion reactors of the tokamak family is presented. The global (zero-dimensional) analysis is self-consistent in that it takes into account the dependence of the energy confinement on the variables of the burning plasma, such as temperature and density.

  6. Existence of equilibria in quantum Bertrand-Edgeworth duopoly game

    Science.gov (United States)

    Sekiguchi, Yohei; Sakahara, Kiri; Sato, Takashi

    2012-12-01

    Both classical and quantum version of two models of price competition in duopoly market, the one is realistic and the other is idealized, are investigated. The pure strategy Nash equilibria of the realistic model exists under stricter condition than that of the idealized one in the classical form game. This is the problem known as Edgeworth paradox in economics. In the quantum form game, however, the former converges to the latter as the measure of entanglement goes to infinity.

  7. Computation of multi-region relaxed magnetohydrodynamic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, S. R.; Lazerson, S. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.; Nessi, G. von [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2012-11-15

    We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed manner suitable for computation. The energy-functional is discretized using a mixed finite-element, Fourier representation for the magnetic vector potential and the equilibrium geometry; and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC. Convergence studies with respect to radial and Fourier resolution are presented.

  8. Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Johnson, J.L.; Dalhed, H.E.; Greene, J.M.

    1978-07-01

    Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given

  9. Assessing the relative stabilities of engineered hemoglobins using electrospray mass spectrometry.

    Science.gov (United States)

    Apostol, I

    1999-07-15

    An ion trap mass spectrometer equipped with an electrospray source was used to examine the relative thermodynamic stabilities of various hemoglobins with respect to both tetramer dissociation and hemin dissociation. The results demonstrated that the stability of hemoglobin molecules can be differentiated by the amount of applied collision-induced dissociation (CID) energy necessary to break up the intact tetramer into its constituent globins. The stability of the intact tetramer was affected by single mutations in the beta-globins. The stabilities of the constituent hologlobins were assessed via trap CID of selected ions. The results demonstrated the importance of the contributions of the hologlobin components to the stability of the intact tetramer. Genetic fusion of two alpha-globins, through the introduction of a single glycine residue between the C-terminus of one alpha-chain and the N-terminus of the second, significantly increased the stability of the hemoglobin pseudo-tetramer. Chemical crosslinking of the beta-globins in addition to genetic fusion of alpha-globins further stabilized the hemoglobin molecule. A dihemoglobin molecule produced by the genetic fusion of two di-alpha-globins with a flexible linker demonstrated a decreased stability relative to the corresponding monohemoglobin. Copyright 1999 Academic Press.

  10. Behavior of magnetic islands in 3D MHD equilibria of helical devices

    International Nuclear Information System (INIS)

    Hayashi, T.; Sato, T.; Nakajima, N.

    1994-09-01

    Magnetic island formation in three-dimensional finite-β equilibria in the H-1 Heliac is studied by using the HINT code. It is found that the size of a dangerous island should increase with β but that a destruction of the equilibrium at low β is avoided because the rotational transform evolves to exclude the rational surface concerned. At higher β there is evidence of near-resonant flux surface deformations which may lead to an equilibrium limit. A reconnected equilibrium at still higher β exhibits a double island structure which is similar to homoclinic phase portraits which have been observed after separatrix reconnection in Hamiltonian systems. Physical mechanism of the island formation in finite-β helical equilibria is investigated to confirm there are cases where the global effect of the Pfirsch-Schlueter currents is important. The earlier theory is extended to elucidate the occurence of the complete self-healing of island when the resistive interchange criterion satisfied. (author)

  11. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun [Xiamen Univ. (China). College of Materials and Fujian Provincial Key Lab. of Materials Genome

    2017-08-15

    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr{sub 7}Ni{sub 10}, ZrNi, ZrNi{sub 5}, Zr{sub 14}Cu{sub 51}, and Zr{sub 2}Cu{sub 9}, show a remarkable ternary solubility. A new ternary compound named τ{sub 3} (Zr{sub 31.1-30.7} . Cu{sub 28.5-40.3}Ni{sub 40.4-29.0}) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  12. Inefficient equilibria in transition economy

    Directory of Open Access Journals (Sweden)

    Sergei Guriev

    1999-01-01

    Full Text Available The paper studies a general equilibrium in an economy where all market participants face a bid-ask spread. The spread may be caused by indirect business taxes, middlemen rent-seeking, delays in payments or liquidity constraints or price uncertainty. Wherever it comes from the spread causes inefficiency of the market equilibrium. We discuss some institutions that can decrease the inefficiency. One is second currency (barter exchange in the inter-firm transactions. It is shown that the general equilibrium in an economy with second currency is effective though is still different from Arrow–Debreu equilibrium. Another solution can be introduction of mutual trade credit. In the economy with trade credit there are multiple equilibria that are more efficient than original bid-ask spread but still not as efficient as Arrow–Debreu one, too. The implications for firms' integration and applicability to Russian economy are discussed.

  13. Description of gas hydrates equilibria in sediments using experimental data of soil water potential

    Energy Technology Data Exchange (ETDEWEB)

    Istomin, V. [NOVATEK, Moscow (Russian Federation); Chuvilin, E. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geology; Makhonina, N.; Kvon, V. [VNIIGAZ, Moscow (Russian Federation); Safonov, S. [Schlumberger Moscow Research, Moscow (Russian Federation)

    2008-07-01

    Analytical relationships have been developed between hydrate dissociation pressure and vapor pressure above the pore water surface. In addition, experiments have been discussed in numerous publications on the effect of narrow interconnected throats between pores on clathrate dissociation conditions in porous media. This paper presented an approach that improved upon the available thermodynamic methods for calculation of hydrate phase equilibria. The approach took into account the properties of pore water in natural sediments including three-phase equilibrium of gas-pore water-gas hydrate in a similar way as for unfrozen water in geocryology science. The purpose of the paper was to apply and adapt geocryology and soil physics method to the thermodynamic calculation of non-clathrated water content in sediments. It answered the question of how to estimate the non-clathrated water content if pore water potential was known. The paper explained the thermodynamics of water phase in porous media including the thermodynamic properties of supercooled water, the thermodynamic properties of pore water and pore ice in sediments, and the phase equilibria of pore water. The paper also discussed the quantitative techniques that were utilized for determination of unfrozen water content in sediments and its dependence on temperature variation. These included contact-saturation, calorimetric, dielectric, nuclear magnetic resonance, and others. The thermodynamic calculations of pore water phase equilibria were also presented. 30 refs., 5 tabs., 8 figs.

  14. (Liquid + liquid) equilibria for (water + 1-propanol or acetone + β-citronellol) at different temperatures

    International Nuclear Information System (INIS)

    Li, Hengde; Han, Yongtao; Huang, Cheng; Yang, Chufen

    2015-01-01

    Graphical abstract: (Liquid + liquid) equilibrium data for systems composed of β-citronellol and aqueous 1-propanol or acetone are presented. Distribution ratios of 1-propanol and acetone in the mixtures are examined. The effect of the temperature on the ternary (liquid + liquid) equilibria is evaluated and discussed. - Highlights: • Ternary (liquid + liquid) equilibria containing β-citronellol are presented. • Distribution ratios of 1-propanol and acetone in the mixtures are examined. • The effect on the temperature of the systems is evaluated and discussed. - Abstract: On this paper, experimental (liquid + liquid) equilibrium (LLE) results are presented for systems composed of β-citronellol and aqueous 1-propanol or acetone. To evaluate the phase separation properties of β-citronellol in aqueous mixtures, LLE values for the ternary systems (water + 1-propanol + β-citronellol) and (water + acetone + β-citronellol) were determined with a tie-line method at T = (283.15, 298.15, and 313.15 ± 0.02) K and atmospheric pressure. The reliability of the experimental tie-lines was verified by the Hand and Bachman equations. Ternary phase diagrams, distribution ratios of 1-propanol and acetone in the mixtures are shown. The effect of the temperature on the ternary (liquid + liquid) equilibria was examined and discussed. The experimental LLE values were satisfactorily correlated by extended UNIQUAC and modified UNIQUAC models

  15. Stability analysis for the Big Dee upgrade of the Doublet III tokamak

    International Nuclear Information System (INIS)

    Helton, F.J.; Luxon, J.L.

    1987-01-01

    Ideal magnetohydrodynamic stability analysis has been carried out for configurations expected in the Big Dee tokamak, an upgrade of the Doublet III tokamak into a non-circular cross-section device which began operation early in 1986. The results of this analysis support theoretical predictions as follows: Since the maximum value of beta stable to ballooning and Mercier modes, which we denote β c , increases with inverse aspect ratio, elongation and triangularity, the Big Dee is particularly suited to obtain high values of β c and there exist high β c Big Dee equilibria for large variations in all relevant plasma parameters. The beta limits for the Big Dee are consistent with established theory as summarized in present scaling laws. High beta Big Dee equilibria are continuously accessible when approached through changes in all relevant input parameters and are structurally stable with respect to variations of input plasma parameters. Big Dee beta limits have a smooth dependence on plasma parameters such as β p and elongation. These calculations indicate that in the actual running of the device the Big Dee high beta equilibria should be smoothly accessible. Theory predicts that the limiting plasma parameters, such as beta, total plasma current and plasma pressure, which can be obtained within the operating limits of the Big Dee are reactor relevant. Thus the Big Dee should be able to use its favourable ideal MHD scaling and controlled plasma shaping to attain reactor relevant parameters in a moderate sized device. (author)

  16. Phase equilibria for mixtures containing very many components. development and application of continuous thermodynamics for chemical process design

    International Nuclear Information System (INIS)

    Cotterman, R.L.; Bender, R.; Prausnitz, J.M.

    1984-01-01

    For some multicomponent mixtures, where detailed chemical analysis is not feasible, the compositio of the mixture may be described by a continuous distribution function of some convenient macroscopic property suc as normal boiling point or molecular weight. To attain a quantitative description of phase equilibria for such mixtures, this work has developed thermodynamic procedures for continuous systems; that procedure is called continuous thermodynamics. To illustrate, continuous thermodynamics is used to calculate dew points for natural-gas mixtures, solvent loss in a high-pressure absorber, and liquid-liquid phase equilibria in a polymer fractionation process. Continuous thermodynamics provides a rational method for calculating phase equilibria for those mixtures where complete chemical analysis is not available but where composition can be given by some statistical description. While continuous thermodynamics is only the logical limit of the well-known pseudo-component method, it is more efficient than that method because it is less arbitrary and it often requires less computer time

  17. Linear and nonlinear kinetic-stability studies in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.; Chance, M.S.; Chen, L.; Krommes, J.A.; Lee, W.W.; Rewoldt, G.

    1982-09-01

    This paper presents results of theoretical investigations on important linear kinetic properties of low frequency instabilities in toroidal systems and on nonlinear processes which could significantly influence their impact on anomalous transport. Analytical and numerical methods and also particle simulations have been employed to carry out these studies. In particular, the following subjects are considered: (1) linear stability analysis of kinetic instabilities for realistic tokamak equilibria and the application of such calculations to the PDX and PLT tokamak experiments including the influence of a hot beam-ion component; (2) determination of nonlinearly saturated, statistically steady states of three interacting drift modes; and (3) gyrokinetic particle simulation of drift instabilities

  18. Thermodynamic foundations of applications of ab initio methods for determination of the adsorbate equilibria: hydrogen at the GaN(0001) surface.

    Science.gov (United States)

    Kempisty, Pawel; Strąk, Paweł; Sakowski, Konrad; Kangawa, Yoshihiro; Krukowski, Stanisław

    2017-11-08

    Thermodynamic foundations of ab initio modeling of vapor-solid and vapor-surface equilibria are introduced. The chemical potential change is divided into enthalpy and entropy terms. The enthalpy path passes through vapor-solid transition at zero temperature. The entropy path avoids the singular point at zero temperature passing a solid-vapor transition under normal conditions, where evaporation entropy is employed. In addition, the thermal changes are calculated. The chemical potential difference contribution of the following terms: vaporization enthalpy, vaporization entropy, the temperature-entropy related change, the thermal enthalpy change and mechanical pressure is obtained. The latter term is negligibly small for the pressure typical for epitaxy. The thermal enthalpy change is two orders smaller than the first three terms which have to be taken into account explicitly. The configurational vaporization entropy change is derived for adsorption processes. The same formulation is derived for vapor-surface equilibria using hydrogen at the GaN(0001) surface as an example. The critical factor is the dependence of the enthalpy of evaporation (desorption energy) on the pinning of the Fermi level bringing a drastic change of the value from 2.24 eV to -2.38 eV. In addition it is shown that entropic contributions considerable change the hydrogen equilibrium pressure over the GaN(0001) surface by several orders of magnitude. Thus a complete and exact formulation of vapor-solid and vapor-surface equilibria is presented.

  19. Experimental investigation of undesired stable equilibria in pumpkin shape super-pressure balloon designs

    Science.gov (United States)

    Schur, W. W.

    2004-01-01

    Excess in skin material of a pneumatic envelope beyond what is required for minimum enclosure of a gas bubble is a necessary but by no means sufficient condition for the existence of multiple equilibrium configurations for that pneumatic envelope. The very design of structurally efficient super-pressure balloons of the pumpkin shape type requires such excess. Undesired stable equilibria in pumpkin shape balloons have been observed on experimental pumpkin shape balloons. These configurations contain regions with stress levels far higher than those predicted for the cyclically symmetric design configuration under maximum pressurization. Successful designs of pumpkin shape super-pressure balloons do not allow such undesired stable equilibria under full pressurization. This work documents efforts made so far and describes efforts still underway by the National Aeronautics and Space Administration's Balloon Program Office to arrive on guidance on the design of pumpkin shape super-pressure balloons that guarantee full and proper deployment.

  20. Data Requirements and Modeling for Gas Hydrate-Related Mixtures and a Comparison of Two Association Models

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Aloupis, Georgios; Kontogeorgis, Georgios M.

    2017-01-01

    the performance of the CPA and sPC-SAFT EOS for modeling the fluid-phase equilibria of gas hydrate-related systems and will try to explore how the models can help in suggesting experimental measurements. These systems contain water, hydrocarbon (alkane or aromatic), and either methanol or monoethylene glycol...... parameter sets have been chosen for the sPC-SAFT EOS for a fair comparison. The comparisons are made for pure fluid properties, vapor liquid-equilibria, and liquid liquid equilibria of binary and ternary mixtures as well as vapor liquid liquid equilibria of quaternary mixtures. The results show, from...

  1. Assessment of solid/liquid equilibria in the (U, Zr)O2+y system

    Science.gov (United States)

    Mastromarino, S.; Seibert, A.; Hashem, E.; Ciccioli, A.; Prieur, D.; Scheinost, A.; Stohr, S.; Lajarge, P.; Boshoven, J.; Robba, D.; Ernstberger, M.; Bottomley, D.; Manara, D.

    2017-10-01

    Solid/liquid equilibria in the system UO2sbnd ZrO2 are revisited in this work by laser heating coupled with fast optical thermometry. Phase transition points newly measured under inert gas are in fair agreement with the early measurements performed by Wisnyi et al., in 1957, the only study available in the literature on the whole pseudo-binary system. In addition, a minimum melting point is identified here for compositions near (U0.6Zr0.4)O2+y, around 2800 K. The solidus line is rather flat on a broad range of compositions around the minimum. It increases for compositions closer to the pure end members, up to the melting point of pure UO2 (3130 K) on one side and pure ZrO2 (2970 K) on the other. Solid state phase transitions (cubic-tetragonal-monoclinic) have also been observed in the ZrO2-rich compositions X-ray diffraction. Investigations under 0.3 MPa air (0.063 MPa O2) revealed a significant decrease in the melting points down to 2500 K-2600 K for increasing uranium content (x(UO2)> 0.2). This was found to be related to further oxidation of uranium dioxide, confirmed by X-ray absorption spectroscopy. For example, a typical oxidised corium composition U0.6Zr0.4O2.13 was observed to solidify at a temperature as low as 2493 K. The current results are important for assessing the thermal stability of the system fuel - cladding in an oxide based nuclear reactor, and for simulating the system behaviour during a hypothetical severe accident.

  2. Solid-Liquid Equilibria in Systems [Cxmim][Tf2N] with Diethylamine

    Czech Academy of Sciences Publication Activity Database

    Rotrekl, Jan; Vrbka, P.; Sedláková, Zuzana; Wagner, Zdeněk; Jacquemin, J.; Bendová, Magdalena

    2015-01-01

    Roč. 87, č. 5 (2015), s. 453-460 ISSN 0033-4545. [International Symposium on Solubility Phenomena 2014. Karlsruhe, 20.07.2014-24.07.2014] R&D Projects: GA MŠk(CZ) LD14094; GA MŠk LG13060 Institutional support: RVO:67985858 Keywords : ionic liquids * solid-liquid equilibria * COSMO-RS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.615, year: 2015

  3. Ternary liquid-liquid equilibria for mixtures of toluene + n-heptane + an ionic liquid

    NARCIS (Netherlands)

    Meindersma, G.W.; Podt, J.G.; de Haan, A.B.

    2006-01-01

    This research has been focused on a study of sulfolane and four ionic liquids as solvents in liquid–liquid extraction. Liquid–liquid equilibria data were obtained for mixtures of (sulfolane or 4-methyl-N-butylpyridinium tetrafluoroborate ([mebupy]BF4) or 1-ethyl-3-methylimidazolium ethylsulfate

  4. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    Science.gov (United States)

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Le Chatelier's principle in replicator dynamics

    Science.gov (United States)

    Allahverdyan, Armen E.; Galstyan, Aram

    2011-10-01

    The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nash equilibrium within the replicator dynamics. We show that the principle can be reformulated as a majorization relation. This defines a stability notion that generalizes the concept of evolutionary stability. We determine criteria for a Nash equilibrium to satisfy the Le Chatelier principle and relate them to mutualistic interactions (game-theoretical anticoordination) showing in which sense mutualistic replicators can be more stable than (say) competing ones. There are globally stable Nash equilibria, where the Le Chatelier principle is violated even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium can amplify small perturbations, though both types of equilibria satisfy the detailed balance condition.

  6. Thermal Stability and Reactivity of Cathode Materials for Li-Ion Batteries.

    Science.gov (United States)

    Huang, Yiqing; Lin, Yuh-Chieh; Jenkins, David M; Chernova, Natasha A; Chung, Youngmin; Radhakrishnan, Balachandran; Chu, Iek-Heng; Fang, Jin; Wang, Qi; Omenya, Fredrick; Ong, Shyue Ping; Whittingham, M Stanley

    2016-03-23

    The thermal stability of electrochemically delithiated Li0.1Ni0.8Co0.15Al0.05O2 (NCA), FePO4 (FP), Mn0.8Fe0.2PO4 (MFP), hydrothermally synthesized VOPO4, LiVOPO4, and electrochemically lithiated Li2VOPO4 is investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis, coupled with mass spectrometry (TGA-MS). The thermal stability of the delithiated materials is found to be in the order of NCA cathode is indeed predicted to be marginally less stable than FP but significantly more stable than NCA in the absence of electrolyte. An analysis of the reaction equilibria between VOPO4 and EC using a multicomponent phase diagram approach yields products and reaction enthalpies that are highly consistent with the experiment results.

  7. Experimental investigation of phase equilibria in the Nb-Si-Ta ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Wang, Cuiping; Yao, Jun; Yang, Shuiyuan; Zhan Shi; Liu, Xingjun [Xiamen Univ. (China). Dept. of Materials Science and Engineering; Xiamen Univ. (China). Fujian Provincial Key Laboratory of Materials Genome; Kang, Yongwang [Beijing Institute of Aeronautical Materials (China). Science and Technology on Advanced High Temperature Structural Materials Lab.

    2016-12-15

    The phase equilibria in the Nb-Si-Ta ternary system at 1 373 K, 1 473 K and 1 573 K were investigated by means of back-scattered electron imaging, electron probe microanalysis and X-ray diffraction. The isothermal sections at 1 373 K, 1 473 K and 1 573 K consist of two three-phase regions and seven two-phase regions, without any ternary compounds. The compounds of NbSi{sub 2} and TaSi{sub 2}, αNb{sub 5}Si{sub 3} and αTa{sub 5}Si{sub 3} form continuous solid solutions, respectively. The solubilities of Nb in Ta{sub 3}Si and Ta{sub 2}Si phases are extremely large, whereas the solubility of Si in the β(Nb, Ta) phase is relatively small.

  8. Development and performance of high speed processing system of magnetohydrodynamic equilibria for discharge analyses on the J T-60 tokamak

    International Nuclear Information System (INIS)

    Hasegawa, Yukihiro; Nakamura, Yukiharu; Shirai, Hiroshi; Hamamatsu, Kiyotaka; Harada, Yoshio; Kikuchi, Mitsuru; Nakata, Yoshihiro

    1999-01-01

    In order to provide a set of magnetohydrodynamic (MHD) equilibrium database which is indispensable for both the studies on improvement of energy confinement and stabilization of MHD activities in tokamaks, a high speed data-processing system synchronizing with J T-60 discharge sequence was newly developed by utilizing the latest model of hugh speed workstation and by optimizing the parallel processing technique to perform fast calculation of MHD equilibria. This high speed system was found to have a sufficient ability to complete the whole equilibrium calculations during each inter-shot period. Cooperating with the mass data storage subsystem preserving the latest equilibrium database automatically, the animated discharge monitoring subsystem provides valuable information for the J T-60 operator to determine control parameters of the succeeding discharge. This report describes the system performance realized in the J T-60 experiment. (author)

  9. High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural evidence for partial melting, phase equilibria modeling and tectonic implications

    Science.gov (United States)

    Guilmette, C.; Indares, A.; Hébert, R.

    2011-05-01

    Rare kyanite-bearing anatectic paragneisses are found as boudins within sillimanite-bearing paragneisses of the core of the Namche Barwa Antiform, Tibet. In the present study, we document an occurrence from the NW side of the Yarlung Zangbo River. These rocks mainly consist of the assemblage garnet + K-feldspar + kyanite ± biotite + quartz + rutile ± plagioclase with kyanite locally pseudomorphed by sillimanite. The documented textures are consistent with the rocks having undergone biotite-dehydration melting in the kyanite stability field, under high-P granulite facies conditions, and having experienced melt extraction. However textures related to melt crystallization are ubiquitous both in polymineralic inclusions in garnet and in the matrix, suggesting that a melt fraction had remained in these rocks. Phase equilibria modelling was undertaken in the NCKFMASTHO system with THERMOCALC. P-T pseudosections built with the bulk compositions of one aluminous and one sub-aluminous paragneiss samples predict a biotite-kyanite-garnet-quartz-plagioclase-K-feldspar-liquid-rutile ± ilmenite field, in which biotite-dehydration melting occurs, located in the P-T range of ~ 800-875 °C and ~ 10-17 kbar. In addition, the topologies of these pseudosections are consistent with substantial melt loss during prograde metamorphism. A second set of P-T pseudosections with melt-reintegrated model bulk compositions were thus constructed to evaluate the effect of melt loss. The integration of textural information, precise mineral modes, mineral chemistry, and phase equilibria modelling allowed to constrain a P-T path where the rocks are buried to lower crustal depths at peak P-T conditions higher than 14 kbar and 825 °C, possibly in the order of 15-16 kbar and 850 °C, followed by decompression and cooling to P-T conditions of around 9 kbar and 810 °C, under which the remaining melt was solidified. The implications for granite production at the NBA and for Himalayan tectonic models

  10. Relative stability of radicals derived from artemisinin: A semiempirical and DFT study

    Science.gov (United States)

    Arantes, C.; de Araujo, M. T.; Taranto, A. G.; de M. Carneiro, J. W.

    The semiempirical AM1 and PM3 methods, as well as the density functional (DFT/B3LYP) approach using the 6-31g(d) basis set, were employed to calculate the relative stability of intermediate radicals derived from artemisinin, a sesquiterpene lactone having an endoperoxide bridge that is essential for its antimalarial activity. The compounds studied have their nonperoxidic oxygen atom of the trioxane ring and/or the carbonyl group replaced by a CH2 unit. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. It was found that replacement of oxygen atoms decreases the relative stability of the anionic radical intermediates. In contrast, for compounds with inverted stereochemistry the intermediate radicals were found to be more stable than those with the artemisinin-like stereochemistry. These relative stabilities may modulate the antimalarial potency. Radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.

  11. First principles calculation of L21+A2 coherent equilibria in the Fe-Al-Ti system

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Gargano, Pablo H.; Ramirez-Caballero, Gustavo E.; Balbuena, Perla B.; Rubiolo, Gerardo H.

    2009-01-01

    By combining first-principles density functional total energy calculations and statistical mechanics the ground state and the phase equilibria at finite temperatures of the ternary system Fe-Al-Ti have been investigated. Total energy calculations have been performed by means of the Wien 2k code to establish the ground state energetic. A cluster expansion method was therewith used to describe solid solutions. At several chosen finite temperatures the cluster variation method in the irregular tetrahedron approximation was employed in order to calculate the iron rich ternary bcc equilibria. It is confirmed that there are two kinds of phase separations of the bcc phase, A2+L2 1 and B2+L2 1 .

  12. Modeling of LH current drive in self-consistent elongated tokamak MHD equilibria

    International Nuclear Information System (INIS)

    Blackfield, D.T.; Devoto, R.S.; Fenstermacher, M.E.; Bonoli, P.T.; Porkolab, M.; Yugo, J.

    1989-01-01

    Calculations of non-inductive current drive typically have been used with model MHD equilibria which are independently generated from an assumed toroidal current profile or from a fit to an experiment. Such a method can lead to serious errors since the driven current can dramatically alter the equilibrium and changes in the equilibrium B-fields can dramatically alter the current drive. The latter effect is quite pronounced in LH current drive where the ray trajectories are sensitive to the local values of the magnetic shear and the density gradient. In order to overcome these problems, we have modified a LH simulation code to accommodate elongated plasmas with numerically generated equilibria. The new LH module has been added to the ACCOME code which solves for current drive by neutral beams, electric fields, and bootstrap effects in a self-consistent 2-D equilibrium. We briefly describe the model in the next section and then present results of a study of LH current drive in ITER. 2 refs., 6 figs., 2 tabs

  13. Spectrophotometric study of the complexation equilibria of zirconium(IV) with 1-amino-4-hydroxyanthraquinone and the determination of zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Idriss, K A; Seleim, M M; Saleh, M S; Abu-Bakr, M S; Sedaira, Hassan

    1988-11-01

    The spectral absorption and acid-base characteristics of 1-amino-4-hydroxyanthraquinone (AMHA) were studied in water -ethanol media. The composition, molar absorptivities, equilibrium constants and stability constants of the chelates of this reagent with zirconium(IV) have been determined spectrophotometrically in 40% V/V ethanol at 20/sup 0/C and an ionic strength of 0.1 M (NaClO/sub 4/). Graphical logarithmic analysis of the absorbance graphs was used to demonstrate and characterise the complexation equilibria in solution. A simple, rapid, selective and sensitive method for the spectrophotometric determination of trace amounts of zirconium is proposed based on the formation of the Zr(AMHA)/sub 2/ complex at pH 3.5 (lambda/sub max/ = 600 nm, epsilon 1.621 x 10/sup 4/ l mol/sup -1/ cm/sup -1/). Interference caused by a number of ions was masked by the addition of cyanide ions.

  14. Modelling and finite-time stability analysis of psoriasis pathogenesis

    Science.gov (United States)

    Oza, Harshal B.; Pandey, Rakesh; Roper, Daniel; Al-Nuaimi, Yusur; Spurgeon, Sarah K.; Goodfellow, Marc

    2017-08-01

    A new systems model of psoriasis is presented and analysed from the perspective of control theory. Cytokines are treated as actuators to the plant model that govern the cell population under the reasonable assumption that cytokine dynamics are faster than the cell population dynamics. The analysis of various equilibria is undertaken based on singular perturbation theory. Finite-time stability and stabilisation have been studied in various engineering applications where the principal paradigm uses non-Lipschitz functions of the states. A comprehensive study of the finite-time stability properties of the proposed psoriasis dynamics is carried out. It is demonstrated that the dynamics are finite-time convergent to certain equilibrium points rather than asymptotically or exponentially convergent. This feature of finite-time convergence motivates the development of a modified version of the Michaelis-Menten function, frequently used in biology. This framework is used to model cytokines as fast finite-time actuators.

  15. Ballooning stability analysis of JET H-mode discharges

    International Nuclear Information System (INIS)

    O'Brien, D.P.; Galvao, R.; Keilhacker, M.; Lazzaro, E.; Watkins, M.L.

    1989-01-01

    Previous studies of the stability of a large aspect ratio model equilibrium to ideal MHD ballooning modes have shown that across the bulk of the plasma there exist two marginally stable values of the pressure gradient parameter α. These define an unstable zone which separates the first (small α) stable region from the second (large α) stable region. Close to the separatrix, however, the first and second regions can coalesce when the surface averaged current density, Λ, exceeds a critical value. The plasma in this region is then stable to ballooning modes at all values of the pressure gradient. In this paper we extend these results to JET H-mode equilibria using a finite aspect ratio ballooning formalism, and assess the relevance of ideal ballooning stability in these discharges. In particular we analyse shot 15894 at time 56 sec. which is 1.3 s into the H-phase. (author) 4 refs., 4 figs

  16. The design of magnetic diagnostics for reconstructing of NCSX stellarator equilibria

    International Nuclear Information System (INIS)

    Lazarus, E.A.; Pomphrey, N.

    2005-01-01

    In previous work we have demonstrated that NCSX (National Compact Stellarator Experiment) will require active control of the helical and poloidal field coils in order to remain on a stable trajectory to high beta while retaining quasi-axisymmetry. We require a set of magnetic diagnostics that will be sensitive to changes in the equilibrium that represent departures from such a trajectory. That is, we will need to control features of the plasma boundary shape to a specification; that specification itself will vary with the current and pressure profiles. We need to determine a satisfactory set of magnetic sensors for this task To address this we have postulated a diagnostic set of 443 sensors that we believe is overly complete. A data base of ∼2500 free-boundary equilibria is created with variation of coil currents, plasma pressure and toroidal current profiles, plasma size, total pressure and total current. The signals expected on this array of diagnostics are calculated using a response function formalism. These are used in a linear regression to predict the magnetic field on a smallest vacuum surface that encompasses all the equilibria in the database. We have extended a standard 'variable selection' method of multivariate statistics to determine a complete ranking of the sensors. The ranking scheme is based on properties of the null space of the matrix of diagnostic signals for all equilibria in the database. Subsets are chosen according to this ranking and we judge adequacy by our ability to reconstruct the equilibrium with STELLOPT. While the ability to reconstruct the equilibrium in free boundary does not yield information on optimal control algorithms, it does show whether a particular set of sensors contains the necessary information to allow control of the plasma. Results will be reported. It is yet to be determined just how much information about the profiles can be known from external measurements. We will present results of a study that addresses this

  17. Relative Stability of cis- and trans-Hydrindanones

    Directory of Open Access Journals (Sweden)

    Motoo Tori

    2015-01-01

    Full Text Available The relative stabilities of several cis- and trans-hydrindanones were compared using both isomerization experiments and MM2 calculations. The generally believed rule that cis-hydrindanones are more stable than trans-isomers is applicable, but is not always true. This review introduces examples, mainly from studies in our laboratory, to explain these facts.

  18. Numerical Study of Equilibrium, Stability, and Advanced Resistive Wall Mode Feedback Algorithms on KSTAR

    Science.gov (United States)

    Katsuro-Hopkins, Oksana; Sabbagh, S. A.; Bialek, J. M.; Park, H. K.; Kim, J. Y.; You, K.-I.; Glasser, A. H.; Lao, L. L.

    2007-11-01

    Stability to ideal MHD kink/ballooning modes and the resistive wall mode (RWM) is investigated for the KSTAR tokamak. Free-boundary equilibria that comply with magnetic field coil current constraints are computed for monotonic and reversed shear safety factor profiles and H-mode tokamak pressure profiles. Advanced tokamak operation at moderate to low plasma internal inductance shows that a factor of two improvement in the plasma beta limit over the no-wall beta limit is possible for toroidal mode number of unity. The KSTAR conducting structure, passive stabilizers, and in-vessel control coils are modeled by the VALEN-3D code and the active RWM stabilization performance of the device is evaluated using both standard and advanced feedback algorithms. Steady-state power and voltage requirements for the system are estimated based on the expected noise on the RWM sensor signals. Using NSTX experimental RWM sensors noise data as input, a reduced VALEN state-space LQG controller is designed to realistically assess KSTAR stabilization system performance.

  19. Isobaric (vapor + liquid) equilibria of 1-ethyl-3-methylimidazolium ethylsulfate plus (propionaldehyde or valeraldehyde): Experimental data and prediction

    International Nuclear Information System (INIS)

    Alvarez, Victor H.; Mattedi, Silvana; Aznar, Martin

    2011-01-01

    Research highlights: → We report density, refraction index, and VLE for (propionaldehyde or valeraldehyde) + [emim][EtSO 4 ]. → The Peng -Robinson + Wong -Sandler + COSMO-SAC model was used to predict density and VLE. → The densities were predicted with deviations below than 2.3%. → The experimental VLE was predicted with deviations below than 1.6%. - Abstract: This paper reports the density, refraction index, and (vapor + liquid) equilibria (VLE) for binary systems {aldehyde + 1-ethyl-3-methylimidazolium ethylsulfate ([emim][EtSO 4 ])}: {propionaldehyde + [emim][EtSO 4 ]} and {valeraldehyde + [emim][EtSO 4 ]}. The uncertainties for the temperature, pressure, and compositions measurements for the phase equilibria are ±0.1 K, ±0.01 kPa and ±0.0004, respectively. A qualitative analysis of the variation of the properties with changes in solvent and temperature was performed. The Peng-Robinson equation of state (PR EoS), coupled with the Wong-Sandler mixing rule (WS), is used to describe the experimental data. To calculate activity coefficients we used three different models: NRTL, UNIQUAC, and COSMO-SAC. Since the predictive liquid activity coefficient model COSMO-SAC is used in the Wong-Sandler mixing rule, the resulting thermodynamic model is a completely predictive one. The prediction results for the density and for the (vapor + liquid) equilibria have a deviation lower than 2.3% and 1.6%, respectively. The (vapor + liquid) equilibria predictions show a good description for the propionaldehyde system and only a qualitative description for the valeraldehyde system.

  20. Self-consistent equilibria in cylindrical reversed-field pinch

    International Nuclear Information System (INIS)

    Lo Surdo, C.; Paccagnella, R.; Guo, S.

    1995-03-01

    The object of this work is to study the self-consistent magnetofluidstatic equilibria of a 2-region (plasma + gas) reversed-field pinch (RFP) in cylindrical approximation (namely, with vanishing inverse aspect ratio). Differently from what happens in a tokamak, in a RFP a significant part of the plasma current is driven by a dynamo electric field (DEF), in its turn mainly due to plasma turbulence. So, it is worked out a reasonable mathematical model of the above self-consistent equilibria under the following main points it has been: a) to the lowest order, and according to a standard ansatz, the turbulent DEF say ε t , is expressed as a homogeneous transform of the magnetic field B of degree 1, ε t =(α) (B), with α≡a given 2-nd rank tensor, homogeneous of degree 0 in B and generally depending on the plasma state; b) ε t does not explicitly appear in the plasma energy balance, as it were produced by a Maxwell demon able of extract the corresponding Joule power from the plasma. In particular, it is showed that, if both α and the resistivity tensor η are isotropic and constant, the magnetic field is force-free with abnormality equal to αη 0 /η, in the limit of vanishing β; that is, the well-known J.B. Taylor'result is recovered, in this particular conditions, starting from ideas quite different from the usual ones (minimization of total magnetic energy under constrained total elicity). Finally, the general problem is solved numerically under circular (besides cylindrical) symmetry, for simplicity neglecting the existence of gas region (i.e., assuming the plasma in direct contact with the external wall)

  1. Prediction of high pressure vapor-liquid equilibria with mixing rule using ASOG group contribution method

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Kojima, K.; Kurihara, K.

    1985-02-01

    To develop a widely applicable method for predicting high-pressure vapor-liquid equilibria by the equation of state, a mixing rule is proposed in which mixture energy parameter ''..cap alpha..'' of theSoave-RedlichKwong, Peng-Robinson, and Martin cubic equations of state is expressed by using the ASOG group contribution method. The group pair parameters are then determined for 14 group pairs constituted by six groups, i.e. CH/sub 4/, CH/sub 3/, CH/sub 2/, N/sub 2/, H/sub 2/, and CO/sub 2/ groups. By using the group pair parameters determined, high-pressure vapor-liquid equilibria are predicted with good accuracy for binary and ternary systems constituted by n-paraffins, nitrogen, hydrogen, and carbon dioxide in the temperature range of 100 - 450K.

  2. Stability and heating of a poloidal divertor tokamak

    International Nuclear Information System (INIS)

    Biddle, A.P.; Dexter, R.N.; Holly, D.T.; Lipschultz, B.; Osborne, T.H.; Prager, S.C.; Shepard, D.A.; Sprott, J.C.; Witherspoon, F.D.

    1981-01-01

    Five experimental studies - two stability and three heating investigations - have been carried out on Tokapole II, a tokamak with a four-node poloidal divertor. After a brief description of the machine, discharges are described with q approximately 0.6 over most of the cross-section without degradation of confinement, observation of axisymmetric instability in dee, inverse-dee and square equilibria, high-power fast-wave ion-cyclotron resonance heating, studies of spatial shear Alfven wave resonances for heating, and reduction of the start-up loop voltage by approximately 60% by microwave pre-ionization at electron-cyclotron resonance. Work on axisymmetric instability and studies of pre-ionization have been described in detail elsewhere and are therefore only briefly mentioned. (author)

  3. MINTEQ, Geochemical Equilibria in Ground Water

    International Nuclear Information System (INIS)

    Krupka, K.M.

    1990-01-01

    1 - Description of program or function: MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. MINTEQ can accept a finite mass for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and structurally distinct solid forms a separate phase. 2 - Method of solution: MINTEQ applies the fundamental principles of thermodynamics to solve geochemical equilibria from a set of mass balance equations, one for each component. Because the

  4. Gauge stability of 3+1 formulations of general relativity

    International Nuclear Information System (INIS)

    Khokhlov, A M; Novikov, I D

    2002-01-01

    We present a general approach to the analysis of gauge stability of 3+1 formulations of general relativity (GR). Evolution of coordinate perturbations and the corresponding perturbations of lapse and shift can be described by a system of eight quasi-linear partial differential equations. Stability with respect to gauge perturbations depends on the choice of gauge and a background metric, but it does not depend on a particular form of a 3+1 system if its constrained solutions are equivalent to those of the Einstein equations. Stability of a number of known gauges is investigated in the limit of short-wavelength perturbations. All fixed gauges except a synchronous gauge are found to be ill posed. A maximal slicing gauge and its parabolic extension are shown to be ill posed as well. A necessary condition is derived for well-posedness of metric-dependent algebraic gauges. Well-posed metric-dependent gauges are found, however, to be generally unstable. Both instability and ill-posedness are associated with the existence of growing modes of coordinate perturbations related to perturbations of physical accelerations of reference frames

  5. Stability of EBT of guiding-centre fluid theory

    International Nuclear Information System (INIS)

    Miller, R.L.

    1981-01-01

    The stability of the hot-electron annulus in the ELMO Bumpy Torus (EBT) is not yet completely understood despite considerable attention. Most stability studies have dealt with localized analysis of simplified models in which the actual magnetic configuration is replaced by a straight-line slab with a gravity to emulate the effects of curvature and gradients in the actual magnetic field. Here, a more realistic geometry, a 'bumpy' cylinder with a 2:1 magnetic mirror ratio, is considered and the response of the hot-electron rings to various non-local perturbations, specifying only the mode number in the ignorable co-ordinate, is examined. Guiding-centre theory (with psub(perpendicular) > psub(parallel)) is used and the second variation in the plasma energy (σW) using a finite-element representation to identify the least stable mode for the plasma is studied. All the equilibria that are examined are found to be unstable for all poloidal mode numbers m>=1, with growth rates increasing with increasing ring beta, plasma beta, and poloidal mode number. It is concluded that two-fluid and/or kinetic effects are required to explain the observed global stability of EBT-I. (author)

  6. The computation of multiple MHD equilibria in axisymmetric and straight geometry

    International Nuclear Information System (INIS)

    Thomas, C.Ll.

    1979-01-01

    The details of the numerical methods used in codes for computing MHD equilibria in discrete conductor configurations are described with both code users and code writers in mind. Results produced by the codes have been successfully verified against analytic results and independent computations. The axisymmetric code has proved to be a valuable diagnostic aid for the TOSCA experiment. The user images of the codes are described in the appendices. (author)

  7. Three-dimensional tokamak equilibria in the presence of resonant field errors

    International Nuclear Information System (INIS)

    Reiman, A.; Monticello, D.

    1992-01-01

    Numerical solutions are described for three-dimensional MHD equilibria in the presence of resonant magnetic field perturbations. The effects of a realistic spectrum of resonant field errors are calculated for a range of current profiles. It is found that field errors of the magnitude existing in present day devices, and contemplated for future devices, can produce a set of magnetic islands occupying a significant fraction of the plasma cross-section

  8. Two-craft Coulomb formation study about circular orbits and libration points

    Science.gov (United States)

    Inampudi, Ravi Kishore

    This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the

  9. The global stability of a delayed predator-prey system with two stage-structure

    International Nuclear Information System (INIS)

    Wang Fengyan; Pang Guoping

    2009-01-01

    Based on the classical delayed stage-structured model and Lotka-Volterra predator-prey model, we introduce and study a delayed predator-prey system, where prey and predator have two stages, an immature stage and a mature stage. The time delays are the time lengths between the immature's birth and maturity of prey and predator species. Results on global asymptotic stability of nonnegative equilibria of the delay system are given, which generalize and suggest that good continuity exists between the predator-prey system and its corresponding stage-structured system.

  10. Representing Strategic Games and Their Equilibria in Many-Valued Logics

    Czech Academy of Sciences Publication Activity Database

    Běhounek, Libor; Cintula, Petr; Fermüller, C.; Kroupa, Tomáš

    2016-01-01

    Roč. 24, č. 3 (2016), s. 238-267 ISSN 1367-0751 R&D Projects: GA ČR GAP402/12/1309; GA MŠk 7AMB13AT014; GA ČR(CZ) GF15-34650L Grant - others:Austrian Science Fund(AT) P25417-G15; Austrian Science Fund(AT) I1897-N25 Institutional support: RVO:67985807 ; RVO:67985556 Keywords : strategic games * many-valued logics * Nash equilibria * Lukasiewicz games Subject RIV: BA - General Mathematics Impact factor: 0.575, year: 2016

  11. The SX Solver: A New Computer Program for Analyzing Solvent-Extraction Equilibria

    International Nuclear Information System (INIS)

    McNamara, B.K.; Rapko, B.M.; Lumetta, G.J.

    1999-01-01

    A new computer program, the SX Solver, has been developed to analyze solvent-extraction equilibria. The program operates out of Microsoft Excel and uses the built-in ''Solver'' function to minimize the sum of the square of the residuals between measured and calculated distribution coefficients. The extraction of nitric acid by tributylphosphate has been modeled to illustrate the program's use

  12. The effects of risk preferences in mixed-strategy equilibria of 2x2 games

    Czech Academy of Sciences Publication Activity Database

    Engelmann, D.; Steiner, Jakub

    2007-01-01

    Roč. 60, č. 2 (2007), s. 381-388 ISSN 0899-8256 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : risk preferences * mixed strategy equilibria Subject RIV: AH - Economics Impact factor: 1.468, year: 2007

  13. Another dimension to metamorphic phase equilibria: the power of interactive movies for understanding complex phase diagram sections

    Science.gov (United States)

    Moulas, E.; Caddick, M. J.; Tisato, N.; Burg, J.-P.

    2012-04-01

    The investigation of metamorphic phase equilibria, using software packages that perform thermodynamic calculations, involves a series of important assumptions whose validity can often be questioned but are difficult to test. For example, potential influences of deformation on phase relations, and modification of effective reactant composition (X) at successive stages of equilibrium may both introduce significant uncertainty into phase diagram calculations. This is generally difficult to model with currently available techniques, and is typically not well quantified. We present here a method to investigate such phenomena along pre-defined Pressure-Temperature (P-T) paths, calculating local equilibrium via Gibbs energy minimization. An automated strategy to investigate complex changes in the effective equilibration composition has been developed. This demonstrates the consequences of specified X modification and, more importantly, permits automated calculation of X changes that are likely along the requested path if considering several specified processes. Here we describe calculations considering two such processes and show an additional example of a metamorphic texture that is difficult to model with current techniques. Firstly, we explore the assumption that although water saturation and bulk-rock equilibrium are generally considered to be valid assumptions in the calculation of phase equilibria, the saturation of thermodynamic components ignores mechanical effects that the fluid/melt phase can impose on the rock, which in turn can modify the effective equilibrium composition. Secondly, we examine how mass fractionation caused by porphyroblast growth at low temperatures or progressive melt extraction at high temperatures successively modifies X out of the plane of the initial diagram, complicating the process of determining best-fit P-T paths for natural samples. In particular, retrograde processes are poorly modeled without careful consideration of prograde

  14. Aspect Ratio Scaling of Ideal No-wall Stability Limits in High Bootstrap Fraction Tokamak Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, M.G.; Bell, R.E.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Maingi, R.; Sabbagh, S.A.; Soukhanovskii, V.; Stutman, D.

    2003-01-01

    Recent experiments in the low aspect ratio National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 (2000) 557] have achieved normalized beta values twice the conventional tokamak limit at low internal inductance and with significant bootstrap current. These experimental results have motivated a computational re-examination of the plasma aspect ratio dependence of ideal no-wall magnetohydrodynamic stability limits. These calculations find that the profile-optimized no-wall stability limit in high bootstrap fraction regimes is well described by a nearly aspect ratio invariant normalized beta parameter utilizing the total magnetic field energy density inside the plasma. However, the scaling of normalized beta with internal inductance is found to be strongly aspect ratio dependent at sufficiently low aspect ratio. These calculations and detailed stability analyses of experimental equilibria indicate that the nonrotating plasma no-wall stability limit has been exceeded by as much as 30% in NSTX in a high bootstrap fraction regime

  15. Prediction of vapour-liquid equilibria for the kinetic study of processes based on synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Di Serio, M.; Tesser, R.; Cozzolino, M.; Santacesaria, E. [Naples Univ., Napoli (Italy). Dept. of Chemistry

    2006-07-01

    Syngas is normally used in the production of a broad range of chemicals and fuels. In many of these processes multiphase reactors, gas-liquid or gas-liquid-solid are used. Kinetic studies in multiphase systems are often complicated by the non-ideal behaviour of reagents and/or products that are consistently partitioned between the liquid and the vapour phase. Moreover, as often kinetic data are collected in batch conditions for the liquid phase, activity coefficients of the partitioned components can consistently change during the time as a consequence of changing the composition of the reaction mixture. Therefore, it is necessary, in these cases, to known the vapor-liquid equilibria (VLE) in order to collect and to interpret correctly the kinetic data. The description of phase equilibria, at high pressures, is usually performed by means of an EOS (Equation of State) allowing the calculation of fugacity coefficients, for each component, in both phases and determining the partition coefficients but the EOS approach involves the experimental determination of the interaction parameters for all the possible binary system of the mixture. For multicomponent mixtures a complete experimental determination of vapourliquid equilibria is very hard, also considering the high pressure and temperatures used. Some predictive group contribution methods have been recently developed. In this paper, we will describe in detail the application of these methods to the methanol homologation, as an example, with the scope of determining more reliable kinetic parameters for this reaction. (orig.)

  16. Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2006-01-01

    Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H 2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within ??2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol-1 K-1 for 1/n CH4??H 2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled. ?? 2006 American Chemical Society.

  17. Determination of mixed stability constants of lead(II/uranyl(II-NTA-cysteine complexes by paper electrophoresis

    Directory of Open Access Journals (Sweden)

    Brij Bhushan Tewari

    2005-12-01

    Full Text Available A method involving the use of paper ionophoresis is described for the study of equilibria in mixed – ligand complex systems in solution. The technique is based on the movement of a spot of metal ion under an electric field with the complexants added to the background electrolyte at pH 8.5. The stability constants of the complexes Pb(II – nitrilotriacetate – cysteine and UO2(II – nitrilotriacetate – cysteine are found to be 5.35 plus or minus 0.02 and 6.27 plus or minus 0.07 (logarithm of stability constant values at ionic strength 0.1 M and a temperature of 35 0C.

  18. Microelectrode voltammetry of multi-electron transfers complicated by coupled chemical equilibria: a general theory for the extended square scheme.

    Science.gov (United States)

    Laborda, Eduardo; Gómez-Gil, José María; Molina, Angela

    2017-06-28

    A very general and simple theoretical solution is presented for the current-potential-time response of reversible multi-electron transfer processes complicated by homogeneous chemical equilibria (the so-called extended square scheme). The expressions presented here are applicable regardless of the number of electrons transferred and coupled chemical processes, and they are particularized for a wide variety of microelectrode geometries. The voltammetric response of very different systems presenting multi-electron transfers is considered for the most widely-used techniques (namely, cyclic voltammetry, square wave voltammetry, differential pulse voltammetry and steady state voltammetry), studying the influence of the microelectrode geometry and the number and thermodynamics of the (electro)chemical steps. Most appropriate techniques and procedures for the determination of the 'interaction' between successive transfers are discussed. Special attention is paid to those situations where homogeneous chemical processes, such as protonation, complexation or ion association, affect the electrochemical behaviour of the system by different stabilization of the oxidation states.

  19. Exact solutions for helical magnetohydrodynamic equilibria. II. Nonstatic and nonbarotropic solutions

    International Nuclear Information System (INIS)

    Villata, M.; Ferrari, A.

    1994-01-01

    In the framework of the analytical study of magnetohydrodynamic (MHD) equilibria with flow and nonuniform density, a general family of well-behaved exact solutions of the generalized Grad--Shafranov equation and of the whole set of time-independent MHD equations completed by the nonbarotropic ideal gas equation of state is obtained, both in helical and axial symmetry. The helical equilibrium solutions are suggested to be relevant to describe the helical morphology of some astrophysical jets

  20. Belief-Based Equilibria in the Repeated Prisoners' Dilemma with Private Monitoring

    OpenAIRE

    V. Bhaskar; Ichiro Obara

    2000-01-01

    We analyze the infinitely repeated prisoners' dilemma with imperfect private monitoring and discounting. The main contribution of this paper is to construct ``belief-based'' strategies, where a player's continuation strategy is a function only of his beliefs. This simplifies the analysis considerably, and allows us to explicitly construct sequential equilibria for such games, thus enabling us to invoke the one-step deviation principle of dynamic programming. By doing so, we prove that one can...

  1. Experimental investigation of phase equilibria in the Co-W-V ternary system

    International Nuclear Information System (INIS)

    Liu Xingjun; Zhu Yihong; Yu Yan; Wang Cuiping

    2011-01-01

    Highlights: → Three isothermal sections of the Co-W-V ternary system at 1100 deg. C, 1200 deg. C and 1300 deg. C were determined. → No ternary compound was found in the Co-W-V ternary system. → A stable liquid miscibility gap is newly discovered in the Co-W-V ternary system. → This work is of great essence to establish the thermodynamic database for the Co-based alloys. - Abstract: The phase equilibria in the Co-W-V ternary system were experimentally investigated by optical microscopy (OM), electron probe microanalysis (EPMA) and X-ray diffraction (XRD) on the equilibrated alloys. Three isothermal sections of the Co-W-V ternary system at 1100 deg. C, 1200 deg. C and 1300 deg. C were determined, and no ternary compound was found in this system. In addition, a novel phenomena induced by the liquid phase separation in the Co-W-V alloys was firstly discovered, suggesting that a stable liquid miscibility gap exists in the Co-W-V ternary system. The newly determined phase equilibria and firstly discovered phase separation phenomena in the Co-W-V system will provide important information for the development of Co-W based alloys.

  2. A new transiently chaotic flow with ellipsoid equilibria

    Science.gov (United States)

    Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan

    2018-03-01

    In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.

  3. Comparison of the relative stability of pharmaceutical cocrystals consisting of paracetamol and dicarboxylic acids.

    Science.gov (United States)

    Suzuki, Naoto; Kawahata, Masatoshi; Yamaguchi, Kentaro; Suzuki, Toyofumi; Tomono, Kazuo; Fukami, Toshiro

    2018-04-01

    The aim of this study is to evaluate the relative stability of pharmaceutical cocrystals consisting of paracetamol (APAP) and oxalic acid (OXA) or maleic acid (MLA). These observations of cocrystal stability under various conditions are useful coformer criteria when cocrystals are selected as the active pharmaceutical ingredient in drug development. The relative stability was determined from the preferentially formed cocrystals under various conditions. Cocrystal of APAP-OXA was more stable than that of APAP-MLA in a ternary cogrinding system and possessed thermodynamical stability. On the other hand, when grinding with moisture or maintaining at high temperatures and relative humidity conditions, APAP-MLA was more stable, and OXA converted to OXA dihydrate. In the slurry method, APAP-OXA was more stable in aprotic solvents because the APAP-OXA with low-solubility product precipitated. The relative stability order was affected by preparing conditions of presence of moisture. This order might attribute to the small difference of crystal structure in the extension of the hydrogen bond network.

  4. Chemical exchange equilibria in isotope separation. Part I : Evaluation of separation factors

    International Nuclear Information System (INIS)

    Dave, S.M.

    1980-01-01

    The theory of chemical exchange equilibria as applied to the isotope separation processes and the isotope effects on equilibrium constants of different exchange reactions has come a long way since its inception by Urey and Rittenberg. An attempt has been made to bring relevant information together and present a unified approach to isotopic chemical exchange equilibrium constant evaluation and its implications to separation processes. (auth.)

  5. Existence and exponential stability of traveling waves for delayed reaction-diffusion systems

    Science.gov (United States)

    Hsu, Cheng-Hsiung; Yang, Tzi-Sheng; Yu, Zhixian

    2018-03-01

    The purpose of this work is to investigate the existence and exponential stability of traveling wave solutions for general delayed multi-component reaction-diffusion systems. Following the monotone iteration scheme via an explicit construction of a pair of upper and lower solutions, we first obtain the existence of monostable traveling wave solutions connecting two different equilibria. Then, applying the techniques of weighted energy method and comparison principle, we show that all solutions of the Cauchy problem for the considered systems converge exponentially to traveling wave solutions provided that the initial perturbations around the traveling wave fronts belong to a suitable weighted Sobolev space.

  6. Compact toroids with Alfvenic flows

    International Nuclear Information System (INIS)

    Wang Zhehui; Tang, X.Z.

    2004-01-01

    The Chandrasekhar equilibria form a class of stationary ideal magnetohydrodynamics equilibria stabilized by magnetic-field-aligned Alfvenic flows. Analytic solutions of the Chandrasekhar equilibria are explicitly constructed for both field-reversed configurations and spheromaks. Favorable confinement property of nested closed flux surfaces and the ideal magnetohydrodynamic stability of the compact toroids are of interest for both magnetic trapping of high energy electrons in astrophysics and confinement of high temperature plasmas in laboratory

  7. The heat-capacity of ilmenite and phase equilibria in the system Fe-T-O

    Science.gov (United States)

    Anovitz, Lawrence M.; Treiman, A.H.; Essene, E.J.; Hemingway, B.S.; Westrum, E.F.; Wall, V.J.; Burriel, R.; Bohlen, S.R.

    1985-01-01

    Low temperature adiabatic calorimetry and high temperature differential scanning calorimetry have been used to measure the heat-capacity of ilmenite (FeTiO3) from 5 to 1000 K. These measurements yield S2980 = 108.9 J/(mol ?? K). Calculations from published experimental data on the reduction of ilmenite yield ??2980(I1) = -1153.9 kJ/(mol ?? K). These new data, combined with available experimental and thermodynamic data for other phases, have been used to calculate phase equilibria in the system Fe-Ti-O. Calculations for the subsystem Ti-O show that extremely low values of f{hook}O2 are necessary to stabilize TiO, the mineral hongquiite reported from the Tao district in China. This mineral may not be TiO, and it should be re-examined for substitution of other elements such as N or C. Consideration of solid-solution models for phases in the system Fe-Ti-O allows derivation of a new thermometer/oxybarometer for assemblages of ferropseudobrookite-pseudobrookitess and hematite-ilmenitess. Preliminary application of this new thermometer/oxybarometer to lunar and terrestrial lavas gives reasonable estimates of oxygen fugacities, but generally yields subsolidus temperatures, suggesting re-equilibration of one or more phases during cooling. ?? 1985.

  8. On fully three-dimensional resistive wall mode and feedback stabilization computations

    International Nuclear Information System (INIS)

    Strumberger, E.; Merkel, P.; Sempf, M.; Guenter, S.

    2008-01-01

    Resistive walls, located close to the plasma boundary, reduce the growth rates of external kink modes to resistive time scales. For such slowly growing resistive wall modes, the stabilization by an active feedback system becomes feasible. The fully three-dimensional stability code STARWALL, and the feedback optimization code OPTIM have been developed [P. Merkel and M. Sempf, 21st IAEA Fusion Energy Conference 2006, Chengdu, China (International Atomic Energy Agency, Vienna, 2006, paper TH/P3-8] to compute the growth rates of resistive wall modes in the presence of nonaxisymmetric, multiply connected wall structures and to model the active feedback stabilization of these modes. In order to demonstrate the capabilities of the codes and to study the effect of the toroidal mode coupling caused by multiply connected wall structures, the codes are applied to test equilibria using the resistive wall structures currently under debate for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)] and ASDEX Upgrade [W. Koeppendoerfer et al., Proceedings of the 16th Symposium on Fusion Technology, London, 1990 (Elsevier, Amsterdam, 1991), Vol. 1, p. 208

  9. Measurement and modeling of high-pressure (vapour + liquid) equilibria of (CO2 + alcohol) binary systems

    International Nuclear Information System (INIS)

    Gutierrez, Jorge E.; Bejarano, Arturo; Fuente, Juan C. de la

    2010-01-01

    An apparatus based on a static-analytic method assembled in this work was utilized to perform high pressure (vapour + liquid) equilibria measurements with uncertainties estimated at 2 + 1-propanol), (CO 2 + 2-methyl-1-propanol), (CO 2 + 3-methyl-1-butanol), and (CO 2 + 1-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 12) MPa. For all the (CO 2 + alcohol) systems, it was visually monitored to insure that there was no liquid immiscibility at the temperatures and pressures studied. The experimental results were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapour + liquid) equilibria compositions were found to be in good agreement with the experimental values with deviations for the mol fractions <0.12 and <0.05 for the liquid and vapour phase, respectively.

  10. Solid-liquid phase equilibria of Fe-Cr-Al alloys and spinels

    Science.gov (United States)

    McMurray, J. W.; Hu, R.; Ushakov, S. V.; Shin, D.; Pint, B. A.; Terrani, K. A.; Navrotsky, A.

    2017-08-01

    Ferritic FeCrAl alloys are candidate accident tolerant cladding materials. There is a paucity of data concerning the melting behavior for FeCrAl and its oxides. Analysis tools have therefore had to utilize assumptions for simulations using FeCrAl cladding. The focus of this study is to examine in some detail the solid-liquid phase equilibria of FeCrAl alloys and spinels with the aim of improving the accuracy of severe accident scenario computational studies.

  11. Equilibria of a Two-Person Non-Zerosum Noisy Game of Timing,

    Science.gov (United States)

    1981-01-01

    AD-A097 158 YALE UNIV NEW HAVEN CT COWLES FOUNDATION FOR RESEARC -ETC F/B 12/1 EQUILIBRIA OF A TWO-PERSON ON-ZEROSUN OISY GAME OF TIMING, CUb .JAN al...pubUo zeleale Distribution Unlimited. 1. Introduction Two toothpaste manufacturers are competing for a larger share of the dentifrice market . Each is...successfully capturing a share of the market , if its product hits the stores first. (This is assuming that the toothpaste is being technologically

  12. Rotational stabilization of q < 1 modes

    International Nuclear Information System (INIS)

    Waelbroeck, F.L.; Aydemir, A.Y.

    1996-01-01

    Analyses of high performance discharges with central safety factor below unity have shown that the ideal Magnetohydrodynamic stability threshold for the n=1 kink mode is often violated with impunity. For TFTR (Tokamak Fusion Test Reactor) supershots, the experimental observations can be explained by diamagnetic stabilization of the reconnecting model provided that the fluid free energy is suitably reduced by trapped particle effects. For the broader profiles typical of other high confinement regimes, however, diamagnetic effects cannot account for the experimental results. Furthermore, there is evidence that the Mercier stability condition can also be violated in some cases. Here, we show that toroidal rotation of the plasma can stabilize the kink mode even in the presence of resistivity in configurations that would otherwise be ideally unstable. Two effects can be distinguished. The first effect consists in a reduction of the ideal driving energy. This can be understood in view of the fact that, to a good approximation, the internal kink is a rigid body displacement combining a tilt of the plasma inside the q = 1 surface with a translation along the tilt axis. In the presence of rotation, this displacement must be accompanied by a precessional motion so as to conserve angular momentum. The kinetic energy of the precessional motion must be extracted from the energy driving the displacement. The second effect of rotation is to resolve the Alfven singularity. This is a consequence of the pressure perturbation caused by the equilibrium variation of the entropy within the flux surfaces. It results in the stabilization of resistive as well as weak ideal instabilities, including Mercier modes. For rotationally stabilized equilibria, it also implies the presence of a neutrally stable mode with frequency of the order of the growth rate of the internal kink

  13. Computation of solution equilibria: A guide to methods in potentiometry, extraction, and spectrophotometry

    International Nuclear Information System (INIS)

    Meloun, M.; Havel, J.; Hogfeldt, E.

    1988-01-01

    Although this book contains a very good review of computation methods applicable to equilibrium systems, most of the book is dedicated to the description and evaluation of computer programs available for doing such calculations. As stated in the preface, the authors (two computniks and a user of graphical and computer methods) have joined forces in order to present the reader with the points of view of both the creator and user of modern computer program tools available for the study of solution equilibria. The successful presentation of such a complicated amalgamation of concepts is greatly aided by the structure of the book, which begins with a brief but thorough discussion of equilibrium concepts in general, followed by an equally brief discussion of experimental methods used to study equilibria with potentiometric, extraction, and spectroscopic methods. These sections would not be sufficient to teach these topics to the beginner but offer an informative presentation of concepts in relation to one another to those already familiar with basic equilibrium concepts. The importance of evaluating and analyzing the suitability of data for further analysis is then presented before an in depth (by a chemist's standards) look at the individual parts that make up a detailed equilibrium analysis program. The next one-third of the book is an examination of specific equilibrium problems and the programs available to study them. These are divided into chapters devoted to potentiometric, extraction, and spectroscopic methods. The format is to discuss a variety of programs, one at a time, including the parts of the program, the types of problems to which it has been applied, and the program's limitations. A number of problems are then presented, which are representative of the type of questions that are normally addressed by research projects in the area

  14. Helically symmetric equilibria with pressure anisotropy and incompressible plasma flow

    Science.gov (United States)

    Evangelias, A.; Kuiroukidis, A.; Throumoulopoulos, G. N.

    2018-02-01

    We derive a generalized Grad-Shafranov equation governing helically symmetric equilibria with pressure anisotropy and incompressible flow of arbitrary direction. Through the most general linearizing ansatz for the various free surface functions involved therein, we construct equilibrium solutions and study their properties. It turns out that pressure anisotropy can act either paramegnetically or diamagnetically, the parallel flow has a paramagnetic effect, while the non-parallel component of the flow associated with the electric field has a diamagnetic one. Also, pressure anisotropy and flow affect noticeably the helical current density.

  15. Equilibrium and stability in strongly inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1978-10-01

    The equilibrium of strongly inhomogeneous, collisionless, slab plasmas, is studied using a generalized version of a formalism previously developed, which permits the generation of self-consistent equilibria, for plasmas with arbitrary magnetic shear, and variation of magnetic field strength. A systematic procedure is developed for deriving the form of the guiding-center Hamiltonian K, for finite eta, in an axisymmetric geometry. In the process of obtaining K, an expression for the first adiabatic invariant (the gyroaction) is obtained, which generalizes the usual expression 1/2 mv/sub perpendicular/ 2 /Ω/sub c/ (Ω/sub c/ = eB/mc), to finite eta and magnetic shear. A formalism is developed for the study of the stability of strongly-inhomogeneous, magnetized slab plasmas; it is then applied to the ion-drift-cyclotron instability

  16. Stability of tearing modes in tokamak plasmas

    International Nuclear Information System (INIS)

    Hegna, C.C.; Callen, J.D.

    1994-02-01

    The stability properties of m ≥ 2 tearing instabilities in tokamak plasmas are analyzed. A boundary layer theory is used to find asymptotic solutions to the ideal external kink equation which are used to obtain a simple analytic expression for the tearing instability parameter Δ'. This calculation generalizes previous work on this topic by considering more general toroidal equilibria (however, toroidal coupling effects are ignored). Constructions of Δ' are obtained for plasmas with finite beta and for islands that have nonzero width. A simple heuristic estimate is given for the value of the saturated island width when the instability criterion is violated. A connection is made between the calculation of the asymptotic matching parameter in the finite beta and island width case to the nonlinear analog of the Glasser effect

  17. Hyper-resistivity and electron thermal conductivity due to destroyed magnetic surfaces in axisymmetric plasma equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Weening, R. H. [Department of Radiologic Sciences, Thomas Jefferson University, 901 Walnut Street, Philadelphia, Pennsylvania 19107-5233 (United States)

    2012-06-15

    In order to model the effects of small-scale current-driven magnetic fluctuations in a mean-field theoretical description of a large-scale plasma magnetic field B(x,t), a space and time dependent hyper-resistivity {Lambda}(x,t) can be incorporated into the Ohm's law for the parallel electric field E Dot-Operator B. Using Boozer coordinates, a theoretical method is presented that allows for a determination of the hyper-resistivity {Lambda}({psi}) functional dependence on the toroidal magnetic flux {psi} for arbitrary experimental steady-state Grad-Shafranov axisymmetric plasma equilibria, if values are given for the parallel plasma resistivity {eta}({psi}) and the local distribution of any auxiliary plasma current. Heat transport in regions of plasma magnetic surfaces destroyed by resistive tearing modes can then be modeled by an electron thermal conductivity k{sub e}({psi})=({epsilon}{sub 0}{sup 2}m{sub e}/e{sup 2}){Lambda}({psi}), where e and m{sub e} are the electron charge and mass, respectively, while {epsilon}{sub 0} is the permittivity of free space. An important result obtained for axisymmetric plasma equilibria is that the {psi}{psi}-component of the metric tensor of Boozer coordinates is given by the relation g{sup {psi}{psi}}({psi}){identical_to}{nabla}{psi} Dot-Operator {nabla}{psi}=[{mu}{sub 0}G({psi})][{mu}{sub 0}I({psi})]/{iota}({psi}), with {mu}{sub 0} the permeability of free space, G({psi}) the poloidal current outside a magnetic surface, I({psi}) the toroidal current inside a magnetic surface, and {iota}({psi}) the rotational transform.

  18. Ideal stability of cylindrical plasma in the presence of mass flow

    International Nuclear Information System (INIS)

    Bondeson, A.; Iacono, R.

    1988-11-01

    The ideal stability of cylindrical plasma with mass flows is investigated using the guiding centre plasma (GCP) model of Grad. For rotating plasmas, the kinetic treatment of the parallel motion in GCP gives significantly different results than fluid models, where the pressures are obtained from equations of state. In particular, GCP removes the resonance with slow magnetoacoustic waves and the loss of stability that results in magnetohydrodynamics (MHD) for near-soni flows. Because of the strong kinetic damping of the sound waves in an isothermal plasma, the slow waves have little influence on plasma stability in GCP at low β. In the large aspect ratio, low-β tokamak ordering, Alfvenic flows are needed to change the ideal GCP stability significantly. At lowest order in the inverse aspect ratio, flow can be favorable or unfavorable for stability of local modes depending on the profiles, but external kinks are always destilized by flow if the velocity vanishes at the edge. For high-β, reversed field pinch equilibria, numerical computations show that flow can be stabilizing for local modes, but external modes are destabilized by flow. It is shown that in three dimensions, the MHD equilibrium problem becomes hyperbolic for arbitrarily small flows across the magnetic field, whereas in GCP the equilibrium remains elliptic for sub-Alfvenic flows. (author) 7 figs., 1 tab, 32 refs

  19. A Riccati solution for the ideal MHD plasma response with applications to real-time stability control

    Science.gov (United States)

    Glasser, Alexander; Kolemen, Egemen; Glasser, A. H.

    2018-03-01

    Active feedback control of ideal MHD stability in a tokamak requires rapid plasma stability analysis. Toward this end, we reformulate the δW stability method with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the generic tokamak ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD matrix Riccati differential equation. Since Riccati equations are prevalent in the control theory literature, such a shift in perspective brings to bear a range of numerical methods that are well-suited to the robust, fast solution of control problems. We discuss the usefulness of Riccati techniques in solving the stiff ordinary differential equations often encountered in ideal MHD stability analyses—for example, in tokamak edge and stellarator physics. We demonstrate the applicability of such methods to an existing 2D ideal MHD stability code—DCON [A. H. Glasser, Phys. Plasmas 23, 072505 (2016)]—enabling its parallel operation in near real-time, with wall-clock time ≪1 s . Such speed may help enable active feedback ideal MHD stability control, especially in tokamak plasmas whose ideal MHD equilibria evolve with inductive timescale τ≳ 1s—as in ITER.

  20. Learned helplessness, discouraged workers, and multiple unemployment equilibria in a search model

    OpenAIRE

    Bjørnstad, Roger

    2001-01-01

    Abstract: Unemployment varies strongly between countries with comparable economic structure. Some economists have tried to explain these differences with institutional differences in the labour market. Instead, this paper focuses on a model with multiple equilibria so that the same socioeconomic structure can give rise to different levels of unemployment. Unemployed workers' search efficiency are modelled within an equilibrium search model and lay behind these results. In the model learned...

  1. Comparison of two association models (Elliott-Suresh-Donohue and simplified PC-SAFT) for complex phase equilibria of hydrocarbon-water and amine-containing mixtures

    DEFF Research Database (Denmark)

    Grenner, Andreas; Schmelzer, Jürgen; von Solms, Nicolas

    2006-01-01

    , and water. Furthermore, the predictive capabilities of the models are investigated for four ternary systems composed of these components, which exhibit complex liquid-liquid(-liquid) equilibria (LLLE). Various aspects of association models which have an influence in the results are studied for the PC......, both models perform overall similarly for the binary systems, although ESD shows a remarkably good behavior despite its simplicity and the use of only the two-site scheme for all associating compounds. The prediction of the LLE in the ternary systems water + octane + aniline and water + CHA + aniline......Two Wertheim-based association models, the simplified PC-SAFT and the Elliott-Suresh-Donohue (ESD) equation of state, are compared in this work for the description of vapor-liquid equilibria (VLE) and liquid-liquid equilibria (LLE) in binary systems of aniline, cyclohexylamine (CHA), hydrocarbons...

  2. Equilibrium dialysis-ligand exchange: adaptation of the method for determination of conditional stability constants of radionuclide-fulvic acid complexes

    International Nuclear Information System (INIS)

    Glaus, M.A.; Hummel, W.; Van Loon, L.R.

    1995-01-01

    The equilibrium dialysis-ligand exchange technique (EDLE) is used to determine conditional stability constants for the complexation of metal ions with humic acid, particularly in high pH solutions. Here, this technique has been adapted to measure conditional stability constants with fulvic acid. Fulvic acid permeates across all membranes during the experiment. The quantities involved therefore have to be determined analytically and taken into account when calculating the conditional stability constants. Co(II) and Laurentian Soil fulvic (LFA) acid were selected as a test system in order to investigate the time scale required to establish chemical and diffusion equilibria. After an incubation time of approximately two days, the conditional stability constants measured for the formation of Co-LFA-complexes are not time dependent, although across the whole time period investigated, LFA was still diffusing in increasing amounts across the dialysis membrane. This work demonstrates that the modified EDLE technique can be used in the determination of conditional metal stability constants of fulvic acid. (authors)

  3. Role of Met80 and Tyr67 in the low-pH conformational equilibria of cytochrome c.

    Science.gov (United States)

    Battistuzzi, Gianantonio; Bortolotti, Carlo Augusto; Bellei, Marzia; Di Rocco, Giulia; Salewski, Johannes; Hildebrandt, Peter; Sola, Marco

    2012-07-31

    The low-pH conformational equilibria of ferric yeast iso-1 cytochrome c (ycc) and its M80A, M80A/Y67H, and M80A/Y67A variants were studied from pH 7 to 2 at low ionic strength through electronic absorption, magnetic circular dichroism, and resonance Raman spectroscopies. For wild-type ycc, the protein structure, axial heme ligands, and spin state of the iron atom convert from the native folded His/Met low-spin (LS) form to a molten globule His/H(2)O high-spin (HS) form and a totally unfolded bis-aquo HS state, in a single cooperative transition with an apparent pK(a) of ~3.0. An analogous cooperative transition occurs for the M80A and M80A/Y67H variants. This is preceded by protonation of heme propionate-7, with a pK(a) of ~4.2, and by an equilibrium between a His/OH(-)-ligated LS and a His/H(2)O-ligated HS conformer, with a pK(a) of ~5.9. In the M80A/Y67A variant, the cooperative low-pH transition is split into two distinct processes because of an increased stability of the molten globule state that is formed at higher pH values than the other species. These data show that removal of the axial methionine ligand does not significantly alter the mechanism of acidic unfolding and the ranges of stability of low-pH conformers. Instead, removal of a hydrogen bonding partner at position 67 increases the stability of the molten globule and renders cytochrome c more susceptible to acid unfolding. This underlines the key role played by Tyr67 in stabilizing the three-dimensional structure of cytochrome c by means of the hydrogen bonding network connecting the Ω loops formed by residues 71-85 and 40-57.

  4. MHD stability analysis of axisymmetric surface current model tokamaks close to the spheromak regime

    International Nuclear Information System (INIS)

    Honma, Toshihisa; Kaji, Ikuo; Fukai, Ichiro; Kito, Masafumi.

    1984-01-01

    In the toroidal coordinates, a stability analysis is presented for very low-aspect-ratio tokamaks with circular cross section which is described by a surface current model (SCM) of axisymmetric equilibria. The energy principle determining the stability of plasma is treated without any expansion of aspect ratio. Numerical results show that, owing to the occurrence of the non-axisymmetric (n=1) unstable modes, there exists no MHD-stable ideal SCM spheromak characterized by zero external toroidal vacuum field. Instead, a stable spheromak-type plasma which comes to the ideal SCM spheromak is provided by the configuration with a very weak external toroidal field. Close to the spheromak regime (1.0 1 aspect ratio< = 1.1), the minimum safety factor and the critical β-values increase mo notonically with aspect ratio decreasing from a large value, and curves of βsub(p) versus β in the marginal stability approach to an ideal SCM spheromak line βsub(p)=β. (author)

  5. Oscillations and Multiple Equilibria in Microvascular Blood Flow.

    Science.gov (United States)

    Karst, Nathaniel J; Storey, Brian D; Geddes, John B

    2015-07-01

    We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.

  6. Modelling the relative stability of carbon nanotubes exposed to environmental adsorbates and air

    International Nuclear Information System (INIS)

    Barnard, Amanda S

    2009-01-01

    In parallel with the development of technological applications for carbon nanotubes, issues related to toxicology and environmental impact are also under increased scrutiny. It is clear from the available literature that the integrity of future carbon nanotube-based devices, our ability to anticipate failure of these devices, and our ability to manage the toxicological and environmental impacts require a detailed understanding of the stability of pure and functionalized carbon nanotubes under a full range of environmental conditions. Motivated by this endeavour, the present study uses a general thermodynamic model to predict the relative stability of carbon nanotubes exposed to a variety of atmospheric adsorbates, and uses them to examine the stability of nanotubes in air, as a function of the relative humidity. In general the results indicate that the adsorption of a sparse coverage of air is thermodynamically favoured, depending on the humidity, and the stability of small diameter nanotubes may be improved by exposure to humid air.

  7. Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures.

    Science.gov (United States)

    Piacenza, Elena; Presentato, Alessandro; Turner, Raymond J

    2018-02-25

    In the last 15 years, the exploitation of biological systems (i.e. plants, bacteria, mycelial fungi, yeasts, and algae) to produce metal(loid) (Me)-based nanomaterials has been evaluated as eco-friendly and a cost-effective alternative to the chemical synthesis processes. Although the biological mechanisms of biogenic Me-nanomaterial (Bio-Me-nanomaterials) production are not yet completely elucidated, a key advantage of such bio-nanostructures over those chemically synthesized is related to their natural thermodynamic stability, with several studies ascribed to the presence of an organic layer surrounding these Bio-Me-nanostructures. Different macromolecules (e.g. proteins, peptides, lipids, DNA, and polysaccharides) or secondary metabolites (e.g. flavonoids, terpenoids, glycosides, organic acids, and alkaloids) naturally produced by organisms have been indicated as main contributors to the stabilization of Bio-Me-nanostructures. Nevertheless, the chemical-physical mechanisms behind the ability of these molecules in providing stability to Bio-Me-nanomaterials are unknown. In this context, transposing the stabilization theory of chemically synthesized Me-nanomaterials (Ch-Me-nanomaterials) to biogenic materials can be used towards a better comprehension of macromolecules and secondary metabolites role as stabilizing agents of Bio-Me-nanomaterials. According to this theory, nanomaterials are generally featured by high thermodynamic instability in suspension, due to their high surface area and surface energy. This feature leads to the necessity to stabilize chemical nanostructures, even during or directly after their synthesis, through the development of (i) electrostatic, (ii) steric, or (iii) electrosteric interactions occurring between molecules and nanomaterials in suspension. Based on these three mechanisms, this review is focused on parallels between the stabilization of biogenic or chemical nanomaterials, suggesting which chemical-physical mechanisms may be

  8. Thermodynamic characteristics of the acid-base equilibria of taurine in aqueous solutions, according to calorimetry data

    Science.gov (United States)

    Gridchin, S. N.; Shekhanov, R. F.; Pyreu, D. F.

    2015-02-01

    Enthalpies of the neutralization and protonation of taurine (HL) are measured by direct calorimetry at 298.15 K and ionic strengths of 0.3, 0.5, and 1.0 (KNO3). The standard thermodynamic characteristics of HL protolytic equilibria are calculated.

  9. Simulation of Chemical Reaction Equilibria by the Reaction Ensemble Monte Carlo Method:

    Czech Academy of Sciences Publication Activity Database

    Turner, C.H.; Brennan, J.K.; Lísal, Martin; Smith, W.R.; Johnson, J. K.; Gubbins, K.E.

    2008-01-01

    Roč. 34, č. 2 (2008), s. 119-146 ISSN 0892-7022 R&D Projects: GA AV ČR KAN400720701; GA ČR GA203/05/0725; GA AV ČR IAA400720710; GA AV ČR 1ET400720507 Grant - others:NRCC(CA) OGP1041 Institutional research plan: CEZ:AV0Z40720504 Keywords : simulation * review * reaction equilibria Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.325, year: 2008

  10. Phase stability and decomposition processes in Ti-Al based intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Kiyomichi [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan); Ono, Toshiaki [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan); Ohtsubo, Hiroyuki [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan); Ohmori, Yasuya [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan)

    1995-02-28

    The high-temperature phase equilibria and the phase decomposition of {alpha} and {beta} phases were studied by crystallographic analysis of the solidification microstructures of Ti-48at.%Al and Ti-48at.%Al-2at.%X (X=Mn, Cr, Mo) alloys. The effects on the phase stability of Zr and O atoms penetrating from the specimen surface were also examined for Ti-48at.%Al and Ti-50at.%Al alloys. The third elements Cr and Mo shift the {beta} phase region to higher Al concentrations, and the {beta} phase is ordered to the {beta}{sub 2} phase. The Zr and O atoms stabilize {beta} and {alpha} phases respectively. In the Zr-stabilized {beta} phase, {alpha}{sub 2} laths form with accompanying surface relief, and stacking faults which relax the elastic strain owing to lattice deformation are introduced after formation of {alpha}{sub 2} order domains. Thus shear is thought to operate after the phase transition from {beta} to {alpha}{sub 2} by short-range diffusion. A similar analysis was conducted for the Ti-Al binary system, and the transformation was interpreted from the CCT diagram constructed qualitatively. ((orig.))

  11. Cold-fluid theory of equilibrium and stability of a high-intensity periodically twisted ellipse-shaped charged-particle beam

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2006-03-01

    Full Text Available It is shown that there exists an exact paraxial cold-fluid equilibrium of a high-intensity, space-charge-dominated charged-particle beam with a periodically twisted elliptic cross section in a nonaxisymmetric periodic magnetic field. Generalized envelope equations, which determine the beam envelopes, ellipse orientation, density, and internal flow velocity profiles, are derived. Nonrelativistic and relativistic examples of such beam equilibria are presented. The equilibrium and stability of such beams are demonstrated by self-consistent particle-in-cell (PIC simulations.

  12. High poloidal beta equilibria in TFTR limited by a natural inboard poloidal field null

    International Nuclear Information System (INIS)

    Sabbagh, S.A.; Gross, R.A.; Mauel, M.E.; Navratil, G.A.; Bell, M.G.; Bell, R.; Bitter, M.; Bretz, N.L.; Budny, R.V.; Bush, C.E.; Chance, M.S.; Efthimion, P.C.; Fredrickson, E.D.; Hatcher, R.; Hawryluk, R.J.; Hirshman, S.P.; Janos, A.C.; Jardin, S.C.; Jassby, D.L.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Okabayashi, M.; Park, H.K.; Ramsey, A.T.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.; Wieland, R.M.; Zarnstorff, M.C.; Kesner, J.; Marmar, E.S.; Terry, J.L.

    1991-07-01

    Recent operation of the Tokamak Fusion Test Reactor TFTR, has produced plasma equilibria with values of Λ triple-bond β p eq + l i /2 as large as 7, εβ p dia triple-bond 2μ 0 ε /much-lt B p much-gt 2 as large as 1.6, and Troyon normalized diamagnetic beta, β N dia triple-bond 10 8 t perpendicular>aB 0 /I p as large as 4.7. When εβ p dia approx-gt 1.25, a separatrix entered the vacuum chamber, producing a naturally diverted discharge which was sustained for many energy confinement times, τ E . The largest values of εβ p and plasma stored energy were obtained when the plasma current was ramped down prior to neutral beam injection. The measured peak ion and electron temperatures were as large as 24 keV and 8.5 keV, respectively. Plasma stored energy in excess of 2.5 MJ and τ E greater than 130 msec were obtained. Confinement times of greater than 3 times that expected from L-mode predictions have been achieved. The fusion power gain. Q DD , reached a values of 1.3 x 10 -3 in a discharge with I p = 1 MA and εβ p dia = 0.85. A large, sustained negative loop voltage during the steady state portion of the discharge indicates that a substantial non-inductive component of I p exists in these plasmas. Transport code analysis indicates that the bootstrap current constitutes up to 65% of I p . Magnetohydrodynamic (MHD) ballooning stability analysis shows that while these plasmas are near, or at the β p limit, the pressure gradient in the plasma core is in the first region of stability to high-n modes. 24 refs., 10 figs

  13. Phase equilibria and molecular interaction studies on (naphthols + vanillin) systems

    International Nuclear Information System (INIS)

    Gupta, Preeti; Agrawal, Tanvi; Das, Shiva Saran; Singh, Nakshatra Bahadur

    2012-01-01

    Highlights: ► Phase equilibria of (naphthol + vanillin) systems have been studied for the first time. ► Eutectic type phase diagrams are obtained. ► Eutectic mixtures show nonideal behaviour. ► There is a weak molecular interaction between the components in the eutectic mixtures. ► α-Naphthol–vanillin eutectic is more stable as compared to β-naphthol–vanillin. - Abstract: Phase equilibria between (α-naphthol + vanillin) and (β-naphthol + vanillin) systems have been studied by thaw-melt method and the results show the formation of simple eutectic mixtures. Crystallization velocities of components and eutectic mixtures were determined at different stages under cooling. With the help of differential scanning calorimeter (DSC), the enthalpy of fusion of components and eutectic mixtures was determined and from the values excess thermodynamic functions viz., excess Gibbs free energy (G E ), excess entropy (S E ), excess enthalpy (H E ) of hypo-, hyper- and eutectic mixtures were calculated. Flexural strength measurements were made in order to understand the non-ideal nature of eutectics. FT-IR spectral studies indicate the formation of hydrogen bond in the eutectic mixture. Anisotropic and isotropic microstructural studies of components, hypo-, hyper- and eutectic mixtures were made. Jackson’s roughness parameter was calculated and found to be greater than 2 suggesting the faceted morphology with irregular structures. The overall results have shown that there is a weak molecular interaction between the components in the eutectic mixtures and the (α-naphthol + vanillin) eutectic is more stable as compared to the (β-naphthol + vanillin) eutectic system.

  14. Radial effects in heating and thermal stability of a sub-ignited tokamak

    International Nuclear Information System (INIS)

    Fuchs, V.; Shoucri, M.M.; Thibaudeau, G.; Harten, L.; Bers, A.

    1982-02-01

    The existence of thermally stable sub-ignited equilibria of a tokamak reactor, sustained in operation by a feedback-controlled supplementary heating source, is demonstrated. The establishment of stability depends on a number of radially non-uniform, nonlinear processes whose effect is analyzed. One-dimensional (radial) stability analyses of model transport equations, together with numerical results from a 1-D transport code, are used in studying the heating of DT-plasmas in the thermonuclear regime. Plasma core supplementary heating is found to be a thermally more stable process than bulk heating. In the presence of impurity line radiation, however, core-heated temperature profiles may collapse, contracting inward from the limiter, the result of an instability caused by the increasing nature of the radiative cooling rate, with decreasing temperature. Conditions are established for the realization of a sub-ignited high-Q, toroidal reactor plasma with appreciable output power

  15. Phase equilibria in Dy-Cu-Al system at 500 deg C

    International Nuclear Information System (INIS)

    Kuz'ma, Yu.B.; Milyan, V.V.

    1989-01-01

    Using the methods of X-ray diffraction analysis a diagram of phase equilibria in Dy-Cu-Al system at 500 deg C is plotted. Boundaries of solid solutions on the basis of DyCu 2 , DyCu and DyAl 2 compounds are determined and homogeneity regions of ternary compounds Dy 2 (Cu, Al) 7 and Dy(CuAl) 5 are ascertained. Compounds DyCuAl 3 , Dy 4 Cu 4 Al 11 and Dy 5 Cu 6 Al 9 have been detected for the first time

  16. Phase equilibria and crystalline structure of compounds in the Lu-Al and Lu-Cu-Al systems

    International Nuclear Information System (INIS)

    Kuz'ma, Yu.B.; Stel'makhovich, B.M.; Galamushka, L.I.

    1992-01-01

    Phase equilibria and crystal structure of compounds in Lu-Al and Lu-Cu-Al systems were studied. Existence of Lu 2 Al compound having the structure of the PbCl 2 type is ascertained. Diagram of phase equilibria of Lu-Cu-Al system at 870 K is plotted. Compounds Lu 2 (Cu,Al) 17 (the Th 2 Zn 17 type structure), Lu(Cu,Al) 5 (CaCu 5 type structure), Lu 6 (Cu,Al) 23 (Th 6 Mn 23 type structure) and ∼ LuCuAl 2 have been prepared for the first time. Investigation of component interaction in Lu-Cu-Al system shows that the system is similar to previously studied systems Dy-Cu-Al and Er-Cu-Al. The main difference consists in the absence of LuCuAl 3 compound with rhombic structure of the CeNi 2+x Sb 2-x type in the system investigated

  17. Computation of zero. beta. three-dimensional equilibria with magnetic islands

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, A.H.; Greenside, H.S.

    1989-01-01

    A Picard iteration scheme has been implemented for the computation of toroidal, fully three-dimensional, zero ..beta.. equilibria with islands and stochastic regions. Representation of the variables in appropriate coordinate systems has been found to be a key to making the scheme work well. In particular, different coordinate systems are used for solving magnetic differential equations and Ampere's law. The current profile is adjusted when islands and stochastic regions appear. An underrelaxation of the current profile modifications is generally needed for stable iteration of the algorithm. Some examples of equilibrium calculations are presented. 16 refs., 6 figs., 1 tab.

  18. The effects of plasma deformability on the feedback stabilization of axisymmetric modes in tokamak plasmas

    International Nuclear Information System (INIS)

    Ward, D.J.; Jardin, S.C.

    1991-09-01

    The effects of plasma deformability on the feedback stabilization of axisymmetric modes of tokamak plasmas are studied. It is seen that plasmas with strongly shaped cross sections have unstable motion different from a rigid shift. Furthermore, the placement of passive conductors is shown to modify the non-rigid components of the eigenfunction in a way that reduces the stabilizing eddy currents in these conductors. Passive feedback results using several equilibria of varying shape are presented. The eigenfunction is also modified under the effects of active feedback. This deformation is seen to depend strongly on the position of the flux loops which are used to determine plasma vertical position for the active feedback system. The variations of these non-rigid components of the eigenfunction always serve to reduce the stabilizing effect of the active feedback system by reducing the measurable poloidal flux at the flux-loop locations. Active feedback results are presented for the PBX-M tokamak configuration. (author) 19 figs., 2 tabs., 30 refs

  19. Acid-base equilibria inside amine-functionalized mesoporous silica.

    Science.gov (United States)

    Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio

    2011-04-15

    Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society

  20. Spontaneous symmetry breaking and neutral stability in the noncanonical Hamiltonian formalism

    International Nuclear Information System (INIS)

    Morrison, P.J.; Eliezer, S.

    1985-10-01

    The noncanonical Hamiltonian formalism is based upon a generalization of the Poisson bracket, a particular form of which is possessed by continuous media fields. Associated with this generalization are special constants of motion called Casimirs. These are constants that can be viewed as being built into the phase space, for they are invariant for all Hamiltonians. Casimirs are important because when added to the Hamiltonian they yield an effective Hamiltonian that produces equilibrium states upon variation. The stability of these states can be ascertained by a second variation. Goldstone's theorem, in its usual context, determines zero eigenvalues of the mass matrix for a given vacuum state, the equilibrium with minimum energy. Here, since for fluids and plasmas the vacuum state is uninteresting, we examine symmetry breaking for general equilibria. Broken symmetries imply directions of neutral stability. Two examples are presented: the nonlinear Alfven wave of plasma physics and the Korteweg-de Vries soliton. 46 refs

  1. The impact of uni-univalent electrolytes on (water + acetic acid + toluene) equilibria: Representation with electrolyte-NRTL model

    International Nuclear Information System (INIS)

    Saien, Javad; Fattahi, Mahdi; Mozafarvandi, Maryam

    2014-01-01

    Highlights: • Experimental LLE data for water + acetic acid + toluene + NaCl or KCl were reported. • The salting-out effect was detected; indicating the stronger effect of NaCl. • The electrolyte-NRTL model was adequately used to correlate the phase equilibria. • A good agreement was observed between calculated and experimental tie-lines. - Abstract: The presence of salts can significantly alter the (liquid + liquid) equilibrium and extraction process. In this work, a study was conducted on the (liquid + liquid) equilibria of (water + acetic acid + toluene + sodium chloride or potassium chloride) at temperatures (288.2, 298.2 and 313.2) K. This chemical system, irrespective of salt, is frequently used in (liquid + liquid) extraction investigations. The selected salt concentrations in initial aqueous solutions were (0.9 and 1.7) mol · L −1 . The results show that salting-out effect of the salts was significant, so that an enhancement in the acetic acid distribution coefficient was achieved within (15.6 to 66.8)% with NaCl and within (2.5 to 37.6)% with KCl. Meantime, high separation factors were found at low temperatures and low solute concentrations. The electrolyte-NRTL model was satisfactorily used to correlate the phase equilibria. In this regard for each salt, the temperature dependent binary interaction parameters between components were calculated. The predicted tie-line mole fractions give root-mean square deviation (RMSD) values of only 0.0038 and 0.0045 for the systems containing NaCl and KCl, respectively

  2. Longitudinal traveling waves bifurcating from Vlasov plasma equilibria

    International Nuclear Information System (INIS)

    Holloway, J.P.

    1989-01-01

    The kinetic equations governing longitudinal motion along a straight magnetic field in a multi-species collisionless plasma are investigated. A necessary condition for the existence of small amplitude spatially periodic equilibria and traveling waves near a given spatially uniform background equilibrium is derived, and the wavelengths which such solutions must approach as their amplitude decreases to zero are discussed. A sufficient condition for the existence of these small amplitude waves is also established. This is accomplished by studying the nonlinear ODE for the potential which arises when the distribution functions are represented in a BGK form; the arbitrary functions of energy that describe the BGK representation are tested as an infinite dimensional set of parameters in a bifurcation theory for the ODE. The positivity and zero current condition in the wave frame of the BGK distribution functions are maintained. The undamped small amplitude nonlinear waves so constructed can be made to satisfy the Vlasov dispersion relation exactly, but in general they need only satisfy it approximately. Numerical calculations reveal that even a thermal equilibrium electron-proton plasma with equal ion and electron temperatures will support undamped traveling waves with phase speeds greater than 1.3 times the electron velocity; the dispersion relation for this case exhibits both Langmuir and ion-acoustic branches as long wavelength limits, and shows how these branches are in fact connected by short wavelength waves of intermediate frequency. In apparent contradiction to the linear theory of Landau, these exact solutions of the kinetic equations do not damp; this contradiction is explained by observing that the linear theory is, in general, fundamentally incapable of describing undamped traveling waves

  3. Quantification of the 214 Pb and 214 Bi decay products before and after to reach the secular equilibria with the 226 Ra

    International Nuclear Information System (INIS)

    Quintero P, E.; Rojas M, V.P.; Cervantes N, M.L.; Gaso P, M.I.

    2002-01-01

    In this work a comparison between the 226 Ra concentration and its decay products ( 214 Pb and 214 Bi) in soil samples is presented before and after that the decay mentioned products reach the equilibria with the radium. Moreover, the obtained daughter/father ratio is presented; and the correction factor for the calculus of the 214 Pb and 214 Bi quantification without being necessary to wait until that the secular equilibria has been established. For the quantification of the concentration of the three radionuclides the gamma spectrometry technique was used. (Author)

  4. Plasma confinement in self-consistent, one-dimensional transport equilibria in the collisionless-ion regime of EBT operation

    International Nuclear Information System (INIS)

    Chang, C.S.; Miller, R.L.

    1983-01-01

    It has long been recognized that if an EBT-confined plasma could be maintained in the collisionless-ion regime, characterized by positive ambipolar potential and positive radial electric field, the particle loss rates could be reduced by a large factor. The extent to which the loss rate of energy could be reduced has not been as clearly determined, and has been investigated recently using a one-dimensional, time-dependent transport code developed for this purpose. We find that the energy confinement can be improved by roughly an order of magnitude by maintaining a positive radial electric field that increases monotonically with radius, giving a large ExB drift near the outer edge of the core plasma. The radial profiles of heat deposition required to sustain these equilibria will be presented, and scenarios for obtaining dynamical access to the equilibria will be discussed

  5. Bilinear Relative Equilibria of Identical Point Vortices

    DEFF Research Database (Denmark)

    Aref, H.; Beelen, Peter; Brøns, Morten

    2012-01-01

    , obtained using Sturm’s comparison theorem, is that if p(z) satisfies the ODE for a given q(z) with its imaginary zeros symmetric relative to the x-axis, then it must have at least n−m+2 simple, real zeros. For m=2 this provides a complete characterization of all zeros, and we study this case in some detail....... In particular, we show that, given q(z)=z 2+η 2, where η is real, there is a unique p(z) of degree n, and a unique value of η 2=A n , such that the zeros of q(z) and p(z) form a relative equilibrium of n+2 point vortices. We show that $A_{n} \\approx\\frac{2}{3}n + \\frac{1}{2}$, as n→∞, where the coefficient of n...

  6. High-Temperature Phase Equilibria of Duplex Stainless Steels Assessed with a Novel In-Situ Neutron Scattering Approach

    Science.gov (United States)

    Pettersson, Niklas; Wessman, Sten; Hertzman, Staffan; Studer, Andrew

    2017-04-01

    Duplex stainless steels are designed to solidify with ferrite as the parent phase, with subsequent austenite formation occurring in the solid state, implying that, thermodynamically, a fully ferritic range should exist at high temperatures. However, computational thermodynamic tools appear currently to overestimate the austenite stability of these systems, and contradictory data exist in the literature. In the present work, the high-temperature phase equilibria of four commercial duplex stainless steel grades, denoted 2304, 2101, 2507, and 3207, with varying alloying levels were assessed by measurements of the austenite-to-ferrite transformation at temperatures approaching 1673 K (1400 °C) using a novel in-situ neutron scattering approach. All grades became fully ferritic at some point during progressive heating. Higher austenite dissolution temperatures were measured for the higher alloyed grades, and for 3207, the temperature range for a single-phase ferritic structure approached zero. The influence of temperatures in the region of austenite dissolution was further evaluated by microstructural characterization using electron backscattered diffraction of isothermally heat-treated and quenched samples. The new experimental data are compared to thermodynamic calculations, and the precision of databases is discussed.

  7. The SX Solver: A Computer Program for Analyzing Solvent-Extraction Equilibria: Version 3.0

    International Nuclear Information System (INIS)

    Lumetta, Gregg J.

    2001-01-01

    A new computer program, the SX Solver, has been developed to analyze solvent-extraction equilibria. The program operates out of Microsoft Excel and uses the built-in Solver function to minimize the sum of the square of the residuals between measured and calculated distribution coefficients. The extraction of nitric acid by tributyl phosphate has been modeled to illustrate the programs use

  8. Investigations of (acid+base) equilibria in systems modelling interactions occurring in biomolecules

    International Nuclear Information System (INIS)

    Kozak, Anna; Czaja, Malgorzata; Chmurzynski, Lech

    2006-01-01

    By using the potentiometric microtitration method, acidity constants, K a , anionic, K AHA - , and cationic, K BHB + , homoconjugation constants, as well as molecular heteroconjugation, K BHA , constants have been determined in (acid+base) systems formed by the following compounds: acetic acid, phenol, n-butylamine, imidazole, and 4(5)-methylimidazole. These compounds constitute fragments of the side chains of amino acids capable of proton exchange in active sites of enzymes. The (acid+base) equilibria were studied in five polar solvents of different properties, namely in aprotic protophobic acetonitrile, acetone and propylene carbonate, in aprotic protophilic dimethyl sulfoxide and in amphiprotic methanol. The lowest values of the acidity constants of the molecular and cationic acids have been found in aprotic protophobic polar solvents - acetonitrile, propylene carbonate and acetone. Their acid strength have been found to depend on solvent basicity expressed as donor numbers, DN. These media, in particular acetonitrile and acetone, are also favourable for establishing molecular homo- and heteroconjugation equilibria. The most stable homocomplexes are formed in the case of acetic acid (K AHA - values range from 2.26 to 3.56 in these media, being more than an order of magnitude higher than those for the remaining compounds). The magnitudes of lgK BHA reveal that the most stable heterocomplexes are formed by n-butylamine and acetic acid that are characterized by the smallest differences in pK a values

  9. Static and dynamic stability results for a class of three-dimensional configurations of Kirchhoff elastic rods

    KAUST Repository

    Majumdar, Apala

    2013-06-01

    We analyze the dynamical stability of a naturally straight, inextensible and unshearable elastic rod, under tension and controlled end rotation, within the Kirchhoff model in three dimensions. The cases of clamped boundary conditions and isoperimetric constraints are treated separately. We obtain explicit criteria for the static stability of arbitrary extrema of a general quadratic strain energy. We exploit the equivalence between the total energy and a suitably defined norm to prove that local minimizers of the strain energy, under explicit hypotheses, are stable in the dynamic sense due to Liapounov. We also extend our analysis to damped systems to show that static equilibria are dynamically stable in the Liapounov sense, in the presence of a suitably defined local drag force. © 2013 Elsevier B.V. All rights reserved.

  10. Axisymmetric plasma equilibria in a Kerr metric

    Science.gov (United States)

    Elsässer, Klaus

    2001-10-01

    Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  11. Extent of Intramolecular pi Stacks in Aqueous Solution in Mixed-Ligand Copper(II) Complexes Formed by Heteroaromatic Amines and 1-[2-(Phosphonomethoxy)ethyl]cytosine (PMEC), a Relative of Antivirally Active Acyclic Nucleotide Analogues (Part 72)

    Czech Academy of Sciences Publication Activity Database

    Blindauer, C. A.; Sigel, A.; Operschall, B. P.; Holý, Antonín; Sigel, H.

    2013-01-01

    Roč. 639, 8-9 (2013), s. 1661-1673 ISSN 0044-2313 Institutional support: RVO:61388963 Keywords : nucleotide analogues * antivirals * complex stabilities * isomers * equilibria * mixed ligand complexes Subject RIV: CC - Organic Chemistry Impact factor: 1.251, year: 2013

  12. Stability and Bifurcation of a Computer Virus Propagation Model with Delay and Incomplete Antivirus Ability

    Directory of Open Access Journals (Sweden)

    Jianguo Ren

    2014-01-01

    Full Text Available A new computer virus propagation model with delay and incomplete antivirus ability is formulated and its global dynamics is analyzed. The existence and stability of the equilibria are investigated by resorting to the threshold value R0. By analysis, it is found that the model may undergo a Hopf bifurcation induced by the delay. Correspondingly, the critical value of the Hopf bifurcation is obtained. Using Lyapunov functional approach, it is proved that, under suitable conditions, the unique virus-free equilibrium is globally asymptotically stable if R01. Numerical examples are presented to illustrate possible behavioral scenarios of the mode.

  13. Numerical analysis of Markov-perfect equilibria with multiple stable steady states : A duopoly application with innovative firms

    NARCIS (Netherlands)

    Dawid, H.; Keoula, M.Y.; Kort, Peter

    2017-01-01

    This paper presents a numerical method for the characterization of Markov-perfect equilibria of symmetric differential games exhibiting coexisting stable steady states. The method relying on the calculation of ‘local value functions’ through collocation in overlapping parts of the state space, is

  14. Lime Stabilization of Fine-Grained Greenlandic Sediments in Relation to Construction Projects

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Ingeman-Nielsen, Thomas; Nielsen, Hans Rasmus

    2010-01-01

    to the cold climate, and it is therefore of great interest to study possible methods to improve the stability of the fine-grained sediments. This presentation will include results of laboratory studies of lime stabilization on a clay soil from Kangerlussuaq, western Greenland. The result includes tests...... of the optimum lime mixture in relation to both reaction time and temperature influence....

  15. Rotational stability of a long field-reversed configuration

    International Nuclear Information System (INIS)

    Barnes, D. C.; Steinhauer, L. C.

    2014-01-01

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone

  16. Rotational stability of a long field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, D. C., E-mail: coronadocon@msn.com; Steinhauer, L. C. [Tri Alpha Energy, Rancho Santa Margarita, California 92688 (United States)

    2014-02-15

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.

  17. Flow effects on the stability of z-pinches

    International Nuclear Information System (INIS)

    Shumlak, U.; Hartman, C.W.

    1996-01-01

    The effect of an axial flow on the m = 1 kink instability in z-pinches is studied numerically by reducing the linearized ideal MHD equations to a one-dimensional eigenvalue equation for the radial displacement. The derivation of the displacement equation for equilibria with axial flows will be presented. A diffuse z-pinch equilibrium is chosen that is made marginally stable to the m = 0 sausage mode by tailoring the pressure profile. The principle result reveals that a sheared axial flow does stabilize the kink mode when the shear exceeds a threshold value. Additionally, the m = 0 sausage mode is driven from marginal stability into the stable regime which suggests that the equilibrium pressure profile control can be relaxed. Fast z-pinches such as liner implosions are plagued by the Rayleigh-Taylor instability which destroys the liner and disrupts the current path before the liner arrives on axis. A sheared axial flow in a liner may quench the Rayleigh-Taylor instability in the same way that it quenches MHD instabilities in a diffuse z-pinch. Simulation results will be presented showing the effect of a sheared axial flow on the Rayleigh-Taylor instability in a fast liner implosion

  18. Imitation dynamics of vaccine decision-making behaviours based on the game theory.

    Science.gov (United States)

    Yang, Junyuan; Martcheva, Maia; Chen, Yuming

    2016-01-01

    Based on game theory, we propose an age-structured model to investigate the imitation dynamics of vaccine uptake. We first obtain the existence and local stability of equilibria. We show that Hopf bifurcation can occur. We also establish the global stability of the boundary equilibria and persistence of the disease. The theoretical results are supported by numerical simulations.

  19. Using a Differential Scanning Calorimeter to Teach Phase Equilibria to Students of Igneous and Metamorphic Petrology

    Science.gov (United States)

    Maria, Anton H.; Millam, Evan L.; Wright, Carrie L.

    2011-01-01

    As an aid for teaching phase equilibria to undergraduate students of igneous and metamorphic petrology, we have designed a laboratory exercise that allows them to create a phase diagram from data produced by differential scanning calorimetry. By preparing and analyzing samples of naphthalene and phenanthrene, students acquire hands-on insight into…

  20. Stability constants of mixed ligand complexes of lanthanide(III) and yttrium(III) with complexone and substituted salicylic acids

    International Nuclear Information System (INIS)

    Kolhe, Vishnu; Dwivedi, K.

    1996-01-01

    Salicylic acid and substituted salicylic acids are potential antimicrobial agents. Binary complexes of salicylic acid and its substituted derivatives with lanthanide(III) and yttrium(III) metal ions have been reported. There are reports on the ternary metal complexing equilibria with some lanthanide(III) and yttrium(III) metal ions involving aminopolycarboxylic acid as one ligand and salicylic acid (SA) and other related compounds as the second ligands. Ethylene glycol bis(2-aminoethylether)- N, N, N', N'-tetraacetic acid (EGTA) is an important member of aminopolycarboxylic acid and finds many applications in medicine and biology. Recently, few ternary complexes have been reported using EGTA as ligand. In view of biological importance of simple and mixed ligand complexes EGTA, SA and DNSA (3,5-dinitrosalicylic acid), a systematic study has been undertaken for the determination of stability constant and the results are reported. (author). 6 refs., 1 fig., 2 tabs

  1. Equilibria, information and frustration in heterogeneous network games with conflicting preferences

    Science.gov (United States)

    Mazzoli, M.; Sánchez, A.

    2017-11-01

    Interactions between people are the basis on which the structure of our society arises as a complex system and, at the same time, are the starting point of any physical description of it. In the last few years, much theoretical research has addressed this issue by combining the physics of complex networks with a description of interactions in terms of evolutionary game theory. We here take this research a step further by introducing a most salient societal factor such as the individuals’ preferences, a characteristic that is key to understanding much of the social phenomenology these days. We consider a heterogeneous, agent-based model in which agents interact strategically with their neighbors, but their preferences and payoffs for the possible actions differ. We study how such a heterogeneous network behaves under evolutionary dynamics and different strategic interactions, namely coordination games and best shot games. With this model we study the emergence of the equilibria predicted analytically in random graphs under best response dynamics, and we extend this test to unexplored contexts like proportional imitation and scale free networks. We show that some theoretically predicted equilibria do not arise in simulations with incomplete information, and we demonstrate the importance of the graph topology and the payoff function parameters for some games. Finally, we discuss our results with the available experimental evidence on coordination games, showing that our model agrees better with the experiment than standard economic theories, and draw hints as to how to maximize social efficiency in situations of conflicting preferences.

  2. Phase equilibria modeling of methanol-containing systems with the CPA and sPC-SAFT equations of state

    DEFF Research Database (Denmark)

    Tybjerg, Peter Chr. V.; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2010-01-01

    Proper representation at various conditions of phase equilibria of methanol-containing mixtures (with hydrocarbons, water, etc.) is Important for oil flow assurance purposes In this work two association equations of state. CPA and sPC-SAFT, are applied to methanol-containing mixtures The purpose ...

  3. Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations

    Directory of Open Access Journals (Sweden)

    Richard M. Palin

    2016-07-01

    Full Text Available Pseudosection modelling is rapidly becoming an essential part of a petrologist's toolkit and often forms the basis of interpreting the tectonothermal evolution of a rock sample, outcrop, or geological region. Of the several factors that can affect the accuracy and precision of such calculated phase diagrams, “geological” uncertainty related to natural petrographic variation at the hand sample- and/or thin section-scale is rarely considered. Such uncertainty influences the sample's bulk composition, which is the primary control on its equilibrium phase relationships and thus the interpreted pressure–temperature (P–T conditions of formation. Two case study examples—a garnet–cordierite granofels and a garnet–staurolite–kyanite schist—are used to compare the relative importance that geological uncertainty has on bulk compositions determined via (1 X-ray fluorescence (XRF or (2 point counting techniques. We show that only minor mineralogical variation at the thin-section scale propagates through the phase equilibria modelling procedure and affects the absolute P–T conditions at which key assemblages are stable. Absolute displacements of equilibria can approach ±1 kbar for only a moderate degree of modal proportion uncertainty, thus being essentially similar to the magnitudes reported for analytical uncertainties in conventional thermobarometry. Bulk compositions determined from multiple thin sections of a heterogeneous garnet–staurolite–kyanite schist show a wide range in major-element oxides, owing to notable variation in mineral proportions. Pseudosections constructed for individual point count-derived bulks accurately reproduce this variability on a case-by-case basis, though averaged proportions do not correlate with those calculated at equivalent peak P–T conditions for a whole-rock XRF-derived bulk composition. The main discrepancies relate to varying proportions of matrix phases (primarily mica relative to

  4. Prediction of vapour-liquid and vapour-liquid-liquid equilibria of nitrogen-hydrocarbon mixtures used in J-T refrigerators

    Science.gov (United States)

    Narayanan, Vineed; Venkatarathnam, G.

    2018-03-01

    Nitrogen-hydrocarbon mixtures are widely used as refrigerants in J-T refrigerators operating with mixtures, as well as in natural gas liquefiers. The Peng-Robinson equation of state has traditionally been used to simulate the above cryogenic process. Multi parameter Helmholtz energy equations are now preferred for determining the properties of natural gas. They have, however, been used only to predict vapour-liquid equilibria, and not vapour-liquid-liquid equilibria that can occur in mixtures used in cryogenic mixed refrigerant processes. In this paper the vapour-liquid equilibrium of binary mixtures of nitrogen-methane, nitrogen-ethane, nitrogen-propane, nitrogen-isobutane and three component mixtures of nitrogen-methane-ethane and nitrogen-methane-propane have been studied with the Peng-Robinson and the Helmholtz energy equations of state of NIST REFPROP and compared with experimental data available in the literature.

  5. Sunspot Equilibria in a Production Economy: Do Rational Animal Spirits Cause Overproduction?

    OpenAIRE

    Kajii, Atsushi

    2008-01-01

    We study a standard two period economy with one nominal bond and one firm. The input of the firm is done in the first period and financed with the nominal bond, and its profits are distributed to the shareholders in the second period. We show that a sunspot equilibrium exists around each efficient equilibrium. The interest rate is lower than optimal and there is over production in sunspot equilibria, under some conditions. But a sunspot equilibrium does not exist if the profit share can be tr...

  6. Elastic energy and metastable phase equilibria for coherent mixtures in cubic systems

    International Nuclear Information System (INIS)

    Williams, R.O.

    1979-02-01

    Expressions were derived for the elastic energy due to coherency for cubic systems for an isotropic structure and for (100) or (111) habit planes for a lamellar structure. For the metastable equilibria the usual tangent compositions are replaced by compositions that are tangent to the elastic energy curve. For a loss of coherency there is an energy decrease due to the elastic effects and a further decrease associated with compositional changes. Information contained within this treatment permits calculation of the x-ray diffraction effects for such structures

  7. Sharp conditions for global stability of Lotka-Volterra systems with distributed delays

    Science.gov (United States)

    Faria, Teresa

    We give a criterion for the global attractivity of a positive equilibrium of n-dimensional non-autonomous Lotka-Volterra systems with distributed delays. For a class of autonomous Lotka-Volterra systems, we show that such a criterion is sharp, in the sense that it provides necessary and sufficient conditions for the global asymptotic stability independently of the choice of the delay functions. The global attractivity of positive equilibria is established by imposing a diagonal dominance of the instantaneous negative feedback terms, and relies on auxiliary results showing the boundedness of all positive solutions. The paper improves and generalizes known results in the literature, namely by considering systems with distributed delays rather than discrete delays.

  8. Truth-telling and Nash equilibria in minimum cost spanning tree models

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    2012-01-01

    In this paper we consider the minimum cost spanning tree model. We assume that a central planner aims at implementing a minimum cost spanning tree not knowing the true link costs. The central planner sets up a game where agents announce link costs, a tree is chosen and costs are allocated according...... to the rules of the game. We characterize ways of allocating costs such that true announcements constitute Nash equilibria both in case of full and incomplete information. In particular, we find that the Shapley rule based on the irreducible cost matrix is consistent with truthful announcements while a series...

  9. Mediator of moderators: temporal stability of intention and the intention-behavior relation.

    Science.gov (United States)

    Sheeran, Paschal; Abraham, Charles

    2003-02-01

    Intention certainty, past behavior, self-schema, anticipated regret, and attitudinal versus normative control all have been found to moderate intention-behavior relations. It is argued that moderation occurs because these variables produce "strong" intentions. Stability of intention over time is a key index of intention strength. Consequently, it was hypothesized that temporal stability of intention would mediate moderation by these other moderators. Participants (N = 185) completed questionnaire measures of theory of planned behavior constructs and moderator variables at two time points and subsequently reported their exercise behavior. Findings showed that all of the moderators, including temporal stability, were associated with significant improvements in consistency between intention and behavior. Temporal stability also mediated the effects of the other moderators, supporting the study hypothesis. Copyright 2003 Society for Personality and Social Psychology, Inc.

  10. Epidemic spreading and global stability of an SIS model with an infective vector on complex networks

    Science.gov (United States)

    Kang, Huiyan; Fu, Xinchu

    2015-10-01

    In this paper, we present a new SIS model with delay on scale-free networks. The model is suitable to describe some epidemics which are not only transmitted by a vector but also spread between individuals by direct contacts. In view of the biological relevance and real spreading process, we introduce a delay to denote average incubation period of disease in a vector. By mathematical analysis, we obtain the epidemic threshold and prove the global stability of equilibria. The simulation shows the delay will effect the epidemic spreading. Finally, we investigate and compare two major immunization strategies, uniform immunization and targeted immunization.

  11. Binary, ternary and quaternary liquid-liquid equilibria in 1-butanol, oleic acid, water and n-heptane mixtures

    NARCIS (Netherlands)

    Winkelman, J. G. M.; Kraai, G. N.; Heeres, H. J.

    2009-01-01

    This work reports on liquid-liquid equilibria in the system 1-butanol, oleic acid, water and n-heptane used for biphasic, lipase catalysed esterifications. The literature was studied on the mutual solubility in binary systems of water and each of the organic components. Experimental results were

  12. Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures

    International Nuclear Information System (INIS)

    Cremaschini, Claudio; Stuchlík, Zdeněk

    2014-01-01

    The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed

  13. Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures

    Energy Technology Data Exchange (ETDEWEB)

    Cremaschini, Claudio; Stuchlík, Zdeněk [Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám.13, CZ-74601 Opava (Czech Republic)

    2014-04-15

    The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed.

  14. Investigations of (acid+base) equilibria in systems modelling interactions occurring in biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, Anna [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Czaja, Malgorzata [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl

    2006-05-15

    By using the potentiometric microtitration method, acidity constants, K{sub a}, anionic, K{sub AHA{sup -}}, and cationic, K{sub BHB{sup +}}, homoconjugation constants, as well as molecular heteroconjugation, K{sub BHA}, constants have been determined in (acid+base) systems formed by the following compounds: acetic acid, phenol, n-butylamine, imidazole, and 4(5)-methylimidazole. These compounds constitute fragments of the side chains of amino acids capable of proton exchange in active sites of enzymes. The (acid+base) equilibria were studied in five polar solvents of different properties, namely in aprotic protophobic acetonitrile, acetone and propylene carbonate, in aprotic protophilic dimethyl sulfoxide and in amphiprotic methanol. The lowest values of the acidity constants of the molecular and cationic acids have been found in aprotic protophobic polar solvents - acetonitrile, propylene carbonate and acetone. Their acid strength have been found to depend on solvent basicity expressed as donor numbers, DN. These media, in particular acetonitrile and acetone, are also favourable for establishing molecular homo- and heteroconjugation equilibria. The most stable homocomplexes are formed in the case of acetic acid (K{sub AHA{sup -}} values range from 2.26 to 3.56 in these media, being more than an order of magnitude higher than those for the remaining compounds). The magnitudes of lgK{sub BHA} reveal that the most stable heterocomplexes are formed by n-butylamine and acetic acid that are characterized by the smallest differences in pK{sub a} values.

  15. Metamorphism and partial melting of ordinary chondrites: Calculated phase equilibria

    Science.gov (United States)

    Johnson, T. E.; Benedix, G. K.; Bland, P. A.

    2016-01-01

    Constraining the metamorphic pressures (P) and temperatures (T) recorded by meteorites is key to understanding the size and thermal history of their asteroid parent bodies. New thermodynamic models calibrated to very low P for minerals and melt in terrestrial mantle peridotite permit quantitative investigation of high-T metamorphism in ordinary chondrites using phase equilibria modelling. Isochemical P-T phase diagrams based on the average composition of H, L and LL chondrite falls and contoured for the composition and abundance of olivine, ortho- and clinopyroxene, plagioclase and chromite provide a good match with values measured in so-called equilibrated (petrologic type 4-6) samples. Some compositional variables, in particular Al in orthopyroxene and Na in clinopyroxene, exhibit a strong pressure dependence when considered over a range of several kilobars, providing a means of recognising meteorites derived from the cores of asteroids with radii of several hundred kilometres, if such bodies existed at that time. At the low pressures (recorders of peak conditions. The intersection of isopleths of these variables may allow pressures to be quantified, even at low P, permitting constraints on the minimum size of parent asteroid bodies. The phase diagrams predict the onset of partial melting at 1050-1100 °C by incongruent reactions consuming plagioclase, clinopyroxene and orthopyroxene, whose compositions change abruptly as melting proceeds. These predictions match natural observations well and support the view that type 7 chondrites represent a suprasolidus continuation of the established petrologic types at the extremes of thermal metamorphism. The results suggest phase equilibria modelling has potential as a powerful quantitative tool in investigating, for example, progressive oxidation during metamorphism, the degree of melting and melt loss or accumulation required to produce the spectrum of differentiated meteorites, and whether the onion shell or rubble pile

  16. Low temperature geothermal systems in carbonate-evaporitic rocks: Mineral equilibria assumptions and geothermometrical calculations. Insights from the Arnedillo thermal waters (Spain).

    Science.gov (United States)

    Blasco, Mónica; Gimeno, María J; Auqué, Luis F

    2018-02-15

    Geothermometrical calculations in low-medium temperature geothermal systems hosted in carbonate-evaporitic rocks are complicated because 1) some of the classical chemical geothermometers are, usually, inadequate (since they were developed for higher temperature systems with different mineral-water equilibria at depth) and 2) the chemical geothermometers calibrated for these systems (based on the Ca and Mg or SO 4 and F contents) are not free of problems either. The case study of the Arnedillo thermal system, a carbonate-evaporitic system of low temperature, will be used to deal with these problems through the combination of several geothermometrical techniques (chemical and isotopic geothermometers and geochemical modelling). The reservoir temperature of the Arnedillo geothermal system has been established to be in the range of 87±13°C being the waters in equilibrium with respect to calcite, dolomite, anhydrite, quartz, albite, K-feldspar and other aluminosilicates. Anhydrite and quartz equilibria are highly reliable to stablish the reservoir temperature. Additionally, the anhydrite equilibrium explains the coherent results obtained with the δ 18 O anhydrite - water geothermometer. The equilibrium with respect to feldspars and other aluminosilicates is unusual in carbonate-evaporitic systems and it is probably related to the presence of detrital material in the aquifer. The identification of the expected equilibria with calcite and dolomite presents an interesting problem associated to dolomite. Variable order degrees of dolomite can be found in natural systems and this fact affects the associated equilibrium temperature in the geothermometrical modelling and also the results from the Ca-Mg geothermometer. To avoid this uncertainty, the order degree of the dolomite present in the Arnedillo reservoir has been determined and the results indicate 18.4% of ordered dolomite and 81.6% of disordered dolomite. Overall, the results suggest that this multi

  17. Salt marsh stability modelled in relation to sea level rise

    DEFF Research Database (Denmark)

    Bartholdy, Jesper; Bartholdy, Anders; Kroon, Aart

    2010-01-01

    thickness. Autocompaction was incorporated in the model, and shown to play a major role for the translation of accretion rates measured as length per unit time to accumulation rates measured as mass per area per unit time. This is important, even for shallow salt marsh deposits for which it is demonstrated...... that mass depth down core can be directly related to the bulk dry density of the surface layer by means of a logarithmic function. The results allow for an evaluation of the use of marker horizons in the topmost layers and show that it is important to know the level of the marker in relation to the salt...... marsh base. In general, deeper located markers will indicate successively smaller accretion rates with the same sediment input. Thus, stability analysis made on the basis of newly established marker horizons will be biased and indicate salt marsh stabilities far above the correct level. Running...

  18. Phase equilibria, phases and compounds in the Ti-C system

    International Nuclear Information System (INIS)

    Gusev, Aleksandr I

    2002-01-01

    The results of experimental and theoretical investigations of the phase equilibria in the titanium-carbon system are generalised. The generalised thermodynamic characteristics of disordered titanium carbide TiC y , are reported. Peculiarities of the crystal structures of all the known and hypothetical compounds of titanium with carbon are considered in detail. The X-ray diffraction patterns which allow identification of all these compounds are presented. The phase diagrams of the Ti-C system constructed with allowance for atomic ordering of non-stoichio metric carbide, TiC y , and for the existence of the molecular cluster-like compounds Ti 8 C 12 and Ti 13 C 22 (TiC 2 ) are discussed. The bibliography includes 142 references.

  19. Accelerated convergence of the steepest-descent method for magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Handy, C.R.; Hirshman, S.P.

    1984-06-01

    Iterative schemes based on the method of steepest descent have recently been used to obtain magnetohydrodynamic (MHD) equilibria. Such schemes generate asymptotic geometric vector sequences whose convergence rate can be improved through the use of the epsilon-algorithm. The application of this nonlinear recursive technique to stiff systems is discussed. In principle, the epsilon-algorithm is capable of yielding quadratic convergence and therefore represents an attractive alternative to other quadratic convergence schemes requiring Jacobian matrix inversion. Because the damped MHD equations have eigenvalues with negative real parts (in the neighborhood of a stable equilibrium), the epsilon-algorithm will generally be stable. Concern for residual monotonic sequences leads to consideration of alternative methods for implementing the algorithm

  20. Thermodynamic calculation of Al-Gd and Al-Gd-Mg phase equilibria checked by key experiments

    International Nuclear Information System (INIS)

    Groebner, J.; Kevorkov, D.; Schmid-Fetzer, R.

    2001-01-01

    The binary Al-Gd and the ternary Al-Gd-Mg systems were calculated using the Calphad method. It is demonstrated that previous interpretation of ternary liquidus temperatures below 700 C must be related to other phase equilibria. The actual ternary liquidus temperatures are much higher, up to some 600 C above the previous interpretation in literature. They are widely governed by the high-melting compounds Al 2 Gd and Al 3 Gd with liquidus surfaces stretching far into the ternary system. A small number of key experiments in this work confirmed the calculated liquidus temperature and the phase relations. The available experimental data in literature fit excellently with the calculation in the binary Al-Gd system. In the ternary Al-Gd-Mg system, which is shown in several sections of the phase diagram, a good agreement can be observed too, considering the necessary reinterpretation of the liquidus temperatures suggested by Rokhlin et al. Ternary solubilities were not found experimentally. The ternary compound Al 4 GdMg (τ) forms in a ternary peritectic reaction at 761 C. (orig.)

  1. A fast, user-friendly code for calculating magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Haney, S.W.; Freidberg, J.P.; Solomon, C.J.

    1995-01-01

    Using variational techniques, we have developed a fast, user-friendly code for computing approximate, but highly accurate fixed boundary magnetohydrodynamic equilibria for tokamak plasmas. The variational procedure simplifies the problem---a two-dimensional nonlinear partial differential equation---to a set of nonlinear algebraic equations. The reduced problem can be readily solved on workstations or personal computers. This allows us to exploit sophisticated graphical user interfaces that make supplying calculation data and viewing results easy. This ease-of-use, along with the semianalytic nature of our calculation, allows researchers to routinely incorporate equilibrium information into their work. It also provides a tool for educators teaching fusion theory. We describe the variational formulation, the speed and accuracy of the computer implementation, and the design and operation of a user-friendly graphical interface

  2. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    Science.gov (United States)

    Ferraro, N. M.; Jardin, S. C.; Lao, L. L.; Shephard, M. S.; Zhang, F.

    2016-05-01

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surrounding vacuum region are included within the computational domain. This implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. This new capability is used to simulate perturbed, free-boundary non-axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear and nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically realistic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.

  3. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, N. M., E-mail: nferraro@pppl.gov; Lao, L. L. [General Atomics, La Jolla, California 92186 (United States); Jardin, S. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Shephard, M. S.; Zhang, F. [Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2016-05-15

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surrounding vacuum region are included within the computational domain. This implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. This new capability is used to simulate perturbed, free-boundary non-axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear and nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically realistic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.

  4. Stability of nonlinear waves and patterns and related topics

    Science.gov (United States)

    Ghazaryan, Anna; Lafortune, Stephane; Manukian, Vahagn

    2018-04-01

    Periodic and localized travelling waves such as wave trains, pulses, fronts and patterns of more complex structure often occur in natural and experimentally built systems. In mathematics, these objects are realized as solutions of nonlinear partial differential equations. The existence, dynamic properties and bifurcations of those solutions are of interest. In particular, their stability is important for applications, as the waves that are observable are usually stable. When the waves are unstable, further investigation is warranted of the way the instability is exhibited, i.e. the nature of the instability, and also coherent structures that appear as a result of an instability of travelling waves. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their properties. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.

  5. Evaluation of ΔGsub(f) values for unstable compounds: a Fortran program for the calculation of ternary phase equilibria

    International Nuclear Information System (INIS)

    Throop, G.J.; Rogl, P.; Rudy, E.

    1978-01-01

    A Fortran IV program was set up for the calculation of phase equilibria and tieline distributions in ternary systems of the type: transition metal-transition metal-nonmetal (interstitial type of solid solutions). The method offers the possibility of determining the thermodynamic values for unstable compounds through their influence upon ternary phase equilibria. The variation of the free enthalpy of formation of ternary solid solutions is calculated as a function of nonmetal content, thus describing the actual curvature of the phase boundaries. The integral and partial molar free enthalpies of formation of binary nonstoichiometric compounds and of phase solutions are expressed as analytical functions of the nonmetal content within their homogeneity range. The coefficient of these analytical expressions are obtained by the use either of the Wagner-Schottky vacancy model or polynomials second order in composition (parabolic approach). The free energy of formation, ΔGsub(f) has been calculated for the systems Ti-C, Zr-C, and Ta-C. Calculations of the ternary phase equilibria yielded the values for ΔGsub(f) for the unstable compounds Ti 2 C at 1500 0 C and Zr 2 C at 1775 0 C of -22.3 and 22.7 kcal g atom metal respectively. These values were used for the calculation of isothermal sections within the ternary systems Ti-Ta-C (at 1500 0 C) and Zr-Ta-C (at 1775 0 C). The ideal case of ternary phase solutions is extended to regular solutions. (author)

  6. Prediction of Pure Component Adsorption Equilibria Using an Adsorption Isotherm Equation Based on Vacancy Solution Theory

    DEFF Research Database (Denmark)

    Marcussen, Lis; Aasberg-Petersen, K.; Krøll, Annette Elisabeth

    2000-01-01

    An adsorption isotherm equation for nonideal pure component adsorption based on vacancy solution theory and the Non-Random-Two-Liquid (NRTL) equation is found to be useful for predicting pure component adsorption equilibria at a variety of conditions. The isotherm equation is evaluated successfully...... adsorption systems, spreading pressure and isosteric heat of adsorption are also calculated....

  7. Modelling the regulatory system for diabetes mellitus with a threshold window

    Science.gov (United States)

    Yang, Jin; Tang, Sanyi; Cheke, Robert A.

    2015-05-01

    Piecewise (or non-smooth) glucose-insulin models with threshold windows for type 1 and type 2 diabetes mellitus are proposed and analyzed with a view to improving understanding of the glucose-insulin regulatory system. For glucose-insulin models with a single threshold, the existence and stability of regular, virtual, pseudo-equilibria and tangent points are addressed. Then the relations between regular equilibria and a pseudo-equilibrium are studied. Furthermore, the sufficient and necessary conditions for the global stability of regular equilibria and the pseudo-equilibrium are provided by using qualitative analysis techniques of non-smooth Filippov dynamic systems. Sliding bifurcations related to boundary node bifurcations were investigated with theoretical and numerical techniques, and insulin clinical therapies are discussed. For glucose-insulin models with a threshold window, the effects of glucose thresholds or the widths of threshold windows on the durations of insulin therapy and glucose infusion were addressed. The duration of the effects of an insulin injection is sensitive to the variation of thresholds. Our results indicate that blood glucose level can be maintained within a normal range using piecewise glucose-insulin models with a single threshold or a threshold window. Moreover, our findings suggest that it is critical to individualise insulin therapy for each patient separately, based on initial blood glucose levels.

  8. 75 FR 65366 - Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities

    Science.gov (United States)

    2010-10-22

    ...] Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities AGENCY: Federal... the final Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities, which... facilities threatened by landslides or slope failures; as well as the eligibility of permanent repairs to...

  9. Vapor-liquid equilibria for nitric acid-water and plutonium nitrate-nitric acid-water solutions

    International Nuclear Information System (INIS)

    Maimoni, A.

    1980-01-01

    The liquid-vapor equilibrium data for nitric acid and nitric acid-plutnonium nitrate-water solutions were examined to develop correlations covering the range of conditions encountered in nuclear fuel reprocessing. The scanty available data for plutonium nitrate solutions are of poor quality but allow an order of magnitude estimate to be made. A formal thermodynamic analysis was attempted initially but was not successful due to the poor quality of the data as well as the complex chemical equilibria involved in the nitric acid and in the plutonium nitrate solutions. Thus, while there was no difficulty in correlating activity coefficients for nitric acid solutions over relatively narrow temperature ranges, attempts to extend the correlations over the range 25 0 C to the boiling point were not successful. The available data were then analyzed using empirical correlations from which normal boiling points and relative volatilities can be obtained over the concentration ranges 0 to 700 g/l Pu, 0 to 13 M nitric acid. Activity coefficients are required, however, if estimates of individual component vapor pressures are needed. The required ternary activity coefficients can be approximated from the correlations

  10. Vorticity imbalance and stability in relation to convection

    Science.gov (United States)

    Read, W. L.; Scoggins, J. R.

    1977-01-01

    A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.

  11. Equation of state modeling of the phase equilibria of asymmetric CO2+n-alkane binary systems using mixing rules cubic with respect to mole fraction

    DEFF Research Database (Denmark)

    Cismondi, Martin; Mollerup, Jørgen M.; Zabaloy, Marcelo S.

    2010-01-01

    for a great diversity of mixtures. Nevertheless, the models for representing phase equilibria and physico-chemical properties of asymmetric systems may require more flexible mixing rules than the classical quadratic van der Waals (vdW) mixing rules or their equivalent (with regard to the number of available...... interaction parameters) in modern equations of state.In particular, the phase equilibria of binary mixtures containing CO2 and heavy n-alkanes have been studied by an important number of authors and using different types of models, achieving only partially accurate results and realizing the difficulties...

  12. Stability and perfection of nash equilibria

    CERN Document Server

    Damme, Eric

    1991-01-01

    I have been pleased with the favourable reception of the first edition of this book and I am grateful to have the opportunity to prepare this second edition. In this revised and enlarged edition I corrected some misprints and errors that occurred in the first edition (fortunately I didn't find too many) and I added a large number of notes that give the reader an impression of what kind of results have been obtained since the first edition was printed and that give an indication of the direction the subject is taking. Many of the notes discuss (or refer to papers discussing) applications of the refinements that are considered. Of course, it is the quantity and the quality of the insights and the applications that lend the refinements their validity. Although the guide to the applications is far from complete, the notes certainly allow the reader to form a good judgement of which refinements have really yielded new insights. Hence, as in the first edition, I will refrain from speculating on which refinements of...

  13. Phase equilibria in the MgMoO4-Ln2(MoO4)3 (Ln=La,Gd) systems

    International Nuclear Information System (INIS)

    Fedorov, N.F.; Ipatov, V.V.; Kvyatkovskij, O.V.

    1980-01-01

    Phase equilibria in the MgMoO 4 -Ln 2 (MoO 4 ) 3 systems (Ln=La, Gd) have been studied by static and dynamic methods of the physico-chemical analysis, using differential thermal, visual-polythermal, crystal-optical, X-ray phase, and infrared spectroscopic methods, and their phase diagrams have been constructed. Phase equilibria in the systems studied are characterized by limited solubility of components in the liquid state, formation of solid solutions on the base of α- and β-forms of Gd 2 (MoO 4 ) 3 . Eutectics in the MgMoO 4 -Ln 2 (MoO 4 ) 3 (Ln=La, Gd) systems corresponds to the composition of 71 mode % La 2 (MoO 4 ) 3 -29 mole % MgMoO 4 , tsub(melt)--935+-5 deg C and 57 mole % Gd 2 (MoO 4 ) 3 -43 mole % MgMoO 4 , tsub(melt)=1020+-5 deg C. The region of glass formation has been established [ru

  14. Relations between postural stability, gait and falls in elderly persons--preliminary report.

    Science.gov (United States)

    Baczkowicz, Dawid; Szczegielniak, Jan; Proszkowiec, Małgorzata

    2008-01-01

    Balance control in elderly patients is the area of interest of many researchers. The results of their studies suggest that the measurement of shifts in the centre of foot pressure on the support base (COP) can be used as a tool for identification of fall-prone persons. It is interesting whether there are any relations between functional status, gait, posture stability and the risk of falling. The aim of this study was to find the answer to this question. The study involved 20 patients (mean age 78.1+/-11.6). The functional status of the patients was evaluated according to the Barthel Index. Postural stability was assessed with the use of a Neurocom Balance Master platform. Three measurements were taken with visual feedback (eyes open-EO) and three without visual feedback (eyes closed-EC). Balance control was also evaluated with the Berg test and on the basis of the history of episodes of falling in the preceding six months. Gait was evaluated with the six-minute walking test. The parameters recorded by the force platform showed a significant relation to the values obtained in the Berg test (r=-0.60; pfalls showed a significant relation only to the EO test (r=0.4; pfalls was connected with increased body sway. 3. The functional status of the patient and the balance control evaluation according to the Berg test failed to determine the risk of falling. 4. A relation was observed between postural stability, functional status and gait.

  15. Gas hydrate phase equilibria measurement techniques and phase rule considerations

    International Nuclear Information System (INIS)

    Beltran, Juan G.; Bruusgaard, Hallvard; Servio, Phillip

    2012-01-01

    Highlights: → Inconsistencies found in hydrate literature. → Clarification to the number of variables needed to satisfy and justify equilibrium data. → Application of phase rule to mixed hydrate systems. → Thermodynamically consistent format to present data. - Abstract: A brief review of the Gibbs phase rule for non-reacting systems and its correct application to clathrate hydrates is presented. Clarification is provided for a common mistake found in hydrate phase-equilibria literature, whereby initial compositions are used as intensive variables to satisfy the Gibbs phase rule instead of the equilibrium values. The system of (methane + carbon dioxide + water) under (hydrate + liquid + vapor) equilibrium is used as a case study to illustrate key points and suggestions to improve experimental techniques are proposed.

  16. Prediction of phase equilibria in the In–Sb–Pb system

    Directory of Open Access Journals (Sweden)

    DUSKO MINIC

    2008-03-01

    Full Text Available Binary thermodynamic data, successfully used for phase diagram calculations of the binary systems In–Sb, Pb–Sb and In–Pb, were used for the prediction of the phase equilibria in the ternary In–Sb–Pb system. The predicted equilibrium phase diagram of the vertical Pb–InSb section was compared with the results of differential thermal analysis DTA and optical microscopy. The calculated phase diagram of the isothermal section at 300 °C was compared with the experimentally (SEM, EDX determined composition of phases in the chosen alloys after annealing. Very good agreement between the binary-based thermodynamic prediction and the experimental data was found in all cases. The calculated liquidus projection of the ternary In–Sb–Pb system is also presented.

  17. Digital Image Stabilization Method Based on Variational Mode Decomposition and Relative Entropy

    Directory of Open Access Journals (Sweden)

    Duo Hao

    2017-11-01

    Full Text Available Cameras mounted on vehicles frequently suffer from image shake due to the vehicles’ motions. To remove jitter motions and preserve intentional motions, a hybrid digital image stabilization method is proposed that uses variational mode decomposition (VMD and relative entropy (RE. In this paper, the global motion vector (GMV is initially decomposed into several narrow-banded modes by VMD. REs, which exhibit the difference of probability distribution between two modes, are then calculated to identify the intentional and jitter motion modes. Finally, the summation of the jitter motion modes constitutes jitter motions, whereas the subtraction of the resulting sum from the GMV represents the intentional motions. The proposed stabilization method is compared with several known methods, namely, medium filter (MF, Kalman filter (KF, wavelet decomposition (MD method, empirical mode decomposition (EMD-based method, and enhanced EMD-based method, to evaluate stabilization performance. Experimental results show that the proposed method outperforms the other stabilization methods.

  18. A survey of theoretical research on the EXTRAP concept

    International Nuclear Information System (INIS)

    Lehnert, B.

    1988-12-01

    A review is given of the theoretical analysis on the Extrap concept which consists of a Z-pinch being immersed in an octupole field generated by currents in a set of external conductors. This analysis includes research on plasma breakdown and start-up, equilibrium and stability, in terms of MHD and kinetic theory. Extrap theory includes an extensive area of diversified problems, being related to a high beta value, a non-circular plasma cross section with a magnetic separatrix, and strongly inhomogeneous plasma conditions in space. This also leads to unexplored and important areas of plasma physics, reaching far beyond the special applications to the Extrap configuration. At present progress has been made in the analysis of breakdown, of dissipation-free equilibria, and in identifying the instability modes and possible stabilizing meachanisms in Extrap. Nevertheless much work still remains within the area of dissipative equilibria and transport, as well as in the efforts to reach a complete theoretical understanding of the experimentally observed stability. (115 refs.)

  19. Theory-based model for the pedestal, edge stability and ELMs in tokamaks

    International Nuclear Information System (INIS)

    Pankin, A.Y.; Bateman, G.; Brennan, D.P.; Schnack, D.D.; Snyder, P.B.; Voitsekhovitch, I.; Kritz, A.H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G.W.; Pacher, H.D.

    2006-01-01

    An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD

  20. Correlation and prediction of ion exchange equilibria on weak-acid resins by means of the surface complex formation model

    International Nuclear Information System (INIS)

    Horst, J.

    1988-11-01

    The present work summarizes investigations of the equilibrium of the exchange of protons, copper, zinc, calcium, magnesium and sodium ions on two weak-acid exchange resins in hydrochloric and carbonic acid bearing solutions at 25 0 C. The description of the state of equilibrium between resin and solution is based on the individual chemical equilibria which have to be adjusted simultaneously. The equilibrium in the liquid phase is described by the mass action law and the condition of electroneutrality using activity coefficients calculated according to the theory of Debye and Hueckel. The exchange equilibria are described by means of a surface complex formation model, which was developed by Davis, James and Leckie for activated aluminia and which has been applied to weak-acid resins. The model concept assumes the resin as a plane surface in which the functional groups are distributed uniformly. (orig./RB) [de