WorldWideScience

Sample records for stabilize atmospheric co2

  1. STABILITY OF CO2 ATMOSPHERES ON DESICCATED M DWARF EXOPLANETS

    International Nuclear Information System (INIS)

    Gao, Peter; Hu, Renyu; Li, Cheng; Yung, Yuk L.; Robinson, Tyler D.

    2015-01-01

    We investigate the chemical stability of CO 2 -dominated atmospheres of desiccated M dwarf terrestrial exoplanets using a one-dimensional photochemical model. Around Sun-like stars, CO 2 photolysis by Far-UV (FUV) radiation is balanced by recombination reactions that depend on water abundance. Planets orbiting M dwarf stars experience more FUV radiation, and could be depleted in water due to M dwarfs’ prolonged, high-luminosity pre-main sequences. We show that, for water-depleted M dwarf terrestrial planets, a catalytic cycle relying on H 2 O 2 photolysis can maintain a CO 2 atmosphere. However, this cycle breaks down for atmospheric hydrogen mixing ratios <1 ppm, resulting in ∼40% of the atmospheric CO 2 being converted to CO and O 2 on a timescale of 1 Myr. The increased O 2 abundance leads to high O 3 concentrations, the photolysis of which forms another CO 2 -regenerating catalytic cycle. For atmospheres with <0.1 ppm hydrogen, CO 2 is produced directly from the recombination of CO and O. These catalytic cycles place an upper limit of ∼50% on the amount of CO 2 that can be destroyed via photolysis, which is enough to generate Earth-like abundances of (abiotic) O 2 and O 3 . The conditions that lead to such high oxygen levels could be widespread on planets in the habitable zones of M dwarfs. Discrimination between biological and abiotic O 2 and O 3 in this case can perhaps be accomplished by noting the lack of water features in the reflectance and emission spectra of these planets, which necessitates observations at wavelengths longer than 0.95 μm

  2. Energy implications of future stabilization of atmospheric CO2 content

    International Nuclear Information System (INIS)

    Hoffert, M.I.; Jain, A.K.

    1998-01-01

    The United Nations Framework Convention on Climate Change calls for ''stabilization of greenhouse-gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system...''. A standard baseline scenario that assumes no policy intervention to limit greenhouse-gas emissions has 10 TW (10 x 10 12 watts) of carbon-emission-free power being produced by the year 2050, equivalent to the power provided by all today's energy sources combined. Here we employ a carbon-cycle/energy model to estimate the carbon-emission-free power needed for various atmospheric CO 2 stabilization scenarios. We find that CO 2 stabilization with continued economic growth will require innovative, cost-effective and carbon-emission-free technologies that can provide additional tens of terawatts of primary power in the coming decades, and certainly by the middle of the twenty-first century, even with sustained improvement in the economic productivity of primary energy. (author)

  3. Atmospheric stabilization of CO2 emissions: Near-term reductions and absolute versus intensity-based targets

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.

    2008-01-01

    This study analyzes CO 2 emissions reduction targets for various countries and geopolitical regions by the year 2030 to stabilize atmospheric concentrations of CO 2 at 450 ppm (550 ppm including non-CO 2 greenhouse gases) level. It also determines CO 2 intensity cuts that would be required in those countries and regions if the emission reductions were to be achieved through intensity-based targets without curtailing their expected economic growth. Considering that the stabilization of CO 2 concentrations at 450 ppm requires the global trend of CO 2 emissions to be reversed before 2030, this study develops two scenarios: reversing the global CO 2 trend in (i) 2020 and (ii) 2025. The study shows that global CO 2 emissions would be limited at 42 percent above 1990 level in 2030 if the increasing trend of global CO 2 emissions were to be reversed by 2020. If reversing the trend is delayed by 5 years, global CO 2 emissions in 2030 would be 52 percent higher than the 1990 level. The study also finds that to achieve these targets while maintaining expected economic growth, the global average CO 2 intensity would require a 68 percent drop from the 1990 level or a 60 percent drop from the 2004 level by 2030

  4. Energy implications of CO{sub 2} stabilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffert, M.I.; Caldeira, K.; Jain, A.K. [and others

    1997-12-01

    Analysis of carbon emissions paths stabilizing atmospheric CO{sub 2} in the 350--750 ppmv range reveals that implementing the UN Climate Convention will become increasingly difficult as the stabilization target decreases because of increasing dependence on carbon-free energy sources. Even the central Intergovernmental Panel on Climate Change scenario (IS92a) requires carbon-free primary power by 2050 equal to the humankind`s present fossil-fuel-based primary power consumption {approximately}10 TW (1 TW = 10{sup 12} W). The authors describe and critique the assumptions on which this projection is based, and extend the analysis to scenarios in which atmospheric CO{sub 2} stabilizes. For continued economic growth with CO{sub 2} stabilization, new, cost-effective, carbon-free technologies that can provide primary power of order 10 TW will be needed in the coming decades, and certainly by mid-century, in addition to improved economic productivity of primary energy.

  5. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  6. Fast Atmosphere-Ocean Model Runs with Large Changes in CO2

    Science.gov (United States)

    Russell, Gary L.; Lacis, Andrew A.; Rind, David H.; Colose, Christopher; Opstbaum, Roger F.

    2013-01-01

    How does climate sensitivity vary with the magnitude of climate forcing? This question was investigated with the use of a modified coupled atmosphere-ocean model, whose stability was improved so that the model would accommodate large radiative forcings yet be fast enough to reach rapid equilibrium. Experiments were performed in which atmospheric CO2 was multiplied by powers of 2, from 1/64 to 256 times the 1950 value. From 8 to 32 times, the 1950 CO2, climate sensitivity for doubling CO2 reaches 8 C due to increases in water vapor absorption and cloud top height and to reductions in low level cloud cover. As CO2 amount increases further, sensitivity drops as cloud cover and planetary albedo stabilize. No water vapor-induced runaway greenhouse caused by increased CO2 was found for the range of CO2 examined. With CO2 at or below 1/8 of the 1950 value, runaway sea ice does occur as the planet cascades to a snowball Earth climate with fully ice covered oceans and global mean surface temperatures near 30 C.

  7. Evasion of CO2 injected into the ocean in the context of CO2 stabilization

    International Nuclear Information System (INIS)

    Kheshgi, Haroon S.

    2004-01-01

    The eventual evasion of injected CO 2 to the atmosphere is one consideration when assessing deep-sea disposal of CO 2 as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO 2 emissions, including illustrative cases leading to stabilization of CO 2 concentration at various levels. Modeled residence time for CO 2 injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO 2 concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO 2 emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO 2 concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO 2 concentration, with less effect on concentration later on in time

  8. Evasion of CO{sub 2} injected into the ocean in the content of CO{sub 2} stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kheshgi, H.S. [ExxonMobil Research and Engineering Co., Annandale, NJ (United States)

    2004-08-01

    The eventual evasion of injected CO{sub 2} to the atmosphere is one consideration when assessing deep-sea disposal of CO{sub 2} as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO{sub 2} emissions, including illustrative cases leading to stabilization of CO{sub 2} concentration at various levels. Modeled residence time for CO{sub 2} injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO{sub 2} concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO{sub 2} emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO{sub 2} concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO{sub 2} concentration, with less effect on concentration later on in time. (author)

  9. Evasion of CO{sub 2} injected into the ocean in the context of CO{sub 2} stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kheshgi, Haroon S

    2004-08-01

    The eventual evasion of injected CO{sub 2} to the atmosphere is one consideration when assessing deep-sea disposal of CO{sub 2} as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO{sub 2} emissions, including illustrative cases leading to stabilization of CO{sub 2} concentration at various levels. Modeled residence time for CO{sub 2} injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO{sub 2} concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO{sub 2} emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO{sub 2} concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO{sub 2} concentration, with less effect on concentration later on in time.

  10. Evasion of CO{sub 2} injected into the ocean in the context of CO{sub 2} stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Haroon S. Kheshgi [ExxonMobil Research and Engineering Company, Annandale, NJ (United States)

    2003-07-01

    The eventual evasion of injected CO{sub 2} to the atmosphere is one consideration when assessing deep sea disposal of CO{sub 2} as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO{sub 2} emissions, including illustrative cases leading to stabilization of CO{sub 2} concentration at various levels. Modeled residence time for CO{sub 2} injected into the deep ocean exceeds the 100-year time scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO{sub 2} concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO{sub 2} emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO{sub 2} concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO{sub 2} concentration, with less effect on concentration later on in time. 20 refs., 4 figs.

  11. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.

    Directory of Open Access Journals (Sweden)

    Yuqing Wang

    Full Text Available The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled.

  12. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.

    Science.gov (United States)

    Wang, Yuqing; Momohara, Arata; Wang, Li; Lebreton-Anberrée, Julie; Zhou, Zhekun

    2015-01-01

    The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled.

  13. A single gas chromatograph for accurate atmospheric mixing ratio measurements of CO2, CH4, N2O, SF6 and CO

    NARCIS (Netherlands)

    van der Laan, S.; Neubert, R. E. M.; Meijer, H. A. J.; Simpson, W.R.

    2009-01-01

    We present an adapted gas chromatograph capable of measuring simultaneously and semi-continuously the atmospheric mixing ratios of the greenhouse gases CO2, CH4, N2O and SF6 and the trace gas CO with high precision and long-term stability. The novelty of our design is that all species are measured

  14. Atmospheric inversion of the surface CO2 flux with 13CO2 constraint

    Science.gov (United States)

    Chen, J. M.; Mo, G.; Deng, F.

    2013-10-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using the 13CO2/CO2 flux ratio modeled with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and respiration and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. For the 2002-2004 period, the 13CO2 constraint on the inversion increases the total land carbon sink from 3.40 to 3.70 Pg C yr-1 and decreases the total oceanic carbon sink from 1.48 to 1.12 Pg C yr-1. The largest changes occur in tropical areas: a considerable decrease in the carbon source in the Amazon forest, and this decrease is mostly compensated by increases in the ocean region immediately west of the Amazon and the southeast Asian land region. Our further investigation through different treatments of the 13CO2/CO2 flux ratio used in the inversion suggests that variable spatial distributions of the 13CO2 isotopic discrimination rate simulated by the models over land and ocean have considerable impacts on the spatial distribution of the inverted CO2 flux over land and the inversion results are not sensitive to errors in the estimated disequilibria over land and ocean.

  15. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    of the simulated atmospheric CO2 across Denmark was, in particular, affected by the Danish terrestrial surface exchanges and its temporal variability. This study urges all future modelling studies of air–sea CO2 to include short-term variability in pCO2. To capture the full heterogeneity of the surface exchanges......It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29......% is taken up by the global oceans, due to under-saturation of CO2 in the surface waters, while another 33 % is taken up by the terrestrial biosphere, via photosynthesis. In order to estimate the effects of increasing anthropogenic emissions of CO2 more accurately in the future, it is essential to understand...

  16. Effects of tillage practice and atmospheric CO2 level on soil CO2 efflux

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) affects both the quantity and quality of plant tissues, which impacts the cycling and storage of carbon (C) within plant/soil systems and thus the rate of CO2 release back to the atmosphere. Research to accurately quantify the effects of elevated CO2 and as...

  17. Response of atmospheric CO2 to changes in land use

    International Nuclear Information System (INIS)

    King, A.W.; Emanuel, W.R.; Post, W.M.

    1991-01-01

    This chapter examines how different histories of CO 2 release from past changes in land use influence the simulation of past and future changes in atmospheric CO 2 . The authors first simulate past change in atmospheric CO 2 using reconstructed histories of land-use CO 2 release from a historical-ecological model of land-use change and CO 2 release. They examine the impact of each history on the coincidence between simulated and observed atmospheric CO 2 . They then compare these CO 2 release histories, and their contribution to coincidence or noncoincidence of simulation and observation, with histories reconstructed by deconvolution of the atmospheric CO 2 record. They conclude by exploring the implications of these deconvolved reconstructions for the simulation of future changes in atmospheric CO 2

  18. Reconsideration of atmospheric CO2 lifetime: potential mechanism for explaining CO2 missing sink

    Science.gov (United States)

    Kikuchi, R.; Gorbacheva, T.; Gerardo, R.

    2009-04-01

    Carbon cycle data (Intergovernmental Panel on Climate Change 1996) indicate that fossil fuel use accounts for emissions to the atmosphere of 5.5±0.5 GtC (Gigatons of carbon) annually. Other important processes in the global CO2 budget are tropical deforestation, estimated to generate about 1.6±1.0 GtC/yr; absorption by the oceans, removing about 2.0±0.8 GtC/yr; and regrowth of northern forests, taking up about 0.5±0.5 GtC/yr. However, accurate measurements of CO2 show that the atmosphere is accumulating only about 3.3±0.2 GtC/yr. The imbalance of about 1.3±1.5 GtC/yr, termed the "missing sink", represents the difference between the estimated sources and the estimated sinks of CO2; that is, we do not know where all of the anthropogenic CO2 is going. Several potential mechanisms have been proposed to explain this missing carbon, such as CO2 fertilization, climate change, nitrogen deposition, land use change, forest regrowth et al. Considering the complexity of ecosystem, most of ecosystem model cannot handle all the potential mechanisms to reproduce the real world. It has been believed that the dominant sink mechanism is the fertilizing effects of increased CO2 concentrations in the atmosphere and the addition to soils of fixed nitrogen from fossil-fuel burning and agricultural fertilizers. However, a recent analysis of long-term observations of the change in biomass and growth rates suggests that such fertilization effects are much too small to explain more than a small fraction of the observed sink. In addition, long-term experiments in which small forest patches and other land ecosystems have been exposed to elevated CO2 levels for extended periods show a rapid decrease of the fertilization effect after an initial enhancement. We will explore this question of the missing sink in atmospheric CO2 residence time. Radioactive and stable carbon isotopes (13-C/12-C) show the real CO2 lifetime is about 5 years; i.e. CO2 is quickly taken out of the atmospheric

  19. The Abundance of Atmospheric CO{sub 2} in Ocean Exoplanets: a Novel CO{sub 2} Deposition Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Levi, A.; Sasselov, D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Podolak, M., E-mail: amitlevi.planetphys@gmail.com [Dept. of Geosciences, Tel Aviv University, Tel Aviv, 69978 (Israel)

    2017-03-20

    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO{sub 2}, the amount of CO{sub 2} dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO{sub 2}. We find that, in a steady state, the abundance of CO{sub 2} in the atmosphere has two possible states. When wind-driven circulation is the dominant CO{sub 2} exchange mechanism, an atmosphere of tens of bars of CO{sub 2} results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO{sub 2} deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO{sub 2} is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO{sub 2} into the atmosphere to increase the greenhouse effect.

  20. Atmospheric CO2 Variability Observed From ASCENDS Flight Campaigns

    Science.gov (United States)

    Lin, Bing; Browell, Edward; Campbell, Joel; Choi, Yonghoon; Dobler, Jeremy; Fan, Tai-Fang; Harrison, F. Wallace; Kooi, Susan; Liu, Zhaoyan; Meadows, Byron; hide

    2015-01-01

    Significant atmospheric CO2 variations on various spatiotemporal scales were observed during ASCENDS flight campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200x300 sq km over Iowa during a summer 2014 flight. Even over extended forests, about 2-ppm CO2 column variability was measured within about 500-km distance. For winter times, especially over snow covered ground, relatively less horizontal CO2 variability was observed, likely owing to minimal interactions between the atmosphere and land surface. Inter-annual variations of CO2 drawdown over cornfields in the Mid-West were found to be larger than 5 ppm due to slight differences in the corn growing phase and meteorological conditions even in the same time period of a year. Furthermore, considerable differences in atmospheric CO2 profiles were found during winter and summer campaigns. In the winter CO2 was found to decrease from about 400 ppm in the atmospheric boundary layer (ABL) to about 392 ppm above 10 km, while in the summer CO2 increased from 386 ppm in the ABL to about 396 ppm in free troposphere. These and other CO2 observations are discussed in this presentation.

  1. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K J; Richardson, S J; Miles, N L

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2-3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute

  2. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  3. Effects of atmospheric CO2 enrichment on soil CO2 efflux in a young longleaf pine system

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) can affect the quantity and quality of plant tissues which will impact carbon (C) cycling and storage in plant/soil systems and the release of CO2 back to the atmosphere. Research is needed to quantify the effects of elevated CO2 on soil CO2 efflux to predi...

  4. Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2004-11-01

    A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO 2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO 2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)

  5. Role of Atmospheric CO2 in the Ice Ages (Invited)

    Science.gov (United States)

    Toggweiler, J. R.

    2010-12-01

    Ice cores from Antarctica provide our most highly resolved records of glacial-interglacial climate change. They feature big transitions every 100,000 years or so in which Antarctica warms by up to 10 deg. C while the level of atmospheric CO2 rises by up to 100 ppm. We have no other records like these from any other location, so the assumption is often made that the Earth's mean temperature varies like the temperatures in Antarctica. The striking co-variation between the two records is taken to mean 1) that there is a causal relationship between the global temperature and atmospheric CO2 and 2) that atmospheric CO2 is a powerful agent of climate change during the ice ages. The problem is that the mechanism most often invoked to explain the CO2 variations operates right next to Antarctica and, as such, provides a fairly direct way to explain the temperature variations in Antarctica as well. If so, Antarctic temperatures go up and down for the same reason that atmospheric CO2 goes up and down, in which case no causation can be inferred. Climate models suggest that the 100-ppm CO2 increases during the big transitions did not increase surface temperatures by more than 2 deg. C. This is not nearly enough to explain the observed variability. A better reason for thinking that atmospheric CO2 is important is that its temporal variations are concentrated in the 100,000-yr band. In my presentation I will argue that atmospheric CO2 is important because it has the longest time scale in the system. We observe empirically that atmospheric CO2 remains low for 50,000 years during the second half of each 100,000-yr cycle. The northern ice sheets become especially large toward the ends of these intervals, and it is large ice sheets that make the Earth especially cold. This leads me to conclude that atmospheric CO2 is important because of its slow and persistent influence on the northern ice sheets over the second half of each 100,000-yr cycle.

  6. Atmospheric verification of anthropogenic CO2 emission trends

    Science.gov (United States)

    Francey, Roger J.; Trudinger, Cathy M.; van der Schoot, Marcel; Law, Rachel M.; Krummel, Paul B.; Langenfelds, Ray L.; Paul Steele, L.; Allison, Colin E.; Stavert, Ann R.; Andres, Robert J.; Rödenbeck, Christian

    2013-05-01

    International efforts to limit global warming and ocean acidification aim to slow the growth of atmospheric CO2, guided primarily by national and industry estimates of production and consumption of fossil fuels. Atmospheric verification of emissions is vital but present global inversion methods are inadequate for this purpose. We demonstrate a clear response in atmospheric CO2 coinciding with a sharp 2010 increase in Asian emissions but show persisting slowing mean CO2 growth from 2002/03. Growth and inter-hemispheric concentration difference during the onset and recovery of the Global Financial Crisis support a previous speculation that the reported 2000-2008 emissions surge is an artefact, most simply explained by a cumulative underestimation (~ 9PgC) of 1994-2007 emissions; in this case, post-2000 emissions would track mid-range of Intergovernmental Panel on Climate Change emission scenarios. An alternative explanation requires changes in the northern terrestrial land sink that offset anthropogenic emission changes. We suggest atmospheric methods to help resolve this ambiguity.

  7. Positive feedback between increasing atmospheric CO2 and ecosystem productivity

    Science.gov (United States)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.

    2009-12-01

    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the

  8. CO2 emission calculations and trends

    International Nuclear Information System (INIS)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-01-01

    Evidence that the atmospheric CO 2 concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO 2 is believed to result from CO 2 releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO 2 concentration and its potential impact on climate. One of the convention's stated objectives was the ''stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. '' Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO 2 as a greenhouse gas, the relationship between CO 2 emissions and increases in atmospheric CO 2 levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO 2 emissions records be compiled, maintained, updated, and documented

  9. Spectroscopic technique for measuring atmospheric CO2

    International Nuclear Information System (INIS)

    Stokes, G.M.; Stokes, R.A.

    1979-01-01

    As part of a continuing effort to identify areas in which astronomical techniques and data may be profitably applied to atmospheric problems, both new and archival solar spectra have been collected to prepare for an analysis of their use for studying the changes of the atmospheric CO 2 burden. This analysis has resulted in the initiation of an observing program using the Fourier Transform Spectrometer (FTS) of the McMath Solar Telescope at Kitt Peak National Observatory (KPNO). This program is generating spectra, the quality of which should not only aid the archival CO 2 study but also lead to analyses of other trace gases

  10. A single gas chromatograph for accurate atmospheric mixing ratio measurements of CO2, CH4, N2O, SF6 and CO

    Directory of Open Access Journals (Sweden)

    H. A. J. Meijer

    2009-09-01

    Full Text Available We present an adapted gas chromatograph capable of measuring simultaneously and semi-continuously the atmospheric mixing ratios of the greenhouse gases CO2, CH4, N2O and SF6 and the trace gas CO with high precision and long-term stability. The novelty of our design is that all species are measured with only one device, making it a very cost-efficient system. No time lags are introduced between the measured mixing ratios. The system is designed to operate fully autonomously which makes it ideal for measurements at remote and unmanned stations. Only a small amount of sample air is needed, which makes this system also highly suitable for flask air measurements. In principle, only two reference cylinders are needed for daily operation and only one calibration per year against international WMO standards is sufficient to obtain high measurement precision and accuracy. The system described in this paper is in use since May 2006 at our atmospheric measurement site Lutjewad near Groningen, The Netherlands at 6°21´ E, 53°24´N, 1 m a.s.l. Results show the long-term stability of the system. Observed measurement precisions at our remote research station Lutjewad were: ±0.04 ppm for CO2, ±0.8 ppb for CH4, ±0.8 ppb for CO, ±0.3 ppb for N2O, and ±0.1 ppt for SF6. The ambient mixing ratios of all measured species as observed at station Lutjewad for the period of May 2007 to August 2008 are presented as well.

  11. CO{sub 2} emission calculations and trends

    Energy Technology Data Exchange (ETDEWEB)

    Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [Alaska Univ., Fairbanks, AK (United States). Inst. of Northern Engineering

    1995-12-31

    Evidence that the atmospheric CO{sub 2} concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO{sub 2} is believed to result from CO{sub 2} releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO{sub 2} concentration and its potential impact on climate. One of the convention`s stated objectives was the ``stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. `` Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO{sub 2} as a greenhouse gas, the relationship between CO{sub 2} emissions and increases in atmospheric CO{sub 2} levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO{sub 2} emissions records be compiled, maintained, updated, and documented.

  12. CO{sub 2} Emission Calculations and Trends

    Science.gov (United States)

    Boden, T. A.; Marland, G.; Andres, R. J.

    1995-06-01

    Evidence that the atmospheric CO{sub 2}concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO{sub 2} is believed to result from CO{sub 2} releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO{sub 2} concentration and its potential impact on climate. One of the convention`s stated objectives was the stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO{sub 2} as a greenhouse gas, the relationship between CO{sub 2} emissions and increases in atmospheric CO{sub 2} levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO{sub 2} emissions records be compiled, maintained, updated, and documented.

  13. Fossil fuel CO2 estimation by atmospheric 14C measurement and CO2 mixing ratios in the city of Debrecen, Hungary

    International Nuclear Information System (INIS)

    Molnar, M.; Svingor, E.; Haszpra, L.; Ivo Svetlik; Veres, M.

    2010-01-01

    A field unit was installed in the city of Debrecen (East Hungary) during the summer of 2008 to monitor urban atmospheric fossil fuel CO 2 . To establish a reference level simultaneous CO 2 sampling has been carried out at a rural site (Hegyhatsal) in Western Hungary. Using the Hungarian background 14 CO 2 observations from the rural site atmospheric fossil fuel CO 2 component for the city of Debrecen was reported in a regional 'Hungarian' scale. A well visible fossil fuel CO 2 peak (10-15 ppm) with a maximum in the middle of winter 2008 (January) was observed in Debrecen air. Significant local maximum (∼20 ppm) in fossil fuel CO 2 during Octobers of 2008 and 2009 was also detected. Stable isotope results are in agreement with the 14 C based fossil fuel CO 2 observations as the winter of 2008 and 2009 was different in atmospheric δ 13 C variations too. The more negative δ 13 C of atmospheric CO 2 in the winter of 2008 means more fossil carbon in the atmosphere than during the winter of 2009. (author)

  14. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation

    Science.gov (United States)

    Tokoro, Tatsuki; Hosokawa, Shinya; Miyoshi, Eiichi; Tada, Kazufumi; Watanabe, Kenta; Montani, Shigeru; Kayanne, Hajime; Kuwae, Tomohiro

    2014-01-01

    ‘Blue Carbon’, which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2. PMID:24623530

  15. A joint global carbon inversion system using both CO2 and 13CO2 atmospheric concentration data

    Science.gov (United States)

    Chen, Jing M.; Mo, Gang; Deng, Feng

    2017-03-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites (62 collocated with 13CO2 sites) for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using prior CO2 fluxes estimated with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. This joint inversion system using both13CO2 and CO2 observations is effectively a double deconvolution system with consideration of the spatial variations of isotopic discrimination and disequilibrium. Compared to the CO2-only inversion, this 13CO2 constraint on the inversion considerably reduces the total land carbon sink from 3.40 ± 0.84 to 2.53 ± 0.93 Pg C year-1 but increases the total oceanic carbon sink from 1.48 ± 0.40 to 2.36 ± 0.49 Pg C year-1. This constraint also changes the spatial distribution of the carbon sink. The largest sink increase occurs in the Amazon, while the largest source increases are in southern Africa, and Asia, where CO2 data are sparse. Through a case study, in which the spatial distribution of the annual 13CO2 discrimination rate over land is ignored by treating it as a constant at the global average of -14. 1 ‰, the spatial distribution of the inverted CO2 flux over land was found to be significantly modified (up to 15 % for some regions). The uncertainties in our disequilibrium flux estimation are 8.0 and 12.7 Pg C year-1 ‰ for land and ocean, respectively. These uncertainties induced the unpredictability of 0.47 and 0.54 Pg C year-1 in the inverted CO2 fluxes for land and ocean, respectively. Our joint inversion system is therefore

  16. The millennial atmospheric lifetime of anthropogenic CO2

    International Nuclear Information System (INIS)

    Archer, D.

    2008-01-01

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO 2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO 2 recovery will take place on time scales of centuries, as CO 2 invades the ocean, but a significant fraction of the fossil fuel CO 2 , ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO 2 in the atmosphere

  17. Atmospheric CO2 and abrupt climate change on submillennial timescales

    Science.gov (United States)

    Ahn, Jinho; Brook, Edward

    2010-05-01

    How atmospheric CO2 varies and is controlled on various time scales and under various boundary conditions is important for understanding how the carbon cycle and climate change are linked. Ancient air preserved in ice cores provides important information on past variations in atmospheric CO2. In particular, concentration records for intervals of abrupt climate change may improve understanding of mechanisms that govern atmospheric CO2. We present new multi-decadal CO2 records that cover Greenland stadial 9 (between Dansgaard-Oeschger (DO) events 8 and 9) and the abrupt cooling event at 8.2 ka. The CO2 records come from Antarctic ice cores but are well synchronized with Greenland ice core records using new high-resolution CH4 records,precisely defining the timing of CO2 change with respect to abrupt climate events in Greenland. Previous work showed that during stadial 9 (40~38 ka), CO2 rose by about 15~20 ppm over around 2,000 years, and at the same time temperatures in Antarctica increased. Dust proxies indicate a decrease in dust flux over the same period. With more detailed data and better age controls we now find that approximately half of the CO2 increase during stadial 9 occurred abruptly, over the course of decades to a century at ~39.6 ka. The step increase of CO2 is synchronous with a similar step increase of Antarctic isotopic temperature and a small abrupt change in CH4, and lags after the onset of decrease in dust flux by ~400 years. New atmospheric CO2 records at the well-known ~8.2 ka cooling event were obtained from Siple Dome ice core, Antarctica. Our preliminary CO2 data span 900 years and include 19 data points within the 8.2 ka cooling event, which persisted for ~160 years (Thomas et al., Quarternary Sci. Rev., 2007). We find that CO2 increased by 2~4 ppm during that cooling event. Further analyses will improve the resolution and better constrain the CO2 variability during other times in the early Holocene to determine if the variations observed

  18. Effectiveness of carbon dioxide removal in lowering atmospheric CO2 and reversing global warming in the context of 1.5 degrees

    Science.gov (United States)

    Zickfeld, K.; Azevedo, D.

    2017-12-01

    The majority of emissions scenarios that limit warming to 2°C, and nearly all emission scenarios that do not exceed 1.5°C warming by the year 2100 require artificial removal of CO2 from the atmosphere. Carbon dioxide removal (CDR) technologies in these scenarios are required to offset emissions from sectors that are difficult or costly to decarbonize and to generate global `net negative' emissions, allowing to compensate for earlier emissions and to meet long-term climate stabilization targets after overshoot. Only a few studies have explored the Earth system response to CDR and large uncertainties exist regarding the effect of CDR on the carbon cycle and its effectiveness in reversing climate impacts after overshoot. Here we explore the effectiveness of CDR in lowering atmospheric CO2 ("carbon cycle effectiveness") and cool global climate ("cooling effectiveness"). We force the University of Victoria Earth System Climate Model, a model of intermediate complexity, with a set of negative CO2 emissions pulses of different magnitude and applied from different background atmospheric CO2 concentrations. We find the carbon cycle effectiveness of CDR - defined as the change in atmospheric CO2 per unit CO2 removed - decreases with the amount of CO2 removed from the atmosphere and increases at higher background CO2 concentrations from which CDR is applied due to nonlinear responses of carbon sinks to CO2 and climate. The cooling effectiveness - defined as the change in global mean surface air temperature per unit CO2 removed - on the other hand, is largely insensitive to the amount of CO2 removed, but decreases if CDR is applied at higher atmospheric CO2 concentrations, due to the logarithmic relationship between atmospheric CO2 and radiative forcing. Based on our results we conclude that CDR is more effective in restoring a lower atmospheric CO2 concentration and reversing impacts directly linked to CO2 at lower levels of overshoot. CDR's effectiveness in restoring a

  19. Water loss from terrestrial planets with CO2-rich atmospheres

    International Nuclear Information System (INIS)

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-01-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO 2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO 2 atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO 2 -rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m –2 (global mean) unlikely to lose more than one Earth ocean of H 2 O over their lifetimes unless they lose all their atmospheric N 2 /CO 2 early on. Because of the variability of H 2 O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO 2 /H 2 O-rich atmospheres, and high mean surface temperatures.

  20. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    Science.gov (United States)

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480

  1. Coral reefs - sources or sinks of atmospheric CO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J R; Smith, S V; Reakakudla, M L [Hawaii University, Honolulu, HI (USA). Dept. of Oceanography

    1992-09-01

    Because the precipitation of calcium carbonate results in the sequestering of carbon, it frequently has been thought that coral reefs function as sinks of global atmospheric CO[sub 2]. However, the precipitation of calcium carbonate is accompanied by a shift of pH that results in the release of CO[sub 2]. This release of CO[sub 2] is less in buffered sea water than fresh water systems; nevertheless, coral reefs are sources, not sinks, of atmospheric carbon. Using estimated rates of coral reef carbonate production, we compute that coral reefs release 0.02 to 0.08 Gt C as CO[sub 2] annually. This is approximately 0.4% to 1.4% of the current anthropogenic CO[sub 2] production due to fossil fuel combustion.

  2. Response of ocean acidification to a gradual increase and decrease of atmospheric CO2

    International Nuclear Information System (INIS)

    Cao, Long; Zhang, Han; Zheng, Meidi; Wang, Shuangjing

    2014-01-01

    We perform coupled climate–carbon cycle model simulations to examine changes in ocean acidity in response to idealized change of atmospheric CO 2 . Atmospheric CO 2 increases at a rate of 1% per year to four times its pre-industrial level of 280 ppm and then decreases at the same rate to the pre-industrial level. Our simulations show that changes in surface ocean chemistry largely follow changes in atmospheric CO 2 . However, changes in deep ocean chemistry in general lag behind the change in atmospheric CO 2 because of the long time scale associated with the penetration of excess CO 2 into the deep ocean. In our simulations with the effect of climate change, when atmospheric CO 2 reaches four times its pre-industrial level, global mean aragonite saturation horizon (ASH) shoals from the pre-industrial value of 1288 to 143 m. When atmospheric CO 2 returns from the peak value of 1120 ppm to pre-industrial level, ASH is 630 m, which is approximately the value of ASH when atmospheric CO 2 first increases to 719 ppm. At pre-industrial CO 2 9% deep-sea cold-water corals are surrounded by seawater that is undersaturated with aragonite. When atmospheric CO 2 reaches 1120 ppm, 73% cold-water coral locations are surrounded by seawater with aragonite undersaturation, and when atmospheric CO 2 returns to the pre-industrial level, 18% cold-water coral locations are surrounded by seawater with aragonite undersaturation. Our analysis indicates the difficulty for some marine ecosystems to recover to their natural chemical habitats even if atmospheric CO 2 content can be lowered in the future. (paper)

  3. Stable isotope measurements of atmospheric CO2

    International Nuclear Information System (INIS)

    White, J.W.C.; Ferretti, D.F.; Vaughn, B.H.; Francey, R.J.; Allison, C.E.

    2002-01-01

    The measurement of stable carbon isotope ratios of atmospheric carbon dioxide, δ 13 CO 2 are useful for partitioning surface-atmospheric fluxes into terrestrial and oceanic components. δC 18 OO also has potential for segregating photosynthetic and respiratory fluxes in terrestrial ecosystems. Here we describe in detail the techniques for making these measurements. The primary challenge for all of the techniques used to measure isotopes of atmospheric CO 2 is to achieve acceptable accuracy and precision and to maintain them over the decades needed to observe carbon cycle variability. The keys to success such an approach are diligent intercalibrations of laboratories from around the world, as well as the use of multiple techniques such as dual inlet and GC-IRMS and the intercomparison of such measurements. We focus here on two laboratories, the Stable Isotope Lab at the Institute for Arctic and Alpine Research (INSTAAR) at the University of Colorado is described and the Commonwealth Scientific and Industrial Research Organisation - Atmospheric Research (CSIRO). Different approaches exist at other laboratories (e.g. programs operated by Scripps Institution of Oceanography (SIO) and The Center for Atmospheric and Oceanic Studies, Toboku University (TU)) however these are not discussed here. Finally, we also discuss the recently developed Gas Chromatography - Isotope Ratio Mass Spectrometry (GC-IRMS) technique which holds significant promise for measuring ultra-small samples of gas with good precision. (author)

  4. Sugarcane vinasse CO2 gasification and release of ash-forming matters in CO2 and N2 atmospheres.

    Science.gov (United States)

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Lindberg, Daniel; Hupa, Mikko

    2016-10-01

    Gasification of sugarcane vinasse in CO2 and the release of ash-forming matters in CO2 and N2 atmospheres were investigated using a differential scanning calorimetry and thermogravimetric analyzer (DSC-TGA) at temperatures between 600 and 800°C. The results showed that pyrolysis is the main mechanism for the release of the organics from vinasse. Release of ash-forming matters in the vinasse is the main cause for vinasse char weight losses in the TGA above 700°C. The losses are higher in N2 than in CO2, and increase considerably with temperature. CO2 gasification also consumes the carbon in the vinasse chars while suppressing alkali release. Alkali release was also significant due to volatilization of KCl and reduction of alkali sulfate and carbonate by carbon. The DSC measured thermal events during heating up in N2 atmosphere that correspond to predicted melting temperatures of alkali salts in the char. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. N2O and CO production by electric discharge - Atmospheric implications. [Venus atmosphere simulation

    Science.gov (United States)

    Levine, J. S.; Howell, W. E.; Hughes, R. E.; Chameides, W. L.

    1979-01-01

    Enhanced levels of N2O and CO were measured in tropospheric air samples exposed to a 17,500-J laboratory discharge. These enhanced levels correspond to an N2O production rate of about 4 trillion molecules/J and a CO production rate of about 10 to the 14th molecules/J. The CO measurements suggest that the primary region of chemical production in the discharge is the shocked air surrounding the lightning channel, as opposed to the slower-cooling inner core. Additional experiments in a simulated Venus atmosphere (CO2 - 95%, N2 - 5%, at one atmosphere) indicate an enhancement of CO from less than 0.1 ppm prior to the laboratory discharge to more than 2000 ppm after the discharge. Comparison with theoretical calculations appears to confirm the ability of a shock-wave/thermochemical model to predict the rate of production of trace species by an electrical discharge.

  6. Effects of Atmospheric CO2 Enrichment on Soil CO2 Efflux in a Young Longleaf Pine System

    OpenAIRE

    Runion, G. Brett; Butnor, J. R.; Prior, S. A.; Mitchell, R. J.; Rogers, H. H.

    2012-01-01

    The southeastern landscape is composed of agricultural and forest systems that can store carbon (C) in standing biomass and soil. Research is needed to quantify the effects of elevated atmospheric carbon dioxide (CO2) on terrestrial C dynamics including CO2 release back to the atmosphere and soil sequestration. Longleaf pine savannahs are an ecologically and economically important, yet understudied, component of the southeastern landscape. We investigated the effects of ambient and elevated C...

  7. Reduced calcification of marine plankton in response to increased atmospheric CO2.

    Science.gov (United States)

    Riebesell, U; Zondervan, I; Rost, B; Tortell, P D; Zeebe, R E; Morel, F M

    2000-09-21

    The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange. The present rise in atmospheric CO2 levels causes significant changes in surface ocean pH and carbonate chemistry. Such changes have been shown to slow down calcification in corals and coralline macroalgae, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica. This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.

  8. Modeling the transformation of atmospheric CO2 into microalgal biomass.

    Science.gov (United States)

    Hasan, Mohammed Fahad; Vogt, Frank

    2017-10-23

    Marine phytoplankton acts as a considerable sink of atmospheric CO 2 as it sequesters large quantities of this greenhouse gas for biomass production. To assess microalgae's counterbalancing of global warming, the quantities of CO 2 they fix need to be determined. For this task, it is mandatory to understand which environmental and physiological parameters govern this transformation from atmospheric CO 2 to microalgal biomass. However, experimental analyses are challenging as it has been found that the chemical environment has a major impact on the physiological properties of the microalgae cells (diameter typ. 5-20 μm). Moreover, the cells can only chemically interact with their immediate vicinity and thus compound sequestration needs to be studied on a microscopic spatial scale. Due to these reasons, computer simulations are a more promising approach than the experimental studies. Modeling software has been developed that describes the dissolution of atmospheric CO 2 into oceans followed by the formation of HCO 3 - which is then transported to individual microalgae cells. The second portion of this model describes the competition of different cell species for this HCO 3 - , a nutrient, as well as its uptake and utilization for cell production. Two microalgae species, i.e. Dunaliella salina and Nannochloropsis oculata, were cultured individually and in a competition situation under different atmospheric CO 2 conditions. It is shown that this novel model's predictions of biomass production are in very good agreement with the experimental flow cytometry results. After model validation, it has been applied to long-term prediction of phytoplankton generation. These investigations were motivated by the question whether or not cell production slows down as cultures grow. This is of relevance as a reduced cell production rate means that the increase in a culture's CO 2 -sinking capacity slows down as well. One implication resulting from this is that an increase in

  9. Atmospheric deposition, CO2, and change in the land carbon sink

    DEFF Research Database (Denmark)

    Martinez-Fernandez, Cristina; Vicca, Sara; Janssens, Ivan A.

    2017-01-01

    Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and gene...... show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling....

  10. Detection of CO2 leaks from carbon capture and storage sites with combined atmospheric CO2 and O-2 measurements

    NARCIS (Netherlands)

    van Leeuwen, Charlotte; Meijer, Harro A. J.

    2015-01-01

    This paper presents a transportable instrument that simultaneously measures the CO2 and (relative) O-2 concentration of the atmosphere with the purpose to aid in the detection of CO2 leaks from CCS sites. CO2 and O-2 are coupled in most processes on earth (e.g., photosynthesis, respiration and

  11. CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

    Science.gov (United States)

    Fleischer, Siegfried

    2003-02-01

    Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.

  12. Water loss from terrestrial planets with CO{sub 2}-rich atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wordsworth, R. D.; Pierrehumbert, R. T., E-mail: rwordsworth@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, 60637 IL (United States)

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO{sub 2} can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO{sub 2} atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO{sub 2}-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m{sup –2} (global mean) unlikely to lose more than one Earth ocean of H{sub 2}O over their lifetimes unless they lose all their atmospheric N{sub 2}/CO{sub 2} early on. Because of the variability of H{sub 2}O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO{sub 2}/H{sub 2}O-rich atmospheres, and high mean surface temperatures.

  13. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    Science.gov (United States)

    Moore, D. J.; Cooley, S. R.; Alin, S. R.; Brown, M. E.; Butman, D. E.; French, N. H. F.; Johnson, Z. I.; Keppel-Aleks, G.; Lohrenz, S. E.; Ocko, I.; Shadwick, E. H.; Sutton, A. J.; Potter, C. S.; Yu, R. M. S.

    2016-12-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce

  14. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    Science.gov (United States)

    Moore, David J.; Cooley, Sarah R.; Alin, Simone R.; Brown, Molly; Butman, David E.; French, Nancy H. F.; Johnson, Zackary I.; Keppel-Aleks; Lohrenz, Steven E.; Ocko, Ilissa; hide

    2016-01-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce

  15. CO2 cycle

    Science.gov (United States)

    Titus, Timothy N.; Byrne, Shane; Colaprete, Anthony; Forget, Francois; Michaels, Timothy I.; Prettyman, Thomas H.

    2017-01-01

    This chapter discusses the use of models, observations, and laboratory experiments to understand the cycling of CO2 between the atmosphere and seasonal Martian polar caps. This cycle is primarily controlled by the polar heat budget, and thus the emphasis here is on its components, including solar and infrared radiation, the effect of clouds (water- and CO2-ice), atmospheric transport, and subsurface heat conduction. There is a discussion about cap properties including growth and regression rates, albedos and emissivities, grain sizes and dust and/or water-ice contamination, and curious features like cold gas jets and araneiform (spider-shaped) terrain. The nature of the residual south polar cap is discussed as well as its long-term stability and ability to buffer atmospheric pressures. There is also a discussion of the consequences of the CO2 cycle as revealed by the non-condensable gas enrichment observed by Odyssey and modeled by various groups.

  16. The equilibrium response to doubling atmospheric CO2

    International Nuclear Information System (INIS)

    Mitchell, J.F.B.

    1990-01-01

    The equilibrium response of climate to increased atmospheric carbon dioxide as simulated by general circulation models is assessed. Changes that are physically plausible are summarized, along with an indication of the confidence attributable to those changes. The main areas of uncertainty are highlighted. They include: equilibrium experiments with mixed-layer oceans focusing on temperature, precipitation, and soil moisture; equilibrium studies with dynamical ocean-atmosphere models; results deduced from equilibrium CO 2 experiments; and priorities for future research to improve atmosphere models

  17. The millennial atmospheric lifetime of anthropogenic CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Archer, D. [University of Chicago, IL (United States). Department of the Geophysical Sciences; Brovkin, V. [Potsdam Institute for Climate Impact Research (Germany)

    2008-10-15

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO{sub 2} release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO{sub 2} recovery will take place on time scales of centuries, as CO{sub 2} invades the ocean, but a significant fraction of the fossil fuel CO{sub 2}, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO{sub 2} in the atmosphere.

  18. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Science.gov (United States)

    Chandra, Naveen; Lal, Shyam; Venkataramani, S.; Patra, Prabir K.; Sheel, Varun

    2016-05-01

    About 70 % of the anthropogenic carbon dioxide (CO2) is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO) have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric) and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm) during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm) during the autumn (SON) season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic emissions in the late night (00:00-05:00 h, IST

  19. Capture of atmospheric CO2 into (BiO)2CO3/graphene or graphene oxide nanocomposites with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Zhang, Wendong; Dong, Fan; Zhang, Wei

    2015-01-01

    Graphical abstract: Self-assembly of (BiO) 2 CO 3 nanoflakes on graphene and graphene oxide nanosheets were realized by a one-pot efficient capture of atmospheric CO 2 at room temperature. - Highlights: • A facile one-step method was developed for graphene-based composites. • The synthesis was conducted by utilization of atmospheric CO 2 . • (BiO) 2 CO 3 -graphene and (BiO) 2 CO 3 -graphene oxide composites were synthesized. • The nanocomposites exhibited enhanced photocatalytic activity. - Abstract: Self-assembly of (BiO) 2 CO 3 nanoflakes on graphene (Ge) and graphene oxide (GO) nanosheets, as an effective strategy to improve the photocatalytic performance of two-dimensional (2D) nanostructured materials, were realized by a one-pot efficient capture of atmospheric CO 2 at room temperature. The as-synthesized samples were characterized by XRD, SEM, TEM, XPS, UV–vis DRS, Time-resolved ns-level PL and BET-BJH measurement. The photocatalytic activity of the obtained samples was evaluated by the removal of NO at the indoor air level under simulated solar-light irradiation. Compared with pure (BiO) 2 CO 3 , (BiO) 2 CO 3 /Ge and (BiO) 2 CO 3 /GO nanocomposites exhibited enhanced photocatalytic activity due to their large surface areas and pore volume, and efficient charge separation and transfer. The present work could provide a simple method to construct 2D nanocomposites by efficient utilization of CO 2 in green synthetic strategy.

  20. Thermodynamic stability and guest distribution of CH4/N2/CO2 mixed hydrates for methane hydrate production using N2/CO2 injection

    International Nuclear Information System (INIS)

    Lim, Dongwook; Ro, Hyeyoon; Seo, Yongwon; Seo, Young-ju; Lee, Joo Yong; Kim, Se-Joon; Lee, Jaehyoung; Lee, Huen

    2017-01-01

    Highlights: • We examine the thermodynamic stability and guest distribution of CH 4 /N 2 /CO 2 mixed hydrates. • Phase equilibria of the CH 4 /N 2 /CO 2 mixed hydrates were measured to determine the thermodynamic stability. • The N 2 /CO 2 ratio of the hydrate phase is almost constant despite the enrichment of CO 2 in the hydrate phase. • 13 C NMR results indicate the preferential occupation of N 2 and CO 2 in the small and large cages of sI hydrates, respectively. - Abstract: In this study, thermodynamic stability and cage occupation behavior in the CH 4 – CO 2 replacement, which occurs in natural gas hydrate reservoirs by injecting flue gas, were investigated with a primary focus on phase equilibria and composition analysis. The phase equilibria of CH 4 /N 2 /CO 2 mixed hydrates with various compositions were measured to determine the thermodynamic stability of gas hydrate deposits replaced by N 2 /CO 2 gas mixtures. The fractional experimental pressure differences (Δp/p) with respect to the CSMGem predictions were found to range from −0.11 to −0.02. The composition analysis for various feed gas mixtures with a fixed N 2 /CO 2 ratio (4.0) shows that CO 2 is enriched in the hydrate phase, and the N 2 /CO 2 ratio in the hydrate phase is independent of the feed CH 4 fractions. Moreover, 13 C NMR measurements indicate that N 2 molecules preferentially occupy the small 5 12 cages of sI hydrates while the CO 2 molecules preferentially occupy the large 5 12 6 2 cages, resulting in an almost constant area ratio of CH 4 molecules in the large to small cages of the CH 4 /N 2 /CO 2 mixed hydrates. The overall experimental results provide a better understanding of stability conditions and guest distributions in natural gas hydrate deposits during CH 4 – flue gas replacement.

  1. Do Continental Shelves Act as an Atmospheric CO2 Sink?

    Science.gov (United States)

    Cai, W.

    2003-12-01

    Recent air-to-sea CO2 flux measurements at several major continental shelves (European Atlantic Shelves, East China Sea and U.S. Middle Atlantic Bight) suggest that shelves may act as a one-way pump and absorb atmospheric CO2 into the ocean. These observations also favor the argument that continental shelves are autotrophic (i.e., net production of organic carbon, OC). The U.S. South Atlantic Bight (SAB) contrasts these findings in that it acts as a strong source of CO2 to the atmosphere while simultaneously exporting dissolved inorganic carbon (DIC) to the open ocean. We report pCO2, DIC, and alkalinity data from the SAB collected in 8 cruises along a transect from the shore to the shelf break in the central SAB. The shelf-wide net heterotrophy and carbon exports in the SAB are subsidized by the export of OC from the abundant intertidal marshes, which are a sink for atmospheric CO2. It is proposed here that the SAB represents a marsh-dominated heterotrophic ocean margin as opposed to river-dominated autotrophic margins. To further investigate why margins may behave differently in term of CO2 sink/source, the physical and biological conditions of several western boundary current margins are compared. Based on this and other studies, DIC export flux from margins to the open ocean must be significant in the overall global ocean carbon budget.

  2. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Directory of Open Access Journals (Sweden)

    N. Chandra

    2016-05-01

    Full Text Available About 70 % of the anthropogenic carbon dioxide (CO2 is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm during the autumn (SON season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic

  3. Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: knowledge gaps

    International Nuclear Information System (INIS)

    Karnosky, D.F.

    2003-06-01

    Atmospheric CO 2 is rising rapidly, and options for slowing the CO 2 rise are politically charged as they largely require reductions in industrial CO 2 emissions for most developed countries. As forests cover some 43% of the Earth's surface, account for some 70% of terrestrial net primary production (NPP), and are being bartered for carbon mitigation, it is critically important that we continue to reduce the uncertainties about the impacts of elevated atmospheric CO 2 on forest tree growth, productivity, and forest ecosystem function. In this paper, 1 review knowledge gaps and research needs on the effects of elevated atmospheric CO 2 on forest above- and below-ground growth and productivity, carbon sequestration, nutrient cycling, water relations, wood quality, phonology, community dynamics and biodiversity, antioxidants and stress tolerance, interactions with air pollutants, heterotrophic interactions, and ecosystem functioning. Finally, 1 discuss research needs regarding modelling of the impacts of elevated atmospheric CO 2 on forests. Even though there has been a tremendous amount of research done with elevated CO 2 and forest trees, it remains difficult to predict future forest growth and productivity under elevated atmospheric CO 2 . Likewise, it is not easy to predict how forest ecosystem processes will respond to enriched CO 2 . The more we study the impacts of increasing CO 2 , the more we realize that tree and forest responses are yet largely uncertain due to differences in responsiveness by species, genotype, and functional group, and the complex interactions of elevated atmospheric CO 2 with soil fertility, drought, pests, and co-occurring atmospheric pollutants such as nitrogen deposition and O 3 . Furthermore, it is impossible to predict ecosystem-level responses based on short-term studies of young trees grown without interacting stresses and in small spaces without the element of competition. Long-term studies using free-air CO 2 enrichment (FACE

  4. Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake

    Science.gov (United States)

    Oschlies, A.

    2009-08-01

    The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. The smaller efficiency of the oceanic carbon uptake under an interactive atmosphere is due to the back flux of CO2 that occurs when atmospheric CO2 is reduced. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively, for pCO2 sensitivities of the terrestrial carbon storage in the middle range of the C4MIP models (Friedlingstein et al., 2006). For such sensitivities, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization originates, on timescales longer than decades, not from the atmosphere

  5. A Pilot Study to Evaluate California's Fossil Fuel CO2 Emissions Using Atmospheric Observations

    Science.gov (United States)

    Graven, H. D.; Fischer, M. L.; Lueker, T.; Guilderson, T.; Brophy, K. J.; Keeling, R. F.; Arnold, T.; Bambha, R.; Callahan, W.; Campbell, J. E.; Cui, X.; Frankenberg, C.; Hsu, Y.; Iraci, L. T.; Jeong, S.; Kim, J.; LaFranchi, B. W.; Lehman, S.; Manning, A.; Michelsen, H. A.; Miller, J. B.; Newman, S.; Paplawsky, B.; Parazoo, N.; Sloop, C.; Walker, S.; Whelan, M.; Wunch, D.

    2016-12-01

    Atmospheric CO2 concentration is influenced by human activities and by natural exchanges. Studies of CO2 fluxes using atmospheric CO2 measurements typically focus on natural exchanges and assume that CO2 emissions by fossil fuel combustion and cement production are well-known from inventory estimates. However, atmospheric observation-based or "top-down" studies could potentially provide independent methods for evaluating fossil fuel CO2 emissions, in support of policies to reduce greenhouse gas emissions and mitigate climate change. Observation-based estimates of fossil fuel-derived CO2 may also improve estimates of biospheric CO2 exchange, which could help to characterize carbon storage and climate change mitigation by terrestrial ecosystems. We have been developing a top-down framework for estimating fossil fuel CO2 emissions in California that uses atmospheric observations and modeling. California is implementing the "Global Warming Solutions Act of 2006" to reduce total greenhouse gas emissions to 1990 levels by 2020, and it has a diverse array of ecosystems that may serve as CO2 sources or sinks. We performed three month-long field campaigns in different seasons in 2014-15 to collect flask samples from a state-wide network of 10 towers. Using measurements of radiocarbon in CO2, we estimate the fossil fuel-derived CO2 present in the flask samples, relative to marine background air observed at coastal sites. Radiocarbon (14C) is not present in fossil fuel-derived CO2 because of radioactive decay over millions of years, so fossil fuel emissions cause a measurable decrease in the 14C/C ratio in atmospheric CO2. We compare the observations of fossil fuel-derived CO2 to simulations based on atmospheric modeling and published fossil fuel flux estimates, and adjust the fossil fuel flux estimates in a statistical inversion that takes account of several uncertainties. We will present the results of the top-down technique to estimate fossil fuel emissions for our field

  6. The persistent and pernicious myth of the early CO2-N2 atmospheres of terrestrial planets

    Science.gov (United States)

    Shaw, G. H.

    2009-12-01

    The accepted model for early atmospheres of terrestrial planets has settled on a CO2-N2 composition. Unfortunately, while it is largely based on a brilliant geological analysis by Rubey, there is no compelling evidence whatsoever for such a composition as the first “permanent” atmosphere for Earth or any other planet. In fact, geological discoveries of the past 50+ years reveal several problems with a CO2-N2 atmosphere, some of which Rubey recognized in his own analysis. He clearly addressed the problem of timing of degassing, concluding that early massive degassing of CO2 would produce readily observed and profound effects, which are not evident. Modeling and constraints on the timing of planetary accretion and core formation indicate massive early degassing. If early degassing emitted CO2-N2, the effects are concealed. Plate tectonic recycling is not a solution, as conditions would have persisted beyond the time of the earliest rocks, which do not show the effects. Attempts to return degassed CO2 to the mantle are not only ad hoc, but inconsistent with early thermal structure of the Earth. Second, production of prebiotic organic compounds from a CO2-N2 atmosphere has been a nagging problem. At best this has been addressed by invoking hydrogen production from the mantle to provide reducing capacity. While hydrogen may be emitted in volcanic eruptions, it is exceedingly difficult to imagine this process generating enough organics to yield high concentrations in a global ocean. The recent fashion of invoking organic synthesis at deep-sea vents suffers from the same problem: how to achieve sufficient concentrations of organics in a global ocean by abiotic synthesis when hydrothermal activity stirs the solution and carries the prebiotic products off to great dilution? Suggesting life began at deep-sea vents, and continues to carry on chemosynthesis there, begs the question. Unless you get high enough concentrations of prebiotics by abiotic processes, you simply

  7. Analysis of Vertical Weighting Functions for Lidar Measurements of Atmospheric CO2 and O2

    Science.gov (United States)

    Kooi, S.; Mao, J.; Abshire, J. B.; Browell, E. V.; Weaver, C. J.; Kawa, S. R.

    2011-12-01

    Several NASA groups have developed integrated path differential absorption (IPDA) lidar approaches to measure atmospheric CO2 concentrations from space as a candidates for NASA's ASCENDS space mission. For example, the Goddard CO2 Sounder approach uses two pulsed lasers to simultaneously measure both CO2 and O2 absorption in the vertical path to the surface at a number of wavelengths across a CO2 line near 1572 nm and an O2 line doublet near 764 nm. The measurements of CO2 and O2 absorption allow computing their vertically weighted number densities and then their ratios for estimating CO2 concentration relative to dry air. Since both the CO2 and O2 densities and their absorption line-width decrease with altitude, the absorption response (or weighting function) varies with both altitude and absorption wavelength. We have used some standard atmospheres and HITRAN 2008 spectroscopy to calculate the vertical weighting functions for two CO2 lines near 1571 nm and the O2 lines near 764.7 and 1260 nm for candidate online wavelength selections for ASCENDS. For CO2, the primary candidate on-line wavelengths are 10-12 pm away from line center with the weighting function peaking in the atmospheric boundary layer to measure CO2 sources and sinks at the surface. Using another on-line wavelength 3-5 pm away from line center allows the weighting function to peak in the mid- to upper troposphere, which is sensitive to CO2 transport in the free atmosphere. The Goddard CO2 sounder team developed an airborne precursor version of a space instrument. During the summers of 2009, 2010 and 2011 it has participated in airborne measurement campaigns over a variety of different sites in the US, flying with other NASA ASCENDS lidar candidates along with accurate in-situ atmospheric sensors. All flights used altitude patterns with measurements at steps in altitudes between 3 and 13 km, along with spirals from 13 km altitude to near the surface. Measurements from in-situ sensors allowed an

  8. Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter C.

    1990-09-05

    OAK B188 Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}. Atmospheric CO{sub 2} is expected to double by the end of the next century. Global mean increases in surface air temperature of 1.5-4.5 C are anticipated with larger increases towards the poles predicted. Changes in CO{sub 2} levels and temperature could have major impacts on ecosystem functioning, including primary productivity, species composition, plant-animal interactions, and carbon storage. Until recently, there has been little direct information on the impact of changes in CO{sub 2} and temperature on native ecosystems. The study described here was undertaken to evaluate the effects of a 50 and 100% increase in atmospheric CO{sub 2}, and a 100% increase in atmospheric CO{sub 2} coupled with a 4 C summer air temperature rise on the structure and function of an arctic tussock tundra ecosystem. The arctic contains large stores of carbon as soil organic matter, much frozen in permafrost and currently not reactive or available for oxidation and release into the atmosphere. About 10-27% of the world's terrestrial carbon occurs in arctic and boreal regions, and carbon is accumulating in these regions at the rate of 0.19 GT y{sup -1}. Mean temperature increases of 11 C and summer temperature increases of 4 C have been suggested. Mean July temperatures on the arctic coastal plain and arctic foothills regions are 4-12 C, and mean annual temperatures are -7 to -13 C (Haugen, 1982). The projected temperature increases represent a substantial elevation above current temperatures which will have major impacts on physical processes such as permafrost development and development of the active layer, and on biological and ecosystem processes such as primary productivity, carbon storage, and species composition. Extreme nutrient and temperature limitation of this ecosystem raised questions of the responsiveness of arctic systems to elevated CO{sub 2}. Complex ecosystem interactions with the effects

  9. The photochemical stability of the Venus atmosphere against UV radiation

    International Nuclear Information System (INIS)

    Mills, F.P.; Slanger, T.G.; Allen, M.

    2004-01-01

    Full text: One unresolved question regarding the Venus atmosphere is what chemical mechanism(s) stabilize its primary constituent (CO 2 ) against UV radiation. CO 2 photolyzes on the day side into CO and O after absorbing photons at 2 rather than recombining with CO to form CO 2 , and the intense night side O 2 airglow observed quantitatively supports this. CO and O 2 are photochemically stable in an otherwise pure CO 2 atmosphere so significant abundances of CO and O 2 could accumulate on Venus if no catalytic mechanism existed to speed the reformation of CO 2 . However, the observational upper limit on ground state O 2 is equivalent to 2 from CO and O 2 . Recent laboratory work verified the existence of the ClC(O)OO catalytic mechanism that has been used in photochemical models since the early 1980s. However, there are significant uncertainties in the rates for the component steps of this catalytic mechanism. An alternative mechanism for production of CO 2 that has not previously been modeled but which could be competitive with the ClCO(O)O mechanism is the reaction CO + O 2 (c 1 Σ - u ) → CO 2 + O( 1 D) or O( 1 S), Reaction (1). A range of values for Reaction (1) will be examined in model calculations to compare with observational (UV to IR) constraints and to assess under what conditions this mechanism is competitive with the ClC(O)OO catalytic mechanism. The sensitivity of the results to uncertainties in the CO 2 UV absorption cross section also will be examined

  10. A role for atmospheric CO2 in preindustrial climate forcing

    NARCIS (Netherlands)

    Hoof, T.B. van; Wagner-Cremer, F.; Kürschner, W.M.; Visscher, H.

    2008-01-01

    Complementary to measurements in Antarctic ice cores, stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of preindustrial atmospheric CO2 concentration. CO2 trends based on leaf remains of Quercus robur (English oak) from the

  11. Is there a decrease in the sink of atmospheric CO2 in the Nordic seas?

    International Nuclear Information System (INIS)

    Olsen, Are; Anderson, Leif G.

    2002-01-01

    It is well known that the seas off Norway sink a lot of carbon dioxide from the atmosphere, mainly because of the large heat loss from the sea in the area, which makes CO 2 more soluble in the water. Whether this sink has increased after the industrial revolution and thereby contributes to slowing down the increase of atmospheric CO 2 is uncertain. That is, it is uncertain whether there is a sink of anthropogenic CO 2 . There are indications that the opposite is true, that the sink of CO 2 in this area has slowed down along with the rise in the concentration of atmospheric CO 2 . Storing of anthropogenic CO 2 , however, takes place at higher latitudes where deep-water formation occurs, such as in the Nordic seas, where water that is saturated with anthropogenic CO 2 is transported down in the deep sea and becomes shielded from the atmosphere. Model calculations show that increased CO 2 in the atmosphere will reduce the sink of this gas in the Nordic seas. This conclusion is supported by observations from the Barents Sea

  12. Relationship between carbon-14 concentrations in tree-ring cellulose and atmospheric CO2

    International Nuclear Information System (INIS)

    Yamada, Yoshimune; Yasuike, Kaeko; Komura, Kazuhisa

    2008-01-01

    Concentrations of organically-bound 14 C in the tree-ring cellulose of a Japanese Cedar (Cryptomeria japonica) grown in a rural region of Kanazawa, Ishikawa prefecture, Japan (36.5degN, 136.7degE), were measured for the ring-years from 1989 to 1998 to study relationship between 14 C concentrations in tree-ring cellulose and atmospheric CO 2 in a narrow region. An interesting result in comparing our data of tree-ring cellulose with those of atmospheric CO 2 is that the 14 C concentration in tree-ring cellulose was close to the corresponding average from mid-June to early September of 14 C concentrations in atmospheric CO 2 . Furthermore, the 14 C concentrations in tree-ring cellulose were found to be merely influenced by the drastic decrease of 14 C concentrations in atmospheric CO 2 in winter, which might be caused by air pollution from the Asian continent and additional local fossil fuel contribution. These results suggest that the 14 C concentration in tree-ring cellulose for a given growing year reflects the 14 C concentrations of atmospheric CO 2 during the warm summer months. (author)

  13. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic.

    Science.gov (United States)

    Mazankova, V; Torokova, L; Krcma, F; Mason, N J; Matejcik, S

    2016-11-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO 2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N 2  + CH 4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO 2 reactivity. CO 2 was introduced to the standard N 2  + CH 4 mixture at different mixing ratio up to 5 % CH 4 and 3 % CO 2 . The reaction products were characterized by FTIR spectroscopy. This work shows that CO 2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO 2 on increasing concentration other products as cyanide (HCN) and ammonia (NH 3 ).

  14. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    Science.gov (United States)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  15. The extraction of CO2 from the atmosphere

    International Nuclear Information System (INIS)

    Hauet, Jean-Pierre

    2014-01-01

    After having indicated some methods which are considered as ridiculous, hazardous or ethically questionable, the author first presents of method of extraction of CO 2 from the atmosphere developed by a research team of the University of Calgary and applied by the Carbon Engineering Company. According to this concept, ambient air is circulated through an air-contactor in which air leaves its CO 2 to a potassium hydroxide flow which transforms into potassium carbonate. This hydroxide is then re-generated by exchange with calcium hydroxide. The thus formed calcium carbonate is finally thermally decomposed to release CO 2 . He also presents the BECCS (Bio-energy with carbon capture and storage) which has been put forward by the IPCC, evokes the cost of the extracted ton of CO 2 and the arguments of the opponents to this method

  16. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    King, A. W.; Andres, R. J.; Davis, K. J.; Hafer, M.; Hayes, D. J.; Huntzinger, D. N.; de Jong, B.; Kurz, W. A.; McGuire, A. D.; Vargas, R.; Wei, Y.; West, T. O.; Woodall, C. W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990-2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.

  17. Biomass burial and storage to reduce atmospheric CO2

    Science.gov (United States)

    Zeng, N.

    2012-04-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a theoretical carbon sequestration potential for wood burial is 10 ± 5 GtC/y, but probably 1-3 GtC/y can be realized in practice. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other environmental concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from forest industry, the cost for wood burial is estimated to be 14/tCO2 (50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The low cost for carbon sequestration with wood burial is possible because the technique uses the natural process of photosynthesis to remove carbon from the atmosphere. The technique is low tech, distributed, safe, and can be stopped at any time, thus an attractive option for large-scale implementation in a world-wide carbon market.

  18. 222Rn and 14CO2 concentrations in the surface layer of the atmosphere

    International Nuclear Information System (INIS)

    Holy, K.; Chudy, M.; Sivo, A.; Richtarikova, M.; Boehm, R.; Polaskova, A.; Vojtyla, P.; Bosa, I.; Hola, O.

    2002-01-01

    Long-term monitoring of the Δ 14 C in the atmospheric near-ground CO 2 has been realized in Bratislava and Zlkovce, situated near the nuclear power plant Jaslovske Bohunice. Until 1993, the monthly mean Δ 14 C values showed a high variability. The annual means of Δ 14 C were about 30 per mille higher at Zlkovce than in highly industrialised Bratislava. An important change in the behaviour of the 14 C data has occurred since 1993. The records from both stations show the similar course, mainly due to the fact that there do not occur deep winter minima in Bratislava. This behaviour corresponds to the lower values of the total fossil fuel CO 2 emissions in the years after 1993 when compared to the previous years. At present, both sets of data show that the 14 C concentration is about 10% above the natural level. Since 1987 also the 222 Rn concentration in the surface layer of the atmosphere has been measured in Bratislava. These measurements provided an extensive set of the 222 Rn data characteristic for the inland environment with high level of atmospheric pollution. The seasonal and daily variations of the 222 Rn concentration were observed. The investigation of the relation between the monthly mean diurnal courses of the 222 Rn concentration and the atmospheric stability proved a high correlation between them. The 222 Rn data were used to interpret the anomalous Δ 14 C values in the surface layer of the atmosphere. (author)

  19. Deep Sea Memory of High Atmospheric CO2 Concentration

    Science.gov (United States)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated

  20. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

    Science.gov (United States)

    Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M

    2013-05-01

    Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell

    Science.gov (United States)

    Meras, Patrick; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Spiers, Gary D.

    2010-04-01

    We have designed and built a hollow-core fiber frequency reference cell, filled it with CO2, and used it to demonstrate frequency stabilization of a 2.05 μm Tm:Ho:YLF laser using frequency modulation (FM) spectroscopy technique. The frequency reference cell is housed in a compact and robust hermetic package that contains a several meter long hollow-core photonic crystal fiber optically coupled to index-guiding fibers with a fusion splice on one end and a mechanical splice on the other end. The package has connectorized fiber pigtails and a valve used to evacuate, refill it, or adjust the gas pressure. We have demonstrated laser frequency standard deviation decreasing from >450MHz (free-running) to laser wavelength is of particular interest for spectroscopic instruments due to the presence of many CO2 and H20 absorption lines in its vicinity. To our knowledge, this is the first reported demonstration of laser frequency stabilization at this wavelength using a hollow-core fiber reference cell. This approach enables all-fiber implementation of the optical portion of laser frequency stabilization system, thus making it dramatically more lightweight, compact, and robust than the traditional free-space version that utilizes glass or metal gas cells. It can also provide much longer interaction length of light with gas and does not require any alignment. The demonstrated frequency reference cell is particularly attractive for use in aircraft and space coherent lidar instruments for measuring atmospheric CO2 profile.

  2. Process-based modeling of silicate mineral weathering responses to increasing atmospheric CO2 and climate change

    Science.gov (United States)

    Banwart, Steven A.; Berg, Astrid; Beerling, David J.

    2009-12-01

    A mathematical model describes silicate mineral weathering processes in modern soils located in the boreal coniferous region of northern Europe. The process model results demonstrate a stabilizing biological feedback mechanism between atmospheric CO2 levels and silicate weathering rates as is generally postulated for atmospheric evolution. The process model feedback response agrees within a factor of 2 of that calculated by a weathering feedback function of the type generally employed in global geochemical carbon cycle models of the Earth's Phanerozoic CO2 history. Sensitivity analysis of parameter values in the process model provides insight into the key mechanisms that influence the strength of the biological feedback to weathering. First, the process model accounts for the alkalinity released by weathering, whereby its acceleration stabilizes pH at values that are higher than expected. Although the process model yields faster weathering with increasing temperature, because of activation energy effects on mineral dissolution kinetics at warmer temperature, the mineral dissolution rate laws utilized in the process model also result in lower dissolution rates at higher pH values. Hence, as dissolution rates increase under warmer conditions, more alkalinity is released by the weathering reaction, helping maintain higher pH values thus stabilizing the weathering rate. Second, the process model yields a relatively low sensitivity of soil pH to increasing plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and weathering. The process model is most sensitive to parameters reflecting soil structure; depth, porosity, and water content. This suggests that the role of biota to influence these characteristics of the weathering profile is as important, if not

  3. Δ14CO2 from dark respiration in plants and its impact on the estimation of atmospheric fossil fuel CO2.

    Science.gov (United States)

    Xiong, Xiaohu; Zhou, Weijian; Cheng, Peng; Wu, Shugang; Niu, Zhenchuan; Du, Hua; Lu, Xuefeng; Fu, Yunchong; Burr, George S

    2017-04-01

    Radiocarbon ( 14 C) has been widely used for quantification of fossil fuel CO 2 (CO 2ff ) in the atmosphere and for ecosystem source partitioning studies. The strength of the technique lies in the intrinsic differences between the 14 C signature of fossil fuels and other sources. In past studies, the 14 C content of CO 2 derived from plants has been equated with the 14 C content of the atmosphere. Carbon isotopic fractionation mechanisms vary among plants however, and experimental study on fractionation associated with dark respiration is lacking. Here we present accelerator mass spectrometry (AMS) radiocarbon results of CO 2 respired from 21 plants using a lab-incubation method and associated bulk organic matter. From the respired CO 2 we determine Δ 14 C res values, and from the bulk organic matter we determine Δ 14 C bom values. A significant difference between Δ 14 C res and Δ 14 C bom (P < 0.01) was observed for all investigated plants, ranging from -42.3‰ to 10.1‰. The results show that Δ 14 C res values are in agreement with mean atmospheric Δ 14 CO 2 for several days leading up to the sampling date, but are significantly different from corresponding bulk organic Δ 14 C values. We find that although dark respiration is unlikely to significantly influence the estimation of CO 2ff , an additional bias associated with the respiration rate during a plant's growth period should be considered when using Δ 14 C in plants to quantify atmospheric CO 2ff . Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Atmospheric CO2 Concentration Measurements with Clouds from an Airborne Lidar

    Science.gov (United States)

    Mao, J.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Numata, K.; Chen, J. R.; Sun, X.; DiGangi, J. P.; Choi, Y.

    2017-12-01

    Globally distributed atmospheric CO2 concentration measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space are limited to cloud-free scenes. NASA Goddard is developing a pulsed, integrated-path differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations, XCO2, from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate XCO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. We demonstrate this measurement capability using airborne lidar measurements from summer 2017 ASCENDS airborne science campaign in Alaska. We show retrievals of XCO2 to ground and to a variety of cloud tops. We will also demonstrate how the partial column XCO2 to cloud tops and cloud slicing approach help resolving vertical and horizontal gradient of CO2 in cloudy conditions. The XCO2 retrievals from the lidar are validated against in situ measurements and compared to the Goddard Parameterized Chemistry Transport Model (PCTM) simulations. Adding this measurement capability to the future lidar mission for XCO2 will provide full global and seasonal data coverage and some information about vertical structure of CO2. This unique facility is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation.

  5. Inter annual variability of the global carbon cycle (1992-2005) inferred by inversion of atmospheric CO2 and δ13CO2 measurements

    International Nuclear Information System (INIS)

    Rayner, P.J.; Pickett-Heaps, C.; Law, R.M.; Allison, C.E.; Francey, R.J.; Trudinger, C.M.

    2008-01-01

    We present estimates of the surface sources and sinks of CO 2 for 1992 - 2005 deduced from atmospheric inversions. We use atmospheric CO 2 records from 67 sites and 10 δ 13 CO 2 records. We use two atmospheric models to increase the robustness of the results. The results suggest that inter annual variability is dominated by the tropical land. Statistically significant variability in the tropical Pacific supports recent ocean modeling studies in that region. The northern land also shows significant variability. In particular, there is a large positive anomaly in 2003 in north Asia, which we associate with anomalous biomass burning. Results using δ 13 CO 2 and CO 2 are statistically consistent with those using only CO 2 , suggesting that it is valid to use both types of data together. An objective analysis of residuals suggests that our treatment of uncertainties in CO 2 is conservative, while those for δ 13 CO 2 are optimistic, highlighting problems in our simple isotope model. Finally, δ 13 CO 2 measurements offer a good constraint to nearby land regions, suggesting an ongoing value in these measurements for studies of inter annual variability. (authors)

  6. Pleistocene atmospheric CO2 change linked to Southern Ocean nutrient utilization

    Science.gov (United States)

    Ziegler, M.; Diz, P.; Hall, I. R.; Zahn, R.

    2011-12-01

    Biological uptake of CO2 by the ocean and its subsequent storage in the abyss is intimately linked with the global carbon cycle and constitutes a significant climatic force1. The Southern Ocean is a particularly important region because its wind-driven upwelling regime brings CO2 laden abyssal waters to the surface that exchange CO2 with the atmosphere. The Subantarctic Zone (SAZ) is a CO2 sink and also drives global primary productivity as unutilized nutrients, advected with surface waters from the south, are exported via Subantarctic Mode Water (SAMW) as preformed nutrients to the low latitudes where they fuel the biological pump in upwelling areas. Recent model estimates suggest that up to 40 ppm of the total 100 ppm atmospheric pCO2 reduction during the last ice age were driven by increased nutrient utilization in the SAZ and associated feedbacks on the deep ocean alkalinity. Micro-nutrient fertilization by iron (Fe), contained in the airborne dust flux to the SAZ, is considered to be the prime factor that stimulated this elevated photosynthetic activity thus enhancing nutrient utilization. We present a millennial-scale record of the vertical stable carbon isotope gradient between subsurface and deep water (Δδ13C) in the SAZ spanning the past 350,000 years. The Δδ13C gradient, derived from planktonic and benthic foraminifera, reflects the efficiency of biological pump and is highly correlated (rxy = -0.67 with 95% confidence interval [0.63; 0.71], n=874) with the record of dust flux preserved in Antarctic ice cores6. This strongly suggests that nutrient utilization in the SAZ was dynamically coupled to dust-induced Fe fertilization across both glacial-interglacial and faster millennial timescales. In concert with ventilation changes of the deep Southern Ocean this drove ocean-atmosphere CO2 exchange and, ultimately, atmospheric pCO2 variability during the late Pleistocene.

  7. Sintering of dioxide pellets in an oxidizing atmosphere (CO2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  8. Transient Atmospheric Circulation Changes in a Grand ensemble of Idealized CO2 Increase Experiments

    Science.gov (United States)

    Karpechko, A.; Manzini, E.; Kornblueh, L.

    2017-12-01

    The yearly evolution with increasing forcing of the large-scale atmospheric circulation is examined in a 68-member ensemble of 1pctCO2 scenario experiments performed with the MPI-ESM model. Each member of the experiment ensemble is integrated for 155 years, from initial conditions taken from a 2000-yr long pre-industrial control climate experiment. The 1pctCO2 scenario experiments are conducted following the protocol of including as external forcing only a CO2 concentration increase at 1%/year, till quadrupling of CO2 concentrations. MPI-ESM is the Max-Planck-Institute Earth System Model (including coupling between the atmosphere, ocean and seaice). By averaging over the 68 members (ensemble mean), atmospheric variability is greatly reduced. Thus, it is possible to investigate the sensitivity to the climate state of the atmospheric response to CO2 doubling. Indicators of global change show the expected monotonic evolution with increasing CO2 and a weak dependence of the thermodynamical response to CO2 doubling on the climate state. The surface climate response of the atmospheric circulation, diagnosed for instance by the pressure at sea level, and the eddy-driven jet response show instead a marked dependence to the climate state, for the Northern winter season. We find that as the CO2 concentration increases above doubling, Northern winter trends in some indicators of atmospheric circulation changes decrease or even reverse, posing the question on what are the causes of this nonlinear behavior. The investigation of the role of stationary waves, the meridional overturning circulation, the decrease in Arctic sea ice and the stratospheric vortex points to the latter as a plausible cause of such nonlinear response.

  9. Regulation of senescence under elevated atmospheric CO2 via ubiquitin modification

    OpenAIRE

    Aoyama, Shoki; Lu, Yu; Yamaguchi, Junji; Sato, Takeo

    2014-01-01

    Elevated atmospheric CO2 concentration is a serious global environmental problem. Elevated CO2 affects plant growth by changing primary metabolism, closely related to carbon (C) and nitrogen (N) availability. Under sufficient N conditions, plant growth is dramatically promoted by elevated CO2. When N availability is limited, however, elevated CO2 disrupts the balance between cellular C and N (C/N). Disruption of the C/N balance is regarded as an important factor in plant growth defects. Here ...

  10. Southern hemisphere ocean CO2 uptake: reconciling atmospheric and oceanic estimates

    International Nuclear Information System (INIS)

    Roy, T.; Matear, R.; Rayner, P.; Francey, R.

    2003-01-01

    Using an atmospheric inversion model we investigate the southern hemisphere ocean CO 2 uptake. From sensitivity studies that varied both the initial ocean flux distribution and the atmospheric data used in the inversion, our inversion predicted a total (ocean and land) uptake of 1.65-1.90 Gt C/yr. We assess the consistency between the mean southern hemisphere ocean uptake predicted by an atmospheric inversion model for the 1991-1997 period and the T99 ocean flux estimate based on observed pCO 2 in Takahashi et al. (2002; Deep-Sea Res II, 49, 1601-1622). The inversion can not match the large 1.8 Gt C/yr southern extratropical (20-90 deg S) uptake of the T99 ocean flux estimate without producing either unreasonable land fluxes in the southern mid-latitudes or by increasing the mismatches between observed and simulated atmospheric CO 2 data. The southern extratropical uptake is redistributed between the mid and high latitudes. Our results suggest that the T99 estimate of the Southern Ocean uptake south of 50 deg S is too large, and that the discrepancy reflects the inadequate representation of wintertime conditions in the T99 estimate

  11. On the causes of trends in the seasonal amplitude of atmospheric CO2.

    Science.gov (United States)

    Piao, Shilong; Liu, Zhuo; Wang, Yilong; Ciais, Philippe; Yao, Yitong; Peng, Shushi; Chevallier, Frédéric; Friedlingstein, Pierre; Janssens, Ivan A; Peñuelas, Josep; Sitch, Stephen; Wang, Tao

    2018-02-01

    No consensus has yet been reached on the major factors driving the observed increase in the seasonal amplitude of atmospheric CO 2 in the northern latitudes. In this study, we used atmospheric CO 2 records from 26 northern hemisphere stations with a temporal coverage longer than 15 years, and an atmospheric transport model prescribed with net biome productivity (NBP) from an ensemble of nine terrestrial ecosystem models, to attribute change in the seasonal amplitude of atmospheric CO 2 . We found significant (p 50°N), consistent with previous observations that the amplitude increased faster at Barrow (Arctic) than at Mauna Loa (subtropics). The multi-model ensemble mean (MMEM) shows that the response of ecosystem carbon cycling to rising CO 2 concentration (eCO 2 ) and climate change are dominant drivers of the increase in AMP P -T and AMP T -P in the high latitudes. At the Barrow station, the observed increase of AMP P -T and AMP T -P over the last 33 years is explained by eCO 2 (39% and 42%) almost equally than by climate change (32% and 35%). The increased carbon losses during the months with a net carbon release in response to eCO 2 are associated with higher ecosystem respiration due to the increase in carbon storage caused by eCO 2 during carbon uptake period. Air-sea CO 2 fluxes (10% for AMP P -T and 11% for AMP T -P ) and the impacts of land-use change (marginally significant 3% for AMP P -T and 4% for AMP T -P ) also contributed to the CO 2 measured at Barrow, highlighting the role of these factors in regulating seasonal changes in the global carbon cycle. © 2017 John Wiley & Sons Ltd.

  12. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    Science.gov (United States)

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.

  13. NO emission characteristics of superfine pulverized coal combustion in the O2/CO2 atmosphere

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Gao, Shan; Jiang, Xiumin; Shen, Jun; Zhang, Hai

    2014-01-01

    Highlights: • Superfine pulverized coal combustion in O 2 /CO 2 atmosphere is a new promising technology. • NO emissions of superfine pulverized coal combustion in O 2 /CO 2 mixture were focused. • Coal particle sizes have significant effects on NO emissions in O 2 /CO 2 combustion. - Abstract: The combination of O 2 /CO 2 combustion and superfine pulverized coal combustion technology can make full use of their respective merits, and solve certain inherent disadvantages of each technology. The technology of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere is easy and feasible to be retrofitted with few reconstructions on the existing devices. It will become a useful and promising method in the future. In this paper, a one-dimensional drop-tube furnace system was adopted to study the NO emission characteristics of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere. The effects of coal particle size, coal quality, furnace temperature, stoichiometric ratio, etc. were analyzed. It is important to note that coal particle sizes have significant influence on NO emissions in the O 2 /CO 2 combustion. For the homogeneous NO reduction, smaller coal particles can inhibit the homogeneous NO formations under fuel-rich combustion conditions, while it becomes disadvantageous for fuel-lean combustion. However, under any conditions, heterogeneous reduction is always more significant for smaller coal particle sizes, which have smoother pore surfaces and simpler pore structures. The results from this fundamental research will provide technical support for better understanding and developing this new combustion process

  14. Stabilization of emission of CO2: A computable general equilibrium assessment

    International Nuclear Information System (INIS)

    Glomsroed, S.; Vennemo, H.; Johnsen, T.

    1992-01-01

    A multisector computable general equilibrium model is used to study economic development perspectives in Norway if CO 2 emissions were stabilized. The effects discussed include impacts on main macroeconomic indicators and economic growth, sectoral allocation of production, and effects on the market for energy. The impact of other pollutants than CO 2 on emissions is assessed along with the related impact on noneconomic welfare. The results indicate that CO 2 emissions might be stabilized in Norway without dramatically reducing economic growth. Sectoral allocation effects are much larger. A substantial reduction in emissions to air other than CO 2 is found, yielding considerable gains in noneconomic welfare. 25 refs., 6 tabs., 2 figs

  15. Measurements of CO2 Column Abundance in the Low Atmosphere Using Ground Based 1.6 μm CO2 DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    Changes in atmospheric carbon dioxide (CO2) concentration are believed to produce the largest radiative forcing for the current climate system. Accurate predictions of atmospheric CO2 concentration rely on the knowledge of its sinks and sources, transports, and its variability with time. Although this knowledge is currently unsatisfactory, numerical models use it as a way in simulating CO2 fluxes. Validating and improving the global atmospheric transport model, therefore, requires precise measurement of the CO2 concentration profile. There are two further variations on Lidar: the differential absorption Lidar (DIAL) and the integrated path differential absorption (IPDA) Lidar. DIAL/IPDA are basically for profile/total column measurement, respectively. IPDA is a special case of DIAL and can measure the total column-averaged mixing ratio of trace gases using return signals from the Earth's surface or from thick clouds based on an airborne or a satellite. We have developed a ground based 1.6 μm DIAL to measure vertical CO2 mixing ratio profiles from 0.4 to 2.5 km altitude. The goals of the CO2 DIAL are to produce atmospheric CO2 mixing ratio measurements with much smaller seasonal and diurnal biases from the ground surface. But, in the ground based lidar, return signals from around ground surface are usually suppressed in order to handle the large dynamic range. To receive the return signals as near as possible from ground surface, namely, the field of view (FOV) of the telescope must be wide enough to reduce the blind range of the lidar. While the return signals from the far distance are very weak, to enhance the sensitivity and heighten the detecting distance, the FOV must be narrow enough to suppress the sky background light, especially during the daytime measurements. To solve this problem, we propose a total column measurement method from the ground surface to 0.4 km altitude. Instead of strong signals from thick clouds such as the IPDA, the proposed method uses

  16. Developing a lower-cost atmospheric CO2 monitoring system using commercial NDIR sensor

    Science.gov (United States)

    Arzoumanian, E.; Bastos, A.; Gaynullin, B.; Laurent, O.; Vogel, F. R.

    2017-12-01

    Cities release to the atmosphere about 44 % of global energy-related CO2. It is clear that accurate estimates of the magnitude of anthropogenic and natural urban emissions are needed to assess their influence on the carbon balance. A dense ground-based CO2 monitoring network in cities would potentially allow retrieving sector specific CO2 emission estimates when combined with an atmospheric inversion framework using reasonably accurate observations (ca. 1 ppm for hourly means). One major barrier for denser observation networks can be the high cost of high precision instruments or high calibration cost of cheaper and unstable instruments. We have developed and tested a novel inexpensive NDIR sensors for CO2 measurements which fulfils cost and typical parameters requirements (i.e. signal stability, efficient handling, and connectivity) necessary for this task. Such sensors are essential in the market of emissions estimates in cities from continuous monitoring networks as well as for leak detection of MRV (monitoring, reporting, and verification) services for industrial sites. We conducted extensive laboratory tests (short and long-term repeatability, cross-sensitivities, etc.) on a series of prototypes and the final versions were also tested in a climatic chamber. On four final HPP prototypes the sensitivity to pressure and temperature were precisely quantified and correction&calibration strategies developed. Furthermore, we fully integrated these HPP sensors in a Raspberry PI platform containing the CO2 sensor and additional sensors (pressure, temperature and humidity sensors), gas supply pump and a fully automated data acquisition unit. This platform was deployed in parallel to Picarro G2401 instruments in the peri-urban site Saclay - next to Paris, and in the urban site Jussieu - Paris, France. These measurements were conducted over several months in order to characterize the long-term drift of our HPP instruments and the ability of the correction and calibration

  17. A Broad Bank Lidar for Precise Atmospheric CO2 Column Absorption Measurement from Space

    Science.gov (United States)

    Georgieva, E. M.; Heaps, W. S.; Huang, W.

    2010-01-01

    Accurate global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. In order to uncover the "missing sink" that is responsible for the large discrepancies in the budget the critical precision for a measurement from space needs to be on the order of 1 ppm. To better understand the CO2 budget and to evaluate its impact on global warming the National Research Council (NRC) in its recent decadal survey report (NACP) to NASA recommended a laser based total CO2 mapping mission in the near future. That's the goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission - to significantly enhance the understanding of the role of CO2 in the global carbon cycle. Our current goal is to develop an ultra precise, inexpensive new lidar system for column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with a high power broadband source. This approach reduces the number of individual lasers used in the system and considerably reduces the risk of failure. It also tremendously reduces the requirement for wavelength stability in the source putting this responsibility instead on the Fabry- Perot subsystem.

  18. What have we learned from intensive atmospheric sampling field programmes of CO2

    International Nuclear Information System (INIS)

    Lin, J.C.; Wofsy, S.C.; Daube, B.C.; Matross, D.M.; Chow, V.Y.; Gottlieb, E.; Pathmathevan, M.; Munger, J.W.

    2006-01-01

    The spatial and temporal gradients in atmospheric CO 2 contain signatures of carbon fluxes, and as part of inverse studies,these signatures have been combined with atmospheric models to infer carbon sources and sinks. However, such studies have yet to yield finer-scale, regional fluxes over the continent that can be linked to ecosystem processes and ground-based observations. The reasons for this gap are twofold: lack of atmospheric observations over the continent and model deficiencies in interpreting such observations. This paper describes a series of intensive atmospheric sampling field programmes designed as pilot experiments to bridge the observational gap over the continent and to help test and develop models to interpret these observations. We summarize recent results emerging from this work,outlining the role of the intensive atmospheric programmes in collecting CO 2 data in both the vertical and horizontal dimensions. These data: (1) quantitatively establish the spatial variability of CO 2 and the associated errors from neglecting this variability in models; (2) directly measure regional carbon fluxes from airmass-following experiments and (3) challenge models to reduce and account for uncertainties in atmospheric transport. We conclude with a look towards the future, outlining ways in which intensive atmospheric sampling can contribute towards advancing carbon science

  19. Increase of atmospheric CO2 promotes phytoplankton productivity

    NARCIS (Netherlands)

    Schippers, P.; Lürling, M.F.L.L.W.; Scheffer, M.

    2004-01-01

    It is usually thought that unlike terrestrial plants, phytoplankton will not show a significant response to an increase of atmospheric CO2. Here we suggest that this view may be biased by a neglect of the effects of carbon (C) assimilation on the pH and the dissociation of the C species. We show

  20. A Ground-based validation of GOSAT-observed atmospheric CO2 in Inner-Mongolian grasslands

    International Nuclear Information System (INIS)

    Qin, X; Lei, L; Zeng, Z; Kawasaki, M; Oohasi, M

    2014-01-01

    Atmospheric carbon dioxide (CO 2 ) is a long-lived greenhouse gas that significantly contributes to global warming. Long-term and continuous measurements of atmospheric CO 2 to investigate its global distribution and concentration variations are important for accurately understanding its potential climatic effects. Satellite measurements from space can offer atmospheric CO 2 data for climate change research. For that, ground-based measurements are required for validation and improving the precision of satellite-measured CO 2 . We implemented observation experiment of CO 2 column densities in the Xilinguole grasslands in Inner Mongolia, China, using a ground-based measurement system, which mainly consists of an optical spectrum analyzer (OSA), a sun tracker and a notebook controller. Measurements from our ground-based system were analyzed and compared with those from the Greenhouse gas Observation SATellite (GOSAT). The ground-based measurements had an average value of 389.46 ppm, which was 2.4 ppm larger than from GOSAT, with a standard deviation of 3.4 ppm. This result is slightly larger than the difference between GOSAT and the Total Carbon Column Observing Network (TCCON). This study highlights the usefulness of the ground-based OSA measurement system for analyzing atmospheric CO 2 column densities, which is expected to supplement the current TCCON network

  1. How Burying Biomass Can Contribute to CO2 Stabilization

    Science.gov (United States)

    Cook, B.; Zeng, N.; Zaitchik, B.; Gregg, J.

    2008-12-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1), followed by temperate (3.7 GtC y-1) and boreal forests (2.1 GtC y-1). Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other environmental concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be 14/tCO2 (50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The low cost for carbon sequestration with wood burial is possible because the technique uses the natural process of photosynthesis to remove carbon from the atmosphere. The technique is low tech, distributed, safe, and can be stopped at any time, thus an attractive option for large-scale implementation in a world-wide carbon market.

  2. Broadening of spectral lines of CO2, N2O , H2CO, HCN, and H2S by pressure of gases dominant in planetary atmospheres (H2, He and CO2)

    Science.gov (United States)

    Samuels, Shanelle; Gordon, Iouli; Tan, Yan

    2018-01-01

    HITRAN1,2 is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in planetary atmospheres. The goal of this project is to add to the potential of the HITRAN database towards the exploration of the planetary atmospheres by including parameters describing broadening of spectral lines by H2, CO2, and He. These spectroscopic data are very important for the study of the hydrogen and helium-rich atmospheres of gas giants as well as rocky planets with volcanic activities, including Venus and Mars, since their atmospheres are dominated by CO2. First step in this direction was accomplished by Wilzewski et al.3 where this was done for SO2, NH3, HF, HCl, OCS and C2H2. The molecules investigated in this work were CO2, N2O, H2CO, HCN and H2S. Line-broadening coefficients, line shifts and temperature-dependence exponents for transitions of these molecules perturbed by H2, CO2 and He have been assembled from available peer-reviewed experimental and theoretical sources. The data was evaluated and the database was populated with these data and their extrapolations/interpolations using semi-empirical models that were developed to this end.Acknowledgements: Financial support from NASA PDART grant NNX16AG51G and the Smithsonian Astrophysical Observatory Latino Initiative Program from the Latino Initiatives Pool, administered by the Smithsonian Latino Center is gratefully acknowledged.References: 1. HITRAN online http://hitran.org/2. Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., et al., 2017. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. doi:10.1016/j.jqsrt.2017.06.0383. Wilzewski, J.S., Gordon, I.E., Kochanov, R. V., Hill, C., Rothman, L.S., 2016. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat

  3. Capture of atmospheric CO{sub 2} into (BiO){sub 2}CO{sub 3}/graphene or graphene oxide nanocomposites with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wendong [Department of Scientific Research Management, Chongqing Normal University, Chongqing, 401331 (China); Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 (China); Zhang, Wei, E-mail: andyzhangwei@163.com [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China)

    2015-12-15

    Graphical abstract: Self-assembly of (BiO){sub 2}CO{sub 3} nanoflakes on graphene and graphene oxide nanosheets were realized by a one-pot efficient capture of atmospheric CO{sub 2} at room temperature. - Highlights: • A facile one-step method was developed for graphene-based composites. • The synthesis was conducted by utilization of atmospheric CO{sub 2}. • (BiO){sub 2}CO{sub 3}-graphene and (BiO){sub 2}CO{sub 3}-graphene oxide composites were synthesized. • The nanocomposites exhibited enhanced photocatalytic activity. - Abstract: Self-assembly of (BiO){sub 2}CO{sub 3} nanoflakes on graphene (Ge) and graphene oxide (GO) nanosheets, as an effective strategy to improve the photocatalytic performance of two-dimensional (2D) nanostructured materials, were realized by a one-pot efficient capture of atmospheric CO{sub 2} at room temperature. The as-synthesized samples were characterized by XRD, SEM, TEM, XPS, UV–vis DRS, Time-resolved ns-level PL and BET-BJH measurement. The photocatalytic activity of the obtained samples was evaluated by the removal of NO at the indoor air level under simulated solar-light irradiation. Compared with pure (BiO){sub 2}CO{sub 3}, (BiO){sub 2}CO{sub 3}/Ge and (BiO){sub 2}CO{sub 3}/GO nanocomposites exhibited enhanced photocatalytic activity due to their large surface areas and pore volume, and efficient charge separation and transfer. The present work could provide a simple method to construct 2D nanocomposites by efficient utilization of CO{sub 2} in green synthetic strategy.

  4. The future role of reforestation in reducing buildup of atmospheric CO2

    International Nuclear Information System (INIS)

    Marland, G.

    1993-01-01

    Among the options posed for mitigating the buildup of atmospheric CO 2 is planting new forest areas to sequester carbon from the atmosphere. Among the questions of interest in modeling the global carbon cycle is the extent to which reforestation is likely to succeed in providing physical removal of CO 2 from the atmosphere. There are many strategies for using forest land to mitigate the atmospheric buildup of CO 2 : decreasing the rate at which forests are cleared for other land uses, increasing the density of carbon storage in existing forests, improving the rate and efficiency at which forest products are used in the place of other energy intensive products, substitution of renewable wood fuels for fossil fuels, improved management of forests and agroforestry, and increasing the amount of land in standing forest. Because increasing the area of forests has social, political, and economic limitations; in addition to physical limitations; it is hard to envision a large increase in forest area except where there are associated economic benefits. The authors speculation is that, over the next several decades, the forest strategies most likely to be pursued for the express purpose of CO 2 mitigation are those which provide more or more-efficient substitution of forest products for energy or energy-intensive resources and that the physical accumulation of additional carbon in forests will be of lesser importance

  5. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO2 emissions

    Directory of Open Access Journals (Sweden)

    S. Feng

    2016-07-01

    Full Text Available Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2 emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA megacity area. The Weather Research and Forecasting (WRF-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as  ∼  1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010. Our results show no significant difference between moderate-resolution (4 km and high-resolution (1.3 km simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution and Hestia-LA (1.3 km resolution fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of

  6. Scaling laws for perturbations in the ocean–atmosphere system following large CO2 emissions

    OpenAIRE

    Towles, N.; Olson, P.; Gnanadesikan, A.

    2015-01-01

    Scaling relationships are derived for the perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the carbon cycle model LOSCAR (Zeebe et al., 2009; Zeebe, 2012b) we calculate perturbations to atmosphere temperature and total carbon, ocean temperature, total ocean carbon, pH, and alkalinity, marine sediment carbon, plus carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The...

  7. Coastal upwelling fluxes of O2, N2O, and CO2 assessed from continuous atmospheric observations at Trinidad, California

    Directory of Open Access Journals (Sweden)

    T. J. Lueker

    2004-01-01

    Full Text Available Continuous atmospheric records of O2/N2, CO2 and N2O obtained at Trinidad, California document the effects of air-sea exchange during coastal upwelling and plankton bloom events. The atmospheric records provide continuous observations of air-sea fluxes related to synoptic scale upwelling events over several upwelling seasons. Combined with satellite, buoy and local meteorology data, calculated anomalies in O2/N2 and N2O were utilized in a simple atmospheric transport model to compute air-sea fluxes during coastal upwelling. CO2 fluxes were linked to the oceanic component of the O2 fluxes through local hydrographic data and estimated as a function of upwelling intensity (surface ocean temperature and wind speed. Regional air-sea fluxes of O2/N2, N2O, and CO2 during coastal upwelling were estimated with the aid of satellite wind and SST data. Upwelling CO2 fluxes were found to represent ~10% of export production along the northwest coast of North America. Synoptic scale upwelling events impact the net exchange of atmospheric CO2 along the coastal margin, and will vary in response to the frequency and duration of alongshore winds that are subject to climate change.

  8. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumyeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates the increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates and enzymes activity) rather than total microbial biomass

  9. XPS study on the surface reaction of uranium metal in H2 and H2-CO atmospheres

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1996-04-01

    The surface reactions of uranium metal in H 2 and H 2 -CO atmospheres and the effects of temperature and CO on the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between commercial H 2 and uranium metal at 25 degree C leads mainly to the further oxidation of surface layer of metal due to traces of water vapour. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing the exposure of H 2 . Investigation indicates CO inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmospheres. (13 refs., 10 figs.)

  10. Mineral nutrition and plant responses to elevated levels of atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, A.

    1996-08-01

    The atmospheric concentration of CO{sub 2}, a radiatively-active ({open_quotes}green-house{close_quotes}) gas, is increasing. This increase is considered a post-industrial phenomenon attributable to increasing rates of fossil fuel combustion and changing land use practices, particularly deforestation. Climate changes resulting from such elevated atmospheric CO{sub 2} levels, in addition to the direct effects of increased CO{sub 2}, are expected to modify the productivity of forests and alter species distributions. Elevated levels of CO{sub 2} have been shown, in some cases, to lead to enhanced growth rates in plants, particularly those with C{sub 3} metabolism - indicating that plant growth is CO{sub 2}-limited in these situations. Since the major process underlying growth is CO{sub 2} assimilation via photosynthesis in leaves, plant growth represents a potential for sequestering atmospheric carbon into biomass, but this potential could be hampered by plant carbon sink size. Carbon sinks are utilization sites for assimilated carbon, enabling carbon assimilation to proceed without potential inhibition from the accumulation of assimilate (photosynthate). Plant growth provides new sinks for assimilated carbon which permits greater uptake of atmospheric carbon dioxide. However, sinks are, on the whole, reduced in size by stress events due to the adverse effects of stress on photosynthetic rates and therefore growth. This document reviews some of the literature on plant responses to increasing levels of atmospheric carbon dioxide and to inadequate nutrient supply rates, and with this background, the potential for nutrient-limited plants to respond to increasing carbon dioxide is addressed. Conclusions from the literature review are then tested experimentally by means of a case study exploring carbon-nitrogen interactions in seedlings of loblolly pine.

  11. Atmospheric stability and atmospheric circulation in Athens, Greece

    International Nuclear Information System (INIS)

    Synodinou, B.M.; Petrakis, M.; Kassomenos, P.; Lykoudis, S.

    1996-01-01

    In the evaluation and study of atmospheric pollution reference is always made to the stability criteria. These criteria, usually represented as functions of different meteorological data such as wind speed and direction, temperature, solar radiation, etc., play a very important role in the investigation of different parameters that affect the build up of pollution episodes mainly in urban areas. In this paper an attempt is made to evaluate the atmospheric stability criteria based on measurements obtained from two locations in and nearby Athens. The atmospheric stability is then examined along with the other meteorological parameters

  12. Investigating CO2 Reservoirs at Gale Crater and Evidence for a Dense Early Atmosphere

    Science.gov (United States)

    Niles, P. B.; Archer, P. D.; Heil, E.; Eigenbrode, J.; McAdam, A.; Sutter, B.; Franz, H.; Navarro-Gonzalez, R.; Ming, D.; Mahaffy, P. R.; hide

    2015-01-01

    One of the most compelling features of the Gale landing site is its age. Based on crater counts, the formation of Gale crater is dated to be near the beginning of the Hesperian near the pivotal Hesperian/Noachian transition. This is a time period on Mars that is linked to increased fluvial activity through valley network formation and also marks a transition from higher erosion rates/clay mineral formation to lower erosion rates with mineralogies dominated by sulfate minerals. Results from the Curiosity mission have shown extensive evidence for fluvial activity within the crater suggesting that sediments on the floor of the crater and even sediments making up Mt. Sharp itself were the result of longstanding activity of liquid water. Warm/wet conditions on early Mars are likely due to a thicker atmosphere and increased abundance of greenhouse gases including the main component of the atmosphere, CO2. Carbon dioxide is minor component of the Earth's atmosphere yet plays a major role in surface water chemistry, weathering, and formation of secondary minerals. An ancient martian atmosphere was likely dominated by CO2 and any waters in equilibrium with this atmosphere would have different chemical characteristics. Studies have noted that high partial pressures of CO2 would result in increased carbonic acid formation and lowering of the pH so that carbonate minerals are not stable. However, if there were a dense CO2 atmosphere present at the Hesperian/Noachian transition, it would have to be stored in a carbon reservoir on the surface or lost to space. The Mt. Sharp sediments are potentially one of the best places on Mars to investigate these CO2 reservoirs as they are proposed to have formed in the early Hesperian, from an alkaline lake, and record the transition to an aeolian dominated regime near the top of the sequence. The total amount of CO2 in the Gale crater soils and sediments is significant but lower than expected if a thick atmosphere was present at the

  13. RISING ATMOSPHERIC CO2 AND CARBON SEQUESTRATION IN FORESTS

    Science.gov (United States)

    Rising CO2 concentrations in the Earth's atmosphere could alter Earth's climate system, but it is thought that higher concentrations may improve plant growth by way of the fertilization effect. Forests, an important part of the Earth's carbon cycle, are postulated to sequester a...

  14. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    Science.gov (United States)

    King, A.W.; Andres, R.J.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, W.A.; McGuire, A. David; Vargas, Rodrigo I.; Wei, Y.; West, Tristram O.; Woodall, Christopher W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr−1 and assuming the estimate of −472 Tg C yr−1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was

  15. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    International Nuclear Information System (INIS)

    Raupach, M.R.; Gloor, M.; Sarmiento, J.L.; Gasser, T.

    2014-01-01

    Through 1959-2012, an airborne fraction (AF) of 0.44 of total anthropogenic CO 2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO 2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO 2 sink rate (k S ), the combined land-ocean CO 2 sink flux per unit excess atmospheric CO 2 above pre industrial levels. Here we show from observations that k S declined over 1959-2012 by a factor of about 1/3, implying that CO 2 sinks increased more slowly than excess CO 2 . Using a carbon-climate model, we attribute the decline in k S to four mechanisms: slower-than-exponential CO 2 emissions growth (35% of the trend), volcanic eruptions (25 %), sink responses to climate change (20 %), and nonlinear responses to increasing CO 2 , mainly oceanic (20 %). The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO 2 . Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in k S will occur under all plausible CO 2 emission scenarios, the rate of decline varies between scenarios in non intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause k S to decline more strongly with increasing mitigation, while intrinsic mechanisms cause k S to decline more strongly under high-emission, low-mitigation scenarios as the carbon-climate system is perturbed further from a near-linear regime. (authors)

  16. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2011-11-01

    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques has not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems, particularly by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to finer temporal climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63 ± 0.49 and 1.94 ± 0.41 Pg C yr−1, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62 ± 0.47, and 0.67 ± 0.34 Pg C yr−1 to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89 ± 0.18 Pg C yr−1 on average with a strong flux density found in the south-east of the continent.

  17. Rising atmospheric CO{sub 2} and crops: Research methodology and direct effects

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, H. [National Soil Dynamics Laboratory, Auburn, AL (United States); Acock, B. [Systems Research Laboratory, Beltsville, MD (United States)

    1993-12-31

    Carbon dioxide is the food of trees and grass. Our relentless pursuit of a better life has taken us down a traffic jammed road, past smoking factories and forests. This pursuit is forcing a rise in the atmospheric CO{sub 2} level, and no one know when and if flood stage will be reached. Some thinkers have suggested that this increase of CO{sub 2} in the atmosphere will cause warming. No matter whether this prediction is realized or not, more CO{sub 2} will directly affect plants. Data from controlled observations have usually, but not always, shown benefits. Our choices of scientific equipment for gathering CO{sub 2} response data are critical since we must see what is happening through the eye of the instrument. The signals derived from our sensors will ultimately determine the truth of our conclusions, conclusion which will profoundly influence our policy decisions. Experimental gear is selected on the basis of scale of interest and problem to be addressed. Our imaginations and our budgets interact to set bounds on our objectives and approaches. Techniques run the gamut from cellular microprobes through whole-plant controlled environment chambers to field-scale exposure systems. Trade-offs exist among the various CO{sub 2} exposure techniques, and many factors impinge on the choice of a method. All exposure chambers are derivatives of three primary types--batch, plug flow, and continuous stirred tank reactor. Systems for the generation of controlled test atmospheres of CO{sub 2} vary in two basic ways--size and degree of control. Among the newest is free-air CO{sub 2} enrichment which allows tens of square meters of cropland to be studied.

  18. Experimental and Numerical Modelling of CO2 Atmospheric Dispersion in Hazardous Gas Emission Sites.

    Science.gov (United States)

    Gasparini, A.; sainz Gracia, A. S.; Grandia, F.; Bruno, J.

    2015-12-01

    Under stable atmospheric conditions and/or in presence of topographic depressions, CO2 concentrations can reach high values resulting in lethal effect to living organisms. The distribution of denser than air gases released from the underground is governed by gravity, turbulence and dispersion. Once emitted, the gas distribution is initially driven by buoyancy and a gas cloud accumulates on the ground (gravitational phase); with time the density gradient becomes less important due to dispersion or mixing and gas distribution is mainly governed by wind and atmospheric turbulence (passive dispersion phase). Natural analogues provide evidences of the impact of CO2 leakage. Dangerous CO2 concentration in atmosphere related to underground emission have been occasionally reported although the conditions favouring the persistence of such a concentration are barely studied.In this work, the dynamics of CO2 in the atmosphere after ground emission is assessed to quantify their potential risk. Two approaches have been followed: (1) direct measurement of air concentration in a natural emission site, where formation of a "CO2 lake" is common and (2) numerical atmospheric modelling. Two sites with different morphology were studied: (a) the Cañada Real site, a flat terrain in the Volcanic Field of Campo de Calatrava (Spain); (b) the Solforata di Pomezia site, a rough terrain in the Alban Hills Volcanic Region (Italy). The comparison between field data and model calculations reveal that numerical dispersion models are capable of predicting the formation of CO2 accumulation over the ground as a consequence of underground gas emission. Therefore, atmospheric modelling could be included as a valuable methodology in the risk assessment of leakage in natural degassing systems and in CCS projects. Conclusions from this work provide clues on whether leakage may be a real risk for humans and under which conditions this risk needs to be included in the risk assessment.

  19. Investigation of the influence of atmospheric stability and turbulence on land-atmosphere exchange

    Science.gov (United States)

    Osibanjo, O.; Holmes, H.

    2015-12-01

    Surface energy fluxes are exchanged between the surface of the earth and the atmosphere and impact weather, climate, and air quality. The radiation from the sun triggers the surface-atmosphere interaction during the day as heat is transmitted to the surface and the surface heats the air directly above generating wind (i.e., thermal turbulence) that transports heat, moisture, and momentum in the atmospheric boundary layer (ABL). This process is impacted by greenhouse gasses (i.e., water vapor, carbon dioxide and other trace gases) that absorb heat emitted by the earth's surface. The concentrations of atmospheric greenhouse gasses are increasing leading to changes in ABL dynamics as a result of the changing surface energy balance. The ABL processes are important to characterize because they are difficult to parameterize in global and regional scale atmospheric models. Empirical data can be collected using eddy covariance micrometeorological methods to measure turbulent fluxes (e.g., sensible heat, moisture, and CO2) and quantify the exchange between the surface and the atmosphere. The objective of this work is to calculate surface fluxes using observational data collected during one week in September 2014 from a monitoring site in Echo, Oregon. The site is located in the Columbia Basin with rolling terrain, irrigated farmland, and over 100 wind turbines. The 10m tower was placed in a small valley depression to isolate nighttime cold air pools. This work will present observations of momentum, sensible heat, moisture, and carbon dioxide fluxes from data collected at a sampling frequency of 10Hz at four heights. Atmospheric stability is determined using Monin-Obukov length and flux Richardson number, and the impact of stability on surface-atmosphere exchange is investigated. This work will provide a better understanding of surface fluxes and mixing, particularly during stable ABL periods, and the results can be used to compare with numerical models.

  20. ROOT-GROWTH AND FUNCTIONING UNDER ATMOSPHERIC CO2 ENRICHMENT

    NARCIS (Netherlands)

    STULEN, [No Value; DENHERTOG, J

    This paper examines the extent to which atmospheric CO2 enrichment may influence growth of plant roots and function in terms of uptake of water and nutrients, and carbon allocation towards symbionts. It is concluded that changes in dry matter allocation greatly depend on the experimental conditions

  1. Mars atmosphere studies with the OMEGA/Mars Express experiment: I. Overview and detection of lfuorescent emission by CO2

    Science.gov (United States)

    Drossart, P.; Combes, M.; Encrenaz, T.; Melchiorri, R.; Fouchet, T.; Forget, F.; Moroz, V.; Ignatiev, N.; Bibring, J.-P.; Langevin, Y.; OMEGA Team

    Observations of Mars by the OMEGA/Mars Express experiment provide extended maps of the martian disk at all latitudes, and with various conditions of illumination, between 0.4 to 5 micron. The atmospheric investigations so far conducted by our team are focussed on the infrared part of the spectrum (1-5 micron), and include: the development of a correction algorithm for atmospheric gaseous absorption, to give access to fine mineralogic studies, largely decorrelated from atmospheric effects the study of dust opacity effects in the near infrared, with the aim to correct also the rough spectra from dust opacity perturbation the study of minor constituents like CO, to search for regional or global variations the study of CO2 emission at 4.3 micron related to fluorescent emission This last effect is prominently detected in limb observations obtained in 3-axis stabilized mode of Mars Express, with high altitude emission in the CO2 fundamental at 4.3 micron, usually seen in absorption in nadir observations. These emissions are related to non-LTE atmospheric layers, well above the solid surface in the mesosphere. Such emissions are also present in Earth and Venus limb observations. They are present also in nadir observations, but are reinforced in limb viewing geometry due to the tangential view. A numerical model of these emission will be presented.

  2. South African integrated carbon observation network (SA-ICON): CO2 measurements on land, atmosphere and ocean

    CSIR Research Space (South Africa)

    Feig, Gregor T

    2016-10-01

    Full Text Available It has become essential to accurately estimate the emission and uptake of atmospheric carbon dioxide (CO(sub2)) around the globe. Atmospheric CO(sub2) plays a central role in the Earth’s atmospheric, ocean and terrestrial systems and it has been...

  3. Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model REMO

    International Nuclear Information System (INIS)

    Chevillard, A.; Ciais, P.; Lafont, S.

    2002-01-01

    The spatial distribution and the temporal variability of atmospheric CO 2 over Europe and western Siberia are investigated using the regional atmospheric model, REMO. The model, of typical horizontal resolution 50 km, is part of a nested modelling framework that has been established as a concerted action during the EUROSIBERIAN CARBONFLUX project. In REMO, the transport of CO 2 is simulated together with climate variables, which offers the possibility of calculating at each time step the land atmosphere CO 2 fluxes as driven by the modelled meteorology. The uptake of CO 2 by photosynthesis is calculated using a light use efficiency formulation, where the absorbed photosynthetically active solar radiation is inferred from satellite measurements. The release of CO 2 from plant and soil respiration is driven by the simulated climate and assumed to be in equilibrium with photosynthesis over the course of one year. Fossil CO 2 emissions and air-sea fluxes within the model domain are prescribed, whereas the influence of sources outside the model domain is computed from as a boundary condition CO 2 fields determined a global transport model. The modelling results are compared against pointwise eddy covariance fluxes, and against atmospheric CO 2 records. We show that a necessary condition to simulate realistically the variability of atmospheric CO 2 over continental Europe is to account for the diurnal cycle of biospheric exchange. Overall, for the study period of July 1998, REMO realistically simulates the short-term variability of fluxes and of atmospheric mixing ratios. However, the mean CO 2 gradients from western Europe to western Siberia are not correctly reproduced. This latter deficiency points out the key role of boundary conditions in a limited-area model, as well as the need for using more realistic geographic mean patterns of biospheric carbon fluxes

  4. The role of vegetation dynamics in the control of atmospheric CO{sub 2} content

    Energy Technology Data Exchange (ETDEWEB)

    Sitch, Stephen

    2000-04-01

    This thesis contains a description of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM) and its application to infer the role of vegetation dynamics on atmospheric CO{sub 2} content at different time-scales. The model combines vegetation dynamics and biogeochemistry in a modular framework. Individual modules describe ecosystems processes, including vegetation resource competition and production, tissue turnover, growth, fire and mortality, soil and litter biogeochemistry, including the effects of CO{sub 2} on these processes. The model simulates realistic post-disturbance succession in different environments. Seasonal exchange of H{sub 2}O and CO{sub 2} between the terrestrial biosphere and the atmosphere is modelled in reasonable agreement with observation. Global estimates of carbon stocks in soil, litter and vegetation are within their acceptable ranges and the model captures the present-day patterns in vegetation. Fire return intervals are simulated correctly in most regions. Results emphasise the important role of the terrestrial biosphere in both the seasonal cycle and in the inter-annual variability in the growth rate of atmospheric CO{sub 2}. LPJ successfully reproduced both the amplitude and phase of the seasonal cycle of atmospheric CO{sub 2} content as measured at a global network of monitoring stations. The model predicted a small net terrestrial biosphere uptake of CO{sub 2} during the 1980s with a strong CO{sub 2} fertilisation effect, which enhances plant production, reduced by the effects of climate and land use change. Historical land use change and CO{sub 2} fertilisation have been the dominant, albeit opposing factors governing the response of the terrestrial biosphere with respect to carbon storage during the 20th century. LPJ is run using one future climate and atmospheric CO{sub 2} scenario until 2200. Enhanced production due to the CO{sub 2} fertilisation effect eventually reaches an asymptote, and consequently the ability of

  5. Characteristics of coupled atmosphere-ocean CO2 sensitivity experiments with different ocean formulations

    International Nuclear Information System (INIS)

    Washington, W.M.; Meehl, G.A.

    1990-01-01

    The Community Climate Model at the National Center for Atmospheric Research has been coupled to a simple mixed-layer ocean model and to a coarse-grid ocean general circulation model (OGCM). This paper compares the responses of simulated climate to increases of atmospheric carbon dioxide (CO 2 ) in these two coupled models. Three types of simulations were run: (1) control runs with both ocean models, with CO 2 held constant at present-day concentrations, (2) instantaneous doubling of atmospheric CO 2 (from 330 to 660 ppm) with both ocean models, and (3) a gradually increasing (transient) CO 2 concentration starting at 330 ppm and increasing linearly at 1% per year, with the OGCM. The mixed-layer and OGCM cases exhibit increases of 3.5 C and 1.6 C, respectively, in globally averaged surface air temperature for the instantaneous doubling cases. The transient-forcing case warms 0.7 C by the end of 30 years. The mixed-layer ocean yields warmer-than-observed tropical temperatures and colder-than-observed temperatures in the higher latitudes. The coarse-grid OGCM simulates lower-than-observed sea surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes. Sensitivity in the OGCM after 30 years is much lower than in simulations with the same atmosphere coupled to a 50-m slab-ocean mixed layer. The OGCM simulates a weaker thermohaline circulation with doubled CO 2 as the high-latitude ocean-surface layer warms and freshens and the westerly wind stress decreases. Convective overturning in the OGCM decreases substantially with CO 2 warming

  6. Characteristics of coupled atmosphere-ocean CO2 sensitivity experiments with different ocean formulations

    International Nuclear Information System (INIS)

    Washington, W.M.; Meehl, G.A.

    1991-01-01

    The Community Climate Model at the National Center for Atmospheric Research has been coupled to a simple mixed-layer ocean model and to a coarse-grid ocean general circulation model (OGCM). This paper compares the responses of simulated climate to increases of atmospheric carbon dioxide (CO 2 ) in these two coupled models. Three types of simulations were run: (1) control runs with both ocean models, with CO 2 held constant at present-day concentrations, (2) instantaneous doubling of atmospheric CO 2 (from 330 to 660 ppm) with both ocean models, and (3) a gradually increasing (transient) CO 2 concentration starting at 330 ppm and increasing linearly at 1% per year, with the OGCM. The mixed-layer and OGCM cases exhibit increases of 3.5 C and 1.6 C, respectively, in globally averaged surface air temperature for the instantaneous doubling cases. The transient-forcing case warms 0.7 C by the end of 30 years. The mixed-layer ocean yields warmer-than-observed tropical temperatures and colder-than-observed temperatures in the higher latitudes. The coarse-grid OGCM simulates lower-than-observed sea surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes. Sensitivity in the OGCM after 30 years is much lower than in simulations with the same atmosphere coupled to a 50-m slab-ocean mixed layer. The OGCM simulates a weaker thermohaline circulation with doubled CO 2 as the high-latitude ocean-surface layer warms and freshens and the westerly wind stress decreases. Convective overturning in the OGCM decreases substantially with CO 2 warming. 46 refs.; 20 figs.; 1 tab

  7. Concentrations and (delta)13C values of atmospheric CO2 from oceanic atmosphere through time: polluted and non-polluted areas

    International Nuclear Information System (INIS)

    Longinelli, Antonio; Selmo, Enrico; Lenaz, Renzo; Ori, Carlo

    2005-01-01

    CO 2 is one of the primary agents of global climate changes. The increase of atmospheric CO 2 concentration is essentially related to human-induced emissions and, particularly, to the burning of fossil fuel whose (delta) 13 C values are quite negative. Consequently, an increase of the CO 2 concentration in the atmosphere should be paralleled by a decrease of its (delta) 13 C. Continuous and/or spot measurements of CO 2 concentrations were repeatedly carried out during the last decade and in the same period of the year along hemispheric courses from Italy to Antarctica on a vessel of the Italian National Research Program in Antarctica. During these expeditions, discrete air samples were also collected in 4-l Pyrex flasks in order to carry out precise carbon isotope analyses on atmospheric CO 2 from different areas, including theoretically 'clean' open ocean areas, with the main purpose of comparing these open ocean results with the results obtained by the National Oceanic and Atmospheric Administration/World Meteorological Organization (NOAA/WMO) at land-based stations. According to the data obtained for these two variables, a relatively large atmospheric pollution is apparent in the Mediterranean area where the CO 2 concentration has reached the value of 384 ppmv while quite negative (delta) 13 C values have been measured only occasionally. In this area, southerly winds probably help to reduce the effect of atmospheric pollution even though, despite a large variability of CO 2 concentrations, these values are consistently higher than those measured in open ocean areas by a few ppmv to about 10 ppmv. A marked, though non-continuous, pollution is apparent in the area of the Bab-el-Mandeb strait where (delta) 13 C values considerably more negative than in the Central and Southern Red Sea were measured. The concentration of atmospheric CO 2 over the Central Indian Ocean increased from about 361 ppmv at the end of 1996 to about 373 ppmv at the end of 2003 (mean growth

  8. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  9. Silicon microring refractometric sensor for atmospheric CO(2) gas monitoring.

    Science.gov (United States)

    Mi, Guangcan; Horvath, Cameron; Aktary, Mirwais; Van, Vien

    2016-01-25

    We report a silicon photonic refractometric CO(2) gas sensor operating at room temperature and capable of detecting CO(2) gas at atmospheric concentrations. The sensor uses a novel functional material layer based on a guanidine polymer derivative, which is shown to exhibit reversible refractive index change upon absorption and release of CO(2) gas molecules, and does not require the presence of humidity to operate. By functionalizing a silicon microring resonator with a thin layer of the polymer, we could detect CO(2) gas concentrations in the 0-500ppm range with a sensitivity of 6 × 10(-9) RIU/ppm and a detection limit of 20ppm. The microring transducer provides a potential integrated solution in the development of low-cost and compact CO(2) sensors that can be deployed as part of a sensor network for accurate environmental monitoring of greenhouse gases.

  10. Heat stability evaluations of Co/SiO2 multilayers

    International Nuclear Information System (INIS)

    Ishino, Masahiko; Koike, Masato; Kanehira, Mika; Satou, Futami; Terauchi, Masami; Sano, Kazuo

    2008-01-01

    The heat stability of Co/SiO 2 multilayers was evaluated. Co/SiO 2 multilayer samples were deposited on Si substrate by means of an ion beam sputtering method, and annealed at temperatures from 100degC to 600degC in a vacuum furnace. For the structural and optical evaluations, small angle x-ray diffraction (XRD) measurements, soft x-ray reflectivity measurements, and transmission electron microscopy (TEM) observations were carried out. As the results, the Co/SiO 2 multilayer samples annealed up to 400degC maintained the initial multilayer structures, and kept almost the same soft x-ray reflectivities as that of the as-deposited Co/SiO 2 multilayer sample. A deterioration of the multilayer structure caused by the growth of Co grains was found on the Co/SiO 2 multilayer samples annealed over 500degC, and the soft x-ray reflectivity dropped in accordance with the deterioration of the multilayer structure. (author)

  11. The High Accuracy Measurement of CO2 Mixing Ratio Profiles Using Ground Based 1.6 μm CO2-DIAL with Temperature Measurement Techniques in the Lower-Atmosphere

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    We have developed a ground based direct detection three-wavelength 1.6 μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 concentration and temperature profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. Conventionally, we have obtained the vertical profile of absorption cross sections using the atmospheric temperature profile by the objective analysis and the atmospheric pressure profile calculated by the pressure height equation. Comparison of atmospheric pressure profiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan is consistent within 0.2 % below 3 km altitude. But the temperature dependency of the CO2 density is 0.25 %/°C near the surface. Moreover, the CO2 concentration is often evaluated by the mixing ratio. Because the air density is related by the ideal gas law, the mixing ratio is also related by the atmospheric temperature. Therefore, the temperature affects not only accuracy of CO2 concentration but the CO2 mixing ratio. In this paper, some experimental results of the simultaneous measurement of atmospheric temperature profiles and CO2 mixing ratio profiles are reported from 0.4 to 2.5 km altitude using the three-wavelength 1.6 μm DIAL system. Temperature profiles of CO2 DIAL measurement were sometimes different from those of objective analysis below 1.5 km altitude. These differences are considered to be due to regionality at the lidar site. The temperature difference of 5.0 °C corresponds to a CO2 mixing ratio difference of 8.0 ppm at 500 m altitude. This cannot be ignored in estimates of regional sources and sinks of CO2. This three-wavelength CO2 DIAL technique can estimate accurately temporal behavior of CO2 mixing ratio profiles in the lower atmosphere

  12. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    Directory of Open Access Journals (Sweden)

    Noelia Álvarez-Gutiérrez

    2016-03-01

    Full Text Available The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2 than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation, in post-combustion processes (flue gas, CO2-N2 and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory have been evaluated under static conditions (adsorption isotherms as potential adsorbents for CO2 separation at sub-atmospheric pressures, i.e., in post-combustion processes or from biogas and bio-hydrogen streams. CO2, H2, N2, and CH4 adsorption isotherms at 25 °C and up to 100 kPa were obtained using a volumetric equipment and were correlated by applying the Sips model. Adsorption equilibrium was then predicted for multicomponent gas mixtures by extending the multicomponent Sips model and the Ideal Adsorbed Solution Theory (IAST in conjunction with the Sips model. The CO2 uptakes of the resin-derived carbons from CO2-CH4, CO2-H2, and CO2-N2 at atmospheric pressure were greater than those of the reference commercial carbon (Calgon BPL. The performance of the resin-derived carbons in terms of equilibrium of adsorption seems therefore relevant to CO2 separation in post-combustion (flue gas, CO2-N2 and in hydrogen fermentation (CO2-H2, CO2-CH4.

  13. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    Directory of Open Access Journals (Sweden)

    M. R. Raupach

    2014-07-01

    Full Text Available Through 1959–2012, an airborne fraction (AF of 0.44 of total anthropogenic CO2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO2 sink rate (kS, the combined land–ocean CO2 sink flux per unit excess atmospheric CO2 above preindustrial levels. Here we show from observations that kS declined over 1959–2012 by a factor of about 1 / 3, implying that CO2 sinks increased more slowly than excess CO2. Using a carbon–climate model, we attribute the decline in kS to four mechanisms: slower-than-exponential CO2 emissions growth (~ 35% of the trend, volcanic eruptions (~ 25%, sink responses to climate change (~ 20%, and nonlinear responses to increasing CO2, mainly oceanic (~ 20%. The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO2. Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in kS will occur under all plausible CO2 emission scenarios, the rate of decline varies between scenarios in non-intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause kS to decline more strongly with increasing mitigation, while intrinsic mechanisms cause kS to decline more strongly under high-emission, low-mitigation scenarios as the carbon–climate system is perturbed further from a near-linear regime.

  14. Reduced tillage and cover crops as a strategy for mitigating atmospheric CO2 increase through soil organic carbon sequestration in dry Mediterranean agroecosystems.

    Science.gov (United States)

    Almagro, María; Garcia-Franco, Noelia; de Vente, Joris; Boix-Fayos, Carolina; Díaz-Pereira, Elvira; Martínez-Mena, María

    2016-04-01

    The implementation of sustainable land management (SLM) practices in semiarid Mediterranean agroecosystems can be beneficial to maintain or enhance levels of soil organic carbon and mitigate current atmospheric CO2 increase. In this study, we assess the effects of different tillage treatments (conventional tillage (CT), reduced tillage (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil CO2 efflux, aggregation and organic carbon stabilization in two semiarid organic rainfed almond (Prunus dulcis Mill., var. Ferragnes) orchards located in SE Spain Soil CO2 efflux, temperature and moisture were measured monthly between May 2012 and December 2014 (site 1), and between February 2013 and December 2014 (site 2). In site 1, soil CO2 efflux rates were also measured immediately following winter and spring tillage operations. Aboveground biomass inputs were estimated at the end of the growing season in each tillage treatment. Soil samples (0-15 cm) were collected in the rows between the trees (n=4) in October 2012. Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. Soil CO2efflux rates in all tillage treatments varied significantly during the year, following changes during the autumn, winter and early spring, or changes in soil moisture during late spring and summer. Repeated measures analyses of variance revealed that there were no significant differences in soil CO2 efflux between tillage treatments throughout the study period at both sites. Average annual values of C lost by soil respiration were slightly but not significantly higher under RT and RTG treatments (492 g C-CO2 m-2 yr-1) than under NT treatment (405 g C-CO2 m-2 yr-1) in site 1, while slightly but not significantly lower values were observed under RT and RTG treatments (468 and 439 g C-CO2 m-2 yr-1

  15. Interannual variability in the atmospheric CO2 rectification over a boreal forest region

    Science.gov (United States)

    Chen, Baozhang; Chen, Jing M.; Worthy, Douglas E. J.

    2005-08-01

    Ecosystem CO2 exchange with the atmosphere and the planetary boundary layer (PBL) dynamics are correlated diurnally and seasonally. The strength of this kind of covariation is quantified as the rectifier effect, and it affects the vertical gradient of CO2 and thus the global CO2 distribution pattern. An 11-year (1990-1996, 1999-2002), continuous CO2 record from Fraserdale, Ontario (49°52'29.9″N, 81°34'12.3″W), along with a coupled vertical diffusion scheme (VDS) and ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS), are used to investigate the interannual variability of the rectifier effect over a boreal forest region. The coupled model performed well (r2 = 0.70 and 0.87, at 40 m at hourly and daily time steps, respectively) in simulating CO2 vertical diffusion processes. The simulated annual atmospheric rectifier effect varies from 3.99 to 5.52 ppm, while the diurnal rectifying effect accounted for about a quarter of the annual total (22.8˜28.9%).The atmospheric rectification of CO2 is not simply influenced by terrestrial source and sink strengths, but by seasonal and diurnal variations in the land CO2 flux and their interaction with PBL dynamics. Air temperature and moisture are found to be the dominant climatic factors controlling the rectifier effect. The annual rectifier effect is highly correlated with annual mean temperature (r2 = 0.84), while annual mean air relative humidity can explain 51% of the interannual variation in rectification. Seasonal rectifier effect is also found to be more sensitive to climate variability than diurnal rectifier effect.

  16. Coal devolatilization and char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres

    DEFF Research Database (Denmark)

    Jensen, Anker Degn; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    have been carried out in an electrically heated entrained flow reactor that is designed to simulate the conditions in a suspension fired boiler. Coal devolatilized in N2 and CO2 atmospheres provided similar results regarding char morphology, char N2-BET surface area and volatile yield. This strongly......The aim of the present investigation is to examine differences between O2/N2 and O2/CO2 atmospheres during devolatilization and char conversion of a bituminous coal at conditions covering temperatures between 1173 K and 1673 K and inlet oxygen concentrations between 5 and 28 vol.%. The experiments...

  17. Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser.

    Science.gov (United States)

    Tao, Lei; Sun, Kang; Khan, M Amir; Miller, David J; Zondlo, Mark A

    2012-12-17

    A compact and portable open-path sensor for simultaneous detection of atmospheric N(2)O and CO has been developed with a 4.5 μm quantum cascade laser (QCL). An in-line acetylene (C(2)H(2)) gas reference cell allows for continuous monitoring of the sensor drift and calibration in rapidly changing field environments and thereby allows for open-path detection at high precision and stability. Wavelength modulation spectroscopy (WMS) is used to detect simultaneously both the second and fourth harmonic absorption spectra with an optimized dual modulation amplitude scheme. Multi-harmonic spectra containing atmospheric N(2)O, CO, and the reference C(2)H(2) signals are fit in real-time (10 Hz) by combining a software-based lock-in amplifier with a computationally fast numerical model for WMS. The sensor consumes ~50 W of power and has a mass of ~15 kg. Precision of 0.15 ppbv N(2)O and 0.36 ppbv CO at 10 Hz under laboratory conditions was demonstrated. The sensor has been deployed for extended periods in the field. Simultaneous N(2)O and CO measurements distinguished between natural and fossil fuel combustion sources of N(2)O, an important greenhouse gas with poorly quantified emissions in space and time.

  18. Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column

    Science.gov (United States)

    Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.

    2013-01-01

    We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).

  19. Glacial-interglacial atmospheric CO2 change: a possible

    Directory of Open Access Journals (Sweden)

    L. C. Skinner

    2009-09-01

    Full Text Available So far, the exploration of possible mechanisms for glacial atmospheric CO2 drawdown and marine carbon sequestration has tended to focus on dynamic or kinetic processes (i.e. variable mixing-, equilibration- or export rates. Here an attempt is made to underline instead the possible importance of changes in the standing volumes of intra-oceanic carbon reservoirs (i.e. different water-masses in influencing the total marine carbon inventory. By way of illustration, a simple mechanism is proposed for enhancing the marine carbon inventory via an increase in the volume of relatively cold and carbon-enriched deep water, analogous to modern Lower Circumpolar Deep Water (LCDW, filling the ocean basins. A set of simple box-model experiments confirm the expectation that a deep sea dominated by an expanded LCDW-like watermass holds more CO2, without any pre-imposed changes in ocean overturning rate, biological export or ocean-atmosphere exchange. The magnitude of this "standing volume effect" (which operates by boosting the solubility- and biological pumps might be as large as the contributions that have previously been attributed to carbonate compensation, terrestrial biosphere reduction or ocean fertilisation for example. By providing a means of not only enhancing but also driving changes in the efficiency of the biological- and solubility pumps, this standing volume mechanism may help to reduce the amount of glacial-interglacial CO2 change that remains to be explained by other mechanisms that are difficult to assess in the geological archive, such as reduced mass transport or mixing rates in particular. This in turn could help narrow the search for forcing conditions capable of pushing the global carbon cycle between glacial and interglacial modes.

  20. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    Science.gov (United States)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  1. Power stabilized CO2 gas transport laser

    International Nuclear Information System (INIS)

    Foster, J.D.; Kirk, R.F.; Moreno, F.E.; Ahmed, S.A.

    1975-01-01

    The output power of a high power (1 kW or more) CO 2 gas transport laser is stabilized by flowing the gas mixture over copper plated baffles in the gas channel during operation of the laser. Several other metals may be used instead of copper, for example, nickel, manganese, palladium, platinum, silver and gold. The presence of copper in the laser gas circuit stabilizes output power by what is believed to be a compensation of the chemical changes in the gas due to the cracking action of the electrical discharge which has the effect of diminishing the capactiy of the carbon dioxide gas mixture to maintain the rated power output of the laser. (U.S.)

  2. Regional scale variations of atmospheric CO2 and CH4 from satellite observation

    International Nuclear Information System (INIS)

    Ru, F; Lei, L; Guan, X; Bu, R; Qi, J

    2014-01-01

    To identify the sources, sinks and changes of atmospheric CO 2 and CH 4 , this study investigates the spatio-temporal changes of atmospheric CO 2 and CH 4 concentration on the regional scale by the satellite observations. In this paper, choosing the land region of China as the study area, we investigate the spatio-temporal changes of atmospheric CO 2 and CH 4 concentrations using the data of the CO 2 dry air mixing ratio (XCO 2 ), and the CH 4 dry air mixing ratio (XCH 4 ), retrieved by the Greenhouse Gases Observing Satellite (GOSAT) from Jan. 2010 to Dec. 2012. The results show that (1) both XCO 2 and XCH 4 show higher concentrations in southeastern regions than that in the northwestern, and tend to yearly increasing from 2010 to 2013; (2) XCO 2 shows obvious seasonal change with higher values in the spring than that in summer. The seasonal peak-to-peak amplitude is 8 ppm and the annual growth is about 2 ppm. XCH 4 , however, does not show a seasonal change; (3) With regard to different land-use backgrounds, XCO 2 shows larger concentrations over the areas of urban agglomeration than that over the grasslands and deserts, and XCH 4 shows lower concentrations over deserts than that over the Yangtze River Delta region and Sichuan Basin

  3. Return of the coral reef hypothesis: basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2.

    Science.gov (United States)

    Opdyke, B N; Walker, J C

    1992-08-01

    Differences in the rate of coral reef carbonate deposition from the Pleistocene to the Holocene may account for the Quaternary variation of atmospheric CO2. Volumes of carbonate associated with Holocene reefs require an average deposition rate of 2.0 x 10(13) mol/yr for the past 5 ka. In light of combined riverine, midocean ridge, and ground-water fluxes of calcium to the oceans of 2.3 x 10(13) mol/yr, the current flux of calcium carbonate to pelagic sediments must be far below the Pleistocene average of 1.2 x 10(13) mol/yr. We suggest that sea-level change shifts the locus of carbonate deposition from the deep sea to the shelves as the normal glacial-interglacial pattern of deposition for Quaternary global carbonates. To assess the impact of these changes on atmospheric CO2, a simple numerical simulation of the global carbon cycle was developed. Atmospheric CO2 as well as calcite saturation depth and sediment responses to these carbonate deposition changes are examined. Atmospheric CO2 changes close to those observed in the Vostok ice core, approximately 80 ppm CO2, for the Quaternary are observed as well as the approximate depth changes in percent carbonate of sediments measured in the Pacific Ocean over the same time interval.

  4. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO/sub 2/ during the past decades

    Energy Technology Data Exchange (ETDEWEB)

    Revelle, R; Suess, H E

    1957-01-01

    From a comparison of C/sup 14//C/sup 12/ and C/sup 13//C/sup 12/ ratios in wood and in marine material and from a slight decrease of the C/sup 14/ concentration in terrestrial plants over the past 50 years it can be concluded that the average lifetime of a CO/sub 2/ molecule in the atmosphere before it is dissolved into the sea is of the order of 10 years. This means that most of the CO/sub 2/ released by artificial fuel combustion since the beginning of the industrial revolution must have been absorbed by the oceans. The increase of atmospheric CO/sub 2/ from this cause is at present small but may become significant during future decades of industrial fuel combustion continues to rise exponentially. Present data on the total amount of CO/sub 2/ in the atmosphere, on the rates and mechanisms of exchange, and on possible fluctuations in terrestrial and marine organic carbon, are inadequate for accurate measurement of future changes in atmospheric CO/sub 2/. An opportunity exists during the international geophysical year to obtain much of the necessary information.

  5. High temperature stability of surfactant capped CoFe2O4 nanoparticles

    International Nuclear Information System (INIS)

    Ayyappan, S.; Panneerselvam, G.; Antony, M.P.; Philip, John

    2011-01-01

    Highlights: → Self-assembled molecular layers of surfactant on nanoparticles are often used to modify surface properties. → We demonstrate that a surfactant nanolayer on CoFe 2 O 4 nanoparticles can act as a strong reducing agent under high temperature vacuum annealing. → We propose a possible reduction mechanism of CoFe 2 O 4 nanoparticles under air and vacuum annealing. → Our results are important in the understanding of the stability of nanoparticles at high temperatures. - Abstract: We investigate the effect of adsorbed surfactant on the structural stability of CoFe 2 O 4 nanoparticles during vacuum thermal annealing. In-situ high temperature X-ray diffraction studies show a reduction of oleic acid coated CoFe 2 O 4 nanoparticles into α-Fe and CoO under annealing at 800 deg. C. On the contrary, the uncoated CoFe 2 O 4 nanoparticles remains stable, with its cubic phase intact, even at 1000 deg. C. Thermo-gravimetric analysis coupled mass spectra reveals that the evolved carbon from the surfactant aids the removal of oxygen atom from CoFe 2 O 4 lattice thereby reducing it to α-Fe and CoO phases. These results are important in tailoring stable CoFe 2 O 4 nanostructures for various applications.

  6. Developing a passive trap for diffusive atmospheric {sup 14}CO{sub 2} sampling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Jennifer C.; Xu, Xiaomei [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Fahrni, Simon M. [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Institute of Particle Physics, ETH, Zurich (Switzerland); Lupascu, Massimo [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Department of Geography, National University of Singapore (Singapore); Czimczik, Claudia I. [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States)

    2015-10-15

    {sup 14}C-CO{sub 2} measurement is an unique tool to quantify source-based emissions of CO{sub 2} for both the urban and natural environments. Acquiring a sample that temporally integrates the atmospheric {sup 14}C-CO{sub 2} signature that allows for precise {sup 14}C analysis is often necessary, but can require complex sampling devices, which can be difficult to deploy and maintain, especially for multiple locations. Here we describe our progress in developing a diffusive atmospheric CO{sub 2} molecular sieve trap, which requires no power to operate. We present results from various cleaning procedures, and rigorously tested for blank and memory effects. Traps were tested in the environment along-side conventional sampling flasks for accuracy. Results show that blank and memory effects can be minimized with thorough cleaning and by avoiding overheating, and that diffusively collected air samples agree well with traditionally canister-sampled air.

  7. Towards CO2 sequestration and applications of CO2 hydrates: the effects of tetrahydrofuran on the phase equilibria of CO2 hydrates

    International Nuclear Information System (INIS)

    Khalik, M.S.; Peters, C.J.

    2006-01-01

    The increasing quantity of carbon dioxide (CO 2 ) in the atmosphere has caused widespread global concerns. Capturing CO 2 from its sources and stored it in the form of gas hydrates and application of CO 2 hydrates are among the proposed methods to overcome this problem. In order to make hydrate-based process more attractive, the use of cyclic ethers as promoters is suggested to reduce the required hydrate formation pressure and enhancing the corresponding kinetic rate. In the present work, tetrahydrofuran (THF) is chosen as a hydrate promoter, participating in forming hydrates and produces mixed hydrate together with CO 2 . The pressure and temperature ranges of hydrate stability region are carefully determined through phase equilibrium measurement of the ternary CO 2 , tetrahydrofuran (THF) and water systems. From the experimental results, it is confirmed that the presence of THF in CO 2 + water systems will extend the hydrate formation region to higher temperature at a constant pressure. The extension of the hydrate stability region is depended on the overall concentration of the ternary system. Moreover, four-phase equilibrium of H-Lw-Lv-V is observed in the system, which may be due to a liquid phase split. In the region where the four-phase equilibrium exists, the ternary system loses its concentration dependency of the hydrate equilibrium conditions. (Author)

  8. Six commercially viable ways to remove CO2 from the atmosphere and/or reduce CO2 emissions

    NARCIS (Netherlands)

    Schuiling, O.; de Boer, P.L.

    2013-01-01

    Background The burning of fossil fuels is the main cause of rising CO2 levels of the atmosphere. This will probably result in climate change. Another consequence is ocean acidification. Although these consequences are not yet proven beyond doubt, the risk of doing nothing is too large. The simplest

  9. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    International Nuclear Information System (INIS)

    Ogle, Stephen M; Davis, Kenneth; Lauvaux, Thomas; Miles, Natasha L; Richardson, Scott; Schuh, Andrew; Cooley, Dan; Breidt, F Jay; West, Tristram O; Heath, Linda S; Smith, James E; McCarty, Jessica L; Gurney, Kevin R; Tans, Pieter; Denning, A Scott

    2015-01-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with managing lands for carbon sequestration and other activities, which often have large uncertainties. We report here on the challenges and results associated with a case study using atmospheric measurements of CO 2 concentrations and inverse modeling to verify nationally-reported biogenic CO 2 emissions. The biogenic CO 2 emissions inventory was compiled for the Mid-Continent region of United States based on methods and data used by the US government for reporting to the UNFCCC, along with additional sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an estimated flux of −408 ± 136 Tg CO 2 for the entire study region, which was not statistically different from the biogenic flux of −478 ± 146 Tg CO 2 that was estimated using the atmospheric CO 2 concentration data. At sub-regional scales, the spatial density of atmospheric observations did not appear sufficient to verify emissions in general. However, a difference between the inventory and inversion results was found in one isolated area of West-central Wisconsin. This part of the region is dominated by forestlands, suggesting that further investigation may be warranted into the forest C stock or harvested wood product data from this portion of the study area. The results suggest that observations of atmospheric CO 2 concentration data and inverse modeling could be used to verify biogenic emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC. (letter)

  10. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    Science.gov (United States)

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  11. RELATIONSHIP BETWEEN ATMOSPHERIC CO_2 AND CH_4 CONCENTRATIONS AT SYOWA STATION, ANTARCTICA

    OpenAIRE

    アオキ, シュウジ; ナカザワ, タカキヨ; ムラヤマ, ショウヘイ; シミズ, アキラ; ハヤシ, マサヒコ; イワイ, クニモト; Shuhji, AOKI; Takakiyo, NAKAZAWA; Shohei, MURAYAMA; Akira, SHIMIZU; Masahiko, HAYASHI; Kunimoto, IWAI

    1994-01-01

    Precise measurements of the atmospheric CO_2 and CH_4 concentrations have been continued at Syowa Station since 1984 and 1987,respectively. Measured concentrations show secular increase, together with seasonal cycle and irregular variations. Negative correlation is clearly seen between the secular trends of the CO_2 and CH_4 concentrations. The increase rates of CO_2 and CH_4 show oscillations with periods of 2.3 to 2.8 years. The phases of the average seasonal cycles of CO_2 and CH_4 coincid...

  12. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes.

    Science.gov (United States)

    Gottschalk, Julia; Skinner, Luke C; Lippold, Jörg; Vogel, Hendrik; Frank, Norbert; Jaccard, Samuel L; Waelbroeck, Claire

    2016-05-17

    Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean-atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air-sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and (14)C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes.

  13. Recent slowdown of atmospheric CO2 amplification due to vegetation-climate feedback over northern lands

    Science.gov (United States)

    Li, Z.; Xia, J.; Ahlström, A.; Rinke, A.; Koven, C.; Hayes, D. J.; Ji, D.; Zhang, G.; Krinner, G.; Chen, G.; Dong, J.; Liang, J.; Moore, J.; Jiang, L.; Yan, L.; Ciais, P.; Peng, S.; Wang, Y.; Xiao, X.; Shi, Z.; McGuire, A. D.; Luo, Y.

    2017-12-01

    The enhanced vegetation growth by climate warming plays a pivotal role in amplifying the seasonal cycle of atmospheric CO2 at northern high latitudes since 1960s1-3. It remains unclear that whether this mechanism is still robust since 1990s, because a paused vegetation growth increase4,5 and weakened temperature control on CO2 uptake6,7 have been detected during this period. Here, based on in-situ atmospheric CO2 concentration records above northern 50o N, we found a slowdown of the atmospheric CO2 amplification from the mid-1990s to mid-2000s. This phenomenon is associated with the pause of vegetation greening trend and slowdown of spring warming. We further showed that both the vegetation greenness and its growing season length are positively correlated to spring but not autumn temperature from 1982 to 2010 over the northern lands. However, the state-of-art terrestrial biosphere models produce positive responses of gross primary productivity to both spring and autumn warming. These findings emphasize the importance of vegetation-climate feedback in shaping the atmospheric CO2 seasonality, and call for an improved carbon-cycle response to non-uniform seasonal warming at high latitudes in current models.

  14. Interfacing a one-dimensional lake model with a single-column atmospheric model: 2. Thermal response of the deep Lake Geneva, Switzerland under a 2 × CO2 global climate change

    Science.gov (United States)

    Perroud, Marjorie; Goyette, StéPhane

    2012-06-01

    In the companion to the present paper, the one-dimensional k-ɛ lake model SIMSTRAT is coupled to a single-column atmospheric model, nicknamed FIZC, and an application of the coupled model to the deep Lake Geneva, Switzerland, is described. In this paper, the response of Lake Geneva to global warming caused by an increase in atmospheric carbon dioxide concentration (i.e., 2 × CO2) is investigated. Coupling the models allowed for feedbacks between the lake surface and the atmosphere and produced changes in atmospheric moisture and cloud cover that further modified the downward radiation fluxes. The time evolution of atmospheric variables as well as those of the lake's thermal profile could be reproduced realistically by devising a set of adjustable parameters. In a "control" 1 × CO2 climate experiment, the coupled FIZC-SIMSTRAT model demonstrated genuine skills in reproducing epilimnetic and hypolimnetic temperatures, with annual mean errors and standard deviations of 0.25°C ± 0.25°C and 0.3°C ± 0.15°C, respectively. Doubling the CO2 concentration induced an atmospheric warming that impacted the lake's thermal structure, increasing the stability of the water column and extending the stratified period by 3 weeks. Epilimnetic temperatures were seen to increase by 2.6°C to 4.2°C, while hypolimnion temperatures increased by 2.2°C. Climate change modified components of the surface energy budget through changes mainly in air temperature, moisture, and cloud cover. During summer, reduced cloud cover resulted in an increase in the annual net solar radiation budget. A larger water vapor deficit at the air-water interface induced a cooling effect in the lake.

  15. An Atmospheric CO2 Record Across the End-Cretaceous Extinction

    Science.gov (United States)

    Royer, D. L.; Milligan, J. N.; Kowalczyk, J.

    2017-12-01

    A bolide impact and flood-basalt emissions likely caused large changes to the end-Cretaceous carbon cycle. Presently, there is only one proxy record for atmospheric CO2 that captures these changes (Beerling et al., 2002, PNAS 99: 7836-7840). These authors estimated CO2 from the calibrated stomatal indices of Ginkgo dated to within 105 yrs before and after the extinction ( 300-500 ppm) in addition to that of Stenochlaena, a fern disaster taxa present in the Raton Basin, New Mexico, 2300 ppm). We revisited these fossil collections and applied a newer and more robust CO2 proxy that is based on leaf gas-exchange principles and does not require calibrations with present-day species (Franks et al., 2014, Geophys Res Lett 41: 4685-4694). We reconstruct pre- and post-extinction CO2 concentrations of 650 ppm from Ginkgo, compared to 850 ppm directly after the extinction from Stenochlaena. This change in CO2 of 200 ppm can be readily explained with carbon cycle models as a consequence of either the bolide impact or flood-basalt emissions. Placing these CO2 estimates into the broader context of other leaf gas-exchange CO2 estimates for the Cenozoic, the Earth system sensitivity was 3 K per CO2 doubling during the early Paleogene, before steepening to >6 K several million years before the Eocene-Oligocene boundary.

  16. Responses of C4 grasses to atmospheric CO2 enrichment : I. Effect of irradiance.

    Science.gov (United States)

    Sionit, Nasser; Patterson, David T

    1984-12-01

    The growth and photosynethetic responses to atmospheric CO 2 enrichment of 4 species of C 4 grasses grown at two levels of irradiance were studied. We sought to determine whether CO 2 enrichment would yield proportionally greater growth enhancement in the C 4 grasses when they were grown at low irradiance than when grown at high irradiance. The species studied were Echinochloa crusgalli, Digitaria sanguinalis, Eleusine indica, and Setaria faberi. Plants were grown in controlled environment chambers at 350, 675 and 1,000 μl 1 -1 CO 2 and 1,000 or 150 μmol m -2 s -1 photosynthetic photon flux density (PPFD). An increase in CO 2 concentration and PPFD significantly affected net photosynthesis and total biomass production of all plants. Plants grown at low PPFD had significantly lower rates of photosynthesis, produced less biomass, and had reduced responses to increases in CO 2 . Plants grown in CO 2 -enriched atmosphere had lower photosynthetic capacity relative to the low CO 2 grown plants when exposed to lower CO 2 concentration at the time of measurement, but had greater rate of photosynthesis when exposed to increasing PPFD. The light level under which the plants were growing did not influence the CO 2 compensation point for photosynthesis.

  17. CO2 Reforming of CH4 by Atmospheric Pressure Abnormal Glow Plasma

    International Nuclear Information System (INIS)

    Chen Qi; Dai Wei; Tao Xumei; Yu Hui; Dai Xiaoyan; Yin Yongxiang

    2006-01-01

    A novel plasma atmospheric pressure abnormal glow discharge was used to investigate synthesis gas production from reforming methane and carbon dioxide. Special attentions were paid to the discharge characteristics and CH 4 , CO 2 conversion, H 2 , CO selectivity, and ratio of H 2 /CO varied with the changing of discharging power, the total flux, and the ratio of CH 4 /CO 2 . Experiments were performed in wider operation variables, the discharging power of 240 to 600 W, the CH 4 /CO 2 of 0.2 to 1.0 and the total flux of 140 to 500 mL/min. The experiments showed that the conversion of CH 4 and CO 2 was up to 91.9% and 83.2%, the selectivity of CO and H 2 was also up to 80% and 90% and H 2 /CO mole ratio was 0.2 to 1.2, respectively. A brief analysis for discharge characteristics and the experimental results were given

  18. Enhanced photosynthetic efficiency in trees world-wide by rising atmospheric CO2 levels

    Science.gov (United States)

    Ehlers, Ina; Wieloch, Thomas; Groenendijk, Peter; Vlam, Mart; van der Sleen, Peter; Zuidema, Pieter A.; Robertson, Iain; Schleucher, Jürgen

    2014-05-01

    The atmospheric CO2 concentration is increasing rapidly due to anthropogenic emissions but the effect on the Earth's biosphere is poorly understood. The ability of the biosphere to fix CO2 through photosynthesis will determine future atmospheric CO2 concentrations as well as future productivity of crops and forests. Manipulative CO2 enrichment experiments (e.g. FACE) are limited to (i) short time spans, (ii) few locations and (iii) large step increases in [CO2]. Here, we apply new stable isotope methodology to tree-ring archives, to study the effect of increasing CO2 concentrations retrospectively during the past centuries. We cover the whole [CO2] increase since industrialization, and sample trees with global distribution. Instead of isotope ratios of whole molecules, we use intramolecular isotope distributions, a new tool for tree-ring analysis with decisive advantages. In experiments on annual plants, we have found that the intramolecular distribution of deuterium (equivalent to ratios of isotopomer abundances) in photosynthetic glucose depends on growth [CO2] and reflects the metabolic flux ratio of photosynthesis to photorespiration. By applying this isotopomer methodology to trees from Oak Ridge FACE experiment, we show that this CO2 response is present in trees on the leaf level. This CO2 dependence constitutes a physiological signal, which is transferred to the wood of the tree rings. In trees from 13 locations on all continents the isotopomer ratio of tree-ring cellulose is correlated to atmospheric [CO2] during the past 200 years. The shift of the isotopomer ratio is universal for all 12 species analyzed, including both broad-leafed trees and conifers. Because the trees originate from sites with widely differing D/H ratios of precipitation, the generality of the response demonstrates that the signal is independent of the source isotope ratio, because it is encoded in an isotopomer abundance ratio. This decoupling of climate signals and physiological

  19. Interannual Variability In the Atmospheric CO2 Rectification Over Boreal Forests Based On A Coupled Ecosystem-Atmosphere Model

    Science.gov (United States)

    Chen, B.; Chen, J. M.; Worthy, D.

    2004-05-01

    Ecosystem CO2 exchange and the planetary boundary layer (PBL) are correlated diurnally and seasonally. The simulation of this atmospheric rectifier effect is important in understanding the global CO2 distribution pattern. A 12-year (1990-1996, 1999-2003), continuous CO2 measurement record from Fraserdale, Ontario (located ~150 km north of Timmons), along with a coupled Vertical Diffusion Scheme (VDS) and ecosystem model (Boreal Ecosystem Productivity Simulator, BEPS), is used to investigate the interannual variability in this effect over a boreal forest region. The coupled model performed well in simulating CO2 vertical diffusion processes. Simulated annual atmospheric rectifier effects, (including seasonal and diurnal), quantified as the variation in the mean CO2 concentration from the surface to the top of the PBL, varied from 2.8 to 4.1 ppm, even though the modeled seasonal variations in the PBL depth were similar throughout the 12-year period. The differences in the interannual rectifier effect primarily resulted from changes in the biospheric CO2 uptake and heterotrophic respiration. Correlations in the year-to year variations of the CO2 rectification were found with mean annual air temperatures, simulated gross primary productivity (GPP) and heterotrophic respiration (Rh) (r2=0.5, 0.46, 0.42, respectively). A small increasing trend in the CO2 rectification was also observed. The year-to-year variation in the vertical distribution of the monthly mean CO2 mixing ratios (reflecting differences in the diurnal rectifier effect) was related to interannual climate variability, however, the seasonal rectifier effects were found to be more sensitive to climate variability than the diurnal rectifier effects.

  20. Investigating the role of evergreen and deciduous forests in the increasing trend in atmospheric CO2 seasonal amplitude

    Science.gov (United States)

    Welp, L.; Calle, L.; Graven, H. D.; Poulter, B.

    2017-12-01

    The seasonal amplitude of Northern Hemisphere atmospheric CO2 concentrations has systematically increased over the last several decades, indicating that the timing and amplitude of net CO2 uptake and release by northern terrestrial ecosystems has changed substantially. Remote sensing, dynamic vegetation modeling, and in-situ studies have explored how changes in phenology, expansion of woody vegetation, and changes in species composition and disturbance regimes, among others, are driven by changes in climate and CO2. Despite these efforts, ecosystem models have not been able to reproduce observed atmospheric CO2 changes. Furthermore, the implications for the source/sink balance of northern ecosystems remains unclear. Changing proportions of evergreen and deciduous tree cover in response to climate change could be one of the key mechanisms that have given rise to amplified atmospheric CO2 seasonality. These two different plant functional types (PFTs) have different carbon uptake seasonal patterns and also different sensitivities to climate change, but are often lumped together as one forest type in global ecosystem models. We will demonstrate the potential that shifting distributions of evergreen and deciduous forests can have on the amplitude of atmospheric CO2. We will show phase differences in the net CO2 seasonal uptake using CO2 flux data from paired evergreen/deciduous eddy covariance towers. We will use simulations of evergreen and deciduous PFTs from the LPJ dynamic vegetation model to explore how climate change may influence the abundance and CO2 fluxes of each. Model results show that the area of deciduous forests is predicted to have increased, and the seasonal amplitude of CO2 fluxes has increased as well. The impact of surface flux seasonal variability on atmospheric CO2 amplitude is examined by transporting fluxes from each forest PFT through the TM3 transport model. The timing of the most intense CO2 uptake leads to an enhanced effect of deciduous

  1. CO2 Capture and Reuse

    International Nuclear Information System (INIS)

    Thambimuthu, K.; Gupta, M.; Davison, J.

    2003-01-01

    CO2 capture and storage including its utilization or reuse presents an opportunity to achieve deep reductions in greenhouse gas emissions from fossil energy use. The development and deployment of this option could significantly assist in meeting a future goal of achieving stabilization of the presently rising atmospheric concentration of greenhouse gases. CO2 capture from process streams is an established concept that has achieved industrial practice. Examples of current applications include the use of primarily, solvent based capture technologies for the recovery of pure CO2 streams for chemical synthesis, for utilization as a food additive, for use as a miscible agent in enhanced oil recovery operations and removal of CO2 as an undesired contaminant from gaseous process streams for the production of fuel gases such as hydrogen and methane. In these applications, the technologies deployed for CO2 capture have focused on gas separation from high purity, high pressure streams and in reducing (or oxygen deficient) environments, where the energy penalties and cost for capture are moderately low. However, application of the same capture technologies for large scale abatement of greenhouse gas emissions from fossil fuel use poses significant challenges in achieving (at comparably low energy penalty and cost) gas separation in large volume, dilute concentration and/or low pressure flue gas streams. This paper will focus on a review of existing commercial methods of CO2 capture and the technology stretch, process integration and energy system pathways needed for their large scale deployment in fossil fueled processes. The assessment of potential capture technologies for the latter purpose will also be based on published literature data that are both 'transparent' and 'systematic' in their evaluation of the overall cost and energy penalties of CO2 capture. In view of the of the fact that many of the existing commercial processes for CO2 capture have seen applications in

  2. Soil CO2 flux in response to elevated atmospheric CO2 and nitrogen fertilization: patterns and methods

    Science.gov (United States)

    James M. Vose; Katherine J. Elliott; D.W. Johnson

    1995-01-01

    The evolution of carbon dioxide (CO2) from soils is due to the metabolic activity of roots, mycorrhizae, and soil micro- and macro-organisms. Although precise estimates of carbon (C) recycled to the atmosphere from belowground sources are unavailable, Musselman and Fox (1991) propose that the belowground contribution exceeds 100 Pg y-1...

  3. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi

    2014-11-11

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  4. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi; Park, Youngjune; Petit, Camille; Park, Ah-Hyung Alissa

    2014-01-01

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  5. Area 2. Use Of Engineered Nanoparticle-Stabilized CO2 Foams To Improve Volumetric Sweep Of CO2 EOR Processes

    Energy Technology Data Exchange (ETDEWEB)

    DiCarlo, David [Univ. of Texas, Austin, TX (United States); Huh, Chun [Univ. of Texas, Austin, TX (United States); Johnston, Keith P. [Univ. of Texas, Austin, TX (United States)

    2015-01-31

    The goal of this project was to develop a new CO2 injection enhanced oil recovery (CO2-EOR) process using engineered nanoparticles with optimized surface coatings that has better volumetric sweep efficiency and a wider application range than conventional CO2-EOR processes. The main objectives of this project were to (1) identify the characteristics of the optimal nanoparticles that generate extremely stable CO2 foams in situ in reservoir regions without oil; (2) develop a novel method of mobility control using “self-guiding” foams with smart nanoparticles; and (3) extend the applicability of the new method to reservoirs having a wide range of salinity, temperatures, and heterogeneity. Concurrent with our experimental effort to understand the foam generation and transport processes and foam-induced mobility reduction, we also developed mathematical models to explain the underlying processes and mechanisms that govern the fate of nanoparticle-stabilized CO2 foams in porous media and applied these models to (1) simulate the results of foam generation and transport experiments conducted in beadpack and sandstone core systems, (2) analyze CO2 injection data received from a field operator, and (3) aid with the design of a foam injection pilot test. Our simulator is applicable to near-injection well field-scale foam injection problems and accounts for the effects due to layered heterogeneity in permeability field, foam stabilizing agents effects, oil presence, and shear-thinning on the generation and transport of nanoparticle-stabilized C/W foams. This report presents the details of our experimental and numerical modeling work and outlines the highlights of our findings.

  6. On the CO2 exchange between the atmosphere and the biosphere: the role of synoptic and mesoscale processes

    International Nuclear Information System (INIS)

    Chan, Douglas; Higuchi, Kaz; Shashkov, Alexander; Worthy, Douglas; Liu, Jane; Chen Jing; Yuen Chiu Wai

    2004-01-01

    Estimating global carbon fluxes by inverting atmospheric CO 2 through the use of atmospheric transport models has shown the importance of the covariance between biospheric fluxes and atmospheric transport on the carbon budget. This covariance or coupling occurs on many time scales. This study examines the coupling of the biosphere and the atmosphere on the meso- and synoptic scales using a coupled atmosphere-biosphere regional model covering Canada. The results are compared with surface and light aircraft measurement campaigns at two boreal forest sites in Canada. Associated with cold and warm frontal features, the model results showed that the biospheric fluxes are strongly coupled to the atmosphere through radiative forcing. The presence of cloud near frontal regions usually results in reduced photosynthetic uptake, producing CO 2 concentration gradients across the frontal regions on the order of 10 parts per million (ppm). Away from the frontal region, the biosphere is coupled to the mesoscale variations in similar ways, resulting in mesoscale variations in CO 2 concentrations of about 5 ppm. The CO 2 field is also coupled strongly to the atmospheric dynamics. In the presence of frontal circulation, the CO 2 near the surface can be transported to the mid to upper troposphere. Mesoscale circulation also plays a significant part in transporting the CO 2 from the planetary boundary layer (PBL) to the mid-troposphere. In the absence of significant mesoscale or synoptic scale circulation, the CO 2 in the PBL has minimal exchange with the free troposphere, leading to strong gradients across the top of the PBL. We speculate that the ubiquity of the common synoptic and mesoscale processes in the atmosphere may contribute significantly to the rectifier effect and hence CO 2 inversion calculations

  7. Mars - CO2 adsorption and capillary condensation on clays: Significance for volatile storage and atmospheric history

    Science.gov (United States)

    Fanale, F. P.; Cannon, W. A.

    1979-01-01

    Results on the adsorbate-adsorbent system CO2-nontronite are reported at 230, 196, and 158 deg K, covering the range of subsurface regolith temperature on Mars. A three-part regolith-atmosphere-cap model reveals that cold nontronite, and expanding clays in general, are far better but far more complex CO2 adsorbers than cold pulverized basalt. In addition, the layered terrain, and possibly the adjacent debris mantle, contains about 2% or more by mass of atmosphere-exchangeable CO2 and the total regolith inventory of available adsorbed CO2 is estimated to be 400 g/ sq cm.

  8. Oxygen isotope anomaly in tropospheric CO2 and implications for CO2 residence time in the atmosphere and gross primary productivity.

    Science.gov (United States)

    Liang, Mao-Chang; Mahata, Sasadhar; Laskar, Amzad H; Thiemens, Mark H; Newman, Sally

    2017-10-13

    The abundance variations of near surface atmospheric CO 2 isotopologues (primarily 16 O 12 C 16 O, 16 O 13 C 16 O, 17 O 12 C 16 O, and 18 O 12 C 16 O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO 2 biogeochemical cycles, Δ 17 O (=ln(1 + δ 17 O) - 0.516 × ln(1 + δ 18 O)) provides an alternative constraint on the strengths of the associated cycles involving CO 2 . Here, we analyze Δ 17 O data from four places (Taipei, Taiwan; South China Sea; La Jolla, United States; Jerusalem, Israel) in the northern hemisphere (with a total of 455 measurements) and find a rather narrow range (0.326 ± 0.005‰). A conservative estimate places a lower limit of 345 ± 70 PgC year -1 on the cycling flux between the terrestrial biosphere and atmosphere and infers a residence time of CO 2 of 1.9 ± 0.3 years (upper limit) in the atmosphere. A Monte Carlo simulation that takes various plant uptake scenarios into account yields a terrestrial gross primary productivity of 120 ± 30 PgC year -1 and soil invasion of 110 ± 30 PgC year -1 , providing a quantitative assessment utilizing the oxygen isotope anomaly for quantifying CO 2 cycling.

  9. Faster turnover of new soil carbon inputs under increased atmospheric CO2.

    Science.gov (United States)

    van Groenigen, Kees Jan; Osenberg, Craig W; Terrer, César; Carrillo, Yolima; Dijkstra, Feike A; Heath, James; Nie, Ming; Pendall, Elise; Phillips, Richard P; Hungate, Bruce A

    2017-10-01

    Rising levels of atmospheric CO 2 frequently stimulate plant inputs to soil, but the consequences of these changes for soil carbon (C) dynamics are poorly understood. Plant-derived inputs can accumulate in the soil and become part of the soil C pool ("new soil C"), or accelerate losses of pre-existing ("old") soil C. The dynamics of the new and old pools will likely differ and alter the long-term fate of soil C, but these separate pools, which can be distinguished through isotopic labeling, have not been considered in past syntheses. Using meta-analysis, we found that while elevated CO 2 (ranging from 550 to 800 parts per million by volume) stimulates the accumulation of new soil C in the short term (soil C pool over either temporal scale. Our results are inconsistent with predictions of conventional soil C models and suggest that elevated CO 2 might increase turnover rates of new soil C. Because increased turnover rates of new soil C limit the potential for additional soil C sequestration, the capacity of land ecosystems to slow the rise in atmospheric CO 2 concentrations may be smaller than previously assumed. © 2017 John Wiley & Sons Ltd.

  10. Formation reactions and thermal stability of Ca/sub 2/NbCoO/sub 6/ and Ca/sub 2/TaCoO/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Kuleshova, T B; Razumovskaya, O N; Belyaev, I N; Salei, V S [Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR)

    1979-11-01

    Ca/sub 2/M/sup 5/CoO/sub 6/ compounds and reactions of their formation from oxides were investigated by thermogravimetric and X-ray phase analysis methods. Optimum conditions for synthesizing the above compounds have been found, and the degree of oxidation of Co therein, determined. The thermal stability of the compounds was also studied. It was shown, that the stability of Co (3) in Ca/sub 2/NbCaO/sub 6/ Ca/sub 2/TaCoO/sub 6/ is higher than that in similar compounds containing Pb. The resultant compounds are pure perovskites. Presented are the calculated and the experimental values of perovskite cell parameters.

  11. Earth 2075 (CO2) - can Ocean-Amplified Carbon Capture (oacc) Impart Atmospheric CO2-SINKING Ability to CCS Fossil Energy?

    Science.gov (United States)

    Fry, R.; Routh, M.; Chaudhuri, S.; Fry, S.; Ison, M.; Hughes, S.; Komor, C.; Klabunde, K.; Sethi, V.; Collins, D.; Polkinghorn, W.; Wroobel, B.; Hughes, J.; Gower, G.; Shkolnik, J.

    2017-12-01

    Previous attempts to capture atmospheric CO2 by algal blooming were stalled by ocean viruses, zooplankton feeding, and/or bacterial decomposition of surface blooms, re-releasing captured CO2 instead of exporting it to seafloor. CCS fossil energy coupling could bypass algal bloom limits—enabling capture of 10 GtC/yr atmospheric CO2 by selective emiliania huxleyi (EHUX) blooming in mid-latitude open oceans, far from coastal waters and polar seas. This could enable a 500 GtC drawdown, 350 ppm restoration by 2050, 280 ppm CO2 by 2075, and ocean pH 8.2. White EHUX blooms could also reflect sunlight back into outer space and seed extra ocean cloud cover, via DMS release, to raise albedo 1.8%—restoring preindustrial temperature (ΔT = 0°C) by 2030. Open oceans would avoid post-bloom anoxia, exclusively a coastal water phenomenon. The EHUX calcification reaction initially sources CO2, but net sinking prevails in follow-up equilibration reactions. Heavier-than-water EHUX sink captured CO2 to the sea floor before surface decomposition occurs. Seeding EHUX high on their nonlinear growth curve could accelerate short-cycle secondary open-ocean blooming—overwhelming mid-latitude viruses, zooplankton, and competition from other algae. Mid-latitude "ocean deserts" exhibit low viral, zooplankton, and bacterial counts. Thermocline prevents nutrient upwelling that would otherwise promote competing algae. Adding nitrogen nutrient would foster exclusive EHUX blooming. Elevated EHUX seed levels could arise from sealed, pH-buffered, floating, seed-production bioreactors infused with 10% CO2 from carbon feedstock supplied by inland CCS fossil power plants capturing 90% of emissions as liquid CO2. Deep-water SPAR platforms extract natural gas from beneath the sea floor. On-platform Haber and pH processing could convert extracted CH4 to buffered NH4+ nutrient, enabling ≥0.7 GtC/yr of bioreactor seed production and 10 GtC/yr of amplified secondary open-ocean CO2 capture—making CCS

  12. Tailings and mineral carbonation : the potential for atmospheric CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Rollo, H.A. [Lorax Environmental Services Ltd., Vancouver, BC (Canada); Jamieson, H.E. [Queen' s Univ., Kingston, ON (Canada). Dept. of Geological Sciences and Geological Engineering; Lee, C.A. [Dillon Consulting Ltd., Cambridge, ON (Canada)

    2009-02-15

    Carbon dioxide (CO{sub 2}) sequestration includes geological storage, ocean storage, organic storage, and mineral storage (mineral carbonation). This presentation discussed tailings and mineral carbonation and the potential for atmospheric CO{sub 2} sequestration. In particular, it outlined CO{sub 2} sequestration and presented a history of investigations. The Ekati Diamond Mine was discussed with particular reference to its location, geology, and processing. Other topics that were presented included mineralogy; water chemistry; modeling results; and estimates of annual CO{sub 2} sequestration. Conclusions and implications were also presented. It was concluded that ore processing at mines with ultramafic host rocks have the potential to partially offset CO{sub 2} emissions. In addition, it was found that existing tailings at ultramafic deposits may be viable source materials for CO{sub 2} sequestration by mineral carbonation. tabs., figs.

  13. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel.

    Science.gov (United States)

    Huang, Limao; Liu, Jingyong; He, Yao; Sun, Shuiyu; Chen, Jiacong; Sun, Jian; Chang, KenLin; Kuo, Jiahong; Ning, Xun'an

    2016-10-01

    Thermodynamics and kinetics of sewage sludge (SS) and water hyacinth (WH) co-combustion as a blend fuel (SW) for bioenergy production were studied through thermogravimetric analysis. In CO2/O2 atmosphere, the combustion performance of SS added with 10-40wt.% WH was improved 1-1.97 times as revealed by the comprehensive combustion characteristic index (CCI). The conversion of SW in different atmospheres was identified and their thermodynamic parameters (ΔH,ΔS,ΔG) were obtained. As the oxygen concentration increased from 20% to 70%, the ignition temperature of SW decreased from 243.1°C to 240.3°C, and the maximum weight loss rate and CCI increased from 5.70%·min(-1) to 7.26%·min(-1) and from 4.913%(2)·K(-3)·min(-2) to 6.327%(2)·K(-3)·min(-2), respectively, which corresponded to the variation in ΔS and ΔG. The lowest activation energy (Ea) of SW was obtained in CO2/O2=7/3 atmosphere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    Science.gov (United States)

    Anderson, S. P.

    2002-12-01

    Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly

  15. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1992-04-01

    Northern ecosystems contain up to 455 Gt of C in the soil active layer and upper permafrost. The soil carbon in these layers is equivalent to approximately 60% of the carbon currently in the atmosphere as CO{sub 2}. Much of this carbon is stored in the soil as dead organic matter. Its fate is subject to the net effects of global change on the plant and soil systems of northern ecosystems. The arctic alone contains about 60 Gt C, 90% of which is present in the soil active layer and upper permafrost. The arctic is assumed to have been a sink for CO{sub 2} during the historic and recent geologic past. The arctic has the potential to be a very large, long-term source or sink of CO{sub 2} with respect to the atmosphere. In situ experimental manipulations of atmospheric CO{sub 2}, indicated that there is little effect of elevated atmospheric CO{sub 2} on leaf level photosynthesis or whole-ecosystem CO{sub 2} flux over the course of weeks to years, respectively. However, there may be longer- term ecosystem responses to elevated CO{sub 2} that could ultimately affect ecosystem CO{sub 2} balance. In addition to atmospheric CO{sub 2}, climate may affect net ecosystem carbon balance. Recent results indicate that the arctic has become a source of CO{sub 2} to the atmosphere. This change coincides with recent climatic variation in the arctic, and suggests a positive feedback of arctic ecosystems on atmospheric CO{sub 2} and global change. The research proposed in this application has four principal aspects: (A) Long-term response of arctic plants and ecosystems to elevated atmospheric CO{sub 2}; (B) Circumpolar patterns of net ecosystem CO{sub 2} flux; (C) In situ controls by temperature and moisture on net ecosystem CO{sub 2} flux; (D) Scaling of CO{sub 2} flux from plot, to landscape, to regional scales (In conjunction with research proposed for NSF support).

  16. Dispersive infrared spectroscopy measurements of atmospheric CO2 using a Fabry–Pérot interferometer sensor

    International Nuclear Information System (INIS)

    Chan, K.L.; Ning, Z.; Westerdahl, D.; Wong, K.C.; Sun, Y.W.; Hartl, A.; Wenig, M.O.

    2014-01-01

    In this paper, we present the first dispersive infrared spectroscopic (DIRS) measurement of atmospheric carbon dioxide (CO 2 ) using a new scanning Fabry–Pérot interferometer (FPI) sensor. The sensor measures the optical spectra in the mid infrared (3900 nm to 5220 nm) wavelength range with full width half maximum (FWHM) spectral resolution of 78.8 nm at the CO 2 absorption band (∼ 4280 nm) and sampling resolution of 20 nm. The CO 2 concentration is determined from the measured optical absorption spectra by fitting it to the CO 2 reference spectrum. Interference from other major absorbers in the same wavelength range, e.g., carbon monoxide (CO) and water vapor (H 2 O), was taken out by including their reference spectra in the fit as well. The detailed descriptions of the instrumental setup, the retrieval procedure, a modeling study for error analysis as well as laboratory validation using standard gas concentrations are presented. An iterative algorithm to account for the non-linear response of the fit function to the absorption cross sections due to the broad instrument function was developed and tested. A modeling study of the retrieval algorithm showed that errors due to instrument noise can be considerably reduced by using the dispersive spectral information in the retrieval. The mean measurement error of the prototype DIRS CO 2 measurement for 1 minute averaged data is about ± 2.5 ppmv, and down to ± 0.8 ppmv for 10 minute averaged data. A field test of atmospheric CO 2 measurements were carried out in an urban site in Hong Kong for a month and compared to a commercial non-dispersive infrared (NDIR) CO 2 analyzer. 10 minute averaged data shows good agreement between the DIRS and NDIR measurements with Pearson correlation coefficient (R) of 0.99. This new method offers an alternative approach of atmospheric CO 2 measurement featuring high accuracy, correction of non-linear absorption and interference of water vapor. - Highlights: • Dispersive infrared

  17. Changes in vegetation phenology are not reflected in atmospheric CO2 and 13 C/12 C seasonality.

    Science.gov (United States)

    Gonsamo, Alemu; D'Odorico, Petra; Chen, Jing M; Wu, Chaoyang; Buchmann, Nina

    2017-10-01

    Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO 2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystem on the atmospheric CO 2 and 13 C/ 12 C seasonality. Here, we use four CO 2 observation stations in the Northern Hemisphere, namely Alert, La Jolla, Point Barrow, and Mauna Loa Observatory, to determine how changes in vegetation productivity and phenology, respiration, and air temperature affect both the atmospheric CO 2 and 13 C/ 12 C seasonality. Since the 1960s, the only significant long-term trend of CO 2 and 13 C/ 12 C seasonality was observed at the northern most station, Alert, where the spring CO 2 drawdown dates advanced by 0.65 ± 0.55 days yr -1 , contributing to a nonsignificant increase in length of the CO 2 uptake period (0.74 ± 0.67 days yr -1 ). For Point Barrow station, vegetation phenology changes in well-watered ecosystems such as the Canadian and western Siberian wetlands contributed the most to 13 C/ 12 C seasonality while the CO 2 seasonality was primarily linked to nontree vegetation. Our results indicate significant increase in the Northern Hemisphere soil respiration. This means, increased respiration of 13 C depleted plant materials cancels out the 12 C gain from enhanced vegetation activities during the start and end of growing season. These findings suggest therefore that parallel warming-induced increases both in photosynthesis and respiration contribute to the long-term stability of CO 2 and 13 C/ 12 C seasonality under changing climate and vegetation activity. The summer photosynthesis and the soil respiration in the dormant seasons have become more vigorous which lead to increased peak-to-through CO 2 amplitude. As the relative magnitude of the increased

  18. Pollutants transport and atmospheric variability of CO2 over Siberia: contribution of airborne measurements

    International Nuclear Information System (INIS)

    Paris, J.D.

    2008-12-01

    The work presented here intends to characterize the variations of atmospheric concentrations of CO 2 , CO, O 3 and ultrafine particles, over a large scale aircraft transect above Siberia, during three intensive YAK-AEROSIB campaigns in April 2006, September 2006 and August 2007, respectively. Pollutant and greenhouse gases distribution in this poorly studied region is needed to model atmospheric long range transport. I show here that CO concentrations at the time of the campaigns is broadly affected by (1) advection of Chinese pollutants through baro-clinic perturbations, (2) advection (diffuse or not) of European pollutants at various altitudes, (3) and of biomass burning from Central Asia. This set of factors is analyzed through a novel statistical technique based on clustering of backward transport simulated by the FLEXPART Lagrangian model. Large observed CO 2 gradients in summer are matched against vertical mixing in GCM simulated CO 2 . At last I present ultrafine particle measurements, and a possible nucleation summer maximum in the clean, continental mid-troposphere. (author)

  19. Hemiparasite abundance in an alpine treeline ecotone increases in response to atmospheric CO(2) enrichment.

    Science.gov (United States)

    Hättenschwiler, Stephan; Zumbrunn, Thomas

    2006-02-01

    Populations of the annual hemiparasites Melampyrum pratense L. and Melampyrum sylvaticum L. were studied at the treeline in the Swiss Alps after 3 years of in situ CO(2) enrichment. The total density of Melampyrum doubled to an average of 44 individuals per square meter at elevated CO(2) compared to ambient CO(2). In response to elevated CO(2), the height of the more abundant and more evenly distributed M. pratense increased by 20%, the number of seeds per fruit by 21%, and the total seed dry mass per fruit by 27%, but the individual seed size did not change. These results suggest that rising atmospheric CO(2) may stimulate the reproductive output and increase the abundance of Melampyrum in the alpine treeline ecotone. Because hemiparasites can have important effects on community dynamics and ecosystem processes, notably the N cycle, changing Melampyrum abundance may potentially influence the functioning of alpine ecosystems in a future CO(2)-rich atmosphere.

  20. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    Science.gov (United States)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  1. Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability

    International Nuclear Information System (INIS)

    Stuiver, M.; Quay, P.D.

    1981-01-01

    A high-precision tree-ring record of the atmospheric 14 C levels between 1820 and 1954 is presented. Good agreement is obtained between measured and model calculated 19th and 20th century atmospheric δ 14 C levels when both fossil fuel CO 2 release and predicted natural variations in 14 C production are taken into account. The best fit is obtained by using a box-diffusion model with an oceanic eddy diffusion coefficient of 3 cm 2 /s, a CO 2 atmosphere-ocean gas exchange rate of 21 moles msup(-2) yrsup(-1) and biospheric residence time of 60 years. For trees in the state of Washington the measured 1949-1951 atmospheric δ 14 C level was 20.0 +- 1.2per mille below the 1855-1864 level. Model calculations indicate that in 1950 industrial CO 2 emissions are responsible for at least 85% of the δ 14 C decline, whereas natural variability accounts for the remaining 15%. (orig.)

  2. Enhanced priming of old, not new soil carbon at elevated atmospheric CO2

    DEFF Research Database (Denmark)

    Vestergard, Mette; Reinsch, Sabine; Bengtson, Per

    2016-01-01

    Rising atmospheric CO2 concentrations accompanied by global warming and altered precipitation patterns calls for assessment of long-term effects of these global changes on carbon (C) dynamics in terrestrial ecosystems, as changes in net C exchange between soil and atmosphere will impact the atmos......Rising atmospheric CO2 concentrations accompanied by global warming and altered precipitation patterns calls for assessment of long-term effects of these global changes on carbon (C) dynamics in terrestrial ecosystems, as changes in net C exchange between soil and atmosphere will impact...... accelerate the decomposition of soil organic C (SOC), a phenomenon termed ‘the priming effect’, and the priming effect is most pronounced at low soil N availability. Hence, we hypothesized that priming of SOC decomposition in response to labile C addition would increase in soil exposed to long-term elevated...... decomposition of relatively old SOC fractions, i.e. SOC assimilated more than 8 years before sampling....

  3. Theoretical UV absorption spectra of hydrodynamically escaping O2/CO2-rich exoplanetary atmospheres

    International Nuclear Information System (INIS)

    Gronoff, G.; Mertens, C. J.; Norman, R. B.; Maggiolo, R.; Wedlund, C. Simon; Bell, J.; Bernard, D.; Parkinson, C. J.; Vidal-Madjar, A.

    2014-01-01

    Characterizing Earth- and Venus-like exoplanets' atmospheres to determine if they are habitable and how they are evolving (e.g., equilibrium or strong erosion) is a challenge. For that endeavor, a key element is the retrieval of the exospheric temperature, which is a marker of some of the processes occurring in the lower layers and controls a large part of the atmospheric escape. We describe a method to determine the exospheric temperature of an O 2 - and/or CO 2 -rich transiting exoplanet, and we simulate the respective spectra of such a planet in hydrostatic equilibrium and hydrodynamic escape. The observation of hydrodynamically escaping atmospheres in young planets may help constrain and improve our understanding of the evolution of the solar system's terrestrial planets' atmospheres. We use the dependency of the absorption spectra of the O 2 and CO 2 molecules on the temperature to estimate the temperature independently of the total absorption of the planet. Combining two observables (two parts of the UV spectra that have a different temperature dependency) with the model, we are able to determine the thermospheric density profile and temperature. If the slope of the density profile is inconsistent with the temperature, then we infer the hydrodynamic escape. We address the question of the possible biases in the application of the method to future observations, and we show that the flare activity should be cautiously monitored to avoid large biases.

  4. Relationship between synoptic scale weather systems and column averaged atmospheric CO2

    Science.gov (United States)

    Naja, M.; Yaremchuk, A.; Onishi, R.; Maksyutov, S.; Inoue, G.

    2005-12-01

    Analysis of the atmospheric CO2 observations with transport models contributes to the understanding of the geographical distributions of CO2 sources and sinks. Space-borne sensors could be advantageous for CO2 measurements as they can provide wider spatial and temporal coverage. Inversion studies have suggested requirement of better than 1% precision for the space-borne observations. Since sources and sinks are inferred from spatial and temporal gradients in CO2, the space-borne observations must have no significant geographically varying biases. To study the dynamical biases in column CO2 due to possible correlation between clouds and atmospheric CO2 at synoptic scale, we have made simulations of CO2 (1988-2003) using NIES tracer transport model. Model resolution is 2.5o x 2.5o in horizontal and it has 15 vertical sigma-layers. Fluxes for (1) fossil fuels, (2) terrestrial biosphere (CASA NEP), (3) the oceans, and (4) inverse model derived monthly regional fluxes from 11 land and 11 ocean regions are used. SVD truncation is used to filter out noise in the inverse model flux time series. Model reproduces fairly well CO2 global trend and observed time series at monitoring sites around the globe. Lower column CO2 concentration is simulated inside cyclonic systems in summer over North hemispheric continental areas. Surface pressure is used as a proxy for dynamics and it is demonstrated that anomalies in column averaged CO2 has fairly good correlation with the anomalies in surface pressure. Positive correlation, as high as 0.7, has been estimated over parts of Siberia and N. America in summer time. Our explanation is based on that the low-pressure system is associated the upward motion, which leads to lower column CO2 values over these regions due to lifting of CO2-depleted summertime PBL air, and higher column CO2 over source areas. A sensitivity study without inverse model fluxes shows same correlation. The low-pressure systems' induced negative biases are 0

  5. Stability of lamb loin stored under refrigeration and packed in different modified atmosphere packaging systems.

    Science.gov (United States)

    Fernandes, Rafaella de Paula Paseto; Freire, Maria Teresa de Alvarenga; de Paula, Elisa Silva Maluf; Kanashiro, Ana Livea Sayuri; Catunda, Fernanda Antunes Pinto; Rosa, Alessandra Fernandes; Balieiro, Júlio Cesar de Carvalho; Trindade, Marco Antonio

    2014-01-01

    The aim of the present study was to evaluate the effect of different modified atmosphere packaging (MAP) systems (vacuum, 75% O2+25% CO2 and 100% CO2) on the stability of lamb loins stored at 1±1°C for 28 days. Microbiological (counts of aerobic and anaerobic psychrotrophic microorganisms, coliform at 45°C, coagulase-positive staphylococci and lactic acid bacteria and presence of Salmonella), physical and chemical (thiobarbituric acid reactive substances [TBARS], objective color, pH, water loss from cooking [WLC] and shear force), sensory (acceptance testing using a 9-point hedonic scale) and gas composition analyses were performed. Lamb meat remained stable with respect to the majority of the evaluated physical and chemical indexes and within the standards established by Brazilian legislation for pathogenic microorganisms throughout the storage period in all three packaging systems. However, with respect to psychrotrophic microorganisms, 100% CO2 packaging system provided increased stability despite presenting lower appearance preference. © 2013.

  6. Influence of Metal Transfer Stability and Shielding Gas Composition on CO and CO2 Emissions during Short-circuiting MIG/MAG Welding

    Directory of Open Access Journals (Sweden)

    Valter Alves de Meneses

    Full Text Available Abstract: Several studies have demonstrated the influence of parameters and shielding gas on metal transfer stability or on the generation of fumes in MIG/MAG welding, but little or nothing has been discussed regarding the emission of toxic and asphyxiating gases, particularly as it pertains to parameterization of the process. The purpose of this study was to analyze and evaluate the effect of manufacturing aspects of welding processes (short-circuit metal transfer stability and shielding gas composition on the gas emission levels during MIG/MAG welding (occupational health and environmental aspects. Using mixtures of Argon with CO2 and O2 and maintaining the same average current and the same weld bead volume, short-circuit welding was performed with carbon steel welding wire in open (welder’s breathing zone and confined environments. The welding voltage was adjusted to gradually vary the transfer stability. It was found that the richer the composition of the shielding gas is in CO2, the more CO and CO2 are generated by the arc. However, unlike fume emission, voltage and transfer stability had no effect on the generation of these gases. It was also found that despite the large quantity of CO and CO2 emitted by the arc, especially when using pure CO2 shielding gas, there was no high level residual concentration of CO and CO2 in or near the worker’s breathing zone, even in confined work cells.

  7. Assessing filtering of mountaintop CO2 mole fractions for application to inverse models of biosphere-atmosphere carbon exchange

    Directory of Open Access Journals (Sweden)

    S. L. Heck

    2012-02-01

    Full Text Available There is a widely recognized need to improve our understanding of biosphere-atmosphere carbon exchanges in areas of complex terrain including the United States Mountain West. CO2 fluxes over mountainous terrain are often difficult to measure due to unusual and complicated influences associated with atmospheric transport. Consequently, deriving regional fluxes in mountain regions with carbon cycle inversion of atmospheric CO2 mole fraction is sensitive to filtering of observations to those that can be represented at the transport model resolution. Using five years of CO2 mole fraction observations from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON, five statistical filters are used to investigate a range of approaches for identifying regionally representative CO2 mole fractions. Test results from three filters indicate that subsets based on short-term variance and local CO2 gradients across tower inlet heights retain nine-tenths of the total observations and are able to define representative diel variability and seasonal cycles even for difficult-to-model sites where the influence of local fluxes is much larger than regional mole fraction variations. Test results from two other filters that consider measurements from previous and following days using spline fitting or sliding windows are overly selective. Case study examples showed that these windowing-filters rejected measurements representing synoptic changes in CO2, which suggests that they are not well suited to filtering continental CO2 measurements. We present a novel CO2 lapse rate filter that uses CO2 differences between levels in the model atmosphere to select subsets of site measurements that are representative on model scales. Our new filtering techniques provide guidance for novel approaches to assimilating mountain-top CO2 mole fractions in carbon cycle inverse models.

  8. Error characterization of CO2 vertical mixing in the atmospheric transport model WRF-VPRM

    Directory of Open Access Journals (Sweden)

    U. Karstens

    2012-03-01

    Full Text Available One of the dominant uncertainties in inverse estimates of regional CO2 surface-atmosphere fluxes is related to model errors in vertical transport within the planetary boundary layer (PBL. In this study we present the results from a synthetic experiment using the atmospheric model WRF-VPRM to realistically simulate transport of CO2 for large parts of the European continent at 10 km spatial resolution. To elucidate the impact of vertical mixing error on modeled CO2 mixing ratios we simulated a month during the growing season (August 2006 with different commonly used parameterizations of the PBL (Mellor-Yamada-Janjić (MYJ and Yonsei-University (YSU scheme. To isolate the effect of transport errors we prescribed the same CO2 surface fluxes for both simulations. Differences in simulated CO2 mixing ratios (model bias were on the order of 3 ppm during daytime with larger values at night. We present a simple method to reduce this bias by 70–80% when the true height of the mixed layer is known.

  9. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    Science.gov (United States)

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  10. Global carbon - nitrogen - phosphorus cycle interactions: A key to solving the atmospheric CO2 balance problem?

    Science.gov (United States)

    Peterson, B. J.; Mellillo, J. M.

    1984-01-01

    If all biotic sinks of atmospheric CO2 reported were added a value of about 0.4 Gt C/yr would be found. For each category, a very high (non-conservative) estimate was used. This still does not provide a sufficient basis for achieving a balance between the sources and sinks of atmospheric CO2. The bulk of the discrepancy lies in a combination of errors in the major terms, the greatest being in a combination of errors in the major terms, the greatest being in the net biotic release and ocean uptake segments, but smaller errors or biases may exist in calculations of the rate of atmospheric CO2 increase and total fossil fuel use as well. The reason why biotic sinks are not capable of balancing the CO2 increase via nutrient-matching in the short-term is apparent from a comparison of the stoichiometry of the sources and sinks. The burning of fossil fuels and forest biomass releases much more CO2-carbon than is sequestered as organic carbon.

  11. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2005-01-01

    Full Text Available The amount of carbon dioxide (CO2 of the Earths atmosphere is increasing, which has the potential of increasing greenhouse effect and air temperature in the future. Plants respond to environment CO2 and temperature. Therefore, climate change may affect agriculture. The purpose of this paper was to review the literature about the impact of a possible increase in atmospheric CO2 concentration and temperature on crop growth, development, and yield. Increasing CO2 concentration increases crop yield once the substrate for photosynthesis and the gradient of CO2 concentration between atmosphere and leaf increase. C3 plants will benefit more than C4 plants at elevated CO2. However, if global warming will take place, an increase in temperature may offset the benefits of increasing CO2 on crop yield.

  12. Atmospheric pCO2 Reconstructed across the Early Eocene Hyperthermals

    Science.gov (United States)

    Cui, Y.; Schubert, B.

    2015-12-01

    Negative carbon isotope excursions (CIEs) are commonly associated with extreme global warming. The Early Eocene is punctuated by five such CIEs, the Paleocene-Eocene thermal maximum (PETM, ca. 55.8 Ma), H1 (ca. 53.6 Ma), H2 (ca. 53.5 Ma), I1 (ca. 53.3 Ma), and I2 (ca. 53.2 Ma), each characterized by global warming. The negative CIEs are recognized in both marine and terrestrial substrates, but the terrestrial substrates exhibit a larger absolute magnitude CIE than the marine substrates. Here we reconcile the difference in CIE magnitude between the terrestrial and marine substrates for each of these events by accounting for the additional carbon isotope fractionation by C3 land plants in response to increased atmospheric pCO2. Our analysis yields background and peak pCO2 values for each of the events. Assuming a common mechanism for each event, we calculate that background pCO2 was not static across the Early Eocene, with the highest background pCO2 immediately prior to I2, the last of the five CIEs. Background pCO2 is dependent on the source used in our analysis with values ranging from 300 to 720 ppmv provided an injection of 13C-depleted carbon with δ13C value of -60‰ (e.g. biogenic methane). The peak pCO2 during each event scales according to the magnitude of CIE, and is therefore greatest during the PETM and smallest during H2. Both background and peak pCO2 are higher if we assume a mechanism of permafrost thawing (δ13C = -25‰). Our reconstruction of pCO2 across these events is consistent with trends in the δ18O value of deep-sea benthic foraminifera, suggesting a strong link between pCO2 and temperature during the Early Eocene.

  13. The use of forest stand age information in an atmospheric CO2 inversion applied to North America

    Science.gov (United States)

    F. Deng; J.M. Chen; Y. Pan; W. Peters; R. Birdsey; K. McCullough; J. Xiao

    2013-01-01

    Atmospheric inversions have become an important tool in quantifying carbon dioxide (CO2) sinks and sources at a variety of spatiotemporal scales, but associated large uncertainties restrain the inversion research community from reaching agreement on many important subjects. We enhanced an atmospheric inversion of the CO2...

  14. Ignition and devolatilization of pulverized coals in lower oxygen content O{sub 2}/CO{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaohong; Li, Jing; Liu, Zhaohui; Yang, Ming; Wang, Dingbang; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    High speed camera is employed to capture the transient images of the burning particle in a flat-flame entrained flow reactor, some information of the burning particle, such as the optical intensity and the residence time, are obtained through analysis of transient images. The ignition and devolatilization behavior of different rank coals at 1,670, 1,770 and 1,940 K over a range of 2-30% O{sub 2} in both N{sub 2} and CO{sub 2} diluent gases are researched. The results indicate that the laws of ignition and devolatilization of pulverized coals in low oxygen O{sub 2}/CO{sub 2} atmosphere are consistent with the literature, which focus on the environments of high oxygen contents (10-30%) or lower temperate (900-1,500 K). With the gas temperature and oxygen content increased, the ignition delay time and devolatilization time for the lower oxygen content cases decreased for both N{sub 2} and CO{sub 2} atmosphere. With the use CO{sub 2} in place of N{sub 2} in low oxygen content, the ignition delay was retarded and the duration of devolatilization was increased. The effect of CO{sub 2} on coal particle ignition is explained by its higher molar specific heat. And the effect of CO{sub 2} on devolatilization results from its effect on the diffusion rates of volatile fuel and oxygen.

  15. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions

    Directory of Open Access Journals (Sweden)

    P. Peylin

    2013-10-01

    Full Text Available Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior information. The inversions were run for at least 5 yr in the period between 1990 and 2010. Mean fluxes for 2001–2004, seasonal cycles, interannual variability and trends are compared for the tropics and northern and southern extra-tropics, and separately for land and ocean. Some continental/basin-scale subdivisions are also considered where the atmospheric network is denser. Four-year mean fluxes are reasonably consistent across inversions at global/latitudinal scale, with a large total (land plus ocean carbon uptake in the north (−3.4 Pg C yr−1 (±0.5 Pg C yr−1 standard deviation, with slightly more uptake over land than over ocean, a significant although more variable source over the tropics (1.6 ± 0.9 Pg C yr−1 and a compensatory sink of similar magnitude in the south (−1.4 ± 0.5 Pg C yr−1 corresponding mainly to an ocean sink. Largest differences across inversions occur in the balance between tropical land sources and southern land sinks. Interannual variability (IAV in carbon fluxes is larger for land than ocean regions (standard deviation around 1.06 versus 0.33 Pg C yr−1 for the 1996–2007 period, with much higher consistency among the inversions for the land. While the tropical land explains most of the IAV (standard deviation ~ 0.65 Pg C yr−1, the northern and southern land also contribute (standard deviation ~ 0.39 Pg C yr−1. Most inversions tend to indicate an increase of the northern land carbon uptake from late 1990s to 2008 (around 0.1 Pg C yr−1, predominantly in North Asia. The mean seasonal cycle appears to be well constrained by the atmospheric data over

  16. Comparative Analysis of Alternative Spectral Bands of CO2 and O2 for the Sensing of CO2 Mixing Ratios

    Science.gov (United States)

    Pliutau, Denis; Prasad, Narasimha S.

    2013-01-01

    We performed comparative studies to establish favorable spectral regions and measurement wavelength combinations in alternative bands of CO2 and O2, for the sensing of CO2 mixing ratios (XCO2) in missions such as ASCENDS. The analysis employed several simulation approaches including separate layers calculations based on pre-analyzed atmospheric data from the modern-era retrospective analysis for research and applications (MERRA), and the line-byline radiative transfer model (LBLRTM) to obtain achievable accuracy estimates as a function of altitude and for the total path over an annual span of variations in atmospheric parameters. Separate layer error estimates also allowed investigation of the uncertainties in the weighting functions at varying altitudes and atmospheric conditions. The parameters influencing the measurement accuracy were analyzed independently and included temperature sensitivity, water vapor interferences, selection of favorable weighting functions, excitations wavelength stabilities and other factors. The results were used to identify favorable spectral regions and combinations of on / off line wavelengths leading to reductions in interferences and the improved total accuracy.

  17. Late-glacial atmospheric CO{sub 2} reconstructions from western Norway using fossil leaves

    Energy Technology Data Exchange (ETDEWEB)

    Birks, H H; Birks, H J.B. [Sheffield Univ. (United Kingdom). Dept. of Animal and Plant Sciences; Beerling, D J; Woodward, F I [Bergen Univ. (Norway). Botanical Inst.

    1996-12-31

    Analyses of air bubbles trapped in Antarctic ice-cores have shown that atmospheric CO{sub 2} concentrations are 180-200 ppmv during glacial periods, and ca. 280 ppmv during interglacials, including the Holocene. The change from glacial to Holocene concentrations occurred steadily over ca. 5000 years, slightly lagging the temperature increase inferred from {delta}{sup 18}. Antarctic ice cores lack fine time resolution over the late-glacial/early Holocene period 12-9000 {sup 14}C yr BP, that includes the Younger Dryas cold oscillation. The stomatal density on leaves is inversely proportional to the concentration of atmospheric CO{sub 2}. A late glacial sequence at Kraakenes, western Norway, contains well-preserved Salix herbacea (dwarf willow) leaves, dated from 11700-9600 {sup 14}C yr BP. If the stomatal density is measured on the fossil leaves, a calibration derived from the relationship of stomatal density of modern material of the same species to known CO{sub 2} concentrations can be used to reconstruct CO{sub 2} concentrations of the past. Because of the decadal time-resolution available at Kraakenes through the late-glacial and early Holocene, a detailed record of CO{sub 2} concentrations can be reconstructed over this period, that will complement the ice core record. (author)

  18. Late-glacial atmospheric CO{sub 2} reconstructions from western Norway using fossil leaves

    Energy Technology Data Exchange (ETDEWEB)

    Birks, H.H.; Birks, H.J.B. [Sheffield Univ. (United Kingdom). Dept. of Animal and Plant Sciences; Beerling, D.J.; Woodward, F.I. [Bergen Univ. (Norway). Botanical Inst.

    1995-12-31

    Analyses of air bubbles trapped in Antarctic ice-cores have shown that atmospheric CO{sub 2} concentrations are 180-200 ppmv during glacial periods, and ca. 280 ppmv during interglacials, including the Holocene. The change from glacial to Holocene concentrations occurred steadily over ca. 5000 years, slightly lagging the temperature increase inferred from {delta}{sup 18}. Antarctic ice cores lack fine time resolution over the late-glacial/early Holocene period 12-9000 {sup 14}C yr BP, that includes the Younger Dryas cold oscillation. The stomatal density on leaves is inversely proportional to the concentration of atmospheric CO{sub 2}. A late glacial sequence at Kraakenes, western Norway, contains well-preserved Salix herbacea (dwarf willow) leaves, dated from 11700-9600 {sup 14}C yr BP. If the stomatal density is measured on the fossil leaves, a calibration derived from the relationship of stomatal density of modern material of the same species to known CO{sub 2} concentrations can be used to reconstruct CO{sub 2} concentrations of the past. Because of the decadal time-resolution available at Kraakenes through the late-glacial and early Holocene, a detailed record of CO{sub 2} concentrations can be reconstructed over this period, that will complement the ice core record. (author)

  19. Organic chemistry in a CO2 rich early Earth atmosphere

    Science.gov (United States)

    Fleury, Benjamin; Carrasco, Nathalie; Millan, Maëva; Vettier, Ludovic; Szopa, Cyril

    2017-12-01

    The emergence of life on the Earth has required a prior organic chemistry leading to the formation of prebiotic molecules. The origin and the evolution of the organic matter on the early Earth is not yet firmly understood. Several hypothesis, possibly complementary, are considered. They can be divided in two categories: endogenous and exogenous sources. In this work we investigate the contribution of a specific endogenous source: the organic chemistry occurring in the ionosphere of the early Earth where the significant VUV contribution of the young Sun involved an efficient formation of reactive species. We address the issue whether this chemistry can lead to the formation of complex organic compounds with CO2 as only source of carbon in an early atmosphere made of N2, CO2 and H2, by mimicking experimentally this type of chemistry using a low pressure plasma reactor. By analyzing the gaseous phase composition, we strictly identified the formation of H2O, NH3, N2O and C2N2. The formation of a solid organic phase is also observed, confirming the possibility to trigger organic chemistry in the upper atmosphere of the early Earth. The identification of Nitrogen-bearing chemical functions in the solid highlights the possibility for an efficient ionospheric chemistry to provide prebiotic material on the early Earth.

  20. Atmospheric CO2 and O3 alter competition for soil nitrogen in developing forests

    Science.gov (United States)

    Donald R. Zak; Mark E. Kubiske; Kurt S. Pregitzer; Andrew J. Burton

    2012-01-01

    Plant growth responses to rising atmospheric CO2 and O3 vary among genotypes and between species, which could plausibly influence the strength of competitive interactions for soil N. Ascribable to the size-symmetric nature of belowground competition, we reasoned that differential growth responses to CO2...

  1. Does Size Matter? Atmospheric CO2 May Be a Stronger Driver of Stomatal Closing Rate Than Stomatal Size in Taxa That Diversified under Low CO2.

    Science.gov (United States)

    Elliott-Kingston, Caroline; Haworth, Matthew; Yearsley, Jon M; Batke, Sven P; Lawson, Tracy; McElwain, Jennifer C

    2016-01-01

    One strategy for plants to optimize stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers, and angiosperms under controlled ambient conditions (380 ppm CO2; 20.9% O2). The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group, or life strategy. Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimize water use efficiency.

  2. Plume spread and atmospheric stability

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The horizontal spread of a plume in atmospheric dispersion can be described by the standard deviation of horizontal direction. The widely used Pasquill-Gifford classes of atmospheric stability have assigned typical values of the standard deviation of horizontal wind direction and of the lapse rate. A measured lapse rate can thus be used to estimate the standard deviation of wind direction. It is examined by means of a large dataset of fast wind measurements how good these estimates are. (author) 1 fig., 2 refs.

  3. Energy intensity decline implications for stabilization of atmospheric CO2 content

    International Nuclear Information System (INIS)

    Lightfoot, H.D.; Green, C.

    2002-01-01

    By calculating the amount of carbon-free energy required to stabilize the level of carbon dioxide in the atmosphere at some level, such as 550 parts per million by volume (ppmv) in 2100, the authors estimate the appropriate rate of world average annual energy intensity decline. The roles played by energy efficiency and long term sectoral changes like shifts in economic activity from high energy intensity sectors or industries to low energy intensity sectors or industries are distinguished. Advances in technology and better and improved procedures, as well as a broader adoption of more efficient technologies currently available are included in the improvements made in energy efficiency. The objective was, for the period 1990 to 2100 (110 years), to estimate the potential energy efficiency increase for world electricity generation. It is noted that electricity generation represents 38 per cent of world energy consumption in 1995, while transportation accounts for 19 per cent and residential, industrial and commercial uses account for 43 per cent. In 2100, it is expected that the overall average decline in energy intensity will be 40.1 per cent of that of 1990, according to the results obtained. Looked at from another perspective, it represents an average annual rate of energy intensity decline of 0.83 per cent for 110 years. Between 0.16 and 0.30 per cent could be added to the impact of sectoral changes on the average annual rate of decline in energy intensity, while 0.83 per cent would be attributable to improvements in energy efficiency, as shown by sensitivity analysis. 33 refs., 9 tabs., 1 fig

  4. Mesoporous carbon composite for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chih-Chau; Jin, Zhong; Lu, Wei; Sun, Zhengzong; Alemany, Lawrence; Tour, James M. [Rice University, Houston, TX (United States); Lomeda, Jay R.; Flatt, Austen K. [Nalco Company, Naperville, IL (United States)

    2012-07-01

    Herein we report a carbon based technology that can be used to rapidly adsorb and release CO{sub 2}. CO{sub 2} uptake by the synthesized composites was determined using a gravimetric method at room temperature and atmospheric pressure. 39% polyethylenimine-mesocarbon (PEI-CMK-3) composite had {approx} 12 wt% CO{sub 2} uptake capacity and a 37% polyvinylamine meso-carbon (PVA-CMK-3) composite had {approx} 13 wt% CO{sub 2} uptake capacity. The sorbents were easily regenerated at 75 deg C and exhibit excellent stability over multiple regeneration cycles. CO{sub 2} uptake was equivalent when using 10% CO{sub 2} in 90% CH{sub 4}, C{sub 2}H{sub 6} and C{sub 3}H{sub 9} mixture, underscoring the efficacy for CO{sub 2} separation from natural gas. (author)

  5. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump

    Science.gov (United States)

    Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.

    2008-03-01

    Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.

  6. In situ X-ray and neutron diffraction of the Ruddlesden–Popper compounds (RE2−xSrx)0.98(Fe0.8Co0.2)1−yMgyO4−δ (RE=La, Pr): Structure and CO2 stability

    International Nuclear Information System (INIS)

    Chatzichristodoulou, C.; Hauback, B.C.; Hendriksen, P.V.

    2013-01-01

    The crystal structure of the Ruddlesden–Popper compounds (La 1.0 Sr 1.0 ) 0.98 Fe 0.8 Co 0.2 O 4−δ and (La 1.2 Sr 0.8 ) 0.98 (Fe 0.8 Co 0.2 ) 0.8 Mg 0.2 O 4−δ was investigated at 1000 °C in N 2 (a O2 =1×10 −4 ) by in-situ powder neutron diffraction. In-situ powder X-ray diffraction (PXD) was also employed to investigate the temperature dependence of the lattice parameters of the compounds in air and the oxygen activity dependence of the lattice parameters at 800 °C and 1000 °C. The thermal and chemical expansion coefficients, determined along the two crystallographic directions of the tetragonal unit cell, are highly anisotropic. The equivalent pseudo-cubic thermal and chemical expansion coefficients are in agreement with values determined by dilatometry. The chemical stability in CO 2 containing environments of various Ruddlesden–Popper compounds with chemical formula (RE 2−x Sr x ) 0.98 (Fe 0.8 Co 0.2 ) 1−y Mg y O 4−δ (RE=La, Pr), as well as their stability limit in H 2 /H 2 O=4.5 were also determined by in-situ PXD for x=0.9, 1.0 and y=0, 0.2. - Graphical abstract: Influence of electronic configuration on bond length, lattice parameters and anisotropic thermal and chemical expansion. Highlights: ► The thermal and chemical expansion coefficients are largely anisotropic. ► The expansion of the perovskite layers is constrained along the a direction. ► The studied compositions show remarkable thermodynamic stability upon reduction. ► The thermal and chemical expansion coefficients are lower than related perovskites. ► The investigated materials decompose in CO 2 containing atmospheres

  7. Azole-Anion-Based Aprotic Ionic Liquids: Functional Solvents for Atmospheric CO2 Transformation into Various Heterocyclic Compounds.

    Science.gov (United States)

    Zhao, Yanfei; Wu, Yunyan; Yuan, Guangfeng; Hao, Leiduan; Gao, Xiang; Yang, Zhenzhen; Yu, Bo; Zhang, Hongye; Liu, Zhimin

    2016-10-06

    The chemical transformation of atmospheric CO 2 is of great significance yet still poses a great challenge. Herein, azole-anion-based aprotic ionic liquids (ILs) were synthesized by the deprotonation of weak proton donors (e.g., 2-methylimidazole, 4-methylimidazole, and 2,4-dimethylimidazole) with tetrabutylphosphonium hydroxide, [Bu 4 P][OH]. We found that these ILs, such as [Bu 4 P][2-MIm], could activate atmospheric CO 2 through the formation of carbamates. The resultant carbamate intermediates could further react with various types of substrate, including propargylic alcohols, 2-aminobenzonitriles, ortho-phenylenediamines, and 2-aminothiophenol, thereby producing α-alkylidene cyclic carbonates, quinazoline-2,4(1 H,3 H)-diones, benzimidazolones, and benzothiazoline, respectively, in moderate-to-good yields. Thus, we have achieved the transformation of CO 2 at atmospheric pressure, and we expect this method to open up new routes for the synthesis of various oxygen-containing heterocyclic compounds under metal-free conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Recent widespread tree growth decline despite increasing atmospheric CO2.

    Science.gov (United States)

    Silva, Lucas C R; Anand, Madhur; Leithead, Mark D

    2010-07-21

    The synergetic effects of recent rising atmospheric CO(2) and temperature are expected to favor tree growth in boreal and temperate forests. However, recent dendrochronological studies have shown site-specific unprecedented growth enhancements or declines. The question of whether either of these trends is caused by changes in the atmosphere remains unanswered because dendrochronology alone has not been able to clarify the physiological basis of such trends. Here we combined standard dendrochronological methods with carbon isotopic analysis to investigate whether atmospheric changes enhanced water use efficiency (WUE) and growth of two deciduous and two coniferous tree species along a 9 degrees latitudinal gradient across temperate and boreal forests in Ontario, Canada. Our results show that although trees have had around 53% increases in WUE over the past century, growth decline (measured as a decrease in basal area increment--BAI) has been the prevalent response in recent decades irrespective of species identity and latitude. Since the 1950s, tree BAI was predominantly negatively correlated with warmer climates and/or positively correlated with precipitation, suggesting warming induced water stress. However, where growth declines were not explained by climate, WUE and BAI were linearly and positively correlated, showing that declines are not always attributable to warming induced stress and additional stressors may exist. Our results show an unexpected widespread tree growth decline in temperate and boreal forests due to warming induced stress but are also suggestive of additional stressors. Rising atmospheric CO2 levels during the past century resulted in consistent increases in water use efficiency, but this did not prevent growth decline. These findings challenge current predictions of increasing terrestrial carbon stocks under climate change scenarios.

  9. Atmospheric and geological CO2 damage costs in energy scenarios

    International Nuclear Information System (INIS)

    Smekens, K.E.L.; Van der Zwaan, B.C.C.

    2006-05-01

    Geological carbon dioxide capture and storage (CCS) is currently seriously considered for addressing, in the near term, the problem of climate change. CCS technology is available today and is expected to become an increasingly affordable CO2 abatement alternative. Whereas the rapidly growing scientific literature on CCS as well as experimental and commercial practice demonstrate the technological and economic feasibility of implementing this clean fossil fuel option on a large scale, relatively little attention has been paid so far to the risks and environmental externalities of geological storage of CO2. This paper assesses the effects of including CCS damage costs in a long-term energy scenario analysis for Europe. An external cost sensitivity analysis is performed with a bottom-up energy technology model that accounts not only for CCS technologies but also for their external costs. Our main conclusion is that in a business-as-usual scenario (i.e. without climate change intervention or externality internalisation), CCS technologies are likely to be deployed at least to some extent, mainly in the power generation sector, given the economic benefits of opportunities such as enhanced coal bed methane, oil and gas recovery. Under a strict climate (CO2 emissions) constraint, CCS technologies are deployed massively. With the simultaneous introduction of both CO2 and CCS taxation in the power sector, designed to internalise the external atmospheric and geological effects of CO2 emissions and storage, respectively, we find that CCS will only be developed if the climate change damage costs are at least of the order of 100 euro/t CO2 or the CO2 storage damage costs not more than a few euro/t CO2. When the internalised climate change damage costs are as high as 67 euro/t CO2, the expensive application of CCS to biomass-fuelled power plants (with negative net CO2 emissions) proves the most effective CCS alternative to reduce CO2 emissions, rather than CCS applied to fossil

  10. High Arctic Forests During the Middle Eocene Supported by ~400 ppm Atmospheric CO2

    Science.gov (United States)

    Maxbauer, D. P.; Royer, D. L.; LePage, B. A.

    2013-12-01

    Fossils from Paleogene High Arctic deposits provide some of the clearest evidence for greenhouse climates and offer the potential to improve our understanding of Earth system dynamics in a largely ice-free world. One of the most well-known and exquisitely-preserved middle Eocene (47.9-37.8 Myrs ago) polar forest sites, Napartulik, crops out on eastern Axel Heiberg Island (80 °N), Nunavut, Canada. An abundance of data from Napartulik suggest mean annual temperatures of up to 30 °C warmer than today and atmospheric water loads 2× above current levels. Despite this wealth of paleontological and paleoclimatological data, there are currently no direct constraints on atmospheric CO2 levels for Napartulik or any other polar forest site. Here we apply a new plant gas-exchange model to Metasequoia (dawn redwood) leaves to reconstruct atmospheric CO2 from six fossil forests at Napartulik. Individual reconstructions vary between 405-489 ppm with a site mean of 437 ppm (337-564 ppm at 95% confidence). These estimates represent the first direct constraints on CO2 for polar fossil forests and suggest that the temperate conditions present at Napartulik during the middle Eocene were maintained under CO2 concentrations ~1.6× above pre-industrial levels. Our results strongly support the case that long-term climate sensitivity to CO2 in the past was sometimes high, even during largely ice-free periods, highlighting the need to better understand the climate forcing and feedback mechanisms responsible for this amplification.

  11. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    Science.gov (United States)

    Tian, H.; Melillo, J. M.; Kicklighter, D. W.; McGuire, A. D.; Helfrich, J.

    1999-04-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900 1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2Pg C) and soil organic carbon decreasing by 1.9% (1.1Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17.7Pg C

  12. Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2

    Science.gov (United States)

    Nikokavoura, Aspasia; Trapalis, Christos

    2017-01-01

    The increased concentration of CO2 in the atmosphere, originating from the burning of fossil fuels in stationary and mobile sources, is referred as the "Anthropogenic Greenhouse Effect" and constitutes a major environmental concern. The scientific community is highly concerned about the resulting enhancement of the mean atmospheric temperature, so a vast diversity of methods has been applied. Thermochemical, electrochemical, photocatalytic, photoelectrochemical processes, as well as combination of solar electricity generation and water splitting processes have been performed in order to lower the CO2 atmospheric levels. Photocatalytic methods are environmental friendly and succeed in reducing the atmospheric CO2 concentration and producing fuels or/and useful organic compounds at the same time. The most common photocatalysts for the CO2 reduction are the inorganic, the carbon based semiconductors and the hybrids based on semiconductors, which combine stability, low cost and appropriate structure in order to accomplish redox reactions. In this review, inorganic semiconductors such as single-metal oxide, mixed-metal oxides, metal oxide composites, layered double hydroxides (LDHs), salt composites, carbon based semiconductors such as graphene based composites, CNT composites, g-C3N4 composites and hybrid organic-inorganic materials (ZIFs) were studied. TiO2 and Ti based photocatalysts are extensively studied and therefore in this review they are not mentioned.

  13. Phloem function: A key to understanding and manipulating plant responses to rising atmospheric [CO2]?

    Science.gov (United States)

    Increasing atmospheric carbon dioxide concentration ([CO2]) directly stimulates photosynthesis and reduces stomatal conductance in C3 plants. Both of these physiological effects have the potential to alter phloem function at elevated [CO2]. Recent research has clearly established that photosynthetic...

  14. Technical Update: Johnson Space Center system using a solid electrolytic cell in a remote location to measure oxygen fugacities in CO/CO2 controlled-atmosphere furnaces

    Science.gov (United States)

    Jurewicz, A. J. G.; Williams, R. J.; Le, L.; Wagstaff, J.; Lofgren, G.; Lanier, A.; Carter, W.; Roshko, A.

    1993-01-01

    Details are given for the design and application of a (one atmosphere) redox-control system. This system differs from that given in NASA Technical Memorandum 58234 in that it uses a single solid-electrolytic cell in a remote location to measure the oxygen fugacities of multiple CO/CO2 controlled-atmosphere furnaces. This remote measurement extends the range of sample-furnace conditions that can be measured using a solid-electrolytic cell, and cuts costs by extending the life of the sensors and by minimizing the number of sensors in use. The system consists of a reference furnace and an exhaust-gas manifold. The reference furnace is designed according to the redox control system of NASA Technical Memorandum 58234, and any number of CO/CO2 controlled-atmosphere furnaces can be attached to the exhaust-gas manifold. Using the manifold, the exhaust gas from individual CO/CO2 controlled atmosphere furnaces can be diverted through the reference furnace, where a solid-electrolyte cell is used to read the ambient oxygen fugacity. The oxygen fugacity measured in the reference furnace can then be used to calculate the oxygen fugacity in the individual CO/CO2 controlled-atmosphere furnace. A BASIC computer program was developed to expedite this calculation.

  15. Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-01-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397

  16. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China.

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G L; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-14

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  17. Mechanisms of glacial-to-future atmospheric CO2 effects on plant immunity.

    Science.gov (United States)

    Williams, Alex; Pétriacq, Pierre; Schwarzenbacher, Roland E; Beerling, David J; Ton, Jurriaan

    2018-04-01

    The impacts of rising atmospheric CO 2 concentrations on plant disease have received increasing attention, but with little consensus emerging on the direct mechanisms by which CO 2 shapes plant immunity. Furthermore, the impact of sub-ambient CO 2 concentrations, which plants have experienced repeatedly over the past 800 000 yr, has been largely overlooked. A combination of gene expression analysis, phenotypic characterisation of mutants and mass spectrometry-based metabolic profiling was used to determine development-independent effects of sub-ambient CO 2 (saCO 2 ) and elevated CO 2 (eCO 2 ) on Arabidopsis immunity. Resistance to the necrotrophic Plectosphaerella cucumerina (Pc) was repressed at saCO 2 and enhanced at eCO 2 . This CO 2 -dependent resistance was associated with priming of jasmonic acid (JA)-dependent gene expression and required intact JA biosynthesis and signalling. Resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) increased at both eCO 2 and saCO 2 . Although eCO 2 primed salicylic acid (SA)-dependent gene expression, mutations affecting SA signalling only partially suppressed Hpa resistance at eCO 2 , suggesting additional mechanisms are involved. Induced production of intracellular reactive oxygen species (ROS) at saCO 2 corresponded to a loss of resistance in glycolate oxidase mutants and increased transcription of the peroxisomal catalase gene CAT2, unveiling a mechanism by which photorespiration-derived ROS determined Hpa resistance at saCO 2 . By separating indirect developmental impacts from direct immunological effects, we uncover distinct mechanisms by which CO 2 shapes plant immunity and discuss their evolutionary significance. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  18. Scaling laws for perturbations in the ocean-atmosphere system following large CO2 emissions

    Science.gov (United States)

    Towles, N.; Olson, P.; Gnanadesikan, A.

    2015-07-01

    Scaling relationships are found for perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR) model (Zeebe et al., 2009; Zeebe, 2012b), we calculate perturbations to atmosphere temperature, total carbon, ocean temperature, total ocean carbon, pH, alkalinity, marine-sediment carbon, and carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form of γ DαEβ, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. Although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission-rate-only scaling, α + β = 0. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0 < α + β < 1 for most of the other system variables.

  19. Scaling laws for perturbations in the ocean–atmosphere system following large CO2 emissions

    Directory of Open Access Journals (Sweden)

    N. Towles

    2015-07-01

    Full Text Available Scaling relationships are found for perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR model (Zeebe et al., 2009; Zeebe, 2012b, we calculate perturbations to atmosphere temperature, total carbon, ocean temperature, total ocean carbon, pH, alkalinity, marine-sediment carbon, and carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form of γ DαEβ, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. Although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission-rate-only scaling, α + β = 0. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0 < α + β < 1 for most of the other system variables.

  20. Nb-TiO{sub 2}/polymer hybrid solar cells with photovoltaic response under inert atmosphere conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lira-Cantu, Monica; Khoda Siddiki, Mahbube; Munoz-Rojas, David; Amade, Roger [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2, CSIC), Laboratory of Nanostructured Materials for Photovoltaic Energy, Campus UAB, Barcelona (Spain); Gonzalez-Pech, Natalia I. [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2, CSIC), Laboratory of Nanostructured Materials for Photovoltaic Energy, Campus UAB, Barcelona (Spain); Instituto Tecnologico y de Estudios Superiores de Monterrey (ITESM), Ave. Eugenio Garza Sada, 64640 Monterrey, N.L. (Mexico)

    2010-07-15

    Hybrid Solar Cells (HSC) applying Nb-TiO{sub 2} in direct contact with a conducting organic polymer, MEH-PPV, show higher stability than the bare TiO{sub 2}-based HSC when analyzed under inert atmosphere conditions. IPCE analyses revealed that inert atmospheres affect directly the semiconductor oxide in the first stages of the analyses but photovoltaic performance stabilizes after several hours. A 20 wt% Nb-doped TiO{sub 2} presented the highest stability and photovoltaic properties. The behavior has been attributed to the solubility limit of Nb within the TiO{sub 2} beyond 20 wt% doping level where the co-existence of NbO{sub 2} is observed. The HSCs were analyzed under controlled N{sub 2} atmosphere and 1000 W/m{sup 2} (AM 1.5) irradiation. (author)

  1. Ionic Liquid Confined in Mesoporous Polymer Membrane with Improved Stability for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Ming Tan

    2017-09-01

    Full Text Available Supported ionic liquid membranes (SILMs have a promising prospect of application in flue gas separation, owing to its high permeability and selectivity of CO2. However, existing SILMs have the disadvantage of poor stability due to the loss of ionic liquid from the large pores of the macroporous support. In this study, a novel SILM with high stability was developed by confining ionic liquid in a mesoporous polymer membrane. First, a mesoporous polymer membrane derived from a soluble, low-molecular-weight phenolic resin precursor was deposited on a porous Al2O3 support, and then 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4] was immobilized inside mesopores of phenolic resin, forming the SILM under vacuum. Effects of trans-membrane pressure difference on the SILM separation performance were investigated by measuring the permeances of CO2 and N2. The SILM exhibits a high ideal CO2/N2 selectivity of 40, and an actual selectivity of approximately 25 in a mixed gas (50% CO2 and 50% N2 at a trans-membrane pressure difference of 2.5 bar. Compared to [emim][BF4] supported by polyethersulfone membrane with a pore size of around 0.45 μm, the [emim][BF4] confined in a mesoporous polymer membrane exhibits an improved stability, and its separation performance remained stable for 40 h under a trans-membrane pressure difference of 1.5 bar in a mixed gas before the measurement was intentionally stopped.

  2. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump

    Directory of Open Access Journals (Sweden)

    J. C. McWilliams

    2008-03-01

    Full Text Available Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.

  3. Correlations among atmospheric CO[sub 2], CH[sub 4] and CO in the Arctic, March 1989

    Energy Technology Data Exchange (ETDEWEB)

    Conway, T.J.; Steele, L.P.; Novelli, P.C. (NOAA Climate Monitoring and Diagnostics Lab., Boulder, CO (United States))

    1993-12-01

    During six aircraft flights conducted as part of the third Arctic Gas and Aerosol Sampling Program (AGASP III, March 1989), 189 air samples were collected throughout the Arctic troposphere and lower stratosphere for analysis of CO[sub 2], CH[sub 4] and CO. The mixing ratios of the three gases varied significantly both horizontally and vertically. Elevated concentrations were found in layers with high anthropogenic aerosol concentrations (Arctic Haze). The mixing ratios of CO[sub 2], CH[sub 4] and CO were highly correlated on all flights. A linear regression of CH[sub 4] vs CO[sub 2] for pooled data from all flights yielded a correlation coefficient (r[sup 2]) of 0.88 and a slope of 13.5 ppb CH[sub 4]/ppm CO[sub 2] (n 186). For CO vs CO[sub 2] a pooled linear regression gave r[sup 2] 0.91 and a slope of 15.8 ppb CO/ppm CO[sub 2] (n 182). Carbon dioxide CH[sub 4] and CO also exhibited mean vertical gradients with slopes of 0.37, -4.4 and -4.2 ppb km[sup -1], respectively. Since the carbon dioxide variations observed in the Arctic atmosphere during winter are due primarily to variations in the emissions and transport of anthropogenic CO[sub 2] from Europe and Asia, the strong correlations that we have found suggest that a similar interpretation applies to CH[sub 4] and CO. Using reliable estimates of CO[sub 2] emissions for the source regions and the measured CH[sub 4]/CO[sub 2] and CO/CO[sub 2] ratios, we estimate a regional European CH[sub 4] source of 47[+-] 6 Tg CH[sub 4] yr[sup -1] that may be associated with fossil fuel combustion. A similar calculation for CO results in an estimated regional CO source of 82[+-]2 Tg CO yr[sup -1]. 31 refs., 7 figs., 4 tabs.

  4. Potentialities of the atmospheric CO2 remote sensing thanks to static Fourier transform spectrometry

    International Nuclear Information System (INIS)

    Lacan, A.

    2009-04-01

    A global measurement of atmospheric CO 2 concentration is required to improve the prediction of the range of global warming. A satellite mission could provide such a measurement. CNES developed a new generation instrument dedicated to atmospheric sounding. It is a static Fourier transform spectrometer whose mass and size are smaller than those of classical spectrometers. The application of the concept for CO 2 sounding is studied thanks to an on ground experimental bread board representative of a satellite borne spectrometer. The CO 2 concentration is deduced from atmospheric spectra at 1.6 μm thanks to differential spectroscopy technique. The instrumental concept is presented. Then the conception of the spectrometer and the working procedure are described. A study of information content is done. Retrieval simulations show that an error of ±0.6 ppm can be expected, lower than the ±1 ppm goal. Finally the results of a measurement campaign are given. The retrieval precision is compatible with the objectives. Yet the instrument is also sensitive to disruptive parameters. For example deformations of the instrument could engender significant measurement errors. Instrument improvements are proposed to increase the retrieval precision. (author)

  5. Accumulation of fossil CO/sub 2/ in the atmosphere and the sea

    Energy Technology Data Exchange (ETDEWEB)

    Fairhall, A W

    1973-09-07

    A model is presented which accounts quantitatively for the buildup of fossil CO/sub 2/ in the atmosphere. The model also predicts something not previously recognized: a significant uptake of fossil CO/sub 2/ by the sea. The sea is presently supersaturated with respect to aragonite and calcite, which calcareous organisms form in building their shells. Should the sea become unsaturated in CaCO/sub 3/ the shells of these organisms would tend to dissolve, as would the ocean's coral reefs. One test of the model would be afforded by careful monitoring of total CO/sub 2/ levels in the mixed layer over the next few years. The model predicts an increase in the mixed layer of about 1.4 per cent in the next decade. Because this is about double the accuracy of the present methods for measuring total CO/sub 2/ in seawater, this trend, if present, should be detectable within 3 to 5 years. (MFB)

  6. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    Science.gov (United States)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; Chen, Jeff; Choi, Yonghoon; Yang, Mei Ying Melissa

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ˜ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  7. Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops With a Pulsed Multi-Wavelength Airborne Lidar

    Science.gov (United States)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael R.; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; hide

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was approx. 5% for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 micro-s wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90% of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  8. CaO-Based CO2 Sorbents Effectively Stabilized by Metal Oxides.

    Science.gov (United States)

    Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Müller, Christoph R

    2017-11-17

    Calcium looping (i.e., CO 2 capture by CaO) is a promising second-generation CO 2 capture technology. CaO, derived from naturally occurring limestone, offers an inexpensive solution, but due to the harsh operating conditions of the process, limestone-derived sorbents undergo a rapid capacity decay induced by the sintering of CaCO 3 . Here, we report a Pechini method to synthesize cyclically stable, CaO-based CO 2 sorbents with a high CO 2 uptake capacity. The sorbents synthesized feature compositional homogeneity in combination with a nanostructured and highly porous morphology. The presence of a single (Al 2 O 3 or Y 2 O 3 ) or bimetal oxide (Al 2 O 3 -Y 2 O 3 ) provides cyclic stability, except for MgO which undergoes a significant increase in its particle size with the cycle number. We also demonstrate a direct relationship between the CO 2 uptake and the morphology of the synthesized sorbents. After 30 cycles of calcination and carbonation, the best performing sorbent, containing an equimolar mixture of Al 2 O 3 and Y 2 O 3 , exhibits a CO 2 uptake capacity of 8.7 mmol CO 2  g -1 sorbent, which is approximately 360 % higher than that of the reference limestone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Using atmospheric CO2 data to assess a simplified carbon-climate simulation for the 20th century

    International Nuclear Information System (INIS)

    Law, Rachel M.; Kowalczyk, Eva A.; Wangs, Ying-Ping

    2006-01-01

    The CSIRO biosphere model has been coupled to an atmosphere model and a simulation has been performed for the 20th century. Both biosphere and atmosphere are forced with global CO 2 concentration and the atmosphere is also forced with prescribed sea surface temperatures. The simulation follows the C4MIP Phase 1 protocol. We assess the model simulation using atmospheric CO 2 data. Mauna Loa growth rate is well simulated from 1980 but overestimated before that time. The interannual variations in growth rate are reasonably reproduced. Seasonal cycles are underestimated in northern mid-latitudes and are out of phase in the southern hemisphere. The north-south gradient of annual mean CO 2 is substantially overestimated due to a northern hemisphere net biosphere source and a southern tropical sink. Diurnal cycles at three northern hemisphere locations are larger than observed in many months, most likely due to larger respiration than observed

  10. Dispersive infrared spectroscopy measurements of atmospheric CO{sub 2} using a Fabry–Pérot interferometer sensor

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.L. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Ning, Z., E-mail: zhining@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong (Hong Kong); Guy Carpenter Climate Change Centre, City University of Hong Kong (Hong Kong); Westerdahl, D. [Ability R and D Energy Research Centre, City University of Hong Kong (Hong Kong); Wong, K.C. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Sun, Y.W. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei (China); Hartl, A. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Wenig, M.O. [Meteorological Institute, Ludwig-Maximilians-Universität Munich (Germany)

    2014-02-01

    In this paper, we present the first dispersive infrared spectroscopic (DIRS) measurement of atmospheric carbon dioxide (CO{sub 2}) using a new scanning Fabry–Pérot interferometer (FPI) sensor. The sensor measures the optical spectra in the mid infrared (3900 nm to 5220 nm) wavelength range with full width half maximum (FWHM) spectral resolution of 78.8 nm at the CO{sub 2} absorption band (∼ 4280 nm) and sampling resolution of 20 nm. The CO{sub 2} concentration is determined from the measured optical absorption spectra by fitting it to the CO{sub 2} reference spectrum. Interference from other major absorbers in the same wavelength range, e.g., carbon monoxide (CO) and water vapor (H{sub 2}O), was taken out by including their reference spectra in the fit as well. The detailed descriptions of the instrumental setup, the retrieval procedure, a modeling study for error analysis as well as laboratory validation using standard gas concentrations are presented. An iterative algorithm to account for the non-linear response of the fit function to the absorption cross sections due to the broad instrument function was developed and tested. A modeling study of the retrieval algorithm showed that errors due to instrument noise can be considerably reduced by using the dispersive spectral information in the retrieval. The mean measurement error of the prototype DIRS CO{sub 2} measurement for 1 minute averaged data is about ± 2.5 ppmv, and down to ± 0.8 ppmv for 10 minute averaged data. A field test of atmospheric CO{sub 2} measurements were carried out in an urban site in Hong Kong for a month and compared to a commercial non-dispersive infrared (NDIR) CO{sub 2} analyzer. 10 minute averaged data shows good agreement between the DIRS and NDIR measurements with Pearson correlation coefficient (R) of 0.99. This new method offers an alternative approach of atmospheric CO{sub 2} measurement featuring high accuracy, correction of non-linear absorption and interference of water

  11. Ultralow Parasitic Energy for Postcombustion CO 2 Capture Realized in a Nickel Isonicotinate Metal–Organic Framework with Excellent Moisture Stability

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Shyamapada; Collins, Sean [Centre; amp, Department of Chemistry; Chakraborty, Debanjan; Banerjee, Debasis [Physical; Thallapally, Praveen K. [Physical; Woo, Tom K. [Centre; amp, Department of Chemistry; Vaidhyanathan, Ramanathan

    2017-01-25

    Metal-organic frameworks (MOFs) have attracted significant attention as solid sorbents in gas separation processes for low-energy postcombustion CO2 capture. The parasitic energy (PE) has been put forward as a holistic parameter that measures how energy efficient (and therefore cost-effective) the CO2 capture process will be using the material. In this work, we present a nickel isonicotinate based ultramicroporous MOF, 1 [Ni-(4PyC)(2)center dot DMF], that has the lowest PE for postcombustion CO, capture reported to date. We calculate a PE of 655 kJ/kg CO2, which is lower than that of the best performing material previously reported, Mg-MOF-74. Further, 1 exhibits exceptional hydrolytic stability with the CO2 adsorption isotherm being unchanged following 7 days of steam-treatment (>85% RH) or 6 months of exposure to the atmosphere. The diffusion coefficient of CO2 in 1 is also 2 orders of magnitude higher than in zeolites currently used in industrial scrubbers. Breakthrough experiments show that 1 only loses 7% of its maximum CO2 capacity under humid conditions.

  12. Carbon isotopic evidence for the associations of decreasing atmospheric CO2 level with the Frasnian-Famennian mass extinction

    Science.gov (United States)

    Xu, Bing; Gu, Zhaoyan; Wang, Chengyuan; Hao, Qingzhen; Han, Jingtai; Liu, Qiang; Wang, Luo; Lu, Yanwu

    2012-03-01

    A perturbation of the global carbon cycle has often been used for interpreting the Frasnian-Famennian (F-F) mass extinction. However, the changes of atmospheric CO2 level (pCO2) during this interval are much debatable. To illustrate the carbon cycle during F-F transition, paired inorganic (δ13Ccarb) and organic (δ13Corg) carbon isotope analyses were carried out on two late Devonian carbonate sequences (Dongcun and Yangdi) from south China. The larger amplitude shift of δ13Corg compared to δ13Ccarb and its resultant Δ13C (Δ13C = δ13Ccarb - δ13Corg) decrease indicate decreased atmospheric CO2level around the F-F boundary. The onset ofpCO2 level decrease predates that of marine regressions, which coincide with the beginning of conodont extinctions, suggesting that temperature decrease induced by decreased greenhouse effect of atmospheric CO2might have contributed to the F-F mass extinction.

  13. The Effect of Thermal Convection on Earth-Atmosphere CO2 Gas Exchange in Aggregated Soil

    Science.gov (United States)

    Ganot, Y.; Weisbrod, N.; Dragila, M. I.

    2011-12-01

    Gas transport in soils and surface-atmosphere gas exchange are important processes that affect different aspects of soil science such as soil aeration, nutrient bio-availability, sorption kinetics, soil and groundwater pollution and soil remediation. Diffusion and convection are the two main mechanisms that affect gas transport, fate and emissions in the soils and in the upper vadose zone. In this work we studied CO2 soil-atmosphere gas exchange under both day-time and night-time conditions, focusing on the impact of thermal convection (TCV) during the night. Experiments were performed in a climate-controlled laboratory. One meter long columns were packed with matrix of different grain size (sand, gravel and soil aggregates). Air with 2000 ppm CO2 was injected into the bottom of the columns and CO2 concentration within the columns was continuously monitored by an Infra Red Gas Analyzer. Two scenarios were compared for each soil: (1) isothermal conditions, representing day time conditions; and (2) thermal gradient conditions, i.e., atmosphere colder than the soil, representing night time conditions. Our results show that under isothermal conditions, diffusion is the major mechanism for surface-atmosphere gas exchange for all grain sizes; while under night time conditions the prevailing mechanism is dependent on the air permeability of the matrix: for sand and gravel it is diffusion, and for soil aggregates it is TCV. Calculated CO2 flux for the soil aggregates column shows that the TCV flux was three orders of magnitude higher than the diffusive flux.

  14. Carbon Dioxide (CO2 Sequestration In Bio-Concrete, An Overview

    Directory of Open Access Journals (Sweden)

    Faisal Alshalif A.

    2017-01-01

    Full Text Available The emission of CO2 into atmosphere which has increased rapidly in the last years has led to global warming. Therefore, in order to overcome the negative impacts on human and environment, the researchers focused mainly on the reduction and stabilization of CO2 which represent the main contributor in the increasing global warming. The natural capturing and conversion of CO2 from atmosphere is taken place by biological, chemical and physical processes. However, these processes need long time to cause a significant reduction in CO2. Recently, scientists shifted to use green technologies that aimed to produce concrete with high potential to adsorb CO2 in order to accelerate the reduction of CO2. In the present review the potential of bio-concrete to sequestrate CO2 based on carbonation process and as a function of carbonic anhydrase (CA is highlighted. The factors affecting CO2 sequestration in concrete and bacterial species are discussed. It is evident from the literatures, that the new trends to use bio-concrete might contribute in the reduction of CO2 and enhance the strength of non-reinforced concrete.

  15. Inter-annual changes in detritus-based food chains can enhance plant growth response to elevated atmospheric CO2.

    Science.gov (United States)

    Hines, Jes; Eisenhauer, Nico; Drake, Bert G

    2015-12-01

    Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus-based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter-annual variation in detritus-based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus-based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter-annual variation in plant production response to elevated atmospheric CO2. © 2015 John Wiley & Sons Ltd.

  16. The annual averaged atmospheric dispersion factor and deposition factor according to methods of atmospheric stability classification

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun; Jeong, Hyo Joon; Kim, Eun Han; Han, Moon Hee; Hwang, Won Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    This study analyzes the differences in the annual averaged atmospheric dispersion factor and ground deposition factor produced using two classification methods of atmospheric stability, which are based on a vertical temperature difference and the standard deviation of horizontal wind direction fluctuation. Daedeok and Wolsong nuclear sites were chosen for an assessment, and the meteorological data at 10 m were applied to the evaluation of atmospheric stability. The XOQDOQ software program was used to calculate atmospheric dispersion factors and ground deposition factors. The calculated distances were chosen at 400 m, 800 m, 1,200 m, 1,600 m, 2,400 m, and 3,200 m away from the radioactive material release points. All of the atmospheric dispersion factors generated using the atmospheric stability based on the vertical temperature difference were shown to be higher than those from the standard deviation of horizontal wind direction fluctuation. On the other hand, the ground deposition factors were shown to be same regardless of the classification method, as they were based on the graph obtained from empirical data presented in the Nuclear Regulatory Commission's Regulatory Guide 1.111, which is unrelated to the atmospheric stability for the ground level release. These results are based on the meteorological data collected over the course of one year at the specified sites; however, the classification method of atmospheric stability using the vertical temperature difference is expected to be more conservative.

  17. Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Nino

    NARCIS (Netherlands)

    Welp, Lisa R.; Keeling, Ralph F.; Meijer, Harro A. J.; Bollenbacher, Alane F.; Piper, Stephen C.; Yoshimura, Kei; Francey, Roger J.; Allison, Colin E.; Wahlen, Martin

    2011-01-01

    The stable isotope ratios of atmospheric CO2 (O-18/O-16 and C-13/C-12) have been monitored since 1977 to improve our understanding of the global carbon cycle, because biosphere-atmosphere exchange fluxes affect the different atomic masses in a measurable way(1). Interpreting the O-18/O-16

  18. The ignition delay, laminar flame speed and adiabatic temperature characteristics of n-pentane, n-hexane and n-heptane under O{sub 2}/CO{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ran [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Wuhan Textile Univ. (China). School of Environment and Urban Construction; Liu, Hao; Zhong, Xiaojiao; Wang, Zijian; Jin, Ziqin; Qiu, Jianrong [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Chen, Yingming [Wuhan Textile Univ. (China). School of Environment and Urban Construction

    2013-07-01

    Oxy-fuel (O{sub 2}/CO{sub 2}) combustion is one of the several promising new technologies which can realize the integrated control of CO{sub 2}, SO{sub 2}, NO{sub X} and other pollutants. However, when fuels are burned in the high CO{sub 2} concentration environment, the combustion characteristics can be very different from conventional air-fired combustion. Such changes imply that the high CO{sub 2} concentration atmosphere has impacts on the combustion processes. In this paper, the ignition time, laminar flame speed and adiabatic temperature property of C{sub 5} {proportional_to} C{sub 7} n-alkane fuels were studied under both ordinary air atmosphere and O{sub 2}/CO{sub 2} atmospheres over a wide range of CO{sub 2} concentration in the combustion systems. A new unified detailed chemical kinetic model was validated and used to simulate the three liquid hydrocarbon fuel's flame characteristics. Based on the verified model, the influences of various parameters (atmosphere, excess oxygen ratio, O{sub 2} concentration, CO{sub 2} concentration, and alkane type) on the C{sub 5} {proportional_to} C{sub 7} n-alkane's flame characteristics were systematically investigated. It can be concluded that high CO{sub 2} concentration atmosphere has negative effect on n-pentane, n-hexane and n-heptane flame's ignition, laminar flame speed and adiabatic temperature. Besides, this work confirms that high CO{sub 2} concentration atmosphere's chemical effects play a pronounced role on the flame characteristics, especially for the ignition time property.

  19. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    International Nuclear Information System (INIS)

    Xiong Ka; Wang Weichao; Alshareef, Husam N; Gupta, Rahul P; Gnade, Bruce E; Cho, Kyeongjae; White, John B

    2010-01-01

    We investigate the electronic structures and stability for Ni/Bi 2 Te 3 , NiTe/Bi 2 Te 3 , Co/Bi 2 Te 3 and CoTe 2 /Bi 2 Te 3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi 2 Te 3 . The interface formation energy for Co/Bi 2 Te 3 interfaces is much lower than that of Ni/Bi 2 Te 3 interfaces. Furthermore, we found that NiTe on Bi 2 Te 3 is more stable than Ni, while the formation energies for Co and CoTe 2 on Bi 2 Te 3 are comparable.

  20. Observation of atmospheric CO2 and CO at Shangri-La station: results from the only regional station located at southwestern China

    Directory of Open Access Journals (Sweden)

    Shuangxi Fang

    2016-02-01

    Full Text Available Mole fractions of atmospheric carbon dioxide (CO2 and carbon monoxide (CO have been continuously measured since September 2010 at the Shangri-La station (28.02 ° N, 99.73 ° E, 3580 masl in China using a cavity ring-down spectrometer. The station is located in the remote southwest of China, and it is the only station in that region with background conditions for greenhouse gas observations. The vegetation canopy around the station is dominated by coniferous forests and mountain meadows and there is no large city (population >1 million within a 360 km radius. Characteristics of the mole fractions, growth rates, influence of long-distance transport as well as the Weighted Potential CO Sources Contribution Function (WPSCF were studied considering data from September 2010 to May 2014. The diurnal CO2 variation in summer indicates a strong influence of regional terrestrial ecosystem with the maximum CO2 value at 7:00 (local time and the minimum in late afternoon. The highest peak-to-bottom amplitude in the diurnal cycles is in summer, with a value of 18.2±2.0 ppm. The annual growth rate of regional CO2 is estimated to be 2.5±1.0 ppm yr−1 (1-σ, which is close to that of the Mt. Waliguan World Meteorological Organization/Global Atmosphere Watch (WMO/GAW global station (2.2±0.8 ppm yr−1, that is also located at the Tibetan plateau but 900 km north. The CO mole fractions observed at Shangri-La are representative for both in large spatial scale (probably continental/subcontinental and regional scale. The annual CO growth rate is estimated to be -2.6±0.2 ppb yr−1 (1-σ. But the CO rate of decrease in continental/subcontinental scale is apparently larger than the regional scale. From the back trajectory study, it could be seen that the atmospheric CO mole fractions at Shangri-La are subjected to transport from the Northern Africa and Southwestern Asia sectors except for summer and part of autumn. The WPSCF analysis indicates that the western and

  1. Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback

    Science.gov (United States)

    Zhu, Peng; Zhuang, Qianlai; Ciais, Philippe; Welp, Lisa; Li, Wenyu; Xin, Qinchuan

    2017-02-01

    Increasing atmospheric CO2 affects photosynthesis involving directly increasing leaf carboxylation rates, stomatal closure, and climatic effects. The direct effects are generally thought to be positive leading to increased photosynthesis, while its climatic effects can be regionally positive or negative. These effects are usually considered to be independent from each other, but they are in fact coupled through interactions between land surface exchanges of gases and heat and the physical climate system. In particular, stomatal closure reduces evapotranspiration and increases sensible heat emissions from ecosystems, leading to decreased atmospheric moisture and precipitation and local warming. We use a coupled earth system model to attribute the influence of the increase in CO2 on gross primary productivity (GPP) during the period of 1930-2011. In our model, CO2 radiative effects cause climate change that has only a negligible effect on global GPP (a reduction of 0.9 ± 2% during the last 80 years) because of opposite responses between tropical and northern biomes. On the other hand, CO2 physiological effects on GPP are both positive, by increased carboxylation rates and water use efficiency (7.1 ± 0.48% increase), and negative, by vegetation-climate feedback reducing precipitation, as a consequence of decreased transpiration and increased sensible heat in areas without water limitation (2.7 ± 1.76% reduction).When considering the coupled atmosphere-vegetation system, negative climate feedback on photosynthesis and plant growth due to the current level of CO2 opposes 29-38% of the gains from direct fertilization effects.

  2. Abrupt rise in atmospheric CO2 at the onset of the Bølling/Allerød: in-situ ice core data versus true atmospheric signals

    Directory of Open Access Journals (Sweden)

    J. Chappellaz

    2011-05-01

    Full Text Available During the last glacial/interglacial transition the Earth's climate underwent abrupt changes around 14.6 kyr ago. Temperature proxies from ice cores revealed the onset of the Bølling/Allerød (B/A warm period in the north and the start of the Antarctic Cold Reversal in the south. Furthermore, the B/A was accompanied by a rapid sea level rise of about 20 m during meltwater pulse (MWP 1A, whose exact timing is a matter of current debate. In-situ measured CO2 in the EPICA Dome C (EDC ice core also revealed a remarkable jump of 10 ± 1 ppmv in 230 yr at the same time. Allowing for the modelled age distribution of CO2 in firn, we show that atmospheric CO2 could have jumped by 20–35 ppmv in less than 200 yr, which is a factor of 2–3.5 greater than the CO2 signal recorded in-situ in EDC. This rate of change in atmospheric CO2 corresponds to 29–50% of the anthropogenic signal during the last 50 yr and is connected with a radiative forcing of 0.59–0.75 W m−2. Using a model-based airborne fraction of 0.17 of atmospheric CO2, we infer that 125 Pg of carbon need to be released into the atmosphere to produce such a peak. If the abrupt rise in CO2 at the onset of the B/A is unique with respect to other Dansgaard/Oeschger (D/O events of the last 60 kyr (which seems plausible if not unequivocal based on current observations, then the mechanism responsible for it may also have been unique. Available δ13CO2 data are neutral, whether the source of the carbon is of marine or terrestrial origin. We therefore hypothesise that most of the carbon might have been activated as a consequence of continental shelf flooding during MWP-1A. This potential impact of rapid sea level rise on atmospheric CO2 might define the point of no return during the last deglaciation.

  3. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: A multi-model linear feedback analysis

    OpenAIRE

    Roy Tilla; Bopp Laurent; Gehlen Marion; Schneider Birgitt; Cadule Patricia; Frölicher Thomas; Segschneider Jochen; Tijputra Jerry; Heinze Christoph; Joos Fortunat

    2011-01-01

    The increase in atmospheric CO2 over this century depends on the evolution of the oceanic air–sea CO2 uptake which will be driven by the combined response to rising atmospheric CO2 itself and climate change. Here the future oceanic CO2 uptake is simulated using an ensemble of coupled climate–carbon cycle models. The models are driven by CO2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high emission scenario. A linear feedback analysis successfully sep...

  4. Trends in land surface phenology and atmospheric CO2 seasonality in the Northern Hemisphere terrestrial ecosystems

    Science.gov (United States)

    Gonsamo, A.; Chen, J. M.

    2017-12-01

    Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystems on the atmospheric CO2 concentration and 13C/12C isotope ratio seasonality. Atmospheric CO2 and 13C/12C seasonality is controlled by vegetation phenology, but is not identical because growth will typically commence some time before and terminate some time after the net carbon exchange changes sign in spring and autumn, respectively. Here, we use 34-year satellite normalized difference vegetation index (NDVI) observations to determine how changes in vegetation productivity and phenology affect both the atmospheric CO2 and 13C/12C seasonality. Differences and similarities in recent trends of CO2 and 13C/12C seasonality and vegetation phenology will be discussed. Furthermore, we use the NDVI observations, and atmospheric CO2 and 13C/12C data to show the trends and variability of the timing of peak season plant activity. Preliminary results show that the peak season plant activity of the Northern Hemisphere extra-tropical terrestrial ecosystems is shifting towards spring, largely in response to the warming-induced advance of the start of growing season. Besides, the spring-ward shift of the peak plant activity is contributing the most to the increasing peak season productivity. In other words, earlier start of growing season is highly linked to earlier arrival of peak of season and higher NDVI. Changes in the timing of peak season plant activity are expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget.

  5. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    Directory of Open Access Journals (Sweden)

    J. Mao

    2018-01-01

    Full Text Available We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ∼ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  6. Diurnal, synoptic and seasonal variability of atmospheric CO2 in the Paris megacity area

    Science.gov (United States)

    Xueref-Remy, Irène; Dieudonné, Elsa; Vuillemin, Cyrille; Lopez, Morgan; Lac, Christine; Schmidt, Martina; Delmotte, Marc; Chevallier, Frédéric; Ravetta, François; Perrussel, Olivier; Ciais, Philippe; Bréon, François-Marie; Broquet, Grégoire; Ramonet, Michel; Spain, T. Gerard; Ampe, Christophe

    2018-03-01

    Most of the global fossil fuel CO2 emissions arise from urbanized and industrialized areas. Bottom-up inventories quantify them but with large uncertainties. In 2010-2011, the first atmospheric in situ CO2 measurement network for Paris, the capital of France, began operating with the aim of monitoring the regional atmospheric impact of the emissions coming from this megacity. Five stations sampled air along a northeast-southwest axis that corresponds to the direction of the dominant winds. Two stations are classified as rural (Traînou - TRN; Montgé-en-Goële - MON), two are peri-urban (Gonesse - GON; Gif-sur-Yvette - GIF) and one is urban (EIF, located on top of the Eiffel Tower). In this study, we analyze the diurnal, synoptic and seasonal variability of the in situ CO2 measurements over nearly 1 year (8 August 2010-13 July 2011). We compare these datasets with remote CO2 measurements made at Mace Head (MHD) on the Atlantic coast of Ireland and support our analysis with atmospheric boundary layer height (ABLH) observations made in the center of Paris and with both modeled and observed meteorological fields. The average hourly CO2 diurnal cycles observed at the regional stations are mostly driven by the CO2 biospheric cycle, the ABLH cycle and the proximity to urban CO2 emissions. Differences of several µmol mol-1 (ppm) can be observed from one regional site to the other. The more the site is surrounded by urban sources (mostly residential and commercial heating, and traffic), the more the CO2 concentration is elevated, as is the associated variability which reflects the variability of the urban sources. Furthermore, two sites with inlets high above ground level (EIF and TRN) show a phase shift of the CO2 diurnal cycle of a few hours compared to lower sites due to a strong coupling with the boundary layer diurnal cycle. As a consequence, the existence of a CO2 vertical gradient above Paris can be inferred, whose amplitude depends on the time of the day and on

  7. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO2 concentrations: A proteomics perspective.

    Science.gov (United States)

    Santos, Bruna Marques Dos; Balbuena, Tiago Santana

    2017-01-06

    Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO 2 concentrations. Growth under a high concentration of CO 2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO 2 . Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO 2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO 2 . Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO 2 -enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates. The sample enrichment strategy and data analysis used here enabled the identification of all enzymes and most protein isoforms involved in the Calvin-Benson-Bessham cycle in Eucalyptus urophylla. Upon growth in CO 2 -enriched chambers, Eucalyptus urophylla plantlets responded by reducing the vascular bundle area and stomatal aperture size and by increasing the abundance of six of the eleven core enzymes involved in carbon fixation. Our proteome approach provides an estimate on how a commercially important C3-type plant would respond to an increase in CO 2 concentrations. Additionally, confirmation at the protein level of the predicted genes involved in

  8. Carbon coated CoS_2 thermal battery electrode material with enhanced discharge performances and air stability

    International Nuclear Information System (INIS)

    Xie, Song; Deng, Yafeng; Mei, Jun; Yang, Zhaotang; Lau, Woon-Ming; Liu, Hao

    2017-01-01

    Graphical abstract: A novel carbon coated CoS_2 composite is prepared and investigated as a cathode material for thermal batteries. - Highlights: • A novel C@CoS_2 composite is successfully prepared by hydrothermal method. • The growth of CoS_2 in the glucose solution results in a smaller grain size. • The coating of carbon favors electron transfer and buffers polysulfides formation. • The in situ coated carbon layer effectively prevents the oxidation of CoS_2. • The C@CoS_2 composite shows competitive thermal stability and discharge property. - Abstract: Cobalt disulfide (CoS_2) is a promising thermal battery electrode material for its superior thermal stability and discharge performance. However, the low natural resource and poor air stability restrict its application in thermal battery fabrication. In this work, carbon coated CoS_2 composite was prepared by a facile one-pot hydrothermal method with glucose as carbon source. During the growth of CoS_2, the glucose molecules were in situ adsorbed and carbonized on the surface of the as-synthesized CoS_2, and the resultant carbon coating provided improved electrical conductivity and discharge performances to the composite. The thermal battery cell, which was fabricated with such a composite cathode and with a Li-Si anode, can output a capacity of 235.8 mAh g"−"1 and an energy density of 416.9 Wh kg"−"1 at a cut-off voltage of 1.7 V. This carbon coated CoS_2 composite also presented enhanced air stability. After being stored in dry air for 3 months, the composite can still provide a capacity of 232.4 mAh g"−"1 to 1.7 V, whereas the capacity of bare CoS_2 stored with the same condition dropped from 202.4 mAh g"−"1 to 189.7 mAh g"−"1.

  9. Root Damage by Insects Reverses the Effects of Elevated Atmospheric CO2 on Eucalypt Seedlings

    OpenAIRE

    Johnson, Scott N.; Riegler, Markus

    2013-01-01

    Predicted increases in atmospheric carbon dioxide (CO2) are widely anticipated to increase biomass accumulation by accelerating rates of photosynthesis in many plant taxa. Little, however, is known about how soil-borne plant antagonists might modify the effects of elevated CO2 (eCO2), with root-feeding insects being particularly understudied. Root damage by insects often reduces rates of photosynthesis by disrupting root function and imposing water deficits. These insects therefore have consi...

  10. Research on atmospheric CO2 remote sensing with open-path tunable diode laser absorption spectroscopy and comparison methods

    Science.gov (United States)

    Xin, Fengxin; Guo, Jinjia; Sun, Jiayun; Li, Jie; Zhao, Chaofang; Liu, Zhishen

    2017-06-01

    An open-path atmospheric CO2 measurement system was built based on tunable diode laser absorption spectroscopy (TDLAS). The CO2 absorption line near 2 μm was selected, measuring the atmospheric CO2 with direct absorption spectroscopy and carrying on the comparative experiment with multipoint measuring instruments of the open-path. The detection limit of the TDLAS system is 1.94×10-6. The calibration experiment of three AZ-7752 handheld CO2 measuring instruments was carried out with the Los Gatos Research gas analyzer. The consistency of the results was good, and the handheld instrument could be used in the TDLAS system after numerical calibration. With the contrast of three AZ-7752 and their averages, the correlation coefficients are 0.8828, 0.9004, 0.9079, and 0.9393 respectively, which shows that the open-path TDLAS has the best correlation with the average of three AZ-7752 and measures the concentration of atmospheric CO2 accurately. Multipoint measurement provides a convenient comparative method for open-path TDLAS.

  11. Exchange of carbonyl sulfide (OCS) between soils and atmosphere under various CO2 concentrations

    Science.gov (United States)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Andreae, Meinrat O.; Kesselmeier, Jürgen

    2017-06-01

    A new continuous integrated cavity output spectroscopy analyzer and an automated soil chamber system were used to investigate the exchange processes of carbonyl sulfide (OCS) between soils and the atmosphere under laboratory conditions. The exchange patterns of OCS between soils and the atmosphere were found to be highly dependent on soil moisture and ambient CO2 concentration. With increasing soil moisture, OCS exchange ranged from emission under dry conditions to an uptake within an optimum moisture range, followed again by emission at high soil moisture. Elevated CO2 was found to have a significant impact on the exchange rate and direction as tested with several soils. There is a clear tendency toward a release of OCS at higher CO2 levels (up to 7600 ppm), which are typical for the upper few centimeters within soils. At high soil moisture, the release of OCS increased sharply. Measurements after chloroform vapor application show that there is a biotic component to the observed OCS exchange. Furthermore, soil treatment with the fungi inhibitor nystatin showed that fungi might be the dominant OCS consumers in the soils we examined. We discuss the influence of soil moisture and elevated CO2 on the OCS exchange as a change in the activity of microbial communities. Physical factors such as diffusivity that are governed by soil moisture also play a role. Comparing KM values of the enzymes to projected soil water CO2 concentrations showed that competitive inhibition is unlikely for carbonic anhydrase and PEPCO but might occur for RubisCO at higher CO2 concentrations.

  12. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    Science.gov (United States)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  13. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    KAUST Repository

    Xiong, Ka; Wang, Weichao; Alshareef, Husam N.; Gupta, Rahul P.; White, John B.; Gnade, Bruce E.; Cho, Kyeongjae

    2010-01-01

    We investigate the electronic structures and stability for Ni/Bi 2Te3, NiTe/Bi2Te3, Co/Bi 2Te3 and CoTe2/Bi2Te3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi2Te3. The interface formation energy for Co/Bi2Te3 interfaces is much lower than that of Ni/Bi2Te3 interfaces. Furthermore, we found that NiTe on Bi2Te3 is more stable than Ni, while the formation energies for Co and CoTe2 on Bi2Te3 are comparable. © 2010 IOP Publishing Ltd.

  14. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    KAUST Repository

    Xiong, Ka

    2010-03-04

    We investigate the electronic structures and stability for Ni/Bi 2Te3, NiTe/Bi2Te3, Co/Bi 2Te3 and CoTe2/Bi2Te3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi2Te3. The interface formation energy for Co/Bi2Te3 interfaces is much lower than that of Ni/Bi2Te3 interfaces. Furthermore, we found that NiTe on Bi2Te3 is more stable than Ni, while the formation energies for Co and CoTe2 on Bi2Te3 are comparable. © 2010 IOP Publishing Ltd.

  15. The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change

    International Nuclear Information System (INIS)

    Watson, Andrew J.; Naveira Garabato, Alberto C.

    2006-01-01

    Decreased ventilation of the Southern Ocean in glacial time is implicated in most explanations of lower glacial atmospheric CO 2 . Today, the deep (>2000 m) ocean south of the Polar Front is rapidly ventilated from below, with the interaction of deep currents with topography driving high mixing rates well up into the water column. We show from a buoyancy budget that mixing rates are high in all the deep waters of the Southern Ocean. Between the surface and 2000 m depth, water is upwelled by a residual meridional overturning that is directly linked to buoyancy fluxes through the ocean surface. Combined with the rapid deep mixing, this upwelling serves to return deep water to the surface on a short time scale. We propose two new mechanisms by which, in glacial time, the deep Southern Ocean may have been more isolated from the surface. Firstly, the deep ocean appears to have been more stratified because of denser bottom water resulting from intense sea ice formation near Antarctica. The greater stratification would have slowed the deep mixing. Secondly, subzero atmospheric temperatures may have meant that the present-day buoyancy flux from the atmosphere to the ocean surface was reduced or reversed. This in turn would have reduced or eliminated the upwelling (contrary to a common assumption, upwelling is not solely a function of the wind stress but is coupled to the air/sea buoyancy flux too). The observed very close link between Antarctic temperatures and atmospheric CO 2 could then be explained as a natural consequence of the connection between the air/sea buoyancy flux and upwelling in the Southern Ocean, if slower ventilation of the Southern Ocean led to lower atmospheric CO 2 . Here we use a box model, similar to those of previous authors, to show that weaker mixing and reduced upwelling in the Southern Ocean can explain the low glacial atmospheric CO 2 in such a formulation

  16. Theoretical UV absorption spectra of hydrodynamically escaping O{sub 2}/CO{sub 2}-rich exoplanetary atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Gronoff, G.; Mertens, C. J.; Norman, R. B. [NASA LaRC, Hampton, VA (United States); Maggiolo, R. [BIRA-IASB, Avenue Circulaire 3, 1180 Brussels (Belgium); Wedlund, C. Simon [Aalto University School of Electrical Engineering Department of Radio Science and Engineering, P.O. Box 13000, FI-00076 Aalto (Finland); Bell, J. [National Institute of Aerospace, Hampton, VA (United States); Bernard, D. [IPAG, Grenoble (France); Parkinson, C. J. [University of Michigan, MI (United States); Vidal-Madjar, A., E-mail: Guillaume.P.Gronoff@nasa.gov [Observatoire de Paris, Paris (France)

    2014-06-20

    Characterizing Earth- and Venus-like exoplanets' atmospheres to determine if they are habitable and how they are evolving (e.g., equilibrium or strong erosion) is a challenge. For that endeavor, a key element is the retrieval of the exospheric temperature, which is a marker of some of the processes occurring in the lower layers and controls a large part of the atmospheric escape. We describe a method to determine the exospheric temperature of an O{sub 2}- and/or CO{sub 2}-rich transiting exoplanet, and we simulate the respective spectra of such a planet in hydrostatic equilibrium and hydrodynamic escape. The observation of hydrodynamically escaping atmospheres in young planets may help constrain and improve our understanding of the evolution of the solar system's terrestrial planets' atmospheres. We use the dependency of the absorption spectra of the O{sub 2} and CO{sub 2} molecules on the temperature to estimate the temperature independently of the total absorption of the planet. Combining two observables (two parts of the UV spectra that have a different temperature dependency) with the model, we are able to determine the thermospheric density profile and temperature. If the slope of the density profile is inconsistent with the temperature, then we infer the hydrodynamic escape. We address the question of the possible biases in the application of the method to future observations, and we show that the flare activity should be cautiously monitored to avoid large biases.

  17. Optimization of a prognostic biosphere model for terrestrial biomass and atmospheric CO2 variability

    International Nuclear Information System (INIS)

    Saito, M.; Ito, A.; Maksyutov, S.

    2014-01-01

    This study investigates the capacity of a prognostic biosphere model to simulate global variability in atmospheric CO 2 concentrations and vegetation carbon dynamics under current environmental conditions. Global data sets of atmospheric CO 2 concentrations, above-ground biomass (AGB), and net primary productivity (NPP) in terrestrial vegetation were assimilated into the biosphere model using an inverse modeling method combined with an atmospheric transport model. In this process, the optimal physiological parameters of the biosphere model were estimated by minimizing the misfit between observed and modeled values, and parameters were generated to characterize various biome types. Results obtained using the model with the optimized parameters correspond to the observed seasonal variations in CO 2 concentration and their annual amplitudes in both the Northern and Southern Hemispheres. In simulating the mean annual AGB and NPP, the model shows improvements in estimating the mean magnitudes and probability distributions for each biome, as compared with results obtained using prior simulation parameters. However, the model is less efficient in its simulation of AGB for forest type biomes. This misfit suggests that more accurate values of input parameters, specifically, grid mean AGB values and seasonal variabilities in physiological parameters, are required to improve the performance of the simulation model. (authors)

  18. Effect of elevated atmospheric CO2 and vegetation type on microbiota associated with decomposing straw

    DEFF Research Database (Denmark)

    Frederiksen, Helle B.; Ronn, R.; Christensen, S.

    2001-01-01

    Straw from wheat plants grown at ambient and elevated atmospheric CO2 concentrations was placed in litterbags in a grass fallow field and a wheat field. The CO2 treatment induced an increase in straw concentration of ash-free dry mass from 84% to 93% and a decrease in nitrogen concentration from ...

  19. Spatiotemporal patterns of the fossil-fuel CO2 signal in central Europe: results from a high-resolution atmospheric transport model

    Science.gov (United States)

    Liu, Yu; Gruber, Nicolas; Brunner, Dominik

    2017-11-01

    The emission of CO2 from the burning of fossil fuel is a prime determinant of variations in atmospheric CO2. Here, we simulate this fossil-fuel signal together with the natural and background components with a regional high-resolution atmospheric transport model for central and southern Europe considering separately the emissions from different sectors and countries on the basis of emission inventories and hourly emission time functions. The simulated variations in atmospheric CO2 agree very well with observation-based estimates, although the observed variance is slightly underestimated, particularly for the fossil-fuel component. Despite relatively rapid atmospheric mixing, the simulated fossil-fuel signal reveals distinct annual mean structures deep into the troposphere, reflecting the spatially dense aggregation of most emissions. The fossil-fuel signal accounts for more than half of the total (fossil fuel + biospheric + background) temporal variations in atmospheric CO2 in most areas of northern and western central Europe, with the largest variations occurring on diurnal timescales owing to the combination of diurnal variations in emissions and atmospheric mixing and transport out of the surface layer. The covariance of the fossil-fuel emissions and atmospheric transport on diurnal timescales leads to a diurnal fossil-fuel rectifier effect of up to 9 ppm compared to a case with time-constant emissions. The spatial pattern of CO2 from the different sectors largely reflects the distribution and relative magnitude of the corresponding emissions, with power plant emissions leaving the most distinguished mark. An exception is southern and western Europe, where the emissions from the transportation sector dominate the fossil-fuel signal. Most of the fossil-fuel CO2 remains within the country responsible for the emission, although in smaller countries up to 80 % of the fossil-fuel signal can come from abroad. A fossil-fuel emission reduction of 30 % is clearly

  20. Comment on "Scrutinizing the carbon cycle and CO2residence time in the atmosphere" by H. Harde

    Science.gov (United States)

    Köhler, Peter; Hauck, Judith; Völker, Christoph; Wolf-Gladrow, Dieter A.; Butzin, Martin; Halpern, Joshua B.; Rice, Ken; Zeebe, Richard E.

    2018-05-01

    Harde (2017) proposes an alternative accounting scheme for the modern carbon cycle and concludes that only 4.3% of today's atmospheric CO2 is a result of anthropogenic emissions. As we will show, this alternative scheme is too simple, is based on invalid assumptions, and does not address many of the key processes involved in the global carbon cycle that are important on the timescale of interest. Harde (2017) therefore reaches an incorrect conclusion about the role of anthropogenic CO2 emissions. Harde (2017) tries to explain changes in atmospheric CO2 concentration with a single equation, while the most simple model of the carbon cycle must at minimum contain equations of at least two reservoirs (the atmosphere and the surface ocean), which are solved simultaneously. A single equation is fundamentally at odds with basic theory and observations. In the following we will (i) clarify the difference between CO2 atmospheric residence time and adjustment time, (ii) present recently published information about anthropogenic carbon, (iii) present details about the processes that are missing in Harde (2017), (iv) briefly discuss shortcoming in Harde's generalization to paleo timescales, (v) and comment on deficiencies in some of the literature cited in Harde (2017).

  1. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2.

    Science.gov (United States)

    Berthrong, Sean T; Yeager, Chris M; Gallegos-Graves, Laverne; Steven, Blaire; Eichorst, Stephanie A; Jackson, Robert B; Kuske, Cheryl R

    2014-05-01

    Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria. The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO2, and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate.

  2. What would dense atmospheric observation networks bring to the quantification of city CO2 emissions?

    Science.gov (United States)

    Wu, Lin; Broquet, Grégoire; Ciais, Philippe; Bellassen, Valentin; Vogel, Felix; Chevallier, Frédéric; Xueref-Remy, Irène; Wang, Yilong

    2016-06-01

    Cities currently covering only a very small portion ( directly release to the atmosphere about 44 % of global energy-related CO2, but they are associated with 71-76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by the monitoring, reporting, and verification (MRV) procedures that play a key role for market- or policy-based mitigation actions. Here we analyze the potential of a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. This monitoring tool is configured for the quantification of the total and sectoral CO2 emissions in the Paris metropolitan area (˜ 12 million inhabitants and 11.4 TgC emitted in 2010) during the month of January 2011. Its performances are evaluated in terms of uncertainty reduction based on observing system simulation experiments (OSSEs). They are analyzed as a function of the number of sampling sites (measuring at 25 m a.g.l.) and as a function of the network design. The instruments presently used to measure CO2 concentrations at research stations are expensive (typically ˜ EUR 50 k per sensor), which has limited the few current pilot city networks to around 10 sites. Larger theoretical networks are studied here to assess the potential benefit of hypothetical operational lower-cost sensors. The setup of our inversion system is based on a number of diagnostics and assumptions from previous city-scale inversion experiences with real data. We find that, given our assumptions underlying the configuration of the OSSEs, with 10 stations only the uncertainty for the total city CO2 emission during 1 month is significantly reduced by the inversion by ˜ 42 %. It can be further reduced by extending the

  3. [Effect of elevated atmospheric CO2 on soil urease and phosphatase activities].

    Science.gov (United States)

    Chen, Lijun; Wu, Zhijie; Huang, Guohong; Zhou, Likai

    2002-10-01

    The response of soil urease and phosphatase activities at different rice growth stages to free air CO2 enrichment (FACE) was studied. The results showed that comparing with the ambient atmospheric CO2 concentration (370 mumol.mol-1), FACE (570 mumol.mol-1) significantly increased the urease activity of 0-5 cm soil layer at the vigorous growth stage of rice, whole that of 5-10 cm layer had no significant change during the whole growing season. Phosphatase activity of 0-5 cm and 5-10 cm soil layers significantly increased, and the peak increment was at the vigorous growth stage of rice.

  4. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock

    International Nuclear Information System (INIS)

    Streit, J.E.; Hillis, R.R.

    2004-01-01

    Geomechanical modelling of fault stability is an integral part of Australia's GEODISC research program to ensure the safe storage of carbon dioxide in subsurface reservoirs. Storage of CO 2 in deep saline formations or depleted hydrocarbon reservoirs requires estimates of sustainable fluid pressures that will not induce fracturing or create fault permeability that could lead to CO 2 escape. Analyses of fault stability require the determination of fault orientations, ambient pore fluid pressures and in situ stresses in a potential storage site. The calculation of effective stresses that act on faults and reservoir rocks lead then to estimates of fault slip tendency and fluid pressures sustainable during CO 2 storage. These parameters can be visualized on 3D images of fault surfaces or in 2D projections. Faults that are unfavourably oriented for reactivation can be identified from failure plots. In depleted oil and gas fields, modelling of fault and rock stability needs to incorporate changes of the pre-production stresses that were induced by hydrocarbon production and associated pore pressure depletion. Such induced stress changes influence the maximum sustainable formation pressures and CO 2 storage volumes. Hence, determination of in situ stresses and modelling of fault stability are essential prerequisites for the safe engineering of subsurface CO 2 injection and the modelling of storage capacity. (author)

  5. Stability of low-temperature Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} cubic phase: The role of temperature and atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Quinzeni, Irene; Capsoni, Doretta; Berbenni, Vittorio; Mustarelli, Piercarlo [Chemistry Department, Physical-Chemistry Section, University of Pavia, Viale Taramelli 16, 27100 Pavia (Italy); Sturini, Michela [Chemistry Department, Analytical Section, University of Pavia, Viale Taramelli 12, 27100 Pavia (Italy); Bini, Marcella, E-mail: bini@unipv.it [Chemistry Department, Physical-Chemistry Section, University of Pavia, Viale Taramelli 16, 27100 Pavia (Italy)

    2017-01-01

    Rechargeable all solid-state lithium batteries are a promising technology for the next generation of safer batteries. In this context, strict requirements are placed on the electrolytes, among which is emerging the Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} garnet, chiefly for the relationships among synthesis conditions and phase stability. Here, the structural modifications of the low temperature (LT) Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} cubic form were investigated by using in situ X-Rays diffraction analysis. In particular, we studied the role of both temperature and atmosphere (air or argon) on phase stabilization. In argon flow, the LT phase is stable under 750 °C, and it transforms into the tetragonal one at lower temperature. In air, it partially decomposes to La{sub 2}Zr{sub 2}O{sub 7} due to Li loss above 250 °C. ICP-OES analysis confirmed that garnet stoichiometry was maintained in argon, whereas in air lithium loss occurred. The structural transformations are driven by the CO{sub 2} absorbed in the LT structure that can form Li{sub 2}CO{sub 3} and/or La{sub 2}(CO{sub 3}){sub 3} so causing stoichiometry changes responsible of the structural evolution. - Highlights: • Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} is a promising electrolyte for rechargeable all solid state batteries. • The stability of low temperature cubic phase of garnet in argon and air was determined. • The garnet stoichiometry was maintained in argon while in air lithium loss occurred. • The influence of CO{sub 2} adsorption on the structural modifications of garnet was proved.

  6. Regional contributions of ocean iron fertilization to atmospheric CO2 changes during the last glacial termination

    Science.gov (United States)

    Opazo, N. E.; Lambert, F.

    2017-12-01

    Mineral dust aerosols affect climate directly by changing the radiative balance of the Earth, and indirectly by acting as cloud condensation nuclei and by affecting biogeochemical cycles. The impact on marine biogeochemical cycles is primarily through the supply of micronutrients such as iron to nutrient-limited regions of the oceans. Iron fertilization of High Nutrient Low Chlorophyll (HNLC) regions of the oceans is thought to have significantly affected the carbon cycle on glacial-interglacial scales and contributed about one fourth of the 80-100 ppm lowering of glacial atmospheric CO2 concentrations.In this study, we quantify the effect of global dust fluxes on atmospheric CO2 using the cGENIE model, an Earth System Model of Intermediate Complexity with emphasis on the carbon cycle. Global Holocene and Last Glacial Maximum (LGM) dust flux fields were obtained from both dust model simulations and reconstructions based on observational data. The analysis was performed in two stages. In the first instance, we produced 8 global intermediate dust flux fields between Holocene and LGM and simulated the atmospheric CO2 drawdown due to these 10 dust levels. In the second stage, we only changed dust flux levels in specific HNLC regions to isolate the effect of these ocean basins. We thus quantify the contribution of the South Atlantic, the South Pacific, the North Pacific, and the Central Pacific HNLC regions to the total atmospheric CO2 difference due to iron fertilization of the Earth's oceans.

  7. Effects of long-term elevated atmospheric CO2 concentrations on Pinus ponderosa

    International Nuclear Information System (INIS)

    Surano, K.A.; Kercher, J.R.

    1993-01-01

    This report details the results from an experiment of the effects of long-term elevated atmospheric CO 2 concentrations on ponderosa pine (Pinus ponderosa Laws.) saplings and seedlings. The study began in 1983 as a pilot study designed to explore the feasibility of using open-top chambers for continuous multi-year exposures on sapling-sized trees and to examine possible CO 2 responses so that future research could be adequately designed. however, following the first year of exposure, preliminary results from the study indicated that measurements of CO 2 responses should be intensified. Open-top chambers proved suitable for use in multiyear exposures of mature trees. With respect to the preliminary examination of CO 2 responses, many interesting observations were made. The nature of the preliminary results suggests that future long-term field CO 2 exposures on perennial species may be critical to the understanding and preparation for future environments. Other research reported here attempted to adapt an existing western coniferous forest growth and succession model for use in elevated CO 2 scenarios using differential species responses, and assessed the usefulness of the model in that regard. Seven papers have been processed separately for inclusion in the appropriate data bases

  8. Environmental impact of atmospheric fugitive emissions from amine based post combustion CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Attalla, M.I.; Azzi, M.; Jackson, P.; Angove, D. [CSIRO, Newcastle, NSW (Australia). Energy Technology Div

    2009-07-01

    Amine solvent-based chemical absorption of CO{sub 2} is the most mature technology for post combustion capture (PCC) and will likely to be the first to reach commercial scale application. As such, potentially millions of tonnes of solvent will be used per year. In order to ensure the viability of PCC, the potential environmental impacts of fugitive emissions on terrestrial, aquatic and atmospheric environments must be investigated. This study used controlled laboratory/ pilot scale experiments to determine the major chemical components emitted under different operating conditions. As well, the atmospheric photo-oxidation products of amines were studied in a smog chamber under ambient conditions. The environmental concerns associated with these emissions include entrainment of the amine/ammonia with the treated flue gas and their associated atmospheric chemical reaction pathways; formation of ammonia and other amine degradation products can be entrained with the flue gas to the atmosphere; nitrosamines may form as a result of the reaction between an amine and nitrogen oxide; and the mounting evidence of the presence of amines in particulate phase. The chemical compositions of potential fugitive emissions in the flue gases from the CO{sub 2} capture system were estimated. The CSIRO smog chamber was then used to assess the potential environmental impact of selected relevant compounds in terms of their reactivities to produce secondary products. These secondary products were then characterized to determine their potential health risk factors. An air quality model was used to evaluate the potential impact of using amine solutions for CO{sub 2} capture and to determine the trade-off between CO{sub 2} capture and local and regional air quality.

  9. First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth

    Science.gov (United States)

    Geilfus, N.-X.; Carnat, G.; Dieckmann, G. S.; Halden, N.; Nehrke, G.; Papakyriakou, T.; Tison, J.-L.; Delille, B.

    2013-01-01

    report measurements of pH, total alkalinity, air-ice CO2 fluxes (chamber method), and CaCO3 content of frost flowers (FF) and thin landfast sea ice. As the temperature decreases, concentration of solutes in the brine skim increases. Along this gradual concentration process, some salts reach their solubility threshold and start precipitating. The precipitation of ikaite (CaCO3.6H2O) was confirmed in the FF and throughout the ice by Raman spectroscopy and X-ray analysis. The amount of ikaite precipitated was estimated to be 25 µmol kg-1 melted FF, in the FF and is shown to decrease from 19 to 15 µmol kg-1 melted ice in the upper part and at the bottom of the ice, respectively. CO2 release due to precipitation of CaCO3 is estimated to be 50 µmol kg-1 melted samples. The dissolved inorganic carbon (DIC) normalized to a salinity of 10 exhibits significant depletion in the upper layer of the ice and in the FF. This DIC loss is estimated to be 2069 µmol kg-1 melted sample and corresponds to a CO2 release from the ice to the atmosphere ranging from 20 to 40 mmol m-2 d-1. This estimate is consistent with flux measurements of air-ice CO2 exchange. Our measurements confirm previous laboratory findings that growing young sea ice acts as a source of CO2 to the atmosphere. CaCO3 precipitation during early ice growth appears to promote the release of CO2 to the atmosphere; however, its contribution to the overall release by newly formed ice is most likely minor.

  10. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    Directory of Open Access Journals (Sweden)

    H. Graven

    2017-12-01

    Full Text Available The isotopic composition of carbon (Δ14C and δ13C in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850–2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6 for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  11. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    Science.gov (United States)

    Graven, Heather; Allison, Colin E.; Etheridge, David M.; Hammer, Samuel; Keeling, Ralph F.; Levin, Ingeborg; Meijer, Harro A. J.; Rubino, Mauro; Tans, Pieter P.; Trudinger, Cathy M.; Vaughn, Bruce H.; White, James W. C.

    2017-12-01

    The isotopic composition of carbon (Δ14C and δ13C) in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs) present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850-2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6) for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  12. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla

    OpenAIRE

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched C...

  13. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    Science.gov (United States)

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  14. Declining Atmospheric pCO2 During the Late Miocene and Early Pliocene: New Insights from Paired Alkenone and Coccolith Stable Isotope Barometry

    Science.gov (United States)

    Phelps, S. R.; Polissar, P. J.; deMenocal, P. B.; Swann, J. P.; Guo, M. Y.; Stoll, H. M.

    2015-12-01

    The relationship between atmospheric CO2 concentrations and climate is broadly understood for the Cenozoic era: warmer periods are associated with higher atmospheric carbon dioxide. This understanding is supported by atmospheric samples of the past 800,000 years from ice cores, which suggest CO2 levels play a key role in regulating global climate on glacial interglacial timescales as well. In this context, the late Miocene poses a challenge: sea-surface temperatures indicate substantial global warmth, though existing data suggest atmospheric CO2 concentrations were lower than pre-industrial values. Recent work using the stable carbon and oxygen isotopic composition of coccolith calcite has demonstrated these organisms began actively diverting inorganic carbon away from calcification and to the site of photosynthesis during the late Miocene. This process occurs in culture experiments in response to low aqueous CO2 concentrations, and suggests decreasing atmospheric pCO2 values during the late Miocene. Here we present new data from ODP Site 806 in the western equatorial Pacific Ocean that supports declining atmospheric CO2 across the late Miocene. Carbon isotope values of coccolith calcite from Site 806 demonstrate carbon limitation and re-allocation of inorganic carbon to photosynthesis starting between ~8 and 6 Ma. The timing of this limitation at Site 806 precedes shifts at other ODP sites, reflecting the higher mixed layer temperature and resultant lower CO2 solubility at Site 806. New measurements of carbon isotope values from alkenones at Site 806 show an increase in photosynthetic carbon fractionation (ɛp) accompanied the carbon limitation evident from coccolith calcite stable isotope data. While higher ɛp is typically interpreted as higher CO2 concentrations, at Site 806, our data suggest it reflects enhancement of chloroplast CO2 from active carbon transport by the coccolithophore algae in response to lower CO2 concentrations. Our new data from ODP Site

  15. 1.6 μm DIAL Measurement and Back Trajectory Analysis of CO2 Concentration Profiles in the Lower-Atmosphere

    Science.gov (United States)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2016-12-01

    Carbon dioxide (CO2) is the primary greenhouse gas emitted through human activities. In addition to the ground level CO2 network, vertical CO2 concentration profiles also play an important role for the estimation of the carbon budget and global warming in the inversion method. Especially, for the detailed analysis of forest carbon dynamics and CO2 fluxes of urban area, vertical CO2 concentration profiles with high spatial and temporal resolution in the lower atmosphere have been conducted by a differential absorption lidar (DIAL). We have observed several vertical profiles of CO2 concentrations for nighttime and daytime from 0.25 to 2.5 km altitude with range resolution of 300 m and integration time of 1 hour. In order to extract information on the origin of the CO2 masses, one day back trajectories were calculated by using a three dimensional (3-D) atmospheric transport model. In many cases, CO2 low concentration layers of over 1.5km altitude were flown by westerly winds from the forest. In another case, high concentration layers of CO2 were flown from the urban areas. As the spectra of absorption lines of any molecules are influenced basically by the temperature in the atmosphere, laser beams of three wavelengths around a CO2 absorption spectrum are transmitted alternately to the atmosphere for simultaneous measurements of CO2 concentration and temperature profiles. Moreover, a few processing algorithms of CO2-DIAL are also performed for improvement of measurement accuracy. For computation of trajectories and drawing their figures, the JRA-25 data provided by the cooperative research project for the JRA-25 long-term reanalysis of the Japan Meteorological Agency (JMA) and the Central Research Institute of Electric Power Industry (CRIEPI) and the NIPR trajectory model (Tomikawa and Sato, 2005; http://firp-nitram.nipr.ac.jp) were used. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and

  16. Atmospheric CO2 enrichment alters energy assimilation, investment and allocation in Xanthium strumarium.

    Science.gov (United States)

    Nagel, Jennifer M; Wang, Xianzhong; Lewis, James D; Fung, Howard A; Tissue, David T; Griffin, Kevin L

    2005-05-01

    Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2].

  17. Studying biosphere-atmosphere exchange of CO2 through Carbon-13 stable isotopes

    NARCIS (Netherlands)

    Velde, van der I.R.

    2015-01-01

    Summary Thesis ‘Studying biosphere-atmosphere exchange of CO2 through

    carbon-13 stable isotopes’

    Ivar van der Velde

    Making predictions of future climate is difficult, mainly due to large uncertainties in the carbon cycle. The rate at which carbon is stored in the oceans and

  18. Development of an MgO-based binder for stabilizing fine sediments and storing CO2.

    Science.gov (United States)

    Hwang, Kyung-Yup; Ahn, Jun-Young; Kim, Cheolyong; Seo, Jeong-Yun; Hwang, Inseong

    2015-12-01

    An MgO-based binder was developed that could stabilize fine dredged sediments for reuse and store CO2. Initially, a binder consisting of fly ash (FA) and blast furnace slag (BFS) was developed by using alkaline activators such as KOH, NaOH, and lime. The FA0.4-BFS0.6 binder (mixed at a FA-to-BFS weight ratio of 4:6) showed the highest compressive strength of 10.7 MPa among FA/BFS binders when 5 M KOH was used. When lime (L) was tested as an alkaline activator, the strength was comparable with those obtained when KOH or NaOH was used. The L0.1-(FA0.4BFS0.6)0.9 binder (10 % lime mixed with the FA/BFS binder) showed the highest strength of 11.0 MPa. Finally, by amending this L0.1-(FA0.4BFS0.6)0.9 binder with MgO, a novel MgO-based binder (MgO0.5-(L0.1-(FA0.4BFS0.6)0.9) 0.5) was developed, which demonstrated the 28th day strength of 11.9 MPa. The MgO-based binder was successfully applied to stabilize a fine sediment to yield a compressive strength of 4.78 MPa in 365 days, which was higher than that obtained by the Portland cement (PC) system (3.22 MPa). Carbon dioxide sequestration was evidenced by three observations: (1) the decrease in pH of the treated sediment from 12.2 to 11.0; (2) the progress of the carbonation front inward the treated sediment; and (3) the presence of magnesium carbonates. The thermogravimetric analysis (TGA) results showed that 67.2 kg of CO2 per ton of the treated sediment could be stored under the atmospheric condition during 1 year.

  19. Diurnal, synoptic and seasonal variability of atmospheric CO2 in the Paris megacity area

    Directory of Open Access Journals (Sweden)

    I. Xueref-Remy

    2018-03-01

    Full Text Available Most of the global fossil fuel CO2 emissions arise from urbanized and industrialized areas. Bottom-up inventories quantify them but with large uncertainties. In 2010–2011, the first atmospheric in situ CO2 measurement network for Paris, the capital of France, began operating with the aim of monitoring the regional atmospheric impact of the emissions coming from this megacity. Five stations sampled air along a northeast–southwest axis that corresponds to the direction of the dominant winds. Two stations are classified as rural (Traînou – TRN; Montgé-en-Goële – MON, two are peri-urban (Gonesse – GON; Gif-sur-Yvette – GIF and one is urban (EIF, located on top of the Eiffel Tower. In this study, we analyze the diurnal, synoptic and seasonal variability of the in situ CO2 measurements over nearly 1 year (8 August 2010–13 July 2011. We compare these datasets with remote CO2 measurements made at Mace Head (MHD on the Atlantic coast of Ireland and support our analysis with atmospheric boundary layer height (ABLH observations made in the center of Paris and with both modeled and observed meteorological fields. The average hourly CO2 diurnal cycles observed at the regional stations are mostly driven by the CO2 biospheric cycle, the ABLH cycle and the proximity to urban CO2 emissions. Differences of several µmol mol−1 (ppm can be observed from one regional site to the other. The more the site is surrounded by urban sources (mostly residential and commercial heating, and traffic, the more the CO2 concentration is elevated, as is the associated variability which reflects the variability of the urban sources. Furthermore, two sites with inlets high above ground level (EIF and TRN show a phase shift of the CO2 diurnal cycle of a few hours compared to lower sites due to a strong coupling with the boundary layer diurnal cycle. As a consequence, the existence of a CO2 vertical gradient above Paris can be inferred, whose amplitude depends

  20. Ethanol from sugar cane bagasse. Contribution to atmospheric CO[sub 2] decrease. El etanol de bagazo como combustible. Contribucion a la reduccion del CO[sub 2] atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, G.J. (Estacion Experimental Agroindustrial Obispo Colombres. Tucuman (Argentina))

    1993-03-01

    The current problem related to the increasing concentration of atmospheric CO[sub 2] produced by the industrial use of fossil fuels is reviewed. An analysis of the contribution that the use of ethanol from sugar cane bagasse might have on CO[sub 2] decrease is described. (Author)

  1. Double-Layer Structured CO2 Adsorbent Functionalized with Modified Polyethyleneimine for High Physical and Chemical Stability.

    Science.gov (United States)

    Jeon, Sunbin; Jung, Hyunchul; Kim, Sung Hyun; Lee, Ki Bong

    2018-06-18

    CO 2 capture using polyethyleneimine (PEI)-impregnated silica adsorbents has been receiving a lot of attention. However, the absence of physical stability (evaporation and leaching of amine) and chemical stability (urea formation) of the PEI-impregnated silica adsorbent has been generally established. Therefore, in this study, a double-layer impregnated structure, developed using modified PEI, is newly proposed to enhance the physical and chemical stabilities of the adsorbent. Epoxy-modified PEI and diepoxide-cross-linked PEI were impregnated via a dry impregnation method in the first and second layers, respectively. The physical stability of the double-layer structured adsorbent was noticeably enhanced when compared to the conventional adsorbents with a single layer. In addition to the enhanced physical stability, the result of simulated temperature swing adsorption cycles revealed that the double-layer structured adsorbent presented a high potential working capacity (3.5 mmol/g) and less urea formation under CO 2 -rich regeneration conditions. The enhanced physical and chemical stabilities as well as the high CO 2 working capacity of the double-layer structured adsorbent were mainly attributed to the second layer consisting of diepoxide-cross-linked PEI.

  2. Measurements of Atmospheric CO2 Column in Cloudy Weather Conditions using An IM-CW Lidar at 1.57 Micron

    Science.gov (United States)

    Lin, Bing; Obland, Michael; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Campbell, Joel; Dobler, Jeremy; Meadows, Bryon; Fan, Tai-Fang; Kooi, Susan; hide

    2015-01-01

    This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-m CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively.

  3. Projecting Soil Feedbacks to Atmospheric CO2 Following Erosion and Deposition on Centennial Timescales in Two Contrasting Forests: A Study of Critical Zone-Atmosphere Exchange

    Science.gov (United States)

    Billings, S. A.; Richter, D., Jr.; Ziegler, S. E.; Prestegaard, K. L.

    2016-12-01

    For almost 20 y there has been a growing recognition that erosion and associated lateral movement of SOC does not necessarily result in a net CO2 source from terrestrial sources to the atmosphere. Eroded SOC may undergo mineralization to CO2 at a more rapid pace than it would have in situ, but the eroding ecosystem continues to generate SOC at a potentially modified rate, and the eroding profile may also experience changing SOC mineralization rates. No one knows how these process rates may change upon erosion. Years ago, we introduced a model that computes the influence of erosion on biosphere-atmosphere CO2 exchange for any profile of interest. The model permits the user to test how assumptions of changing SOC production and mineralization can influence the degree to which erosion induces a net CO2 sink or source. Here we present an analogous model depicting how deposition of eroded SOC also can result in altered biosphere-atmosphere CO2 exchange. We employ both models to investigate how erosion and deposition in two contrasting forested regions may influence regional C budgets. Runoff-induced erosion in a boreal forest occurs at low rates, but removes C-rich, organic material; anthropogenically-enhanced erosion in a warm temperate forest removed both O- and mineral-rich A-horizons. Model runs (100 y) suggest that even though the great volume of mineral soil eroded from the temperate forest was relatively low-SOC, high erosion rates prompted greater potential for erosion to serve as a net CO2 sink compared to the boreal forest where C-rich material was lost but erosion rates remained low. The models further suggest that changes in SOC production and mineralization at eroding sites in both forest types are a greater influence on CO2 source or sink strength than analogous changes at depositional sites. The fate of eroded material and the influence of erosion and deposition on SOC dynamics remain knowledge gaps critical for projecting atmospheric CO2.

  4. Impact of OH Radical-Initiated H2CO3 Degradation in the Earth's Atmosphere via Proton-Coupled Electron Transfer Mechanism.

    Science.gov (United States)

    Ghoshal, Sourav; Hazra, Montu K

    2016-02-04

    The decomposition of isolated carbonic acid (H2CO3) molecule into CO2 and H2O (H2CO3 → CO2 + H2O) is prevented by a large activation barrier (>35 kcal/mol). Nevertheless, it is surprising that the detection of the H2CO3 molecule has not been possible yet, and the hunt for the free H2CO3 molecule has become challenging not only in the Earth's atmosphere but also on Mars. In view of this fact, we report here the high levels of quantum chemistry calculations investigating both the energetics and kinetics of the OH radical-initiated H2CO3 degradation reaction to interpret the loss of the H2CO3 molecule in the Earth's atmosphere. It is seen from our study that proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) are the two mechanisms by which the OH radical initiates the degradation of the H2CO3 molecule. Moreover, the PCET mechanism is potentially the important one, as the effective barrier, defined as the difference between the zero point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, for the PCET mechanism at the CCSD(T)/6-311++G(3df,3pd) level of theory is ∼3 to 4 kcal/mol lower than the effective barrier height associated with the HAT mechanism. The CCSD(T)/6-311++G(3df,3pd) level predicted effective barrier heights for the degradations of the two most stable conformers of H2CO3 molecule via the PCET mechanism are only ∼2.7 and 4.3 kcal/mol. A comparative reaction rate analysis at the CCSD(T)/6-311++G(3df,3pd) level of theory has also been carried out to explore the potential impact of the OH radical-initiated H2CO3 degradation relative to that from water (H2O), formic acid (FA), acetic acid (AA) and sulfuric acid (SA) assisted H2CO3 → CO2 + H2O decomposition reactions in both the Earth's troposphere and stratosphere. The comparison of the reaction rates reveals that, although the atmospheric concentration of the OH radical is

  5. Determination of the dissociation constant of molten Li/sub 2/CO/sub 3//Na/sub 2/CO/sub 3//K/sub 2/CO/sub 3/ using a stabilized zirconia oxide-ion indicator

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yasuhiko; Tsuru, Kiyoshi; Oishi, Jun; Miyazaki, Yoshinori; Kodama, Teruo

    1985-09-01

    An Li/sub 2/CO/sub 3//Na/sub 2/CO/sub 3//K/sub 2/CO/sub 3/ eutectic melt has been selected as an example of a molten-carbonate system and the suitability of a stabilized zirconia-air electrode as an oxide-ion concentration indicator for this melt has been confirmed. With this indicator, the dissociation constant of the reaction CO/sub 3//sup 2 -/(l)=CO/sub 2/(g)+O/sup 2 -/(l) in this melt has been determined to be Ksub(d)=P sub(CO/sub 2/) (O/sup 2 -/)=4.03 x 10/sup -3/ Pa at 873 K. Reproducible measurements were obtained throughout the experiment and this method might find further application in the study of reactions related to the oxide ion in carbonate melts. (orig.).

  6. Fabrication and evaluation of atmospheric plasma spraying WC-Co-Cu-MoS2 composite coatings

    International Nuclear Information System (INIS)

    Yuan Jianhui; Zhu Yingchun; Zheng Xuebing; Ji Heng; Yang Tao

    2011-01-01

    Research highlights: → Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. → It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved. → Combining the wear resistance of WC with the lubricating properties of Cu and MoS 2 has an extremely beneficial effect on improving the tribological performance of the resulting coating. - Abstract: Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. These coatings were deposited on mild steel substrates by atmospheric plasma spraying (APS). The feedstock powders were prepared by mechanically mixing the solid lubricant powders and WC-Co powder, followed by sintering and crushing the mixtures to avoid different particle flighting trajectories at plasma. The tribological properties of the coatings against stainless steel balls were examined by ball-on-disk (BOD) tribometer under normal atmospheric condition. The microstructure of the coatings was studied by optical microscope, scanning electron microscope and X-ray diffraction. It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved, which were attributed to the protection of Cu around them. The friction and wear behaviors of all the WC-Co-Cu-MoS 2 coatings were superior to that of WC-Co coating. Such behavior was associated to different wear mechanisms operating for WC-Co coating and the WC-Co-Cu-MoS 2 coatings.

  7. Elevated CO2 and Tree Species Affect Microbial  Activity and Associated Aggregate Stability in Soil  Amended with Litter

    Directory of Open Access Journals (Sweden)

    Salwan M. J. Al‐Maliki

    2017-03-01

    Full Text Available (1 Elevated atmospheric CO2 (eCO2 may affect organic inputs to woodland soils with potential consequences for C dynamics and associated aggregation; (2 The Bangor Free Air Concentration Enrichment experiment compared ambient (330 ppmv and elevated (550 ppmv CO2 regimes over four growing seasons (2005–2008 under Alnus glutinosa, Betula pendula and Fagus sylvatica. Litter from the experiment (autumn 2008 and Lumbricus terrestris were added to mesocosm soils. Microbial properties and aggregate stability were investigated in soil and earthworm casts. Soils taken from the field experiment in spring 2009 were also investigated; (3 eCO2 litter had lower N and higher C:N ratios. F. sylvatica and B. pendula litter had lower N and P than A. glutinosa; F. sylvatica had higher cellulose. In mesocosms, eCO2 litter decreased respiration, mineralization constant (respired C:total organic C and soluble carbon in soil but not earthworm casts; microbial‐C and fungal hyphal length differed by species (A. glutinosa = B. pendula > F. sylvatica not CO2 regime. eCO2 increased respiration in field aggregates but increased stability only under F. sylvatica; (4 Lower litter quality under eCO2 may restrict its initial decomposition, affecting C stabilization in aggregates. Later resistant materials may support microbial activity and increase aggregate stability. In woodland, C and soil aggregation dynamics may alter under eCO2, but outcomes may be influenced by tree species and earthworm activity.

  8. Atmospheric CO2 and climate: Importance of the transient response

    International Nuclear Information System (INIS)

    Schneider, S.H.; Thompson, S.L.

    1981-01-01

    Preliminary studies suggest that the thermal inertia of the upper layers of the oceans, combined with vertical mixing of deeper oceanic waters, could delay the response of the globally averaged surface temperature to an increasing atmospheric CO 2 concentration by a decade or so relative to equilibrium calculations. This study extends the global analysis of the transient response to zonal averages, using a hierarchy of simple energy balance models and vertical mixing assumptions for water exchange between upper and deeper oceanic layers. It is found that because of the latitudinal dependence of both thermal inertia and radiative and dynamic energy exchange mechanisms, the approach toward equilibrium of the surface temperature of various regions of the earth will be significantly different from the global average approach. This suggests that the actual time evolution of the horizontal surface temperature gradients--and any associated regional climatic anomalies-may well be significantly different from that suggested by equilibrium climatic modeling simulations (or those computed with a highly unrealistic geographic distribution of ocean thermal capacity). Also, the transient response as a function of latitude is significantly different between globally equivalent CO 2 and solar constant focusing runs. It is suggested that the nature of the transient response is a major uncertainty in characterizing the CO 2 problem and that study of this topic should become a major priority for future research. An appendix puts this issue in the context of the overall CO 2 problem

  9. Carbonation of alkaline paper mill waste to reduce CO{sub 2} greenhouse gas emissions into the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R. [Laboratoire de Geophysique Interne et Tectonophysique, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France); Department of Geology, University of Huelva, Campus ' El Carmen' , 21071 Huelva (Spain)], E-mail: rafael.perez@dgeo.uhu.es; Montes-Hernandez, G. [Laboratoire de Geophysique Interne et Tectonophysique, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France); Nieto, J.M. [Department of Geology, University of Huelva, Campus ' El Carmen' , 21071 Huelva (Spain); Renard, F. [Laboratoire de Geodynamique des Chaines Alpines, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France); Physics of Geological Processes, University of Oslo (Norway); Charlet, L. [Laboratoire de Geophysique Interne et Tectonophysique, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France)

    2008-08-15

    The global warming of Earth's near-surface, air and oceans in recent decades is a direct consequence of anthropogenic emission of greenhouse gases into the atmosphere such as CO{sub 2}, CH{sub 4}, N{sub 2}O and CFCs. The CO{sub 2} emissions contribute approximately 60% to this climate change. This study investigates experimentally the aqueous carbonation mechanisms of an alkaline paper mill waste containing about 55 wt% portlandite (Ca(OH){sub 2}) as a possible mineralogical CO{sub 2} sequestration process. The overall carbonation reaction includes the following steps: (1) Ca release from portlandite dissolution, (2) CO{sub 2} dissolution in water and (3) CaCO{sub 3} precipitation. This CO{sub 2} sequestration mechanism was supported by geochemical modelling of final solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of final reaction products. According to the experimental protocol, the system proposed would favour the total capture of approx. 218 kg of CO{sub 2} into stable calcite/ton of paper waste, independently of initial CO{sub 2} pressure. The final product from the carbonation process is a calcite (ca. 100 wt%)-water dispersion. Indeed, the total captured CO{sub 2} mineralized as calcite could be stored in degraded soils or even used for diverse industrial applications. This result demonstrates the possibility of using the alkaline liquid-solid waste for CO{sub 2} mitigation and reduction of greenhouse effect gases into the atmosphere.

  10. Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions

    Science.gov (United States)

    Wang, Yilong; Broquet, Grégoire; Ciais, Philippe; Chevallier, Frédéric; Vogel, Felix; Wu, Lin; Yin, Yi; Wang, Rong; Tao, Shu

    2018-03-01

    Combining measurements of atmospheric CO2 and its radiocarbon (14CO2) fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2). In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe) and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75° × 2.5° resolution. We conduct Observing System Simulation Experiments (OSSEs) and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as posterior uncertainty, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called prior uncertainty). The second one is based on comparisons of prior and posterior estimates of the emission to synthetic true emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 %) in high emitting regions, but the performance of the inversion remains limited over low

  11. Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2018-03-01

    Full Text Available Combining measurements of atmospheric CO2 and its radiocarbon (14CO2 fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2. In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75°  ×  2.5° resolution. We conduct Observing System Simulation Experiments (OSSEs and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as posterior uncertainty, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called prior uncertainty. The second one is based on comparisons of prior and posterior estimates of the emission to synthetic true emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 % in high emitting regions, but the performance of the inversion

  12. Frequency stabilization of quantum cascade laser for spectroscopic CO2 isotope analysis

    Science.gov (United States)

    Han, Luo; Xia, Hua; Pang, Tao; Zhang, Zhirong; Wu, Bian; Liu, Shuo; Sun, Pengshuai; Cui, Xiaojuan; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2018-06-01

    Using off-axis integrated cavity output spectroscopy, named OA-ICOS, the absorption spectrum of CO2 at 4.32 μm is recorded by using a quantum cascade laser (QCL). The concentration of the three isotopologues 16O12C16O, 16O13C16O and 16O12C18O is detected simultaneously. The isotope abundance ratio of 13C and 18O in CO2 gas can be obtained, which is most useful for ecological research. Since the ambient temperature has a serious influence on the output wavelength of the laser, even small temperature variations seriously affect the stability and sensitivity of the system. In this paper, a wavelength locking technique for QCL is proposed. The output of a digital potentiometer integrated in the laser current driver control is modified by software, resulting in a correction of the driving current of the laser and thus of its wavelength. This method strongly reduces the influence of external factors on the wavelength drift of lasers and thus substantially improves the stability and performance of OA-ICOS as is demonstrated with long-time measurements on CO2 in laboratory air.

  13. Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2.

    Science.gov (United States)

    Johnson, Jon D; Tognetti, Roberto; Paris, Piero

    2002-05-01

    Predictions of shifts in rainfall patterns as atmospheric [CO2] increases could impact the growth of fast growing trees such as Populus spp. and Salix spp. and the interaction between elevated CO2 and water stress in these species is unknown. The objectives of this study were to characterize the responses to elevated CO2 and water stress in these two species, and to determine if elevated CO2 mitigated drought stress effects. Gas exchange, water potential components, whole plant transpiration and growth response to soil drying and recovery were assessed in hybrid poplar (clone 53-246) and willow (Salix sagitta) rooted cuttings growing in either ambient (350 &mgr;mol mol-1) or elevated (700 &mgr;mol mol-1) atmospheric CO2 concentration ([CO2]). Predawn water potential decreased with increasing water stress while midday water potentials remained unchanged (isohydric response). Turgor potentials at both predawn and midday increased in elevated [CO2], indicative of osmotic adjustment. Gas exchange was reduced by water stress while elevated [CO2] increased photosynthetic rates, reduced leaf conductance and nearly doubled instantaneous transpiration efficiency in both species. Dark respiration decreased in elevated [CO2] and water stress reduced Rd in the trees growing in ambient [CO2]. Willow had 56% lower whole plant hydraulic conductivity than poplar, and showed a 14% increase in elevated [CO2] while poplar was unresponsive. The physiological responses exhibited by poplar and willow to elevated [CO2] and water stress, singly, suggest that these species respond like other tree species. The interaction of [CO2] and water stress suggests that elevated [CO2] did mitigate the effects of water stress in willow, but not in poplar.

  14. Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2.

    Science.gov (United States)

    Rezende, L F C; Arenque, B C; Aidar, S T; Moura, M S B; Von Randow, C; Tourigny, E; Menezes, R S C; Ometto, J P H B

    2016-07-01

    Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation-atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.

  15. Atmospheric pCO2 reconstructed across five early Eocene global warming events

    Science.gov (United States)

    Cui, Ying; Schubert, Brian A.

    2017-11-01

    Multiple short-lived global warming events, known as hyperthermals, occurred during the early Eocene (56-52 Ma). Five of these events - the Paleocene-Eocene Thermal Maximum (PETM or ETM1), H1 (or ETM2), H2, I1, and I2 - are marked by a carbon isotope excursion (CIE) within both marine and terrestrial sediments. The magnitude of CIE, which is a function of the amount and isotopic composition of carbon added to the ocean-atmosphere system, varies significantly between marine versus terrestrial substrates. Here we use the increase in carbon isotope fractionation by C3 land plants in response to increased pCO2 to reconcile this difference and reconstruct a range of background pCO2 and peak pCO2 for each CIE, provided two potential carbon sources: methane hydrate destabilization and permafrost-thawing/organic matter oxidation. Although the uncertainty on each pCO2 estimate using this approach is low (e.g., median uncertainty = + 23% / - 18%), this work highlights the potential for significant systematic bias in the pCO2 estimate resulting from sampling resolution, substrate type, diagenesis, and environmental change. Careful consideration of each of these factors is required especially when applying this approach to a single marine-terrestrial CIE pair. Given these limitations, we provide an upper estimate for background early Eocene pCO2 of 463 +248/-131 ppmv (methane hydrate scenario) to 806 +127/-104 ppmv (permafrost-thawing/organic matter oxidation scenario). These results, which represent the first pCO2 proxy estimates directly tied to the Eocene hyperthermals, demonstrate that early Eocene warmth was supported by background pCO2 less than ∼3.5× preindustrial levels and that pCO2 > 1000 ppmv may have occurred only briefly, during hyperthermal events.

  16. Investigation of Thermal Stability of P2-NaxCoO2 Cathode Materials for Sodium Ion Batteries Using Real-Time Electron Microscopy.

    Science.gov (United States)

    Hwang, Sooyeon; Lee, Yongho; Jo, Eunmi; Chung, Kyung Yoon; Choi, Wonchang; Kim, Seung Min; Chang, Wonyoung

    2017-06-07

    Here, we take advantage of in situ transmission electron microscopy (TEM) to investigate the thermal stability of P2-type Na x CoO 2 cathode materials for sodium ion batteries, which are promising candidates for next-generation lithium ion batteries. A double-tilt TEM heating holder was used to directly characterize the changes in the morphology and the crystallographic and electronic structures of the materials with increase in temperature. The electron diffraction patterns and the electron energy loss spectra demonstrated the presence of cobalt oxides (Co 3 O 4 , CoO) and even metallic cobalt (Co) at higher temperatures as a result of reduction of Co ions and loss of oxygen. The bright-field TEM images revealed that the surface of Na x CoO 2 becomes porous at high temperatures. Higher cutoff voltages result in degrading thermal stability of Na x CoO 2 . The observations herein provide a valuable insight that thermal stability is one of the important factors to be considered in addition to the electrochemical properties when developing new electrode materials for novel battery systems.

  17. Seasonal Variations of Atmospheric CO2 over Fire Affected Regions Based on GOSAT Observations

    Science.gov (United States)

    Shi, Y.; Matsunaga, T.

    2016-12-01

    Abstract: The carbon dioxide (CO2) emissions released from biomass burning significantly affect the temporal variations of atmospheric CO2 concentrations. Based on a long-term (July 2009-June 2015) retrieved datasets by the Greenhouse Gases Observing Satellite (GOSAT), the seasonal cycle and interannual variations of column-averaged volume mixing ratios of atmospheric carbon dioxide (XCO2) in four fire affected continental regions were investigated. The results showed Northern Africa had the largest seasonal variations after removing its regional long-term trend of XCO2 with peak-to-peak amplitude of 6.2 ppm within the year, higher than central South America (2.4 ppm), Southern Africa (3.8 ppm) and Australia (1.7 ppm). The detrended regional XCO2 was found to be positively correlated with the fire CO2 emissions during fire activity period and negatively correlated with vegetation photosynthesis activity with different seasonal variabilities. Northern Africa recorded the largest change of seasonal variations of detrended XCO2 with a total of 12.8 ppm during fire seasons, higher than central South America, Southern Africa and Australia with 5.4 ppm, 6.7 ppm and 2.2 ppm, respectively. During fire episode, the positive detrended XCO2 was noticed during June-November in central South America, December-June in Northern Africa, May-November in Southern Africa. The Pearson correlation coefficients between the variations of detrended XCO2 and fire CO2 emissions from GFED4 (Global Fire Emissions Database v4) achieved best correlations in Southern Africa (R=0.77, p<0.05). Meanwhile, Southern Africa also experienced a significant negative relationship between the variations of detrended XCO2 and vegetation activity (R=-0.84, p<0.05). This study revealed that fire CO2 emissions and vegetation activity contributed greatly to the seasonal variations of GOSAT XCO2 dataset.

  18. Carbon Dioxide Production Responsibility on the Basis of comparing in Situ and mean CO2 Atmosphere Concentration Data

    OpenAIRE

    Mavrodiev, S. Cht.; Pekevski, L.; Vachev, B.

    2008-01-01

    The method is proposed for estimation of regional CO2 and other greenhouses and pollutants production responcibility. The comparison of CO2 local emissions reduction data with world CO2 atmosphere data will permit easy to judge for overall effect in curbing not only global warming but also chemical polution.

  19. Chalcone dendrimer stabilized core-shell nanoparticles—a comparative study on Co@TiO2, Ag@TiO2 and Co@AgCl nanoparticles for antibacterial and antifungal activity

    Science.gov (United States)

    Vanathi Vijayalakshmi, R.; Praveen Kumar, P.; Selvarani, S.; Rajakumar, P.; Ravichandran, K.

    2017-10-01

    A series of core@shell nanoparticles (Co@TiO2, Ag@TiO2 and Co@AgCl) stabilized with zeroth generation triazolylchalcone dendrimer was synthesized using reduction transmetalation method. The coordination of chalcone dendrimer with silver ions was confirmed by UV-vis spectroscopy. The NMR spectrum ensures the number of protons and carbon signals in the chalcone dendrimer. The prepared samples were structurally characterized by XRD, FESEM and HRTEM analysis. The SAED and XRD analyses exhibited the cubic structure with d hkl   =  2.2 Å, 1.9 Å and 1.38 Å. The antibacterial and antifungal activities of the dendrimer stabilized core@shell nanoparticles (DSCSNPs) were tested against the pathogens Bacillus subtilis, Proteus mirabilis, Candida albicans and Aspergillus nigir from which it is identified that the dendrimer stabilized core shell nanoparticles with silver ions at the shell (Co@AgCl) shows effectively high activity against the tested pathogen following the other core@shell nanoparticles viz Ag@TiO2 and Co@TiO2.

  20. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia; Schneider, Birgit; Frolicher, Thomas L.; Segschneider, Joachim; Tjiputra, Jerry; Heinze, Christoph; Joos, Fortunat

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid-latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra-tropics, to large freshwater fluxes in the extra-tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra-tropics and 25% in the southern extra-tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  1. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub-polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra tropics, to large freshwater fluxes in the extra tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra tropics and 25% in the southern extra tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  2. Assessment of model estimates of land-atmosphere CO2 exchange across northern Eurasia

    Science.gov (United States)

    Rawlins, M.A.; McGuire, A.D.; Kimball, J.S.; Dass, P.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; Peng, S.; Rinke, A.; Saito, K.; Zhang, W.; Alkama, R.; Bohn, T. J.; Ciais, P.; Decharme, B.; Gouttevin, I.; Hajima, T.; Ji, D.; Krinner, G.; Lettenmaier, D.P.; Miller, P.; Moore, J.C.; Smith, B.; Sueyoshi, T.

    2015-01-01

    A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 1960–2009 at 0.5° resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data. The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m−2 yr−2, equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (1960–1969 vs. 2000–2009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength. The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model

  3. Sensitivity study of land biosphere CO2 exchange through an atmospheric tracer transport model using satellite-derived vegetation index data

    International Nuclear Information System (INIS)

    Knorr, W.; Heimann, M.

    1994-01-01

    We develop a simple, globally uniform model of CO 2 exchange between the atmosphere and the terrestrial biosphere by coupling the model with a three-dimensional atmospheric tracer transport model using observed winds, and checking results against observed concentrations of CO 2 at various monitoring sites. CO 2 fluxes are derived from observed greenness using satellite-derived Global Vegetation Index data, combined with observations of temperature, radiation, and precipitation. We explore a range of CO 2 flux formulations together with some modifications of the modelled atmospheric transport. We find that while some formulations can be excluded, it cannot be decided whether or not to make CO 2 uptake and release dependent on water stress. It appears that the seasonality of net CO 2 fluxes in the tropics, which would be expected to be driven by water availability, is small and is therefore not visible in the seasonal cycle of atmospheric CO 2 . The latter is dominated largely by northern temperate and boreal vegetation, where seasonality is mostly temperature determined. We find some evidence that there is still considerable CO 2 release from soils during northern-hemisphere winter. An exponential air temperature dependence of soil release with a Q 10 of 1.5 is found to be most appropriate, with no cutoff at low freezing temperatures. This result is independent of the year from which observed winds were taken. This is remarkable insofar as year-to-year changes in modelled CO 2 concentrations caused by changes in the wind data clearly outweigh those caused by year-to-year variability in the climate and vegetation index data. (orig.)

  4. Sensitivity of terrestrial ecosystems to elevated atmospheric CO{sub 2}: Comparisons of model simulation studies to CO{sub 2} effect

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y. [Marine Biological Lab., Woods Hole, MA (United States)

    1995-06-01

    In the context of a project to compare terrestrial ecosystem models, the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), we have analyzed how three biogeochemistry models link plant growth to doubled atmospheric CO{sub 2}. A common set of input data was used to drive three biogeochemistry models, BIOME-BGC, CENTURY and TEM. For the continental United States the simulation results show that with doubled CO{sub 2}, NPP increased by 8.7%, 5.0% and 10.8% for TEM, CENTURY and BIOME-BGC, respectively. At the biome level the range of NPP estimates varied considerably among models. TEM-simulated enhancement of NPP ranged from 2% to 28%; CENTURY, from 2% to 9%; and BIOME-BGC, from 4% to 27%. A transect analysis across several biomes along a latitude at 41.5 N shows that the TEM-simulated CO{sub 2} enhancement of NPP ranged from 0% to 22%; CENTURY, from 1% to 10% and BIOME-BGC, from 1% to 63%. In this study, we have investigated the underlying mechanisms of the three models to reveal how increased CO{sub 2} affects photosynthesis rate, water using efficiency and nutrient cycles. The relative importance of these mechanisms in each of the three biogeochemistry models will be discussed.

  5. Progress and Challenges in Predicting Crop Responses to Atmospheric [CO2

    Science.gov (United States)

    Kent, J.; Paustian, K.

    2017-12-01

    Increasing atmospheric [CO2] directly accelerates photosynthesis in C3 crops, and indirectly promotes yields by reducing stomatal conductance and associated water losses in C3 and C4 crops. Several decades of experiments have exposed crops to eCO2 in greenhouses and other enclosures and observed yield increases on the order of 33%. FACE systems were developed in the early 1990s to better replicate open-field growing conditions. Some authors contend that FACE results indicate lower crop yield responses than enclosure studies, while others maintain no significant difference or attribute differences to various methodological factors. The crop CO2 response processes in many crop models were developed using results from enclosure experiments. This work tested the ability of one such model, DayCent, to reproduce crop responses to CO2 enrichment from several FACE experiments. DayCent performed well at simulating yield and transpiration responses in C4 crops, but significantly overestimated yield responses in C3 crops. After adjustment of CO2-response parameters, DayCent was able to reproduce mean yield responses for specific crops. However, crop yield responses from FACE experiments vary widely across years and sites, and likely reflect complex interactions between conditions such as weather, soils, cultivars, and biotic stressors. Further experimental work is needed to identify the secondary variables that explain this variability so that models can more reliably forecast crop yields under climate change. Likewise, CO2 impacts on crop outcomes such as belowground biomass allocation and grain N content have implications for agricultural C fluxes and human nutrition, respectively, but are poorly understood and thus difficult to simulate with confidence.

  6. Indoor and outdoor urban atmospheric CO2: Stable carbon isotope constraints on mixing and mass balance

    International Nuclear Information System (INIS)

    Yanes, Yurena; Yapp, Crayton J.

    2010-01-01

    suggests that the intercept of a mixing line defined by two data points (CO 2 input from the local ventilation system and CO 2 in the ambient air of the room) could be a reasonable estimate of the average δ 13 C value of the CO 2 exhaled by the human occupants. Thus, such indoor spaces appear to constitute effective 'sample vessels' for collection of CO 2 that can be used to determine the average proportions of C 3 and C 4 -derived C in the diets of the occupants. For the various groups occupying the rooms sampled in this study, C 4 -derived C appears to have constituted ∼40% of the average diet. The average concentration of outdoor Dallas atmospheric CO 2 was ∼17 ppm higher than the average of CO 2 concentrations measured on the same campus 10 a ago. In addition, Dallas outdoor CO 2 concentrations at both times were higher than the contemporaneous global atmospheric CO 2 concentrations. This observation, plus the fact that the increase of ∼17 ppm in the average concentration of Dallas outdoor CO 2 was comparable to the global increase of ∼18 ppm over the same 10-a interval, is consistent with a significant role for urban CO 2 'factories' in the global atmospheric CO 2 budget.

  7. Climate change scenarios in Mexico from models results under the assumption of a doubling in the atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, V.M.; Villanueva, E.E.; Garduno, R.; Adem, J. [Centro de Ciencias de la Atmosfera, Mexico (Mexico)

    1995-12-31

    General circulation models (GCMs) and energy balance models (EBMs) are the best way to simulate the complex large-scale dynamic and thermodynamic processes in the atmosphere. These models have been used to estimate the global warming due to an increase of atmospheric CO{sub 2}. In Japan Ohta with coworkers has developed a physical model based on the conservation of thermal energy applied to pounded shallow water, to compute the change in the water temperature, using the atmospheric warming and the precipitation due to the increase in the atmospheric CO{sub 2} computed by the GISS-GCM. In this work, a method similar to the Ohta`s one is used for computing the change in ground temperature, soil moisture, evaporation, runoff and dryness index in eleven hydrological zones, using in this case the surface air temperature and precipitation due to CO{sub 2} doubling, computed by the GFDLR30-GCM and the version of the Adem thermodynamic climate model (CTM-EBM), which contains the three feedbacks (cryosphere, clouds and water vapor), and does not include water vapor in the CO{sub 2} atmospheric spectral band (12-19{mu})

  8. Climate change scenarios in Mexico from models results under the assumption of a doubling in the atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, V M; Villanueva, E E; Garduno, R; Adem, J [Centro de Ciencias de la Atmosfera, Mexico (Mexico)

    1996-12-31

    General circulation models (GCMs) and energy balance models (EBMs) are the best way to simulate the complex large-scale dynamic and thermodynamic processes in the atmosphere. These models have been used to estimate the global warming due to an increase of atmospheric CO{sub 2}. In Japan Ohta with coworkers has developed a physical model based on the conservation of thermal energy applied to pounded shallow water, to compute the change in the water temperature, using the atmospheric warming and the precipitation due to the increase in the atmospheric CO{sub 2} computed by the GISS-GCM. In this work, a method similar to the Ohta`s one is used for computing the change in ground temperature, soil moisture, evaporation, runoff and dryness index in eleven hydrological zones, using in this case the surface air temperature and precipitation due to CO{sub 2} doubling, computed by the GFDLR30-GCM and the version of the Adem thermodynamic climate model (CTM-EBM), which contains the three feedbacks (cryosphere, clouds and water vapor), and does not include water vapor in the CO{sub 2} atmospheric spectral band (12-19{mu})

  9. Effects of Long-Term CO2 Enrichment on Soil-Atmosphere CH4 Fluxes and the Spatial Micro-Distribution of Methanotrophic Bacteria.

    Science.gov (United States)

    Karbin, Saeed; Guillet, Cécile; Kammann, Claudia I; Niklaus, Pascal A

    2015-01-01

    Effects of elevated atmospheric CO2 concentrations on plant growth and associated C cycling have intensively been studied, but less is known about effects on the fluxes of radiatively active trace gases other than CO2. Net soil-atmosphere CH4 fluxes are determined by the balance of soil microbially-driven methane (CH4) oxidation and methanogenesis, and both might change under elevated CO2. Here, we studied CH4 dynamics in a permanent grassland exposed to elevated CO2 for 14 years. Soil-atmosphere fluxes of CH4 were measured using large static chambers, over a period of four years. The ecosystem was a net sink for atmospheric CH4 for most of the time except summer to fall when net CH4 emissions occurred. We did not detect any elevated CO2 effects on CH4 fluxes, but emissions were difficult to quantify due to their discontinuous nature, most likely because of ebullition from the saturated zone. Potential methanotrophic activity, determined by incubation of fresh sieved soil under standardized conditions, also did not reveal any effect of the CO2 treatment. Finally, we determined the spatial micro-distribution of methanotrophic activity at less than 5× atmospheric (10 ppm) and elevated (10000 ppm) CH4 concentrations, using a novel auto-radiographic technique. These analyses indicated that domains of net CH4 assimilation were distributed throughout the analyzed top 15 cm of soils, with no dependence on CH4 concentration or CO2 treatment. Our investigations suggest that elevated CO2 exerts no or only minor effects on CH4 fluxes in the type of ecosystem we studied, at least as long as soil moisture differences are small or absent as was the case here. The autoradiographic analyses further indicate that the spatial niche of CH4 oxidation does not shift in response to CO2 enrichment or CH4 concentration, and that the same type of methanotrophs may oxidize CH4 from atmospheric and soil-internal sources.

  10. Effect of photosynthesis on the abundance of 18O13C16O in atmospheric CO2

    Science.gov (United States)

    Hofmann, Magdalena E. G.; Pons, Thijs L.; Ziegler, Martin; Lourens, Lucas J.; Röckmann, Thomas

    2016-04-01

    The abundance of the isotopologue 18O13C16O (Δ47) in atmospheric air is a promising new tracer for the atmospheric carbon cycle (Eiler and Schauble, 2004; Affek and Eiler, 2006; Affek et al., 2007). The large gross fluxes in CO2 between the atmosphere and biosphere are supposed to play a major role in controlling its abundance. Eiler and Schauble (2004) set up a box model describing the effect of air-leaf interaction on the abundance of 18O13C16O in atmospheric air. The main assumption is that the exchange between CO2 and water within the mesophyll cells will imprint a Δ47 value on the back-diffusing CO2 that reflects the leaf temperature. Additionally, kinetic effects due to CO2 diffusion into and out of the stomata are thought to play a role. We investigated the effect of photosynthesis on the residual CO2 under controlled conditions using a leaf chamber set-up to quantitatively test the model assumptions suggested by Eiler and Schauble (2004). We studied the effect of photosynthesis on the residual CO2 using two C3 and one C4 plant species: (i) sunflower (Helianthus annuus), a C3 species with a high leaf conductance for CO2 diffusion, (ii) ivy (Hedera hibernica), a C3 species with a low conductance, and (iii), maize (Zea mays), a species with the C4 photosynthetic pathway. We also investigated the effect of different light intensities (photosynthetic photon flux density of 200, 700 and 1800 μmol m2s-1), and thus, photosynthetic rate in sunflower and maize. A leaf was mounted in a cuvette with a transparent window and an adjustable light source. The air inside was thoroughly mixed, making the composition of the outgoing air equal to the air inside. A gas-mixing unit was attached at the entrance of the cuvette that mixed air with a high concentration of scrambled CO2 with a Δ47 value of 0 to 0.1‰ with CO2 free air to set the CO2 concentration of ingoing air at 500 ppm. The flow rate through the cuvette was adjusted to the photosynthetic activity of the leaf

  11. 13C analyses on CO2 in air using the multiflow: Application for the monitoring of atmospheric 13CO2 over hydro-electric reservoir in Quebec's Boreal region - Canada

    International Nuclear Information System (INIS)

    Bilodeau, G.; Hillaire-Marcel, C.; Helie, J.-F.; Fourel, F.; Varfalvy, L.

    2002-01-01

    The Multiflow TM preparation system is a headspace sampling device allowing extraction, purification and introduction of a gas sample into a gas-source Isotopic Ratio Mass Spectrometer for isotopic analysis. The original device was designed for 13 C measurements on CO 2 from breath tests. It has been adapted here for 13 CO 2 analysis in atmospheric low pCO 2 -samples

  12. Effect of atmospheric CO{sub 2} on surface segregation and phase formation in La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Luo, Heng [Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States); Cetin, Deniz [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Lin, Xi [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States); Ludwig, Karl [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Department of Physics, Boston University, Boston, MA 02215 (United States); Pal, Uday; Gopalan, Srikanth [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States); Basu, Soumendra, E-mail: basu@bu.edu [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States)

    2014-12-30

    Highlights: • LSCF exhibits Sr surface segregation on high-temperature annealing. • The presence of atmospheric CO{sub 2} enhances the kinetics of Sr surface segregation. • At high-CO{sub 2} partial pressures, there is a significant coverage of the surface by Sr-rich phases. • The increase in kinetics is attributed to increased thermodynamic driving force for SrCO{sub 3} formation. - Abstract: The effects of atmospheric CO{sub 2} on surface segregation and phase formation in La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ} (LSCF-6428) were investigated. (0 0 1)-oriented LSCF-6428 thin films were deposited on lattice matched (1 1 0)-oriented NdGaO{sub 3} (NGO) substrates by pulsed laser deposition (PLD). Using the synchrotron technique of total reflection X-ray fluorescence (TXRF), it was found that the kinetics of Sr surface segregation was enhanced when annealing at 800 °C in a high-CO{sub 2} partial pressure, as compared to a similar anneal in a CO{sub 2}-free atmosphere, with the oxygen partial pressure being constant in both cases. Hard X-ray photoelectron spectroscopy (HAXPES) measurements showed that the contribution of the surface carbonate to surface oxide phases increased significantly for the sample annealed in the high-CO{sub 2} atmosphere. Atomic force microscopy (AFM) studies showed enhanced surface phase formation during the high-CO{sub 2} partial pressure anneal. Density functional theory (DFT) calculations provide a thermodynamic basis for the enhanced kinetics of surface segregation in the presence of atmospheric CO{sub 2}.

  13. Alternative photocatalysts to TiO{sub 2} for the photocatalytic reduction of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nikokavoura, Aspasia; Trapalis, Christos, E-mail: c.trapalis@inn.demokritos.gr

    2017-01-01

    Highlights: • Non TiO{sub 2} containing photocatalysts are intensively studied for CO{sub 2} reduction. • The inorganic and carbon based semiconductors are appropriate for redox reactions. • ZIFs and carbonaceous hybrids exhibited outstanding photocatalytic efficiency. • Highly active photocatalysts for CO{sub 2} conversion to useful materials are needed. - Abstract: The increased concentration of CO{sub 2} in the atmosphere, originating from the burning of fossil fuels in stationary and mobile sources, is referred as the “Anthropogenic Greenhouse Effect” and constitutes a major environmental concern. The scientific community is highly concerned about the resulting enhancement of the mean atmospheric temperature, so a vast diversity of methods has been applied. Thermochemical, electrochemical, photocatalytic, photoelectrochemical processes, as well as combination of solar electricity generation and water splitting processes have been performed in order to lower the CO{sub 2} atmospheric levels. Photocatalytic methods are environmental friendly and succeed in reducing the atmospheric CO{sub 2} concentration and producing fuels or/and useful organic compounds at the same time. The most common photocatalysts for the CO{sub 2} reduction are the inorganic, the carbon based semiconductors and the hybrids based on semiconductors, which combine stability, low cost and appropriate structure in order to accomplish redox reactions. In this review, inorganic semiconductors such as single-metal oxide, mixed-metal oxides, metal oxide composites, layered double hydroxides (LDHs), salt composites, carbon based semiconductors such as graphene based composites, CNT composites, g-C{sub 3}N{sub 4} composites and hybrid organic-inorganic materials (ZIFs) were studied. TiO{sub 2} and Ti based photocatalysts are extensively studied and therefore in this review they are not mentioned.

  14. On atmospheric stability in the dynamic wake meandering model

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.

    2014-01-01

    The present study investigates a new approach for capturing the effects of atmospheric stability on wind turbine wake evolution and wake meandering by using the dynamic wake meandering model. The most notable impact of atmospheric stability on the wind is the changes in length and velocity scales...... spectra and applied to the dynamic wake meandering model to capture the correct wake meandering behaviour. The ambient turbulence in all stability classes is generated using the Mann turbulence model, where the effects of non-neutral atmospheric stability are approximated by the selection of input...... in the computational domain. The changes in the turbulent length scales due to the various atmospheric stability states impact the wake meandering characteristics and thus the power generation by the individual turbines. The proposed method is compared with results from both large-eddy simulation coupled...

  15. [Establishment and assessment of QA/QC method for sampling and analysis of atmosphere background CO2].

    Science.gov (United States)

    Liu, Li-xin; Zhou, Ling-xi; Xia, Ling-jun; Wang, Hong-yang; Fang, Shuang-xi

    2014-12-01

    To strengthen scientific management and sharing of greenhouse gas data obtained from atmospheric background stations in China, it is important to ensure the standardization of quality assurance and quality control method for background CO2 sampling and analysis. Based on the greenhouse gas sampling and observation experience of CMA, using portable sampling observation and WS-CRDS analysis technique as an example, the quality assurance measures for atmospheric CO,sampling and observation in the Waliguan station (Qinghai), the glass bottle quality assurance measures and the systematic quality control method during sample analysis, the correction method during data processing, as well as the data grading quality markers and data fitting interpolation method were systematically introduced. Finally, using this research method, the CO2 sampling and observation data at the atmospheric background stations in 3 typical regions were processed and the concentration variation characteristics were analyzed, indicating that this research method could well catch the influences of the regional and local environmental factors on the observation results, and reflect the characteristics of natural and human activities in an objective and accurate way.

  16. The solubility of Ni in molten Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} (52/48) in H{sub 2}/H{sub 2}O/CO{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Andreas; Lindbergh, Goeran [KTH Chemical Science and Engineering, Department of Chemical Engineering and Technology, SE-100 44 Stockholm (Sweden); Yoshikawa, Masahiro [Central Research Institute of Electric Power Industry, Sector, Energy Conversion Engineering, Energy Engineering Research Laboratory, Yokosuka-shi, Kanagawa 240-0196 (Japan)

    2007-03-30

    In this work the solubility of a Ni-Al anode for MCFC has been studied at atmospheric pressure and two different temperatures using various gas compositions containing H{sub 2}/H{sub 2}O/CO{sub 2}. It is well known that nickel is dissolved at cathode conditions in an MCFC. However, the results in this study show that nickel can be dissolved also at the anode, indicating that the solubility increases with increasing CO{sub 2} partial pressure of the inlet gas and decreasing with increasing temperature. This agrees with the results found by other authors concerning the solubility of NiO at cathode conditions. The dissolution of Ni into the melt can proceed in two ways, either by the reduction of water or by the reduction of carbon dioxide. (author)

  17. THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Öberg, Karin I.; Murray-Clay, Ruth; Bergin, Edwin A.

    2011-01-01

    The C/O ratio is predicted to regulate the atmospheric chemistry in hot Jupiters. Recent observations suggest that some exoplanets, e.g., Wasp 12-b, have atmospheric C/O ratios substantially different from the solar value of 0.54. In this Letter, we present a mechanism that can produce such atmospheric deviations from the stellar C/O ratio. In protoplanetary disks, different snowlines of oxygen- and carbon-rich ices, especially water and carbon monoxide, will result in systematic variations in the C/O ratio both in the gas and in the condensed phases. In particular, between the H 2 O and CO snowlines most oxygen is present in icy grains—the building blocks of planetary cores in the core accretion model—while most carbon remains in the gas phase. This region is coincidental with the giant-planet-forming zone for a range of observed protoplanetary disks. Based on standard core accretion models of planet formation, gas giants that sweep up most of their atmospheres from disk gas outside of the water snowline will have a C/O ∼ 1, while atmospheres significantly contaminated by evaporating planetesimals will have a stellar or substellar C/O when formed at the same disk radius. The overall metallicity will also depend on the atmosphere formation mechanism, and exoplanetary atmospheric compositions may therefore provide constraints on where and how a specific planet formed.

  18. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2.

    Science.gov (United States)

    Morgan, J A; Pataki, D E; Körner, C; Clark, H; Del Grosso, S J; Grünzweig, J M; Knapp, A K; Mosier, A R; Newton, P C D; Niklaus, P A; Nippert, J B; Nowak, R S; Parton, W J; Polley, H W; Shaw, M R

    2004-06-01

    Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C3/C4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here.

  19. The global pyrogenic carbon cycle and its impact on the level of atmospheric CO2 over past and future centuries.

    Science.gov (United States)

    Landry, Jean-Sébastien; Matthews, H Damon

    2017-08-01

    The incomplete combustion of vegetation and dead organic matter by landscape fires creates recalcitrant pyrogenic carbon (PyC), which could be consequential for the global carbon budget if changes in fire regime, climate, and atmospheric CO 2 were to substantially affect gains and losses of PyC on land and in oceans. Here, we included global PyC cycling in a coupled climate-carbon model to assess the role of PyC in historical and future simulations, accounting for uncertainties through five sets of parameter estimates. We obtained year-2000 global stocks of (Central estimate, likely uncertainty range in parentheses) 86 (11-154), 47 (2-64), and 1129 (90-5892) Pg C for terrestrial residual PyC (RPyC), marine dissolved PyC, and marine particulate PyC, respectively. PyC cycling decreased atmospheric CO 2 only slightly between 1751 and 2000 (by 0.8 Pg C for the Central estimate) as PyC-related fluxes changed little over the period. For 2000 to 2300, we combined Representative Concentration Pathways (RCPs) 4.5 and 8.5 with stable or continuously increasing future fire frequencies. For the increasing future fire regime, the production of new RPyC generally outpaced the warming-induced accelerated loss of existing RPyC, so that PyC cycling decreased atmospheric CO 2 between 2000 and 2300 for most estimates (by 4-8 Pg C for Central). For the stable fire regime, however, PyC cycling usually increased atmospheric CO 2 (by 1-9 Pg C for Central), and only the most extreme choice of parameters maximizing PyC production and minimizing PyC decomposition led to atmospheric CO 2 decreases under RCPs 4.5 and 8.5 (by 5-8 Pg C). Our results suggest that PyC cycling will likely reduce the future increase in atmospheric CO 2 if landscape fires become much more frequent; however, in the absence of a substantial increase in fire frequency, PyC cycling might contribute to, rather than mitigate, the future increase in atmospheric CO 2 . © 2016 John Wiley & Sons Ltd.

  20. Modeling CO2-facilitated transport across a diethanolamine liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Lihong Bao; Michael C. Trachtenberg [Carbozyme Inc., Monmouth Junction, NJ (United States)

    2005-12-15

    We compared experimental and model data for the facilitated transport of CO2 from a CO2-air mixture across an aqueous solution of diethanolamine (DEA) via a hollow fiber, contained liquid membrane (HFCLM) permeator. A two-step carbamate formation model was devised to analyze the data instead of the one-step mechanism used by previous investigators. The effects of DEA concentration, liquid membrane thickness and feed CO2 concentration were also studied. With a 20% (wt) DEA liquid membrane and feed of 15% CO2 in CO2-air mixture at atmosphere pressure, the permeance reached 1.51E-8 mol/m{sup 2} s Pa with a CO2/N2 selectivity of 115. Model predictions compared well with the experimental results at CO2 concentrations of industrial importance. Short-term stability of the HFCLM permeator performance was examined. The system was stable during 5-days of testing.

  1. A Database of Herbaceous Vegetation Responses to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.H.

    1999-11-24

    To perform a statistically rigorous meta-analysis of research results on the response by herbaceous vegetation to increased atmospheric CO{sub 2} levels, a multiparameter database of responses was compiled from the published literature. Seventy-eight independent CO{sub 2}-enrichment studies, covering 53 species and 26 response parameters, reported mean response, sample size, and variance of the response (either as standard deviation or standard error). An additional 43 studies, covering 25 species and 6 response parameters, did not report variances. This numeric data package accompanies the Carbon Dioxide Information Analysis Center's (CDIAC's) NDP-072, which provides similar information for woody vegetation. This numeric data package contains a 30-field data set of CO{sub 2}-exposure experiment responses by herbaceous plants (as both a flat ASCII file and a spreadsheet file), files listing the references to the CO{sub 2}-exposure experiments and specific comments relevant to the data in the data sets, and this documentation file (which includes SAS{reg_sign} and Fortran codes to read the ASCII data file). The data files and this documentation are available without charge on a variety of media and via the Internet from CDIAC.

  2. Effects of long-term elevated atmospheric CO{sub 2} concentrations on Pinus ponderosa

    Energy Technology Data Exchange (ETDEWEB)

    Surano, K.A.; Kercher, J.R. [eds.

    1993-10-01

    This report details the results from an experiment of the effects of long-term elevated atmospheric CO{sub 2} concentrations on ponderosa pine (Pinus ponderosa Laws.) saplings and seedlings. The study began in 1983 as a pilot study designed to explore the feasibility of using open-top chambers for continuous multi-year exposures on sapling-sized trees and to examine possible CO{sub 2} responses so that future research could be adequately designed. however, following the first year of exposure, preliminary results from the study indicated that measurements of CO{sub 2} responses should be intensified. Open-top chambers proved suitable for use in multiyear exposures of mature trees. With respect to the preliminary examination of CO{sub 2} responses, many interesting observations were made. The nature of the preliminary results suggests that future long-term field CO{sub 2} exposures on perennial species may be critical to the understanding and preparation for future environments. Other research reported here attempted to adapt an existing western coniferous forest growth and succession model for use in elevated CO{sub 2} scenarios using differential species responses, and assessed the usefulness of the model in that regard. Seven papers have been processed separately for inclusion in the appropriate data bases.

  3. Atmospheric stability modelling for nuclear emergency response systems using fuzzy set theory

    International Nuclear Information System (INIS)

    Walle, B. van de; Ruan, D.; Govaerts, P.

    1993-01-01

    A new approach to Pasquill stability classification is developed using fuzzy set theory, taking into account the natural continuity of the atmospheric stability and providing means to analyse the obtained stability classes. (2 figs.)

  4. TransCom model simulations of hourly atmospheric CO2: Analysis of synoptic-scale variations for the period 2002-2003

    NARCIS (Netherlands)

    Patra, P. K.; Law, R. M.; Peters, W.; RöDenbeck, C.; Takigawa, M.; Aulagnier, C.; Baker, I.; Bergmann, D. J.; Bousquet, P.; Brandt, J.; Bruhwiler, L.; Cameron-Smith, P. J.; Christensen, J. H.; Delage, F.; Denning, A. S.; Fan, S.; Geels, C.; Houweling, S.; Imasu, R.; Karstens, U.; Kawa, S. R.; Kleist, J.; Krol, M. C.; Lin, S.-J.; Lokupitiya, R.; Maki, T.; Maksyutov, S.; Niwa, Y.; Onishi, R.; Parazoo, N.; Pieterse, G.; Rivier, L.; Satoh, M.; Serrar, S.; Taguchi, S.; Vautard, R.; Vermeulen, A. T.; Zhu, Z.

    2008-01-01

    The ability to reliably estimate CO2 fluxes from current in situ atmospheric CO2 measurements and future satellite CO2 measurements is dependent on transport model performance at synoptic and shorter timescales. The TransCom continuous experiment was designed to evaluate the performance of forward

  5. Evaluating the Capacity of Global CO2 Flux and Atmospheric Transport Models to Incorporate New Satellite Observations

    Science.gov (United States)

    Kawa, S. R.; Collatz, G. J.; Erickson, D. J.; Denning, A. S.; Wofsy, S. C.; Andrews, A. E.

    2007-01-01

    As we enter the new era of satellite remote sensing for CO2 and other carbon cyclerelated quantities, advanced modeling and analysis capabilities are required to fully capitalize on the new observations. Model estimates of CO2 surface flux and atmospheric transport are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, and ultimately for future projections of carbon-climate interactions. For application to current, planned, and future remotely sensed CO2 data, it is desirable that these models are accurate and unbiased at time scales from less than daily to multi-annual and at spatial scales from several kilometers or finer to global. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 1998 through 2006. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at lxi degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-2), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to in situ observations at sites in Northern mid latitudes and the continental tropics. The influence of key process representations is inferred. We find that the model can resolve much of the hourly to synoptic variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The seasonal cycle and its

  6. Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System

    Energy Technology Data Exchange (ETDEWEB)

    Michael G. McKellar; Manohar S. Sohal; Lila Mulloth; Bernadette Luna; Morgan B. Abney

    2010-03-01

    NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developed and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon

  7. Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales

    Directory of Open Access Journals (Sweden)

    A. R. Smith

    2011-02-01

    Full Text Available Through increases in net primary production (NPP, elevated CO2 is hypothesized to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE experiment near Bangor, Wales, 4 ambient and 4 elevated [CO2] plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. After 4 years, biomass averaged for the 3 species was 5497 (se 270 g m−2 in ambient and 6450 (se 130 g m−2 in elevated [CO2] plots, a significant increase of 17% (P = 0.018. During that time, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by elevated [CO2]. We observed a decrease of leaf N content in Betula and Alnus under elevated [CO2], while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by elevated [CO2]. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated [CO2] at this site.

  8. Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}

    Science.gov (United States)

    Sopori, B.L.

    1995-06-20

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

  9. Cavity ring down spectroscopy of CH, CH2, HCO, and H2CO in a premixed flat flame at both atmospheric and sub-atmospheric pressure

    NARCIS (Netherlands)

    Evertsen, R.; Staicu, A.D.; Oijen, van J.A.; Dam, N.J.; Goey, de L.P.H.; Meulen, ter J.J.; Cheauveau, C.; Vovelle, C.

    2003-01-01

    Density distributions of CH, CH2, HCO and H2CO have been measured in a premixed CH4/air flat flame by Cavity Ring Down Spectroscopy (CRDS). At atmospheric pressure problems are encountered due to the narrow spatial distribution of these species. Rotational flame Temperatures have been derived from

  10. Modeling long-term carbon residue in the ocean-atmosphere system following large CO2 emissions

    Science.gov (United States)

    Towles, N. J.; Olson, P.; Gnanadesikan, A.

    2013-12-01

    We use the LOSCAR carbon cycle model (Zeebe et al., 2009; Zeebe, 2012) to calculate the residual carbon in the ocean and atmosphere following large CO2 emissions. We consider the system response to CO2 emissions ranging from 100 to 20000 PgC, and emission durations from 100 yr to 100 kyr, subject to a wide range of system parameters such as the strengths of silicate weathering and the oceanic biological carbon pump. We define the carbon gain factor as the ratio of residual carbon in the ocean-atmosphere to the total emitted carbon. For moderate sized emissions shorter than about 50 kyr, we find that the carbon gain factor grows during the emission and peaks at about 1.7, primarily due to the erosion of carbonate marine sediments. In contrast, for longer emissions, the carbon gain factor peaks at a smaller value, and for very large emissions (more than 5000 PgC), the gain factor decreases with emission size due to carbonate sediment exhaustion. This gain factor is sensitive to model parameters such as low latitude efficiency of the biological pump. The timescale for removal of the residual carbon (reducing the carbon gain factor to zero) depends strongly on the assumed sensitivity of silicate weathering to atmospheric pCO2, and ranges from less than one million years to several million years.

  11. TransCom satellite intercomparison experiment: construction of a bias corrected atmospheric CO2 climatology

    NARCIS (Netherlands)

    Saito, R.; Houweling, S.; Patra, P. K.; Belikov, D.; Lokupitiya, R.; Niwa, Y.; Chevallier, F.; Saeki, T.; Maksyutov, S.

    2011-01-01

    A model-based three-dimensional (3-D) climatology of atmospheric CO2 concentrations has been constructed for the analysis of satellite observations, as a priori information in retrieval calculations, and for preliminary evaluation of remote sensing products. The locations of ground-based instruments

  12. TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002

    NARCIS (Netherlands)

    Law, R. M.; Peters, W.; RöDenbeck, C.; Aulagnier, C.; Baker, I.; Bergmann, D. J.; Bousquet, P.; Brandt, J.; Bruhwiler, L.; Cameron-Smith, P. J.; Christensen, J. H.; Delage, F.; Denning, A. S.; Fan, S.; Geels, C.; Houweling, S.; Imasu, R.; Karstens, U.; Kawa, S. R.; Kleist, J.; Krol, M. C.; Lin, S.-J.; Lokupitiya, R.; Maki, T.; Maksyutov, S.; Niwa, Y.; Onishi, R.; Parazoo, N.; Patra, P. K.; Pieterse, G.; Rivier, L.; Satoh, M.; Serrar, S.; Taguchi, S.; Takigawa, M.; Vautard, R.; Vermeulen, A. T.; Zhu, Z.

    2008-01-01

    A forward atmospheric transport modeling experiment has been coordinated by the TransCom group to investigate synoptic and diurnal variations in CO2. Model simulations were run for biospheric, fossil, and air-sea exchange of CO2 and for SF6 and radon for 2000-2003. Twenty-five models or model

  13. Clouds in the atmospheres of extrasolar planets. V. The impact of CO2 ice clouds on the outer boundary of the habitable zone

    OpenAIRE

    Kitzmann, Daniel

    2017-01-01

    Clouds have a strong impact on the climate of planetary atmospheres. The potential scattering greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. Here, the impact of CO2 ice clouds on the surface temperatures of terrestrial planets with CO2 dominated atmospheres, orbiting different types of...

  14. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.

    Directory of Open Access Journals (Sweden)

    Sangsub Cha

    Full Text Available The atmospheric carbon dioxide (CO2 level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R and decreased specific leaf area (SLA under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.

  15. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.

    Science.gov (United States)

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.

  16. Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations.

    Directory of Open Access Journals (Sweden)

    Amy M Trowbridge

    Full Text Available Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a (13CO(2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus × canescens trees grown and measured at different atmospheric CO(2 concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO(2 concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41(+, which represents, in part, substrate derived from pyruvate, and M69(+, which represents the whole unlabeled isoprene molecule. We observed a trend of slower (13C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP. Trees grown under sub-ambient CO(2 (190 ppmv had rates of isoprene emission and rates of labeling of M41(+ and M69(+ that were nearly twice those observed in trees grown under elevated CO(2 (590 ppmv. However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO(2 availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO(2.

  17. Trace elements partitioning during coal combustion in fluidized bed under O{sub 2}/CO{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haixin; Zhao, Changsui; Liang, Cai; Duan, Lunbo; Chen, Huichao [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Experiments were conducted to investigate the effects of temperature and O{sub 2}/CO{sub 2} atmosphere on trace elements (Cr, Mn, Co, Ni, Cd, Pb, Hg, As, Se) partitioning during combustion of Xuzhou bituminous coal in a 6 kWth fluidized bed. Inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) were used to determine trace elements contents in raw coal, bottom ash, fly ash and flue gas. The results indicate that with bed temperature increase, the relative enrichment of all the trace elements except Cr in bottom ash decreases suggesting that their volatility is enhanced. The relative enrichments of hardly volatile elements, like Cr and Mn in fly ash increase with bed temperature increase while those of partially volatile and highly volatile elements in fly ash are opposite. The relative enrichments of trace elements except Cr and Mn in fly ash are higher than those in bottom ash. Increasing bed temperature promotes elements like As, Se and Hg to migrate to vapor phase, Mn to migrate to fly ash and Cr to migrate to both bottom ash and fly ash. 21%O{sub 2}/79%CO{sub 2} atmosphere improves the volatility of Cr, Mn, Co, Se and their migration to fly ash, while restrains the volatility of As, Ni, Pb. It has little effect on the volatility of Hg but improves its migration to fly ash. Mass balance ratio was also calculated to observe trace elements distribution in bottom ash, fly ash and flue gas. There is no much difference in trace elements distribution between the two atmospheres. It can be seen that the trace elements proportion in fly ash is much greater, and more than 40% of Hg is distributed in the gas phase. Most of Hg and Se volatilize during combustion. The mass balance ratios are 87 {proportional_to} 129% which is considered acceptable.

  18. Soil type influences the sensitivity of nutrient dynamics to changes in atmospheric CO2

    Science.gov (United States)

    Numerous studies have indicated that increases in atmospheric CO2 have the potential to decrease nitrogen availability through the process of progressive nitrogen limitation (PNL). The timing and magnitude of PNL in field experiments is varied due to numerous ecosystem processes. Here we examined ...

  19. An Analytical Framework for the Steady State Impact of Carbonate Compensation on Atmospheric CO2

    Science.gov (United States)

    Omta, Anne Willem; Ferrari, Raffaele; McGee, David

    2018-04-01

    The deep-ocean carbonate ion concentration impacts the fraction of the marine calcium carbonate production that is buried in sediments. This gives rise to the carbonate compensation feedback, which is thought to restore the deep-ocean carbonate ion concentration on multimillennial timescales. We formulate an analytical framework to investigate the impact of carbonate compensation under various changes in the carbon cycle relevant for anthropogenic change and glacial cycles. Using this framework, we show that carbonate compensation amplifies by 15-20% changes in atmospheric CO2 resulting from a redistribution of carbon between the atmosphere and ocean (e.g., due to changes in temperature, salinity, or nutrient utilization). A counterintuitive result emerges when the impact of organic matter burial in the ocean is examined. The organic matter burial first leads to a slight decrease in atmospheric CO2 and an increase in the deep-ocean carbonate ion concentration. Subsequently, enhanced calcium carbonate burial leads to outgassing of carbon from the ocean to the atmosphere, which is quantified by our framework. Results from simulations with a multibox model including the minor acids and bases important for the ocean-atmosphere exchange of carbon are consistent with our analytical predictions. We discuss the potential role of carbonate compensation in glacial-interglacial cycles as an example of how our theoretical framework may be applied.

  20. TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002

    NARCIS (Netherlands)

    Law, R. M.; Peters, W.; Roedenbeck, C.; Aulagnier, C.; Baker, I.; Bergmann, D. J.; Bousquet, P.; Brandt, J.; Bruhwiler, L.; Cameron-Smith, P. J.; Christensen, J. H.; Delage, F.; Denning, A. S.; Fan, S.; Geels, C.; Houweling, S.; Imasu, R.; Karstens, U.; Kawa, S. R.; Kleist, J.; Krol, M. C.; Lin, S. -J.; Lokupitiya, R.; Maki, T.; Maksyutov, S.; Niwa, Y.; Onishi, R.; Parazoo, N.; Patra, P. K.; Pieterse, G.; Rivier, L.; Satoh, M.; Serrar, S.; Taguchi, S.; Takigawa, M.; Vautard, R.; Vermeulen, A. T.; Zhu, Z.

    2008-01-01

    [1] A forward atmospheric transport modeling experiment has been coordinated by the TransCom group to investigate synoptic and diurnal variations in CO2. Model simulations were run for biospheric, fossil, and air-sea exchange of CO2 and for SF6 and radon for 2000-2003. Twenty-five models or model

  1. Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers.

    Science.gov (United States)

    Haworth, Matthew; Heath, James; McElwain, Jennifer C

    2010-03-01

    The inverse relationship between stomatal density (SD: number of stomata per mm(2) leaf area) and atmospheric concentration of CO2 ([CO2]) permits the use of plants as proxies of palaeo-atmospheric CO2. Many stomatal reconstructions of palaeo-[CO2] are based upon multiple fossil species. However, it is unclear how plants respond to [CO2] across genus, family or ecotype in terms of SD or stomatal index (SI: ratio of stomata to epidermal cells). This study analysed the stomatal numbers of conifers from the ancient family Cupressaceae, in order to examine the nature of the SI-[CO2] relationship, and potential implications for stomatal reconstructions of palaeo-[CO2]. Methods Stomatal frequency measurements were taken from historical herbarium specimens of Athrotaxis cupressoides, Tetraclinis articulata and four Callitris species, and live A. cupressoides grown under CO2-enrichment (370, 470, 570 and 670 p.p.m. CO2). T. articulata, C. columnaris and C. rhomboidea displayed significant reductions in SI with rising [CO2]; by contrast, A. cupressoides, C. preissii and C. oblonga show no response in SI. However, A. cupressoides does reduce SI to increases in [CO2] above current ambient (approx. 380 p.p.m. CO2). This dataset suggests that a shared consistent SI-[CO2] relationship is not apparent across the genus Callitris. Conclusions The present findings suggest that it is not possible to generalize how conifer species respond to fluctuations in [CO2] based upon taxonomic relatedness or habitat. This apparent lack of a consistent response, in conjunction with high variability in SI, indicates that reconstructions of absolute palaeo-[CO2] based at the genus level, or upon multiple species for discrete intervals of time are not as reliable as those based on a single or multiple temporally overlapping species.

  2. Protonation and structural/chemical stability of Ln{sub 2}NiO{sub 4+δ} ceramics vs. H{sub 2}O/CO{sub 2}: High temperature/water pressure ageing tests

    Energy Technology Data Exchange (ETDEWEB)

    Upasen, S. [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France); Batocchi, P.; Mauvy, F. [ICMCB, ICMCB-CNRS-IUT-Université de Bordeaux, 33608 Pessac Cedex (France); Slodczyk, A. [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France); Colomban, Ph., E-mail: philippe.colomban@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France)

    2015-02-15

    Highlights: • High temperature/water pressure autoclave is used to study the reaction/corrosion at SOFC/HTSE electrode. • High stability of Pr{sub 2}NiO{sub 4+δ} (PNO) and Nd{sub 2}NiO{sub 4+δ} (NNO) dense ceramics vs. water pressure is demonstrated. • Protonated rare-earth nickelates retain the perovskite-type structure and their H-content is determined. • Very low laser illumination power is required to avoid RE nickelate phase transition. • Nickelates show increasing stability from La to Pr/Nd vs. CO{sub 2}-rich high temperature water vapor. - Abstract: Mixed ionic-electronic conductors (MIEC) such as rare-earth nickelates with a general formula Ln{sub 2}NiO{sub 4+δ} (Ln = La, Pr, Nd) appear as potential for energy production and storage systems: fuel cells, electrolysers and CO{sub 2} converters. Since a good electrode material should exhibit important stability in operating conditions, the structural and chemical stability of different nickelate-based, well-densified ceramics have been studied using various techniques: TGA, dilatometry, XRD, Raman scattering and IR spectroscopy. Consequently, La{sub 2}NiO{sub 4+δ} (LNO), Pr{sub 2}NiO{sub 4+δ} (PNO) and Nd{sub 2}NiO{sub 4+δ} (NNO) have been exposed during 5 days to high water vapor pressure (40 bar) at intermediate temperature (550 °C) in an autoclave device, the used water being almost free or saturated with CO{sub 2}. Such protonation process offers an accelerating stability test and allows the choice of the most pertinent composition for industrial applications requiring a selected material with important life-time. In order to understand any eventual change of crystal structure, the ceramics were investigated in as-prepared, pristine state as well as after protonation and deprotonation (due to thermal treatment till 1000 °C under dry atmosphere). The results show the presence of traces or second phases originating from undesirable hydroxylation and carbonation, detected in the near

  3. Effects of elevated atmospheric CO2, prolonged summer drought and temperature increase on N2O and CH4 fluxes in a temperate heathland

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Ambus, Per; Albert, Kristian Rost

    2011-01-01

    In temperate regions, climate change is predicted to increase annual mean temperature and intensify the duration and frequency of summer droughts, which together with elevated atmospheric carbon dioxide (CO2) concentrations, may affect the exchange of nitrous oxide (N2O) and methane (CH4) between...... terrestrial ecosystems and the atmosphere. We report results from the CLIMAITE experiment, where the effects of these three climate change parameters were investigated solely and in all combinations in a temperate heathland. Field measurements of N2O and CH4 fluxes took place 1–2 years after the climate...... change manipulations were initiated. The soil was generally a net sink for atmospheric CH4. Elevated temperature (T) increased the CH4 uptake by on average 10 μg C m−2 h−1, corresponding to a rise in the uptake rate of about 20%. However, during winter elevated CO2 (CO2) reduced the CH4 uptake, which...

  4. Plant-soil distribution of potentially toxic elements in response to elevated atmospheric CO2.

    Science.gov (United States)

    Duval, Benjamin D; Dijkstra, Paul; Natali, Susan M; Megonigal, J Patrick; Ketterer, Michael E; Drake, Bert G; Lerdau, Manuel T; Gordon, Gwyneth; Anbar, Ariel D; Hungate, Bruce A

    2011-04-01

    The distribution of contaminant elements within ecosystems is an environmental concern because of these elements' potential toxicity to animals and plants and their ability to hinder microbial ecosystem services. As with nutrients, contaminants are cycled within and through ecosystems. Elevated atmospheric CO2 generally increases plant productivity and alters nutrient element cycling, but whether CO2 causes similar effects on the cycling of contaminant elements is unknown. Here we show that 11 years of experimental CO2 enrichment in a sandy soil with low organic matter content causes plants to accumulate contaminants in plant biomass, with declines in the extractable contaminant element pools in surface soils. These results indicate that CO2 alters the distribution of contaminant elements in ecosystems, with plant element accumulation and declining soil availability both likely explained by the CO2 stimulation of plant biomass. Our results highlight the interdependence of element cycles and the importance of taking a broad view of the periodic table when the effects of global environmental change on ecosystem biogeochemistry are considered.

  5. Emissions to the Atmosphere from Amine-Based Post Combustion CO2 Capture Plant - Regulatory Aspects

    International Nuclear Information System (INIS)

    Azzi, Merched; Angove, Dennys; Dave, Narendra; Day, Stuart; Do, Thong; Feron, Paul; Sharma, Sunil; Attalla, Moetaz; Abu Zahra, Mohammad

    2014-01-01

    Amine-based Post Combustion Capture (PCC) of CO 2 is a readily available technology that can be deployed to reduce CO 2 emissions from coal fired power plants. However, PCC plants will likely release small quantities of amine and amine degradation products to the atmosphere along with the treated flue gas. The possible environmental effects of these emissions have been examined through different studies carried out around the world. Based on flue gas from a 400 MW ultra-supercritical coal fired power plant Aspen-Plus PCC process simulations were used to predict the potential atmospheric emissions from the plant. Different research initiatives carried out in this area have produced new knowledge that has significantly reduced the risk perception for the release of amine and amine degradation products to the atmosphere. In addition to the reduction of the CO 2 emissions, the PCC technology will also help in reducing SO x and NO 2 emissions. However, some other pollutants such as NH 3 and aerosols will increase if appropriate control technologies are not adopted. To study the atmospheric photo-oxidation of amines, attempts are being made to develop chemical reaction schemes that can be used for air quality assessment. However, more research is still required in this area to estimate the reactivity of amino solvents in the presence of other pollutants such as NO x and other volatile organic compounds in the background air. Current air quality guidelines may need to be updated to include limits for the additional pollutants such as NH 3 , nitrosamines and nitramines once more information related to their emissions is available. This paper focuses on describing the predicted concentrations of major pollutants that are expected to be released from a coal fired power plant obtained by ASPEN-Plus PCC process simulations in terms of current air quality regulations and other regulatory aspects. (authors)

  6. Coal char combustion under a CO{sub 2}-rich atmosphere: Implications for pulverized coal injection in a blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Borrego, A.G.; Casal, M.D. [Instituto Nacional del Carbon, CSIC. P.O. Box 73, 33080 Oviedo (Spain); Osorio, E.; Vilela, A.C.F. [Laboratorio de Siderurgia, DEMET/PPGEM - Universidade Federal do Rio Grande do Sul. P.O. Box 15021, 91501-970 Porto Alegre (Brazil)

    2008-11-15

    Pulverized coal injection (PCI) is employed in blast furnace tuyeres attempting to maximize the injection rate without increasing the amount of unburned char inside the stack of the blast furnace. When coal is injected with air through the injection lance, the resolidified char will burn in an atmosphere with a progressively lower oxygen content and higher CO{sub 2} concentration. In this study an experimental approach was followed to separate the combustion process into two distinct devolatilization and combustion steps. Initially coal was injected into a drop tube furnace (DTF) operating at 1300 C in an atmosphere with a low oxygen concentration to ensure the combustion of volatiles and prevent the formation of soot. Then the char was refired into the DTF at the same temperature under two different atmospheres O{sub 2}/N{sub 2} (typical combustion) and O{sub 2}/CO{sub 2} (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in atmospheres typical for both combustion and oxy-combustion. The fuels tested comprised a petroleum coke and coals currently used for PCI injection ranging from high volatile to low volatile bituminous rank. Thermogravimetric analyses and microscopy techniques were used to establish the reactivity and appearance of the chars. Overall similar burnouts were achieved with N{sub 2} and CO{sub 2} for similar oxygen concentrations and therefore no loss in burnout should be expected as a result of enrichment in CO{sub 2} in the blast furnace gas. The advantage of increasing the amount of oxygen in a reacting atmosphere during burnout was found to be greater, the higher the rank of the coal. (author)

  7. UiO-66-NH2/GO Composite: Synthesis, Characterization and CO2 Adsorption Performance

    Directory of Open Access Journals (Sweden)

    Yan Cao

    2018-04-01

    Full Text Available In this work, a new composite materials of graphene oxide (GO-incorporated metal-organic framework (MOF(UiO-66-NH2/GO were in-situ synthesized, and were found to exhibit enhanced high performances for CO2 capture. X-ray diffraction (XRD, scanning electron microscope (SEM, N2 physical adsorption, and thermogravimetric analysis (TGA were applied to investigate the crystalline structure, pore structure, thermal stability, and the exterior morphology of the composite. We aimed to investigate the influence of the introduction of GO on the stability of the crystal skeleton and pore structure. Water, acid, and alkali resistances were tested for physical and chemical properties of the new composites. CO2 adsorption isotherms of UiO-66, UiO-66-NH2, UiO-66/GO, and UiO-66-NH2/GO were measured at 273 K, 298 K, and 318 K. The composite UiO-66-NH2/GO exhibited better optimized CO2 uptake of 6.41 mmol/g at 273 K, which was 5.1% higher than that of UiO-66/GO (6.10 mmol/g. CO2 adsorption heat and CO2/N2 selectivity were then calculated to further evaluate the CO2 adsorption performance. The results indicated that UiO-66-NH2/GO composites have a potential application in CO2 capture technologies to alleviate the increase in temperature of the earth’s atmosphere.

  8. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Directory of Open Access Journals (Sweden)

    Uttam Kumar

    Full Text Available Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv. Crop geometry and management emulated field conditions. In two wet (WS and two dry (DS seasons, final aboveground dry weight (agdw was measured. At 390 ppmv [CO2] (current ambient level, agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE, increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv, 719 mm (390 ppmv, 928 mm (780 ppmv and 803 mm (1560 ppmv. With increasing [CO2], crop water use efficiency (WUE gradually increased from 1.59 g kg-1 (195 ppmv to 2.88 g kg-1 (1560 ppmv. Transpiration efficiency (TE measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  9. Potential and economics of CO{sub 2} sequestration; Sequestration du CO{sub 2}: faisabilite et cout

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J. [CEA Saclay, 91 - Gif sur Yvette (France). Direction des Sciences de la Matiere; Ducroux, R. [Centre d' Initiative et de Recherche sur l' Energie et l' Environnement, CIRENE, 91 - Palaiseau (France)

    2001-07-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO{sub 2}. Some techniques could be used to reduced CO{sub 2} emission and stabilize atmospheric CO{sub 2} concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO{sub 2} emissions such as renewable or nuclear energy, iii) capture and store CO{sub 2} from fossil fuels combustion, and enhance the natural sinks for CO{sub 2} (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO{sub 2} and to review the various options for CO{sub 2} sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO{sub 2} and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO{sub 2} emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO{sub 2} emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO{sub 2} is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon

  10. Carbon Disulfide (CS2) Mechanisms in Formation of Atmospheric Carbon Dioxide (CO2) Formation from Unconventional Shale Gas Extraction and Processing Operations and Global Climate Change.

    Science.gov (United States)

    Rich, Alisa L; Patel, Jay T

    2015-01-01

    Carbon disulfide (CS2) has been historically associated with the production of rayon, cellophane, and carbon tetrachloride. This study identifies multiple mechanisms by which CS2 contributes to the formation of CO2 in the atmosphere. CS2 and other associated sulfide compounds were found by this study to be present in emissions from unconventional shale gas extraction and processing (E&P) operations. The breakdown products of CS2; carbonyl sulfide (COS), carbon monoxide (CO), and sulfur dioxide (SO2) are indirect greenhouse gases (GHGs) that contribute to CO2 levels in the atmosphere. The heat-trapping nature of CO2 has been found to increase the surface temperature, resulting in regional and global climate change. The purpose of this study is to identify five mechanisms by which CS2 and the breakdown products of CS2 contribute to atmospheric concentrations of CO2. The five mechanisms of CO2 formation are as follows: Chemical Interaction of CS2 and hydrogen sulfide (H2S) present in natural gas at high temperatures, resulting in CO2 formation;Combustion of CS2 in the presence of oxygen producing SO2 and CO2;Photolysis of CS2 leading to the formation of COS, CO, and SO2, which are indirect contributors to CO2 formation;One-step hydrolysis of CS2, producing reactive intermediates and ultimately forming H2S and CO2;Two-step hydrolysis of CS2 forming the reactive COS intermediate that reacts with an additional water molecule, ultimately forming H2S and CO2. CS2 and COS additionally are implicated in the formation of SO2 in the stratosphere and/or troposphere. SO2 is an indirect contributor to CO2 formation and is implicated in global climate change.

  11. Development of novel CO{sub 2}-stable oxygen permeable dual phase membranes for CO{sub 2} capture in an oxy-fuel process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huixia

    2012-07-19

    The combustion of fossil fuels in power stations with pure oxygen following the oxy-fuel process allows the Sequestration of CO{sub 2}. The pure oxygen needed can be separated from air by oxygen transporting ceramics like single phase perovskites. However, most of the so far developed single phase perovskites have stability problems in a CO{sub 2} containing atmosphere. Dual phase membranes are micro-scale mixtures of an electron conducting phase and an oxygen ion conducting phase and their compositions can be tailored according to practical requirements, which are considered to be promising substitutes for the single phase perovskite materials. In my thesis the issues of phase stability for perovskite-type material with the common composition Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 3-{delta}} (BSCF) as weil as the development of a series of novel CO{sub 2}-stable dual phase membranes were studied. In Chapter 2, the phase stability and permeation behavior of a dead-end BSCF tube membrane in high-purity oxygen at temperatures below 750 C, were elucidated using powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field (HAADF) and scanning transmission electron microscopy (STEM). lt was found that parts of the cubic perovskite BSCF transformed into a hexagonal perovskite Ba{sub 0.5{+-}x}Sr{sub 0.5{+-}x}CoO{sub 3-{delta}} (x {approx} 0.1) and a trigonal mixed oxide Ba{sub 1-x}Sr{sub x}CO{sub 2-y}Fe{sub y}O{sub 5{+-}{delta}} (x {approx} 0.15, y {approx} 0.25) in high-purity oxygen at 750 C. On the other hand, it was found that the partial degradation of cubic BSCF perovskite at 750 C was more pronounced under the strongly oxidizing conditions on the oxygen supply (feed) side than on the oxygen release (permeate) side of the membrane. The structural instability of BSCF is attributed to an oxidation of cobalt from Co{sup 2+} to Co{sup 3+} and Co{sup 4+}, which exhibits an ionic radius that is too small to be tolerated by

  12. Effects of salinity and short-term elevated atmospheric CO2 on the chemical equilibrium between CO2 fixation and photosynthetic electron transport of Stevia rebaudiana Bertoni.

    Science.gov (United States)

    Hussin, Sayed; Geissler, Nicole; El-Far, Mervat M M; Koyro, Hans-Werner

    2017-09-01

    The effect of water salinity on plant growth and photosynthetic traits of Stevia rebaudiana was investigated to determine its level and mechanisms of salinity tolerance. It was also attempted to assess how short-term elevated CO 2 concentration would influence the boundaries and mechanisms of its photosynthetic capacity. The plants were grown in gravel/hydroponic system under controlled greenhouse conditions and irrigated with four different salinity levels (0, 25, 50 and 100 mol m -3 NaCl). Low salinity did not significantly alter the plant fresh weight, which was substantially decreased by 67% at high salinity treatment. Salinity tolerance threshold was reached at 50 mol m -3  NaCl while C50 was between 50 and 100 mol m -3  NaCl, indicating that S. rebaudiana is a moderate salt tolerant species. Salt-induced growth reduction was apparently linked to a significant decline of about 47% in the photosynthetic rates (A net ) at high salinity treatment, leading consequently to a disequilibrium between CO 2 -assimilation and electron transport rates (indicated by enhanced ETR max /A gross ratio). Elevated atmospheric CO 2 enhanced CO 2 assimilation rates by 65% and 80% for control and high-salt-stressed plants respectively, likely due to significant increases in intercellular CO 2 concentration (indicated by enhanced C i /C a ). The priority for Stevia under elevated atmospheric CO 2 was not to save water but to maximize photosynthesis so that the PWUE was progressively improved and the threat of oxidative stress was diminished (decline in ETR max /A gross ). The results imply that elevated CO 2 level could ameliorate some of the detrimental effects of salinity, conferring higher tolerance and survival of S. rebaudiana, a highlydesired feature with the forthcoming era of global changes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. TG-FTIR measurement of CO2-H2O co-adsorption for CO2 air capture sorbent screening

    NARCIS (Netherlands)

    Smal, I.M.; Yu, Qian; Veneman, Rens; Fränzel-Luiten, B.; Brilman, Derk Willem Frederik

    2014-01-01

    Capturing atmospheric CO2 using solid sorbents is gaining interest. As ambient air normally contains much more (up to 100 times) water than CO2, a selective sorbent is desirable as co-adsorption will most likely occur. In this study, a convenient method based on an TG-FTIR analysis system is

  14. Seasonal change in CO2 and H2O exchange between grassland and atmosphere

    Directory of Open Access Journals (Sweden)

    T. Oikawa

    Full Text Available The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3 dominated in early spring, and Imperata cylindrica (C4 and Andropogon virginicus (C4 grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution

  15. Seasonal change in CO2 and H2O exchange between grassland and atmosphere

    Directory of Open Access Journals (Sweden)

    N. Saigusa

    1996-03-01

    Full Text Available The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3 dominated in early spring, and Imperata cylindrica (C4 and Andropogon virginicus (C4 grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution

  16. Seasonal change in CO2 and H2O exchange between grassland and atmosphere

    Science.gov (United States)

    Saigusa, N.; Liu, S.; Oikawa, T.; Watanabe, T.

    1996-03-01

    The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3) dominated in early spring, and Imperata cylindrica (C4) and Andropogon virginicus (C4) grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution of C4 plants

  17. Insights into the Hydrothermal Stability of Triamine-Functionalized SBA-15 Silica for CO2 Adsorption.

    Science.gov (United States)

    Jahandar Lashaki, Masoud; Ziaei-Azad, Hessam; Sayari, Abdelhamid

    2017-10-23

    The hydrothermal stability of triamine-grafted, large-pore SBA-15 CO 2 adsorbents was studied by using steam stripping. Following two 3 h cycles of steam regeneration, lower CO 2 uptakes, lower CO 2 /N ratios, and slower adsorption kinetics were observed relative to fresh samples, particularly at the lowest adsorption temperature (25 °C). CO 2 adsorption measurements for a selected sample exposed to 48 h of steam stripping depicted that after the initial loss during the first exposure to steam (3-6 h), the adsorptive properties stabilized. For higher adsorption temperatures (i.e., 50 and 75 °C), however, all adsorptive properties remained almost unchanged after steaming, indicating the significance of diffusional limitations. Thermogravimetric analysis and FTIR spectroscopy on grafted samples before and after steam stripping showed no amine leaching and no change in the chemical nature of the amine groups, respectively. Also, a six-cycle CO 2 adsorption/desorption experiment under dry conditions showed no thermal degradation. However, N 2 adsorption measurement at 77 K showed significant reductions in the BET surface area of the grafted samples following steaming. Based on the pore size distribution of calcined, grafted samples before and after steaming, it is proposed that exposure to steam restructured the grafted materials, causing mass transfer resistance. It is inferred that triamine-grafted, large-pore SBA-15 adsorbents are potential candidates for CO 2 capture at relatively high temperatures (50-75 °C; for example, flue gas) combined with steam regeneration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Airborne Lidar for Simultaneous Measurement of Column CO2 and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Antill, Charles W.; Remus, Ruben; Yu, Jirong

    2016-01-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption feathers for the gas at this particular wavelength. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers. This paper will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar. The development of this active optical remote sensing IPDA instrument is targeted for measuring both CO2 and water vapor (H2O) in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver telescope, detection system and data acquisition. Future plans for the IPDA lidar system for ground integration, testing and flight validation will also be presented.

  19. Increasing Mississippi river discharge throughout the twenty-first century influenced by changes in climate, land use and atmospheric CO2

    Science.gov (United States)

    Tao, B.; Tian, H.; Ren, W.; Yang, J.; Yang, Q.; He, R.; Cai, W. J.; Lohrenz, S. E.

    2014-12-01

    Previous studies have demonstrated that changes in temperature and precipitation (hereafter climate change) would influence river discharge, but the relative importance of climate change, land use, and elevated atmospheric CO2 have not yet been fully investigated. Here we examined how river discharge in the Mississippi River basin in the 21st century might be influenced by these factors using the Dynamic Land Ecosystem Model driven by atmospheric CO2, downscaled GCMs climate and land use scenarios. Our results suggest that river discharge would be substantially enhanced (10.7-59.8%) by the 2090s compared to the recent decade (2000s), though large discrepancies exist among different climate, atmospheric CO2, and land use change scenarios. Our factorial analyses further indicate that the combined effects of land use change and human-induced atmospheric CO2 elevation on river discharge would outweigh climate change effect under the high emission scenario (A2) of Intergovernmental Panel for Climate Change. Our study offers the first attempt to project potential changes in river discharge in response to multiple future environmental changes. It demonstrates the importance of land use change and atmospheric CO2 concentrations in projecting future changes in hydrologic processes. The projected increase river discharge implies that riverine fluxes of carbon, nutrients and pesticide from the MRB to the coastal regions would increase in the future, and thus may influence the states of ocean acidification and hypoxia and deteriorate ocean water quality. Further efforts will also be needed to account for additional environmental factors (such as nitrogen deposition, tropospheric ozone pollution, dam construction, etc.) in projecting changes in the hydrological cycle.

  20. Temporal variations of atmospheric CO2 concentration in a temperate deciduous forest in central Japan

    International Nuclear Information System (INIS)

    Murayama, Shohei; Saigusa, Nobuko; Yamamoto, Susumu; Kondo, Hiroaki; Eguchi, Yozo; Chan, Douglas

    2003-01-01

    In order to examine the temporal variation of the atmospheric CO 2 concentration in a temperate deciduous forest, and its relationship with meteorological conditions, continuous measurements of CO 2 and meteorological parameters have been made since 1993 on a tower at Takayama in the central part of Japan. In addition to an average secular increase in atmospheric CO 2 of 1.8 ppm/yr, diurnal variation with a maximum during the night-time to early morning and a minimum in the afternoon is observed from late spring to early fall; the diurnal cycle is not so clearly observed in the remaining seasons of the year. A concentration difference between above and below the canopy, and its diurnal variation, can also be seen clearly in summer. Daily mean concentration data show a prominent seasonal cycle. The maximum and the minimum of the seasonal cycle occur in April and from mid August to mid September, respectively. Day-to-day changes in the diurnal cycle of CO 2 are highly dependent on the day-to-day variations in meteorological conditions. However, CO 2 variations on longer time scales (>10 d) appear to be linearly related to changes in respiration. At Takayama, variations in the 10-d standard deviation of daily mean CO 2 data and 10-d averaged respiration show distinct relationships with soil temperature during spring and fall seasons. In spring, respiration has a stronger exponential dependence on soil temperature than in fall. Interestingly, in summer when soil temperature becomes greater than about 15 deg C, biological respiration becomes more variable and independent of the soil temperature. Thus, at the Takayama site, the Q10 relationship is seasonally dependent, and does not represent well the biological respiration process when the soil temperature rises above 15 deg C

  1. Interpreting plant-sampled ¿14CO2 to study regional anthropogenic CO2 signals in Europe

    OpenAIRE

    Bozhinova, D.N.

    2015-01-01

    "Interpreting plant-sampled Δ14CO2 to study regional anthropogenic CO2 signals in Europe" Author: Denica Bozhinova This thesis investigates the quantitative interpretation of plant-sampled ∆14CO2 as an indicator of fossil fuel CO2 recently added to the atmosphere. We present a methodology to calculate the ∆14CO2 that has accumulated in a plant over its growing period, based on a modeling framework consisting of a plant growth model (SUCROS) and an atmospheric transport model (WRF-Chem). We ve...

  2. Six years of atmospheric CO2 observations at Mt. Fuji recorded with a battery-powered measurement system

    Science.gov (United States)

    Nomura, Shohei; Mukai, Hitoshi; Terao, Yukio; Machida, Toshinobu; Nojiri, Yukihiro

    2017-03-01

    We developed a battery-powered carbon dioxide (CO2) measurement system for monitoring at the summit of Mt. Fuji (3776 m a.s.l.), which experiences very low temperatures (below -20 °C) and severe environmental conditions without access to gridded electricity for 10 months (from September to June). Our measurement system used 100 batteries to run the measurement unit during these months. These batteries were charged during the 2-month summer season when gridded electricity was available, using a specially designed automatic battery-charging system. We installed this system in summer 2009 at the Mt. Fuji weather station; observations of atmospheric CO2 concentration were taken through December 2015. Measurements were never interrupted by a lack of battery power except for two cases in which lightning damaged a control board. Thus we obtained CO2 data during about 94 % of the 6-year period. Analytical performances (stability and accuracy) were better than 0.1 ppm, as tested by checking working standards and comparisons with flask sampling.Observational results showed that CO2 mole fractions at Mt. Fuji demonstrated clear seasonal variation. The trend and the variability of the CO2 growth rate observed at Mt. Fuji were very similar to those of the Mauna Loa Observatory (MLO). Seasonally, the concentration at Mt. Fuji was 2-10 ppm lower in summer and 2-12 ppm higher in winter than those at MLO. The lower concentrations at Mt. Fuji in summer are mainly attributed to episodes of air mass transport from Siberia or China, where CO2 is taken up by the terrestrial biosphere. On the other hand, the relatively higher concentrations in winter seem to reflect the high percentage of air masses originating from China or Southeast Asia during this period, which carry increased anthropogenic carbon dioxide. These results show that Mt. Fuji is not very influenced by local sources but rather by the sources and sinks over a very large region.Thus we conclude that, as this system could

  3. Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy

    Science.gov (United States)

    George, T.; Fathauer, R. W.

    1992-01-01

    The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.

  4. Effects of elevated atmospheric CO2 and/or O3 on intra- and interspecific competitive ability of aspen

    Science.gov (United States)

    M. E. Kubiske; V. S. Quinn; P. E. Marquardt; D. F. Karnosky

    2007-01-01

    Three model communities of trembling aspen (monoculture, and mixed with either paper birch or sugar maple) were grown for seven years in elevated atmospheric CO2 and O3 using Free Air CO2 Enrichment (FACE) technology. We utilized trends in species' importance, calculated as an index of volume...

  5. Physiological acclimation dampens initial effects of elevated temperature and atmospheric CO2 concentration in mature boreal Norway spruce.

    Science.gov (United States)

    Lamba, Shubhangi; Hall, Marianne; Räntfors, Mats; Chaudhary, Nitin; Linder, Sune; Way, Danielle; Uddling, Johan; Wallin, Göran

    2018-02-01

    Physiological processes of terrestrial plants regulate the land-atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or CO 2 concentration ([CO 2 ]) in a 3-year field experiment with mature boreal Norway spruce. We found that elevated [CO 2 ] decreased photosynthetic carboxylation capacity (-23% at 25 °C) and increased shoot respiration (+64% at 15 °C), while warming had no significant effects. Shoot respiration, but not photosynthetic capacity, exhibited seasonal acclimation. Stomatal conductance at light saturation and a vapour pressure deficit of 1 kPa was unaffected by elevated [CO 2 ] but significantly decreased (-27%) by warming, and the ratio of intercellular to ambient [CO 2 ] was enhanced (+17%) by elevated [CO 2 ] and decreased (-12%) by warming. Many of these responses differ from those typically observed in temperate tree species. Our results show that long-term physiological acclimation dampens the initial stimulation of plant net carbon assimilation to elevated [CO 2 ], and of plant water use to warming. Models that do not account for these responses may thus overestimate the impacts of climate change on future boreal vegetation-atmosphere interactions. © 2017 John Wiley & Sons Ltd.

  6. Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI

    Directory of Open Access Journals (Sweden)

    L. R. Welp

    2016-07-01

    Full Text Available Warmer temperatures and elevated atmospheric CO2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changes are unclear. Here, we examine CO2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena. Both used measured atmospheric CO2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60° N excluding Europe (10° W–63° E, neither inversion finds a significant long-term trend in annual CO2 balance. The boreal zone, the latitude region from approximately 50–60° N, again excluding Europe, showed a trend of 8–11 Tg C yr−2 over the common period of validity from 1986 to 2006, resulting in an annual CO2 sink in 2006 that was 170–230 Tg C yr−1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO2 uptake, consistent with strong greening trends, is offset by

  7. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    C. Lac

    2013-05-01

    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI with stronger urban–rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m, leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A

  8. Transcriptional and metabolic insights into the differential physiological responses of arabidopsis to optimal and supraoptimal atmospheric CO2.

    Directory of Open Access Journals (Sweden)

    Fatma Kaplan

    Full Text Available BACKGROUND: In tightly closed human habitats such as space stations, locations near volcano vents and closed culture vessels, atmospheric CO(2 concentration may be 10 to 20 times greater than Earth's current ambient levels. It is known that super-elevated (SE CO(2 (>1,200 µmol mol(-1 induces physiological responses different from that of moderately elevated CO(2 (up to 1,200 µmol mol(-1, but little is known about the molecular responses of plants to supra-optimal [CO(2]. METHODOLOGY/PRINCIPAL FINDINGS: To understand the underlying molecular causes for differential physiological responses, metabolite and transcript profiles were analyzed in aerial tissue of Arabidopsis plants, which were grown under ambient atmospheric CO(2 (400 µmol mol(-1, elevated CO(2 (1,200 µmol mol(-1 and SE CO(2 (4,000 µmol mol(-1, at two developmental stages early and late vegetative stage. Transcript and metabolite profiling revealed very different responses to elevated versus SE [CO(2]. The transcript profiles of SE CO(2 treated plants were closer to that of the control. Development stage had a clear effect on plant molecular response to elevated and SE [CO(2]. Photosynthetic acclimation in terms of down-regulation of photosynthetic gene expression was observed in response to elevated [CO(2], but not that of SE [CO(2] providing the first molecular evidence that there appears to be a fundamental disparity in the way plants respond to elevated and SE [CO(2]. Although starch accumulation was induced by both elevated and SE [CO(2], the increase was less at the late vegetative stage and accompanied by higher soluble sugar content suggesting an increased starch breakdown to meet sink strength resulting from the rapid growth demand. Furthermore, many of the elevated and SE CO(2-responsive genes found in the present study are also regulated by plant hormone and stress. CONCLUSIONS/SIGNIFICANCE: This study provides new insights into plant acclimation to elevated and SE [CO

  9. CO2 impulse response curves for GWP calculations

    International Nuclear Information System (INIS)

    Jain, A.K.; Wuebbles, D.J.

    1993-01-01

    The primary purpose of Global Warming Potential (GWP) is to compare the effectiveness of emission strategies for various greenhouse gases to those for CO 2 , GWPs are quite sensitive to the amount of CO 2 . Unlike all other gases emitted in the atmosphere, CO 2 does not have a chemical or photochemical sink within the atmosphere. Removal of CO 2 is therefore dependent on exchanges with other carbon reservoirs, namely, ocean and terrestrial biosphere. The climatic-induced changes in ocean circulation or marine biological productivity could significantly alter the atmospheric CO 2 lifetime. Moreover, continuing forest destruction, nutrient limitations or temperature induced increases of respiration could also dramatically change the lifetime of CO 2 in the atmosphere. Determination of the current CO 2 sinks, and how these sinks are likely to change with increasing CO 2 emissions, is crucial to the calculations of GWPs. It is interesting to note that the impulse response function is sensitive to the initial state of the ocean-atmosphere system into which CO 2 is emitted. This is due to the fact that in our model the CO 2 flux from the atmosphere to the mixed layer is a nonlinear function of ocean surface total carbon

  10. South African carbon observations: CO2 measurements for land, atmosphere and ocean

    CSIR Research Space (South Africa)

    Feig, Gregor T

    2017-11-01

    Full Text Available , Mudau AE, Monteiro PMS. South African carbon observations: CO2 measurements for land, atmosphere and ocean. S Afr J Sci. 2017;113(11/12), Art. #a0237, 4 pages. http://dx.doi. org/10.17159/sajs.2017/a0237 Carbon dioxide plays a central role in earth... References 1. Houghton RA. Balancing the global carbon budget. Annu Rev Earth Planet Sci. 2007;35:313–347. https://doi.org/10.1146/annurev. earth.35.031306.140057 2. Denman KL. Climate change, ocean processes and ocean iron fertilization. Mar Ecol Prog Ser...

  11. Infrared radiation and inversion population of CO2 laser levels in Venusian and Martian atmospheres

    Science.gov (United States)

    Gordiyets, B. F.; Panchenko, V. Y.

    1983-01-01

    Formation mechanisms of nonequilibrium 10 micron CO2 molecule radiation and the possible existence of a natural laser effect in the upper atmospheres of Venus and Mars are theoretically studied. An analysis is made of the excitation process of CO2 molecule vibrational-band levels (with natural isotropic content) induced by direct solar radiation in bands 10.6, 9.4, 4.3, 2.7 and 2.0 microns. The model of partial vibrational-band temperatures was used in the case. The problem of IR radiation transfer in vibrational-rotational bands was solved in the radiation escape approximation.

  12. Determination of equivalent mixing height and atmospheric stability assessment

    International Nuclear Information System (INIS)

    Simon, J.; Bulko, M.; Holy, K.

    2007-01-01

    Atmospheric stability is an indicator that reflects the intensity of boundary layer mixing processes. This feature of the atmosphere is especially important since it defines dispersive atmospheric conditions and provides information on how effectively the anthropogenic pollution will be transferred to the higher levels of the atmosphere. The assessment of atmospheric dispersiveness plays a crucial role in the protection of air quality and public health in big cities. The presented paper deals with determination of atmospheric stability via so called Equivalent Mixing Height (EMH) quantity using a radioactive noble gas 222 Rn. A method of deriving a link between 222 Rn activity concentration, eddy diffusion coefficient and EMH using fluid mechanics is also outlined in this work. (authors)

  13. The counteracting effects of elevated atmospheric CO2 concentrations and drought episodes: Studies of enchytraeid communities in a dry heathland

    DEFF Research Database (Denmark)

    Maraldo, Kristine; Krogh, Paul Henning; Linden, Leon

    2010-01-01

    The potential impacts of interactions of multiple climate change factors in soil ecosystems have received little attention. Most studies have addressed effects of single factors such as increased temperature or atmospheric CO2 but little is known about how such environmental factors will interact...... impact of drought on the enchytraeids, compared to the year with a wet summer and autumn (2007). Our study emphasises the importance of multi-factorial experimental design as a means to investigate effects of climatic changes.......The potential impacts of interactions of multiple climate change factors in soil ecosystems have received little attention. Most studies have addressed effects of single factors such as increased temperature or atmospheric CO2 but little is known about how such environmental factors will interact....... In the present study we investigate the effects of in situ exposure to elevated atmospheric CO2 concentration, increased temperatures and prolonged drought episodes on field communities of Enchytraeidae (Oligochaeta) in a dry heathland (Brandbjerg, Denmark). Increased CO2 had a positive effect on enchytraeid...

  14. A spectroscopic transfer standard for accurate atmospheric CO measurements

    Science.gov (United States)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  15. Analysis of Microbial Activity Under a Supercritical CO{sub 2} Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Janelle

    2012-11-30

    Because the extent and impact of microbial activity in deep saline aquifers during geologic sequestration is unknown, the objectives of this proposal were to: (1) characterize the growth requirements and optima of a biofilm-producing supercritical CO{sub 2}-tolerant microbial consortium (labeled MIT0212) isolated from hydrocarbons recovered from the Frio Ridge, TX carbon sequestration site; (2) evaluate the ability of this consortium to grow under simulated reservoir conditions associated with supercritical CO{sub 2} injection; (3) isolate and characterize individual microbial strains from this consortium; and (4) investigate the mechanisms of supercritical CO{sub 2} tolerance in isolated strains and the consortium through genome-enabled studies. Molecular analysis of genetic diversity in the consortium MIT0212 revealed a predominance of sequences closely related to species of the spore-forming genus Bacillus. Strain MIT0214 was isolated from this consortium and characterized by physiological profiling and genomic analysis. We have shown that the strain MIT0214 is an aerobic spore-former and capable of facultative anaerobic growth under both reducing N{sub 2} and CO{sub 2} atmospheres by fermentation and possibly anaerobic respiration. Strain MIT0214 is best adapted to anaerobic growth at pressures of 1 atm but is able to growth at elevated pressures After 1 week growth was observed at pressures as high as 27 atm (N{sub 2}) or 9 atm (CO{sub 2}) and after 26-30 days growth can be observed under supercritical CO{sub 2}. In addition, we have determined that spores of strain B. cereus MIT0214 are tolerant of both direct and indirect exposure to supercritical CO{sub 2}. Additional physiological characterization under aerobic conditions have revealed MIT0214 is able to grow from temperature of 21 to 45 °C and salinities 0.01 to 40 g/L NaCl with optimal growth occurring at 30°C and from 1 - 5 g NaCl/L. The genome sequence of B. cereus MIT0214 shared 89 to 91% of genes

  16. Is phloem loading a driver of plant photosynthetic responses to elevated atmospheric [CO2]? 

    Science.gov (United States)

    A better understanding of the interactions between photosynthesis, photoassimilate translocation and sink activity is necessary to improve crop productivity. Rising atmospheric [CO2] is perturbing source-sink balance in a manner not experienced by crops during the history of their cultivation, so ne...

  17. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1993-02-01

    Northern ecosystems contain up to 455 Gt of C in the soil active layer and upper permafrost, which is equivalent to approximately 60% of the carbon currently in the atmosphere as CO{sub 2}. Much of this carbon is stored in the soil as dead organic matter. Its fate is subject to the net effects of global change on the plant and soil systems of northern ecosystems. The arctic alone contains about 60 Gt C, 90% of which is present in the soil active layer and upper permafrost, and is assumed to have been a sink for CO{sub 2} during the historic and recent geologic past. Depending on the nature, rate, and magnitude of global environmental change, the arctic may have a positive or negative feedback on global change. Results from the DOE- funded research efforts of 1990 and 1991 indicate that the arctic has become a source of CO{sub 2} to the atmosphere. Measurements made in the Barrow, Alaska region during 1992 support these results. This change coincides with recent climatic variation in the arctic, and suggests a positive feedback of arctic ecosystems on atmospheric CO{sub 2} and global change. There are obvious potential errors in scaling plot level measurements to landscape, mesoscale, and global spatial scales. In light of the results from the recent DOE-funded research, and the remaining uncertainties regarding the change in arctic ecosystem function due to high latitude warming, a revised set of research goals is proposed for the 1993--94 year. The research proposed in this application has four principal aspects: (A) Long- term response of arctic plants and ecosystems to elevated atmospheric CO{sub 2}. (B) Circumpolar patterns of net ecosystem CO{sub 2} flux. (C) In situ controls by temperature and moisture on net ecosystem CO{sub 2} flux. (D) Scaling of CO{sub 2} flux from plot, to landscape, to regional scales.

  18. Atmospheric CO2 inversions on the mesoscale using data-driven prior uncertainties: quantification of the European terrestrial CO2 fluxes

    Science.gov (United States)

    Kountouris, Panagiotis; Gerbig, Christoph; Rödenbeck, Christian; Karstens, Ute; Koch, Thomas F.; Heimann, Martin

    2018-03-01

    Optimized biogenic carbon fluxes for Europe were estimated from high-resolution regional-scale inversions, utilizing atmospheric CO2 measurements at 16 stations for the year 2007. Additional sensitivity tests with different data-driven error structures were performed. As the atmospheric network is rather sparse and consequently contains large spatial gaps, we use a priori biospheric fluxes to further constrain the inversions. The biospheric fluxes were simulated by the Vegetation Photosynthesis and Respiration Model (VPRM) at a resolution of 0.1° and optimized against eddy covariance data. Overall we estimate an a priori uncertainty of 0.54 GtC yr-1 related to the poor spatial representation between the biospheric model and the ecosystem sites. The sink estimated from the atmospheric inversions for the area of Europe (as represented in the model domain) ranges between 0.23 and 0.38 GtC yr-1 (0.39 and 0.71 GtC yr-1 up-scaled to geographical Europe). This is within the range of posterior flux uncertainty estimates of previous studies using ground-based observations.

  19. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere.

    Science.gov (United States)

    Webster, Chris R; Mahaffy, Paul R; Flesch, Gregory J; Niles, Paul B; Jones, John H; Leshin, Laurie A; Atreya, Sushil K; Stern, Jennifer C; Christensen, Lance E; Owen, Tobias; Franz, Heather; Pepin, Robert O; Steele, Andrew; Achilles, Cherie; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F; Blanco Avalos, Juan J; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John; Cantor, Bruce; Caplinger, Michael; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; de la Torre Juarez, Manuel; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Molina Jurado, Antonio; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Navarro López, Sara; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Nixon, Brian; Noe Dobrea, Eldar; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; de Pablo Hernández, Miguel Ángel; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; Romeral-Planelló, Julio J; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Sebastian Martinez, Eduardo; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sobrón Sánchez, Pablo; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Stein, Thomas; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Stolper, Ed; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sumner, Dawn; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Torres Redondo, Josefina; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2013-07-19

    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

  20. Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 and N deposition

    NARCIS (Netherlands)

    Hoosbeek, M.R.; Breemen, van N.; Vasander, H.; Buttlers, A.; Berendse, F.

    2002-01-01

    The free air carbon dioxide enrichment (FACE) and N deposition experiments on four ombrotrophic bogs in Finland, Sweden, the Netherlands and Switzerland, revealed that after three years of treatment: (1) elevated atmospheric CO2 concentration had no significant effect on the biomass growth of

  1. Feasibility Study of Multi-Wavelength Differential Absorption LIDAR for CO2 Monitoring

    Directory of Open Access Journals (Sweden)

    Chengzhi Xiang

    2016-06-01

    Full Text Available To obtain a better understanding of carbon cycle and accurate climate prediction models, highly accurate and temporal resolution observation of atmospheric CO2 is necessary. Differential absorption LIDAR (DIAL remote sensing is a promising technology to detect atmospheric CO2. However, the traditional DIAL system is the dual-wavelength DIAL (DW-DIAL, which has strict requirements for wavelength accuracy and stability. Moreover, for on-line and off-line wavelengths, the system’s optical efficiency and the change of atmospheric parameters are assumed to be the same in the DW-DIAL system. This assumption inevitably produces measurement errors, especially under rapid aerosol changes. In this study, a multi-wavelength DIAL (MW-DIAL is proposed to map atmospheric CO2 concentration. The MW-DIAL conducts inversion with one on-line and multiple off-line wavelengths. Multiple concentrations of CO2 are then obtained through difference processing between the single on-line and each of the off-line wavelengths. In addition, the least square method is adopted to optimize inversion results. Consequently, the inversion concentration of CO2 in the MW-DIAL system is found to be the weighted average of the multiple concentrations. Simulation analysis and laboratory experiments were conducted to evaluate the inversion precision of MW-DIAL. For comparison, traditional DW-DIAL simulations were also conducted. Simulation analysis demonstrated that, given the drifting wavelengths of the laser, the detection accuracy of CO2 when using MW-DIAL is higher than that when using DW-DIAL, especially when the drift is large. A laboratory experiment was also performed to verify the simulation analysis.

  2. History of CO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Degens, E T

    1979-01-01

    Upon arrival on earth, the reduced carbon pool split into a series of compartments: core, mantle, crust, hydrosphere, atmosphere, and biosphere. This distribution pattern is caused by the ability of carbon to adjust structurally to a wide range of pressure and temperature, and to form simple and complex molecules with oxygen, hydrogen and nitrogen. Transformation also involved oxidation of carbon to CO/sub 2/ which is mediated at depth by minerals, such as magnetite, and by water vapor above critical temperature. Guided by mineral-organic interactions, simple carbon compounds evolved in near surface environments towards physiologically interesting biochemicals. Life, as an autocatalytic system, is considered an outgrowth of such a development. This article discusses environmental parameters that control the CO/sub 2/ system, past and present. Mantle and crustal evolution is the dynamo recharging the CO/sub 2/ in sea and air; the present rate of CO/sub 2/ release from the magma is 0.05 x 10/sup 15/ g C per year. Due to the enormous buffer capacity of the chemical system ocean, such rates are too small to seriously effect the level of CO/sub 2/ in our atmosphere. In the light of geological field data and stable isotope work, it is concluded that the CO/sub 2/ content in the atmosphere has remained fairly uniform since early Precambrian time; CO/sub 2/ should thus have had little impact on paleoclimate. In contrast, the massive discharge of man-made CO/sub 2/ into our atmosphere may have serious consequences for climate, environment and society in the years to come.

  3. Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza

    DEFF Research Database (Denmark)

    Rønn, R.; Gavito, M.; Larsen, J.

    2002-01-01

    with or without the presence of the arbuscular mycorrhizal (AM) fungus Glomus caledonium. It was hypothesised that (1) the populations of free-living soil protozoa would increase as a response to elevated CO2, (2) the effect of elevated CO2 on protozoa would be moderated by the presence of mycorrhiza and (3......) the presence of arbuscular mycorrhiza would affect soil protozoan numbers regardless of atmospheric CO2. After 3 weeks growth there was no difference in bacterial numbers (direct counts) in soil, but the number of free-living bacterial-feeding protozoa was significantly higher under elevated CO2...... elevated CO2 suggest increased bacterial production, whereas the lower populations in response to presence of mycorrhiza suggest a depressing effect on bacterial production by AM colonisation. (C) 2002 Elsevier Science Ltd. All rights reserved....

  4. Elevated Atmospheric CO2 and Drought Affect Soil Microbial Community and Functional Diversity Associated with Glycine max

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2017-12-01

    Full Text Available Abstract Under the background of climate change, the increase of atmospheric CO2 and drought frequency have been considered as significant influencers on the soil microbial communities and the yield and quality of crop. In this study, impacts of increased ambient CO2 and drought on soil microbial structure and functional diversity of a Stagnic Anthrosol were investigated in phytotron growth chambers, by testing two representative CO2 levels, three soil moisture levels, and two soil cover types (with or without Glycine max. The 16S rDNA and 18S rDNA fragments were amplified to analyze the functional diversity of fungi and bacteria. Results showed that rhizosphere microbial biomass and community structure were significantly affected by drought, but effects differed between fungi and bacteria. Drought adaptation of fungi was found to be easier than that of bacteria. The diversity of fungi was less affected by drought than that of bacteria, evidenced by their higher diversity. Severe drought reduced soil microbial functional diversity and restrained the metabolic activity. Elevated CO2 alone, in the absence of crops (bare soil, did not enhance the metabolic activity of soil microorganisms. Generally, due to the co-functioning of plant and soil microorganisms in water and nutrient use, plants have major impacts on the soil microbial community, leading to atmospheric CO2 enrichment, but cannot significantly reduce the impacts of drought on soil microorganisms.

  5. Enhancement of thermoelectric power factor of Sr2CoMoO6 double perovskite by annealing in reducing atmosphere

    Science.gov (United States)

    Tanwar, Khagesh; Saxena, Mandvi; Maiti, Tanmoy

    2017-10-01

    In general, n-type thermoelectric materials are rather difficult to design. This study particularly pivoted on designing potential environmentally benign oxides based n-type thermoelectric material. We synthesized Sr2CoMoO6 (SCMO) polycrystalline ceramics via the solid-state synthesis route. XRD, SEM, and thermoelectric measurements were carried out for phase constitution, microstructure analysis, and to determine its potential for thermoelectric applications. As-sintered SCMO sample showed an insulator like behavior till 640 °C after which it exhibited an n-type non-degenerate semiconductor behavior followed by a p-n type conduction switching. To stabilize a high temperature n-type behavior, annealing of SCMO in reducing atmosphere (H2) at 1000 °C was carried out. After annealing, the SCMO demonstrated an n-type semiconductor behavior throughout the temperature range of measurement. The electrical conductivity (σ) and the power factor (S2σ) were found to be increased manifold in the annealed SCMO double perovskite.

  6. Experimental study of volatile-N conversion at O{sub 2}/CO{sub 2} atmosphere in a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huali; Sun, Shaozeng; Chen, Hao; Meng, Xianyu; Wang, Dong [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Wall, Terry F. [Newcastle Univ., NSW (Australia). Chemical Engineering

    2013-07-01

    In coal combustion, NOx is largely formed from the oxidation of volatile nitrogen compounds such as HCN and NH{sub 3}. The experiments on the volatile-N conversion to NO at O{sub 2}/CO{sub 2} atmosphere were carried out in a drop tube furnace. The effects of the excess oxygen ratio {lambda} (0.6-1.4), temperature (1,000-1,300 C), O{sub 2}/CO{sub 2} ratio, and as well as CH{sub 4}/NH{sub 3} mole ratio were investigated. To further understand the importance of NO reburn during volatile combustion, experiments were also performed with different concentrations of background NO (0-950 ppm). The results show that volatile-N conversion to NO is sensitive to excess oxygen ratio {lambda} at strongly oxidizing atmosphere. For volatile combustion, there is an optimal temperature and inlet O{sub 2} concentration to minimize the volatile-N conversion to NO. The CH{sub 4}/NH{sub 3} mole ratio plays an important role on the NO formation under oxidizing atmosphere. High levels of background NO prohibit the volatile-N conversion to NO significantly as the volatile-N conversion ratio decreases by 19-36%. The reburn fractions of recycle NO in fuel-rich and fuel-lean condition are 14.8 and 9.8% at 1,200 C, respectively.

  7. Atmospheric CO2 fertilization effects on biomass yields of 10 crops in northern Germany

    Directory of Open Access Journals (Sweden)

    Jan F. Degener

    2015-07-01

    Full Text Available The quality and quantity of the influence that atmospheric CO2 has on cropgrowth is still a matter of debate. This study's aim is to estimate if CO2 will have an effect on biomass yields at all, to quantify and spatially locate the effects and to explore if an elevated photosynthesis rate or water-use-efficiency is predominantly responsible. This study uses a numerical carbon based crop model (BioSTAR to estimate biomass yields within theadministrative boundaries of Niedersachsen in Northern Germany. 10 crops are included (winter grains: wheat, barley,rye, triticale - early, medium, late maize variety - sunflower, sorghum, spring wheat, modeled annuallyfor the entire 21st century on 91,014 separate sites. Modeling was conducted twice, once with an annually adaptedCO2 concentration according to the SRES-A1B scenario and once with a fixed concentration of 390 ppm to separate the influence of CO2 from that of the other input variables.Rising CO2 concentrations will play a central role in keeping future yields of all crops above or aroundtoday's level. Differences in yields between modeling with fixed or adapted CO2 can be as high as60 % towards the century's end. Generally yields will increase when CO2 rises and decline whenit is kept constant. As C4-crops are equivalently affected it is presumed that anelevated efficiency in water use is the main responsible factor for all plants.

  8. Growth of nicotiana in response to atmospheric CO sub 2 enrichment and various light regimes

    Energy Technology Data Exchange (ETDEWEB)

    Pope, S.; Thomas, J.F. (North Carolina State Univ., Raleigh (USA))

    1989-04-01

    Nicotiana tabacum NCTG-22, N. tabacum Petite Havana and N. plumbaginifolia were grown in chambers (24 C, 12-h light) under daytime atmospheric CO{sub 2} levels of 340 ppm (ambient) or 1000 ppm (enriched). All 3 types of tobacco grew faster and had open flowers sooner under CO2 enrichment, but patterns of dry weight distribution varied with type of tobacco. In N. plumbaginifolia significant proportions of dry weight were allocated to stems and branches, while in tabacum types, less was allocated to stems and more to leaves and roots. Increases in dry weight due to CO2 enrichment were accompanied by increases in leaf area and thickness. Plants given a far-red low intensity night break exhibited few differences from controls except having thinner leaves under ambient CO2; but under enriched CO2, had greater total dry weight and thicker leaves containing a higher proportion of spongy mesophyll than controls. A 50% reduction in light intensity led to a comparable reduction in dry weight and leaf area across treatments.

  9. Shifting terrestrial feedbacks from CO2 fertilization to global warming

    Science.gov (United States)

    Peñuelas, Josep; Ciais, Philippe; Janssens, Ivan; Canadell, Josep; Obersteiner, Michael; Piao, Shilong; Vautard, Robert; Sardans Jordi Sardans, Jordi

    2016-04-01

    Humans are increasingly fertilizing the planet. Our activities are increasing atmospheric concentrations of carbon dioxide, nitrogen inputs to ecosystems and global temperatures. Individually and combined, they lead to biospheric availability of carbon and nitrogen, enhanced metabolic activity, and longer growing seasons. Plants can consequently grow more and take up more carbon that can be stored in ecosystem carbon pools, thus enhancing carbon sinks for atmospheric CO2. Data on the increased strength of carbon sinks are, however, inconclusive: Some data (eddy covariance, short-term experiments on elevated CO2 and nutrient fertilization) suggest that biospheric carbon uptake is already effectively increasing but some other data suggest it is not, or are not general and conclusive (tree-ring, forest inventory). The combined land-ocean CO2 sink flux per unit of excess atmospheric CO2 above preindustrial levels declined over 1959-2012 by a factor of about 1/3, implying that CO2 sinks increased more slowly than excess CO2. We will discuss the available data, and the discussion will drive us to revisit our projections for enhanced carbon sinks. We will reconsider the performance of the modulators of increased carbon uptake in a CO2 fertilized and warmed world: nutrients, climate, land use and pollution. Nutrient availability in particular plays a crucial role. A simple mass-balance approach indicates that limited phosphorus availability and the corresponding N:P imbalances can jointly reduce the projected future carbon storage by natural ecosystems during this century. We then present a new paradigm: we are shifting from a fertilization to a warming era. Compared to the historical period, future impacts of warming will be larger than the benefits of CO2 fertilization given nutrient limitations, management and disturbance (which reduces C stocks and thus sequestration potential) and because CO2 will decrease by 2050 in RCP2.6, meaning loss of CO2 fertilization, and CO2

  10. Concurrent CO2 Control and O2 Generation for Advanced Life Support

    Science.gov (United States)

    Paul, Heather L.; Duncan, Keith L.; Hagelin-Weaver, Helena E.; Bishop, Sean R.; Wachsman, Eric D.

    2007-01-01

    The electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied, however, conventional devices using yttria-stabilized zirconia (YSZ) electrolytes operate at temperatures greater than 700 C. Operating at such high temperatures increases system mass compared to lower temperature systems because of increased energy overhead to get the COG up to operating temperature and the need for heavier insulation and/or heat exchangers to reduce the COG oxygen (O2) output temperature for comfortable inhalation. Recently, the University of Florida developed novel ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth for NASA's future exploration of Mars. To reduce landed mass and operation expenditures during the mission, in-situ resource utilization was proposed using these COGs to obtain both lifesupporting oxygen and oxidant/propellant fuel, by converting CO2 from the Mars atmosphere. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. These results indicate that this technology could be adapted to CO2 removal from a spacesuit and other applications in which CO2 removal was an issue. The strategy proposed for CO2 removal for advanced life support systems employs a catalytic layer combined with a COG so that it is reduced all the way to solid carbon and oxygen. Hence, a three-phased approach was used for the development of a viable low weight COG for CO2 removal. First, to reduce the COG operating temperature a high oxide ion conductivity electrolyte was developed. Second, to promote full CO2 reduction while avoiding the problem of carbon deposition on the COG cathode, novel cathodes and a removable catalytic carbon deposition layer were designed. Third, to improve efficiency, a pre-stage for CO2 absorption was used to concentrate CO2 from the exhalate before sending it to the COG. These subsystems were then

  11. The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate

    Science.gov (United States)

    Kruijt, B.; Barton, C.; Rey, A.; Jarvis, P. G.

    The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2]), temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong.) Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area. Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.

  12. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO(2) enrichment.

    Science.gov (United States)

    Pritchard, S G.; Davis, M A.; Mitchell, R J.; Prior, S A.; Boykin, D L.; Rogers, H H.; Runion, G B.

    2001-08-01

    Differential responses to elevated atmospheric CO(2) concentration exhibited by different plant functional types may alter competition for above- and belowground resources in a higher CO(2) world. Because C allocation to roots is often favored over C allocation to shoots in plants grown with CO(2) enrichment, belowground function of forest ecosystems may change significantly. We established an outdoor facility to examine the effects of elevated CO(2) on root dynamics in artificially constructed communities of five early successional forest species: (1) a C(3) evergreen conifer (longleaf pine, Pinus palustris Mill.); (2) a C(4) monocotyledonous bunch grass (wiregrass, Aristida stricta Michx.); (3) a C(3) broadleaf tree (sand post oak, Quercus margaretta); (4) a C(3) perennial herbaceous legume (rattlebox, Crotalaria rotundifolia Walt. ex Gemel); and (5) an herbaceous C(3) dicotyledonous perennial (butterfly weed, Asclepias tuberosa L.). These species are common associates in early successional longleaf pine savannahs throughout the southeastern USA and represent species that differ in life-form, growth habit, physiology, and symbiotic relationships. A combination of minirhizotrons and soil coring was used to examine temporal and spatial rooting dynamics from October 1998 to October 1999. CO(2)-enriched plots exhibited 35% higher standing root crop length, 37% greater root length production per day, and 47% greater root length mortality per day. These variables, however, were enhanced by CO(2) enrichment only at the 10-30 cm depth. Relative root turnover (flux/standing crop) was unchanged by elevated CO(2). Sixteen months after planting, root biomass of pine was 62% higher in elevated compared to ambient CO(2) plots. Conversely, the combined biomass of rattlebox, wiregrass, and butterfly weed was 28% greater in ambient compared to high CO(2) plots. There was no difference in root biomass of oaks after 16 months of exposure to elevated CO(2). Using root and shoot

  13. Simulating low frequency changes in atmospheric CO2 during the last 740 000 years

    Directory of Open Access Journals (Sweden)

    P. Köhler

    2006-01-01

    Full Text Available Atmospheric CO2 measured in Antarctic ice cores shows a natural variability of 80 to 100 ppmv during the last four glacial cycles and variations of approximately 60 ppmv in the two cycles between 410 and 650 kyr BP. We here use various paleo-climatic records from the EPICA Dome C Antarctic ice core and from oceanic sediment cores covering the last 740 kyr to force the ocean/atmosphere/biosphere box model of the global carbon cycle BICYCLE in a forward mode over this time in order to interpret the natural variability of CO2. Our approach is based on the previous interpretation of carbon cycle variations during Termination I (Köhler et al., 2005a. In the absense of a process-based sediment module one main simplification of BICYCLE is that carbonate compensation is approximated by the temporally delayed restoration of deep ocean [CO32−]. Our results match the low frequency changes in CO2 measured in the Vostok and the EPICA Dome C ice core for the last 650 kyr BP (r2≈0.75. During these transient simulations the carbon cycle reaches never a steady state due to the ongoing variability of the overall carbon budget caused by the time delayed response of the carbonate compensation to other processes. The average contributions of different processes to the rise in CO2 during Terminations I to V and during earlier terminations are: the rise in Southern Ocean vertical mixing: 36/22 ppmv, the rise in ocean temperature: 26/11 ppmv, iron limitation of the marine biota in the Southern Ocean: 20/14 ppmv, carbonate compensation: 15/7 ppmv, the rise in North Atlantic deep water formation: 13/0 ppmv, the rise in gas exchange due to a decreasing sea ice cover: −8/−7 ppmv, sea level rise: −12/−4 ppmv, and rising terrestrial carbon storage: −13/−6 ppmv. According to our model the smaller interglacial CO2 values in the pre-Vostok period prior to Termination V are mainly caused by smaller interglacial Southern Ocean SST and an Atlantic THC which stayed

  14. Inter-annual and seasonal variations in transport to a measuring site in western Siberia, and their impact on the observed atmospheric CO2 mixing ratio

    International Nuclear Information System (INIS)

    Eneroth, Kristina

    2002-01-01

    Inter-annual and seasonal variations in atmospheric transport to a CO 2 measuring site in western Siberia were studied using three-dimensional trajectories. We identified large differences in transport between summer and winter, but also some differences between the years. Cluster analysis was applied to the trajectory data to determine to what degree different atmospheric flow patterns influence the variability of the atmospheric CO 2 mixing ratio. The observed CO 2 mixing ratio was also compared to observed CO 2 surface fluxes to study the impact of local sources and sinks. It was found that during July the correlation between atmospheric transport from distant source regions and CO 2 mixing ratios was poor. Furthermore the correlation was also weak between the CO 2 mixing ratio and the local eddy flux measurements. We conclude that the short-term variability in atmospheric CO 2 during summer probably is dominated by larger scale (tens up to one hundred kilometers) CO 2 surface fluxes and local meteorology. The weaker biogenic CO 2 fluxes during winter, resulted in CO 2 mixing ratios more clearly influenced by long-range transport Of CO 2 . However, the highest atmospheric CO 2 concentrations were not observed in connection with westerly winds representing transport of polluted air from Europe, but during periods with stagnant flow conditions. It was conjected that these high CO 2 mixing ratios were due to respired CO 2 trapped and accumulated in the lower parts of the planetary boundary layer. The mean duration for the identified flow patterns was in the order of two days, with a maximum duration of a week. This means that to have a chance to detect variations in CO 2 mixing ratio due to air mass changes the sampling frequency (e.g. flask samples and flight measurements) must be at least every other day. Our results show that the atmospheric transport varies with season, year and altitude. This, together with the heterogeneity of the source and sink regions are

  15. Toward an estimation of daily european CO2 fluxes at high spatial resolution by inversion of atmospheric transport

    International Nuclear Information System (INIS)

    Carouge, C.

    2006-04-01

    Since the end of the 1980's, measurements of atmospheric carbon dioxide have been used to estimate global and regional fluxes of CO 2 . This is possible because CO 2 concentration variation is directly linked to flux variation by atmospheric transport. We can find the spatial and temporal distribution of fluxes from concentration measurements by 'inverting' the atmospheric transport. Until recently, most CO 2 inversions have used monthly mean CO 2 atmospheric concentration measurements to infer monthly fluxes. Considering the sparseness of the global CO 2 measurement network, fluxes were a priori aggregated on sub-continental regions and distributed on a fixed spatial pattern within these regions. Only one flux coefficient per month for each region was optimized. With this strong constraint, estimated fluxes can be biased by non-perfect distribution of fluxes within each region (aggregation error). Therefore, flux estimation at model resolution is being developed where the hard constraint of a fixed distribution within a region is replaced by a soft constraint of covariances between flux uncertainties. The use of continuous observations from an increasing number of measurement sites offers a new challenge for inverse modelers. We investigate the use of daily averaged observations to infer daily CO 2 fluxes at model resolution over Europe. We have developed a global synthesis Bayesian inversion to invert daily fluxes at model resolution (50 x 50 km over Europe) from daily averaged CO 2 concentrations. We have obtained estimated fluxes for the year 2001 over Europe using the 10 European continuous sites from the AEROCARB network. The global atmospheric model LMDZt is used with a nested grid over Europe. It is necessary to add a priori spatial and temporal correlations between flux errors to constrain the Bayesian inversion. We present the impact on estimated fluxes of three different spatial correlations based on distance between pixels, climate and vegetation

  16. LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO2, Amazonas, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports delta 13C/12C results for leaf tissues and atmospheric carbon dioxide (CO2), delta 15N/14N ratios for leaf tissue, and leaf carbon...

  17. High-resolution Atmospheric pCO2 Reconstruction across the Paleogene Using Marine and Terrestrial δ13C records

    Science.gov (United States)

    Cui, Y.; Schubert, B.

    2016-02-01

    The early Paleogene (63 to 47 Ma) is considered to have a greenhouse climate1 with proxies suggesting atmospheric CO2 levels (pCO2) approximately 2× pre-industrial levels. However, the proxy based pCO2 reconstructions are limited and do not allow for assessment of changes in pCO2 at million to sub-million year time scales. It has recently been recognized that changes in C3 land plant carbon isotope fractionation can be used as a proxy for pCO2 with quantifiable uncertainty2. Here, we present a high-resolution pCO2 reconstruction (n = 597) across the early Paleogene using published carbon isotope data from both terrestrial organic matter and marine carbonates. The minimum and maximum pCO2 values reconstructed using this method are broad (i.e., 170 +60/-40 ppmv to 2000 +4480/-1060 ppmv) and reflective of the wide range of environments sampled. However, the large number of measurements allows for a robust estimate of average pCO2 during this time interval ( 400 +260/-120 ppmv), and indicates brief (sub-million-year) excursions to very high pCO2 during hyperthermal events (e.g., the PETM). By binning our high-resolution pCO2 data at 1 million year intervals, we can compare our dataset to the other available pCO2 proxies. Our result is broadly consistent with pCO2 levels reconstructed using other proxies, with the exception of paleosol-based pCO2 estimates spanning 53 to 50 Ma. At this timescale, no proxy suggests pCO2 higher than 2000 ppmv, whereas the global surface ocean temperature is considered to be >10 oC warmer than today. Recent climate modeling suggests that low atmospheric pressure during this time period could help reconcile the apparent disconnect between pCO2 and temperature and contribute to the greenhouse climate3. References1. Huber, M., Caballero, R., 2011. Climate of the Past 7, 603-633. 2. Schubert, B.A., Jahren, A.H., 2015. Geology 43, 435-438. 3. Poulsen, C.J., Tabor, C., White, J.D., 2015. Science 348, 1238-1241.

  18. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    Science.gov (United States)

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  19. Net photosynthesis in Sphagnum mosses has increased in response to the last century's 100 ppm increase in atmospheric CO2

    Science.gov (United States)

    Serk, Henrik; Nilsson, Mats; Schleucher, Jurgen

    2017-04-01

    Peatlands store >25% of the global soil C pool, corresponding to 1/3 of the contemporary CO2-C in the atmosphere. The majority of the accumulated peat is made up by remains of Sphagnum peat mosses. Thus, understanding how various Sphagnum functional groups respond, and have responded, to increasing atmospheric CO2 and temperature constitutes a major challenge for our understanding of the role of peatlands under a changing climate. We have recently demonstrated (Ehlers et al., 2015, PNAS) that the abundance ratio of two deuterium isotopomers (molecules carrying D at specific intramolecular positions, here D6R/S) of photosynthetic glucose reflects the ratio of oxygenation to carboxylation metabolic fluxes at Rubisco. The photosynthetic glucose is prepared from various plant carbohydrates including cellulose. This finding has been established in CO2 manipulation experiments and observed in carbohydrate derived glucose isolated from herbarium samples of all investigated C-3 species. The isotopomer ratio is connected to specific enzymatic processes thus allowing for mechanistic implicit interpretations. Here we demonstrate a clear increase in net photosynthesis of Sphagnum fuscum in response to the increase of 100 ppm CO2 during the last century as deduced from analysis on S. fuscum remains from peat cores. The D6R/S ratio declines from bottom to top in peat cores, indicating CO2-driven reduction of photorespiration in contemporary moss biomass. In contrast to the hummock-forming S. fuscum, hollow-growing species, e.g. S. majus did not show this response or gave significantly weaker response, suggesting important ecological consequences of rising CO2 on peatland ecosystem services. We hypothesize that photosynthesis in hollow-growing species under water saturation is fully or partly disconnected from the atmospheric CO2 partial pressure and thus showing weaker or no response to increased atmospheric CO2. To further test the field observations we grow both hummock and

  20. Electronic structure, chemical bonding, phase stability, and ground-state properties of YNi2-x(Co/Cu)xB2C

    International Nuclear Information System (INIS)

    Ravindran, P.; Johansson, B.; Eriksson, O.

    1998-01-01

    In order to understand the role of Ni site substitution on the electronic structure and chemical bonding in YNi 2 B 2 C, we have made systematic electronic-structure studies on YNi 2 B 2 C as a function of Co and Cu substitution using the supercell approach within the local density approximation. The equilibrium volume, bulk modulus (B 0 ) and its pressure derivative (B 0 ' ), Grueneisen constant (γ G ), Debye temperature (Θ D ), cohesive energy (E c ), and heat of formation (ΔH) are calculated for YNi 2-x (Co/Cu) x B 2 C (x=0,0.5,1.0,1.5,2). From the total energy, electron-energy band structure, site decomposed density of states, and charge-density contour we have analyzed the structural stability and chemical bonding behavior of YNi 2 B 2 C as a function of Co/Cu substitution. We find that the simple rigid band model successfully explains the electronic structure and structural stability of Co/Cu substitution for Ni. In addition to studying the chemical bonding and electronic structure we present a somewhat speculative analysis of the general trends in the behavior of critical temperature for superconductivity as a function of alloying. copyright 1998 The American Physical Society

  1. Observations of CO in Titan's Atmosphere Using ALMA

    Science.gov (United States)

    Serigano, Joseph; Nixon, Conor A.; Cordiner, Martin; Irwin, Patrick G. J.; Teanby, Nicholas; Charnley, Steven B.; Lindberg, Johan E.; Remijan, Anthony J.

    2015-11-01

    The advent of the Atacama Large Millimeter/submillimeter Array (ALMA) has provided a powerful facility for probing the atmospheres of solar system targets at long wavelengths (84-720 GHz) where the rotational lines of small, polar molecules are prominent. In the dense, nitrogen-dominated atmosphere of Titan, photodissociation of molecular nitrogen and methane leads to a wealth of complex hydrocarbons and nitriles in small abundances. Past millimeter/submillimeter observations, including ground-based observations as well as those by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft, have proven the significance of this wavelength region for the derivation of vertical mixing profiles, latitudinal and seasonal variations, and molecular detections. Previous ALMA studies of Titan have presented mapping and vertical column densities of hydrogen isocyanide (HNC) and cyanoacetylene (HC3N) (Cordiner et al. 2014) as well as the first spectroscopic detection of ethyl cyanide (C2H5CN) in Titan’s atmosphere (Cordiner et al. 2015).Here, we report several submillimetric observations of carbon monoxide (CO) and its isotopologues 13CO, C18O, and C17O in Titan’s atmosphere obtained with flux calibration data from the ALMA Science Archive. We employ NEMESIS, a line-by-line radiative transfer code, to determine the stratospheric abundances of these molecules. The abundance of CO in Titan's atmosphere is determined to be approximately 50±1 ppm, constant with altitude, and isotopic ratios are determined to be approximately 12C/13C = 90, 16O/18O = 470, and 16O/17O = 2800. This report presents the first spectroscopic detection of C17O in the outer solar system, detected at >11σ confidence. This talk will focus on isotopic ratios in CO in Titan's atmosphere and will compare our results to previously measured values for Titan and other bodies in the Solar System. General implications for the history of Titan from measurements of CO and its isotopologues will be

  2. LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO2, Amazonas, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports delta 13C/12C results for leaf tissues and atmospheric carbon dioxide (CO2), delta 15N/14N ratios for leaf tissue, and leaf carbon and nitrogen...

  3. Characteristics of Atmosphere-Ocean CO2 Exchange due to Typhoon Activities over the East Asian Region

    Science.gov (United States)

    Lee, G.; Cho, C. H.; Lim, D. H.; Sun, M.; Lee, J.; Byun, Y. H.; Lee, J.

    2014-12-01

    Although the oceans are generally known as a net carbon sink in global sense, it is expected that CO₂release from oceans can occur locally depending on specific weather. This study addresses investigation of change in CO2 exchange between atmosphere and ocean due to typhoon activities, using "Carbon Tracker-Asia (CTA)". The CTA has constructed and managed at National Institute of Meteorological Research(NIMR) based on Carbon Tracker developed by NOAA. In order to examine effect of typhoon on change in air-sea CO2 exchange, we selected several cases which typhoon approached to Korean peninsula in the summertime and their tracks are similar to each other. Also, we analyzed difference between CO2 flux along typhoon tracks and other adjacent region not to be directly affected by typhoon in these cases. There is a difference in ocean fluxes around 15 gC/m²yr over strong typhoon areas compared to other areas. This difference varied with the wind speeds, the correlation coefficient between the ocean and the wind flux was found 0.7. Changes in carbon flux to affect the concentration of CO₂ in the atmosphere near surface instantly.

  4. Prediction of atmospheric δ13CO2 using fossil plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Jahren, A. Hope [Johns Hopkins Univ., Baltimore, MD (United States); Arens, Nan Crystal [Hobart and William Smith Colleges, Geneva, NY (United States); Harbeson, Stephanie A. [Johns Hopkins Univ., Baltimore, MD (United States); Univ. of Virginia, Charlottesville, VA (United States)

    2008-06-30

    To summarize the content: we presented the results of laboratory experiments designed to quantify the relationship between plant tissue δ13C and δ13CO2 values under varying environmental conditions, including differential pCO2 ranging from 1 to 3 times today’s levels. As predicted, plants grown under elevated pCO2 showed increased average biomass compared to controls grown at the same temperature. Across a very large range in δ13Ca (≈ 24 ‰) and pCO2 (≈ 740 ppmv) we observed a consistent correlation between δ13Ca and δ13Cp (p<0.001). We show an average isotopic depletion of -25.4 ‰ for above-ground tissue and -23.2 ‰ for below-ground tissue of Raphanus sativus L. relative to the composition of the atmosphere under which it formed. For both above- and below-ground tissue, grown at both ~23 °C and ~29 °C, correlation was strong and significant (r2 ≥ 0.98, p<0.001); variation in pCO2 level had little or no effect on this relationship.

  5. Root damage by insects reverses the effects of elevated atmospheric CO2 on Eucalypt seedlings.

    Directory of Open Access Journals (Sweden)

    Scott N Johnson

    Full Text Available Predicted increases in atmospheric carbon dioxide (CO2 are widely anticipated to increase biomass accumulation by accelerating rates of photosynthesis in many plant taxa. Little, however, is known about how soil-borne plant antagonists might modify the effects of elevated CO2 (eCO2, with root-feeding insects being particularly understudied. Root damage by insects often reduces rates of photosynthesis by disrupting root function and imposing water deficits. These insects therefore have considerable potential for modifying plant responses to eCO2. We investigated how root damage by a soil-dwelling insect (Xylotrupes gideon australicus modified the responses of Eucalyptus globulus to eCO2. eCO2 increased plant height when E. globulus were 14 weeks old and continued to do so at an accelerated rate compared to those grown at ambient CO2 (aCO2. Plants exposed to root-damaging insects showed a rapid decline in growth rates thereafter. In eCO2, shoot and root biomass increased by 46 and 35%, respectively, in insect-free plants but these effects were arrested when soil-dwelling insects were present so that plants were the same size as those grown at aCO2. Specific leaf mass increased by 29% under eCO2, but at eCO2 root damage caused it to decline by 16%, similar to values seen in plants at aCO2 without root damage. Leaf C:N ratio increased by >30% at eCO2 as a consequence of declining leaf N concentrations, but this change was also moderated by soil insects. Soil insects also reduced leaf water content by 9% at eCO2, which potentially arose through impaired water uptake by the roots. We hypothesise that this may have impaired photosynthetic activity to the extent that observed plant responses to eCO2 no longer occurred. In conclusion, soil-dwelling insects could modify plant responses to eCO2 predicted by climate change plant growth models.

  6. Application of open-path Fourier transform infrared spectroscopy for atmospheric monitoring of a CO2 back-production experiment at the Ketzin pilot site (Germany).

    Science.gov (United States)

    Sauer, Uta; Borsdorf, H; Dietrich, P; Liebscher, A; Möller, I; Martens, S; Möller, F; Schlömer, S; Schütze, C

    2018-02-03

    During a controlled "back-production experiment" in October 2014 at the Ketzin pilot site, formerly injected CO 2 was retrieved from the storage formation and directly released to the atmosphere via a vent-off stack. Open-path Fourier transform infrared (OP FTIR) spectrometers, on-site meteorological parameter acquisition systems, and distributed CO 2 point sensors monitored gas dispersion processes in the near-surface part of the atmospheric boundary layer. The test site provides a complex and challenging mosaic-like surface setting for atmospheric monitoring which can also be found at other storage sites. The main aims of the atmospheric monitoring of this experiment were (1) to quantify temporal and spatial variations in atmospheric CO 2 concentrations around the emitting vent-off stack and (2) to test if and how atmospheric monitoring can cope with typical environmental and operational challenges. A low environmental risk was encountered during the whole CO 2 back-production experiment. The study confirms that turbulent wind conditions favor atmospheric mixing processes and are responsible for rapid dilution of the released CO 2 leading to decreased detectability at all sensors. In contrast, calm and extremely stable wind conditions (especially occurring during the night) caused an accumulation of gases in the near-ground atmospheric layer with the highest amplitudes in measured gas concentration. As an important benefit of OP FTIR spectroscopic measurements and their ability to detect multiple gas species simultaneously, emission sources could be identified to a much higher certainty. Moreover, even simulation models using simplified assumptions help to find suitable monitoring network designs and support data analysis for certain wind conditions in such a complex environment.

  7. Increased levels of airborne fungal spores to Populus tremuloides grown under elevated atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Klinoromos, J. N. [Guelph Univ., ON (Canada). Dept. of Botany; Rillig, M. C.; Allen, M. F. [San Diego State Univ., CA (United States). Dept. of Biology; Zak, D. R. [Michigan Univ., Ann Arbor, MI (United States). School of Natural Resources and Environment; Pregitzer, K. S.; Kubiske, M. E. [Michigan Technological Univ., Houghton, MI (United States). School of Forestry and Wood Products

    1997-10-01

    The objective of this study was to test the hypothesis that soil fungi sporulation would be facilitated by increase levels of CO{sub 2} concentration, leading to higher concentrations of fungal population in the atmosphere. Results showed that airborne fungal propagules were increased fourfold under twice-ambient CO{sub 2} concentration, and the decomposing leaf litter, the main source of fungal propagules, produced a fivefold increase of spores under elevated CO{sub 2} conditions. These results confirm the hypothesis that CO{sub 2} concentrations have a direct effect on microbial functions, which in turn will affect decomposition and plant pathogen dynamics. Since there is increasing evidence for causal relationship and exposure to aeroallergens and development of asthma in humans, there is a compelling need to study fungal epidemiology in the context of a globally changing environment. 28 refs., 3 figs.

  8. Potential impact of rising atmospheric CO2 on quality of grains in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Saha, Saurav; Chakraborty, Debashis; Sehgal, Vinay K; Pal, Madan

    2015-11-15

    Experiments were conducted in open-top chambers to assess the effect of atmospheric CO2 enrichment (E-CO2) on the quality of grains in chickpea (Cicer arietinum L.) crop. Physical attributes of the grains was not affected, but the hydration and swelling capacities of the flour increased. Increase in carbohydrates and reduction in protein made the grains more carbonaceous (higher C:N) under E-CO2. Among other mineral nutrients, K, Ca and Zn concentrations decreased, while P, Mg, Cu, Fe, Mn and B concentrations did not change. The pH, bulk density and cooking time of chickpea flour remained unaffected, although the water absorption capacity of flour increased and oil absorption reduced. Results suggest that E-CO2 could affect the grain quality adversely and nutritional imbalance in grains of chickpea might occur. Copyright © 2015. Published by Elsevier Ltd.

  9. The carbon dioxide capture and geological storage; Le captage et le stockage geologique de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO{sub 2} generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO{sub 2} capture from lage fossil-fueled combustion installations, the three capture techniques and the CO{sub 2} transport options, the geological storage of the CO{sub 2} and Total commitments in the domain. (A.L.B.)

  10. Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements

    Science.gov (United States)

    Hoffmann, Alex; Macleod, Neil A.; Huebner, Marko; Weidmann, Damien

    2016-12-01

    This technology demonstration paper reports on the development, demonstration, performance assessment, and initial data analysis of a benchtop prototype quantum cascade laser heterodyne spectroradiometer, operating within a narrow spectral window of ˜ 1 cm-1 around 953.1 cm-1 in transmission mode and coupled to a passive Sun tracker. The instrument has been specifically designed for accurate dry air total column, and potentially vertical profile, measurements of CO2. Data from over 8 months of operation in 2015 near Didcot, UK, confirm that atmospheric measurements with noise levels down to 4 times the shot noise limit can be achieved with the current instrument. Over the 8-month period, spectra with spectral resolutions of 60 MHz (0.002 cm-1) and 600 MHz (0.02 cm-1) have been acquired with median signal-to-noise ratios of 113 and 257, respectively, and a wavenumber calibration uncertainty of 0.0024 cm-1.Using the optimal estimation method and RFM as the radiative transfer forward model, prior analysis and theoretical benchmark modelling had been performed with an observation system simulator (OSS) to target an optimized spectral region of interest. The selected narrow spectral window includes both CO2 and H2O ro-vibrational transition lines to enable the measurement of dry air CO2 column from a single spectrum. The OSS and preliminary retrieval results yield roughly 8 degrees of freedom for signal (over the entire state vector) for an arbitrarily chosen a priori state with relatively high uncertainty ( ˜ 4 for CO2). Preliminary total column mixing ratios obtained are consistent with GOSAT monthly data. At a spectral resolution of 60 MHz with an acquisition time of 90 s, instrumental noise propagation yields an error of around 1.5 ppm on the dry air total column of CO2, exclusive of biases and geophysical parameters errors at this stage.

  11. Atmospheric CO2 Column Measurements with an Airborne Intensity-Modulated Continuous-Wave 1.57-micron Fiber Laser Lidar

    Science.gov (United States)

    Dobler, Jeremy T.; Harrison, F. Wallace; Browell, Edward V.; Lin, Bing; McGregor, Doug; Kooi, Susan; Choi, Yonghoon; Ismail, Syed

    2013-01-01

    The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as a mid-term, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype Laser Absorption Spectrometer for making high-precision, column CO2 mixing ratio measurements needed for the ASCENDS mission. This instrument, called the Multifunctional Fiber Laser Lidar (MFLL), operates in an intensity-modulated, continuous-wave mode in the 1.57- micron CO2 absorption band. Flight experiments have been conducted with the MFLL on a Lear-25, UC-12, and DC-8 aircraft over a variety of different surfaces and under a wide range of atmospheric conditions. Very high-precision CO2 column measurements resulting from high signal-to-noise (great than 1300) column optical depth measurements for a 10-s (approximately 1 km) averaging interval have been achieved. In situ measurements of atmospheric CO2 profiles were used to derive the expected CO2 column values, and when compared to the MFLL measurements over desert and vegetated surfaces, the MFLL measurements were found to agree with the in situ-derived CO2 columns to within an average of 0.17% or approximately 0.65 ppmv with a standard deviation of 0.44% or approximately 1.7 ppmv. Initial results demonstrating ranging capability using a swept modulation technique are also presented.

  12. Potential and economics of CO2 sequestration

    International Nuclear Information System (INIS)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J.

    2001-01-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2 . Some techniques could be used to reduced CO 2 emission and stabilize atmospheric CO 2 concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO 2 emissions such as renewable or nuclear energy, iii) capture and store CO 2 from fossil fuels combustion, and enhance the natural sinks for CO 2 (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO 2 and to review the various options for CO 2 sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO 2 emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO 2 is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon-storing approach to agriculture, forests and land management could

  13. Program Developed for CO2 System Calculations (Program files: CO2SYS_calc_DOS_v1.05; CO2SYS_calc_XLS_v2.3; CO2SYS_calc_MAC_WIN; CO2SYS_calc_MATLAB_v1.1) (NCEI Accession 0164485)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The program CO2SYS performs calculations relating parameters of the carbon dioxide (CO2) system in seawater and freshwater. The program uses two of the four...

  14. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks

    International Nuclear Information System (INIS)

    Canadella, J.G.; Raupacha, M.R.; Le Quere, C.; Buitenhuis, E.T.; Gillett, N.P.; Field, C.B.; Ciais, P.; Conway, T.J.; Houghton, R.A.; Marland, G.

    2007-01-01

    The growth rate of atmospheric carbon dioxide (CO2), the largest human contributor to human-induced climate change, is increasing rapidly. Three processes contribute to this rapid increase. Two of these processes concern emissions. Recent growth of the world economy combined with an increase in its carbon intensity have led to rapid growth in fossil fuel CO2 emissions since 2000: comparing the 1990s with 2000-2006, the emissions growth rate increased from 1.3% to 3.3%/y. The third process is indicated by increasing evidence (P 0.89) for a long-term (50-year) increase in the airborne fraction (AF) of CO2 emissions, implying a decline in the efficiency of CO2 sinks on land and oceans in absorbing anthropogenic emissions. Since 2000, the contributions of these three factors to the increase in the atmospheric CO2 growth rate have been ∼65 ± 16% from increasing global economic activity, 17 ± 6% from the increasing carbon intensity of the global economy, and 18 ± 15% from the increase in AF. An increasing AF is consistent with results of climate-carbon cycle models, but the magnitude of the observed signal appears larger than that estimated by models. All of these changes characterize a carbon cycle that is generating stronger-than-expected and sooner-than-expected climate forcing. airborne fraction anthropogenic carbon emissions carbon-climate feedback terrestrial and ocean carbon emissions vulnerabilities of the carbon cycle

  15. Can rising CO2 concentrations in the atmosphere mitigate the impact of drought years on tree growth?

    Science.gov (United States)

    Achim, Alexis; Plumpton, Heather; Auty, David; Ogee, Jerome; MacCarthy, Heather; Bert, Didier; Domec, Jean-Christophe; Oren, Ram; Wingate, Lisa

    2015-04-01

    Atmospheric CO2 concentrations and nitrogen deposition rates have increased substantially over the last century and are expected to continue unabated. As a result, terrestrial ecosystems will experience warmer temperatures and some may even experience droughts of a more intense and frequent nature that could lead to widespread forest mortality. Thus there is mounting pressure to understand and predict how forest growth will be affected by such environmental interactions in the future. In this study we used annual tree growth data from the Duke Free Air CO2 Enrichment (FACE) experiment to determine the effects of elevated atmospheric CO2 concentration (+200 ppm) and Nitrogen fertilisation (11.2 g of N m-2 yr-1) on the stem biomass increments of mature loblolly pine (Pinus taeda L.) trees from 1996 to 2010. A non-linear mixed-effects model was developed to provide estimates of annual ring specific gravity in all trees using cambial age and annual ring width as explanatory variables. Elevated CO2 did not have a significant effect on annual ring specific gravity, but N fertilisation caused a slight decrease of approximately 2% compared to the non-fertilised in both the ambient and CO2-elevated plots. When basal area increments were multiplied by wood specific gravity predictions to provide estimates of stem biomass, there was a 40% increase in the CO2-elevated plots compared to those in ambient conditions. This difference remained relatively stable until the application of the fertilisation treatment, which caused a further increase in biomass increments that peaked after three years. Unexpectedly the magnitude of this second response was similar in the CO2-elevated and ambient plots (about 25% in each after 3 years), suggesting that there was no interaction between the concentration of CO2 and the availability of soil N on biomass increments. Importantly, during drier years when annual precipitation was less than 1000 mm we observed a significant decrease in annual

  16. Attribution of atmospheric CO2 and temperature increases to regions: importance of preindustrial land use change

    International Nuclear Information System (INIS)

    Pongratz, Julia; Caldeira, Ken

    2012-01-01

    The historical contribution of each country to today’s observed atmospheric CO 2 excess and higher temperatures has become a basis for discussions around burden-sharing of greenhouse gas reduction commitments in political negotiations. However, the accounting methods have considered greenhouse gas emissions only during the industrial era, neglecting the fact that land use changes (LUC) have caused emissions long before the Industrial Revolution. Here, we hypothesize that considering preindustrial LUC affects the attribution because the geographic pattern of preindustrial LUC emissions differs significantly from that of industrial-era emissions and because preindustrial emissions have legacy effects on today’s atmospheric CO 2 concentrations and temperatures. We test this hypothesis by estimating CO 2 and temperature increases based on carbon cycle simulations of the last millennium. We find that accounting for preindustrial LUC emissions results in a shift of attribution of global temperature increase from the industrialized countries to less industrialized countries, in particular South Asia and China, by up to 2–3%, a level that may be relevant for political discussions. While further studies are needed to span the range of plausible quantifications, our study demonstrates the importance of including preindustrial emissions for the most scientifically defensible attribution. (letter)

  17. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China

    Science.gov (United States)

    Tang, X.; Liu, S.; Zhou, G.; Zhang, Dongxiao; Zhou, C.

    2006-01-01

    The magnitude, temporal, and spatial patterns of soil-atmospheric greenhouse gas (hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil-atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2, N2O, and CH4 fluxes (mean ?? SD) were 7.7 ?? 4.6MgCO2-Cha-1 yr-1, 3.2 ?? 1.2 kg N2ONha-1 yr-1, and 3.4 ?? 0.9 kgCH4-Cha-1 yr-1, respectively. The climate was warm and wet from April through September 2003 (the hot-humid season) and became cool and dry from October 2003 through March 2004 (the cool-dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot-humid season and low rates in the cool-dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool-dry season and higher N2O emission rates were often observed in the hot-humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17-44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer. ?? 2006 Blackwell Publishing Ltd.

  18. ‘Fuji’ apple (Malus domestica Borkh) volatile production during high pCO2 controlled atmosphere storage

    Science.gov (United States)

    ‘Fuji’apple [Malus sylvestris var. domestica (Borkh.) Mansf.] volatile compound dynamics were characterized during cold storage in air or at low pO2 controlled atmosphere (CA) with up to 5 kPa CO2. Volatile compounds in storage chambers were adsorbed onto solid sorbent traps and analyzed by GC-MS....

  19. Re-evaluating the 1940s CO2 plateau

    Science.gov (United States)

    Bastos, Ana; Ciais, Philippe; Barichivich, Jonathan; Bopp, Laurent; Brovkin, Victor; Gasser, Thomas; Peng, Shushi; Pongratz, Julia; Viovy, Nicolas; Trudinger, Cathy M.

    2016-09-01

    observed stabilization of atmospheric CO2 cannot be confirmed nor discarded, as TRENDY models do not reproduce the expected concurrent strong decrease in terrestrial uptake. Nevertheless, this would further increase the mismatch between observed and modelled CO2 growth rate during the CO2 plateau epoch. Tests performed using the OSCAR (v2.2) model indicate that changes in land use not correctly accounted for during the period (coinciding with drastic socioeconomic changes during the Second World War) could contribute to the additional sink required. Thus, the previously proposed ocean hypothesis for the 1940s plateau cannot be confirmed by independent data. Further efforts are required to reduce uncertainty in the different terms of the carbon budget during the first half of the 20th century and to better understand the long-term variability of the ocean and terrestrial CO2 sinks.

  20. Viability of sublethally injured coliform bacteria on fresh-cut cabbage stored in high CO2 atmospheres following rinsing with electrolyzed water.

    Science.gov (United States)

    Izumi, Hidemi; Inoue, Ayano

    2018-02-02

    The extent of sublethally injured coliform bacteria on shredded cabbage, either rinsed or not rinsed with electrolyzed water, was evaluated during storage in air and high CO 2 controlled atmospheres (5%, 10%, and 15%) at 5°C and 10°C using the thin agar layer (TAL) method. Sublethally injured coliform bacteria on nonrinsed shredded cabbage were either absent or they were injured at a 64-65% level when present. Rinsing of shredded cabbage with electrolyzed water containing 25ppm available chlorine reduced the coliform counts by 0.4 to 1.1 log and caused sublethal injury ranging from 42 to 77%. Pantoea ananatis was one of the species injured by chlorine stress. When shredded cabbage, nonrinsed or rinsed with electrolyzed water, was stored in air and high CO 2 atmospheres at 5°C for 7days and 10°C for 5days, coliform counts on TAL plates increased from 3.3-4.5 to 6.5-9.0 log CFU/g during storage, with the increase being greater at 10°C than at 5°C. High CO 2 of 10% and 15% reduced the bacterial growth on shredded cabbage during storage at 5°C. Although injured coliform bacteria were not found on nonrinsed shredded cabbage on the initial day, injured coliforms at a range of 49-84% were detected on samples stored in air and high CO 2 atmospheres at 5°C and 10°C. Injured cells were detected more frequently during storage at both temperatures irrespective of the CO 2 atmosphere when shredded cabbage was rinsed with electrolyzed water. These results indicated that injured coliform bacteria on shredded cabbage, either rinsed or not rinsed with electrolyzed water, exhibited different degrees of injury during storage regardless of the CO 2 atmosphere and temperature tested. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of high carbon dioxide atmosphere packaging and soluble gas stabilization pre-treatment on the shelf-life and quality of chicken drumsticks.

    Science.gov (United States)

    Al-Nehlawi, A; Saldo, J; Vega, L F; Guri, S

    2013-05-01

    The effects of an aerobic modified atmosphere packaging (MAP) (70% CO2, 15% O2 and 15% N2) with and without a CO2 3-h soluble gas stabilization (SGS) pre-treatment of chicken drumsticks were determined for various package and product quality characteristics. The CO2 dissolved into drumsticks was determined. The equilibrium between CO2 dissolved in drumsticks and CO2 in head space was reached within 48h after packaging, showing highest values of CO2 in SGS pre-treated samples. This greater availability of CO2 resulted in lower counts of TAB and Pseudomonas in SGS than in MAP drumsticks. Package collapse was significantly reduced in SGS samples. The average of CO2 dissolved in the MAP treatment was 567mg CO2kg(-1) of chicken and, 361mg CO2kg(-1) of chicken during the MAP treatment, in SGS pre-treated samples. This difference could be the quantity of CO2 dissolved during SGS pre-treatment. These results highlight the advantages of using SGS versus traditional MAP for chicken products preservation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The CO_2 absorption spectrum in the 2.3 µm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    International Nuclear Information System (INIS)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO_2 absorption continuum near 2.3 µm is determined for a series of sub atmospheric pressures (250–750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO_2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO_2 continuum was obtained as the difference between the CO_2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm"−"1. Following the results of the preceding analysis of the CO_2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer (10.1016/j.jqsrt.2016.07.002), a CO_2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10"−"8 cm"−"1 amagat"−"2 between 4320 and 4380 cm"−"1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra. - Highlights: • The CO_2 absorption continuum is measured by CRDS in the 2.3 µm window. • The achieved sensitivity and stability allow measurements at sub-atmospheric pressure. • The absorption coefficient is on the order of 3×10"−"8 cm"−"1 amagat"−"2 near 4350 cm"−"1. • A good agreement is obtained with previous results at much higher density (20 amagat).

  3. Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2 O3 for Enhanced CO2 Capture Performance.

    Science.gov (United States)

    Armutlulu, Andac; Naeem, Muhammad Awais; Liu, Hsueh-Ju; Kim, Sung Min; Kierzkowska, Agnieszka; Fedorov, Alexey; Müller, Christoph R

    2017-11-01

    CO 2 capture and storage is a promising concept to reduce anthropogenic CO 2 emissions. The most established technology for capturing CO 2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high-temperature CO 2 sorbent can significantly reduce the costs of CO 2 capture. A serious disadvantage of CaO derived from earth-abundant precursors, e.g., limestone, is the rapid, sintering-induced decay of its cyclic CO 2 uptake. Here, a template-assisted hydrothermal approach to develop CaO-based sorbents exhibiting a very high and cyclically stable CO 2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al 2 O 3 (<3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO 2 capture and release, and (iii) a minimal quantity of Al 2 O 3 for structural stabilization, thus maximizing the fraction of CO 2 -capture-active CaO. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tropical epiphytes in a CO 2-rich atmosphere

    Science.gov (United States)

    Monteiro, José Alberto Fernandez; Zotz, Gerhard; Körner, Christian

    2009-01-01

    We tested the effect on epiphyte growth of a doubling of pre-industrial CO 2 concentration (280 vs. 560 ppm) combined with two light (three fold) and two nutrition (ten fold) treatments under close to natural humid conditions in daylight growth cabinets over 6 months. Across co-treatments and six species, elevated CO 2 increased relative growth rates by only 6% ( p = 0.03). Although the three C3 species, on average, grew 60% faster than the three CAM species, the two groups did not significantly differ in their CO 2 response. The two Orchidaceae, Bulbophyllum (CAM) and Oncidium (C3) showed no CO 2 response, and three out of four Bromeliaceae showed a positive one: Aechmea (CAM, +32% p = 0.08), Catopsis (C3, +11% p = 0.01) and Vriesea (C3, +4% p = 0.02). In contrast, the representative of the species-rich genus Tillandsia (CAM), which grew very well under experimental conditions, showed no stimulation. On average, high light increased growth by 21% and high nutrients by 10%. Interactions between CO 2, light and nutrient treatments (low vs. high) were inconsistent across species. CO 2 responsive taxa such as Catopsis, could accelerate tropical forest dynamics and increase branch breakage, but overall, the responses to doubling CO 2 of these epiphytes was relatively small and the responses were taxa specific.

  5. An improved model of radiative transfer for the NLTE problem in the NIR bands of CO2 and CO molecules in the daytime atmosphere of Mars. 2. Population of vibrational states

    Science.gov (United States)

    Ogibalov, V. P.; Shved, G. M.

    2017-09-01

    The near-infrared (NIR) emission of the Martian atmosphere in the CO2 bands at 4.3, 2.7, 2.0, 1.6, 1.4, 1.3, 1.2, and 1.05 µm and in the CO bands at 4.7, 2.3, 1.6, and 1.2 µm is mainly generated under nonlocal thermodynamic equilibrium (NLTE) conditions for vibrational states, the transitions from which form the specified bands. The paper presents the results of simulations of the population of these states under NLTE for daytime conditions. In the cold high-latitude troposphere, the NLTE takes place much lower than in the troposphere under typical temperature conditions. If the NIR-radiation reflection from the surface is ignored, the population of high vibrational states substantially decreases, at least, in some layer of the lower atmosphere. However, inelastic collisions of CO2 and CO molecules with O atoms produce no considerable influence on the values of populations. The population of vibrational states, the transitions from which form NIR bands, is also almost insensitive to possible large values of the quenching-in-collision rate constants of vibrational states higher than CO2(0001). However, very large errors in the estimates of the population of vibrational states of the CO2 molecule (rather than the CO molecule!) can be caused by the uncertainty in the values of the rate constant of exchange between CO2 molecules by the energy quantum of the asymmetric stretching vibrational mode. For this intermolecular exchange, we recommend a possible way to restrict the vibrational excitation degree of the molecule that is a collision partner and to maintain simultaneously a sufficiently high accuracy in the population estimate.

  6. Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions

    Directory of Open Access Journals (Sweden)

    Zoë Lindo

    2017-03-01

    Full Text Available The predominant input of available nitrogen (N in boreal forest ecosystems originates from moss-associated cyanobacteria, which fix unavailable atmospheric N2, contribute to the soil N pool, and thereby support forest productivity. Alongside climate warming, increases in atmospheric CO2 concentrations are expected in Canada’s boreal region over the next century, yet little is known about the combined effects of these factors on N fixation by forest floor cyanobacteria. Here we assess changes in N fixation in a common forest floor, moss-associated cyanobacterium, Nostoc punctiforme Hariot, under elevated CO2 conditions over 30 days and warming combined with elevated CO2 over 90 days. We measured rates of growth and changes in the number of specialized N2 fixing heterocyst cells, as well as the overall N fixing activity of the cultures. Elevated CO2 stimulated growth and N fixation overall, but this result was influenced by the growth stage of the cyanobacteria, which in turn was influenced by our temperature treatments. Taken together, climate change factors of warming and elevated CO2 are expected to stimulate N2 fixation by moss-associated cyanobacteria in boreal forest systems.

  7. The Stability of Hydrogen-Rich Atmospheres of Earth-Like Planets

    Science.gov (United States)

    Zahnle, Kevin

    2016-01-01

    Understanding hydrogen escape is essential to understanding the limits to habitability, both for liquid water where the Sun is bright, but also to assess the true potential of H2 as a greenhouse gas where the Sun is faint. Hydrogen-rich primary atmospheres of Earth-like planets can result either from gravitational capture of solar nebular gases (with helium), or from impact shock processing of a wide variety of volatile-rich planetesimals (typically accompanied by H2O, CO2, and under the right circumstances, CH4). Most studies of hydrogen escape from planets focus on determining how fast the hydrogen escapes. In general this requires solving hydro- dynamic equations that take into account the acceleration of hydrogen through a critical transonic point and an energy budget that should include radiative heating and cooling, thermal conduction, the work done in lifting the hydrogen against gravity, and the residual heat carried by the hydrogen as it leaves. But for planets from which hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which is much simpler, and for which a relatively full-featured treatment of radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ is straightforward. Previous work has overlooked the fact that the H2 molecule is extremely efficient at exciting non-LTE CO2 15 micron emission, and thus that radiative cooling can be markedly more efficient when H2 is abundant. We map out the region of phase space in which terrestrial planets keep hydrogen-rich atmospheres, which is what we actually want to know for habitability. We will use this framework to reassess Tian et al's hypothesis that H2-rich atmospheres may have been rather long-lived on Earth itself. Finally, we will address the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than 1.6 Earth radii.

  8. Study of the structural and thermal stability of Li0.3Co2/3Ni1/6Mn1/6O2

    International Nuclear Information System (INIS)

    Mahmoud, Abdelfattah; Saadoune, Ismael; Difi, Siham; Sougrati, Moulay Tahar; Lippens, Pierre-Emmanuel; Amarilla, José Manuel

    2014-01-01

    Thermal and structural stabilities of the delithiated positive electrode material Li x Co 2/3 Ni 1/6 Mn 1/6 O 2 were studied by X-ray diffraction, magnetic and thermogravimetric analysis. In the opposite to the classical electrode materials LiNiO 2 and LiCoO 2 , the structural symmetry (S.G. R-3 m) of the starting material LiCo 2/3 Ni 1/6 Mn 1/6 O 2 is preserved during the electrochemical cycling with a small variation of the unit cell parameters. Squid measurements evidenced that practically no Ni 2+ ions were present in the lithium slab even after the lithium extraction process. For the thermal stability, the highly oxidized phase Li 0.3 Co 2/3 Ni 1/6 Mn 1/6 O 2 was tested. This delithiated phase undergoes only 5.16% weight loss after heating up to 600 °C. This weight loss has no effect on the structure symmetry as the starting α-NaFeO 2 type structure was preserved during the thermal treatment. The obtained results coupled to the excellent electrochemical features of LiCo 2/3 Ni 1/6 Mn 1/6 O 2 clearly showits ability to compete with the commercialized cathode materials

  9. Implications of Future Water Use Efficiency for Ecohydrological Responses to Climate Change and Spatial Heterogeneity of Atmospheric CO2 in China

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2013-01-01

    Full Text Available As the atmospheric carbon dioxide (CO2 increases substantially, the spatial distribution of atmospheric CO2 should be considered when estimating the effects of CO2 on the carbon and water cycle coupling of terrestrial ecosystems. To evaluate this effect on future ecohydrological processes, the spatial-temporal patterns of CO2 were established over 1951 - 2099 according to the IPCC emission scenarios SRES A2 and SRES B1. Thereafter, water use efficiency (WUE was used (i.e., Net Primary Production/Evaportranspiration as an indicator to quantify the effects of climate change and uneven CO2 fertilization in China. We carried out several simulated experiments to estimate WUE under different future scenarios using a land process model (Integrated Biosphere Simulator, IBIS. Results indicated that the geographical distributions of averaged WUE have considerable differences under a heterogeneous atmospheric CO2 condition. Under the SRES A2 scenario, WUE decreased slightly with a 5% value in most areas of the southeastern and northwestern China during the 2050s, while decreasing by approximately 15% in southeastern China during the 2090s. During the period of the 2050s under SRES B1 scenario, the change rate of WUE was similar with that under SRES A2 scenario, but the WUE has a more moderate decreasing trend than that under the SRES A2 scenario. In all, the ecosystems in median and low latitude areas had a weakened effect on resisting extreme climate event such as drought. Conversely, the vegetation in a boreal forest had an enhanced buffering capability to tolerate drought events.

  10. On the impact of atmospheric thermal stability on the characteristics of nocturnal downslope flows

    Science.gov (United States)

    Ye, Z. J.; Garratt, J. R.; Segal, M.; Pielke, R. A.

    1990-04-01

    The impacts of background (or ambient) and local atmospheric thermal stabilities, and slope steepness, on nighttime thermally induced downslope flow in meso-β domains (i.e., 20 200 km horizontal extent) have been investigated using analytical and numerical model approaches. Good agreement between the analytical and numerical evaluations was found. It was concluded that: (i) as anticipated, the intensity of the downslope flow increases with increased slope steepness, although the depth of the downslope flow was found to be insensitive to slope steepness in the studied situations; (ii) the intensity of the downslope flow is generally independent of background atmospheric thermal stability; (iii) for given integrated nighttime cooling across the nocturnal boundary layer (NBL), Q s the local atmospheric thermal stability exerts a strong influence on downslope flow behavior: the downslope flow intensity increases when local atmospheric thermal stability increases; and (iv) the downslope flow intensity is proportional to Q s 1/2.

  11. Atmospheric CO2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine

    NARCIS (Netherlands)

    Zhou, Y.; Vroegop-Vos, I.; Schuurink, R.C.; Pieterse, C.M.J.; Van Wees, S.C.M.

    Atmospheric CO2 influences plant growth and stomatal aperture. Effects of high or low CO2 levels on plant disease resistance are less well understood. Here, resistance of Arabidopsis thaliana against the foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) was investigated at three different

  12. Modeling the response of forest isoprene emissions to future increases in atmospheric CO2 concentration and changes in climate (Invited)

    Science.gov (United States)

    Monson, R. K.; Heald, C. L.; Guenther, A. B.; Wilkinson, M.

    2009-12-01

    Isoprene emissions from plants to the atmosphere are sensitive to changes in temperature, light and atmospheric CO2 concentration in both the short- (seconds-to-minutes) and long-term (hours-to-months). We now understand that the different time constants for these responses are due to controls by different sets of biochemical and physiological processes n leaves. Progress has been made in the past few years toward converting this process-level understanding into quantitative models. In this talk, we consider this progress with special emphasis on the short- and long-term responses to atmospheric CO2 concentration and temperature. A new biochemically-based model is presented for describing the CO2 responses, and the model is deployed in a global context to predict interactions between the influences of temperature and CO2 on the global isoprene emission rate. The model is based on the theory of enzyme-substrate kinetics, particularly with regard to those reactions that produce puruvate or glyceraldehyde 3-phosphate, the two chloroplastic substrates for isoprene biosynthesis. In the global model, when we accounted for CO2 inhibition of isoprene emission in the long-term response, we observed little impact on present-day global isoprene emission (increase from 508 to 523 Tg C yr-1). However, the large increases in future isoprene emissions predicted from past models which are due to a projected warmer climate, were entirely offset by including the CO2 effects. The isoprene emission response to CO2 was dominated by the long-term growth environment effect, with modulations of 10% or less from the short-term effect. We use this analysis as a framework for grounding future global models of isoprene emission in biochemical and physiological observations.

  13. Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation

    Science.gov (United States)

    Yang, Yiqiong; Dong, Han; Wang, Yin; He, Chi; Wang, Yuxin; Zhang, Xiaodong

    2018-02-01

    A series of octahedral structure Cu-BTC derivatives were successfully achieved through direct calcination of copper based metal organic framework Cu-BTC under different atmosphere (CO reaction gas, oxidizing gas O2, reducing gas H2, inert gas Ar). The Cu-BTC derivatives were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), laser Raman spectroscopy (LRS), N2 adsorption-desorption isotherm, element analysis, H2-temperature program reduction (H2-TPR) and X-ray photoelectron spectroscopic (XPS). It is found that Cu-BTC derivative derived from MOF calcined under reaction gas/O2 (Cu-BTC-CO/Cu-BTC-O) only retain Cu2O and CuO species. In addition, a weak Cu-BTC structure and Cu particles were observed on Cu-BTC derivative derived from MOF calcined under H2 (Cu-BTC-H). Obviously differently, Cu-BTC derivative derived from MOF calcined under Ar (Cu-BTC-Ar) still retains good MOF structure. The catalytic performance for CO oxidation over Cu-BTC derivatives was studied. It was found that Cu-BTC-CO showed a smaller specific surface area (8.0 m2/g), but presented an excellent catalytic performance, long-term stability and cycling stability with a complete CO conversion temperature (T100) of 140 °C, which was ascribed to the higher Cu2O/CuO ratio, good low temperature reduction behavior and a high quantity of surface active oxygen species.

  14. Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2

    Science.gov (United States)

    John S. King; Mark E. Kubiske; Kurt S. Pregitzer; George R. Hendrey; Evan P. McDonald; Christian P. Giardina; Vanessa S. Quinn; David F. Karnosky

    2005-01-01

    Concentrations of atmospheric CO2 and tropospheric ozone (O3) are rising concurrently in the atmosphere, with potentially antagonistic effects on forest net primary production (NPP) and implications for terrestrial carbon sequestration. Using free-air CO2 enrichment (FACE) technology, we exposed north...

  15. Future Atmospheric CO2 Concentration and Environmental Consequences for the Feed Market: a Consequential LCA

    DEFF Research Database (Denmark)

    Saxe, Henrik; Hamelin, Lorie; Hinrichsen, Torben

    2014-01-01

    that such altered chemical composition and crop yields would have for the production of pig feed. Results revealed, among others, that an extra European demand of pig feed under an atmospheric [CO2] of 550 μmole mole-1 would lead to ca. 6% less expansion of additional arable land worldwide, in comparison to feed...

  16. Future atmospheric CO2 concentration and environmental consequences for the feed market: a consequential LCA

    DEFF Research Database (Denmark)

    Saxe, Henrik; Hamelin, Lorie; Hinrichsen, Torben

    2014-01-01

    that such altered chemical composition and crop yields would have for the production of pig feed. Results revealed, among others, that an extra European demand of pig feed under an atmospheric [CO2] of 550 μmole mole-1 would lead to ca. 6% less expansion of additional arable land worldwide, in comparison to feed...

  17. Reconstruction of past variations of (delta)13C in atmospheric CO2 from i vertical distribution observed in the firn at Dome Fuji, Antarctica

    International Nuclear Information System (INIS)

    Sugawara, S.

    2003-01-01

    Temporal variations of (delta) 13 C of atmospheric CO 2 in the past have been reconstructed from the (delta) 13 C values of CO 2 observed in firn at Dome Fuji, Antarctica. The effective diffusivities of CO 2 in firn were estimated for Dome Fuji and another Antarctic site, H72. The age distributions of 13 CO 2 in firn were first calculated by using a one-dimensional diffusion model, and then the past values of the atmospheric (delta) 13 C were derived by using an iterative procedure so that the calculated and observed vertical profiles of (delta) 13 C of CO 2 in firn agreed with each other. This reconstruction method was also applied to the CH 4 concentration to confirm its validity. The values of the atmospheric (delta) 13 C thus estimated were in good agreement with those from direct atmospheric measurements at Syowa Station, Antarctica, even for the levelling off of the secular decrease observed in the first half of the 1990s. The statistical uncertainty of the iterative procedure was examined by adding normal pseudo-random numbers to the observed (delta) 13 C values in firn. We also calculated the (delta) 13 C values for firn at H72 using the reconstructed history of the atmospheric (delta) 13 C, and its vertical profile was found to be in close agreement with the observational result

  18. The role of sink strength in determining tree responses to enriched atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Goodfellow, J.E. [Northern Territory Univ., Darwin (Australia)

    1995-06-01

    Rising levels of atmospheric CO{sub 2} have the potential to enhance assimilation (A{sub max}) and dry matter gain in trees. This paper address the question, does long term sustained A{sub max} and dry matter gain require the maintenance of an adequate sink? Mangifera indica were grown in the ground for three years under 350 or 700 ppm CO{sub 2}, and under non-limiting nutrient conditions. A{sub max} was higher in trees grown under enriched CO{sub 2} ([CO{sub 2}]e) particularly during high growth periods. Seasonal above ground growth was enhanced by [CO{sub 2}]e. Fruit productivity was enhanced under [CO{sub 2}]e but the presences of developing fruit did not affect A{sub max}. Growth under [CO{sub 2}]e resulted in a reduction in specific leaf area (SLA), an increase in foliar starch concentration, and a diurnal decrease in A{sub max}. Removal of a large proportion of the vegetative structure promoted vigorous regrowth. Leaves developed in the vegetative regrowth under [CO{sub 2}]e enhanced A{sub max}, but there was no reduction in SLA, no change in foliar starch concentration and no diurnal depression in A{sub max}. These results suggests that vegetative growth acts seasonally as a sink. In the absence of, growth, starch is stored in the leaves reducing SLA. Slow export of foliar assimilates causes diurnal fluxes in A{sub max}. Growth inducement by pruning enhances A{sub max} by promoting sink strength.

  19. Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity

    Directory of Open Access Journals (Sweden)

    S. Newman

    2016-03-01

    Full Text Available Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013 and coastal Palos Verdes peninsula (autumn 2009–2013, we have determined time series for CO2 contributions from fossil fuel combustion (Cff for both sites and broken those down into contributions from petroleum and/or gasoline and natural gas burning for Pasadena. We find a 10 % reduction in Pasadena Cff during the Great Recession of 2008–2010, which is consistent with the bottom-up inventory determined by the California Air Resources Board. The isotopic variations and total atmospheric CO2 from our observations are used to infer seasonality of natural gas and petroleum combustion. The trend of CO2 contributions to the atmosphere from natural gas combustion is out of phase with the seasonal cycle of total natural gas combustion seasonal patterns in bottom-up inventories but is consistent with the seasonality of natural gas usage by the area's electricity generating power plants. For petroleum, the inferred seasonality of CO2 contributions from burning petroleum is delayed by several months relative to usage indicated by statewide gasoline taxes. Using the high-resolution Hestia-LA data product to compare Cff from parts of the basin sampled by winds at different times of year, we find that variations in observed fossil fuel CO2 reflect seasonal variations in wind direction. The seasonality of the local CO2 excess from fossil fuel combustion along the coast, on Palos Verdes peninsula, is higher in autumn and winter than spring and summer, almost completely out of phase with that from Pasadena, also because of the annual variations of winds in the region. Variations in fossil fuel CO2 signals are consistent with sampling the bottom-up Hestia-LA fossil CO2 emissions product for sub

  20. Analysis of CO2, CO and HC emission reduction in automobiles

    Science.gov (United States)

    Balan, K. N.; Valarmathi, T. N.; Reddy, Mannem Soma Harish; Aravinda Reddy, Gireddy; Sai Srinivas, Jammalamadaka K. M. K.; Vasan

    2017-05-01

    In the present scenario, the emission from automobiles is becoming a serious problem to the environment. Automobiles, thermal power stations and Industries majorly constitute to the emission of CO2, CO and HC. Though the CO2 available in the atmosphere will be captured by oceans, grasslands; they are not enough to control CO2 present in the atmosphere completely. Also advances in engine and vehicle technology continuously to reduce the emission from engine exhaust are not sufficient to reduce the HC and CO emission. This work concentrates on design, fabrication and analysis to reduce CO2, CO and HC emission from exhaust of automobiles by using molecular sieve 5A of 1.5mm. In this paper, the details of the fabrication, results and discussion about the process are discussed.

  1. Effects of elevated atmospheric CO2 on soil organic carbon dynamics in a mediterranean forest ecosystem

    NARCIS (Netherlands)

    Gahrooee, F.R.

    1998-01-01

    Elevated atmospheric CO 2 has the potential to change the composition and dynamics of soil organic matter (SOM) and consequently C and N cycling in terrestrial ecosystems. Because of the long-lived nature of SOM, long-lasting experiments are required for studying the

  2. Stable isotope ratios of the atmospheric CH4, CO2 and N2O in Tokai-mura

    International Nuclear Information System (INIS)

    Porntepkasemsan, Boonsom; Andoh, Mariko A.; Amano, Hikaru

    2000-11-01

    This report presents the results and interpretation of stable isotope ratios of the atmospheric CH 4 , CO 2 and N 2 O from a variety of sources in Tokai-mura. The seasonal changes of δ 13 CH 4 , δ 13 CO 2 and δ 15 N 2 O were determined under in-situ conditions in four sampling sites and one control site. Such measurements are expected to provide a useful means of estimating the transport mechanisms of the three trace gases in the environment. These isotopic signatures were analyzed by Isotope Ratio Mass Spectrometer (IRMS, Micromass Isoprime). Our data showed the significant seasonal fluctuation in the Hosoura rice paddy during the entire growing season in 1999. Possible causes for the variation are postulated. Additional measurements on soil properties and on organic δ 13 C in rice plant are suggested. Cited outstanding original papers are summarized in the references. (author)

  3. Future Expansion of Agriculture and Pasture Acts to Amplify Atmospheric CO2 Levels in Response to Fossil-Fuel and Land-Use Change Emissions

    International Nuclear Information System (INIS)

    Gitz, V.; Ciais, P.

    2004-01-01

    The expansion of crop and pastures to the detriment of forests results in an increase in atmospheric CO2. The first obvious cause is the loss of forest biomass and soil carbon during and after conversion. The second, generally ignored cause, is the reduction of the residence time of carbon when, for example, forests or grasslands are converted to cultivated land. This decreases the sink capacity of the global terrestrial biosphere, and thereby may amplify the atmospheric CO2 rise due to fossil and land-use carbon release. For the IPCC A2 future scenario, characterized by high fossil and high land-use emissions, we show that the land-use amplifier effect adds 61 ppm extra CO2 in the atmosphere by 2100 as compared to former treatment of land-use processes in carbon models. Investigating the individual contribution of each of the six land-use transitions (forest crop, forest pasture, grassland crop) to the amplifier effect indicates that the clearing of forest and grasslands to arable lands explains most of the CO2 amplification. The amplification effect is 50% higher than in a previous analysis by the same authors which considered neither the deforestation of pastures nor the ploughing of grasslands. Such an amplification effect is further examined in sensitivity tests where the net primary productivity is considered independent of the atmospheric CO2. We also show that the land-use changes, which have already occurred in the recent past, have a strong inertia at releasing CO2, and will contribute to about 1/3 of the amplification effect by 2100. These results suggest that there is an additional atmospheric benefit of preserving pristine ecosystems with high turnover times

  4. [Data processing and QA/QC of atmosphere CO2 and CH4 concentrations by a method of GC-FID in-situ measurement at Waliguan station].

    Science.gov (United States)

    Zhang, Fang; Zhou, Ling-Xi; Liu, Li-Xin; Fang, Shuang-Xi; Yao, Bo; Xu, Lin; Zhang, Xiao-Chun; Masarie, Kenneth A; Conway, Thomas J; Worthy, Douglas E J; Ernst, Michele

    2010-10-01

    To strengthen scientific management and sharing of greenhouse gas data obtained from atmospheric background stations in China, it is important to ensure the standardization of observations and establish the data treatment and quality control procedure so as to maintain consistency in atmospheric carbon dioxide (CO2) and methane (CH4) measurements from different background stations. An automated gas chromatographic system (Hewlett Packard 5890GC employing flame ionization detection) for in situ measurements of atmospheric CO2 and CH4 has been developed since 1994 at the China Global Atmosphere Watch Baseline Observatory at Mt. Waliguan, in Qinhai. In this study, processing and quality control flow of CO2 and CH4 data acquired by HP ChemStation are discussed in detail, including raw data acquisition, data merge, time series inspection, operator flag, principal investigator flag, and the comparison of the GC measurement with the flask method. Atmosphere CO2 and CH4 mixing ratios were separated as background and non-background data using a robust local regression method, approximately 72% and 44% observed values had been filtered as background data for CO2 and CH4, respectively. Comparison of the CO1 and CH, in situ data to the flask sampling data were in good agreement, the relative deviations are within +/- 0.5% for CO2 and for CH4. The data has been assimilated into global database (Globalview-CO2, Globalview-CH4), submitted to the World Data Centre for Greenhouse Gases (WDCGG), and applied to World Meteorological Organization (WMO) Greenhouse Gas Bulletin and assessment reports of the United Nations Intergovernmental Panel on Climate Change (IPCC).

  5. Transcriptome changes in apple peel tissues during CO2 injury?symptom development under controlled atmosphere storage regimens

    OpenAIRE

    Johnson, Franklin T; Zhu, Yanmin

    2015-01-01

    Apple (Malus ? domestica Borkh.) is one of the most widely cultivated tree crops, and fruit storability is vital to the profitability of the apple fruit industry. Fruit of many apple cultivars can be stored for an extended period due to the introduction of advanced storage technologies, such as controlled atmosphere (CA) and 1-methylcyclopropane (1-MCP). However, CA storage can cause external CO2 injury for some apple cultivars. The molecular changes associated with the development of CO2 inj...

  6. Inter-annual and seasonal variations in transport to a measuring site in western Siberia, and their impact on the observed atmospheric CO{sub 2} mixing ratio

    Energy Technology Data Exchange (ETDEWEB)

    Eneroth, Kristina

    2002-05-01

    Inter-annual and seasonal variations in atmospheric transport to a CO{sub 2} measuring site in western Siberia were studied using three-dimensional trajectories. We identified large differences in transport between summer and winter, but also some differences between the years. Cluster analysis was applied to the trajectory data to determine to what degree different atmospheric flow patterns influence the variability of the atmospheric CO{sub 2} mixing ratio. The observed CO{sub 2} mixing ratio was also compared to observed CO{sub 2} surface fluxes to study the impact of local sources and sinks. It was found that during July the correlation between atmospheric transport from distant source regions and CO{sub 2} mixing ratios was poor. Furthermore the correlation was also weak between the CO{sub 2} mixing ratio and the local eddy flux measurements. We conclude that the short-term variability in atmospheric CO{sub 2} during summer probably is dominated by larger scale (tens up to one hundred kilometers) CO{sub 2} surface fluxes and local meteorology. The weaker biogenic CO{sub 2} fluxes during winter, resulted in CO{sub 2} mixing ratios more clearly influenced by long-range transport Of CO{sub 2}. However, the highest atmospheric CO{sub 2} concentrations were not observed in connection with westerly winds representing transport of polluted air from Europe, but during periods with stagnant flow conditions. It was conjected that these high CO{sub 2} mixing ratios were due to respired CO{sub 2} trapped and accumulated in the lower parts of the planetary boundary layer. The mean duration for the identified flow patterns was in the order of two days, with a maximum duration of a week. This means that to have a chance to detect variations in CO{sub 2} mixing ratio due to air mass changes the sampling frequency (e.g. flask samples and flight measurements) must be at least every other day. Our results show that the atmospheric transport varies with season, year and altitude

  7. Effects of elevated atmospheric CO2 on competition between the mosquitoes Aedes albopictus and Ae. triseriatus via changes in litter quality and production.

    Science.gov (United States)

    Smith, C; Baldwin, A H; Sullivan, J; Leisnham, P T

    2013-05-01

    Elevated atmospheric CO2 can alter aquatic communities via changes in allochthonous litter inputs. We tested effects of atmospheric CO2 on the invasive Aedes albopictus (Skuse) and native Aedes triseriatus (Say) (Diptera: Culicidae) via changes in competition for microbial food or resource inhibition/toxicity. Quercus alba L. litter was produced under elevated (879 ppm) and ambient (388 ppm) atmospheric CO2. Saplings grown at elevated CO2 produced greater litter biomass, which decayed faster and leached more tannins than saplings at ambient CO2. Competition was tested by raising larvae in different species and density combinations provisioned with elevated- or ambient-CO2 litter. Species-specific performance to water conditions was tested by providing single-species larval cohorts with increasing amounts of elevated- or ambient-CO2 litter, or increasing concentrations of tannic acid. Larval densities affected some fitness parameters of Ae. albopictus and Ae. triseriatus, but elevated-CO2 litter did not modify the effects of competition on population growth rates or any fitness parameters. Population growth rates and survival of each species generally were affected negatively by increasing amounts of both elevated- and ambient-CO2 litter from 0.252 to 2.016 g/liter, and tannic acid concentrations above 100 mg/liter were entirely lethal to both species. Aedes albopictus had consistently higher population growth rates than Ae. triseriatus. These results suggest that changes to litter production and chemistry from elevated CO2 are unlikely to affect the competitive outcome between Ae. albopictus and Ae. triseriatus, but that moderate increases in litter production increase population growth rates of both species until a threshold is exceeded that results in resource inhibition and toxicity.

  8. Growth under elevated atmospheric CO(2) concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants.

    Science.gov (United States)

    de la Mata, Lourdes; Cabello, Purificación; de la Haba, Purificación; Agüera, Eloísa

    2012-09-15

    Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16 days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Controle de Rhyzopertha dominica pela atmosfera controlada com CO2, em trigo Control of Rhyzopertha dominica using a controlled atmosphere with CO2, in wheat

    Directory of Open Access Journals (Sweden)

    Rogério Amaro Gonçalves

    2000-01-01

    Full Text Available A utilização de gases inertes como fumigantes no controle de pragas é uma alternativa ao uso de fosfina. O objetivo deste trabalho foi avaliar a eficiência de uma atmosfera com CO2 no controle de Rhyzoperta dominica (Fabr. (Coleoptera: Bostrichidae em grãos de trigo armazenado. O trabalho constou de cinco concentrações de CO2 (0, 30 , 40, 50 e 60%, completadas com N2, três períodos de exposição (5, 10, 15 dias, três populações de R. dominica (Fabr. (Coleoptera: Bostrichidae (Campo Mourão, PR, Sete Lagoas, MG e Santa Rosa, RS e sete fases de desenvolvimento do inseto (ovo, larva de 1º, 2º, 3º e 4º ínstar, pupa e adulto com três repetições. As diferentes fases da R. dominica foram acondicionadas em tecido organza e levadas para câmaras de expurgo de 200 litros com 75% deste volume repletos de grãos. As câmaras foram vedadas com borracha de silicone para garantir a hermeticidade. Após a vedação das câmaras injetavam-se os gases contendo diferentes teores de CO2. Os resultados mostraram que todos os teores de CO2 causaram 100% de mortalidade de adultos das três populações nos três períodos de exposição utilizados. Em pupas a mortalidade atingiu 100% no teor de 60% de CO2 para as três populações no período de 15 dias de exposição; porém, todos os teores de CO2 utilizados no período de 15 dias de exposição causaram 100% de mortalidade das pupas da população de Santa Rosa. Para o adequado controle de larvas de diferentes ínstares são necessários teores de CO2 iguais ou acima de 50%. Nos períodos de 10 e 15 dias de exposição, todos os teores de CO2 causaram 100% de mortalidade dos ovos das três populações avaliadas.Controlled atmosphere with inert gases offers an alternative to phosphine use to control stored grain pests. The objective of this research was to test a controlled atmosphere with CO2 to control Rhyzoperta dominica, (Fabr. (Coleoptera: Bostrichidae, an important pest of stored wheat

  10. CO2 non-LTE limb emissions in Mars' atmosphere as observed by OMEGA/Mars Express

    Science.gov (United States)

    Piccialli, A.; López-Valverde, M. A.; Määttänen, A.; González-Galindo, F.; Audouard, J.; Altieri, F.; Forget, F.; Drossart, P.; Gondet, B.; Bibring, J. P.

    2016-06-01

    We report on daytime limb observations of Mars upper atmosphere acquired by the OMEGA instrument on board the European spacecraft Mars Express. The strong emission observed at 4.3 μm is interpreted as due to CO2 fluorescence of solar radiation and is detected at a tangent altitude in between 60 and 110 km. The main value of OMEGA observations is that they provide simultaneously spectral information and good spatial sampling of the CO2 emission. In this study we analyzed 98 dayside limb observations spanning over more than 3 Martian years, with a very good latitudinal and longitudinal coverage. Thanks to the precise altitude sounding capabilities of OMEGA, we extracted vertical profiles of the non-local thermodynamic equilibrium (non-LTE) emission at each wavelength and we studied their dependence on several geophysical parameters, such as the solar illumination and the tangent altitude. The dependence of the non-LTE emission on solar zenith angle and altitude follows a similar behavior to that predicted by the non-LTE model. According to our non-LTE model, the tangent altitude of the peak of the CO2 emission varies with the thermal structure, but the pressure level where the peak of the emission is found remains constant at ˜0.03 ± 0.01 Pa, . This non-LTE model prediction has been corroborated by comparing SPICAM and OMEGA observations. We have shown that the seasonal variations of the altitude of constant pressure levels in SPICAM stellar occultation retrievals correlate well with the variations of the OMEGA peak emission altitudes, although the exact pressure level cannot be defined with the spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAM) nighttime data. Thus, observed changes in the altitude of the peak emission provide us information on the altitude of the 0.03 Pa pressure level. Since the pressure at a given altitude is dictated by the thermal structure below, the tangent altitude of the peak emission represents

  11. Modeling concentrations and fluxes of atmospheric CO2 in the North East Atlantic region

    DEFF Research Database (Denmark)

    Geels, C.; Christensen, J.H.; Hansen, A.W.

    2001-01-01

    As part of the Danish NEAREX project a three-dimensional Eulerian hemispheric air pollution model is used to study the transport and concentrations of atmospheric CO2 in the North East Atlantic region. The model domain covers the major part of the Northern Hemisphere and currently the model...

  12. Bifunctional bamboo-like CoSe2 arrays for high-performance asymmetric supercapacitor and electrocatalytic oxygen evolution

    Science.gov (United States)

    Chen, Tian; Li, Songzhan; Gui, Pengbin; Wen, Jian; Fu, Xuemei; Fang, Guojia

    2018-05-01

    Bifunctional bamboo-like CoSe2 arrays are synthesized by thermal annealing of Co(CO3)0.5OH grown on carbon cloth in Se atmosphere. The CoSe2 arrays obtained have excellent electrical conductivity, larger electrochemical active surface areas, and can directly serve as a binder-free electrode for supercapacitors and the oxygen evolution reaction (OER). When tested as a supercapacitor electrode, the CoSe2 delivers a higher specific capacitance (544.6 F g‑1 at current density of 1 mA cm‑2) compared with CoO (308.2 F g‑1) or Co3O4 (201.4 F g‑1). In addition, the CoSe2 electrode possesses excellent cycling stability. An asymmetric supercapacitor (ASC) is also assembled based on bamboo-like CoSe2 as a positive electrode and active carbon as a negative electrode in a 3.0 M KOH aqueous electrolyte. Owing to the unique stucture and good electrochemical performance of bamboo-like CoSe2, the as-assembled ACS can achieve a maximum operating voltage window of 1.7 V, a high energy density of 20.2 Wh kg‑1 at a power density of 144.1 W kg‑1, and an outstanding cyclic stability. As the catalyst for the OER, the CoSe2 exhibits a lower potential of 1.55 V (versus RHE) at current density of 10 mA cm‑2, a smaller Tafel slope of 62.5 mV dec‑1 and an also outstanding stability.

  13. Flow characterization and dilution effects of N2 and CO2 on premixed CH4/air flames in a swirl-stabilized combustor

    International Nuclear Information System (INIS)

    Han Yue; Cai Guo-Biao; Wang Hai-Xing; Bruno Renou; Abdelkrim Boukhalfa

    2014-01-01

    Numerically-aided experimental studies are conducted on a swirl-stabilized combustor to investigate the dilution effects on flame stability, flame structure, and pollutant emissions of premixed CH 4 /air flames. Our goal is to provide a systematic assessment on combustion characteristics in diluted regimes for its application to environmentally-friendly approaches such as biogas combustion and exhaust-gas recirculation technology. Two main diluting species, N 2 and CO 2 , are tested at various dilution rates. The results obtained by means of optical diagnostics show that five main flame regimes can be observed for N 2 -diluted flames by changing excess air and dilution rate. CO 2 -diluted flames follow the same pattern evolution except that all the domains are shifted to lower excess air. Both N 2 and CO 2 dilution affect the lean blowout (LBO) limits negatively. This behavior can be counter-balanced by reactant preheating which is able to broaden the flammability domain of the diluted flames. Flame reactivity is degraded by increasing dilution rate. Meanwhile, flames are thickened in the presence of both diluting species. NO x emissions are significantly reduced with dilution and proved to be relevant to flame stability diagrams: slight augmentation in NO x emission profiles is related to transitional flame states where instability occurs. Although dilution results in increase in CO emissions at certain levels, optimal dilution rates can still be proposed to achieve an ideal compromise

  14. Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2

    Science.gov (United States)

    Leakey, Andrew D. B.; Lau, Jennifer A.

    2012-01-01

    Variation in atmospheric [CO2] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO2] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO2] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO2] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO2]. Evolutionary responses to elevated [CO2] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO2] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO2]. This lack of evidence for strong evolutionary effects of elevated [CO2] is surprising, given the large effects of elevated [CO2] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO2] and (ii) benefit maximally from future, greater [CO2]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C4 photosynthesis into C3 leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying

  15. Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2].

    Science.gov (United States)

    Leakey, Andrew D B; Lau, Jennifer A

    2012-02-19

    Variation in atmospheric [CO(2)] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO(2)] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO(2)] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO(2)] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO(2)]. Evolutionary responses to elevated [CO(2)] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO(2)] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO(2)]. This lack of evidence for strong evolutionary effects of elevated [CO(2)] is surprising, given the large effects of elevated [CO(2)] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO(2)] and (ii) benefit maximally from future, greater [CO(2)]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C(4) photosynthesis into C(3) leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration

  16. The Fossil Atmospheres Project: A novel approach for simultaneously refining the Ginkgo paleo-pCO2 barometer & educating citizens about climate change

    Science.gov (United States)

    Barclay, R. S.; Soul, L.; Bolton, A.; Wilson, J. P.; Megonigal, P.; Wing, S. L.

    2017-12-01

    During the Late Cretaceous and Paleogene, the Earth's climate was much warmer than today, often punctuated by rapid hyperthermal events. The background warmth and hyperthermals are often attributed to increased atmospheric carbon dioxide (pCO2), yet paleo-pCO2 proxy estimates for this interval often disagree widely, and there are few paired records of temperature and pCO2. Consequently, we have an inadequate understanding of what generated past warm climates, and of the magnitude of pCO2 change associated with hyperthermals. We aim to develop a more reliable stomatal proxy for paleo-pCO2 by quantifying the effect of pCO2 and other environmental variables on stomatal properties of living Ginkgo biloba trees. Herbarium collections of G. biloba demonstrate that the stomatal index proxy for paleo-pCO2 is strongly correlated with pCO2 over the range of 290-400 ppm. However, despite wide application of the Ginkgo paleo-pCO2 barometer, our understanding of pCO2 in the fossil record has been hindered because the morphological and physiological changes in Ginkgo biloba stomata under pCO2 above 400 ppm have been poorly constrained. To address this problem, we are conducting an elevated CO2 experiment that will quantify the response of Ginkgo to elevated pCO2, an experiment we call 'Fossil Atmospheres'. We are growing 15 Ginkgo biloba trees in open-topped chambers in natural field conditions, under atmospheres with ambient (400), 600, 800, and 1,000 ppm of CO2. Each tree is regularly monitored for changes in stomatal frequency, and rates of photosynthesis and transpiration to constrain parameters used in gas exchange models of paleo-pCO2. We have also involved citizen scientists in the process of collecting stomatal index measurements with the Zooniverse platform, utilizing the interaction to educate citizens about modern climate change from the less-menacing viewpoint of deep-time climate change events. Our results can then be used to infer paleo-pCO2 from stomatal features

  17. The use of forest stand age information in an atmospheric CO2 inversion applied to North America

    NARCIS (Netherlands)

    Deng, F.; Chen, J.M.; Pan, Y.; Peters, W.; Birdsey, R.; McCullough, K.; Xiao, J.

    2013-01-01

    Atmospheric inversions have become an important tool in quantifying carbon dioxide (CO2) sinks and sources at a variety of spatiotemporal scales, but associated large uncertainties restrain the inversion research community from reaching agreement on many important subjects. We enhanced an

  18. Nocturnal accumulation of CO2 underneath a tropical forest canopy along a topographical gradient.

    Science.gov (United States)

    de Araújo, Alessandro C; Kruijt, Bart; Nobre, Antonio D; Dolman, Albertus J; Waterloo, Maarten J; Moors, Eddy J; de Souza, Juliana S

    2008-09-01

    Flux measurements of carbon dioxide and water vapor above tropical rain forests are often difficult to interpret because the terrain is usually complex. This complexity induces heterogeneity in the surface but also affects lateral movement of carbon dioxide (CO2) not readily detected by the eddy covariance systems. This study describes such variability using measurements of CO2 along vertical profiles and along a toposequence in a tropical rain forest near Manaus, Brazil. Seasonal and diurnal variation was recorded, with atmospheric CO2 concentration maxima around dawn, generally higher CO2 build-up in the dry season and stronger daytime CO2 drawdown in the wet season. This variation was reflected all along the toposequence, but the slope and valley bottom accumulated clearly more CO2 than the plateaus, depending on atmospheric stability. Particularly during stable nights, accumulation was along lines of equal altitude, suggesting that large amounts of CO2 are stored in the valleys of the landscape. Flushing of this store only occurs during mid-morning, when stored CO2 may well be partly transported back to the plateaus. It is clear that, for proper interpretation of tower fluxes in such complex and actively respiring terrain, the horizontal variability of storage needs to be taken into account not only during the night but also during the mornings.

  19. Temperature-Dependent Evolution of the Oxidation States of Cobalt and Platinum in Co 1–x Pt x Clusters under H 2 and CO + H 2 Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bing; Khadra, Ghassan; Tuaillon-Combes, Juliette; Tyo, Eric C.; Pellin, Michael J.; Reinhart, Benjamin; Seifert, Sönke; Chen, Xinqi; Dupuis, Veronique; Vajda, Stefan

    2016-09-29

    Co1-xPtx clusters of 2.9-nm size with a range of atomically precise Pt/Co atomic ratios (x = 0, 0.25, 0.5, 0.75, 1) were synthesized using the mass-selected low-energy cluster beam deposition (LECBD) technique and soft-landed onto an amorphous alumina thin film prepared by atomic layer deposition (ALD). Utilizing ex situ X-ray photoemission spectroscopy (XPS), the oxidation state of the as-made clusters supported on Al2O3 was determined after both a 1-h-long exposure to air and aging for several weeks while exposed to air. Next, the aged duster samples were characterized by grazing-incidence X-ray absorption spectroscopy (GIXAS) and then pretreated with diluted hydrogen and further exposed to the mixture of diluted CO and H-2 up to 225 degrees C at atmospheric pressure, and the temperature-dependent evolutions of the particle size/shape and the oxidation states of the individual metal components within the dusters were monitored using in situ grazing-incidence small-angle X-ray scattering and X-ray absorption spectroscopy (GISAXS/GIXAS). The changes in the oxidation states of Co and Pt exhibited a nonlinear dependence on the Pt/Co atomic ratio of the dusters. For example, a low Pt/Co ratio (x <= 0.5) facilitates the formation of Co(OH)(2), whereas a high Pt/Co ratio (x = 0.75) stabilizes the Co3O4 composition instead through the formation of a Co-Pt core-shell structure where the platinum shell inhibits the reduction of cobalt in the core of the Co1-xPtx alloy dusters. The obtained results indicate methods for optimizing the composition and structure of binary alloy clusters for catalysis.

  20. Study of CO2 cyclic absorption stability of CaO-based sorbents derived from lime mud purified by sucrose method.

    Science.gov (United States)

    Ma, AiHua; Jia, QingMing; Su, HongYing; Zhi, YunFei; Tian, Na; Wu, Jing; Shan, ShaoYun

    2016-02-01

    Using lime mud (LM) purified by sucrose method, derived from paper-making industry, as calcium precursor, and using mineral rejects-bauxite-tailings (BTs) from aluminum production as dopant, the CaO-based sorbents for high-temperature CO2 capture were prepared. Effects of BTs content, precalcining time, and temperature on CO2 cyclic absorption stability were illustrated. The cyclic carbonation behavior was investigated in a thermogravimetric analyzer (TGA). Phase composition and morphologies were analyzed by XRD and SEM. The results reflected that the as-synthesized CaO-based sorbent doped with 10 wt% BTs showed a superior CO2 cyclic absorption-desorption conversion during multiple cycles, with conversion being >38 % after 50 cycles. Occurrence of Ca12Al14O33 phase during precalcination was probably responsible for the excellent CO2 cyclic stability.

  1. Review of CO2 Reduction Technologies using Mineral Carbonation of Iron and Steel Making Slag in Malaysia

    Science.gov (United States)

    Norhana Selamat, Siti; Nor, Nik Hisyamudin Muhd; Rashid, Muhammad Hanif Abdul; Fauzi Ahmad, Mohd; Mohamad, Fariza; Ismail, Al Emran; Fahrul Hassan, Mohd; Turan, Faiz Mohd; Zain, Mohd Zamzuri Mohd; Abu Bakar, Elmi; Seiji, Yokoyama

    2017-10-01

    Climate change, greenhouse gas effect, and global warming is envisioning to turn more awful and more terrible by year. Since the leading cause of global warming is uncontrolled CO2 in atmosphere. The amount of unused steel slag is expected to increment later on, steel industries is one of the mechanical industries that contribute the CO2 emission. That because this businesses deliver carbon in light of powers reductant and substantial volume of steel. The changes of atmosphere these day is truly developing concern and that make steel creator are confronted with test of discovering methods for bringing down CO2 emission. Malaysia is working decidedly in the diminishment of CO2 gas. There are a few techniques in decreasing the amount of CO2 in the air as underlined by the Intergovernmental Panel of Climate Change (IPCC), an organization under the United Country however CCS is an extremely encouraging innovation to moderate CO2 emission in air. Mineral carbonation is another technique to store carbon dioxide permanently, long term stability and vast capacity.

  2. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  3. Dynamics of soil CO2 efflux under varying atmospheric CO2 concentrations reveal dominance of slow processes.

    Science.gov (United States)

    Kim, Dohyoung; Oren, Ram; Clark, James S; Palmroth, Sari; Oishi, A Christopher; McCarthy, Heather R; Maier, Chris A; Johnsen, Kurt

    2017-09-01

    We evaluated the effect on soil CO 2 efflux (F CO 2 ) of sudden changes in photosynthetic rates by altering CO 2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO 2 (eCO 2 ) ranging 1.0-1.8 times ambient did not affect F CO 2 . F CO 2 did not decrease until 4 months after termination of the long-term eCO 2 treatment, longer than the 10 days observed for decrease of F CO 2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of F CO 2 following the initiation of eCO 2 . The reduction of F CO 2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and F CO 2 -temperature sensitivity. These asymmetric responses pose a tractable challenge to process-based models attempting to isolate the effect of individual processes on F CO2 . © 2017 John Wiley & Sons Ltd.

  4. Comparison of atmospheric CO2 mole fractions and source-sink characteristics at four WMO/GAW stations in China

    Science.gov (United States)

    Cheng, Siyang; Zhou, Lingxi; Tans, Pieter P.; An, Xingqin; Liu, Yunsong

    2018-05-01

    As CO2 is a primary driving factor of climate change, the mole fraction and source-sink characteristics of atmospheric CO2 over China are constantly inferred from multi-source and multi-site data. In this paper, we compared ground-based CO2 measurements with satellite retrievals and investigated the source-sink regional representativeness at China's four WMO/GAW stations. The results indicate that, firstly, atmospheric CO2 mole fractions from ground-based sampling measurement and Greenhouse Gases Observing Satellite (GOSAT) products reveal similar seasonal variation. The seasonal amplitude of the column-averaged CO2 mole fractions is smaller than that of the ground-based CO2 at all stations. The extrema of the seasonal cycle of ground-based and column CO2 mole fractions are basically synchronous except a slight phase delay at Lin'an (LAN) station. For the two-year average, the column CO2 is lower than ground-based CO2, and both of them reveal the lowest CO2 mole fraction at Waliguan (WLG) station. The lowest (∼4 ppm) and largest (∼8 ppm) differences between the column and ground-based CO2 appear at WLG and Longfengshan (LFS) stations, respectively. The CO2 mole fraction and its difference between GOSAT and ground-based measurement are smaller in summer than in winter. The differences of summer column CO2 among these stations are also much smaller than their ground-based counterparts. In winter, the maximum of ground-based CO2 mole fractions and the greatest difference between the two (ground-based and column) datasets appear at the LFS station. Secondly, the representative areas of the monthly CO2 background mole fractions at each station were found by employing footprints and emissions. Smaller representative areas appeared at Shangdianzi (SDZ) and LFS, whereas larger ones were seen at WLG and LAN. The representative areas in summer are larger than those in winter at WLG and SDZ, but the situation is opposite at LAN and LFS. The representative areas for the

  5. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    Science.gov (United States)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  6. Comparing atmospheric transport models for future regional inversions over Europe - Part 1: mapping the atmospheric CO2 signals

    International Nuclear Information System (INIS)

    Geels, C.; Brandt, J.; Christensen, J.H.; Frohn, L.M.; Gloor, M.; Ciais, P.; Bousquet, P.; Peylin, P.; Dargaville, R.; Ramonet, M.; Vermeulen, A.T.; Aalto, T.; Haszpra, L.; Karstens, U.; Rodenbeck, C.; Carboni, G.; Santaguida, R.

    2007-01-01

    The CO 2 source and sink distribution across Europe can be estimated in principle through inverse methods by combining CO 2 observations and atmospheric transport models. Uncertainties of such estimates are mainly due to insufficient spatio-temporal coverage of CO 2 observations and biases of the models. In order to assess the biases related to the use of different models the CO 2 concentration field over Europe has been simulated with five different Eulerian atmospheric transport models as part of the EU-funded AEROCARB project, which has the main goal to estimate the carbon balance of Europe. In contrast to previous comparisons, here both global coarse-resolution and regional higher-resolution models are included. Continuous CO 2 observations from continental, coastal and mountain sites as well as flasks sampled on aircraft are used to evaluate the models ability to capture the spatio-temporal variability and distribution of lower troposphere CO 2 across Europe. 14 CO 2 is used in addition to evaluate separately fossil fuel signal predictions. The simulated concentrations show a large range of variation, with up to similar to 10 ppm higher surface concentrations over Western and Central Europe in the regional models with highest (mesoscale) spatial resolution. The simulation-data comparison reveals that generally high-resolution models are more successful than coarse models in capturing the amplitude and phasing of the observed short-term variability. At high-altitude stations the magnitude of the differences between observations and models and in between models is less pronounced, but the timing of the diurnal cycle is not well captured by the models. The data comparisons show also that the timing of the observed variability on hourly to daily time scales at low-altitude stations is generally well captured by all models. However, the amplitude of the variability tends to be underestimated. While daytime values are quite well predicted, nighttime values are

  7. Geochemical monitoring for potential environmental impacts of geologic sequestration of CO2

    Science.gov (United States)

    Kharaka, Yousif K.; Cole, David R.; Thordsen, James J.; Gans, Kathleen D.; Thomas, Randal B.

    2013-01-01

    Carbon dioxide sequestration is now considered an important component of the portfolio of options for reducing greenhouse gas emissions to stabilize their atmospheric levels at values that would limit global temperature increases to the target of 2 °C by the end of the century (Pacala and Socolow 2004; IPCC 2005, 2007; Benson and Cook 2005; Benson and Cole 2008; IEA 2012; Romanak et al. 2013). Increased anthropogenic emissions of CO2 have raised its atmospheric concentrations from about 280 ppmv during pre-industrial times to ~400 ppmv today, and based on several defined scenarios, CO2 concentrations are projected to increase to values as high as 1100 ppmv by 2100 (White et al. 2003; IPCC 2005, 2007; EIA 2012; Global CCS Institute 2012). An atmospheric CO2 concentration of 450 ppmv is generally the accepted level that is needed to limit global temperature increases to the target of 2 °C by the end of the century. This temperature limit likely would moderate the adverse effects related to climate change that could include sea-level rise from the melting of alpine glaciers and continental ice sheets and from the ocean warming; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; and changes in the amount, timing, and distribution of rain, snow, and runoff (IPCC 2007; Sundquist et al. 2009; IEA 2012). Rising atmospheric CO2 concentrations are also increasing the amount of CO2 dissolved in ocean water lowering its pH from 8.1 to 8.0, with potentially disruptive effects on coral reefs, plankton and marine ecosystems (Adams and Caldeira 2008; Schrag 2009; Sundquist et al. 2009). Sedimentary basins in general and deep saline aquifers in particular are being investigated as possible repositories for the large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes (Hitchon 1996; Benson and Cole 2008; Verma and Warwick 2011).

  8. Effect of stabilization temperature during pyrolysis process of P84 co-polyimide-based tubular carbon membrane for H2/N2 and He/N2 separations

    Science.gov (United States)

    Sazali, N.; Salleh, W. N. W.; Ismail, A. F.; Ismail, N. H.; Aziz, F.; Yusof, N.; Hasbullah, H.

    2018-04-01

    In this study, the effect of stabilization temperature on the performance of tubular carbon membrane was being investigated. P84 co-polyimide-based tubular carbon membrane will be fabricated through the dip-coating technique. The tubular carbon membrane performance can be controlled by manipulating the pyrolysis conditions which was conducted at different stabilization temperatures of 250, 300, 350, 400, and 450°C under N2 environment (200 ml/min). The prepared membranes were characterized by using scanning electron microscopy (SEM), x-ray diffraction (XRD), and pure gas permeation system. The pure gas of H2, He, and N2 were used to determine the permeation properties of the carbon membrane. The P84 co-polyimide-based tubular carbon membrane stabilized at 300°C demonstrated an excellent permeation property with H2, He, and N2 gas permeance of 1134.51±2.87, 1287.22±2.86 and 2.98±1.28GPU, respectively. The highest H2/N2 and He/N2 selectivity of 380.71±2.34 and 431.95±2.61 was obtained when the stabilization temperature of 450°C was applied. It is concluded that the stabilization temperatures have protrusive effect on the carbon membrane properties specifically their pore structure, and eventually their gas separation properties.

  9. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2

    Science.gov (United States)

    Graven, H. D.; Gruber, N.

    2011-12-01

    The 14C-free fossil carbon added to atmospheric CO2 by combustion dilutes the atmospheric 14C/C ratio (Δ14C), potentially providing a means to verify fossil CO2 emissions calculated using economic inventories. However, sources of 14C from nuclear power generation and spent fuel reprocessing can counteract this dilution and may bias 14C/C-based estimates of fossil fuel-derived CO2 if these nuclear influences are not correctly accounted for. Previous studies have examined nuclear influences on local scales, but the potential for continental-scale influences on Δ14C has not yet been explored. We estimate annual 14C emissions from each nuclear site in the world and conduct an Eulerian transport modeling study to investigate the continental-scale, steady-state gradients of Δ14C caused by nuclear activities and fossil fuel combustion. Over large regions of Europe, North America and East Asia, nuclear enrichment may offset at least 20% of the fossil fuel dilution in Δ14C, corresponding to potential biases of more than -0.25 ppm in the CO2 attributed to fossil fuel emissions, larger than the bias from plant and soil respiration in some areas. Model grid cells including high 14C-release reactors or fuel reprocessing sites showed much larger nuclear enrichment, despite the coarse model resolution of 1.8°×1.8°. The recent growth of nuclear 14C emissions increased the potential nuclear bias over 1985-2005, suggesting that changing nuclear activities may complicate the use of Δ14C observations to identify trends in fossil fuel emissions. The magnitude of the potential nuclear bias is largely independent of the choice of reference station in the context of continental-scale Eulerian transport and inversion studies, but could potentially be reduced by an appropriate choice of reference station in the context of local-scale assessments.

  10. A nested modeling study of elevation-dependent climate change signals in California induced by increased atmospheric CO2

    International Nuclear Information System (INIS)

    Kim, Jinwon

    2001-01-01

    Dynamically downscaled climate change signals due to increased atmospheric CO2 are investigated for three California basins. The downscaled signals show strong elevation dependence, mainly due to elevated freezing levels in the increased CO2 climate. Below 2.5 km, rainfall increases by over 150% while snowfall decreases by 20-40% in the winter. Above 2.5 km, rainfall and snowfall both increase in the winter, as the freezing levels appear mostly below this level. Winter snowmelt increases in all elevations due to warmer temperatures in the increased CO2 climate. Reduced snowfall and enhanced snowmelt during the winter decreases snowmelt-driven spring runoff below the 2.5 km level, where the peak snowmelt occurs one month earlier in the increased CO2 climate. Above 2.5km, increased winter snowfall maintains snowmelt-driven runoff through most of the warm season. The altered hydrologic characteristics in the increased CO2 climate affect the diurnal temperature variation mainly via snow-albedo-soil moisture feedback

  11. Densification behaviour of UO2 in six different atmospheres

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Hegde, P.V.; Khan, K.B.; Basak, U.; Pillai, S.N.; Sengupta, A.K.; Jain, G.C.; Majumdar, S.; Kamath, H.S.; Purushotham, D.S.C.

    2002-01-01

    The shrinkage behaviour of UO 2 has been studied using a dilatometer in various atmospheres of Ar, Ar-8%H 2 , vacuum, CO 2 , commercial N 2 and N 2 +1000 ppm of O 2 . The onset of shrinkage occurs at around 300-400 deg. C lower in oxidizing atmospheres such as CO 2 , commercial N 2 and N 2 +1000 ppm O 2 compared to that in reducing or inert atmospheres. Shrinkage behaviour of UO 2 is almost identical in Ar, Ar-8%H 2 and vacuum. The shrinkage in N 2 +1000 ppm O 2 begins at a lower temperature than that in the commercial N 2 . The mechanism of sintering in the reducing, inert and vacuum atmospheres is explained by diffusion of uranium vacancies and that in the oxidizing atmospheres by cluster formation

  12. Atmospheric stability analysis and its relationship with the atmospheric pollution in Salamanca

    International Nuclear Information System (INIS)

    Fidalgo, M.R.; Garmendia, J.

    1989-01-01

    In this paper we have studied the relationship between the sulphur dioxide and suspended particulate matter concentrations and the atmospheric stability in Salamanca over 4 year (1978-1982). Of the various indices cited in the bibliography for estimating stratification stability, two were used. First, the Pasquill categories and later a method based on Montgomery's potential, which was the one that gave the best results. (Author)

  13. Reactivity of hydrocarbons in response to injection of a CO2/O2 mixture under depleted reservoir conditions: experimental and numerical modeling

    International Nuclear Information System (INIS)

    Pacini-Petitjean, Claire

    2015-01-01

    The geological storage of CO 2 (CO 2 Capture-Storage - CCS) and the Enhanced Oil Recovery (EOR) by CO 2 injection into petroleum reservoirs could limit CO 2 atmospheric accumulation. However, CO 2 can be associated with oxygen. To predict the hydrocarbon evolution under these conditions involves the study of oxidation mechanisms. Oxidation experiment and kinetic detailed modeling were carried out with pure compounds. The comparison between experimental and modeling results led to the construction of a hydrocarbon oxidation kinetic model and emphasized the parameters leading to auto ignition. The good agreement between our experiments and modeling are promising for the development of a tool predicting the critical temperature leading to auto-ignition and the evolution of hydrocarbon composition, to estimate the stability of a petroleum system in CO 2 injection context. (author) [fr

  14. Carbon dioxide assimilation in Danish crops (wheat and maize) and its dependency on increasing temperature and elevated atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Soegaard, H.; Boegh, E.

    2001-01-01

    Eddy correlation measurements of atmospheric CO 2 fluxes have been recorded over a number of crops throughout the growing season. These data have been used for validating a mechanistic photosynthesis model, which is used together with one of the most wide spread soil respiration equations. The combined model, is applied for analysing the temperature- and CO 2 -dependency of field crops. To get an idea of the potential range in the sensitivity of agricultural crops to atmospheric change, two crops with contrasting biochemical and physiological properties were selected for the present analysis: winter wheat (Triticum aestivum cv. Hereward) and maize (Zea mayz cv. Loft). While wheat, which is a C 3 -species, is the most common Danish crop (covering 25% of the Danish agricultural area), maize is interesting because it is a C 4 -plant which uses another CO 2 pathway in the dry matter production. The photosynthetic process of C 4 -plants has a higher temperature optimum compared to C 3 -plants. This could give C 4 plants more favourable conditions in the future. The model applied in this paper is utilized to evaluate whether increasing atmospheric CO 2 concentrations have contributed to the general increase in grain yield observed in Denmark since the late sixties. (LN)

  15. CO2 and CH4 fluxes and carbon balance in the atmospheric interaction of boreal peatlands

    International Nuclear Information System (INIS)

    Alm, J.

    1997-01-01

    and root associated heterotrophic CO 2 release. Much of the spatial variability in the gas fluxes was attributed to the microsite properties in natural peatlands. Winter CO 2 and CH 4 emissions were important components in the C balance, comprising 10Ae30 % of the annual gas release from peat. According to the simulation results, the CH 4 release from expanding peatlands could have contributed to the early interglacial atmospheric warming during several millennia, at least prior to the ombrotrophication and increased peat accumulation from about 3500 years BP onwards. The atmospheric cooling effect by peat accumulation is less clear. (orig.)

  16. Properties and Developments of Combustion and Gasification of Coal and Char in a CO2-Rich and Recycled Flue Gases Atmosphere by Rapid Heating

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2012-01-01

    Full Text Available Combustion and gasification properties of pulverized coal and char have been investigated experimentally under the conditions of high temperature gradient of order 200°C·s−1 by a CO2 gas laser beam and CO2-rich atmospheres with 5% and 10% O2. The laser heating makes a more ideal experimental condition compared with previous studies with a TG-DTA, because it is able to minimize effects of coal oxidation and combustion by rapid heating process like radiative heat transfer condition. The experimental results indicated that coal weight reduction ratio to gases followed the Arrhenius equation with increasing coal temperature; further which were increased around 5% with adding H2O in CO2-rich atmosphere. In addition, coal-water mixtures with different water/coal mass ratio were used in order to investigate roles of water vapor in the process of coal gasification and combustion. Furthermore, char-water mixtures with different water/char mass ratio were also measured in order to discuss the generation ratio of CO/CO2, and specified that the source of Hydrocarbons is volatile matter from coal. Moreover, it was confirmed that generations of CO and Hydrocarbons gases are mainly dependent on coal temperature and O2 concentration, and they are stimulated at temperature over 1000°C in the CO2-rich atmosphere.

  17. The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges

    Energy Technology Data Exchange (ETDEWEB)

    Still, C.J.; Riley, W.J.; Biraud, S.C.; Noone, D.C.; Buenning, N.H.; Randerson, J.T.; Torn, M.S.; Welker, J.; White, J.W.C.; Vachon, R.; Farquhar, G.D.; Berry, J.A.

    2009-05-01

    This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day. This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.

  18. CO{sub 2} reforming of CH{sub 4} over stabilized mesoporous Ni-CaO-ZrO{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Shuigang Liu; Lianxiu Guan; Junping Li; Ning Zhao; Wei Wei; Yuhan Sun [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion

    2008-09-15

    Mesoporous Ni-CaO-ZrO{sub 2} nanocomposites with high thermal stability were designed and employed in the CO{sub 2}/CH{sub 4} reforming. The nanocomposites with appropriate Ni/Ca/Zr molar ratios exhibited excellent activity and prominent coking resistivity. The Ni crystallites were effectively controlled under the critical size for coke formation in such nanocomposites. It was found that low Ni content resulted in high metal dispersion and good catalytic performance. Moreover, the basicity of the matrices improved the chemisorption of CO{sub 2} and promoted the gasification of deposited coke on the catalyst. 33 refs., 5 figs., 1 tab.

  19. A discussion for stabilization time of carbon steel in atmospheric corrosion

    Science.gov (United States)

    Zhang, Zong-kai; Ma, Xiao-bing; Cai, Yi-kun

    2017-09-01

    Stabilization time is an important parameter in long-term prediction of carbon steel corrosion in atmosphere. The range of the stabilization time of carbon steel in atmospheric corrosion has been published in many scientific literatures. However, the results may not precise because engineering experiences is dominant. This paper deals with the recalculation of stabilization time based on ISO CORRAG program, and analyzes the results and makes a comparison to the data mentioned above. In addition, a new thinking to obtain stabilization time will be proposed.

  20. Radon-calibrated emissions of CO2 from South Africa

    International Nuclear Information System (INIS)

    Gaudry, A.; Polian, G.; Ardouin, B.; Lambert, G.

    1990-01-01

    Atmospheric CO 2 and 222 Rn have been monitored at Amsterdam Island since 1980. Data were selected in order to eliminate any local influence. Typical CO 2 concentrations of the subantarctic marine atmosphere can be determined by selecting those values for which 222 Rn radioactivity was particularly low: less than 1 pCi m -3 . 222 Rn concentrations higher than 2 pCi m -3 are mainly due to injections into the subantarctic atmosphere from the continental source of South Africa. The passage of air masses under continental influence also shows typical CO 2 variations, well correlated with 222 Rn variations. From the knowledge of the global continental fluxes of 222 Rn, it has been possible to estimate CO 2 fluxes into the atmosphere from South Africa. The mean CO 2 flux corresponding to a 6-month period from May to October is about 5 millimole m -2 h -1 . Continental CO 2 emissions reach a maximum in August. (orig.)

  1. The relationship between perceived family atmosphere and emotional stability of adolescents

    OpenAIRE

    KRÁČMAROVÁ, Martina

    2015-01-01

    The bachelor thesis called "The relationship between perceived family atmosphere and emotional stability of adolescents" deals with adolescence especially in relation to the perceived family and emotional stability of adolescent. The main goal of my work is to describe how the perceived family atmosphere and events in the family influences the emotion of Adolescents. Firstly I was clarifying the specifics of adolescent period, the importance of relationships, family atmosphere and emotional a...

  2. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.

    Science.gov (United States)

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W; Statton, John; Colmer, Timothy D; Kendrick, Gary A

    2016-06-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 (-) . Net photosynthesis of all species except Zostera polychlamys were limited at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 (-) users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3 (-) . Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co-occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon. © 2015 John Wiley & Sons Ltd.

  3. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang

    2013-05-01

    Carbon dioxide (CO2) has long been regarded as the major greenhouse gas, which leads to numerous negative effects on global environment. The capture and separation of CO2 by selective adsorption using porous materials proves to be an effective way to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs with high CO2 adsorption capacities and CO2/N2 selectivities for post-combustion effluent (e.g. flue gas) treatment. We will also exploit the correlation between the CO2 capture performance of POPs and their textual properties/functionalities. Chapters Two focuses on the study of a group of porous phenolic-aldehyde polymers (PPAPs) synthesized by a catalyst-free method, the CO2 capture capacities of these PPAPs exceed 2.0 mmol/g at 298 K and 1 bar, while keeping CO2/N2 selectivity of more than 30 at the same time. Chapter Three reports the gas adsorption results of different hyper-cross-linked polymers (HCPs), which indicate that heterocyclo aromatic monomers can greatly enhance polymers’ CO2/N2 selectivities, and the N-H bond is proved to the active CO2 adsorption center in the N-contained (e.g. pyrrole) HCPs, which possess the highest selectivities of more than 40 at 273 K when compared with other HCPs. Chapter Four emphasizes on the chemical modification of a new designed polymer of intrinsic microporosity (PIM) with high CO2/N2 selectivity (50 at 273 K), whose experimental repeatability and chemical stability prove excellent. In Chapter Five, we demonstrate an improvement of both CO2 capture capacity and CO2/N2 selectivity by doping alkali metal ions into azo-polymers, which leads a promising method to the design of new porous organic polymers.

  4. Simulation of CO2 Injection in Porous Media with Structural Deformation Effect

    KAUST Repository

    Negara, Ardiansyah

    2011-06-18

    Carbon dioxide (CO2) sequestration is one of the most attractive methods to reduce the amount of CO2 in the atmosphere by injecting it into the geological formations. Furthermore, it is also an effective mechanism for enhanced oil recovery. Simulation of CO2 injection based on a suitable modeling is very important for explaining the fluid flow behavior of CO2 in a reservoir. Increasing of CO2 injection may cause a structural deformation of the medium. The structural deformation modeling in carbon sequestration is useful to evaluate the medium stability to avoid CO2 leakage to the atmosphere. Therefore, it is important to include such effect into the model. The purpose of this study is to simulate the CO2 injection in a reservoir. The numerical simulations of two-phase flow in homogeneous and heterogeneous porous media are presented. Also, the effects of gravity and capillary pressure are considered. IMplicit Pressure Explicit Saturation (IMPES) and IMplicit Pressure-Displacements and an Explicit Saturation (IMPDES) schemes are used to solve the problems under consideration. Various numerical examples were simulated and divided into two parts of the study. The numerical results demonstrate the effects of buoyancy and capillary pressure as well as the permeability value and its distribution in the domain. Some conclusions that could be derived from the numerical results are the buoyancy of CO2 is driven by the density difference, the CO2 saturation profile (rate and distribution) are affected by the permeability distribution and its value, and the displacements of the porous medium go to constant values at least six to eight months (on average) after injection. Furthermore, the simulation of CO2 injection provides intuitive knowledge and a better understanding of the fluid flow behavior of CO2 in the subsurface with the deformation effect of the porous medium.

  5. Changes in concentration and (delta) 13C value of dissolved CH4, CO2 and organic carbon in rice paddies under ambient and elevated concentrations of atmospheric CO2

    International Nuclear Information System (INIS)

    Weiguo Cheng; Yagi, Kazuyuki; Sakai, Hidemitsu; Hua Xu; Kobayashi, Kazuhiko

    2005-01-01

    Changes in concentration and (delta) 13 C value of dissolved CH 4 , CO 2 and organic carbon (DOC) in floodwater and soil solution from a Japanese rice paddy were studied under ambient and elevated concentrations of atmospheric CO 2 in controlled environment chambers. The concentrations of dissolved CH 4 in floodwater increased with rice growth (with some fluctuation), while the concentrations of CO 2 remained between 2.9 to 4.4 and 4.2 to 5.8 μg C mL -1 under conditions of ambient and elevated CO 2 concentration, respectively. The amount of CH 4 dissolved in soil solution under elevated CO 2 levels was significantly lower than under ambient CO 2 in the tillering stage, implying that the elevated CO 2 treatment accelerated CH 4 oxidation during the early stage of growth. However, during later stages of growth, production of CH 4 increased and the amount of CH 4 dissolved in soil solution under elevated CO 2 levels was, on average, greater than that under ambient CO 2 conditions. Significant correlation existed among the (delta) 13 C values of dissolved CH 4 , CO 2 , and DOC in floodwater (except for the samples taken immediately after pulse feeding with 13 C enriched CO 2 ), indicating that the origins and cycling of CH 4 , CO 2 and DOC were related. There were also significant correlations among the (delta) 13 C values of CH 4 , CO 2 and DOC in the soil solution. The turnover rate of CO 2 in soil solution was most rapid in the panicle formation stage of rice growth and that of CH 4 fastest in the grain filling stage. (Author)

  6. CsF-promoted carboxylation of aryl(hetaryl) terminal alkynes with atmospheric CO_2 at room temperature

    International Nuclear Information System (INIS)

    Yu, B.; Yang, Z.Z.; Zhao, Y.F.; Zhang, H.Y.; Yang, P.; Gao, X.; Liu, Z.M.

    2017-01-01

    A CsF-promoted carboxylation of aryl(hetaryl) terminal alkynes with atmospheric CO_2 in the presence of trimethylsilylacetylene was developed to give functionalized propiolic acid products at room temperature. A wide range of propiolic acids bearing functional groups was successfully obtained in good to excellent yields. Mechanistic studies demonstrate that in the carboxylation process the alkynyl-silane intermediate was first in situ generated, which was then trapped by CO_2, giving rise to the corresponding functionalized propiolic acids after acidification. The advantages of this approach include avoiding use of transition-metal catalysts, wide substrate scope together with excellent functional group tolerance, ambient conditions and a facile work-up procedure. (authors)

  7. Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions

    Science.gov (United States)

    Andres, R. J.; Marland, G.

    1994-06-01

    This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

  8. Nitrogen and Carbon Cycling in a Grassland Community Ecosystem as Affected by Elevated Atmospheric CO2

    Directory of Open Access Journals (Sweden)

    H. A. Torbert

    2012-01-01

    Full Text Available Increasing global atmospheric carbon dioxide (CO2 concentration has led to concerns regarding its potential effects on terrestrial ecosystems and the long-term storage of carbon (C and nitrogen (N in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L. Willd (Huisache. Seedlings of Acacia along with grass species were grown for 13 months at CO2 concentrations of 385 (ambient, 690, and 980 μmol mol−1. Elevated CO2 increased both C and N inputs from plant growth which would result in higher soil C from litter fall, root turnover, and excretions. Results from the incubation indicated an initial (20 days decrease in N mineralization which resulted in no change in C mineralization. However, after 40 and 60 days, an increase in both C and N mineralization was observed. These increases would indicate that increases in soil C storage may not occur in grass ecosystems that are invaded with Acacia over the long term.

  9. Foraminiferal calcification and CO2

    Science.gov (United States)

    Nooijer, L. D.; Toyofuku, T.; Reichart, G. J.

    2017-12-01

    Ongoing burning of fossil fuels increases atmospheric CO2, elevates marine dissolved CO2 and decreases pH and the saturation state with respect to calcium carbonate. Intuitively this should decrease the ability of CaCO3-producing organisms to build their skeletons and shells. Whereas on geological time scales weathering and carbonate deposition removes carbon from the geo-biosphere, on time scales up to thousands of years, carbonate precipitation increases pCO2 because of the associated shift in seawater carbon speciation. Hence reduced calcification provides a potentially important negative feedback on increased pCO2 levels. Here we show that foraminifera form their calcium carbonate by active proton pumping. This elevates the internal pH and acidifies the direct foraminiferal surrounding. This also creates a strong pCO2 gradient and facilitates the uptake of DIC in the form of carbon dioxide. This finding uncouples saturation state from calcification and predicts that the added carbon due to ocean acidification will promote calcification by these organisms. This unknown effect could add substantially to atmospheric pCO2 levels, and might need to be accounted for in future mitigation strategies.

  10. Chlorophyll stability in yerba maté leaves in controlled atmospheres

    Directory of Open Access Journals (Sweden)

    Rubén O. Morawicki

    1999-01-01

    Full Text Available The objective of this research was to investigate the stability of chlorophyll in yerba maté leaves in controlled atmospheres of CO2/air mixtures and different water activities at 25°C.Two levels of water activity were selected corresponding to saturated salt solutions of LiCl (a w=0.113 and MgCl2(a w=0.330 and three levels of CO2/air mixtures (0/100,20/80 and 40/60. The chlorophyll content was evaluated using a liquid chromatography HPLC technique. Experimental values varied between 2.16 and 0.61 mg/g of dry matter. For each sample, 5 determination were made during 58 days. Experimental values were fitted to an equation describing a first order reaction. In all cases, the agreement was good with PO objetivo deste trabalho foi pesquisar a estabilidade da clorofila em folhas de erva mate em misturas atmosféricas controladas de CO2/ar e diferentes atividades de vapor de água a 25ºC. Dois níveis de atividade de vapor de água foram selecionadas, correspondendo a soluçoes saturadas de LiCl (a w=0.113 e MgCl2 (a w=0.330 e três níveis de misturas CO2/ar (0/100,20/80 e 40/60. O conteúdo de clorofila foi avaliado usando a técnica de cromatografia líqüida HPLC. Os valores experimentais variaram entre 2.16 e 0.61 mg/g de matéria seca. Para cada amostra foram realizadas 5 determinaçoes durante 58 dias. Os valores experimentais foram ajustados para uma eqüação descrevendo uma reação de primeiro ordem. Em todos os casos houve boa concordância P < 3 10-3. A concentração inicial de clorofila ficou reduzida em média um 30.5% depois de 58 dias. Porém, depois da comparação das constantes de velocidade, não foram achadas diferenças entre elas.

  11. Rising atmospheric CO2 concentration may imply higher risk of Fusarium mycotoxin contamination of wheat grains.

    Science.gov (United States)

    Bencze, Szilvia; Puskás, Katalin; Vida, Gyula; Karsai, Ildikó; Balla, Krisztina; Komáromi, Judit; Veisz, Ottó

    2017-08-01

    Increasing atmospheric CO 2 concentration not only has a direct impact on plants but also affects plant-pathogen interactions. Due to economic and health-related problems, special concern was given thus in the present work to the effect of elevated CO 2 (750 μmol mol -1 ) level on the Fusarium culmorum infection and mycotoxin contamination of wheat. Despite the fact that disease severity was found to be not or little affected by elevated CO 2 in most varieties, as the spread of Fusarium increased only in one variety, spike grain number and/or grain weight decreased significantly at elevated CO 2 in all the varieties, indicating that Fusarium infection generally had a more dramatic impact on the grain yield at elevated CO 2 than at the ambient level. Likewise, grain deoxynivalenol (DON) content was usually considerably higher at elevated CO 2 than at the ambient level in the single-floret inoculation treatment, suggesting that the toxin content is not in direct relation to the level of Fusarium infection. In the whole-spike inoculation, DON production did not change, decreased or increased depending on the variety × experiment interaction. Cooler (18 °C) conditions delayed rachis penetration while 20 °C maximum temperature caused striking increases in the mycotoxin contents, resulting in extremely high DON values and also in a dramatic triggering of the grain zearalenone contamination at elevated CO 2 . The results indicate that future environmental conditions, such as rising CO 2 levels, may increase the threat of grain mycotoxin contamination.

  12. Non-Essential Activation of Co"2"+ and Zn"2"+ on Mushroom Tyrosinase: Kinetic and Structural Stability

    International Nuclear Information System (INIS)

    Gheibi, N.; Sarreshtehdari, M.; Saboury, A. A.

    2011-01-01

    Tyrosinase is a widespread enzyme with great promising capabilities. The Lineweaver-Burk plots of the catecholase reactions showed that the kinetics of mushroom tyrosinase (MT), activated by Co"2"+ and Zn"2"+ at different pHs (6, 7, 8 and 9) obeyed the non-essential activation mode. The binding of metal ions to the enzyme increases the maximum velocity of the enzyme due to an increase in the enzyme catalytic constant (k_c_a_t). From the kinetic analysis, dissociation constants of the activator from the enzyme-metal ion complex (K_a) were obtained as 5 x 10"4 M"-"1 and 8.33 x 10"3 M"-"1 for Co"2"+ and Zn"2"+ at pH 9 and 6 respectively. The structural analysis of MT through circular dichroism (CD) and intensive fluorescence spectra revealed that the conformational stability of the enzyme in these pHs reaches its maximum value in the presence of each of the two metal ions

  13. Future concentrations of atmospheric greenhouse gases CO2, CFC and CH4 - an assessment on the educational level

    International Nuclear Information System (INIS)

    Hoppenau, S.

    1992-01-01

    A model on the educational level is described to estimate effective future atmospheric CO 2 concentrations. The effects of chlorofluorocarbon and methane emission and deforestation are taken into account. The influence of different emission scenarios on the time evolution of greenhouse-gas concentration are illustrated. Future global energy policies are discussed both under the aspects of rising world population and the reduction in global CO 2 emissions. The model can be handled on a PC or even on a pocket calculator

  14. Air-ice CO2 fluxes and pCO2 dynamics in the Arctic coastal area (Amundsen Gulf, Canada)

    Science.gov (United States)

    Geilfus, Nicolas-Xavier; Tison, Jean Louis; Carnat, Gauthier; Else, Brent; Borges, Alberto V.; Thomas, Helmuth; Shadwick, Elizabeth; Delille, Bruno

    2010-05-01

    Sea ice covers about 7% of the Earth surface at its maximum seasonal extent. For decades sea ice was assumed to be an impermeable and inert barrier for air - sea exchange of CO2 so that global climate models do not include CO2 exchange between the oceans and the atmosphere in the polar regions. However, uptake of atmospheric CO2 by sea ice cover was recently reported raising the need to further investigate pCO2 dynamics in the marine cryosphere realm and related air-ice CO2 fluxes. In addition, budget of CO2 fluxes are poorly constrained in high latitudes continental shelves [Borges et al., 2006]. We report measurements of air-ice CO2 fluxes above the Canadian continental shelf and compare them to previous measurements carried out in Antarctica. We carried out measurements of pCO2 within brines and bulk ice, and related air-ice CO2 fluxes (chamber method) in Antarctic first year pack ice ("Sea Ice Mass Balance in Antarctica -SIMBA" drifting station experiment September - October 2007) and in Arctic first year land fast ice ("Circumpolar Flaw Lead" - CFL, April - June 2008). These 2 experiments were carried out in contrasted sites. SIMBA was carried out on sea ice in early spring while CFL was carried out in from the middle of the winter to the late spring while sea ice was melting. Both in Arctic and Antarctic, no air-ice CO2 fluxes were detected when sea ice interface was below -10°C. Slightly above -10°C, fluxes toward the atmosphere were observed. In contrast, at -7°C fluxes from the atmosphere to the ice were significant. The pCO2 of the brine exhibits a same trend in both hemispheres with a strong decrease of the pCO2 anti-correlated with the increase of sea ice temperature. The pCO2 shifted from a large over-saturation at low temperature to a marked under-saturation at high temperature. These air-ice CO2 fluxes are partly controlled by the permeability of the air-ice interface, which depends of the temperature of this one. Moreover, air-ice CO2 fluxes are

  15. Dynamics of soil CO 2 efflux under varying atmospheric CO 2 concentrations reveal dominance of slow processes

    Science.gov (United States)

    Dohyoung Kim; Ram Oren; James S. Clark; Sari Palmroth; A. Christopher Oishi; Heather R. McCarthy; Chris A. Maier; Kurt Johnsen

    2017-01-01

    We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2) ranging 1.0–1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer...

  16. BErkeley Atmospheric CO2 Network (BEACON) - Bringing Measurements of CO2 Emissions to a School Near You

    Science.gov (United States)

    Teige, V. E.; Havel, E.; Patt, C.; Heber, E.; Cohen, R. C.

    2011-12-01

    The University of California at Berkeley in collaboration with the Chabot Space and Science Center describe a set of educational programs, workshops, and exhibits based on a multi-node greenhouse gas and air quality monitoring network being deployed over Oakland, California. Examining raw numerical data using highly engaging and effective geo-data visualization tools like Google Earth can make the science come alive for students, and provide a hook for drawing them into deeper investigations. The Climate Science Investigations teacher workshop at the Chabot Space and Science Center will make use of Google Earth, Excel, and other geo-data visualization tools to step students through the process from data acquisition to discovery. Using multiple data sources, including output from the BErkeley Atmospheric CO2 Network (BEACON) project, participants will be encouraged to explore a variety of different modes of data display toward producing a unique, and ideally insightful, illumination of the data.

  17. CO2 Fixation by Membrane Separated NaCl Electrolysis

    DEFF Research Database (Denmark)

    Park, Hyun Sic; Lee, Ju Sung; Han, Junyoung

    2015-01-01

    for converting CO2 into CaCO3 requires high temperature and high pressure as reaction conditions. This study proposes a method to fixate CaCO3 stably by using relatively less energy than existing methods. After forming NaOH absorbent solution through electrolysis of NaCl in seawater, CaCO3 was precipitated...... crystal product was high-purity calcite. The study shows a successful method for fixating CO2 by reducing carbon dioxide released into the atmosphere while forming high-purity CaCO3.......Atmospheric concentrations of carbon dioxide (CO2), a major cause of global warming, have been rising due to industrial development. Carbon capture and storage (CCS), which is regarded as the most effective way to reduce such atmospheric CO2 concentrations, has several environmental and technical...

  18. Comparison of different applied voltage waveforms on CO{sub 2} reforming of CH{sub 4} in an atmospheric plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Duc Ba; Lee, Won Gyu [Kangwon National University, Chuncheon (Korea, Republic of)

    2015-01-15

    Sinusoidal and pulse waveforms of applied voltage were employed for CO{sub 2} reforming of CH{sub 4} to syngas in an atmospheric dielectric barrier discharge reactor. The discharge power of a pulse waveform was higher than that of sinusoidal waveform at the same applied voltage. The plasma reaction by a pulse waveform enhanced the conversion of CO{sub 2} and CH{sub 4} and the selectivity of H{sub 2} and CO. It was confirmed that CO{sub 2} reforming of CH{sub 4} can be improved by the adaption of pulse-type power supply in a dielectric barrier discharge reactor immersed in an electrically insulating oil bath.

  19. 1.5 My benthic foraminiferal B/Ca record of carbonate chemistry in the deep Atlantic: Implications for ocean alkalinity and atmospheric CO2

    Science.gov (United States)

    Rosenthal, Y.; Sosdian, S. M.; Toggweiler, J. R.

    2017-12-01

    Most hypotheses to explain glacial-interglacial changes in atmospheric CO2 invoke shifts in ocean alkalinity explain roughly half the reduction in glacial CO2 via CaCO3 compensatory mechanism. It follows that changes in CaCO3 burial occur in response to an increase in deep ocean respired carbon content. To date our understanding of this process comes from benthic carbon isotope and %CaCO3 records. However, to understand the nature of the ocean's buffering capacity and its role in modulating pCO2, orbitally resolved reconstructions of the deep ocean carbonate system parameters are necessary. Here we present a 1.5 Myr orbitally resolved deep ocean calcite saturation record (ΔCO32-) derived from benthic foraminiferal B/Ca ratios in the North Atlantic. Glacial B/Ca values decline across the mid-Pleistocene transition (MPT) suggesting increased sequestration of carbon in the deep Atlantic. The magnitude, timing, and structure of deep Atlantic Ocean ΔCO32- and %CaCO3 cycles contrast with the small amplitude, anti-phased swings in IndoPacific ΔCO32- and %CaCO3 during the mid-to-late Pleistocene. Increasing corrosivity of the deep Atlantic causes the locus of CaCO3 burial to shift into the equatorial Pacific where the flux of CaCO3 to the seafloor is high enough to establish and maintain a new "hot spot". We propose that the CO32- in the deep IndoPacific rises in response to the same mechanism that keeps the CO32- in the deep Atlantic low and the atmospheric CO2 low. The increase in interglacial atmospheric pCO2 levels following the Mid-Brunhes event ( 400ka) are associated with increased G/IG ΔCO3 amplitude, expressed by a decrease in the glacial ΔCO32- values. We propose the low persistent ΔCO32- levels at Marine Isotope Stage (MIS) 12 set the stage for the high pCO2 levels at MIS 11 via an increase in whole ocean alkalinity followed by enhanced CaCO3 preservation. Based on this, we suggest that the development of classic (`anticorrelated') CaCO3 patterns was

  20. Comparisons of continuous atmospheric CH4, CO2 and N2O measurements - results from a travelling instrument campaign at Mace Head

    International Nuclear Information System (INIS)

    Vardag, S.N.; Hammer, S.; Levin, I.; O'Doherty, S.; Spain, T.G.; Wastine, B.; Jordan, A.

    2014-01-01

    A 2-month measurement campaign with a Fourier transform infrared analyser as a travelling comparison instrument (TCI) was performed at the Advanced Global Atmospheric Gases Experiment (AGAGE) and World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) station at Mace Head, Ireland. The aim was to evaluate the compatibility of atmospheric methane (CH 4 ), carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) measurements of the routine station instrumentation, consisting of a gas chromatograph (GC) for CH 4 and N 2 O as well as a cavity ring-down spectroscopy (CRDS) system for CH 4 and CO 2 . The advantage of a TCI approach for quality control is that the comparison covers the entire ambient air measurement system, including the sample intake system and the data evaluation process. For initial quality and performance control, the TCI was run in parallel with the Heidelberg GC before and after the measurement campaign at Mace Head. Median differences between the Heidelberg GC and the TCI were well within the WMO inter-laboratory compatibility target for all three greenhouse gases. At Mace Head, the median difference between the station GC and the TCI were -0.04 nmol mol -1 for CH 4 and -0.37 nmol mol -1 for N 2 O (GC-TCI). For N 2 O, a similar difference (-0.40 nmol mol -1 ) was found when measuring surveillance or working gas cylinders with both instruments. This suggests that the difference observed in ambient air originates from a calibration offset that could partly be due to a difference between the WMON2O X2006a reference scale used for the TCI and the Scripps Institution of Oceanography (SIO-1998) scale used at Mace Head and in the whole AGAGE network. Median differences between the CRDS G1301 and the TCI at Mace Head were 0.12 nmol mol -1 for CH 4 and 0.14 μmol mol -1 for CO 2 (CRDS G1301 - TCI). The difference between both instruments for CO 2 could not be explained, as direct measurements of calibration gases show no such difference. The CH 4