WorldWideScience

Sample records for stabilization design testing

  1. Designing stability tests of nuclear instrumentation

    International Nuclear Information System (INIS)

    Viererbl, L.; Novakova, O.

    1981-01-01

    The stability tests used are described including the test of the peak maximum position differential measurement, the test of the pulse rate measurement using integral evaluation, the quality test, the chi 2 test, the 3σ test. The test of measuring pulse rate by integral evaluation was found to be the most accurate. Its modifications and generalization gave the proposed stability tests, viz., the A test and the B test. Examples are described of stability tests for a spectrometric system, the NRG 302 dose rate converter, a proportional counter. (H.S.)

  2. Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test.

    Science.gov (United States)

    Gilbert, Hunter B; Hendrick, Richard J; Webster, Robert J

    2016-02-01

    Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots. However, a general measure for how stable a given robot configuration is has yet to be proposed. In this paper, we use bifurcation and elastic stability theory to provide such a measure, as well as to produce a test for determining whether a given design is snap-free (i.e. whether snapping can occur anywhere in the unloaded robot's workspace). These results are useful in designing, planning motions for, and controlling concentric tube robots with high curvatures.

  3. MHC I stabilizing potential of computer-designed octapeptides.

    Science.gov (United States)

    Wisniewska, Joanna M; Jäger, Natalie; Freier, Anja; Losch, Florian O; Wiesmüller, Karl-Heinz; Walden, Peter; Wrede, Paul; Schneider, Gisbert; Hiss, Jan A

    2010-01-01

    Experimental results are presented for 180 in silico designed octapeptide sequences and their stabilizing effects on the major histocompatibility class I molecule H-2K(b). Peptide sequence design was accomplished by a combination of an ant colony optimization algorithm with artificial neural network classifiers. Experimental tests yielded nine H-2K(b) stabilizing and 171 nonstabilizing peptides. 28 among the nonstabilizing octapeptides contain canonical motif residues known to be favorable for MHC I stabilization. For characterization of the area covered by stabilizing and non-stabilizing octapeptides in sequence space, we visualized the distribution of 100,603 octapeptides using a self-organizing map. The experimental results present evidence that the canonical sequence motives of the SYFPEITHI database on their own are insufficient for predicting MHC I protein stabilization.

  4. MHC I Stabilizing Potential of Computer-Designed Octapeptides

    Directory of Open Access Journals (Sweden)

    Joanna M. Wisniewska

    2010-01-01

    Full Text Available Experimental results are presented for 180 in silico designed octapeptide sequences and their stabilizing effects on the major histocompatibility class I molecule H-2Kb. Peptide sequence design was accomplished by a combination of an ant colony optimization algorithm with artificial neural network classifiers. Experimental tests yielded nine H-2Kb stabilizing and 171 nonstabilizing peptides. 28 among the nonstabilizing octapeptides contain canonical motif residues known to be favorable for MHC I stabilization. For characterization of the area covered by stabilizing and non-stabilizing octapeptides in sequence space, we visualized the distribution of 100,603 octapeptides using a self-organizing map. The experimental results present evidence that the canonical sequence motives of the SYFPEITHI database on their own are insufficient for predicting MHC I protein stabilization.

  5. Test Room Stability Plan

    International Nuclear Information System (INIS)

    1993-01-01

    This plan documents the combination of designs, installations, programs, and activities that ensures that the underground excavations at the Waste Isolation Pilot Plant (WIPP), in which transuranic (TRU) waste may be emplaced during the Test Phase, will remain sufficiently stable and safe during that time. The current ground support systems installed at the WIPP are the result of over ten years of data collection from hundreds of geomechanical instruments and thousands of hours of direct observation of the changing conditions of the openings. In addition, some of the world's most respected experts on salt rock mechanics have provided input in the design process and concurrence on the suitability of the final design. The general mine rockbolt pattern and the ground support system for the test rooms are designed to specifically address the fracture and deformation geometries observed today at the WIPP. After an introductory chapter, this plan describes the general underground design, then proceeds to an account of general ground support performance, and finally focuses on the details of the special test room ground support systems. One such system already installed in Room 1, Panel 1, is described in comprehensive detail. Other test rooms in Panel 1, whether full-size or smaller, will be equipped with systems that ensure stability to the same or equivalent extent. They will benefit from the experience gained in the first test room, which in turn benefitted from the data and knowledge accumulated during previous stages (e.g., the Site and Preliminary Design Validation program) of the project

  6. Test Bench Development for Femur Stability Assessment

    Directory of Open Access Journals (Sweden)

    Samuel SANCHEZ-CABALLERO

    2015-01-01

    Full Text Available This paper shows the design and development of a test bench for humanfemurs. The main uses of this test bench will run from artificial femurs comparisonwith real femurs, to join stability assessment after bone a fracture repair. Amongthis uses is specially designed for condylar fractures testing. The test bench isdeveloped from a self-made existing tensile/compression testing machine. Thedesign procedure is supported by a literature review about the bone mechanicalbehavior and composition generally and the knee joint performance and repairparticularly. On the basis of this review, the machine was designed to simulate theadduction and abduction movements of the joint. The magnitudes to be measuredare: the compression force, the bone displacement (vertical and the knee jointrotation

  7. Design Formulae for Hydraulic Stability and Structural Integrity of Dolos Breakwater Round-Heads

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Jensen, Jacob Birk; Liu, Z.

    1995-01-01

    A rational design of Dolos armour unit should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) resulted in design formulae for the trunk of a 1:1.5 slope Dolos breakwater without superstructure including both...... the hydraulic stability and the structural integrity. The objective of the round-head tests is to produce similar design formulae for Dolos armour in around-head. The tests will also include examinations of the hydraulic stability and run-up for a trunk section adjacent to the round-head. A run-up formula...

  8. Wear Behavior of an Unstable Knee: Stabilization via Implant Design?

    OpenAIRE

    Reinders, Jörn; Sonntag, Robert; Kretzer, Jan Philippe

    2014-01-01

    Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anteri...

  9. Slope Stability of Geosynthetic Clay Liner Test Plots

    Science.gov (United States)

    Fourteen full-scale field test plots containing five types of geosynthetic clay liners (GCLs) were constructed on 2H:IV and 3H:IV slopes for the purpose of assessing slope stability. The test plots were designed to simulate typical final cover systems for landfill. Slides occurr...

  10. Stability of yttria-stabilized zirconia during pyroprocessing tests

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr; Lee, Jeong; Lee, Sung-Jai; Kim, Sung-Wook; Jeon, Sang-Chae; Cho, Soo Haeng; Oh, Seung Chul; Jeon, Min Ku; Lee, Sang Kwon; Kang, Hyun Woo; Hur, Jin-Mok

    2016-07-15

    In this study, the feasibility of yttria-stabilized zirconia (YSZ) was investigated for use as a ceramic material, which can be commonly used for both electrolytic reduction and electrorefining. First, the stability of YSZ in salts for electrolytic reduction and electrorefining was examined. Then, its stability was demonstrated by a series of pyroprocessing tests, such as electrolytic reduction, LiCl distillation, electrorefining, and LiCl−KCl distillation, using a single stainless steel wire mesh basket containing fuel and YSZ. A single basket was used by its transportation from one test to subsequent tests without the requirements for unloading.

  11. System design description PFP thermal stabilization

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    1998-01-01

    The purpose of this document is to provide a system design description and design basis for the Plutonium Finishing P1ant (PFP) Thermal Stabilization project. The sources of material for this project are residues scraped from glovebox floors and materials already stored in vault storage that need further stabilizing to meet the 3013 storage requirements. Stabilizing this material will promote long term storage and reduced worker exposure. This document addresses: function design, equipment, and safety requirements for thermal stabilization of plutonium residues and oxides

  12. Stability tests of the Westinghouse coil in the International Fusion Superconducting Magnet Test Facility

    International Nuclear Information System (INIS)

    Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Shen, S.S.; Wilson, C.T.

    1987-09-01

    The Westinghouse coil is one of three forced-flow coils in the six-coil toroidal array of the International Fusion Superconducting Magnet Test Facility at Oak Ridge National Laboratory. It is wound with an 18-kA, Nb 3 Sn/Cu, cable-in-conduit superconductor structurally supported by aluminum plates and cooled by 4-K, 15-atm supercritical helium. The coil is instrumented to permit measurement of helium temperature, pressure, and flow rate; structure temperature and strain; field; and normal zone voltage. A resistive heater has been installed to simulate nuclear heating, and inductive heaters have been installed to facilitate stability testing. The coil has been tested both individually and in the six-coil array. The tests covered charging to full design current and field, measuring the current-sharing threshold temperature using the resistive heaters, and measuring the stability margin using the pulsed inductive heaters. At least one section of the conductor exhibits a very broad resistive transition (resistive transition index = 4). The broad transition, though causing the appearance of voltage at relatively low temperatures, does not compromise the stability margin of the coil, which was greater than 1.1 J/cm 3 of strands. In another, nonresistive location, the stability margin was between 1.7 and 1.9 J/cm 3 of strands. The coil is completely stable in operation at 100% design current in both the single- and six-coil modes

  13. Very high stability systems: LMJ target alignment system and MTG imager test setup

    Science.gov (United States)

    Compain, Eric; Maquet, Philippe; Kunc, Thierry; Marque, Julien; Lauer-Solelhac, Maxime; Delage, Laurent; Lanternier, Catherine

    2015-09-01

    Most of space instruments and research facilities require test equipment with demanding opto-mechanical stability. In some specific cases, when the stability performance directly drives the final performance of the scientific mission and when feasibility is questionable, specific methods must be implemented for the associated technical risk management. In present paper, we will present our heritage in terms of methodology, design, test and the associated results for two specific systems : the SOPAC-POS and the MOTA, generating new references for future developments. From a performance point of view, we will emphasis on following key parameters : design symmetry, thermal load management, and material and structural choices. From a method point of view the difficulties arise first during design, from the strong coupling between the thermal, mechanical and optical performance models, and then during testing, from the difficulty of conceiving test setup having appropriate performance level. We will present how these limitations have been overcome. SOPAC-POS is the target alignment system of the LMJ, Laser Mega Joule, the French inertial confinement fusion research center. Its stability has been demonstrated by tests in 2014 after 10 years of research and development activities, achieving 1μm stability @ 6m during one hour periods. MOTA is an Optical Ground Support Equipment aiming at qualifying by tests the Flexible Combined Imager (FCI). FCI is an instrument for the meteorological satellite MTG-I, a program of and funded by the European Space Agency and under prime contractorship of Thales Alenia Space. Optimized design will allow to get better than 0.2 μrad stability for one hour periods, as required for MTF measurement.

  14. Applying the methodology of Design of Experiments to stability studies: a Partial Least Squares approach for evaluation of drug stability.

    Science.gov (United States)

    Jordan, Nika; Zakrajšek, Jure; Bohanec, Simona; Roškar, Robert; Grabnar, Iztok

    2018-05-01

    The aim of the present research is to show that the methodology of Design of Experiments can be applied to stability data evaluation, as they can be seen as multi-factor and multi-level experimental designs. Linear regression analysis is usually an approach for analyzing stability data, but multivariate statistical methods could also be used to assess drug stability during the development phase. Data from a stability study for a pharmaceutical product with hydrochlorothiazide (HCTZ) as an unstable drug substance was used as a case example in this paper. The design space of the stability study was modeled using Umetrics MODDE 10.1 software. We showed that a Partial Least Squares model could be used for a multi-dimensional presentation of all data generated in a stability study and for determination of the relationship among factors that influence drug stability. It might also be used for stability predictions and potentially for the optimization of the extent of stability testing needed to determine shelf life and storage conditions, which would be time and cost-effective for the pharmaceutical industry.

  15. Detail design of test loop for FIV in fuel bundle and preliminary test

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Woo Gunl; Lee, Wan Young; Kim, Sung Won [Hannam University, Taejeon (Korea)

    2002-04-01

    It is urgent to develop the analytical model for the structural/mechanical integrity of fuel rod. In general, it is not easy to develop a pure analytical model. Occasionally, experimental results have been utilized for the model.Because of this reason, it is required to design proper test loop. Using the optimized test loop, With the optimized test loop, the dynamic behaviour of the rod will be evaluated and the critical flow velocity, which the rod loses the stability in, will be measured for the design of the rod. To verify the integrity of the fuel rod, it is required to evaluate the dynamic behaviour and the critical flow velocity with the test loop. The test results will be utilized to the design of the rod. Generally, the rod has a ground vibration due to turbulence in wide range of flow velocity and the amplitude of vibration becomes larger by the resonance, in a range of the velocity where occurs vortex. The rod loses stability in critical flow velocity caused by fluid-elastic instability. For the purpose of the present work to perform the conceptional design of the test loop, it is necessary (1) to understand the mechanism of the flow-induced vibration and the related experimental coefficients, (2) to evaluate the existing test loops for improving the loop with design parameters and (3) to decide the design specifications of the major equipments of the loop. 35 refs., 14 figs., 4 tabs. (Author)

  16. Wear Behavior of an Unstable Knee: Stabilization via Implant Design?

    Directory of Open Access Journals (Sweden)

    Jörn Reinders

    2014-01-01

    Full Text Available Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. Results. Significantly higher wear rates (P≤0.001 were observed for the unstable knee (14.58±0.56 mg/106 cycles compared to the stable knee (7.97 ± 0.87 mg/106 cycles. A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations (P≤0.01. This increase was mainly attributed to higher tibial posterior translation and internal rotations. Conclusion. Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study.

  17. Design guidelines for high dimensional stability of CFRP optical bench

    Science.gov (United States)

    Desnoyers, Nichola; Boucher, Marc-André; Goyette, Philippe

    2013-09-01

    In carbon fiber reinforced plastic (CFRP) optomechanical structures, particularly when embodying reflective optics, angular stability is critical. Angular stability or warping stability is greatly affected by moisture absorption and thermal gradients. Unfortunately, it is impossible to achieve the perfect laminate and there will always be manufacturing errors in trying to reach a quasi-iso laminate. Some errors, such as those related to the angular position of each ply and the facesheet parallelism (for a bench) can be easily monitored in order to control the stability more adequately. This paper presents warping experiments and finite-element analyses (FEA) obtained from typical optomechanical sandwich structures. Experiments were done using a thermal vacuum chamber to cycle the structures from -40°C to 50°C. Moisture desorption tests were also performed for a number of specific configurations. The selected composite material for the study is the unidirectional prepreg from Tencate M55J/TC410. M55J is a high modulus fiber and TC410 is a new-generation cyanate ester designed for dimensionally stable optical benches. In the studied cases, the main contributors were found to be: the ply angular errors, laminate in-plane parallelism (between 0° ply direction of both facesheets), fiber volume fraction tolerance and joints. Final results show that some tested configurations demonstrated good warping stability. FEA and measurements are in good agreement despite the fact that some defects or fabrication errors remain unpredictable. Design guidelines to maximize the warping stability by taking into account the main dimensional stability contributors, the bench geometry and the optical mount interface are then proposed.

  18. Mechanical stability assessment of novel orthodontic mini-implant designs: Part 2.

    Science.gov (United States)

    Hong, Christine; Truong, Peter; Song, Ha Na; Wu, Benjamin M; Moon, Won

    2011-11-01

    To assess the mechanical stability of a newly revised orthodontic mini-implant design (N2) compared with a design introduced in Part 1 of the study (N1) and the most widely-used commercially-available design (CA). To evaluate the mean buccal bone thickness of maxillary and mandibular posterior teeth using cone-beam computed tomography (CBCT). From the CBCT scans of 20 patients, six tomographic cross-sections were generated for each tooth. Buccal bone thickness was measured from the most convex point on the bone to the root surface. CA (1.5 mm in diameter and 6 mm in length), N1, and N2 (shorter and narrower than N1) were inserted in simulated bone with cortical and trabecular bone layers. Mechanical stability was compared in vitro through torque and lateral displacement tests. The bone thickness ranged from 2.26 to 3.88 mm. Maximum insertion torque was decreased significantly in N2 compared to N1. However, force levels for all displacement distances and torque ratio were the highest in N2, followed by N1 and CA (α = .05). Both torque and lateral displacement tests highlighted the enhanced stability of N2 compared with CA. Design revisions to N1 effectively mitigated N1's high insertion torque and thus potentially reduced microdamage to the surrounding bone. The N2 design is promising as evidenced by enhanced stability and high mechanical efficiency. Moreover, N2 is not limited to placement in interradicular spaces and has the capacity to be placed in the buccal bone superficial to the root surface with diminished risk of endangering nearby anatomic structures during placement and treatment.

  19. Computationally designed libraries for rapid enzyme stabilization

    NARCIS (Netherlands)

    Wijma, Hein J.; Floor, Robert J.; Jekel, Peter A.; Baker, David; Marrink, Siewert J.; Janssen, Dick B.

    The ability to engineer enzymes and other proteins to any desired stability would have wide-ranging applications. Here, we demonstrate that computational design of a library with chemically diverse stabilizing mutations allows the engineering of drastically stabilized and fully functional variants

  20. The validity and reliability of a dynamic neuromuscular stabilization-heel sliding test for core stability.

    Science.gov (United States)

    Cha, Young Joo; Lee, Jae Jin; Kim, Do Hyun; You, Joshua Sung H

    2017-10-23

    Core stabilization plays an important role in the regulation of postural stability. To overcome shortcomings associated with pain and severe core instability during conventional core stabilization tests, we recently developed the dynamic neuromuscular stabilization-based heel sliding (DNS-HS) test. The purpose of this study was to establish the criterion validity and test-retest reliability of the novel DNS-HS test. Twenty young adults with core instability completed both the bilateral straight leg lowering test (BSLLT) and DNS-HS test for the criterion validity study and repeated the DNS-HS test for the test-retest reliability study. Criterion validity was determined by comparing hip joint angle data that were obtained from BSLLT and DNS-HS measures. The test-retest reliability was determined by comparing hip joint angle data. Criterion validity was (ICC2,3) = 0.700 (preliability was (ICC3,3) = 0.953 (pvalidity data demonstrated a good relationship between the gold standard BSLLT and DNS-HS core stability measures. Test-retest reliability data suggests that DNS-HS core stability was a reliable test for core stability. Clinically, the DNS-HS test is useful to objectively quantify core instability and allow early detection and evaluation.

  1. Aircraft directional stability and vertical tail design: A review of semi-empirical methods

    Science.gov (United States)

    Ciliberti, Danilo; Della Vecchia, Pierluigi; Nicolosi, Fabrizio; De Marco, Agostino

    2017-11-01

    Aircraft directional stability and control are related to vertical tail design. The safety, performance, and flight qualities of an aircraft also depend on a correct empennage sizing. Specifically, the vertical tail is responsible for the aircraft yaw stability and control. If these characteristics are not well balanced, the entire aircraft design may fail. Stability and control are often evaluated, especially in the preliminary design phase, with semi-empirical methods, which are based on the results of experimental investigations performed in the past decades, and occasionally are merged with data provided by theoretical assumptions. This paper reviews the standard semi-empirical methods usually applied in the estimation of airplane directional stability derivatives in preliminary design, highlighting the advantages and drawbacks of these approaches that were developed from wind tunnel tests performed mainly on fighter airplane configurations of the first decades of the past century, and discussing their applicability on current transport aircraft configurations. Recent investigations made by the authors have shown the limit of these methods, proving the existence of aerodynamic interference effects in sideslip conditions which are not adequately considered in classical formulations. The article continues with a concise review of the numerical methods for aerodynamics and their applicability in aircraft design, highlighting how Reynolds-Averaged Navier-Stokes (RANS) solvers are well-suited to attain reliable results in attached flow conditions, with reasonable computational times. From the results of RANS simulations on a modular model of a representative regional turboprop airplane layout, the authors have developed a modern method to evaluate the vertical tail and fuselage contributions to aircraft directional stability. The investigation on the modular model has permitted an effective analysis of the aerodynamic interference effects by moving, changing, and

  2. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    Science.gov (United States)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  3. Tritium systems test assembly stabilization

    International Nuclear Information System (INIS)

    Jasen, William G.; Michelotti, Roy A.; Anast, Kurt R.; Tesch, Charles

    2004-01-01

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium technology Research and Development (R and D) primarily for future fusion power reactors. The facility was conceived in mid 1970's, operations commenced in early 1980's, stabilization and deactivation began in 2000 and were completed in 2003. The facility will remain in a Surveillance and Maintenance (S and M) mode until the Department of Energy (DOE) funds demolition of the facility, tentatively in 2009. A safe and stable end state was achieved by the TSTA Facility Stabilization Project (TFSP) in anticipation of long term S and M. At the start of the stabilization project, with an inventory of approximately 140 grams of tritium, the facility was designated a Hazard Category (HC) 2 Non-Reactor Nuclear facility as defined by US Department of Energy standard DOE-STD-1027-92 (1997). The TSTA facility comprises a laboratory area, supporting rooms, offices and associated laboratory space that included more than 20 major tritium handling systems. The project's focus was to reduce the tritium inventory by removing bulk tritium, tritiated water wastes, and tritium-contaminated high-inventory components. Any equipment that remained in the facility was stabilized in place. All of the gloveboxes and piping were rendered inoperative and vented to atmosphere. All equipment, and inventoried tritium contamination, remaining in the facility was left in a safe-and-stable state. The project used the End Points process as defined by the DOE Office of Environmental Management (web page http://www.em.doe.- gov/deact/epman.htmtlo) document and define the end state required for the stabilization of TSTA Facility. The End Points process added structure that was beneficial through virtually all phases of the project. At completion of the facility stabilization project the residual tritium inventory was approximately 3,000 curies, considerably less than the 1.6-gram threshold for a HC 3 facility. TSTA is now

  4. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    Science.gov (United States)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  5. Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides.

    Science.gov (United States)

    Parmar, Avanish S; Xu, Fei; Pike, Douglas H; Belure, Sandeep V; Hasan, Nida F; Drzewiecki, Kathryn E; Shreiber, David I; Nanda, Vikas

    2015-08-18

    We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacency of the carboxy-termini of the three chains makes this region an attractive target for introducing metal binding sites. We engineered His3 sites based on structural modeling constraints into a series of designed homotrimeric and heterotrimeric peptides, assessing the capacity of metal binding to improve stability and in the case of heterotrimers, affect specificity of assembly. Notable enhancements in stability for both homo- and heteromeric systems were observed upon addition of zinc(II) and several other metal ions only when all three histidine ligands were present. Metal binding affinities were consistent with the expected Irving-Williams series for imidazole. Unlike other metals tested, copper(II) also bound to peptides lacking histidine ligands. Acetylation of the peptide N-termini prevented copper binding, indicating proline backbone amide metal-coordination at this site. Copper similarly stabilized animal extracted Type I collagen in a metal-specific fashion, highlighting the potential importance of metal homeostasis within the extracellular matrix.

  6. Physics validation for design change of KSTAR passive stabilizer

    Science.gov (United States)

    Jeon, Y. M.; Kim, J. Y.; Oh, Y. K.; Yang, H. L.; Kim, W. C.; Kim, H. K.; Sabbagh, S. A.; Bialek, J. M.; Humphreys, D. A.; Welander, A. S.; Walker, M. L.

    2009-11-01

    Recently, the design of the passive stabilizer in KSTAR has been changed to improve controllability of the active control system and reduce the possibility of producing an additional error field. Originally the passive stabilizer in KSTAR was designed for RWM and vertical instability (or VDE) stabilizations and plasma startup efficiency, so that current bridges were designed and combined through 3D saddle-loop connections. Since the key design change is removing the current bridges, it's essential to assure satisfactory control performance for these instabilities under the design change. Control capability for n=1 RWM and achievable βN will be addressed as a primary goal of the passive stabilizer together with vertical instability control and effects on plasma startup. In addition, the changes in electro-magnetic force on conducting structures will be discussed qualitatively as a key engineering issue of the design change.

  7. Formulation and stability testing of photolabile drugs.

    Science.gov (United States)

    Tønnesen, H H

    2001-08-28

    Exposure of a drug to irradiation can influence the stability of the formulation, leading to changes in the physicochemical properties of the product. The influence of excipients of frequently used stabilizers is often difficult to predict and, therefore, stability testing of the final preparation is important. The selection of a protective packaging must be based on knowledge about the wavelength causing the instability. Details on drug photoreactivity will also be helpful in order to minimize side-effects and/or optimize drug targeting by developing photoresponsive drug delivery systems. This review focuses on practical problems related to formulation and stability testing of photolabile drugs.

  8. Simulated stability tests of a small articulated tractor designed for extreme-sloped vineyards

    Directory of Open Access Journals (Sweden)

    F. Mazzetto

    2013-09-01

    Full Text Available A new reversible wheeled articulated tractor, designed to work in terraced vineyards trained with “pergola” system, common in mountain areas, is here described in its latest version and analysed through numerical simulations. This tractor has small dimensions, necessary to operate in that environment, and its central articulation has two rotational degrees-offreedom. The described features are surely strong design points but could be critical for vehicle’s stability, as affecting the supporting base’s dimensions and shape. Therefore, the tractor was equipped with a new automatic safety system: a self-locking articulation activated by contact sensors on the wheels. This device makes the vehicle partially-rigid in case of lateral unbalancing, so that rollover can happen only by overcoming the whole vehicle mass. A mathematical description of vehicle-ground interactions was implemented to deeply inquiry the tractor behaviour in different configurations (straight, angled at increasing values of ground slope; roll and pitch stability indexes were then computed and used for comparisons with conventional tractors. Thanks to the low centre-of-gravity, the resulting rollover angle with the vehicle in straight configuration is promising (43.8°→96%: it is greater than the maximum lateral (20°→36% and frontal (38°→78% slope angle ever recorded on terraced vineyards. The same rollover angle is lower when the tractor turns.

  9. Grouting design for slope stability of kedung uling earthfill dam

    Directory of Open Access Journals (Sweden)

    Najib

    2018-01-01

    Full Text Available Kedung Uling earthfill dam locates at Wonogiri Regency, Central Java, Indonesia. The dam encountered sliding and settlement at the embankment wall. To minimize sliding and settlement and to optimize the dam, both field investigation and laboratory tests have been proceeded for slope stability analysis and remedial embankment wall. Soil and rock investigation around the dam, which is followed by 10 core drillings, have been conducted. Laboratory tests such as direct shear and index properties have also been carried on. The results were further used for dam slope stability model using slide 6.0 and were used to analyzed factor of safety (FS of Kedunguling dam. 10 conditions of dam were simulated and strengthening body of dam with grouting was designed. The results showed two conditions, which are condition of maximum water level with and without earthquake at downstream, were unsatisfy Indonesia National Standard (SNI for building and infrastructure. These conditions can be managed by using grouting for increasing stabilization of embankment wall. By setting up grouting, factor of safety increases and meet the SNI standard requirement.

  10. Sludge stabilization operability test report

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    Document provides the results of the Operability Test Procedure performed to test the operability of the HC-21C thermal stabilization process for sludge. The OTP assured all equipment functioned properly and established the baseline temperature profile for glovebox HC-21C

  11. Optomechanical stability design of space optical mapping camera

    Science.gov (United States)

    Li, Fuqiang; Cai, Weijun; Zhang, Fengqin; Li, Na; Fan, Junjie

    2018-01-01

    According to the interior orientation elements and imaging quality requirements of mapping application to mapping camera and combined with off-axis three-mirror anastigmat(TMA) system, high optomechanical stability design of a space optical mapping camera is introduced in this paper. The configuration is a coaxial TMA system used in off-axis situation. Firstly, the overall optical arrangement is described., and an overview of the optomechanical packaging is provided. Zerodurglass, carbon fiber composite and carbon-fiber reinforced silicon carbon (C/SiC) are widely used in the optomechanical structure, because their low coefficient of thermal expansion (CTE) can reduce the thermal sensitivity of the mirrors and focal plane. Flexible and unloading support are used in reflector and camera supporting structure. Epoxy structural adhesives is used for bonding optics to metal structure is also introduced in this paper. The primary mirror is mounted by means of three-point ball joint flexures system, which is attach to the back of the mirror. Then, In order to predict flexural displacements due to gravity, static finite element analysis (FEA) is performed on the primary mirror. The optical performance peak-to-valley (PV) and root-mean-square (RMS) wavefront errors are detected before and after assemble. Also, the dynamic finite element analysis(FEA) of the whole optical arrangement is carried out as to investigate the performance of optomechanical. Finally, in order to evaluate the stability of the design, the thermal vacuum test and vibration test are carried out and the Modulation Transfer Function (MTF) and elements of interior orientation are presented as the evaluation index. Before and after the thermal vacuum test and vibration test, the MTF, focal distance and position of the principal point of optical system are measured and the result is as expected.

  12. Stability test and analysis of the Space Shuttle Primary Reaction Control Subsystem thruster

    Science.gov (United States)

    Applewhite, John; Hurlbert, Eric; Krohn, Douglas; Arndt, Scott; Clark, Robert

    1992-01-01

    The results are reported of a test program conducted on the Space Shuttle Primary Reaction Control Subsystem thruster in order to investigate the effects of trapped helium bubbles and saturated propellants on stability, determine if thruster-to-thruster stability variations are significant, and determine stability under STS-representative conditions. It is concluded that the thruster design is highly reliable in flight and that burn-through has not occurred. Significantly unstable thrusters are screened out, and wire wrap is found to protect against chamber burn-throughs and to provide a fail-safe thruster for this situation.

  13. Design and Analysis of A Spin-Stabilized Projectile Experimental Apparatus

    Science.gov (United States)

    Siegel, Noah; Rodebaugh, Gregory; Elkins, Christopher; van Poppel, Bret; Benson, Michael; Cremins, Michael; Lachance, Austin; Ortega, Raymond; Vanderyacht, Douglas

    2017-11-01

    Spinning objects experience an effect termed `The Magnus Moment' due to an uneven pressure distribution based on rotation within a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on aerodynamic flight stability. Simulations often fail to accurately predict the Magnus moment in the subsonic flight regime. In an effort to characterize the conditions that cause the Magnus moment, researchers in this work employed Magnetic Resonance Velocimetry (MRV) techniques to measure three dimensional, three component, sub-millimeter resolution fluid velocity fields around a scaled model of a spinning projectile in flight. The team designed, built, and tested using a novel water channel apparatus that was fully MRI-compliant - water-tight and non-ferrous - and capable of spinning a projectile at a constant rotational speed. A supporting numerical simulation effort informed the design process of the scaled projectile to thicken the hydrodynamic boundary layer near the outer surface of the projectile. Preliminary testing produced two-dimensional and three-dimensional velocity data and revealed an asymmetric boundary layer around the projectile, which is indicative of the Magnus effect.

  14. Multi-Mission Earth Vehicle Subsonic Dynamic Stability Testing and Analyses

    Science.gov (United States)

    Glaab, Louis J.; Fremaux, C. Michael

    2013-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes, retro-rockets, and reaction control systems and rely on the natural aerodynamic stability of the vehicle throughout the Entry, Descent, and Landing (EDL) phase of flight. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs for an array of missions and develop and visualize the trade space. Testing in NASA Langley?s Vertical Spin Tunnel (VST) was conducted to significantly improve M-SAPE?s subsonic aerodynamic models. Vehicle size and shape can be driven by entry flight path angle and speed, thermal protection system performance, terminal velocity limitations, payload mass and density, among other design parameters. The objectives of the VST testing were to define usable subsonic center of gravity limits, and aerodynamic parameters for 6-degree-of-freedom (6-DOF) simulations, for a range of MMEEV designs. The range of MMEEVs tested was from 1.8m down to 1.2m diameter. A backshell extender provided the ability to test a design with a much larger payload for the 1.2m MMEEV.

  15. System Design Description PFP Thermal Stabilization

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    2000-01-01

    The purpose of this document is to provide a system design description (SDD) and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The chief objective of the SDD is to document the Structures, Systems, and Components (SSCs) that establish and maintain the facility Safety Envelope necessary for normal safe operation of the facility; as identified in the FSAR, the OSRs, and Safety Assessment Documents (SADs). This safety equipment documentation should satisfy guidelines for the SDD given in WHC-SD-CP-TI-18 1, Criteria for Identification and Control of Equipment Necessary for Preservation of the Safety Envelope and Safe Operation of PFP. The basis for operational, alarm response, maintenance, and surveillance procedures are also identified and justified in this document. This document and its appendices address the following elements of the PFP Thermal Stabilization project: Functional and design requirements; Design description; Safety Envelope Analysis; Safety Equipment Class; and Operational, maintenance and surveillance procedures

  16. Process Design Concepts for Stabilization of High Level Waste Calcine

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Thomas; A. K. Herbst

    2005-06-01

    The current baseline assumption is that packaging ¡§as is¡¨ and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80„aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels

  17. Characterization of cementitiously stabilized subgrades for mechanistic-empirical pavement design

    Science.gov (United States)

    Solanki, Pranshoo

    Pavements are vulnerable to subgrade layer performance because it acts as a foundation. Due to increase in the truck traffic, pavement engineers are challenged to build more strong and long-lasting pavements. To increase the load-bearing capacity of pavements, subgrade layer is often stabilized with cementitious additives. Thus, an overall characterization of stabilized subgrade layer is important for enhanced short- and long-term pavement performance. In this study, the effect of type and amount of additive on the short-term performance in terms of material properties recommended by the new Mechanistic-Empirical Pavement Design Guide (MEPDG) is examined. A total of four soils commonly encountered as subgrades in Oklahoma are utilized. Results show that the changes in the Mr, ME and UCS values stabilized specimens depend on the soil type and properties of additives. The long-term performance (or durability) of stabilized soil specimens is investigated by conducting freeze-thaw (F-T) cycling, vacuum saturation and tube suction tests on 7-day cured P-, K- and C-soil specimens stabilized with 6% lime, 10% CFA and 10% CKD. This study is motivated by the fact that during the service life of pavement stabilized layers are subjected to F-T cycles and moisture variations. It is found that that UCS value of all the stabilized specimens decreased with increase in the number of F-T cycles. A strong correlation was observed between UCS values retained after vacuum saturation and F-T cycles indicating that vacuum saturation could be used as a time-efficient and inexpensive method for evaluating durability of stabilized soils. In this study, short- and long-term observations from stabilization of sulfate bearing soil with locally available low (CFA), moderate (CKD) and high (lime) calcium-based stabilizers are determined to evaluate and compare the effect of additive type on the phenomenon of sulfate-induced heave. The impact of different factors on the development of the

  18. System design document for the plutonium stabilization and packaging system

    International Nuclear Information System (INIS)

    1996-01-01

    The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements for DOE standards for safe storage of these materials for 50 years. This document describes the highest level design information and user characteristics from an operational perspective. It provides guidance for developing procurement and installation specifications, interface requirements, and test plans

  19. System design document for the plutonium stabilization and packaging system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-08

    The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements for DOE standards for safe storage of these materials for 50 years. This document describes the highest level design information and user characteristics from an operational perspective. It provides guidance for developing procurement and installation specifications, interface requirements, and test plans.

  20. Effect of implant macro-design on primary stability: A prospective clinical study

    OpenAIRE

    Lozano-Carrascal, Naroa; Salom?-Coll, Oscar; Gilabert-Cerd?, Marta; Farr?-Pag?s, Nuria; Gargallo-Albiol, Jordi; Hern?ndez-Alfaro, Federico

    2016-01-01

    Background Implant restorations have become a high predictable treatment option. Several caracteristics such as surgical technique and implant design can influence the treatment outcomes. The aim of the present study was to evaluate the influence of implant macro-design on primary stability measured with resonance frequency analysis (RFA) and insertion torque (IT). Material and Methods A total of 47 implants divided in two groups: Test group (TI): 22 Tapered MIS? Seven implants; Control group...

  1. The use of synthetic ligaments in the design of an enhanced stability total knee joint replacement.

    Science.gov (United States)

    Stokes, Michael D; Greene, Brendan C; Pietrykowski, Luke W; Gambon, Taylor M; Bales, Caroline E; DesJardins, John D

    2018-03-01

    Current total knee replacement designs work to address clinically desired knee stability and range of motion through a balance of retained anatomy and added implant geometry. However, simplified implant geometries such as bearing surfaces, posts, and cams are often used to replace complex ligamentous constraints that are sacrificed during most total knee replacement procedures. This article evaluates a novel total knee replacement design that incorporates synthetic ligaments to enhance the stability of the total knee replacement system. It was hypothesized that by incorporating artificial cruciate ligaments into a total knee replacement design at specific locations and lengths, the stability of the total knee replacement could be significantly altered while maintaining active ranges of motion. The ligament attachment mechanisms used in the design were evaluated using a tensile test, and determined to have a safety factor of three with respect to expected ligamentous loading in vivo. Following initial computational modeling of possible ligament orientations, a physical prototype was constructed to verify the function of the design by performing anterior/posterior drawer tests under physiologic load. Synthetic ligament configurations were found to increase total knee replacement stability up to 94% compared to the no-ligament case, while maintaining total knee replacement flexion range of motion between 0° and 120°, indicating that a total knee replacement that incorporates synthetic ligaments with calibrated location and lengths should be able to significantly enhance and control the kinematic performance of a total knee replacement system.

  2. Optimization of β-casein stabilized nanoemulsions using experimental mixture design.

    Science.gov (United States)

    Maher, Patrick G; Fenelon, Mark A; Zhou, Yankun; Kamrul Haque, Md; Roos, Yrjö H

    2011-10-01

    The objective of this study was to determine the effect of changing viscosity and glass transition temperature in the continuous phase of nanoemulsion systems on subsequent stability. Formulations comprising of β-casein (2.5%, 5%, 7.5%, and 10% w/w), lactose (0% to 20% w/w), and trehalose (0% to 20% w/w) were generated from Design of Experiments (DOE) software and tested for glass transition temperature and onset of ice-melting temperature in maximally freeze-concentrated state (T(g) ' & T(m) '), and viscosity (μ). Increasing β-casein content resulted in significant (P mixture design was used to predict the optimum levels of lactose and trehalose required to attain the minimum and maximum T(g) ' and viscosity in solution at fixed protein contents. These mixtures were used to form the continuous phase of β-casein stabilized nanoemulsions (10% w/w sunflower oil) prepared by microfluidization at 70 MPa. Nanoemulsions were analyzed for T(g) ' & T(m) ', as well as viscosity, mean particle size, and stability. Increasing levels of β-casein (2.5% to 10% w/w) resulted in a significant (P mixture DOE was successfully used to predict glass transition and rheological properties for development of a continuous phase for use in nanoemulsions. © 2011 Institute of Food Technologists®

  3. Design of rapid prototype of UAV line-of-sight stabilized control system

    Science.gov (United States)

    Huang, Gang; Zhao, Liting; Li, Yinlong; Yu, Fei; Lin, Zhe

    2018-01-01

    The line-of-sight (LOS) stable platform is the most important technology of UAV (unmanned aerial vehicle), which can reduce the effect to imaging quality from vibration and maneuvering of the aircraft. According to the requirement of LOS stability system (inertial and optical-mechanical combined method) and UAV's structure, a rapid prototype is designed using based on industrial computer using Peripheral Component Interconnect (PCI) and Windows RTX to exchange information. The paper shows the control structure, and circuit system including the inertial stability control circuit with gyro and voice coil motor driven circuit, the optical-mechanical stability control circuit with fast-steering-mirror (FSM) driven circuit and image-deviation-obtained system, outer frame rotary follower, and information-exchange system on PC. Test results show the stability accuracy reaches 5μrad, and prove the effectiveness of the combined line-of-sight stabilization control system, and the real-time rapid prototype runs stable.

  4. Ares I-X Flight Test Validation of Control Design Tools in the Frequency-Domain

    Science.gov (United States)

    Johnson, Matthew; Hannan, Mike; Brandon, Jay; Derry, Stephen

    2011-01-01

    A major motivation of the Ares I-X flight test program was to Design for Data, in order to maximize the usefulness of the data recorded in support of Ares I modeling and validation of design and analysis tools. The Design for Data effort was intended to enable good post-flight characterizations of the flight control system, the vehicle structural dynamics, and also the aerodynamic characteristics of the vehicle. To extract the necessary data from the system during flight, a set of small predetermined Programmed Test Inputs (PTIs) was injected directly into the TVC signal. These PTIs were designed to excite the necessary vehicle dynamics while exhibiting a minimal impact on loads. The method is similar to common approaches in aircraft flight test programs, but with unique launch vehicle challenges due to rapidly changing states, short duration of flight, a tight flight envelope, and an inability to repeat any test. This paper documents the validation effort of the stability analysis tools to the flight data which was performed by comparing the post-flight calculated frequency response of the vehicle to the frequency response calculated by the stability analysis tools used to design and analyze the preflight models during the control design effort. The comparison between flight day frequency response and stability tool analysis for flight of the simulated vehicle shows good agreement and provides a high level of confidence in the stability analysis tools for use in any future program. This is true for both a nominal model as well as for dispersed analysis, which shows that the flight day frequency response is enveloped by the vehicle s preflight uncertainty models.

  5. Test methods for determining asphaltene stability in crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Asomaning, S. [Baker Petrolite, Sugar Land, TX (United States)

    2001-07-01

    The development of test methods for the determination of the stability of asphaltenes in crude oils was rendered necessary, due to the high cost of remediating asphaltene deposition in harsh production environments, namely the underwater systems in offshore deepwater. The Oliensis Spot Test, two saturates, aromatics, resins and asphaltenes (SARA)-based screens (the Colloidal Instability Index and Asphaltene-Resin ratio), a solvent titration method with near infrared radiation (NIR) solids detection, and live oil depressurization were used for the purposes of this study, to predict the stability of asphaltenes in crude oils with different API gravity. A complete description of the test methods was provided, and the experimental data obtained as a result was presented. Correlation with data on the deposition histories of the oils was used to validate the experimental stability data. The author discussed the effectiveness of the different tests for the prediction of the stability of asphaltenes in crude oils. The prediction of a crude oil's propensity towards asphaltene precipitation was more accurate with the Colloidal Instability Index and the solvent titration method. Live oil depressurization proved to be very effective for the prediction of the stability of asphaltenes for light oils, where most stability tests fail. tabs., 31 figs.

  6. Impact of implant design on primary stability of orthodontic mini-implants.

    Science.gov (United States)

    Wilmes, Benedict; Ottenstreuer, Stephanie; Su, Yu-Yu; Drescher, Dieter

    2008-01-01

    Skeletal anchorage with mini-implants has greatly broadened the treatment possibilities in orthodontics over the last few years. To reduce implant failure rates, it is advisable to obtain adequate primary stability. The aim of this study was to quantitatively analyze the impact of implant design and dimension on primary stability. Forty-two porcine iliac bone segments were prepared and embedded in resin. To evaluate the primary stability, we documented insertion torques of the following mini-implants: Aarhus Screw, AbsoAnchor, LOMAS, Micro-Anchorage-System, ORLUS and Spider Screw. In each bone, five Dual Top Screws were inserted for reference purposes to achieve comparability among the specimens. We observed wide variation in insertion torques and hence primary stability, depending on mini-implant design and dimension; the great impact that mini-implant diameter has on insertion torques was particularly conspicuous. Conical mini-implants achieved higher primary stabilities than cylindrical designs. The diameter and design of the mini-implant thread have a distinctive impact on primary stability. Depending on the region of insertion and local bone quality, the choice of the mini-implant design and size is crucial to establish sufficient primary stability.

  7. Design and Testing of Three-Axis Satellite Attitude Determination and Stabilization Systems That Are Based on Magnetic Sensing and Actuation

    Science.gov (United States)

    2002-11-27

    than a liability. It stabilizes yaw and pitch by using a badminton -birdie type configuration, one like that pictured in Fig. 2. The basic principal...of metal or Kevlar that resemble the tape in a carpenter’s retractable tape measure. Fig. 2. Badminton -birdie-type spacecraft pitch-yaw stabilization...A second design uses a new passive aerodynamic pitch-yaw stabilization system. This latter system is based on the concept of a badminton birdie and

  8. Experiences in stability testing of boiling water reactors

    International Nuclear Information System (INIS)

    March-Leuba, J.; Otaduy, P.J.

    1986-01-01

    The purpose of this paper is to summarize experiences with boiling water reactor (BWR) stability testing using noise analysis techniques. These techniques have been studied over an extended period of time, but it has been only recently that they have been well established and generally accepted. This paper contains first a review of the problem of BWR neutronic stability, focusing on its physical causes and its effects on reactor operation. The paper also describes the main techniques used to quantify, from noise measurements, the reactor's stability in terms of a decay ratio. Finally, the main results and experiences obtained from the stability tests performed at the Dresden and the Browns Ferry reactors using noise analysis techniques are summarized

  9. Postural stability in patients with decompression sickness evaluated by means of Quantitative Romberg testing

    DEFF Research Database (Denmark)

    Hedetoft, Morten; Hyldegaard, Ole

    2015-01-01

    obtained with the Quantitative Romberg test were observed in the group of DCS with vertigo relative to DCS without vertigo and healthy controls. A stepwise improvement in postural instability for DCS patients with vertigo was found following HBO2 therapy. After three treatments of HBO2, postural stability...... was found to be within the normal range of healthy controls. CONCLUSIONS: The Quantitative Romberg test offers the the clinician a fast, reliable and objective set of parametrical data to document postural instability in patients with either confirmed or suspected DCS.......OBJECTIVE: The present study was designed to retrospectively evaluate the use of quantitative Romberg's testing on postural stability during the course of hyperbaric oxygen (HBO2) therapy in patients presenting with decompression sickness (DCS). METHODS: The Quantitative Romberg test was used...

  10. One-day stability test for distillate fuel oils

    Energy Technology Data Exchange (ETDEWEB)

    Gyrath, F W; Dunn, Jr, F R; Smith, Jr, A C

    1958-08-01

    A one-day stability test is described. One liter of oil was placed in a glass bottle along with several steel strips, the bottle was purged with oxygen, sealed, and placed in an oven at 100/sup 0/C (212/sup 0/F) for 24 hours. At the end of the test, the oil was cooled and filtered, and the sediment on the filter was dried and weighed. The results of the one-day test were correlated with the results of storage tests in which oil samples were stored for six months at 29.4/sup 0/C (85/sup 0/F) in 30-gallon steel drums or in glass bottles containing steel strips. At the end of storage, sediment was measured by filtering and weighing. The one-day stability test was also compared with storage in 100-barrel tanks at ambient temperature. The one-day stability test was in good agreement with the storage tests, and could be used to predict the amount of sediment that would be formed in storage.

  11. Improvement of test methodology for evaluating diesel fuel stability

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, M.; Tartakovsky, L.; Kirzhner, Y.; Zvirin, Y. [Internal Combustion Engines Lab., Haifa (Israel); Luria, D. [Fuel Authority, Tel Aviv (Israel); Weiss, A.; Shuftan, M. [Israel Defence Forces, Tel Aviv (Israel)

    1995-05-01

    The storage stability of diesel fuel has been extensively investigated for many years under laboratory conditions. Although continuous efforts have been made to improve testing techniques, there does not yet exist a generally accepted correlation between laboratory methods (such as chemical analysis of the fuel) and actual diesel engine tests. A testing method was developed by the Technion Internal Combustion Engines Laboratory (TICEL), in order to address this problem. The test procedure was designed to simulate diesel engine operation under field conditions. It is based on running a laboratory-modified single cylinder diesel engine for 50 h under cycling operating conditions. The overall rating of each test is based on individual evaluation of the deposits and residue formation in the fuel filter, nozzle body and needle, piston head, piston rings, exhaust valve, and combustion chamber (six parameters). Two methods for analyzing the test results were used: objective, based on measured data, and subjective, based on visual evaluation results of these deposits by a group of experts. Only the residual level in the fuel filter was evaluated quantitatively by measured results. In order to achieve higher accuracy of the method, the test procedure was improved by introducing the measured results of nozzle fouling as an additional objective evaluating (seventh) parameter. This factor is evaluated on the basis of the change in the air flow rate through the nozzle before and after the complete engine test. Other improvements in the method include the use of the nozzle assembly photograph in the test evaluation, and representation of all seven parameters on a continuous scale instead of the discrete scale used anteriorly, in order to achieve higher accuracy. This paper also contains the results obtained by application of this improved fuel stability test for a diesel fuel stored for a five-year period.

  12. Acoustic analysis of sodium boiling stability tests using THORS bundle 6A

    International Nuclear Information System (INIS)

    Sheen, S.H.; Bobis, J.P.; Carey, W.M.

    1977-01-01

    Acoustic data from boiling stability tests on the THORS (Thermal-Hydraulic Out-of-Reactor Safety) facility are presented and discussed. The THORS sodium loop is a high temperature test facility that contains the bundle 6A, a full length stimulated fuel subassembly with nineteen electrically heated pins. Boiling stability tests on the THORS facility were designed to determine if a stable boiling region exists during the thermal hydraulic test at normal and off-normal conditions. Boiling was observed and the stable boiling region was determined. The acoustic data observed by three ANL sodium-immersible microphones have provided the following information: (1) the boiling signal is clearly observed and shows a correlation with the inlet flow fluctuations; (2) the signal level and the repetition rate of the boiling signal are directly related to the applied heat flux; (3) a typical boiling pulse consists of a high frequency signal due mainly to the bubble collapse and a low frequency (approximately 75 Hz) void oscillation; (4) a boiling pulse yields a frequency spectrum with significant amplitudes up to 80 KHz as compared with 4 KHz for background pulses; and (5) the frequency content of a boiling pulse can be mostly explained in terms of various resonance frequencies of the loop. The characterization of these data is pertinent to the design of sodium boiling detection systems

  13. Design criteria development for the structural stability of nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Yun, C H [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Yu, T S [Daewoo Engineering Company, Sungnam (Korea, Republic of); Ko, H M [Seoul National Univ., Seoul (Korea, Republic of)

    1990-11-15

    The objective of the present project is to develop design criteria for the structural stability of rock cavity for the underground repository are defined, according to which detailed descriptions for design methodologies, design stages and stability analysis of the cavity are made. The proposed criteria can be used as a guide for the preparation of design codes which are to be established as the site condition and technical emplacement procedure are fixed. The present report first reviews basic safety requirements and criteria of the underground disposal of nuclear wastes for the establishment of design concepts and stability analysis of the rock cavity. Important factors for the design are also described by considering characteristics of the wastes and underground facilities. The present project has investigated technical aspects on the design of underground structures based on the currently established underground construction technologies, and presented a proposal for design criteria for the structural stability of the nuclear waste repository. The proposed criteria consist of general provisions, geological exploration, rock classification, design process and methods, supporting system, analyses and instrumentation.

  14. Stability Testing of Herbal Drugs: Challenges, Regulatory Compliance and Perspectives.

    Science.gov (United States)

    Bansal, Gulshan; Suthar, Nancy; Kaur, Jasmeen; Jain, Astha

    2016-07-01

    Stability testing is an important component of herbal drugs and products (HDPs) development process. Drugs regulatory agencies across the globe have recommended guidelines for the conduct of stability studies on HDPs, which require that stability data should be included in the product registration dossier. From the scientific viewpoint, numerous chemical constituents in an herbal drug are liable to varied chemical reactions under the influence of different conditions during its shelf life. These reactions can lead to altered chemical composition of HDP and consequently altered therapeutic profile. Many reports on stability testing of HDPs have appeared in literature since the last 10 years. A review of these reports reveals that there is wide variability in temperature (-80 to 100 °C), humidity (0-100%) and duration (a few hours-36 months) for stability assessment of HDPs. Of these, only 1% studies are conducted in compliance with the regulatory guidelines for stability testing. The present review is aimed at compiling all stability testing reports, understanding key challenges in stability testing of HDPs and suggesting possible solutions for these. The key challenges are classified as chemical complexity and biochemical composition variability in raw material, selection of marker(s) and influences of enzymes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. ESBWR - Robust design for natural circulation and stability performance effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, M. D.; Marquino, W.; Yang, J.; Saha, P.; Fennern, L.; Colby, M. [GE-Hitachi Nuclear Energy, M/C A65, 3901Castle Hayne Road, Wilmington, NC 28401 (United States)

    2012-07-01

    ESBWR is a 4500 MWt Generation III+ natural circulation reactor with an array of robust design features and passive safety systems to deliver highly effective plant performance during normal operation and to keep the reactor safe during postulated transients and accidents. With the submittal of the latest revision of the Design Control Document (DCD) to US Nuclear Regulatory Commission, ESBWR is nearing the completion of the US design certification process. This paper focuses on the natural circulation-driven plant performance aspects during normal operation, and stability evaluation of the robust ESBWR design. The TRACG computer code is used for the analysis of ESBWR plant performance, safety analysis, and stability margins. The paper describes the evaluation of ESBWR stability performance during normal power operation including operation in the Core Power-Feed Water Temperature Operating Domain. For ESBWR the normal power operation condition has the highest power/flow ratio and is limiting from the perspective of stability. The paper includes results from detailed evaluation of the most limiting decay ratio for out-of-phase regional oscillations calculated by perturbing the core inlet flow rate in this out-of-phase mode about the line of symmetry for the azimuthal harmonic mode. The paper also summarizes the ESBWR regional mode stability evaluations during a limiting transient (Loss of Feedwater Heating), and during ATWS (Anticipated Transient without Scram). Nominal decay ratios of limiting Channel oscillation, Core wide oscillation and Regional oscillation are within the maximum acceptance criterion of 0.8, at 95% content and 95% confidence. These stability evaluation results indicate decay ratio is within design limits. The paper also describes the evaluation of ESBWR stability performance during plant startup, and summarizes the defense-in-depth stability solution for ESBWR. (authors)

  16. ESBWR - Robust design for natural circulation and stability performance effectiveness

    International Nuclear Information System (INIS)

    Alamgir, M. D.; Marquino, W.; Yang, J.; Saha, P.; Fennern, L.; Colby, M.

    2012-01-01

    ESBWR is a 4500 MWt Generation III+ natural circulation reactor with an array of robust design features and passive safety systems to deliver highly effective plant performance during normal operation and to keep the reactor safe during postulated transients and accidents. With the submittal of the latest revision of the Design Control Document (DCD) to US Nuclear Regulatory Commission, ESBWR is nearing the completion of the US design certification process. This paper focuses on the natural circulation-driven plant performance aspects during normal operation, and stability evaluation of the robust ESBWR design. The TRACG computer code is used for the analysis of ESBWR plant performance, safety analysis, and stability margins. The paper describes the evaluation of ESBWR stability performance during normal power operation including operation in the Core Power-Feed Water Temperature Operating Domain. For ESBWR the normal power operation condition has the highest power/flow ratio and is limiting from the perspective of stability. The paper includes results from detailed evaluation of the most limiting decay ratio for out-of-phase regional oscillations calculated by perturbing the core inlet flow rate in this out-of-phase mode about the line of symmetry for the azimuthal harmonic mode. The paper also summarizes the ESBWR regional mode stability evaluations during a limiting transient (Loss of Feedwater Heating), and during ATWS (Anticipated Transient without Scram). Nominal decay ratios of limiting Channel oscillation, Core wide oscillation and Regional oscillation are within the maximum acceptance criterion of 0.8, at 95% content and 95% confidence. These stability evaluation results indicate decay ratio is within design limits. The paper also describes the evaluation of ESBWR stability performance during plant startup, and summarizes the defense-in-depth stability solution for ESBWR. (authors)

  17. Engineering report (conceptual design) PFP solution stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Witt, J.B.

    1997-07-17

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  18. Engineering report (conceptual design) PFP solution stabilization

    International Nuclear Information System (INIS)

    Witt, J.B.

    1997-01-01

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage

  19. Design of the inboard passive stabilizer for TPX

    International Nuclear Information System (INIS)

    Hoffmann, E.; Boonstra, R.; Baxi, C.B.; Chin, E.; Drees, L.; Lee, W.; Redler, K.L.; Reis, E.E.; Bialek, J.

    1995-01-01

    The Inboard Passive Stabilizer (IPS) is part of the plasma stabilizing system built into the TPX. Its purpose is to provide passive stabilization of the plasma vertical instability on short time scales. With carbon fiber composite (CFC) armor tiles it serves as a startup limiter, protects the vacuum vessel from radiation heat load during steady state operation and also functions as Neutral Beam armor. The inboard passive stabilizer is a saddle coil, constructed of a ring of copper plates, armored with CFC tiles, that surrounds the inner vacuum vessel at the midplane. The design of the plates, the support structure, cooling lines, CFC tiles and tile attach method is described. Tiles that experience only the normal heat load of 0.4 MW/m 2 are attached with mechanical fasteners. Tiles in the neutral beam shine through area are exposed to as much as 1.7 MW/m 2 and are brazed to the IPS. Significant forces are generated in the plates by the stabilization currents as well as during the frequent bakeout cycles. These plates are required to be fully remotely handled, including tile replacement, and the influence of this requirement on the design is discussed

  20. Stability in designer gravity

    International Nuclear Information System (INIS)

    Hertog, Thomas; Hollands, Stefan

    2005-01-01

    We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed

  1. Deformation Monitoring of Geomechanical Model Test and Its Application in Overall Stability Analysis of a High Arch Dam

    Directory of Open Access Journals (Sweden)

    Baoquan Yang

    2015-01-01

    Full Text Available Geomechanical model testing is an important method for studying the overall stability of high arch dams. The main task of a geomechanical model test is deformation monitoring. Currently, many types of deformation instruments are used for deformation monitoring of dam models, which provide valuable information on the deformation characteristics of the prototype dams. However, further investigation is required for assessing the overall stability of high arch dams through analyzing deformation monitoring data. First, a relationship for assessing the stability of dams is established based on the comprehensive model test method. Second, a stability evaluation system is presented based on the deformation monitoring data, together with the relationships between the deformation and overloading coefficient. Finally, the comprehensive model test method is applied to study the overall stability of the Jinping-I high arch dam. A three-dimensional destructive test of the geomechanical model dam is conducted under reinforced foundation conditions. The deformation characteristics and failure mechanisms of the dam abutments and foundation were investigated. The test results indicate that the stability safety factors of the dam abutments and foundation range from 5.2 to 6.0. These research results provide an important scientific insight into the design, construction, and operation stages of this project.

  2. New approaches to aseismic design and testing in Japan

    International Nuclear Information System (INIS)

    Ohsaki, Y.

    1980-01-01

    Problems of seismic safety and stability of the NPP components are discussed. Main provisions of safety standards being in force in Japan since 1978 are considered. Main specifications of the large-scale vibration-testing machine constructed for testing the mockups of the main components of NPPs with PWP and BWR reactors are given. In accordance with the rules of aseismic component design each element of a reactor must preserve its integrity under any possible seismic effects. Depending on the degree of radioactive contamination of environment resulted from the earthquake, the nuclear reactor equipment is divided into four classes. All buildings, accessories, pipelines and other equipment are also devided into four classes. The rules involve the estimation of seismic stability of components by the statical method on the base of the seismic stability coefficient established by the building standards. The method of ''time historical analysis'', in which the seismic design waves are used as input signals, is applied for the dynamic analysis of buildings; and for the equipment, pipelines and other elements the method of ''spectral analysis'' is used. In the future it is suggested to carry out the fundamental investigations of the NPP equipment safety and reliability, supported by corresponding experimental data, both from the point of view of arizing stresses and serviceability of all components directly at the moment of the earthquake beginning [ru

  3. Research on Design of MUH Attitude Stability Augmentation Control System

    Science.gov (United States)

    Fan, Shigang

    2017-09-01

    Attitude stability augmentation control system with a lower cost need to be designed so that MUH (Mini Unmanned Helicopter) can adapt to different types of geographic environment and fly steadily although the weather may be bad. Attitude feedback was calculated mainly by filtering estimation within attitude acquisition module in this system. Stability augmentation can be improved mainly by PI. This paper will depict running principle and designing process of MUH attitude stability augmentation control system and algorithm that is considered as an important part in this system.

  4. Evaluation of accelerated stability test conditions for medicated chewing gums.

    Science.gov (United States)

    Maggi, Lauretta; Conte, Ubaldo; Nhamias, Alain; Grenier, Pascal; Vergnault, Guy

    2013-10-01

    The overall stability of medicated chewing gums is investigated under different storage conditions. Active substances with different chemical stabilities in solid state are chosen as model drugs. The dosage form is a three layer tablet obtained by direct compression. The gum core contains the active ingredient while the external layers are formulated to prevent gum adhesion to the punches of the tableting machine. Two accelerated test conditions (40°C/75% RH and 30°C/65% RH) are performed for 6 months. Furthermore, a long-term stability test at room conditions is conducted to verify the predictability of the results obtained from the stress tests. Some drugs are stable in all the conditions tested, but other drugs, generally considered stable in solid dosage forms, have shown relevant stability problems particularly when stress test conditions are applied to this particular semi-solid dosage forms. For less stable drugs, the stress conditions of 40°C/75% RH are not always predictable of chewing gum stability at room temperature and may produce false negative; intermediate conditions, 30°C/65% RH, are more predictive for this purpose, the results of drug content found after 6 months at intermediate stress conditions and 12 months at room conditions are generally comparable. But the results obtained show that only long-term conditions stability tests gave consistent results. During aging, the semi solid nature of the gum base itself, may also influence the drug delivery rate during chewing and great attention should be given also to the dissolution stability.

  5. Consensus stability testing protocols for organic photovoltaic materials and devices

    DEFF Research Database (Denmark)

    Reese, Matthew O.; Gevorgyan, Suren; Jørgensen, Mikkel

    2011-01-01

    Procedures for testing organic solar cell devices and modules with respect to stability and operational lifetime are described. The descriptions represent a consensus of the discussion and conclusions reached during the first 3 years of the international summit on OPV stability (ISOS). The proced......Procedures for testing organic solar cell devices and modules with respect to stability and operational lifetime are described. The descriptions represent a consensus of the discussion and conclusions reached during the first 3 years of the international summit on OPV stability (ISOS...

  6. Rotor Design Options for Improving XV-15 Whirl-Flutter Stability Margins

    Science.gov (United States)

    Acree, C. W., Jr.; Peyran, R. J.; Johnson, Wayne

    2004-01-01

    Rotor design changes intended to improve tiltrotor whirl-flutter stability margins were analyzed. A baseline analytical model of the XV-15 was established, and then a thinner, composite wing was designed to be representative of a high-speed tiltrotor. The rotor blade design was modified to increase the stability speed margin for the thin-wing design. Small rearward offsets of the aerodynamic-center locus with respect to the blade elastic axis created large increases in the stability boundary. The effect was strongest for offsets at the outboard part of the blade, where an offset of the aerodynamic center by 10% of tip chord improved the stability margin by over 100 knots. Forward offsets of the blade center of gravity had similar but less pronounced effects. Equivalent results were seen for swept-tip blades. Appropriate combinations of sweep and pitch stiffness completely eliminated whirl flutter within the speed range examined; alternatively, they allowed large increases in pitch-flap coupling (delta-three) for a given stability margin. A limited investigation of the rotor loads in helicopter and airplane configuration showed only minor increases in loads.

  7. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI

    2015-12-01

    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  8. Functional Design Criteria - plutonium stabilization and handling (PUSH) project W-460

    International Nuclear Information System (INIS)

    NELSON, D.W.

    1999-01-01

    This Functional Design Criteria (FDC) contains information to guide the design of the Stabilization and Packaging Equipment necessary to oxidize and package the remaining plutonium-bearing Special Nuclear Materials (SNM) currently in the Plutonium Finishing Plant (PFP) inventory. The FDC also guides the design of vault modifications to allow storage of 3013 packages of stabilized SNM for up to 50 years

  9. Functional Design Criteria plutonium stabilization and handling (PUSH) project W-460

    Energy Technology Data Exchange (ETDEWEB)

    NELSON, D.W.

    1999-09-02

    This Functional Design Criteria (FDC) contains information to guide the design of the Stabilization and Packaging Equipment necessary to oxidize and package the remaining plutonium-bearing Special Nuclear Materials (SNM) currently in the Plutonium Finishing Plant (PFP) inventory. The FDC also guides the design of vault modifications to allow storage of 3013 packages of stabilized SNM for up to 50 years.

  10. Scyllac fusion test reactor design

    International Nuclear Information System (INIS)

    Linford, R.K.; Oliphant, T.A.; Thomassen, K.I.

    1976-01-01

    The SFTR is a proposed 80-m diameter D-T burning toroidal theta pinch. The system is designed to achieve Q = 1 where Q is the ratio of the total thermonuclear energy output to the maximum stored energy in the plasma. SFTR design studies [1] will provide valuable guidance to the Scyllac related research and to the needed technological development. The portion of the system directly related to the plasma confinement, stability, and heating, is described, and the approach used to obtain an operating point consistent with Q = 1, m = 1 stability, and technological limitations is outlined. (U.K.)

  11. Scyllac fusion test reactor design

    International Nuclear Information System (INIS)

    Linford, R.K.; Oliphant, T.A.; Thomassen, K.I.

    1975-01-01

    The SFTR is a proposed 80-m diameter D--T burning toroidal theta pinch. The system is designed to achieve Q = 1 where Q is the ratio of the total thermonuclear energy output to the maximum stored energy in the plasma. SFTR design studies will provide valuable guidance to the Scyllac related research and to the needed technological development. This paper describes the portion of the system directly related to the plasma confinement, stability, and heating, and outlines the approach used to obtain an operating point consistent with Q = 1, m = 1 stability, and technological limitations. (auth)

  12. The J-2X Fuel Turbopump - Design, Development, and Test

    Science.gov (United States)

    Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.

  13. Effect of implant macro-design on primary stability: A prospective clinical study.

    Science.gov (United States)

    Lozano-Carrascal, Naroa; Salomó-Coll, Oscar; Gilabert-Cerdà, Marta; Farré-Pagés, Nuria; Gargallo-Albiol, Jordi; Hernández-Alfaro, Federico

    2016-03-01

    Implant restorations have become a high predictable treatment option. Several caracteristics such as surgical technique and implant design can influence the treatment outcomes. The aim of the present study was to evaluate the influence of implant macro-design on primary stability measured with resonance frequency analysis (RFA) and insertion torque (IT). Material and Mehods: A total of 47 implants divided in two groups: Test group (TI): 22 Tapered MIS® Seven implants; Control group (CI): 25 cylindrical Astra® Osseospeed implants. All implants were inserted following the manufacturers' standard protocols. Implant primary stability was measured at the moment of implant placement by registering insertion torque values (ITv) and ISQ values by means of Osstell™ Mentor (ISQv) (Integration Diagnostic Ltd., Goteborg, Sweden). In the mandible, mean ISQv for tapered implants (TI) was 71.67±5.16 and for cylindrical implants (CI) 57.15±4.83 (p=0.01). Mean insertion torque was 46.67±6.85 Ncm for TI and 35.77±6.72 Ncm for CI (p=0.01). In the maxilla, mean ISQ was 67.2±4.42 for tapered implants and 49.17±15.30 for cylindrical implants (p=0.01). Mean insertion torque for TI was 41.5±6.26 Ncm and for CI 39.17±6.34 Ncm (p>0.05). For tapered implants, no correlation could be found between implant diameter and primary stability. But for cylindrical implants there was a statistically significant correlation between implant diameter and primary stability: ITv (p=0.03); ISQv (p=0.04). Within the limits of the present study, tapered shaped implants achieve higher primary stability measured through ISQ and insertion torque values. Moreover, for cylindrical implants positive correlation has been established between implant diameter and primary stability.

  14. Automation for a base station stability testing

    OpenAIRE

    Punnek, Elvis

    2016-01-01

    This Batchelor’s thesis was commissioned by Oy LM Ericsson Ab Oulu. The aim of it was to help to investigate and create a test automation solution for the stability testing of the LTE base station. The main objective was to create a test automation for a predefined test set. This test automation solution had to be created for specific environments and equipment. This work included creating the automation for the test cases and putting them to daily test automation jobs. The key factor...

  15. Stability design considerations for mirror support systems in ICF lasers

    International Nuclear Information System (INIS)

    Tietbohl, G.L.; Sommer, S.C.

    1996-10-01

    Some of the major components of laser systems used for Inertial Confinement Fusion (ICF) are the large aperture mirrors which direct the path of the laser. These mirrors are typically supported by systems which consist of mirror mounts, mirror enclosures, superstructures, and foundations. Stability design considerations for the support systems of large aperture mirrors have been developed based on the experience of designing and evaluating similar systems at the Lawrence Livermore National Laboratory (LLNL). Examples of the systems developed at LLNL include Nova, the Petawatt laser, Beamlet, and the National Ignition Facility (NIF). The structural design of support systems of large aperture mirrors has typically been controlled by stability considerations in order for the large laser system to meet its performance requirements for alignment and positioning. This paper will discuss the influence of stability considerations and will provide guidance on the structural design and evaluation of mirror support systems in ICF lasers so that this information can be used on similar systems

  16. Design and testing of a rotational brake with shear thickening fluids

    Science.gov (United States)

    Tian, Tongfei; Nakano, Masami

    2017-03-01

    A rotational brake working with shear thickening fluid (STF) was designed and tested in this study. With the optimisation in design, most of the STF in the brake can receive the same shear rate when the brake rotates. The parts of this brake were fabricated with a 3D printer and then assembled manually. Three types of STFs with various carrier fluids and different particles were fabricated and tested with a rheometer. Then the brake with each STF was separately tested with the rheometer. The estimated and measured torques as a function of the angular velocity fit each other well. The stability of the rotational STF brake was investigated in repeated tests, which proved the function of the brake for a long time.

  17. Conceptual design report, plutonium stabilization and handling,project W-460

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, E.V.

    1997-03-06

    Project W-460, Plutonium Stabilization and Handling, encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. This Conceptual Design Report (CDR) provides conceptual design details for the vault modification, site preparation and site interface with the purchased SPS. Two concepts are described for vault configuration; acceleration of this phase of the project did not allow completion of analysis which would clearly identify a preferred approach.

  18. Stability of fragrance patch test preparations applied in test chambers.

    Science.gov (United States)

    Mowitz, M; Zimerson, E; Svedman, C; Bruze, M

    2012-10-01

    Petrolatum patch test preparations are for practical reasons often applied in test chambers in advance, several hours or even days before the patient is tested. As many fragrance compounds are volatile it may be suspected that petrolatum preparations applied in test chambers are not stable over time. To investigate the stability of petrolatum preparations of the seven chemically defined components in the fragrance mix (FM I) when stored in test chambers. Samples of petrolatum preparations applied in test chambers stored at room temperature and in a refrigerator for between 4 and 144 h were analysed using liquid chromatographic methods. The concentration decreased by ≥ 20% within 8 h in four of seven preparations stored in Finn chambers at room temperature. When stored in a refrigerator only the preparation of cinnamal had decreased by ≥ 20% within 24 h. The stability of preparations of cinnamal stored in IQ chambers with a plastic cover was slightly better, but like the preparations applied in Finn chambers, the concentration decreased by ≥ 20% within 4 h at room temperature and within 24 h in a refrigerator. Cinnamal and cinnamyl alcohol were found to be more stable when analysed as ingredients in FM I compared with when analysed in individual preparations. Within a couple of hours several fragrance allergens evaporate from test chambers to an extent that may affect the outcome of the patch test. Application to the test chambers should be performed as close to the patch test occasion as possible and storage in a refrigerator is recommended. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  19. Accelerated testing for studying pavement design and performance (FY 2003) : evaluation of the chemical stabilized subgrade soil (CISL Experiment No. 12).

    Science.gov (United States)

    2008-01-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by the highway departments : of Missouri, Iowa, Kansas and Nebraska, has supported an accelerated pavement testing (APT) project to compare : the performance of stabilized ...

  20. Systematic design approach of fuzzy PID stabilizer for DC-DC converters

    International Nuclear Information System (INIS)

    Guesmi, K.; Essounbouli, N.; Hamzaoui, A.

    2008-01-01

    DC-DC converters process electrical energy by switching between a fixed number of configurations. The objective of controlling these systems is to provide better performances, ensure closed loop stability and guarantee a simple predictable behaviour. Based on a converter averaged model, we propose, in this paper, a systematic design approach of a fuzzy PID. The choice of controller parameters stands on the whole system stability requirements. Extension of the obtained asymptotic stability to structural stability is presented to show that the developed controller ensures also a simple and predictable behaviour of the converter. Finally, we illustrate the efficiency of the proposed fuzzy PID design approach through simulations in voltage mode as well as in current mode control

  1. Systematic design approach of fuzzy PID stabilizer for DC-DC converters

    Energy Technology Data Exchange (ETDEWEB)

    Guesmi, K.; Essounbouli, N.; Hamzaoui, A. [CReSTIC, IUT de Troyes 09, rue de Quebec BP. 396, 10026 Troyes (France)

    2008-10-15

    DC-DC converters process electrical energy by switching between a fixed number of configurations. The objective of controlling these systems is to provide better performances, ensure closed loop stability and guarantee a simple predictable behaviour. Based on a converter averaged model, we propose, in this paper, a systematic design approach of a fuzzy PID. The choice of controller parameters stands on the whole system stability requirements. Extension of the obtained asymptotic stability to structural stability is presented to show that the developed controller ensures also a simple and predictable behaviour of the converter. Finally, we illustrate the efficiency of the proposed fuzzy PID design approach through simulations in voltage mode as well as in current mode control. (author)

  2. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    International Nuclear Information System (INIS)

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex

  3. Reduction in Design Stability Number of Monolayer Armour Units for Singular Conditions of Projects in Rubble Mound Breakwaters

    Directory of Open Access Journals (Sweden)

    Hugo Juan Donini

    2015-07-01

    Full Text Available The evaluation of concrete single layer of breakwaters is based on the application of design coefficients obtained in laboratory tests, primarily two-dimensional and under controlled conditions. With the experience of more than 30 years in structures of this type in the world, it is important to compare the values of stability numbers used in the design with those who are in breakwaters as built. In this paper, update and increase the data collected with respect to previous publications, developing an analysis of particular situations in which the amour layer stability coefficients are reduced. A series of Accropode® and Core-LocTM recommendations concerning the design elements is also made. Also there are conclusions related to increases in the volume and the reduction in the number of blocks needed for different numbers of stability proposed.

  4. DESIGN AND TESTING OF A DIGITAL REGULATOR FOR FERMILAB MAGNET POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Li Vigni, Vincenzo [Palermo U.

    2012-01-01

    In this thesis, the design of a digitally controlled DC power system for testing conventional and superconducting magnets is proposed. The designed PID controller performances have been tested by the 30kA test stand for superconducting magnets, Vertical Magnet Test Facility (VMTF), which is hosted at the Fermilab Magnet Test Facility (MTF). The system is implemented on a National Instruments CompactRIO and both real-time and FPGA targets are programmed. A full 24-bit PID algorithm is coded and successfully tested by a manual tuning approach. An automated tuning algorithm is then introduced. As it will be shown by simulation and experimental results, the proposed system meets all design specifications. The current loop stability is up to 14 times better than the existing regulator and a control accuracy less than 4 ppm is achieved. Shorted-bus tests of the PID regulator have been successfully performed on the VMTF power system. In order to test the generalization capability of the designed system towards different types of magnets, the system has been easily adapted to and tested on the 10kA conventional magnet test stand (Stand C at Fermilab). As shown by experimental results, the designed PID controller features really high performancesin terms of steady-state accuracy and effectiveness of the tuning algorithm.

  5. Design Driven Testing Test Smarter, Not Harder

    CERN Document Server

    Stephens, M

    2010-01-01

    The groundbreaking book Design Driven Testing brings sanity back to the software development process by flipping around the concept of Test Driven Development (TDD) - restoring the concept of using testing to verify a design instead of pretending that unit tests are a replacement for design. Anyone who feels that TDD is "Too Damn Difficult" will appreciate this book. Design Driven Testing shows that, by combining a forward-thinking development process with cutting-edge automation, testing can be a finely targeted, business-driven, rewarding effort. In other words, you'll learn how to test

  6. The effect of implant macro-thread design on implant stability in the early post-operative period: a randomized, controlled pilot study.

    Science.gov (United States)

    McCullough, Jeffrey J; Klokkevold, Perry R

    2017-10-01

    Available literature suggests there is a transient drop in implant stability from approximately week 0 to week 3-4 as a result of peri-implant bone remodeling as it transitions from a primary, mechanical stability to a secondary, biological stability. Research investigating the influence of macro-thread design on this process is scant. The specific aim of this study was to evaluate the role of macro-thread design on implant stability in the early post-operative healing period using resonance frequency analysis (RFA). Seven patients, each missing at least two posterior teeth in the same arch, were included in the study. Three patients qualified for four implants resulting in a total of 10 matched pairs. All sites were healed (>6 months), non-grafted sites with sufficient bone to place implants. Each site in a matched pair was randomly assigned to receive either a control (Megagen EZ Plus Internal; EZ) or test (Megagen AnyRidge; AR) implant. The test implant incorporates a novel thread design with a wide thread depth and increased thread pitch. RFA was used to determine implant stability quotient (ISQ) values for each implant at the time of placement and weekly for the first 8 weeks. Implants consistently achieved a relatively high insertion torque (30-45 N/cm) and high initial ISQ value (79.8 ± 1.49). Baseline ISQ values for test (AR; 79.55 ± 1.61) and control (EZ; 80.05 ± 1.37) implants were similar. A general pattern of stability from baseline through all eight follow-up evaluations was observed for the test implants. A pattern of decreasing ISQ values was observed for the control implants across the early follow-up evaluations up to week four, where the value plateaued. There was a statistically significant main effect due to implant type (P implant type and time (P implants performed differently at certain time points. Within the limitations of this study, macro-thread design appears to play a role in implant stability in the early post

  7. Evaluation test on stability of high temperature strain gage

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toshimi (Kyowa Electronic Instruments Co. Ltd., Tokyo (Japan)); Ito, Haruhiko; Tanaka, Isao; Komori, Yoshihiro

    1983-08-01

    This report deals with the results on a stability test of high temperature strain gage which is utilized for development of the Stethoscope for OGL - 1 Components in Elevated Temperature Services (ab. SOCETS). The test has proved that the weldable strain gage (KHC - 20 - G5) exhibits excellent stability at 500/sup 0/C during 3000 to 4000 hours service and can be applied sufficiently to evaluate integrity of OGL - 1 high temperature pipings and others.

  8. Evaluation test on stability of high temperature strain gage

    International Nuclear Information System (INIS)

    Sato, Toshimi; Ito, Haruhiko; Tanaka, Isao; Komori, Yoshihiro.

    1983-01-01

    This report deals with the results on a stability test of high temperature strain gage which is utilized for development of the Stethoscope for OGL - 1 Components in Elevated Temperature Services (ab. SOCETS). The test has proved that the weldable strain gage (KHC - 20 - G5) exhibits excellent stability at 500 0 C during 3000 to 4000 hours service and can be applied sufficiently to evaluate integrity of OGL - 1 high temperature pipings and others. (author)

  9. Wind Generators Test Bench. Optimal Design of PI Controller

    Directory of Open Access Journals (Sweden)

    TUDORACHE, T.

    2011-08-01

    Full Text Available This paper proposes a novel and robust strategy for the optimal design of the drive system integrated in a wind generators test bench. The PI regulator coefficients used in control systems are usually computed based on simplified hypotheses and then tuned manually so as the system response meet certain specifications in terms of stability, accuracy and speed. The proposed methodology permits the automatic identification of PI regulator coefficients using intelligent optimization algorithms, the initial guess for the search procedure being determined based on particular simplified hypotheses. The proposed procedure can help the design engineers to drastically reduce the effort for finding the best PI regulator coefficients offering a range of feasible solutions depending on the imposed optimum criteria. The characteristics and performances of the optimization strategy are highlighted by using it for the design of a DC motor drive system used to simulate the wind prime mover integrated in a wind generators test bench.

  10. Robust Coordinated Design of PSS and TCSC using PSO Technique for Power System Stability Enhancement

    Directory of Open Access Journals (Sweden)

    S. Panda

    2007-06-01

    Full Text Available Power system stability improvement by coordinated design of a Power System Stabilizer (PSS and a Thyristor Controlled Series Compensator (TCSC controller is addressed in this paper. Particle Swarm Optimization (PSO technique is employed for optimization of the parameterconstrained nonlinear optimization problem implemented in a simulation environment. The proposed controllers are tested on a weakly connected power system. The non-linear simulation results are presented for wide range of loading conditions with various fault disturbances and fault clearing sequences as well as for various small disturbances. The eigenvalue analysis and simulation results show the effectiveness and robustness of proposed controllers to improve the stability performance of power system by efficient damping of low frequency oscillations under various disturbances.

  11. Base Stabilization Guidance and Additive Selection for Pavement Design and Rehabilitation

    Science.gov (United States)

    2017-12-01

    Significant improvements have been made in base stabilization practice that include design specifications and methodology, experience with the selection of stabilizing additives, and equipment for distribution and uniform blending of additives. For t...

  12. Test design requirements: Thermal conductivity probe testing

    International Nuclear Information System (INIS)

    Heath, R.E.

    1985-01-01

    This document establishes the test design requirements for development of a thermal conductivity probe test. The thermal conductivity probe determines in situ thermal conductivity using a line source transient heat conduction analysis. This document presents the rationale for thermal conductivity measurement using a thermal conductivity probe. A general test description is included. Support requirements along with design constraints are detailed to allow simple design of the thermal conductivity probe and test. The schedule and delivery requirements of the responsible test designer are also included. 7 refs., 1 fig

  13. Multiple sample setup for testing the hydrothermal stability of adsorbents in thermal energy storage applications

    International Nuclear Information System (INIS)

    Fischer, Fabian; Laevemann, Eberhard

    2015-01-01

    Thermal energy storage based on adsorption and desorption of water on an adsorbent can achieve high energy storage densities. Many adsorbents lose adsorption capacity when operated under unfavourable hydrothermal conditions during adsorption and desorption. The stability of an adsorbent against stressing hydrothermal conditions is a key issue for its usability in adsorption thermal energy storage. We built an experimental setup that simultaneously controls the hydrothermal conditions of 16 samples arranged in a matrix of four temperatures and four water vapour pressures. This setup allows the testing of potential adsorbents between temperatures of 50 °C and 350 °C and water vapour pressures of up to 32 kPa. A measurement procedure that allows the detection of the hydrothermal stability of an adsorbent after defined time spans has been designed. We verified the functionality of the multiple sample measurements with a microporous adsorbent, a zeolite NaMSX. The hydrothermal stability of this zeolite is tested by water uptake measurements. A standard deviation lower than 1% of the 16 samples for detecting the hydrothermal stability enables setting different conditions in each sample cell. Further, we compared the water uptake measurements by measuring their adsorption isotherms with the volumetric device BELSORP Aqua 3 from Bel Japan. (paper)

  14. The efficacy of rotational control designs in promoting torsional stability of hip fracture fixation.

    Science.gov (United States)

    Gosiewski, J D; Holsgrove, T P; Gill, H S

    2017-05-01

    Fractures of the proximal femur are a common clinical problem, and a number of orthopaedic devices are available for the treatment of such fractures. The objective of this study was to assess the rotational stability, a common failure predictor, of three different rotational control design philosophies: a screw, a helical blade and a deployable crucifix. Devices were compared in terms of the mechanical work (W) required to rotate the implant by 6° in a bone substitute material. The substitute material used was Sawbones polyurethane foam of three different densities (0.08 g/cm 3 , 0.16 g/cm 3 and 0.24 g/cm 3 ). Each torsion test comprised a steady ramp of 1°/minute up to an angular displacement of 10°. The deployable crucifix design (X-Bolt), was more torsionally stable, compared to both the dynamic hip screw (DHS, p = 0.008) and helical blade (DHS Blade, p= 0.008) designs in bone substitute material representative of osteoporotic bone (0.16 g/cm 3 polyurethane foam). In 0.08 g/cm 3 density substrate, the crucifix design (X-Bolt) had a higher resistance to torsion than the screw (DHS, p = 0.008). There were no significant differences (p = 0.101) between the implants in 0.24 g/cm 3 density bone substitute. Our findings indicate that the clinical standard proximal fracture fixator design, the screw (DHS), was the least effective at resisting torsional load, and a novel crucifix design (X-Bolt), was the most effective design in resisting torsional load in bone substitute material with density representative of osteoporotic bone. At other densities the torsional stability was also higher for the X-Bolt, although not consistently significant by statistical analysis. Cite this article : J. D. Gosiewski, T. P. Holsgrove, H. S. Gill. The efficacy of rotational control designs in promoting torsional stability of hip fracture fixation. Bone Joint Res 2017;6:270-276. DOI: 10.1302/2046-3758.65.BJR-2017-0287.R1. © 2017 Gosiewski et al.

  15. Influence of Hydraulic Design on Stability and on Pressure Pulsations in Francis Turbines at Overload, Part Load and Deep Part Load based on Numerical Simulations and Experimental Model Test Results

    International Nuclear Information System (INIS)

    Magnoli, M V; Maiwald, M

    2014-01-01

    Francis turbines have been running more and more frequently in part load conditions, in order to satisfy the new market requirements for more dynamic and flexible energy generation, ancillary services and grid regulation. The turbines should be able to be operated for longer durations with flows below the optimum point, going from part load to deep part load and even speed-no-load. These operating conditions are characterised by important unsteady flow phenomena taking place at the draft tube cone and in the runner channels, in the respective cases of part load and deep part load. The current expectations are that new Francis turbines present appropriate hydraulic stability and moderate pressure pulsations at overload, part load, deep part load and speed-no-load with high efficiency levels at normal operating range. This study presents series of investigations performed by Voith Hydro with the objective to improve the hydraulic stability of Francis turbines at overload, part load and deep part load, reduce pressure pulsations and enlarge the know-how about the transient fluid flow through the turbine at these challenging conditions. Model test measurements showed that distinct runner designs were able to influence the pressure pulsation level in the machine. Extensive experimental investigations focused on the runner deflector geometry, on runner features and how they could reduce the pressure oscillation level. The impact of design variants and machine configurations on the vortex rope at the draft tube cone at overload and part load and on the runner channel vortex at deep part load were experimentally observed and evaluated based on the measured pressure pulsation amplitudes. Numerical investigations were employed for improving the understanding of such dynamic fluid flow effects. As example for the design and experimental investigations, model test observations and pressure pulsation curves for Francis machines in mid specific speed range, around n qopt = 50

  16. Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

    International Nuclear Information System (INIS)

    Vermeul, Vince R.; Williams, M. D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

    2007-01-01

    The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 (micro)g/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area

  17. Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

    Energy Technology Data Exchange (ETDEWEB)

    Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

    2007-06-01

    The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

  18. Formulation design of oral pediatric Acetazolamide suspension: dose uniformity and physico-chemical stability study.

    Science.gov (United States)

    Santoveña, Ana; Suárez-González, Javier; Martín-Rodríguez, Cristina; Fariña, José B

    2017-03-01

    The formulation of an active pharmaceutical ingredient (API) as oral solution or suspension in pediatrics is a habitual practice, due to the non-existence of many commercialized medicines in pediatric doses. It is also the simplest way to prepare and administer them to this vulnerable population. The design of a formulation that assures the dose and the system stability depends on the physico-chemical properties of the API. In this study, we formulate a class IV API, Acetazolamide (AZM) as suspension for oral administration to pediatric population. The suspension must comply attributes of quality, safety and efficacy for this route of administration. We use simple compounding procedures, as well as fewer pure excipients, as recommended for children. Mass and uniformity content assays and physical and chemical stability studies were performed. To quantify the API an UPLC method was used. We verified the physico-chemical stability of the suspensions and that they passed the mass test of the European Pharmacopeia (EP), but not the dose uniformity test. This reveals that AZM must be formulated as liquid forms with a more complex system of excipients (not usually indicated in pediatrics), or otherwise solid forms capable of assuring uniformity of mass and dose for every dosage unit.

  19. Methods study of homogeneity and stability test from cerium oxide CRM candidate

    International Nuclear Information System (INIS)

    Samin; Susanna TS

    2016-01-01

    The methods study of homogeneity and stability test from cerium oxide CRM candidate has been studied based on ISO 13258 and KAN DP. 01. 34. The purpose of this study was to select the test method homogeneity and stability tough on making CRM cerium oxide. Prepared 10 sub samples of cerium oxide randomly selected types of analytes which represent two compounds, namely CeO_2 and La_2O_3. At 10 sub sample is analyzed CeO_2 and La_2O_3 contents in duplicate with the same analytical methods, by the same analyst, and in the same laboratory. Data analysis results calculated statistically based on ISO 13528 and KAN DP.01.34. According to ISO 13528 Cerium Oxide samples said to be homogeneous if Ss ≤ 0.3 σ and is stable if | Xr – Yr | ≤ 0.3 σ. In this study, the data of homogeneity test obtained CeO_2 is Ss = 2.073 x 10-4 smaller than 0.3 σ (0.5476) and the stability test obtained | Xr - Yr | = 0.225 and the price is < 0.3 σ. Whereas for La_2O_3, the price for homogeneity test obtained Ss = 1.649 x 10-4 smaller than 0.3 σ (0.4865) and test the stability of the price obtained | Xr - Yr | = 0.2185 where the price is < 0.3 σ. Compared with the method from KAN, a sample of cerium oxide has also been homogenized for Fcalc < Ftable and stable, because | Xi - Xhm | < 0.3 x n IQR. Provided that the results of the evaluation homogeneity and stability test from CeO_2 CRM candidate test data were processed using statistical methods ISO 13528 is not significantly different with statistical methods from KAN DP.01.34, which together meet the requirements of a homogeneous and stable. So the test method homogeneity and stability test based on ISO 13528 can be used to make CRM cerium oxide. (author)

  20. Design of a high-resolution high-stability positioning mechanism for crystal optics

    International Nuclear Information System (INIS)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    1999-01-01

    The authors present a novel miniature multi-axis driving structure that will allow positioning of two crystals with better than 50-nrad angular resolution and nanometer linear driving sensitivity.The precision and stability of this structure allow the user to align or adjust an assembly of crystals to achieve the same performance as does a single channel-cut crystal, so they call it an artificial channel-cut crystal. In this paper, the particular designs and specifications, as well as the test results,for a two-axis driving structure for a high-energy-resolution artificial channel-cut crystal monochromator are presented

  1. Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

    International Nuclear Information System (INIS)

    Shi, Q

    2010-01-01

    This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.

  2. Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Q, E-mail: qhshi@dfem.com.c [Dong Fang Electrical Machinery Co., Ltd., DEC 188, Huanghe West Road, Deyang, 618000 (China)

    2010-08-15

    This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.

  3. Influence of the implant-abutment connection design and diameter on the screw joint stability

    Science.gov (United States)

    Shin, Hyon-Mo; Huh, Jung-Bo; Yun, Mi-Jeong; Jeon, Young-Chan; Chang, Brian Myung

    2014-01-01

    PURPOSE This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. MATERIALS AND METHODS Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (α=0.05). RESULTS The postload removal torque value was high in the following order with regard to magnitude: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). CONCLUSION The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate. PMID:24843398

  4. Influence of the implant-abutment connection design and diameter on the screw joint stability.

    Science.gov (United States)

    Shin, Hyon-Mo; Huh, Jung-Bo; Yun, Mi-Jeong; Jeon, Young-Chan; Chang, Brian Myung; Jeong, Chang-Mo

    2014-04-01

    This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (α=0.05). THE POSTLOAD REMOVAL TORQUE VALUE WAS HIGH IN THE FOLLOWING ORDER WITH REGARD TO MAGNITUDE: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate.

  5. Tests of qualification of national components of nuclear power plants under design basis accident

    International Nuclear Information System (INIS)

    Mesquita, A.Z.

    1990-01-01

    With the purpose of qualifying national components of nuclear power plants, whose working must be maintained during and after an accident, the Thermohydraulic Division of CDTN have done tests to check the equipment stability, under Design Basis Accident conditions. Until this moment, the following components were tested: electrical junction boxes (connectors); coating systems for wall, inside cover and steel containment; hydraulics components of personnel and equipment airlock. This work describes the test instalation, the tests performed and its results. The components tested, in a general way, fulfil the specified requirements. (author) [pt

  6. Metal stabilization of collagen and de novo designed mimetic peptides

    OpenAIRE

    Parmar, Avanish S.; Xu, Fei; Pike, Douglas H.; Belure, Sandeep V.; Hasan, Nida F.; Drzewiecki, Kathryn E.; Shreiber, David I.; Nanda, Vikas

    2015-01-01

    We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacen...

  7. Optimal design and tuning of novel fractional order PID power system stabilizer using a new metaheuristic Bat algorithm

    Directory of Open Access Journals (Sweden)

    Lakhdar Chaib

    2017-06-01

    Full Text Available This paper proposes a novel robust power system stabilizer (PSS, based on hybridization of fractional order PID controller (PIλDμ and PSS for optimal stabilizer (FOPID-PSS for the first time, using a new metaheuristic optimization Bat algorithm (BA inspired by the echolocation behavior to improve power system stability. The problem of FOPID-PSS design is transformed as an optimization problem based on performance indices (PI, including Integral Absolute Error (IAE, Integral Squared Error (ISE, Integral of the Time-Weighted Absolute Error (ITAE and Integral of Time multiplied by the Squared Error (ITSE, where, BA is employed to obtain the optimal stabilizer parameters. In order to examine the robustness of FOPID-PSS, it has been tested on a Single Machine Infinite Bus (SMIB power system under different disturbances and operating conditions. The performance of the system with FOPID-PSS controller is compared with a PID-PSS and PSS. Further, the simulation results obtained with the proposed BA based FOPID-PSS are compared with those obtained with FireFly algorithm (FFA based FOPID-PSS. Simulation results show the effectiveness of BA for FOPID-PSS design, and superior robust performance for enhancement power system stability compared to other with different cases.

  8. Biomechanical aspects of initial intraosseous stability and implant design: a quantitative micro-morphometric analysis.

    Science.gov (United States)

    Akça, Kivanç; Chang, Ting-Ling; Tekdemir, Ibrahim; Fanuscu, Mete I

    2006-08-01

    The objective of this biomechanical study was to explore the effect of bone micro-morphology on initial intraosseous stability of implants with different designs. Straumann and Astra Tech dental implants were placed into anterior and posterior regions of completely edentulous maxilla and mandible of a human cadaver. Experiments were undertaken to quantify initial implant stability and bone micro-morphology. Installation torque values (ITVs) and implant stability quotients (ISQs) were measured to determine initial intraosseous implant stability. For quantification of relative bone volume and micro-architecture, sectioned implant-bone and bone core specimens of each implant placement site were consecutively scanned and trabecular bone was analyzed in a micro-computed tomography (micro-CT) unit. Experimental outcomes were evaluated for correlations among implant designs, initial intraosseous implant stability and bone micro-structural parameters. ITVs correlated higher with bone volume fraction (BV/TV) than ISQs, at 88.1% and 68.9% levels, respectively. Correlations between ITVs and micro-morphometric parameters were significant at the 95% confidence level (Pimplant designs used were not significant at the 95% confidence level (P>0.05). Bone micro-morphology has a prevailing effect over implant design on intraosseus initial implant stability, and ITV is more sensitive in terms of revealing biomechanical properties at the bone-implant interface in comparison with ISQ.

  9. Stability test for a parabolic partial differential equation

    NARCIS (Netherlands)

    Vajta, Miklos

    2001-01-01

    The paper describes a stability test applied to coupled parabolic partial differential equations. The PDE's describe the temperature distribution of composite structures with linear inner heat sources. The distributed transfer functions are developed based on the transmission matrix of each layer.

  10. Does core stability exercise improve lumbopelvic stability (through endurance tests) more than general exercise in chronic low back pain? A quasi-randomized controlled trial.

    Science.gov (United States)

    Shamsi, Mohammad Bagher; Rezaei, Mandana; Zamanlou, Mehdi; Sadeghi, Mehdi; Pourahmadi, Mohammad Reza

    2016-01-01

    The aim was to compare core stability and general exercises (GEs) in chronic low back pain (LBP) patients based on lumbopelvic stability (LPS) assessment through three endurance core stability tests. There is a controversy about preference of core stability exercise (CSE) over other types of exercise for chronic LBP. Studies which have compared these exercises used other outcomes than those related to LPS. As it is claimed that CSE enhances back stability, endurance tests for LPS were used. A 16-session CSE program and a GE program with the same duration were conducted for two groups of participants. Frequency of interventions for both groups was three times a week. Forty-three people (aged 18-60 years) with chronic non-specific LBP were alternately allocated to core stability (n = 22) or GE group (n = 21) when admitted. The primary outcomes were three endurance core stability tests including: (1) trunk flexor; (2) trunk extensor; and (3) side bridge tests. Secondary outcomes were disability and pain. Measurements were taken at baseline and the end of the intervention. After the intervention, test times increased and disability and pain decreased within groups. There was no significant difference between two groups in increasing test times (p = 0.23 to p = 0.36) or decreasing disability (p = 0.16) and pain (p = 0.73). CSE is not more effective than GE for improving endurance core stability tests and reducing disability and pain in chronic non-specific LBP patients.

  11. The design and test of VME clock distribution module of the Daya Bay RPC readout system

    International Nuclear Information System (INIS)

    Zhao Heng; Liang Hao; Zhou Yongzhao

    2011-01-01

    It describes the design of the VME Clock Distribution module of the Daya Bay RPC readout system, including the function and the hardware structure of the module and the logic design of the FPGA on the module. After the building and debugging of the module, a series of tests have been made to check its function and stability. (authors)

  12. Design, analysis, and test of an active tubular interface

    Science.gov (United States)

    Elspass, Wilfried J.; Eerme, M.; Paradies, R.; Resch, Martin

    1997-06-01

    Space missions require higher and higher performance such as high pointing accuracy and stability, and high shape precision. Passive damping means often cannot fulfill the requirements. Besides space applications at the same time numerous applications in machine design require higher accuracy. For a lot of applications the passive measures come up against limits. Active technologies have to be considered more often. Active mechanical components are more and more used as a necessary step towards adaptive structures. Active mechanical interfaces are simpler systems having very useful applications and can be used as kind of test benches in order to master the most exacting technologies. The main advantages of such an active interface are the following: (1) state-of- the-art sensors and actuators can be used, (2) the mechanical design of the interface is conventional, (3) the passive behavior of the system is not deteriorated, (4) the design is compact and rather easy to integrate, (5) easy repair (replacement) of the active mechanical part, (6) standardization of the interfaces results in cost reductions. An important property in such intermediate step is that no major redesign of the conventionally designed mechanical structure should be needed. The design, numerical analysis, manufacturing and test of a fully integrated active tubular interface (ATI) is presented. The design of the ATI includes the optimal laminate stacking sequence with respect to maximum deformation efficiency. The results of an active damping application, an antenna support beam, including the controller layout are discussed.

  13. Design, construction and testing of a self-powered neutron detector

    International Nuclear Information System (INIS)

    Correa, R.F.

    1987-01-01

    The design, construction and testing of a self-powered neutron detector (SPN) and associated electronics are described. Several tests were performed giving information about dielectrical properties of detector and cable, gamma spectra induced in the detector through reactor irradiation, detector response as a function of neutron flux, current stability and reproductibility with the neutron flux. The gamma and neutron sensitivities were also evaluated, by means of thermoluminescent dosimeters and gold foils as references. The test results are presented and show that the detector response is reliable. The gamma and neutron sensitivities are in agreement with those found in the available literature. Nevertheless, a ceramic insulated cable should be employed for permanent use in a reactor. The tests were performed in a 100 KW TRIGA Mark I reactor at the Centro de Desenvolvimento da Tecnologia Nuclear of NUCLEBRAS, in Belo Horizonte, Brazil. (author) [pt

  14. Acid Pit Stabilization Project (Volume 1 - Cold Testing) and (Volume 2 - Hot Testing)

    International Nuclear Information System (INIS)

    Loomis, G. G.; Zdinak, A. P.; Ewanic, M. A.; Jessmore, J. J.

    1998-01-01

    During the summer and fall of Fiscal Year 1997, a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Treatability Study was performed at the Idaho National Engineering and Environmental Laboratory. The study involved subsurface stabilization of a mixed waste contaminated soil site called the Acid Pit. This study represents the culmination of a successful technology development effort that spanned Fiscal Years 1994-1996. Research and development of the in situ grout stabilization technique was conducted. Hardware and implementation techniques are currently documented in a patent pending with the United States Patent and Trademark Office. The stabilization technique involved using jet grouting of an innovative grouting material to form a monolith out of the contamination zone. The monolith simultaneously provides a barrier to further contaminant migration and closes voids in the soil structure against further subsidence. This is accomplished by chemical incorporation of contaminants into less soluble species and achieving a general reduction in hydraulic conductivity within the monolith. The grout used for this study was TECT-HG, a relatively dense iron oxide-based cementitious grout. The treatability study involved cold testing followed by in situ stabilization of the Acid Pit. Volume 1 of this report discusses cold testing, performed as part of a ''Management Readiness Assessment'' in preparation for going hot. Volume 2 discusses the results of the hot Acid Pit Stabilization phase of this project. Drilling equipment was specifically rigged to reduce the spread of contamination, and all grouting was performed under a concrete block containing void space to absorb any grout returns. Data evaluation included examination of implementability of the grouting process and an evaluation of the contaminant spread during grouting. Following curing of the stabilized pit, cores were obtained and evaluated for toxicity characteristic leach ing

  15. Analysis of the parameters involved in the design of slope stabilizing dowels

    International Nuclear Information System (INIS)

    Lopez Dominguez, J. J.; Estaire Gepp, J.

    2014-01-01

    The use of dowels to stabilize landslides is a common practice nowadays. There are many theories, even contradictory, to design such dowels. This paper describes the methods proposed by Estaire and Sopena (2001), based on the fact that the earth pressures on the dowels, produced by the movement of the sliding ground, are equivalent to the stabilizing forces exerted by such dowels to improve the safety level of the slope. The method consists on the following steps: definition of the hydrogeological model, quantification of the initial safety level, determination of stabilization force, position of dowels in the slope, calculation of the dowel embedment and the acting load laws, election of the dowel separation and typology, and the structural design. The paper performs a critical review of some of the main design parameters: influence of the position of the dowels in the slope, the distribution of the earth pressure on the dowels and the restrains in the head of the dowels. (Author)

  16. Box–Behnken experimental design for investigation of stability and thermal conductivity of TiO2 nanofluids

    International Nuclear Information System (INIS)

    Lotfizadeh Dehkordi, Babak; Ghadimi, Azadeh; Metselaar, Henk S. C.

    2013-01-01

    The aim of this study is to investigate the effect of ultrasonication on the stability and thermal conductivity of TiO 2 water nanofluids. A UV–Vis spectrophotometer was employed to determine the relative stability of nanofluids. Response surface methodology based on the Box–Behnken design was implemented to investigate the influence of power of sonication (20–80 %), time of sonication (2–20 min), and volume concentration (0.1–1 vol%) of nanofluids as the independent variables. Second-order polynomial equations were established to predict the responses, thermal conductivity, and stability of nanofluids with the intervals of 1 week and 1 month. The significance of the models was tested by means of analysis of variance (ANOVA). The optimum stability and thermal conductivity of TiO 2 nanofluids with various sonication power and time at volume concentrations of 0.1, 0.55, and 1 % were studied. In addition, a correlation between the stability and thermal conductivity enhancement was derived in this study. The results revealed that, at low concentrations, nanofluids would become stable by low power and short period of sonication; however, no enhancement was observed in the thermal conductivity. Conversely, at high concentrations, stability and high thermal conductivity of nanofluids coincided at 1 vol%.

  17. Design, Build & Test of a Double Crystal Monochromator for Beamlines I09 & I23 at the Diamond Light Source

    Science.gov (United States)

    Kelly, J.; Lee, T.; Alcock, S.; Patel, H.

    2013-03-01

    A high stability Double Crystal Monochromator has been developed at The Diamond Light Source for beamlines I09 and I23. The design specification was a cryogenic, fixed exit, energy scanning monochromator, operating over an energy range of 2.1 - 25 keV using a Si(111) crystal set. The novel design concepts are the direct drive, air bearing Bragg axis, low strain crystal mounts and the cooling scheme. The instrument exhibited superb stability and repeatability on the B16 Test Beamline. A 20 keV Si(555), 1.4 μrad rocking curve was demonstrated. The DCM showed good stability without any evidence of vibration or Bragg angle nonlinearity.

  18. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  19. Test design requirements: Canister-scale heater test

    International Nuclear Information System (INIS)

    Schauer, M.I.; Craig, P.A.; Stickney, R.G.

    1986-03-01

    This document establishes the Test Design Requirements for the design of a canister scale heater test to be performed in the Exploratory Shaft test facility. The purpose of the test is to obtain thermomechanical rock mass response data for use in validation of the numerical models. The canister scale heater test is a full scale simulation of a high-level nuclear waste container in a prototypic emplacement borehole. Electric heaters are used to simulate the heat loads expected in an actual waste container. This document presents an overview of the test including objectives and justification for the test. A description of the test as it is presently envisioned is included. Discussions on Quality Assurance and Safety are also included in the document. 12 refs., 1 fig

  20. Design and experimental investigation of a decentralized GA-optimized neuro-fuzzy power system stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Talaat, Hossam E.A.; Abdennour, Adel; Al-Sulaiman, Abdulaziz A. [Electrical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421 (Saudi Arabia)

    2010-09-15

    The aim of this research is the design and implementation of a decentralized power system stabilizer (PSS) capable of performing well for a wide range of variations in system parameters and/or loading conditions. The framework of the design is based on Fuzzy Logic Control (FLC). In particular, the neuro-fuzzy control rules are derived from training three classical PSSs; each is tuned using GA so as to perform optimally at one operating point. The effectiveness and robustness of the designed stabilizer, after implementing it to the laboratory model, is investigated. The results of real-time implementation prove that the proposed PSS offers a superior performance in comparison with the conventional stabilizer. (author)

  1. Design constrution and testing of a self-powered neutron detector

    International Nuclear Information System (INIS)

    Correa, R.F.

    1987-01-01

    The design, contruction and testing of a self-powered neutron detector (SPN) and associated electronics are described. Several tests were performed giving information about dielectrical properties od detector and cable, gamma spectra induced in the detector through reactor irradiation, detector response as a function of neutron flux, current stability and reproductibility with the neutron flux. The gamma and neutron sensitivities were also evaluated, by means of thermoluminescent dosimeters and gold foils as references. The test results are presented and show that the detector response is reliable. The gamma and neutron sensitivities are in agreement with those found in the available literature. Neverthe less, a ceramic insulated cable should be employed for permanent use in a reactor. The tests were perfomance in a 100 kW TRIGA Mark I reactor at the Centro de Desenvolvimento da Tecnologia Nuclear of NUCLEBRAS,in Belo Horizonte, Brazil. (Author) [pt

  2. Design values of resilient modulus of stabilized and non-stabilized base.

    Science.gov (United States)

    2010-10-01

    The primary objective of this research study is to determine design value ranges for typical base materials, as allowed by LADOTD specifications, through laboratory tests with respect to resilient modulus and other parameters used by pavement design ...

  3. Stability of the pumpkin balloon

    Science.gov (United States)

    Baginski, Frank

    A large axisymmetric balloon with positive differential pressure, e.g., a sphere, leads to high film stresses. These can be significantly reduced by using a lobed pumpkin-like shape re-enforced with tendons. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin-shape at full inflation, including the constant bulge angle (CBA) design and the constant bulge radius (CBR) design. The authors and others have carried out stability studies of CBA and CBR designs and found instabilities under various conditions. While stability seems to be a good indicator of deployment problems for large balloons under normal ascent conditions, one cannot conclude that a stable design will deploy reliably. Nevertheless, stability analysis allows one to quantify certain deployment characteristics. Ongoing research by NASA's Balloon Program Office utilizes a new design approach developed by Rodger Farley, NASA/GSFC, that takes into account film and tendon strain. We refer to such a balloon as a constant stress (CS) pumpkin design. In June 2006, the Flight 555-NT balloon (based on a hybrid CBR/CBA design) developed an S-cleft and did not deploy. In order to understand the S-cleft phenomena and study a number of aspects related to the CS-design, a series of inflation tests were conducted at TCOM, Elizabeth City, NC in 2007. The test vehicles were 27 meter diameter pumpkins distinguished by their respective equatorial bulge angles (BA). For example, BA98 indicates an equatorial bulge angle of 98° . BA90, BA55, and BA00 are similarly defined. BA98 was essentially a one-third scale version of of the Flight 555 balloon (i.e., 12 micron film instead of 38.1 micron, mini-tendons, etc.). BA90 and BA55 were Farley CS-designs. BA00 was derived from the BA55 design so that a flat chord spanned adjacent tendons. In this paper, we will carry out stability studies of BA98, BA90, BA55, and BA00. We discuss the deployment problem of pumpkin balloons in light of 2007 inflation

  4. Engineering test facility design center

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This section describes the status of this design

  5. DESIGN OF ROBUST NAVIGATION AND STABILIZATION LOOPS OF PRECISION ATTITUDE AND HEADING REFERENCE SYSTEM

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2017-11-01

    Full Text Available Purpose: The paper focuses on problems of design of robust precision attitude and heading reference systems, which can be applied in navigation of marine vehicles. The main goal is to create the optimization procedures for design of navigation and stabilization loops of the multimode gimballed system. The optimization procedure of the navigation loop design is based on the parametric robust H2/H∞-optimization. The optimization procedure of the stabilization loop design is based on the robust structural H∞-synthesis. Methods: To solve the given problem the methods of the robust control system theory and optimization methods are used. Results: The kinematical scheme of the precision gimballed attitude and heading reference system is represented. The parametrical optimization algorithm taking into consideration features of the researched system is given. Method of the mixed sensitivity relative to the researched system design is analyzed. Coefficients of the control laws of navigation loops are obtained based on optimization procedure providing compromise between accuracy and robustness. The robust controller of the stabilization loop was developed based on robust structural synthesis using method of the mixed sensitivity. Simulation of navigation and stabilization processes is carried out. Conclusions: The represented results prove efficiency of the proposed procedures, which can be useful for design of precision navigation systems of the moving vehicles.

  6. Designing and testing prototypes

    NARCIS (Netherlands)

    Vereijken, P.; Wijnands, F.; Stol, W.

    1995-01-01

    This second progress report focuses on designing a theoretical prototype by linking parameters to methods and designing the methods in this context until they are ready for initial testing. The report focuses also on testing and improving the prototype in general and the methods in particular until

  7. A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests

    Science.gov (United States)

    Andrés-Martínez, Miguel; Morgan, Jason P.; Pérez-Gussinyé, Marta; Rüpke, Lars

    2015-09-01

    The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for computational convenience, numerical models have often used simpler approximations that do not involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models with a computational free surface typically confront stability problems when the time step is bigger than the viscous relaxation time. The small time step required for stability (develop strategies that mitigate the stability problem by making larger (at least ∼10 Kyr) time steps stable and accurate. Here we present a new free-surface stabilization algorithm for finite element codes which solves the stability problem by adding to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or Lagrangian grids. It includes α and β parameters to respectively control both the vertical and the horizontal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a decaying high-order sinusoidal topography test, (3) a Rayleigh-Taylor instability test, and (4) a steep-slope test. For these tests, we investigate which α and β parameters give the best results in terms of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly more accurate and stable for steep slopes, and also conclude that, for longer time steps, the optimal

  8. Design and Testing of a Lyophilizer for Water Recovery from Solid Waste

    Science.gov (United States)

    Litwiller, Eric; Fisher, John; Flynn, Michael

    2005-01-01

    Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids remain. Previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents the results of functional and performance tests. Equivalent system mass parameters are calculated, and practical issues such as sanitary waste handling in microgravity are addressed.

  9. Analysis of design floor response spectra and testing of the electrical systems

    International Nuclear Information System (INIS)

    Ambriashvili, Y.

    1996-01-01

    This report covers the following activities as foreseen according to the working plan of 'Atmoenergoproject': analysis of calculated floor response spectra used during the design of Kozloduy NPP and comparison with other spectra recommended for this NPP; analysis of floor response spectrum for the most important systems (reactor, main coolant loop, electrical systems); tests of main electrical systems and analysis of the results on seismic stability of those systems. Results of the response spectra analysis are given, some of the electrical systems are identified by the Kozloduy authorities to be analyzed in future according to the results of the test on seismicity

  10. Methodologies for evaluating long-term stabilization designs of uranium mill tailings impoundments

    International Nuclear Information System (INIS)

    Nelson, J.D.; Abt, S.R.; Volpe, R.L.; Van Zye, D.; Hinkle, N.E.; Staub, W.P.

    1986-06-01

    Uranium mill tailings impoundments require long-term (200 to 1000 years) stabilization. This report reviews currently available methodologies for evaluating factors that can have a significant influence on tailings stabilization and develops methodologies in technical areas where none presently exist. Mill operators can use these methodologies to assist with (1) the selection of sites for mill tailings impoundments, (2) the design of stable impoundments, and (3) the development of reclamation plans for existing impoundments. These methodologies would also be useful for regulatory agency evaluations of proposals in permit or license applications. Methodologies were reviewed or developed in the following technical areas: (1) prediction of the Probable Maximum Precipitation (PMP) and an accompanying Probable Maximum Flood (PMF); (2) prediction of the stability of local and regional fluvial systems; (3) design of impoundment surfaces resistant to gully erosion; (4) evaluation of the potential for surface sheet erosion; (5) design of riprap for protecting embankments from channel flood flow and overland flow; (6) selection of riprap with appropriate durability for its intended use; and (7) evaluation of oversizing required for marginal quality riprap

  11. Soil-Geosynthetic Interaction Test to Develop Specifications for Geosynthetic-Stabilized Roadways

    Science.gov (United States)

    2018-05-01

    soil-geosynthetic composite (KSGC) for a wide range of geosynthetics. The tests were conducted after establishment of test configurations that were found suitable for specification of geosynthetic-stabilized base roadways. Field performance of experi...

  12. Formal Functional Test Designs: Bridging the Gap Between Test Requirements and Test Specifications

    Science.gov (United States)

    Hops, Jonathan

    1993-01-01

    This presentation describes the testing life cycle, the purpose of the test design phase, and test design methods and gives an example application. Also included is a description of Test Representation Language (TRL), a summary of the language, and an example of an application of TRL. A sample test requirement and sample test design are included.

  13. Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers

    DEFF Research Database (Denmark)

    Christensen, M.; Burcharth, H. F.

    1995-01-01

    A new design for Dolos breakwater armour layers is presented: Dolos armour units are placed in a selected geometric pattern in a single layer. A series of model tests have been performed in order to determine the stability of such single-layer Dolos armour layers. The test results are presented...... and compared to the stability formula for the traditional double-layer, randomly placed Dolos armour layer design presented by Burcharth (1992). The results of a series of stability tests performed with Accropode® armour layers is presented and compared to the test results obtained with single-layer Dolos...... armour layers. Run-up and reflection are presented for both single-layer Dolos armour and Accropode armour....

  14. Box-Behnken experimental design for investigation of stability and thermal conductivity of TiO{sub 2} nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Lotfizadeh Dehkordi, Babak, E-mail: babakld@siswa.um.edu.my; Ghadimi, Azadeh; Metselaar, Henk S. C., E-mail: h.metselaar@um.edu.my [University of Malaya, Department of Mechanical Engineering, Faculty of Engineering (Malaysia)

    2013-01-15

    The aim of this study is to investigate the effect of ultrasonication on the stability and thermal conductivity of TiO{sub 2} water nanofluids. A UV-Vis spectrophotometer was employed to determine the relative stability of nanofluids. Response surface methodology based on the Box-Behnken design was implemented to investigate the influence of power of sonication (20-80 %), time of sonication (2-20 min), and volume concentration (0.1-1 vol%) of nanofluids as the independent variables. Second-order polynomial equations were established to predict the responses, thermal conductivity, and stability of nanofluids with the intervals of 1 week and 1 month. The significance of the models was tested by means of analysis of variance (ANOVA). The optimum stability and thermal conductivity of TiO{sub 2} nanofluids with various sonication power and time at volume concentrations of 0.1, 0.55, and 1 % were studied. In addition, a correlation between the stability and thermal conductivity enhancement was derived in this study. The results revealed that, at low concentrations, nanofluids would become stable by low power and short period of sonication; however, no enhancement was observed in the thermal conductivity. Conversely, at high concentrations, stability and high thermal conductivity of nanofluids coincided at 1 vol%.

  15. Economic evaluation of flying-qualities design criteria for a transport configured with relaxed static stability

    Science.gov (United States)

    Sliwa, S. M.

    1980-01-01

    Direct constrained parameter optimization was used to optimally size a medium range transport for minimum direct operating cost. Several stability and control constraints were varied to study the sensitivity of the configuration to specifying the unaugmented flying qualities of transports designed to take maximum advantage of relaxed static stability augmentation systems. Additionally, a number of handling qualities related design constants were studied with respect to their impact on the design.

  16. Actuation stability test of the LISA pathfinder inertial sensor front-end electronics

    Science.gov (United States)

    Mance, Davor; Gan, Li; Weber, Bill; Weber, Franz; Zweifel, Peter

    In order to limit the residual stray forces on the inertial sensor test mass in LISA pathfinder, √ it is required that the fluctuation of the test mass actuation voltage is within 2ppm/ Hz. The actuation voltage stability test on the flight hardware of the inertial sensor front-end electronics (IS FEE) is presented in this paper. This test is completed during the inertial sensor integration at EADS Astrium Friedrichshafen, Germany. The standard measurement method using voltmeter is not sufficient for verification, since the instrument low frequency √ fluctuation is higher than the 2ppm/ Hz requirement. In this test, by using the differential measurement method and the lock-in amplifier, the actuation stability performance is verified and the quality of the IS FEE hardware is confirmed by the test results.

  17. Effect of Shot Peening on the Fatigue Strength of Automotive Tubular Stabilizer Bars DC 218

    Directory of Open Access Journals (Sweden)

    Wittek A.M.

    2016-12-01

    Full Text Available This paper concerns issues related to the development of designs of stabilizer bars for new motor vehicle models. It involves not only the designing of a stabilizer bar with the shape required by the manufacturer, but also the preparation of bending and heat treatment processes as well as the performance of strength and fatigue tests. In the prototype development phase, the simulations techniques (FEM may be used to assess the design. The article contains a detailed analysis of a stabilizer bar designated with the DC 218 VA symbol. Performed numerical strength and fatigue calculations showed that the developed stabilizer bar design with the desired shape did not achieve the required number of fatigue cycles. It was also proven at the test stand by testing a prototype stabilizer bar. Therefore, it was suggested to supplement the technological process with an additional shot peening operation whose main aim was to reduce the length of microcracks on the stabilizer bar’s surface. This effect was confirmed during comparative metallographic tests of not shot – peened and shot – peened stabilizer bars. After shot peening, the analysed stabilizer bar reached a fatigue strength which exceeded the limits set by the manufacturer.

  18. High stability design for new centrifugal compressor

    Science.gov (United States)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  19. Slope stability and bearing capacity of landfills and simple on-site test methods.

    Science.gov (United States)

    Yamawaki, Atsushi; Doi, Yoichi; Omine, Kiyoshi

    2017-07-01

    This study discusses strength characteristics (slope stability, bearing capacity, etc.) of waste landfills through on-site tests that were carried out at 29 locations in 19 sites in Japan and three other countries, and proposes simple methods to test and assess the mechanical strength of landfills on site. Also, the possibility of using a landfill site was investigated by a full-scale eccentric loading test. As a result of this, landfills containing more than about 10 cm long plastics or other fibrous materials were found to be resilient and hard to yield. An on-site full scale test proved that no differential settlement occurs. The repose angle test proposed as a simple on-site test method has been confirmed to be a good indicator for slope stability assessment. The repose angle test suggested that landfills which have high, near-saturation water content have considerably poorer slope stability. The results of our repose angle test and the impact acceleration test were related to the internal friction angle and the cohesion, respectively. In addition to this, it was found that the air pore volume ratio measured by an on-site air pore volume ratio test is likely to be related to various strength parameters.

  20. Insights Gained from Testing Alternate Cell Designs

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; Housley, G.K.; Sohal, M.S.; Milobar, D.G.; Cable, Thomas

    2009-01-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, initially developed by the Forschungszentrum Juelich and now manufactured by the French ceramics firm St. Gobain. These cells have an active area of 16 cm2 per cell. They were initially developed as fuel cells, but are being tested as electrolytic cells in the INL test stands. The electrolysis cells are electrode-supported, with ∼10 (micro)m thick yttria-stabilized zirconia (YSZ) electrolytes, ∼1400 (micro)m thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900 C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed another fuel cell concept with the goals of reduced weight and high power density. The NASA cell is structurally symmetrical, with both electrodes supporting the thin electrolyte and containing micro-channels for gas diffusion. This configuration is

  1. Design review and analysis for a Pratt and Whitney fluid-film bearing and seal testing rig

    Science.gov (United States)

    Childs, Dara W.

    1994-01-01

    A design review has been completed for a Pratt and Whitney (P&W)-designed fluid-film bearing and annular-seal test rig to be manufactured and installed at George C. Marshall Space Flight Center (MSFC). Issues covered in this study include: (1) the capacity requirements of the drive unit; (2) the capacity and configuration of the static loading system; (3) the capacity and configuration of the dynamic excitation system; (4) the capacity, configuration, and rotordynamic stability of a test bearing, support bearings, and shaft; and (5) the characteristics and configuration of the measurement transducers and data channels.

  2. Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach

    Science.gov (United States)

    Pei, Jing; Newsome, Jerry R.

    2015-01-01

    Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.

  3. Analysis of natural circulation stability in a low pressure thermohydraulic test loop

    International Nuclear Information System (INIS)

    Jafari, J.; D'Auria, F.; Kazeminejad, H.; Davilu, H.

    2002-01-01

    This paper discusses an instability study of a natural circulation (NC) loop performed with the aid of Relap5 thermal-hydraulic system code. This loop has been designed and constructed for the analysis of relevant thermohydraulic parameters of a nuclear reactor. In this study, the main parameters for the stability of NC are identified and characterized through the execution of proper code runs. The obtained stability boundary (SB) in the dimensionless Zuber- Sub-cooling plane is compared with the SB reported in referenced literature. The agreement of predicted NC stability boundaries with the results of independent studies demonstrates both the capability of the mentioned code in assessing NC loop stability and the quality of the performed calculations.(author)

  4. Design verification test of instrumented capsule (02F-11K) for nuclear fuel irradiation in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, J. M.; Oh, J. M. [and others

    2004-01-01

    An instrumented capsule is being developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in HANARO. The instrumented capsule for measuring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. The instrumented capsule includes three test fuel rods installed thermocouple to measure fuel centerline temperature and three SPNDs (Self-Powered Neutron Detector) to monitor the neutron flux. Its stability was verified by out-of-pile performance test, and its safety evaluation was also shown that the safety requirements were satisfied. And then, to verify the design of the instrumented capsule in the test hole, it was successfully irradiated in the test hole of HANARO from March 14, 2003 to June 1, 2003 (53.8 full power days at 24 MWth). During irradiation, the centerline temperature of PWR UO{sub 2} fuel pellets fabricated by KEPCO Nuclear Fuel Company and the neutron flux were continuously measured and monitored. The test fuel rods were irradiated at less than 350 W/cm to 5.13 GWD/MTU with fuel centerline peak temperature below 1,375 .deg. C. The structural stability of the capsule was satisfied by the naked eye in service pool of HANARO. The capsule and test fuel rods were dismantled and test fuel rods were examined at the hot cell of IMEF (Irradiated Material Examination Facility)

  5. Design, ancillary testing, analysis and fabrication data for the advanced composite stabilizer for Boeing 737 aircraft. Volume 1: Technical summary

    Science.gov (United States)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1983-01-01

    The horizontal stabilizer of the 737 transport was redesigned. Five shipsets were fabricated using composite materials. Weight reduction greater than the 20% goal was achieved. Parts and assemblies were readily produced on production-type tooling. Quality assurance methods were demonstrated. Repair methods were developed and demonstrated. Strength and stiffness analytical methods were substantiated by comparison with test results. Cost data was accumulated in a semiproduction environment. FAA certification was obtained.

  6. Design, Build and Test of a Double Crystal Monochromator for Beamlines I09 and I23 at the Diamond Light Source

    International Nuclear Information System (INIS)

    Kelly, J; Lee, T; Alcock, S; Patel, H

    2013-01-01

    A high stability Double Crystal Monochromator has been developed at The Diamond Light Source for beamlines I09 and I23. The design specification was a cryogenic, fixed exit, energy scanning monochromator, operating over an energy range of 2.1 – 25 keV using a Si(111) crystal set. The novel design concepts are the direct drive, air bearing Bragg axis, low strain crystal mounts and the cooling scheme. The instrument exhibited superb stability and repeatability on the B16 Test Beamline. A 20 keV Si(555), 1.4 μrad rocking curve was demonstrated. The DCM showed good stability without any evidence of vibration or Bragg angle nonlinearity.

  7. Analytic tests and their relation to jet fuel thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Heneghan, S.P.; Kauffman, R.E. [Univ. of Dayton Research Institute, OH (United States)

    1995-05-01

    The evaluation of jet fuel thermal stability (TS) by simple analytic procedures has long been a goal of fuels chemists. The reason is obvious: if the analytic chemist can determine which types of material cause his test to respond, the refiners will know which materials to remove to improve stability. Complicating this quest is the lack of an acceptable quantitative TS test with which to compare any analytic procedures. To circumvent this problem, we recently compiled the results of TS tests for 12 fuels using six separate test procedures. The results covering a range of flow and temperature conditions show that TS is not as dependent on test conditions as previously thought. Also, comparing the results from these tests with several analytic procedures shows that either a measure of the number of phenols or the total sulfur present in jet fuels is strongly indicative of the TS. The phenols have been measured using a cyclic voltammetry technique and the polar material by gas chromatography (atomic emission detection) following a solid phase extraction on silica gel. The polar material has been identified as mainly phenols (by mass spectrometry identification). Measures of the total acid number or peroxide concentration have little correlation with TS.

  8. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    Science.gov (United States)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    Basic principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters are presented. Both vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has two main aspects: It summarizes key RCS design principles from earlier NASA vehicles, notably the Space Shuttle and Space Station programs, and introduces advances in the linear modelling and analyses of a phase plane control system derived in the initial development of the NASA's next upper stage vehicle, the Exploration Upper Stage (EUS). Topics include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and RCS rotational maneuver logic.

  9. The design and stability determination of wind turbine tower

    International Nuclear Information System (INIS)

    Abas Abd Wahab; Khairul Barriyah

    2001-01-01

    In wind turbine tower design, two load categories (static and wind load) were considered. The static load for this structure is the tower self-weight, which can be calculated from its density and area of the material, whereas the wind load was calculated based on CP3: Chapter V: Part 2: 1972, using the maximum wind speed of 30 m/s. The stability of this tower under the action of these two loads has been determined using RISA-3D program. The program were subjected to two joint types, i.e pinned and fixed joints. The tower using fixed joint members has established the necessary tower stability. The simulation, calculation and results are being discussed in detail in this paper. (Author)

  10. Design of anti-slide piles for slope stabilization in Wanzhou city, Three Gorges Area, China

    Science.gov (United States)

    Zhou, Chunmei; van Westen, Cees

    2013-04-01

    This study is related to the design of anti-slide piles for several landslides in Wanzhou city located in the Three Gorges area. Due to the construction of the Three Gorges Reservoir the hydro-geological conditions in this area have deteriorated significantly, leading to larger instability problems. China has invested a lot of money in slope stabilization measures for the treatment of landslides in the Three Gorges area. One of the methods for the stabilization of large landslides is the design of anti-sliding piles. This paper focuses on extensive slope stability analysis and modeling of the mechanical behavior of the landslide masses, and the parameters required for designing the number, size and dimensions of reinforced concrete stabilization piles. The study focuses on determining the rock parameters, anchor depth, and the pile and soil interaction coefficient. The study aims to provide guidelines for anti-slide pile stabilization works for landslides in the Wanzhou area. The research work contains a number of aspects. First a study is carried out on the distribution of pressures expected on the piles, using two different methods that take into account the expected pore water pressure and seismic acceleration. For the Ercengyan landslide , the Limit Equilibrium Method and Strength Reduction Method of FEM are compared through the results of the landslide pressure distributions on the piles and stress fields in the piles. The second component is the study of the required anchor depth of antislide piles, which is carried out using a statistical analysis with data from 20 landslides that have been controlled with anti-sliding piles. The rock characteristics of the anchor locations were obtained using laboratory tests, and a classification of rock mass quality is made for the anchors of antislide piles. The relationship between the critical anchor height and the angle of the landslide slip surface is determined. Two different methods are presented for the length

  11. Use of trunk stabilization and locomotor training in an adult with cerebellar ataxia: a single system design.

    Science.gov (United States)

    Freund, Jane E; Stetts, Deborah M

    2010-10-01

    The purpose of this study is to describe the effects of trunk stabilization training and locomotor training (LT) using body-weight support on a treadmill (BWST) and overground walking on balance, gait, self-reported function, and trunk muscle performance in an adult with severe ataxia secondary to brain injury. There are no studies on the effectiveness of these combined interventions in persons with ataxia. The subject was a 23-year-old male who had a traumatic brain injury 13 months prior. An A-B-A withdrawal single-system design was used. Outcome measures were Berg Balance Test (BBT), timed unsupported stance, Functional Ambulation Category (FAC), 10-meter walk test (10-MWT), Outpatient Physical Therapy Improvement in Movement Assessment Log (OPTIMAL), transverse abdominis (TrA) thickness, and isometric trunk endurance tests. Performance on the BBT, timed unsupported stance, FAC, 10-MWT, and OPTIMAL each improved after 10 weeks of intervention. In additions, TrA symmetry at rest improved as did right side-bridge endurance time. LT, using BWST and overground walking, and trunk stabilization training may be effective in improving balance, gait, function, and trunk performance in individuals with severe ataxia. Further research with additional subjects is indicated.

  12. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    International Nuclear Information System (INIS)

    Yuan, Sheng; Church, Matthew; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; McKinney, Wayne R.; Kirschman, Jonathan; Morrison, Greg; Noll, Tino; Warwick, Tony; Padmore, Howard A.

    2010-01-01

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the Advanced Light Source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3K does not noticeably affect the mirror figure. Without temperature stabilization, the surface slope changes by approximately 1.5 ?mu rad rms (primarily defocus) under the same conditions.

  13. Elliptically Bent X-Ray Mirrors with Active Temperature Stabilization

    International Nuclear Information System (INIS)

    Yuan, S.; Church, M.; Yashchuk, V.V.; Celestre, R.S.; McKinney, W.R.; Morrison, G.; Warwick, T.; Padmore, H.A.; Goldberg, K.A.; Kirschman, J.; Noll, T.

    2010-01-01

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the advanced light source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3 K does not noticeably affect the mirror figure. Without temperature stabilization, the rms slope error is changed by approximately 1.5 μrad (primarily defocus) under the same conditions

  14. Improved Lower Bounds on the Price of Stability of Undirected Network Design Games

    Science.gov (United States)

    Bilò, Vittorio; Caragiannis, Ioannis; Fanelli, Angelo; Monaco, Gianpiero

    Bounding the price of stability of undirected network design games with fair cost allocation is a challenging open problem in the Algorithmic Game Theory research agenda. Even though the generalization of such games in directed networks is well understood in terms of the price of stability (it is exactly H n , the n-th harmonic number, for games with n players), far less is known for network design games in undirected networks. The upper bound carries over to this case as well while the best known lower bound is 42/23 ≈ 1.826. For more restricted but interesting variants of such games such as broadcast and multicast games, sublogarithmic upper bounds are known while the best known lower bound is 12/7 ≈ 1.714. In the current paper, we improve the lower bounds as follows. We break the psychological barrier of 2 by showing that the price of stability of undirected network design games is at least 348/155 ≈ 2.245. Our proof uses a recursive construction of a network design game with a simple gadget as the main building block. For broadcast and multicast games, we present new lower bounds of 20/11 ≈ 1.818 and 1.862, respectively.

  15. Program Helps Design Tests Of Developmental Software

    Science.gov (United States)

    Hops, Jonathan

    1994-01-01

    Computer program called "A Formal Test Representation Language and Tool for Functional Test Designs" (TRL) provides automatic software tool and formal language used to implement category-partition method and produce specification of test cases in testing phase of development of software. Category-partition method useful in defining input, outputs, and purpose of test-design phase of development and combines benefits of choosing normal cases having error-exposing properties. Traceability maintained quite easily by creating test design for each objective in test plan. Effort to transform test cases into procedures simplified by use of automatic software tool to create cases based on test design. Method enables rapid elimination of undesired test cases from consideration and facilitates review of test designs by peer groups. Written in C language.

  16. Biomechanical evaluation of immediate stability with rectangular versus cylindrical interbody cages in stabilization of the lumbar spine

    Directory of Open Access Journals (Sweden)

    Webb John K

    2002-10-01

    Full Text Available Abstract Background Recent cadaver studies show stability against axial rotation with a cylindrical cage is marginally superior to a rectangular cage. The purpose of this biomechanical study in cadaver spine was to evaluate the stability of a new rectangular titanium cage design, which has teeth similar to the threads of cylindrical cages to engage the endplates. Methods Ten motion segments (five L2-3, five L4-5 were tested. From each cadaver spine, one motion segment was fixed with a pair of cylindrical cages (BAK, Sulzer Medica and the other with paired rectangular cages (Rotafix, Corin Spinal. Each specimen was tested in an unconstrained state, after cage introduction and after additional posterior translaminar screw fixation. The range of motion (ROM in flexion-extension, lateral bending, and rotation was tested in a materials testing machine, with +/- 5 Nm cyclical load over 10 sec per cycle; data from the third cycle was captured for analysis. Results ROM in all directions was significantly reduced (p Conclusions There was no significant difference in immediate stability in any direction between the threaded cylindrical cage and the new design of the rectangular cage with endplate teeth.

  17. Study of the Rancimat test method in measuring the oxidation stability of biodiesel ester and blends

    Energy Technology Data Exchange (ETDEWEB)

    Berthiaume, D.; Tremblay, A. [Oleotek Inc., Thetford Mines, PQ (Canada)

    2006-11-15

    This paper provided details of a study conducted to examine the oxidation stability of biodiesel blends. The study tested samples of canola oil, soybean oil, fish oil, yellow grease, and tallow. The EN 14112 (Rancimat) method was used to compare oxidation stability results obtained in previous tests conducted in the United States and Europe. The aim of the study was also to evaluate the influence of peroxide value (PV), acid value (AV) and feedstock source on the the oxidative stability of different samples. The study also evaluated the possibility of developing a validated test method developed from the EN 14112 methods to specifically consider biodiesel blends. Results of the study indicated that the Rancimat method was not suitable for measuring the oxidation stability of biodiesels blended with petrodiesels. No direct correlation between oxidative stability and PV or AV was observed. It was concluded that fatty acid distribution was not a principal factor in causing changes in oxidation stability. 22 refs., 3 tabs., 1 fig.

  18. Rubble-Mound Breakwater Stability Tests for Dos Bocas Harbor, Tabasco, Mexico

    National Research Council Canada - National Science Library

    Carver, Robert

    1999-01-01

    ...). The initial purposes of the investigation were to determine, by two-dimensional flume tests, the stability response of three alternate armorings for the proposed breakwater and to evaluate overall...

  19. Alloy phase stability and design

    International Nuclear Information System (INIS)

    Stocks, G.M.; Pope, E.P.; Giamei, A.F.

    1991-01-01

    At the level of basic quantum theory the papers in this symposium reflect the great progress that has been made in understanding the physical properties of both ordered and disordered alloys based on Density Functional Theory (DFT). DFT provides a quantitative parameter-free (often referred to as first principles) theory of the ground state properties of these systems. This general approach has also been used in combination with classical elasticity and dislocation theory to provide the first quantitative understanding of some of the mechanical properties of intermetallic alloys. Recent advances have built on DFT theory to provide the first glimpses of a theory of the finite temperature phase stability of alloys. It is the strength of these first principles theories that the understanding of materials properties is in terms of the underlying electronic structure. At the level of atomistic simulation, based on semi-empirical potentials, again much progress has been made in understanding the properties of extended defects such as grain boundaries and dislocations. On the experimental front increasingly sophisticated tools are being brought to bear in order to understand both the underlying electronic structure and detailed atomic arrangements. This information, together with input from theory, is playing an increasing role in guiding alloy design efforts. At the more practical level a number of these sophisticated alloy design efforts have in recent years produced impressive results across a broad front. The properties of existing materials are continually being improved and new ones developed. Often this progress is based on a deeper understanding of the properties at the atomistic and electronic level. The design of new ordered intermetallic alloys that have reached or are reaching commercialization represents one of the major achievements of this investment of intellectual resources

  20. Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller.

    Science.gov (United States)

    Niamul Islam, Naz; Hannan, M A; Mohamed, Azah; Shareef, Hussain

    2016-01-01

    Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.

  1. Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller.

    Directory of Open Access Journals (Sweden)

    Naz Niamul Islam

    Full Text Available Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS and thyristor-controlled series compensation (TCSC damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA. A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.

  2. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  3. MITG test assembly design and fabrication

    International Nuclear Information System (INIS)

    Schock, A.

    1983-01-01

    The design, analysis, and evaluation of the Modular Isotopic Thermoelectric Generator (MITG), described in an earlier paper, led to a program to build and test prototypical, modules of that generator. Each test module duplicates the thermoelectric converters, thermal insulation, housing and radiator fins of a typical generator slice, and simulates its isotope heat source module by means of an electrical heater encased in a prototypical graphite box. Once the approx. 20-watt MITG module has been developed, it can be assembled in appropriate number to form a generator design yielding the desired power output. The present paper describes the design and fabrication of the MITG test assembly, which confirmed the fabricability of the multicouples and interleaved multifoil insulation called for by the design. Test plans, procedures, instrumentation, results, and post-test analyses, as well as revised designs, fabrication procedures, and performance estimates, are described in subsequent papers in these proceedings

  4. Test Information Targeting Strategies for Adaptive Multistage Testing Designs.

    Science.gov (United States)

    Luecht, Richard M.; Burgin, William

    Adaptive multistage testlet (MST) designs appear to be gaining popularity for many large-scale computer-based testing programs. These adaptive MST designs use a modularized configuration of preconstructed testlets and embedded score-routing schemes to prepackage different forms of an adaptive test. The conditional information targeting (CIT)…

  5. Clinical assessment, design and performance testing of mobile shower commodes for adults with spinal cord injury: an exploratory review.

    Science.gov (United States)

    Friesen, Emma; Theodoros, Deborah; Russell, Trevor

    2013-07-01

    The purpose of this article is to explore evidence concerning clinical assessment, design and performance testing of mobile shower commodes used by adults with spinal cord injury (SCI). Searches of electronic databases, conference proceedings and key journals were undertaken with no restriction on language or study design. Keywords included spinal cord injury, lesion, sanichair, sanitary chair, shower chair, bowel chair and commode. A total of 20 publications were included in this review. Common approaches to clinical assessments were questionnaires and observational analysis to assess bowel care routines, function and skin integrity. Design features addressed access for bowel care, postural support, transfers, stability, use in wet environments and skin integrity. Objective performance measures addressed requirements for static stability, backward-sloping seat angles, arm supports and seat materials. Evidence reviewed was of low methodological quality and lacking in validated instruments to guide clinical practice. Further high-quality research is needed to identify bathing, showering and personal hygiene tasks affecting mobile shower commodes use and to develop validated clinical assessment tools. Performance testing to published standards is also needed.

  6. Gold Nanoparticles: Synthesis, Stability Test, and Application for the Rice Growth

    OpenAIRE

    Wang, Aiwu; Ng, Hoi Pong; Xu, Yi; Li, Yuyu; Zheng, Yuhong; Yu, Jingping; Han, Fugui; Peng, Feng; Fu, Li

    2014-01-01

    In today’s science, with the use of nanotechnology, nanomaterials, which behave very differently from the bulk solid, can be made. One of the capable uses of nanomaterials is bioapplications which make good use of the specific properties of nanoparticles. However, since the nanoparticles will be used both in-vivo and in-vitro, their stability is an important issue to the scientists, concern. In this dissertation, we are going to test the stability of gold nanoparticles in a number of media in...

  7. Design of systems on a chip design and test

    CERN Document Server

    Reis, Ricardo; Jess, Jochen AG

    2007-01-01

    Addresses the design challenges associated with generations of the semiconductor technology. This book includes contributions on three different, but complementary axes: core design, computer-aided design tools and test methods. A collection of chapters deal with the heterogeneity aspect of core designs.

  8. Cable Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bottura, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    Superconductor stability is at the core of the design of any successful cable and magnet application. This chapter reviews the initial understanding of the stability mechanism, and reviews matters of importance for stability such as the nature and magnitude of the perturbation spectrum and the cooling mechanisms. Various stability strategies are studied, providing criteria that depend on the desired design and operating conditions.

  9. Low Density Supersonic Decelerator Flight Dynamics Test-1 Flight Design and Targeting

    Science.gov (United States)

    Ivanov, Mark

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) program was established to identify, develop, and eventually qualify to Test [i.e. Technology] Readiness Level (TRL) - 6 aerodynamic decelerators for eventual use on Mars. Through comprehensive Mars application studies, two distinct Supersonic Inflatable Aerodynamic Decelerator (SIAD) designs were chosen that afforded the optimum balance of benefit, cost, and development risk. In addition, a Supersonic Disk Sail (SSDS) parachute design was chosen that satisfied the same criteria. The final phase of the multi-tiered qualification process involves Earth Supersonic Flight Dynamics Tests (SFDTs) within environmental conditions similar to those that would be experienced during a Mars Entry, Descent, and Landing (EDL) mission. The first of these flight tests (i.e. SFDT-1) was completed on June 28, 2014 with two more tests scheduled for the summer of 2015 and 2016, respectively. The basic flight design for all the SFDT flights is for the SFDT test vehicle to be ferried to a float altitude of 120 kilo-feet by a 34 thousand cubic feet (Mcf) heavy lift helium balloon. Once float altitude is reached, the test vehicle is released from the balloon, spun-up for stability, and accelerated to supersonic speeds using a Star48 solid rocket motor. After burnout of the Star48 motor the vehicle decelerates to pre-flight selected test conditions for the deployment of the SIAD system. After further deceleration with the SIAD deployed, the SSDS parachute is then deployed stressing the performance of the parachute in the wake of the SIAD augmented blunt body. The test vehicle/SIAD/parachute system then descends to splashdown in the Pacific Ocean for eventual recovery. This paper will discuss the development of both the test vehicle and the trajectory sequence including design trade-offs resulting from the interaction of both engineering efforts. In addition, the SFDT-1 nominal trajectory design and associated sensitivities will be discussed

  10. A new design equation for drained stability of conical slopes in cohesive-frictional soils

    Directory of Open Access Journals (Sweden)

    Boonchai Ukritchon

    2018-04-01

    Full Text Available New plasticity solutions to the drained stability of conical slopes in homogeneous cohesive-frictional soils were investigated by axisymmetric finite element limit analysis. Three parameters were studied, i.e. excavated height ratios, slope inclination angles, and soil friction angles. The influences of these parameters on the stability factor and predicted failure mechanism of conical slopes were discussed. A new design equation developed from a nonlinear regression of the lower bound solution was proposed for drained stability analyses of a conical slope in practice. Numerical examples were given to demonstrate a practical application of the proposed equation to stability evaluations of conical slopes with both associated and non-associated flow rules. Keywords: Limit analysis, Slope stability, Conical slope, Unsupported excavation, Cohesive-frictional soils

  11. Accelerated Physical Stability Testing of Amorphous Dispersions.

    Science.gov (United States)

    Mehta, Mehak; Suryanarayanan, Raj

    2016-08-01

    The goal was to develop an accelerated physical stability testing method of amorphous dispersions. Water sorption is known to cause plasticization and may accelerate drug crystallization. In an earlier investigation, it was observed that both the increase in mobility and decrease in stability in amorphous dispersions was explained by the "plasticization" effect of water (Mehta et al. Mol. Pharmaceutics 2016, 13 (4), 1339-1346). In this work, the influence of water concentration (up to 1.8% w/w) on the correlation between mobility and crystallization in felodipine dispersions was investigated. With an increase in water content, the α-relaxation time as well as the time for 1% w/w felodipine crystallization decreased. The relaxation times of the systems, obtained with different water concentration, overlapped when the temperature was scaled (Tg/T). The temperature dependencies of the α-relaxation time as well as the crystallization time were unaffected by the water concentration. Thus, the value of the coupling coefficient, up to a water concentration of 1.8% w/w, was approximately constant. Based on these findings, the use of "water sorption" is proposed to build predictive models for crystallization in slow crystallizing dispersions.

  12. Role of clinician's experience and implant design on implant stability. An ex vivo study in artificial soft bones.

    Science.gov (United States)

    Romanos, Georgios E; Basha-Hijazi, Abdulaziz; Gupta, Bhumija; Ren, Yan-Fang; Malmstrom, Hans

    2014-04-01

    Clinical experience in implant placement is important in order to prevent implant failures. However, the implant design affects the primary implant stability (PS) especially in poor quality bones. Therefore, the aim of this study was to compare the effect of clinician surgical experience on PS, when placing different type of implant designs. A total of 180 implants (90 parallel walled-P and 90 tapered-T) were placed in freshly slaughtered cow ribs. Bone quality was evaluated by two examiners during surgery and considered as 'type IV' bone. Implants (ø 5 mm, length: 15 mm, Osseotite, BIOMET 3i, Palm Beach Gardens, FL, USA) were placed by three different clinicians (master/I, good/II, non-experienced/III, under direct supervision of a manufacturer representative; 30 implants/group). An independent observer assessed the accuracy of placement by resonance frequency analysis (RFA) with implant stability quotient (ISQ) values. Two-way analysis of variance (ANOVA) and Tukey's post hoc test were used to detect the surgical experience of the clinicians and their interaction and effects of implant design on the PS. All implants were mechanically stable. The mean ISQ values were: 49.57(± 18.49) for the P-implants and 67.07(± 8.79) for the T-implants. The two-way ANOVA showed significant effects of implant design (p bone. © 2012 Wiley Periodicals, Inc.

  13. Testing the stability of travel expenditures in Nigeria

    International Nuclear Information System (INIS)

    Osula, D.O.A.; Adebisi, O.

    2001-01-01

    A report is presented on a study carried out to develop a functional form for travel money expenditure in a Nigerian setting, and test its stability against energy policy change, specifically the fuel price increase of October 1994. The Box-Cox transformation regression approach was adopted in the modelling exercise in order to evolve a data-defined functional form and ensure a more rational basis for the stability test. The results of the modelling exercise show that while statistically significant functional forms were estimated for the 'before' and 'after' fuel price increase periods, the functional forms estimated are not stable across the periods. Thus 'travel budget' is as yet not usable as a term for travel expenditures in Nigeria. The implication of this for travel demand modelling in Nigeria is that, at least till other evidences prove otherwise, there is as yet no basis for using the 'Universal Mechanism of Travel' model developed by Zahavi (The UMOT Project. Report No. DOT-RSPA-DPB-20-79-3; The UMOT Travel Model II Report No. DOT-RSPA-DPB-50-82-11). Of disposable income and total expenditure, the former has proved to be more appropriate for use as 'available money' for the estimation of travel expenditures in Nigeria in the 'before' energy policy change period, while total expenditure proved appropriate in the 'after' period. (author)

  14. Rational design of botulinum neurotoxin A1 mutants with improved oxidative stability.

    Science.gov (United States)

    López de la Paz, Manuela; Scheps, Daniel; Jurk, Marcel; Hofmann, Fred; Frevert, Jürgen

    2018-06-01

    Botulinum neurotoxins (BoNTs) are the most potent toxic proteins to mankind known but applied in low doses trigger a localized muscle paralysis that is beneficial for the therapy of several neurological disorders and aesthetic treatment. The paralytic effect is generated by the enzymatic activity of the light chain (LC) that cleaves specifically one of the SNARE proteins responsible for neurotransmitter exocytosis. The activity of the LC in a BoNT-containing therapeutic can be compromised by denaturing agents present during manufacturing and/or in the cell. Stabilization of the LC by reducing vulnerability towards denaturants would thus be advantageous for the development of BoNT-based therapeutics. In this work, we focused on increasing the stability of LC of BoNT/A1 (LC/A1) towards oxidative stress. We tackled this task by rational design of mutations at cysteine and methionine LC/A1 sites. Designed mutants showed improved oxidative stability in vitro and equipotency to wildtype toxin in vivo. Our results suggest that suitable modification of the catalytic domain can lead to more stable BoNTs without impairing their therapeutic efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. 16 CFR 1203.15 - Positional stability test (roll-off resistance).

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Positional stability test (roll-off resistance). 1203.15 Section 1203.15 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... over the helmet along the midsagittal plane and attaching the hook over the edge of the helmet as shown...

  16. The application of the Accelerated Stability Assessment Program (ASAP) to quality by design (QbD) for drug product stability.

    Science.gov (United States)

    Waterman, Kenneth Craig

    2011-09-01

    An isoconversion paradigm, where times in different temperature and humidity-controlled stability chambers are set to provide a fixed degradant level, is shown to compensate for the complex, non-single order kinetics of solid drug products. A humidity-corrected Arrhenius equation provides reliable estimates for temperature and relative humidity effects on degradation rates. A statistical protocol is employed to determine best fits for chemical stability data, which in turn allows for accurate estimations of shelf life (with appropriate confidence intervals) at any storage condition including inside packaging (based on the moisture vapor transmission rate of the packaging and moisture sorption isotherms of the internal components). These methodologies provide both faster results and far better predictions of chemical stability limited shelf life (expiry) than previously possible. Precise shelf-life estimations are generally determined using a 2-week, product-specific protocol. Once the model for a product is developed, it can play a critical role in providing the product understanding necessary for a quality by design (QbD) filing for product approval and enable rational control strategies to assure product stability. Moreover, this Accelerated Stability Assessment Program (ASAP) enables the coupling of product attributes (e.g., moisture content, packaging options) to allow for flexibility in how control strategies are implemented to provide a balance of cost, speed, and other factors while maintaining adequate stability.

  17. Structural Stability Of Detached Low Crested Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Kramer, Morten; Lamberti, Alberto

    2006-01-01

    The aim of the paper is to describe hydraulic stability of rock-armoured low-crested structures on the basis of new experimental tests and prototype observations. Rock armour stability results from earlier model tests under non-depth-limited long-crested head-on waves are reviewed. Results from new...... determining armour stone size in shallow water conditions is given together with a rule of thumb for the required stone size in depth-limited design waves. Rock toe stability is discussed on the basis of prototype experience, hard bottom 2-D tests in depth-limited waves and an existing hydraulic stability...... formula. Toe damage predicted by the formula is in agreement with experimental results. In field sites, damage at the toe induced by scour or by sinking is observed and the volume of the berm is often insufficient to avoid regressive erosion of the armour layer. Stone sinking and settlement in selected...

  18. Influence of stabilizer thickness on over-current test of YBCO-coated conductors

    International Nuclear Information System (INIS)

    Kwon, N Y; Kim, H S; Kim, K L; Lee, H G; Yim, S W; Kim, H-R; Hyun, O-B; Kim, H M

    2009-01-01

    The increased use of distributed power generation has led to increasingly high fault current levels. A superconducting fault current limiter (SFCL) is a potential solution to prevent the problem of short-circuit currents. YBCO-coated conductors (CCs) are one of the most promising superconducting materials for SFCLs. Most YBCO CCs have stabilizers, which play a significant role in limiting the fault current in the SFCL. Therefore, the selection of the appropriate material and the thickness of the stabilizer of the CC used for the SFCL may affect its quench/recovery characteristics. In this paper, the quench/recovery characteristics of YBCO CC tapes having stabilizers with various thicknesses were investigated. The quench/recovery test results showed that, as the thickness of the stabilizer decreased, both the final approach temperature and the recovery time decreased.

  19. Stability of Pharmaceuticals in Space

    Science.gov (United States)

    Nguyen, Y-Uyen

    2009-01-01

    Stability testing is a tool used to access shelf life and effects of storage conditions for pharmaceutical formulations. Early research from the International Space Station (ISS) revealed that some medications may have degraded while in space. This potential loss of medication efficacy would be very dangerous to Crew health. The aim of this research project, Stability of Pharmacotherapeutic Compounds, is to study how the stability of pharmaceutical compounds is affected by environmental conditions in space. Four identical pharmaceutical payload kits containing medications in different dosage forms (liquid for injection, tablet, capsule, ointment and suppository) were transported to the ISS aboard a Space Shuttle. One of the four kits was stored on that Shuttle and the other three were stored on the ISS for return to Earth at various time intervals aboard a pre-designated Shuttle flight. The Pharmacotherapeutics laboratory used stability test as defined by the United States Pharmacopeia (USP), to access the degree of degradation to the Payload kit medications that may have occurred during space flight. Once these medications returned, the results of stability test performed on them were compared to those from the matching ground controls stored on Earth. Analyses of the results obtained from physical and chemical stability assessments on these payload medications will provide researchers additional tools to promote safe and efficacious medications for space exploration.

  20. Multiscale stabilization for convection-dominated diffusion in heterogeneous media

    KAUST Repository

    Calo, Victor M.; Chung, Eric T.; Efendiev, Yalchin R.; Leung, Wing Tat

    2016-01-01

    relation to the approximation property of the test space. We design online basis functions, which accelerate convergence in the test space, and consequently, improve stability. We present several numerical examples and show that one needs a few test

  1. Testing the effect of a microbial-based soil amendment on aggregate stability and erodibility

    DEFF Research Database (Denmark)

    Malozo, Mponda; Iversen, Bo Vangsø; Heckrath, Goswin Johann

    to the rainfall-runoff experiment where the microbial-based product had a clear effect on soil erodibility. In relation to measurement of aggregate stability as well as clay dispersion, the picture was less clear. Especially for the sandy Tanzania soil with a low content of organic matter, a clear effect was seen...... aggregate stability and erodibility. Two commercial products, gypsum and a microbial-based solution were used for the experiment and were tested on two Danish sandy loamy soils as well on a sandy soil from Tanzania. The carrier of the microbial-based product, a glycerol solution, was tested as well....... In the laboratory, soils were treated with the soil amendments in a two-step procedure at controlled water contents following aerobic incubation in closed containers. Water-aggregate stability and clay dispersion were measured on soil aggregates less than 8 mm in diameter. Aggregate stability was measured...

  2. A field-based approach for examining bicycle seat design effects on seat pressure and perceived stability.

    Science.gov (United States)

    Bressel, Eadric; Bliss, Shantelle; Cronin, John

    2009-05-01

    The purpose of this study was to investigate the effect of various bicycle seat designs on seat pressure and perceived stability in male and female cyclists using a unique field-based methodology. Thirty participants, comprising male and female cyclists, pedaled a bicycle at 118W over a 350m flat course under three different seat conditions: standard seat, a seat with a partial anterior cutout, and a seat with a complete anterior cutout. The pressure between the bicycle seat and perineum of the cyclist was collected with a remote pressure-sensing mat, and perceived stability was assessed using a continuous visual analogue scale. Anterior seat pressure and stability values for the complete cutout seat were significantly lower (p<0.05; 62-101%) than values for the standard and partial cutout designs. These findings were consistent between males and females. Our results would support the contention that the choice of saddle design should not be dictated by interface pressure alone since optimal anterior seat pressure and perceived seat stability appear to be inversely related.

  3. Development of Technique for Testing the Long-Term Stability of Silicon Microstrip Detectors

    International Nuclear Information System (INIS)

    Kosinov, A.V.; Maslov, N.I.; Naumov, S.V.; Ovchinnik, V.D.; Starodubtsev, A.F.; Vasiliev, G.P.; Yalovenko, V.I.; Bosisio, L.

    2006-01-01

    An automatic multi-channel set-up prototype for simultaneous testing of the Long-Term Stability (LTS) of more than ten detectors is described. The Inner Tracking System of the ALICE experiment will include about two thousand Double-sided Microstrip Detectors (DSMD). Efficient automatic measurement techniques are crucial for the LTS test, because the corresponding test procedure should be performed on each detector and requires long time, at least two days. By using special adapters for supporting and connecting the bare DSMDs, failing detectors can be screened out before module assembly, thus minimizing the cost. Automated probe stations developed for a special purpose or for microelectronics industry are used for measuring physical static DSMD characteristics and check good-to-bad elements ratio for DSMD. However, automated (or semi-automatic)test benches for studying LTS or testing DSMD long-term stability before developing a detecting module are absent

  4. Toluene stability Space Station Rankine power system

    Science.gov (United States)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  5. Kinetic Modeling of Accelerated Stability Testing Enabled by Second Harmonic Generation Microscopy.

    Science.gov (United States)

    Song, Zhengtian; Sarkar, Sreya; Vogt, Andrew D; Danzer, Gerald D; Smith, Casey J; Gualtieri, Ellen J; Simpson, Garth J

    2018-04-03

    The low limits of detection afforded by second harmonic generation (SHG) microscopy coupled with image analysis algorithms enabled quantitative modeling of the temperature-dependent crystallization of active pharmaceutical ingredients (APIs) within amorphous solid dispersions (ASDs). ASDs, in which an API is maintained in an amorphous state within a polymer matrix, are finding increasing use to address solubility limitations of small-molecule APIs. Extensive stability testing is typically performed for ASD characterization, the time frame for which is often dictated by the earliest detectable onset of crystal formation. Here a study of accelerated stability testing on ritonavir, a human immunodeficiency virus (HIV) protease inhibitor, has been conducted. Under the condition for accelerated stability testing at 50 °C/75%RH and 40 °C/75%RH, ritonavir crystallization kinetics from amorphous solid dispersions were monitored by SHG microscopy. SHG microscopy coupled by image analysis yielded limits of detection for ritonavir crystals as low as 10 ppm, which is about 2 orders of magnitude lower than other methods currently available for crystallinity detection in ASDs. The four decade dynamic range of SHG microscopy enabled quantitative modeling with an established (JMAK) kinetic model. From the SHG images, nucleation and crystal growth rates were independently determined.

  6. The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements

    Science.gov (United States)

    Nemeth, Michael P.; Starnes, James H., Jr.

    1998-01-01

    A summary of the existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability-based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.

  7. New Formula for Stability of Cube Armoured Roundheads

    DEFF Research Database (Denmark)

    Maciñeira, Enrique; Burcharth, Hans F.

    2007-01-01

    Design of armour for rubble mound breakwater roundheads constitutes in many cases a problem due to the limitation of available data and guidelines. The objective of the paper is to present the results of a comprehensive model test study on the stability of cube armoured roundheads, resulting...... in a new stability formula...

  8. MASCOT - MATLAB Stability and Control Toolbox

    Science.gov (United States)

    Kenny, Sean; Crespo, Luis

    2011-01-01

    MASCOT software was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental non-linear equations of motion, MASCOT then calculates vehicle trim and static stability data for any desired flight condition. Common predefined flight conditions are included. The predefined flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind and sideslip, plus three takeoff rotation conditions. Results are displayed through a unique graphical interface developed to provide stability and control information to the conceptual design engineers using a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. This software allows the user to prescribe the vehicle s CG location, mass, and inertia tensor so that any loading configuration between empty weight and maximum take-off weight can be analyzed. The required geometric and aerodynamic data as well as mass and inertia properties may be entered directly, passed through data files, or come from external programs such as Vehicle Sketch Pad (VSP). The current version of MASCOT has been tested with VSP used to compute the required data, which is then passed directly into the program. In VSP, the vehicle geometry is created and manipulated. The aerodynamic coefficients, stability and control derivatives, are calculated using VorLax, which is now available directly within VSP. MASCOT has been written exclusively using the technical computing language MATLAB . This innovation is able to bridge the gap between low-fidelity conceptual design and higher-fidelity stability and control analysis. This new tool enables the conceptual design engineer to include detailed static stability

  9. Stability Test For Sorghum Mutant Lines Derived From Induced Mutations with Gamma-Ray Irradiation

    Directory of Open Access Journals (Sweden)

    S. Human

    2011-12-01

    Full Text Available Sorghum breeding program had been conducted at the Center for the Application of Isotopes and Radiation Technology, BATAN. Plant genetic variability was increased through induced mutations using gamma-ray irradiation. Through selection process in successive generations, some promising mutant lines had been identified to have good agronomic characteristics with high grain yield. These breeding lines were tested in multi location trials and information of the genotypic stability was obtained to meet the requirements for officially varietal release by the Ministry of Agriculture. A total of 11 sorghum lines and varieties consisting of 8 mutant lines derived from induced mutations (B-100, B-95, B-92, B-83, B-76, B-75, B-69 and Zh-30 and 3 control varieties (Durra, UPCA-S1 and Mandau were included in the experiment. All materials were grown in 10 agro-ecologically different locations namely Gunungkidul, Bantul, Citayam, Garut, Lampung, Bogor, Anyer, Karawaci, Cianjur and Subang. In each location, the local adaptability test was conducted by randomized block design with 3 replications. Data of grain yield was used for evaluating genotypic stability using AMMI approach. Results revealed that sorghum mutation breeding had generated 3 mutant lines (B-100, B-76 and Zh-30 exhibiting grain yield significantly higher than the control varieties. These mutant lines were genetically stable in all locations so that they would be recommended for official release as new sorghum varieties to the Ministry of Agriculture

  10. Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein.

    Directory of Open Access Journals (Sweden)

    Serena Leone

    Full Text Available MNEI is a single chain derivative of monellin, a plant protein that can interact with the human sweet taste receptor, being therefore perceived as sweet. This unusual physiological activity makes MNEI a potential template for the design of new sugar replacers for the food and beverage industry. Unfortunately, applications of MNEI have been so far limited by its intrinsic sensitivity to some pH and temperature conditions, which could occur in industrial processes. Changes in physical parameters can, in fact, lead to irreversible protein denaturation, as well as aggregation and precipitation. It has been previously shown that the correlation between pH and stability in MNEI derives from the presence of a single glutamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to study the consequences, at the atomic level, of the protonation state of such residue and have identified the network of intramolecular interactions responsible for MNEI stability at acidic pH. Based on this information, we have designed a pH-independent, stabilized mutant of MNEI and confirmed its increased stability by both molecular modeling and experimental techniques.

  11. Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein.

    Science.gov (United States)

    Leone, Serena; Picone, Delia

    2016-01-01

    MNEI is a single chain derivative of monellin, a plant protein that can interact with the human sweet taste receptor, being therefore perceived as sweet. This unusual physiological activity makes MNEI a potential template for the design of new sugar replacers for the food and beverage industry. Unfortunately, applications of MNEI have been so far limited by its intrinsic sensitivity to some pH and temperature conditions, which could occur in industrial processes. Changes in physical parameters can, in fact, lead to irreversible protein denaturation, as well as aggregation and precipitation. It has been previously shown that the correlation between pH and stability in MNEI derives from the presence of a single glutamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to study the consequences, at the atomic level, of the protonation state of such residue and have identified the network of intramolecular interactions responsible for MNEI stability at acidic pH. Based on this information, we have designed a pH-independent, stabilized mutant of MNEI and confirmed its increased stability by both molecular modeling and experimental techniques.

  12. Testing the stability of travel expenditures in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Osula, D.O.A.; Adebisi, O. [Ahmadu Bello University, Zaria (Nigeria). Department of Civil Engineering

    2001-07-01

    A report is presented on a study carried out to develop a functional form for travel money expenditure in a Nigerian setting, and test its stability against energy policy change, specifically the fuel price increase of October 1994. The Box-Cox transformation regression approach was adopted in the modelling exercise in order to evolve a data-defined functional form and ensure a more rational basis for the stability test. The results of the modelling exercise show that while statistically significant functional forms were estimated for the 'before' and 'after' fuel price increase periods, the functional forms estimated are not stable across the periods. Thus 'travel budget' is as yet not usable as a term for travel expenditures in Nigeria. The implication of this for travel demand modelling in Nigeria is that, at least till other evidences prove otherwise, there is as yet no basis for using the 'Universal Mechanism of Travel' model developed by Zahavi (The UMOT Project. Report No. DOT-RSPA-DPB-20-79-3; The UMOT Travel Model II Report No. DOT-RSPA-DPB-50-82-11). Of disposable income and total expenditure, the former has proved to be more appropriate for use as 'available money' for the estimation of travel expenditures in Nigeria in the 'before' energy policy change period, while total expenditure proved appropriate in the 'after' period. (author)

  13. Lyapunov stability robust analysis and robustness design for linear continuous-time systems

    NARCIS (Netherlands)

    Luo, J.S.; Johnson, A.; Bosch, van den P.P.J.

    1995-01-01

    The linear continuous-time systems to be discussed are described by state space models with structured time-varying uncertainties. First, the explicit maximal perturbation bound for maintaining quadratic Lyapunov stability of the closed-loop systems is presented. Then, a robust design method is

  14. Uncertainty considerations for interferometric stability testing

    NARCIS (Netherlands)

    Ellis, J.D.; Joo, K.N.; Verlaan, A.L.; Spronck, J.W.

    2008-01-01

    Material stability is an important parameter for EUV lithography, space instrumentation, and metrology in general. In both EUV lithography and space, more information is needed about material stability during an atmospheric to vacuum transition. For metrology instruments in general, determining the

  15. Engineering Trade-off Considerations Regarding Design-for-Security, Design-for-Verification, and Design-for-Test

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth

    2018-01-01

    The United States government has identified that application specific integrated circuit (ASIC) and field programmable gate array (FPGA) hardware are at risk from a variety of adversary attacks. This finding affects system security and trust. Consequently, processes are being developed for system mitigation and countermeasure application. The scope of this tutorial pertains to potential vulnerabilities and countermeasures within the ASIC/FPGA design cycle. The presentation demonstrates how design practices can affect the risk for the adversary to: change circuitry, steal intellectual property, and listen to data operations. An important portion of the design cycle is assuring the design is working as specified or as expected. This is accomplished by exhaustive testing of the target design. Alternatively, it has been shown that well established schemes for test coverage enhancement (design-for-verification (DFV) and design-for-test (DFT)) can create conduits for adversary accessibility. As a result, it is essential to perform a trade between robust test coverage versus reliable design implementation. The goal of this tutorial is to explain the evolution of design practices; review adversary accessibility points due to DFV and DFT circuitry insertion (back door circuitry); and to describe common engineering trade-off considerations for test versus adversary threats.

  16. A Preliminary Design of a Calibration Chamber for Evaluating the Stability of Unsaturated Soil Slope

    Science.gov (United States)

    Hsu, H.-H.

    2012-04-01

    The unsaturated soil slopes, which have ground water tables and are easily failure caused by heavy rainfalls, are widely distributed in the arid and semi-arid areas. For analyzing the stability of slope, in situ tests are the direct methods to obtain the test site characteristics. The cone penetration test (CPT) is a popular in situ test method. Some of the CPT empirical equations established from calibration chamber tests. The CPT performed in calibration chamber was commonly used clean quartz sand as testing material in the past. The silty sand is observed in many actual slopes. Because silty sand is relatively compressible than quartz sand, it is not suitable to apply the correlations between soil properties and CPT results built from quartz sand to silty sand. The experience on CPT calibration in silty sand has been limited. CPT calibration tests were mostly performed in dry or saturated soils. The condition around cone tip during penetration is assumed to be fully drained or fully undrained, yet it was observed to be partially drained for unsaturated soils. Because of the suction matrix has a great effect on the characteristics of unsaturated soils, they are much sensitive to the water content than saturated soils. The design of an unsaturated calibration chamber is in progress. The air pressure is supplied from the top plate and the pore water pressure is provided through the high air entry value ceramic disks located at the bottom plate of chamber cell. To boost and uniform distribute the unsaturated effect, four perforated burettes are installed onto the ceramic disks and stretch upwards to the midheight of specimen. This paper describes design concepts, illustrates this unsaturated calibration chamber, and presents the preliminary test results.

  17. Item calibration in incomplete testing designs

    Directory of Open Access Journals (Sweden)

    Norman D. Verhelst

    2011-01-01

    Full Text Available This study discusses the justifiability of item parameter estimation in incomplete testing designs in item response theory. Marginal maximum likelihood (MML as well as conditional maximum likelihood (CML procedures are considered in three commonly used incomplete designs: random incomplete, multistage testing and targeted testing designs. Mislevy and Sheenan (1989 have shown that in incomplete designs the justifiability of MML can be deduced from Rubin's (1976 general theory on inference in the presence of missing data. Their results are recapitulated and extended for more situations. In this study it is shown that for CML estimation the justification must be established in an alternative way, by considering the neglected part of the complete likelihood. The problems with incomplete designs are not generally recognized in practical situations. This is due to the stochastic nature of the incomplete designs which is not taken into account in standard computer algorithms. For that reason, incorrect uses of standard MML- and CML-algorithms are discussed.

  18. The design on high slope stabilization in waste rock sites of uranium mines

    International Nuclear Information System (INIS)

    Liu Taoan; Zhou Xinghuo; Liu Jia

    2005-01-01

    Design methods, reinforcement measures, and flood control measures concerning high slope stabilization in harnessing waste rock site are described in brief according to some examples of two uranium mines in Hunan province. (authors)

  19. Cryogenic Fiber Optic Assemblies for Spaceflight Environments: Design, Manufacturing, Testing, and Integration

    Science.gov (United States)

    Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2); and others will be included.

  20. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response and Actuator Constraints

    Science.gov (United States)

    Welstead, Jason; Crouse, Gilbert L., Jr.

    2014-01-01

    Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.

  1. A3 Subscale Diffuser Test Article Design

    Science.gov (United States)

    Saunders, G. P.

    2009-01-01

    This paper gives a detailed description of the design of the A3 Subscale Diffuser Test (SDT) Article Design. The subscale diffuser is a geometrically accurate scale model of the A3 altitude rocket facility. It was designed and built to support the SDT risk mitigation project located at the E3 facility at Stennis Space Center, MS (SSC) supporting the design and construction of the A3 facility at SSC. The subscale test article is outfitted with a large array of instrumentation to support the design verification of the A3 facility. The mechanical design of the subscale diffuser and test instrumentation are described here

  2. Robust D-Stability Controller Design for a Ducted Fan Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Xiao-lu Ren

    2014-01-01

    Full Text Available This paper deals with the aerodynamic modeling of a small ducted fan UAV and the problem of attitude stabilization when the parameter of the vehicle is varied. The main aerodynamic model of the hovering flight UAV is first presented. Then, an attitude control is designed from a linearization of the dynamic model around the hovering flight, which is based on the H∞ output feedback control theory with D-stability. Simulation results show that such method has good robustness to the attitude system. They can meet the requirements of attitude control and verify further the feasibility of such a control strategy.

  3. Design concept of conducting shell and in-vessel components suitable for plasma vertical stability and remote maintenance scheme in DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Utoh, Hiroyasu, E-mail: uto.hiroyasu@jaea.go.jp [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Takase, Haruhiko [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Sakamoto, Yoshiteru; Tobita, Kenji [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); Mori, Kazuo; Kudo, Tatsuya [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Someya, Youji; Asakura, Nobuyuki; Hoshino, Kazuo; Nakamura, Makoto; Tokunaga, Shinsuke [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan)

    2016-02-15

    Highlights: • Conceptual design of in-vessel component including conducting shell has been investigated. • The conducting shell design for plasma vertical stability was clarified from the plasma vertical stability analysis. • The calculation results showed that the double-loop shell has the most effect on plasma vertical stability. - Abstract: In order to realize a feasible DEMO, we designed an in-vessel component including the conducting shell. The project is affiliated with the broader approach DEMO design activities and is conceptualized from a plasma vertical stability and engineering viewpoint. The dependence of the plasma vertical stability on the conducing shell parameters and the electromagnetic force at plasma disruption were investigated in numerical simulations (programmed in the 3D eddy current analysis code and a plasma position control code). The simulations assumed the actual shape and position of the vacuum vessel and in-vessel components. The plasma vertical stability was most effectively maintained by the double-loop shell.

  4. Evaluation of stabilization of steel surface corrosion by paints

    Directory of Open Access Journals (Sweden)

    Aleš Dvořák

    2005-01-01

    Full Text Available This article deals with laboratory experiments focused on protective and stabilizing effects of paints designed to protect rusted steel surfaces. Two well-known paints (the Hammerite No.1 Rustbeater synthetic paint and the Antirezin water-soluble paint have been evaluated. The standardized tests according to ČSN have been used for the evaluation. Stabilization of rusted steel surface hasn’t been demonstrated during the tests. The SEM test method that covers micro-analysis of elements has been used for the evaluation as well.

  5. Developing a Soil Aggregate Stability Standard For Use in Laboratory Proficiency Testing

    OpenAIRE

    Smith, Mackenzie

    2018-01-01

    Soil health is an important part of agriculture and is becoming an issue to which more and more people are paying attention. In evaluating soil health there are many factors proposed to determine healthy soils, and one of the most reliable indicators, as identified by both academic and soil testing industry experts, is macro-aggregate stability. There is a great need for a method to make standard macro-aggregate stability soil samples for commercial and public labs and other facilities to use...

  6. Design, fabrication and actuation of a MEMS-based image stabilizer for photographic cell phone applications

    International Nuclear Information System (INIS)

    Chiou, Jin-Chern; Hung, Chen-Chun; Lin, Chun-Ying

    2010-01-01

    This work presents a MEMS-based image stabilizer applied for anti-shaking function in photographic cell phones. The proposed stabilizer is designed as a two-axis decoupling XY stage 1.4 × 1.4 × 0.1 mm 3 in size, and adequately strong to suspend an image sensor for anti-shaking photographic function. This stabilizer is fabricated by complex fabrication processes, including inductively coupled plasma (ICP) processes and flip-chip bonding technique. Based on the special designs of a hollow handle layer and a corresponding wire-bonding assisted holder, electrical signals of the suspended image sensor can be successfully sent out with 32 signal springs without incurring damage during wire-bonding packaging. The longest calculated traveling distance of the stabilizer is 25 µm which is sufficient to resolve the anti-shaking problem in a three-megapixel image sensor. Accordingly, the applied voltage for the 25 µm moving distance is 38 V. Moreover, the resonant frequency of the actuating device with the image sensor is 1.123 kHz.

  7. Design and testing of a model CELSS chamber robot

    Science.gov (United States)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; McCarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-08-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system

  8. Design and Testing of Digital Microfluidic Biochips

    CERN Document Server

    Zhao, Yang

    2013-01-01

    This book provides a comprehensive methodology for automated design, test and diagnosis, and use of robust, low-cost, and manufacturable digital microfluidic systems. It focuses on the development of a comprehensive CAD optimization framework for digital microfluidic biochips that unifies different design problems. With the increase in system complexity and integration levels, biochip designers can utilize the design methods described in this book to evaluate different design alternatives, and carry out design-space exploration to obtain the best design point. Describes practical design automation tools that address different design problems (e.g., synthesis, droplet routing, control-pin mapping, testing and diagnosis, and error recovery) in a unified manner; Applies test pattern generation and error-recovery techniques for digital microfluidics-based biochips; Uses real bioassays as evaluation examples, e.g., multiplexed in vitro human physiological fluids diagnostics, PCR, protein crystallization.  

  9. Design, Automation, and Test in Europe

    DEFF Research Database (Denmark)

    Systems in CMOS and Beyond; - Physical Design and Validation; - Test and Verification. The winners of the prestigious EDAA Lifetime Achievement Award as well as oher recognized experts in their field wrote an introduction to each section, summarizing the history in their domain and indicating how......The Design, Automation, and Test in Europe (DATE) conference celebrated in 2007 its tenth anniversary. As a tribute to the chip and system-level design and design technology community, this book presents a compilation of the three most influential papers of each year. This provides an excellent...

  10. Design criteria and fabrication in-pile test section of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1997-10-01

    Safety state fuel test loop will be equipped in HANARO to obtain the development and betterments of advanced fuel and materials through the irradiation tests. The objective of this study is to determine the design criteria and technical specification of in-pile test section and to specify the manufacturing requirements of in-pile test section. HANARO fuel test loop was designed to meet the CANDU and PWR fuel testing and in-pile section will be manufactured and installed in HANARO. The design criteria and technical specification of in-pile test section could be used the fuel and materials design with for irradiation testing IPS of HANARO fuel test loop. This results will become guidances for the planning and programming of irradiation testing. (author). 12 refs., tabs., figs.

  11. Low-Cost Mini Radar: Design Prototyping and Tests

    Directory of Open Access Journals (Sweden)

    Dario Tarchi

    2017-01-01

    Full Text Available Radar systems are largely employed for surveillance of wide and remote areas; the recent advent of drones gives the opportunity to exploit radar sensors on board of unmanned aerial platforms. Nevertheless, whereas drone radars are currently available for military applications, their employment in the civilian domain is still limited. The present research focuses on design, prototyping, and testing of an agile, low-cost, mini radar system, to be carried on board of Remotely Piloted Aircraft (RPAs or tethered aerostats. In particular, the paper faces the challenge to integrate the in-house developed radar sensor with a low-cost navigation board, which is used to estimate attitude and positioning data. In fact, a suitable synchronization between radar and navigation data is essential to properly reconstruct the radar picture whenever the platform is moving or the radar is scanning different azimuthal sectors. Preliminary results, relative to tests conducted in preoperational conditions, are provided and exploited to assert the suitable consistency of the obtained radar pictures. From the results, there is a high consistency between the radar images and the picture of the current environment emerges; finally, the comparison of radar images obtained in different scans shows the stability of the platform.

  12. The Development of Mathematical Prediction Model to Predict Resilient Modulus for Natural Soil Stabilized by Pofa-Opc Additive for the Use in Unpaved Road Design

    Science.gov (United States)

    Gamil, Y. M. R.; Bakar, I. H.

    2016-07-01

    Resilient Modulus (Mr) is considered one of the most important parameters in the design of road structure. This paper describes the development of the mathematical model to predict resilient modulus of organic soil stabilized by the mix of Palm Oil Fuel Ash - Ordinary Portland Cement (POFA-OPC) soil stabilization additives. It aims to optimize the use of the use of POFA in soil stabilization. The optimization models enable to eliminate the arbitrary selection and its associated disadvantages in determination of the optimum additive proportion. The model was developed based on Scheffe regression theory. The mix proportions of the samples in the experiment were adopted from similar studies reported in the literature Twenty five samples were designed, prepared and then characterized for each mix proportion based on the MR in 28 days curing. The results are used to develop the mathematical prediction model. The model was statistically analyzed and verified for its adequacy and validity using F-test.

  13. State and actuator fault estimation observer design integrated in a riderless bicycle stabilization system.

    Science.gov (United States)

    Brizuela Mendoza, Jorge Aurelio; Astorga Zaragoza, Carlos Manuel; Zavala Río, Arturo; Pattalochi, Leo; Canales Abarca, Francisco

    2016-03-01

    This paper deals with an observer design for Linear Parameter Varying (LPV) systems with high-order time-varying parameter dependency. The proposed design, considered as the main contribution of this paper, corresponds to an observer for the estimation of the actuator fault and the system state, considering measurement noise at the system outputs. The observer gains are computed by considering the extension of linear systems theory to polynomial LPV systems, in such a way that the observer reaches the characteristics of LPV systems. As a result, the actuator fault estimation is ready to be used in a Fault Tolerant Control scheme, where the estimated state with reduced noise should be used to generate the control law. The effectiveness of the proposed methodology has been tested using a riderless bicycle model with dependency on the translational velocity v, where the control objective corresponds to the system stabilization towards the upright position despite the variation of v along the closed-loop system trajectories. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Testing of Method for Assessing of Room Thermal Stability

    Directory of Open Access Journals (Sweden)

    Charvátová Hana

    2017-01-01

    Full Text Available The paper presents the interim results of our research on the developing methodological procedure which could be used for assessment of a thermal stability of buildings with regards to its thermal accumulative parameters. The principle of testing is based on a combination of computer simulation of cooled room model developed in COMSOL Multiphysics software and on theoretical calculations with respect to compliance with valid European and Czech technical standards used in building industry and architecture under conditions obtained by real measurement for the room to be tested. The presented example shows the effect of the heataccumulation properties of the outside wall insulation materials on the course of the cooling room for winter conditions.

  15. MITG post-test analysis and design improvements

    International Nuclear Information System (INIS)

    Schock, A.

    1983-01-01

    The design, performance analysis, and key attributes of the Modular Isotopic Thermoelectric Generator (MITG) were described in a 1981 IECEC paper; and the design, fabrication, and testing of prototypical MITG test assemblies were described in preceding papers in these proceedings. Each test assembly simulated a typical modular slice of the flight generator. The present paper describes a detailed thermal-stress analysis, which identified the causes of stress-related problems observed during the tests. It then describes how additional analyses were used to evaluate design changes to alleviate those problems. Additional design improvements are discussed in the next paper in these proceedings, which also describes revised fabrication procedures and updated performance estimates for the generator

  16. Optimal model of PDIG based microgrid and design of complementary stabilizer using ICA.

    Science.gov (United States)

    Amini, R Mohammad; Safari, A; Ravadanegh, S Najafi

    2016-09-01

    The generalized Heffron-Phillips model (GHPM) for a microgrid containing a photovoltaic (PV)-diesel machine (DM)-induction motor (IM)-governor (GV) (PDIG) has been developed at the low voltage level. A GHPM is calculated by linearization method about a loading condition. An effective Maximum Power Point Tracking (MPPT) approach for PV network has been done using sliding mode control (SMC) to maximize output power. Additionally, to improve stability of microgrid for more penetration of renewable energy resources with nonlinear load, a complementary stabilizer has been presented. Imperialist competitive algorithm (ICA) is utilized to design of gains for the complementary stabilizer with the multiobjective function. The stability analysis of the PDIG system has been completed with eigenvalues analysis and nonlinear simulations. Robustness and validity of the proposed controllers on damping of electromechanical modes examine through time domain simulation under input mechanical torque disturbances. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Surface stabilization and revegetation test plots

    International Nuclear Information System (INIS)

    Sackschewsky, M.R.; Kemp, C.J.; Hayward, W.M.

    1993-09-01

    Westinghouse Hanford Company Decommissioning and Decontamination Engineering Group and Environmental Technology and Assessment Groups are developing new technologies to improve revegetation techniques for interim stabilization control over underground waste sites within the Radiation Area Remedial Action Program. Successful revegetation is an integral aspect of waste isolation strategy. Unfortunately, revegetation can be very difficult to achieve on the Hanford Site due to several factors: low annual precipitation, unpredictable timing of precipitation, low fertility of available soils, and coarse physical texture of soils covering waste sites. The tests in this report were performed during fiscal years 1992 and 1993 and include the use of two soil sealants in combination with bare soil and a soil/compost mixture and a comparison of a wheatgrass mixture and a native seed mixture. Hydroprobe access ports were placed in one-half of the test plots and moisture data was collected. Soil fertility and plant community characteristics were monitored during the two years of the test. During the first year all sites with compost provided additional fertility and retained greater amounts of soil moisture than noncomposted sites. The use of Enduraseal soil fixative provided greater soil moisture than the use of Aerospray-77 soil fixative. During the second year the use of compost and soil fixative's had a lesser effect on soil moisture. During late summer periods all treatments had very similar soil moisture profiles. The use of compost greatly increased vegetative cover and soil fertility in comparison to sites that had no compost added. Testing of the seed mixtures found that Siberian wheatgrass and Sandberg's bluegrass were the most dominant of the seeded species observed. All plots exhibited a dominant plant cover of volunteer cheatgrass. Biomass production was significantly greater on plots with compost than on the noncomposted plots

  18. Prototype Design and Mission Analysis for a Small Satellite Exploiting Environmental Disturbances for Attitude Stabilization

    Science.gov (United States)

    2016-03-01

    AND MISSION ANALYSIS FOR A SMALL SATELLITE EXPLOITING ENVIRONMENTAL DISTURBANCES FOR ATTITUDE STABILIZATION by Halis C. Polat March 2016...FOR A SMALL SATELLITE EXPLOITING ENVIRONMENTAL DISTURBANCES FOR ATTITUDE STABILIZATION 5. FUNDING NUMBERS 6. AUTHOR(S) Halis C. Polat 7...need a robust and accurate attitude control system. Due to the mass- and volume-constrained design environment of CubeSat, conventional methods are

  19. Hydrolytic catalysis and structural stabilization in a designed metalloprotein

    Science.gov (United States)

    Zastrow, Melissa L.; Peacock, Anna F. A.; Stuckey, Jeanne A.; Pecoraro, Vincent L.

    2011-01-01

    Metal ions are an important part of many natural proteins, providing structural, catalytic and electron transfer functions. Reproducing these functions in a designed protein is the ultimate challenge to our understanding of them. Here, we present an artificial metallohydrolase, which has been shown by X-ray crystallography to contain two different metal ions – a Zn(II) ion which is important for catalytic activity and a Hg(II) ion which provides structural stability. This metallohydrolase displays catalytic activity that compares well with several characteristic reactions of natural enzymes. It catalyses p-nitrophenyl acetate hydrolysis (pNPA) to within ~100-fold of the efficiency of human carbonic anhydrase (CA)II and is at least 550-fold better than comparable synthetic complexes. Similarly, CO2 hydration occurs with an efficiency within ~500-fold of CAII. While histidine residues in the absence of Zn(II) exhibit pNPA hydrolysis, miniscule apopeptide activity is observed for CO2 hydration. The kinetic and structural analysis of this first de novo designed hydrolytic metalloenzyme uncovers necessary design features for future metalloenzymes containing one or more metals. PMID:22270627

  20. Application of simplex-centroid mixture design to optimize stabilizer combinations for ice cream manufacture.

    Science.gov (United States)

    BahramParvar, Maryam; Tehrani, Mostafa Mazaheri; Razavi, Seyed M A; Koocheki, Arash

    2015-03-01

    This study aimed to obtain the optimum formulation for stabilizers in ice cream that could contest with blends presented nowadays. Thus, different mixtures of three stabilizers, i.e. basil seed gum, carboxymethyl cellulose, and guar gum, at two concentrations (0.15 % & 0.35 %) were studied using mixture design methodology. The influence of these mixtures on some properties of ice cream and the regression models for them were also determined. Generally, high ratios of basil seed gum in mixture developed the apparent viscosity of ice cream mixes and decreased the melting rate. Increasing proportion of this stabilizer as well as guar gum in the mixtures at concentration of 0.15 % enhanced the overrun of samples. Based on the optimization criteria, the most excellent combination was 84.43 % basil seed gum and 15.57 % guar gum at concentration of 0.15 %. This research proved the capability of basil seed gum as a novel stabilizer in ice cream stabilization.

  1. NET test blanket design and remote maintenance

    International Nuclear Information System (INIS)

    Holloway, C.; Hubert, P.

    1991-01-01

    The NET machine has three horizontal ports reserved for testing tritium breeding blanket designs during the physics phase and possibly five during the technology phase. The design of the ports and test blankets are modular to accept a range of blanket options, provide radiation shielding and allow routine replacement. Radiation levels during replacement or maintenance require that all operations must be carried out remotely. The paper describes the problems overcome in providing a port design which includes attachment to the vacuum vessel with double vacuum seals, an integrated cooled first wall and support guides for the test blanket module. The method selected to remotely replace the test module whilst controlling the spread of contamination is also adressed. The paper concludes that the provisions of a test blanket facility based on the NET machine design is feasible. (orig.)

  2. Technical Note: A new phantom design for routine testing of Doppler ultrasound.

    Science.gov (United States)

    Grice, J V; Pickens, D R; Price, R R

    2016-07-01

    The objective of this project is to demonstrate the principle and operation for a simple, inexpensive, and highly portable Doppler ultrasound quality assurance (QA) phantom intended for routine QA testing. A prototype phantom has been designed, fabricated, and evaluated. The phantom described here is powered by gravity alone, requires no external equipment for operation, and produces a stable fluid velocity useful for quality assurance. Many commercially available Doppler ultrasound testing systems can suffer from issues such as a lengthy setup, prohibitive cost, nonportable size, or difficulty in use. This new phantom design aims to address some of these problems and create a phantom appropriate for assessing Doppler ultrasound stability. The phantom was fabricated using a 3D printer. The basic design of the phantom is to provide gravity-powered flow of a Doppler fluid between two reservoirs. The printed components were connected with latex tubing and then seated in a tissue mimicking gel. Spectral Doppler waveforms were sampled to evaluate variations in the data, and the phantom was evaluated using high frame rate video to find an alternate measure of mean fluid velocity flowing in the phantom. The current system design maintains stable flow from one reservoir to the other for approximately 7 s. Color Doppler imaging of the phantom was found to be qualitatively consistent with laminar flow. Using pulsed spectral Doppler, the average fluid velocity from a sample volume approximately centered in the synthetic vessel was measured to be 56 cm/s with a standard deviation of 3.2 cm/s across 118 measurements. An independent measure of the average fluid velocity was measured to be 51.9 cm/s with a standard deviation of 0.7 cm/s over 4 measurements. The developed phantom provides stable fluid flow useful for frequent clinical Doppler ultrasound testing and attempts to address several obstacles facing Doppler phantom testing. Such an ultrasound phantom can make routine

  3. Equilibrium and Stability Properties of Low Aspect Ratio Mirror Systems: from Neutron Source Design to the Parker Spiral

    Science.gov (United States)

    Peterson, Ethan; Anderson, Jay; Clark, Mike; Egedal, Jan; Endrizzi, Douglass; Flanagan, Ken; Harvey, Robert; Lynn, Jacob; Milhone, Jason; Wallace, John; Waleffe, Roger; Mirnov, Vladimir; Forest, Cary

    2017-10-01

    Equilibrium reconstructions of rotating magnetospheres in the lab are computed using a user-friendly extended Grad-Shafranov solver written in Python and various magnetic and kinetic measurements. The stability of these equilibria are investigated using the NIMROD code with two goals: understand the onset of the classic ``wobble'' in the heliospheric current sheet and demonstrating proof-of-principle for a laboratory source of high- β turbulence. Using the same extended Grad-Shafranov solver, equilibria for an axisymmetric, non-paraxial magnetic mirror are used as a design foundation for a high-field magnetic mirror neutron source. These equilibria are numerically shown to be stable to the m=1 flute instability, with higher modes likely stabilized by FLR effects; this provides stability to gross MHD modes in an axisymmetric configuration. Numerical results of RF heating and neutral beam injection (NBI) from the GENRAY/CQL3D code suite show neutron fluxes promising for medical radioisotope production as well as materials testing. Synergistic effects between NBI and high-harmonic fast wave heating show large increases in neutron yield for a modest increase in RF power. work funded by DOE, NSF, NASA.

  4. A small satellite design for deep space network testing and training

    Science.gov (United States)

    Mcwilliams, Dennis; Slatton, Clint; Norman, Cassidy; Araiza, Joe; Jones, Jason; Tedesco, Mark; Wortman, Michael; Opiela, John; Lett, Pat; Clavenna, Michael

    1993-01-01

    With the continuing exploration of the Solar System and the reemphasis on Earth focused missions, the need for faster data transmission rates has grown. Ka-band could allow a higher data delivery rate over the current X-band, however the adverse effects of the Earth's atmosphere on Ka are as yet unknown. The Deep Space Network and Jet Propulsion Lab have proposed to launch a small satellite that would simultaneously transmit X and Ka signals to test the viability of switching to Ka-band. The Mockingbird Design Team at the University of Texas at Austin applied small satellite design principles to achieve this objective. The Mockingbird design, named BATSAT, incorporates simple, low-cost systems designed for university production and testing. The BATSAT satellite is a 0.64 m diameter, spherical panel led satellite, mounted with solar cells and omni-directional antennae. The antennae configuration negates the need for active attitude control or spin stabilization. The space-frame truss structure was designed for 11 g launch loads while allowing for easy construction and solar-panel mounting. The communication system transmits at 1 mW by carrying the required Ka and X-band transmitters, as well as an S band transmitter used for DSN training. The power system provides the 8.6 W maximum power requirements via silicon solar arrays and nickel-cadmium batteries. The BATSAT satellite will be lofted into an 1163 km, 70 deg orbit by the Pegasus launch system. This orbit fulfills DSN dish slew rate requirements while keeping the satellite out of the heaviest regions of the Van Allen radiation belts. Each of the three DSN stations capable of receiving Ka-band (Goldstone, Canberra, and Madrid) will have an average of 85 minutes of view-time per day over the satellites ten year design life. Mockingbird Designs hopes that its small satellite design will not only be applicable to this specific mission scenario, but that it could easily be modified for instrument capability for

  5. A small satellite design for deep space network testing and training

    Science.gov (United States)

    McWilliams, Dennis; Slatton, Clint; Norman, Cassidy; Araiza, Joe; Jones, Jason; Tedesco, Mark; Wortman, Michael; Opiela, John; Lett, Pat; Clavenna, Michael

    1993-05-01

    With the continuing exploration of the Solar System and the reemphasis on Earth focused missions, the need for faster data transmission rates has grown. Ka-band could allow a higher data delivery rate over the current X-band, however the adverse effects of the Earth's atmosphere on Ka are as yet unknown. The Deep Space Network and Jet Propulsion Lab have proposed to launch a small satellite that would simultaneously transmit X and Ka signals to test the viability of switching to Ka-band. The Mockingbird Design Team at the University of Texas at Austin applied small satellite design principles to achieve this objective. The Mockingbird design, named BATSAT, incorporates simple, low-cost systems designed for university production and testing. The BATSAT satellite is a 0.64 m diameter, spherical panel led satellite, mounted with solar cells and omni-directional antennae. The antennae configuration negates the need for active attitude control or spin stabilization. The space-frame truss structure was designed for 11 g launch loads while allowing for easy construction and solar-panel mounting. The communication system transmits at 1 mW by carrying the required Ka and X-band transmitters, as well as an S band transmitter used for DSN training. The power system provides the 8.6 W maximum power requirements via silicon solar arrays and nickel-cadmium batteries. The BATSAT satellite will be lofted into an 1163 km, 70 deg orbit by the Pegasus launch system. This orbit fulfills DSN dish slew rate requirements while keeping the satellite out of the heaviest regions of the Van Allen radiation belts. Each of the three DSN stations capable of receiving Ka-band (Goldstone, Canberra, and Madrid) will have an average of 85 minutes of view-time per day over the satellites ten year design life. Mockingbird Designs hopes that its small satellite design will not only be applicable to this specific mission scenario, but that it could easily be modified for instrument capability for

  6. An alternative soil nailing system for slope stabilization: Akarpiles

    Science.gov (United States)

    Lim, Chun-Lan; Chan, Chee-Ming

    2017-11-01

    This research proposes an innovative solution for slope stabilization with less environmental footprint: AKARPILES. In Malaysia, landslide has become common civil and environmental problems that cause impacts to the economy, safety and environment. Therefore, effective slope stabilization method helps to improve the safety of public and protect the environment. This study focused on stabilizing surfacial slope failure. The idea of AKARPILES was generated from the tree roots system in slope stabilization. After the piles are installed in the slope and intercepting the slip plane, grout was pumped in and discharged through holes on the piles. The grout then filled the pores in the soil with random flow within the slip zone. SKW mixture was used to simulate the soil slope. There were two designs being proposed in this study and the prototypes were produced by a 3D printer. Trial mix of the grout was carried out to obtain the optimum mixing ratio of bentonite: cement: water. A series of tests were conducted on the single-pile-reinforced slope under vertical slope crest loading condition considering different slope gradients and nail designs. Parameters such as ultimate load, failure time and failure strain were recorded and compared. As comparison with the unreinforced slope, both designs of AKARPILES showed better but different performances in the model tests.

  7. Strong stabilization servo controller with optimization of performance criteria.

    Science.gov (United States)

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2011-07-01

    Synthesis of a simple robust controller with a pole placement technique and a H(∞) metrics is the method used for control of a servo mechanism with BLDC and BDC electric motors. The method includes solving a polynomial equation on the basis of the chosen characteristic polynomial using the Manabe standard polynomial form and parametric solutions. Parametric solutions are introduced directly into the structure of the servo controller. On the basis of the chosen parametric solutions the robustness of a closed-loop system is assessed through uncertainty models and assessment of the norm ‖•‖(∞). The design procedure and the optimization are performed with a genetic algorithm differential evolution - DE. The DE optimization method determines a suboptimal solution throughout the optimization on the basis of a spectrally square polynomial and Šiljak's absolute stability test. The stability of the designed controller during the optimization is being checked with Lipatov's stability condition. Both utilized approaches: Šiljak's test and Lipatov's condition, check the robustness and stability characteristics on the basis of the polynomial's coefficients, and are very convenient for automated design of closed-loop control and for application in optimization algorithms such as DE. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Extended design method for in-plane stability of haunched sway portal frames

    NARCIS (Netherlands)

    van Hove, B.W.E.M.; Snijder, H.H.; Hofmeyer, H.; Altinga, N.

    2017-01-01

    In current design rules the effect of a haunch on the sway in-plane stability of a steel portal frame only takes into account the influence of the haunch dimensions on the beam-to-column connection strength and stiffness. The effect of the haunch dimensions on the beam behavior, and thus on the

  9. Analysis of cerium-composite polymer-electrolyte membranes during and after accelerated oxidative-stability test

    Science.gov (United States)

    Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan

    2018-02-01

    The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.

  10. [Comparison between colorimetry and HPLC on the stability test of roxithromycin].

    Science.gov (United States)

    Wei, Z P; Mao, S R; Bi, D Z

    2000-11-01

    To compare the stability of roxithromycin in solutions of different pH. Roxithromycin solutions of different pH were prepared with water, simulate intestinal fluid (SIF) and simulate gastric fluid (SGF) shown to be the stability of these solutions were tested by colorimetry and HPLC. Roxithromycin was stable in water, SGF and SIF determined by colorimetry. However, it was found to be stable only in water and SIF but unstable in SGF as determined by HPLC. Roxithromycin is unstable in acidic medium like SGF. The metabolite of roxithromycin showed unfavorable interference on the assay of roxithromycin when colorimetry was used. Colorimetry can not be used for the determination and assay of roxithromycin in acidic solution like SGF.

  11. Trade-off between positive and negative design of protein stability: from lattice models to real proteins.

    Directory of Open Access Journals (Sweden)

    Orly Noivirt-Brik

    2009-12-01

    Full Text Available Two different strategies for stabilizing proteins are (i positive design in which the native state is stabilized and (ii negative design in which competing non-native conformations are destabilized. Here, the circumstances under which one strategy might be favored over the other are explored in the case of lattice models of proteins and then generalized and discussed with regard to real proteins. The balance between positive and negative design of proteins is found to be determined by their average "contact-frequency", a property that corresponds to the fraction of states in the conformational ensemble of the sequence in which a pair of residues is in contact. Lattice model proteins with a high average contact-frequency are found to use negative design more than model proteins with a low average contact-frequency. A mathematical derivation of this result indicates that it is general and likely to hold also for real proteins. Comparison of the results of correlated mutation analysis for real proteins with typical contact-frequencies to those of proteins likely to have high contact-frequencies (such as disordered proteins and proteins that are dependent on chaperonins for their folding indicates that the latter tend to have stronger interactions between residues that are not in contact in their native conformation. Hence, our work indicates that negative design is employed when insufficient stabilization is achieved via positive design owing to high contact-frequencies.

  12. Implementation of an ex situ stabilization technique at the Sand Springs superfund site to solidify and stabilize acid tar sludges involving a quick-lime based stabilization process and innovative equipment design

    International Nuclear Information System (INIS)

    McManus, R.W.; Grajczak, P.; Wilcoxson, J.C.; Webster, S.D.

    1997-01-01

    An old refinery site was safely remediated a year before schedule and for 25% less than final engineering estimates for the stabilization remedy thanks to energetic project management and innovative design involving ex situ stabilization/solidification of acid tar sludges. A quicklime based process, Dispersion by Chemical Reaction (DCR trademark), was employed to solidify and stabilize (SS) over 103,000 cubic meters (135,000 cubic yards) of petroleum waste, mostly acidic tarry sludge. The SS process was selected over competing methods because it afforded minimal volume increase, could readily achieve Record of Decision (ROD) specified physical and chemical treatment goals, could be implemented with treatment equipment that minimized emissions, and could be performed with low reagent usage and at low cost. To ensure treatment goals were achieved and an accelerated schedule met, a custom designed and fabricated transportable treatment unit (TTU) was employed to implement the process. The treated material was visually soil-like in character, it was left in stockpiles for periods of time, and it was placed and compacted in the on site landfill using standard earth-moving equipment

  13. Stability of selected volatile contact allergens in different patch test chambers under different storage conditions.

    Science.gov (United States)

    Mose, Kristian F; Andersen, Klaus E; Christensen, Lars Porskjaer

    2012-04-01

    Patch test preparations of volatile substances may evaporate during storage, thereby giving rise to reduced patch test concentrations. To investigate the stability of selected acrylates/methacrylates and fragrance allergens in three different test chambers under different storage conditions. Petrolatum samples of methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (2-HEMA), 2-hydroxypropyl acrylate (2-HPA), cinnamal and eugenol in patch test concentrations were stored in three different test chambers (IQ chamber™, IQ Ultimate™, and Van der Bend® transport container) at room temperature and in a refrigerator. The samples were analysed in triplicate with high-performance liquid chromatography. The decrease in concentration was substantial for all five allergens under both storage conditions in IQ chamber™ and IQ Ultimate™, with the exception of 2-HEMA during storage in the refrigerator. For these two chamber systems, the contact allergen concentration dropped below the stability limit in the following order: MMA, cinnamal, 2-HPA, eugenol, and 2-HEMA. In the Van der Bend® transport container, the contact allergens exhibited acceptable stability under both storage conditions, whereas MMA and 2-HPA required cool storage for maintenance of the limit. The Van der Bend® transport container was the best device for storage of samples of volatile contact allergens. © 2012 John Wiley & Sons A/S.

  14. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study.

    Directory of Open Access Journals (Sweden)

    Chi-Wen Lee

    Full Text Available Protein thermal stability is an important factor considered in medical and industrial applications. Many structural characteristics related to protein thermal stability have been elucidated, and increasing salt bridges is considered as one of the most efficient strategies to increase protein thermal stability. However, the accurate simulation of salt bridges remains difficult. In this study, a novel method for salt-bridge design was proposed based on the statistical analysis of 10,556 surface salt bridges on 6,493 X-ray protein structures. These salt bridges were first categorized based on pairing residues, secondary structure locations, and Cα-Cα distances. Pairing preferences generalized from statistical analysis were used to construct a salt-bridge pair index and utilized in a weighted electrostatic attraction model to find the effective pairings for designing salt bridges. The model was also coupled with B-factor, weighted contact number, relative solvent accessibility, and conservation prescreening to determine the residues appropriate for the thermal adaptive design of salt bridges. According to our method, eight putative salt-bridges were designed on a mesophilic β-glucosidase and 24 variants were constructed to verify the predictions. Six putative salt-bridges leaded to the increase of the enzyme thermal stability. A significant increase in melting temperature of 8.8, 4.8, 3.7, 1.3, 1.2, and 0.7°C of the putative salt-bridges N437K-D49, E96R-D28, E96K-D28, S440K-E70, T231K-D388, and Q277E-D282 was detected, respectively. Reversing the polarity of T231K-D388 to T231D-D388K resulted in a further increase in melting temperatures by 3.6°C, which may be caused by the transformation of an intra-subunit electrostatic interaction into an inter-subunit one depending on the local environment. The combination of the thermostable variants (N437K, E96R, T231D and D388K generated a melting temperature increase of 15.7°C. Thus, this study

  15. Overview of the IFMIF test cell design

    International Nuclear Information System (INIS)

    Moeslang, A.; Daum, E.; Jitsukawa, S.; Noda, K.; Viola, R.

    1996-01-01

    The Conceptual Design Activity (CDA) for the International Fusion Materials Irradiation Facility (IFMIF) has entered its second and final year, and an outline design has been developed. Initial evaluations of the potential of this high flux, high intensity D-Li source have shown that the main materials testing needs can be fulfilled. According to these needs, Vertical Test Assemblies will accommodate test modules for the high flux (0.5 liter, 20 dpa/a, 250-1000 C), the medium flux (6 liter, 1-20 dpa/a, 250-1000 C), the low flux (7.5 liter, 0.1-1 dpa/a), and the very low flux (> 100 liter, 0.01-0.1 dpa/a) regions. Detailed test matrices have been defined for the high and medium flux regions, showing that on the basis of small specimen test technologies, a database for an engineering design of an advanced fusion reactor (DEMO) can be established for a variety of structural materials and ceramic breeders. The design concepts for the Test Cell, including test assemblies, remote handling equipment and Hot Cell Facilities with capacity for investigating all irradiation specimens at the IFMIF site are described

  16. Stability analysis criteria in landfill design based on the Spanish code

    International Nuclear Information System (INIS)

    Estaire Gepp, J.; Pardo de Santayana, F.

    2014-01-01

    The design of a landfill requires performing stability analyses. To perform such analyses it is necessary to define different design situations and their corresponding safety factors. Geo synthetics are normally used to construct the lining system of the landfills, causing critical slip surfaces to pass along one of the different geosynthetic interfaces. Determination of the shear strength of such critical interfaces is, therefore, an extremely important issue. In this paper, these aspects are analysed based on what is set in the Spanish codes and in the technical literature. As a result of the study, some tables are presented which relate the different design situations (normal, accidental or extraordinary) to the shear strength of the lining system to be used (peak or residual) and define the minimum factor of safety to be accomplished. (Author)

  17. Test results of BM109 magnet field stability during ramping

    International Nuclear Information System (INIS)

    Kristalinski, A.

    1992-12-01

    This report presents results of the measured lag between the current ramp and the following magnetic field rise in BM109 magnets. The purpose of these tests is to choose identical ramping programs for PC4AN1, PC4AN2 and PC4AN3 magnets. The lag occurs due to the large eddy currents in the magnets' solid iron cores. The experiment requires a magnetic field stability of 0.1% during beam presence. Using existing equipment and a program slope of 100 Amp/sec starting at Tl yields fields within the 0.05% of set value. Add to this 0.05% for P.S. regulation to meet the required field stability of 0.1%. This program yields annual savings of $200,000 (assuming 100% usage) . Additional savings can be made by using faster slopes, but this requires additional controls

  18. Engine testing the design, building, modification and use of powertrain test facilities

    CERN Document Server

    MARTYR, A J

    2012-01-01

    Engine Testing is a unique, well-organized and comprehensive collection of the different aspects of engine and vehicle testing equipment and infrastructure for anyone involved in facility design and management, physical testing and the maintenance, upgrading and trouble shooting of testing equipment. Designed so that its chapters can all stand alone to be read in sequence or out of order as needed, Engine Testing is also an ideal resource for automotive engineers required to perform testing functions whose jobs do not involve engine testing on a regular basis. This recognized standard refer

  19. Mechanical testing - designers need: a view at component design and operations stages

    International Nuclear Information System (INIS)

    Shrivastava, S.K.

    2007-01-01

    Mechanical design of any component requires knowledge of values of various material properties which designer(s) make(s) use in designing the component. In design of nuclear power plant components, it assumes even greater importance in view of degree of precision and accuracy with which the values of various properties are required. This is in turn demands, high accuracy in testing machines and measuring methods. In this paper, attempt has been made to bring out that even from conventional tension test, how designer today looks for availability of engineering stress-strain diagram preferably through digitally acquired data points during the test from which he can derive values of Ramberg-Osgood parameters for use in fracture mechanics based analysis. Attempt has been also made to provide account of some of important fracture mechanics related tests which have been evolved in last two decades and designers need for evolution of simple test techniques to measure many more fracture mechanics related parameters as well as cater to constraints such as shape and size of material available from the components. Nuclear power plant has been primarily kept in view and ASME. Section III NB, ASME Section XI and relevant ASTM Standards have been taken as standard references. Further pressure retaining materials of pressure vessels/Reactor Pressure Vessels have been kept in view. (author)

  20. Thermal stability and filterability of jet fuels containing PDR additives in small-scale tests and realistic rig simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bauldreay, J.M.; Clark, R.H.; Heins, R.J. [Shell Research, Ltd., Chester (United Kingdom)

    1995-05-01

    Specification, small-scale and realistic fuel simulation tests have addressed concerns about the impact of pipeline drag reducer (PDR) flow modifying additives on jet fuel handling and performance. A typical PDR additive tended to block filters which were similar to those used in the specification Jet Fuel Thermal Oxidation Tester (JFTOT) and other thermal stability test apparatus. Blockages reduced flow rates and PDR concentrations downstream of the filters. Consequently two PDR additives (A&B) were tested in JFTOT apparatus without the usual in-line pre-filters as part of a Ministry of Defense (MoD) co-ordinated Round Robin exercise. Some fuel/PDR additive combinations caused decreases in JFTOT breakpoints. Effects were additive- (type, concentration and degree of shear) and fuel-dependent; most failures were caused by filter blockages and not by a failing lacquer rating. In further work at Thornton, the thermal stability characteristics of similar fuel/additive combinations have been examined in non-specification tests. In Flask Oxidation Tests, PDR additives caused no significant increase in the liquid phase oxidation rates of the fuels. Additives were tested in the Single Tube Heat Transfer Rig (STHTR) which duplicates many of the conditions of a heat exchanger element in an engine`s fuel supply system. B produced an average two-fold decrease in thermal stability in a Merox fuel; A had no significant effect. In hydrotreated fuel, B reduced the thermal stability up to five-fold. A had little effect below 205{degrees}C, while at higher temperatures there may have been a marginal improvement in thermal stability. Again, certain jet fuel/PDR combinations were seen to reduce thermal stability.

  1. Water NSTF Design, Instrumentation, and Test Planning

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, Darius D.; Gerardi, Craig D.; Hu, Rui; Kilsdonk, Dennis J.; Bremer, Nathan C.; Lomperski, Stephen W.; Kraus, Adam R.; Bucknor, Matthew D.; Lv, Qiuping; Farmer, Mitchell T.

    2017-08-01

    The following report serves as a formal introduction to the water-based Natural convection Shutdown heat removal Test Facility (NSTF) program at Argonne. Since 2005, this US Department of Energy (DOE) sponsored program has conducted large scale experimental testing to generate high-quality and traceable validation data for guiding design decisions of the Reactor Cavity Cooling System (RCCS) concept for advanced reactor designs. The most recent facility iteration, and focus of this report, is the operation of a 1/2 scale model of a water-RCCS concept. Several features of the NSTF prototype align with the conceptual design that has been publicly released for the AREVA 625 MWt SC-HTGR. The design of the NSTF also retains all aspects common to a fundamental boiling water thermosiphon, and thus is well poised to provide necessary experimental data to advance basic understanding of natural circulation phenomena and contribute to computer code validation. Overall, the NSTF program operates to support the DOE vision of aiding US vendors in design choices of future reactor concepts, advancing the maturity of codes for licensing, and ultimately developing safe and reliable reactor technologies. In this report, the top-level program objectives, testing requirements, and unique considerations for the water cooled test assembly are discussed, and presented in sufficient depth to support defining the program’s overall scope and purpose. A discussion of the proposed 6-year testing program is then introduced, which outlines the specific strategy and testing plan for facility operations. The proposed testing plan has been developed to meet the toplevel objective of conducting high-quality test operations that span across a broad range of single- and two-phase operating conditions. Details of characterization, baseline test cases, accident scenario, and parametric variations are provided, including discussions of later-stage test cases that examine the influence of geometric

  2. Hybrid Computerized Adaptive Testing: From Group Sequential Design to Fully Sequential Design

    Science.gov (United States)

    Wang, Shiyu; Lin, Haiyan; Chang, Hua-Hua; Douglas, Jeff

    2016-01-01

    Computerized adaptive testing (CAT) and multistage testing (MST) have become two of the most popular modes in large-scale computer-based sequential testing. Though most designs of CAT and MST exhibit strength and weakness in recent large-scale implementations, there is no simple answer to the question of which design is better because different…

  3. Prototype spent-fuel canister design, analysis, and test

    International Nuclear Information System (INIS)

    Leisher, W.B.; Eakes, R.G.; Duffey, T.A.

    1982-03-01

    Sandia National Laboratories was asked by the US Energy Research and Development Administration (now US Department of Energy) to design the spent fuel shipping cask system for the Clinch River Breeder Reactor Plant (CRBRP). As a part of this task, a canister which holds liquid sodium and the spent fuel assembly was designed, analyzed, and tested. The canister body survived the regulatory Type-B 9.1-m (30-ft) drop test with no apparent leakage. However, the commercially available metal seal used in this design leaked after the tests. This report describes the design approach, analysis, and prototype canister testing. Recommended work for completing the design, when funding is available, is included

  4. Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with Learning Classifiers

    Directory of Open Access Journals (Sweden)

    Esperanza García-Gonzalo

    2016-06-01

    Full Text Available The mining industry relies heavily on empirical analysis for design and prediction. An empirical design method, called the critical span graph, was developed specifically for rock stability analysis in entry-type excavations, based on an extensive case-history database of cut and fill mining in Canada. This empirical span design chart plots the critical span against rock mass rating for the observed case histories and has been accepted by many mining operations for the initial span design of cut and fill stopes. Different types of analysis have been used to classify the observed cases into stable, potentially unstable and unstable groups. The main purpose of this paper is to present a new method for defining rock stability areas of the critical span graph, which applies machine learning classifiers (support vector machine and extreme learning machine. The results show a reasonable correlation with previous guidelines. These machine learning methods are good tools for developing empirical methods, since they make no assumptions about the regression function. With this software, it is easy to add new field observations to a previous database, improving prediction output with the addition of data that consider the local conditions for each mine.

  5. Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with Learning Classifiers.

    Science.gov (United States)

    García-Gonzalo, Esperanza; Fernández-Muñiz, Zulima; García Nieto, Paulino José; Bernardo Sánchez, Antonio; Menéndez Fernández, Marta

    2016-06-29

    The mining industry relies heavily on empirical analysis for design and prediction. An empirical design method, called the critical span graph, was developed specifically for rock stability analysis in entry-type excavations, based on an extensive case-history database of cut and fill mining in Canada. This empirical span design chart plots the critical span against rock mass rating for the observed case histories and has been accepted by many mining operations for the initial span design of cut and fill stopes. Different types of analysis have been used to classify the observed cases into stable, potentially unstable and unstable groups. The main purpose of this paper is to present a new method for defining rock stability areas of the critical span graph, which applies machine learning classifiers (support vector machine and extreme learning machine). The results show a reasonable correlation with previous guidelines. These machine learning methods are good tools for developing empirical methods, since they make no assumptions about the regression function. With this software, it is easy to add new field observations to a previous database, improving prediction output with the addition of data that consider the local conditions for each mine.

  6. Design and evaluation of modelocked semiconductor lasers for low noise and high stability

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin

    2005-01-01

    We present work on design of monolithic mode-locked semiconductor lasers with focus on the gain medium. The use of highly inverted quantum wells in a low-loss waveguide enables both low quantum noise, low-chirped pulses and a large stability region. Broadband noise measurements are performed...

  7. Functional Testing of Wireless Sensor Node Designs

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Madsen, Jan

    2007-01-01

    Wireless sensor networks are networked embedded computer systems with stringent power, performance, cost and form-factor requirements along with numerous other constraints related to their pervasiveness and ubiquitousness. Therefore, only a systematic design methdology coupled with an efficient...... test approach can enable their conformance to design and deployment specifications. We discuss off-line, hierarchical, functional testing of complete wireless sensor nodes containing configurable logic through a combination of FPGA-based board test and Software-Based Self-Test (SBST) techniques...

  8. Plutonium stabilization and handling quality assurance program plan

    International Nuclear Information System (INIS)

    Weiss, E.V.

    1998-01-01

    This Quality Assurance Program Plan (QAPP) identifies project quality assurance requirements for all contractors involved in the planning and execution of Hanford Site activities for design, procurement, construction, testing and inspection for Project W-460, Plutonium Stabilization and Handling. The project encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM

  9. RAMI strategies in the IFMIF Test Facilities design

    Energy Technology Data Exchange (ETDEWEB)

    Abal, Javier, E-mail: javier.abal@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Dies, Javier [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Arroyo, José Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain); Bargalló, Enric [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Casal, Natalia; García, Ángela [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain); Martínez, Gonzalo; Tapia, Carlos; De Blas, Alfredo [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain)

    2013-10-15

    Highlights: • We have implemented fault tolerant design strategies so that the strong availability requirements are met. • The evolution to the present design of the signal and cooling lines inside the TTC has also been compared. • The RAMI analyses have demonstrated a strong capability in being a complementary tool in the design of IFMIF Test Facilities. -- Abstract: In this paper, a RAMI analysis of the different stages in Test Facilities (TF) design is described. The comparison between the availability results has been a milestone not only to evaluate the major unavailability contributors in the updates but also to implement fault tolerant design strategies when possible. These strategies encompass a wide range of design activities: from the definition of degraded modes of operation in the Test Facilities to specific modifications in the test modules in order to guarantee their fail safe operation.

  10. RAMI strategies in the IFMIF Test Facilities design

    International Nuclear Information System (INIS)

    Abal, Javier; Dies, Javier; Arroyo, José Manuel; Bargalló, Enric; Casal, Natalia; García, Ángela; Martínez, Gonzalo; Tapia, Carlos; De Blas, Alfredo; Mollá, Joaquín; Ibarra, Ángel

    2013-01-01

    Highlights: • We have implemented fault tolerant design strategies so that the strong availability requirements are met. • The evolution to the present design of the signal and cooling lines inside the TTC has also been compared. • The RAMI analyses have demonstrated a strong capability in being a complementary tool in the design of IFMIF Test Facilities. -- Abstract: In this paper, a RAMI analysis of the different stages in Test Facilities (TF) design is described. The comparison between the availability results has been a milestone not only to evaluate the major unavailability contributors in the updates but also to implement fault tolerant design strategies when possible. These strategies encompass a wide range of design activities: from the definition of degraded modes of operation in the Test Facilities to specific modifications in the test modules in order to guarantee their fail safe operation

  11. Yield stability and relationships among stability parameters in faba bean (Vicia faba L. genotypes

    Directory of Open Access Journals (Sweden)

    Tamene Temesgen

    2015-06-01

    Full Text Available Sixteen faba bean genotypes were evaluated in 13 environments in Ethiopia during the main cropping season for three years (2009–2011. The objectives of the study were to evaluate the yield stability of the genotypes and the relative importance of different stability parameters for improving selection in faba bean. The study was conducted using a randomized complete block design with four replications. G × E interaction and yield stability were estimated using 17 different stability parameters. Pooled analysis of variance for grain yield showed that the main effects of both genotypes and environments, and the interaction effect, were highly significant (P ≤ 0.001 and (P ≤ 0.01, respectively. The environment main effect accounted for 89.27% of the total yield variation, whereas genotype and G × E interaction effects accounted for 2.12% and 3.31%, respectively. Genotypic superiority index (Pi and FT3 were found to be very informative for selecting both high-yielding and stable faba bean genotypes. Twelve of the 17 stability parameters, including CVi, RS, α, λ, S2di, bi, Si(2, Wi, σi2, EV, P59, and ASV, were influenced simultaneously by both yield and stability. They should accordingly be used as complementary criteria to select genotypes with high yield and stability. Although none of the varieties showed consistently superior performance across all environments, the genotype EK 01024-1-2 ranked in the top third of the test entries in 61.5% of the test environments and was identified as the most stable genotype, with type I stability. EK 01024-1-2 also showed a 17.0% seed size advantage over the standard varieties and was released as a new variety in 2013 for wide production and named “Gora”. Different stability parameters explained genotypic performance differently, irrespective of yield performance. It was accordingly concluded that assessment of G × E interaction and yield stability should not be based on a single or a few

  12. Evaluation of Solvita compost stability and maturity tests for assessment of quality of end-products from mixed latrine style compost toilets

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Geoffrey B., E-mail: geoff.hill@geog.ubc.ca [University of British Columbia, Department of Geography, 1984 West Mall, Vancouver, Canada V6T 1Z2 (Canada); Baldwin, Susan A. [Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, B.C., Canada V6T 1Z3 (Canada); Vinnerås, Bjorn [Swedish University of Agricultural Sciences, Box 7032, SE-750 07 Uppsala (Sweden)

    2013-07-15

    Highlights: • Solvita® stability and maturity tests used on composting toilet end-product. • Solvita® ammonia better suited in evaluation of feedstock suitability for vermicomposting. • No clear value of Solvita® stability test due to prevalent inhibition of decomposition by ammonia. - Abstract: It is challenging and expensive to monitor and test decentralized composting toilet systems, yet critical to prevent the mismanagement of potentially harmful and pathogenic end-product. Recent studies indicate that mixed latrine composting toilets can be inhibited by high ammonia content, a product of urea hydrolysis. Urine-diverting vermicomposting toilets are better able to accomplish the goals of remote site human waste management by facilitating the consumption of fecal matter by earthworms, which are highly sensitive to ammonia. The reliability of Solvita® compost stability and maturity tests were evaluated as a means of determining feedstock suitability for vermicomposting (ammonia) and end-product stability/completeness (carbon dioxide). A significant linear regression between Solvita® ammonia and free ammonia gas was found. Solvita® ranking of maturity did not correspond to ranking assigned by ammonium:nitrate standards. Solvita® ammonia values 4 and 5 contained ammonia levels below earthworm toxicity limits in 80% and 100% of samples respectively indicative of their use in evaluating feedstock suitability for vermicomposting. Solvita® stability tests did not correlate with carbon dioxide evolution tests nor ranking of stability by the same test, presumably due to in situ inhibition of decomposition and microbial respiration by ammonia which were reported by the Solvita® CO{sub 2} test as having high stability values.

  13. Hypothesis Designs for Three-Hypothesis Test Problems

    OpenAIRE

    Yan Li; Xiaolong Pu

    2010-01-01

    As a helpful guide for applications, the alternative hypotheses of the three-hypothesis test problems are designed under the required error probabilities and average sample number in this paper. The asymptotic formulas and the proposed numerical quadrature formulas are adopted, respectively, to obtain the hypothesis designs and the corresponding sequential test schemes under the Koopman-Darmois distributions. The example of the normal mean test shows that our methods are qu...

  14. Stability of puppy reaction to traditional puppy aptitude test under experimentally reared condtions

    OpenAIRE

    Ishikawa, Keisuke; Eguchi, Yusuke; Uetake, Katsuji; Tnaka, Toshio

    2010-01-01

    The puppy aptitude test (PAT) is a general method for choosing a puppy. However, the reliability of the test has been in doubt because of its lack of a scientific base. In this report, we conducted PAT and some other behavioral tests before and after the establishment of socialization in order to investigate the stability of behavioral traits of puppies. Ten puppies were tested of eleven items on PAT at 57 and 140 days of age. The puppy’s behavior was videotaped and rated by four people using...

  15. Small-Signal Modeling, Stability Analysis and Design Optimization of Single-Phase Delay-Based PLLs

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Vidal, Ana

    2016-01-01

    Generally speaking, designing single-phase phaselocked loops (PLLs) is more complicated than three-phase ones, as their implementation often involves the generation of a fictitious orthogonal signal for the frame transformation. In recent years, many approaches to generate the orthogonal signal...... these issues and explore new methods to enhance their performance. The stability analysis, control design guidelines and performance comparison with the state-of-the-art PLLs are presented as well....

  16. Design of LLCL-filter for grid-connected converter to improve stability and robustness

    DEFF Research Database (Denmark)

    Huang, Min; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    of the switching frequency range. The resonance frequencies of the LLCL-filters based grid-connected converters are sensitive to the grid impedance as well as cable capacitance, which may influence the stability of the overall system. This paper proposes a new parameter design method for LLCL-filter from the point...

  17. EID - prototype design and user test 2004

    International Nuclear Information System (INIS)

    Welch, Robin; Friberg, Maarten; Nystad, Espen; Teigen, Arild; Veland, Oeystein

    2005-08-01

    programme is to gain insight into how this methodology can contribute to the design of operator displays in the nuclear industry. To do this, it was decided to design a limited number of displays on the FRESH simulator and conduct a user test to examine whether operators would be able to use and accept this type of design. The FRESH EID displays intend to show information and relationships in a graphical form that would require substantially more mental resources to utilize if using the conventional displays. This HWR presents the background for EID, the analysis process, the displays that have been designed, the user test and the outcome of the user test. This first attempt at developing and evaluating an EID has provided both valuable practical lessons learned and promising results for further work. (Author)

  18. DECADE design and testing status

    International Nuclear Information System (INIS)

    Sincerny, P.; Childers, K.; Goyer, J.; Kortbawi, D.; Roth, I.; Stallings, C.; Dempsey, J.; Schlitt, L.

    1996-01-01

    DECADE is a very high power generator that will be built at Arnold Engineering Development Center in Tullahoma, Tennessee, by the Defense Special Weapons Agency. The full facility consists of 16 modules. Two full power modules (DM1 and DM2) have been built to verify the DECADE design at Physics International. Each module consists of a 570 kJ Marx generator that pulse charges a water transfer capacitor. The transfer capacitor discharges into a water output line through an array of 6 parallel triggered gas switches. The water output line then pulse charges the inductive store/opening switch pulse compression stage. When the opening switch opens, the inductive store discharges into an electron beam bremsstrahlung diode load. The initial testing of the DM1 module has been completed. The electrical design of the module will be presented, including circuit modeling results. The test data from a module will be compared to the modeling results. This test data, including reproducibility and timing accuracy, was used to predict the output from the full system of 16 modules and a subset of 4 unit modules (DECADE Quad). One option under consideration is to deploy a DECADE Quad at the testing center in Tennessee prior to the full 16 module system. The design sketch of the DECADE Quad and the predicted output based on the modeling and the demonstrated module performance is given. (author). 11 figs., 11 refs

  19. DECADE design and testing status

    Energy Technology Data Exchange (ETDEWEB)

    Sincerny, P; Childers, K; Goyer, J; Kortbawi, D; Roth, I; Stallings, C; Dempsey, J [Physics International Company, San Leandro, CA (United States); Schlitt, L [Leland Schlitt Consulting Services, Livermore, CA (United States)

    1997-12-31

    DECADE is a very high power generator that will be built at Arnold Engineering Development Center in Tullahoma, Tennessee, by the Defense Special Weapons Agency. The full facility consists of 16 modules. Two full power modules (DM1 and DM2) have been built to verify the DECADE design at Physics International. Each module consists of a 570 kJ Marx generator that pulse charges a water transfer capacitor. The transfer capacitor discharges into a water output line through an array of 6 parallel triggered gas switches. The water output line then pulse charges the inductive store/opening switch pulse compression stage. When the opening switch opens, the inductive store discharges into an electron beam bremsstrahlung diode load. The initial testing of the DM1 module has been completed. The electrical design of the module will be presented, including circuit modeling results. The test data from a module will be compared to the modeling results. This test data, including reproducibility and timing accuracy, was used to predict the output from the full system of 16 modules and a subset of 4 unit modules (DECADE Quad). One option under consideration is to deploy a DECADE Quad at the testing center in Tennessee prior to the full 16 module system. The design sketch of the DECADE Quad and the predicted output based on the modeling and the demonstrated module performance is given. (author). 11 figs., 11 refs.

  20. Design requirements for the supercritical water oxidation test bed

    International Nuclear Information System (INIS)

    Svoboda, J.M.; Valentich, D.J.

    1994-05-01

    This report describes the design requirements for the supercritical water oxidation (SCWO) test bed that will be located at the Idaho National Engineering Laboratory (INEL). The test bed will process a maximum of 50 gph of waste plus the required volume of cooling water. The test bed will evaluate the performance of a number of SCWO reactor designs. The goal of the project is to select a reactor that can be scaled up for use in a full-size waste treatment facility to process US Department of Energy mixed wastes. EG ampersand G Idaho, Inc. will design and construct the SCWO test bed at the Water Reactor Research Test Facility (WRRTF), located in the northern region of the INEL. Private industry partners will develop and provide SCWO reactors to interface with the test bed. A number of reactor designs will be tested, including a transpiring wall, tube, and vessel-type reactor. The initial SCWO reactor evaluated will be a transpiring wall design. This design requirements report identifies parameters needed to proceed with preliminary and final design work for the SCWO test bed. A flow sheet and Process and Instrumentation Diagrams define the overall process and conditions of service and delineate equipment, piping, and instrumentation sizes and configuration Codes and standards that govern the safe engineering and design of systems and guidance that locates and interfaces test bed hardware are provided. Detailed technical requirements are addressed for design of piping, valves, instrumentation and control, vessels, tanks, pumps, electrical systems, and structural steel. The approach for conducting the preliminary and final designs and environmental and quality issues influencing the design are provided

  1. Evaluation of the stability of concentrated emulsions for lemon beverages using sequential experimental designs.

    Directory of Open Access Journals (Sweden)

    Teresa Cristina Abreu Almeida

    Full Text Available The study of the stability of concentrated oil-in-water emulsions is imperative to provide a scientific approach for an important problem in the beverage industry, contributing to abolish the empiricism still present nowadays. The use of these emulsions would directly imply a reduction of transportation costs between production and the sales points, where dilution takes place. The goal of this research was to evaluate the influence of the main components of a lemon emulsion on its stability, aiming to maximize the concentration of oil in the beverage and to correlate its physicochemical characteristics to product stability, allowing an increase of shelf life of the final product. For this purpose, analyses of surface and interface tension, electrokinetic potential, particle size and rheological properties of the emulsions were conducted. A 2(4-1 fractional factorial design was performed with the following variables: lemon oil/water ratio (30% to 50%, starch and Arabic gum concentrations (0% to 30% and dioctyl sodium sulfosuccinate (0 mg/L to 100 mg/L, including an evaluation of the responses at the central conditions of each variable. Sequentially, a full design was prepared to evaluate the two most influential variables obtained in the first plan, in which concentration of starch and gum ranged from 0% to 20%, while concentration of lemon oil/water ratio was fixed at 50%, without dioctyl sodium sulfosuccinate. Concentrated emulsions with stability superior to 15 days were obtained with either starch or Arabic gum and 50% lemon oil. The most stable formulations presented viscosity over 100 cP and ratio between the surface tension of the emulsion and the mucilage of over 1. These two answers were selected, since they better represent the behavior of emulsions in terms of stability and could be used as tools for an initial selection of the most promising formulations.

  2. Evaluation of the stability of concentrated emulsions for lemon beverages using sequential experimental designs.

    Science.gov (United States)

    Almeida, Teresa Cristina Abreu; Larentis, Ariane Leites; Ferraz, Helen Conceição

    2015-01-01

    The study of the stability of concentrated oil-in-water emulsions is imperative to provide a scientific approach for an important problem in the beverage industry, contributing to abolish the empiricism still present nowadays. The use of these emulsions would directly imply a reduction of transportation costs between production and the sales points, where dilution takes place. The goal of this research was to evaluate the influence of the main components of a lemon emulsion on its stability, aiming to maximize the concentration of oil in the beverage and to correlate its physicochemical characteristics to product stability, allowing an increase of shelf life of the final product. For this purpose, analyses of surface and interface tension, electrokinetic potential, particle size and rheological properties of the emulsions were conducted. A 2(4-1) fractional factorial design was performed with the following variables: lemon oil/water ratio (30% to 50%), starch and Arabic gum concentrations (0% to 30%) and dioctyl sodium sulfosuccinate (0 mg/L to 100 mg/L), including an evaluation of the responses at the central conditions of each variable. Sequentially, a full design was prepared to evaluate the two most influential variables obtained in the first plan, in which concentration of starch and gum ranged from 0% to 20%, while concentration of lemon oil/water ratio was fixed at 50%, without dioctyl sodium sulfosuccinate. Concentrated emulsions with stability superior to 15 days were obtained with either starch or Arabic gum and 50% lemon oil. The most stable formulations presented viscosity over 100 cP and ratio between the surface tension of the emulsion and the mucilage of over 1. These two answers were selected, since they better represent the behavior of emulsions in terms of stability and could be used as tools for an initial selection of the most promising formulations.

  3. Testing the accuracy and stability of spectral methods in numerical relativity

    International Nuclear Information System (INIS)

    Boyle, Michael; Lindblom, Lee; Pfeiffer, Harald P.; Scheel, Mark A.; Kidder, Lawrence E.

    2007-01-01

    The accuracy and stability of the Caltech-Cornell pseudospectral code is evaluated using the Kidder, Scheel, and Teukolsky (KST) representation of the Einstein evolution equations. The basic 'Mexico City tests' widely adopted by the numerical relativity community are adapted here for codes based on spectral methods. Exponential convergence of the spectral code is established, apparently limited only by numerical roundoff error or by truncation error in the time integration. A general expression for the growth of errors due to finite machine precision is derived, and it is shown that this limit is achieved here for the linear plane-wave test

  4. Development and testing of new upper-limb prosthetic devices: research designs for usability testing.

    Science.gov (United States)

    Resnik, Linda

    2011-01-01

    The purposes of this article are to describe usability testing and introduce designs and methods of usability testing research as it relates to upper-limb prosthetics. This article defines usability, describes usability research, discusses research approaches to and designs for usability testing, and highlights a variety of methodological considerations, including sampling, sample size requirements, and usability metrics. Usability testing is compared with other types of study designs used in prosthetic research.

  5. A Project to Design and Build the Magnets for a New Test Beamline, the ATF2, at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Cherrill M.; /slac; Sugahara, Ryuhei; Masuzawa, Mika; /KEK, Tsukuba; Bolzon, Benoit; Jeremie, Andrea; /Annecy, LAPP

    2011-02-07

    In order to achieve the high luminosity required at the proposed International Linear Collider (ILC), it is critical to focus the beams to nanometer size with the ILC Beam Delivery System, and to maintain the beams collisions with a nanometer-scale stability. To establish the technologies associated with this ultra-high precision beam handling, a special beamline has been designed and built as an extension of the existing extraction beamline of the Accelerator Test Facility at KEK, Japan. The ATF provides an adequate ultra-low emittance electron beam that is comparable to the ILC requirements; the ATF2 mimics the ILC final focus system to create a tightly focused, stable beam. There are 37 magnets in the ATF2, 29 quadrupoles, 5 sextupoles and 3 bends. These magnets had to be acquired in a short time and at minimum cost, which led to various acquisition strategies; but nevertheless they had to meet strict requirements on integrated strength, physical dimensions, compatibility with existing magnet movers and beam position monitors, mechanical stability and field stability and quality. This paper will describe how 2 styles of quadrupoles, 2 styles of sextupoles, one dipole style and their supports were designed, fabricated, refurbished or modified, measured and aligned by a small team of engineers from 3 continents.

  6. Control designs and stability analyses for Helly’s car-following model

    Science.gov (United States)

    Rosas-Jaimes, Oscar A.; Quezada-Téllez, Luis A.; Fernández-Anaya, Guillermo

    Car-following is an approach to understand traffic behavior restricted to pairs of cars, identifying a “leader” moving in front of a “follower”, which at the same time, it is assumed that it does not surpass to the first one. From the first attempts to formulate the way in which individual cars are affected in a road through these models, linear differential equations were suggested by author like Pipes or Helly. These expressions represent such phenomena quite well, even though they have been overcome by other more recent and accurate models. However, in this paper, we show that those early formulations have some properties that are not fully reported, presenting the different ways in which they can be expressed, and analyzing them in their stability behaviors. Pipes’ model can be extended to what it is known as Helly’s model, which is viewed as a more precise model to emulate this microscopic approach to traffic. Once established some convenient forms of expression, two control designs are suggested herein. These regulation schemes are also complemented with their respective stability analyses, which reflect some important properties with implications in real driving. It is significant that these linear designs can be very easy to understand and to implement, including those important features related to safety and comfort.

  7. A Psychological Measurement of Student Testing Design Preferences.

    Science.gov (United States)

    Shukla, P. K.; Bruno, James

    An analytical technique from the field of market research called conjoint analysis was applied to a psychological measurement of student testing design preferences. Past concerns with testing design are reviewed, and a newer approach to testing is identified--the modified confidence weighted-admissible probability measurement (MCW-APM) test…

  8. Design and Testing of an Educational Water Tunnel

    Science.gov (United States)

    Kosaraju, Srinivas

    2017-11-01

    A new water tunnel is designed and tested for educational and research purposes at Northern Arizona University. The university currently owns an educational wind tunnel with a test section of 12in X 12in X 24in. However, due to limited size of test section and range of Reynolds numbers, its application is currently limited to very few experiments. In an effort to expand the educational and research capabilities, a student team is tasked to design, build and test a water tunnel as a Capstone Senior Design project. The water tunnel is designed to have a test section of 8in X 8in X 36in. and be able to test up to Re = 50E3. Multiple numerical models are used to optimize the flow field inside the test section before building the physical apparatus. The water tunnel is designed to accommodate multiple experiments for drag and lift studies. The built-in die system can deliver up to three different colors to study the streamlines and vortex shedding from the surfaces. During the first phase, a low discharge pump is used to achieve Re = 4E3 to test laminar flows. In the second phase, a high discharge pump will be used to achieve targeted Re = 50E3 to study turbulent flows.

  9. Integrated optimization on aerodynamics-structure coupling and flight stability of a large airplane in preliminary design

    Directory of Open Access Journals (Sweden)

    Xiaozhe WANG

    2018-06-01

    Full Text Available The preliminary phase is significant during the whole design process of a large airplane because of its enormous potential in enhancing the overall performance. However, classical sequential designs can hardly adapt to modern airplanes, due to their repeated iterations, long periods, and massive computational burdens. Multidisciplinary analysis and optimization demonstrates the capability to tackle such complex design issues. In this paper, an integrated optimization method for the preliminary design of a large airplane is proposed, accounting for aerodynamics, structure, and stability. Aeroelastic responses are computed by a rapid three-dimensional flight load analysis method combining the high-order panel method and the structural elasticity correction. The flow field is determined by the viscous/inviscid iteration method, and the cruise stability is evaluated by the linear small-disturbance theory. Parametric optimization is carried out using genetic algorithm to seek the minimal weight of a simplified plate-beam wing structure in the cruise trim condition subject to aeroelastic, aerodynamic, and stability constraints, and the optimal wing geometry shape, front/rear spar positions, and structural sizes are obtained simultaneously. To reduce the computational burden of the static aeroelasticity analysis in the optimization process, the Kriging method is employed to predict aerodynamic influence coefficient matrices of different aerodynamic shapes. The multidisciplinary analyses guarantee computational accuracy and efficiency, and the integrated optimization considers the coupling effect sufficiently between different disciplines to improve the overall performance, avoiding the limitations of sequential approaches utilized currently. Keywords: Aeroelasticity, Integrated optimization, Multidisciplinary analysis, Large airplane, Preliminary design

  10. Engineering properties of stabilized subgrade soils for implementation of the AASHTO 2002 pavement design guide.

    Science.gov (United States)

    2009-06-01

    A comprehensive laboratory study was undertaken to determine engineering properties of cementitiously stabilized common subgrade soils in Oklahoma for the design of roadway pavements in accordance with the AASHTO 2002 Mechanistic-Empirical Pavement D...

  11. Development and design of a late-model fitness test instrument based on LabView

    Science.gov (United States)

    Xie, Ying; Wu, Feiqing

    2010-12-01

    Undergraduates are pioneers of China's modernization program and undertake the historic mission of rejuvenating our nation in the 21st century, whose physical fitness is vital. A smart fitness test system can well help them understand their fitness and health conditions, thus they can choose more suitable approaches and make practical plans for exercising according to their own situation. following the future trends, a Late-model fitness test Instrument based on LabView has been designed to remedy defects of today's instruments. The system hardware consists of fives types of sensors with their peripheral circuits, an acquisition card of NI USB-6251 and a computer, while the system software, on the basis of LabView, includes modules of user register, data acquisition, data process and display, and data storage. The system, featured by modularization and an open structure, is able to be revised according to actual needs. Tests results have verified the system's stability and reliability.

  12. The Healy Clean Coal Project: Design verification tests

    International Nuclear Information System (INIS)

    Guidetti, R.H.; Sheppard, D.B.; Ubhayakar, S.K.; Weede, J.J.; McCrohan, D.V.; Rosendahl, S.M.

    1993-01-01

    As part of the Healy Clean Coal Project, TRW Inc., the supplier of the advanced slagging coal combustors, has successfully completed design verification tests on the major components of the combustion system at its Southern California test facility. These tests, which included the firing of a full-scale precombustor with a new non-storage direct coal feed system, supported the design of the Healy combustion system and its auxiliaries performed under Phase 1 of the project. Two 350 million BTU/hr combustion systems have been designed and are now ready for fabrication and erection, as part of Phase 2 of the project. These systems, along with a back-end Spray Dryer Absorber system, designed and supplied by Joy Technologies, will be integrated with a Foster Wheeler boiler for the 50 MWe power plant at Healy, Alaska. This paper describes the design verification tests and the current status of the project

  13. Standard Test Method for Preparing Aircraft Cleaning Compounds, Liquid Type, Water Base, for Storage Stability Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of the stability in storage, of liquid, water-base chemical cleaning compounds, used to clean the exterior surfaces of aircraft. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  14. Design of a Portable Tire Test Rig and Vehicle Roll-Over Stability Control

    OpenAIRE

    Fox, Derek Martin

    2009-01-01

    Vehicle modeling and simulation have fast become the easiest and cheapest method for vehicle testing. No longer do multiple, intensive, physical tests need be performed to analyze the performance parameters that one wishes to validate. One component of the vehicle simulation that is crucial to the correctness of the result is the tire. Simulations that are run by a computer can be run many times faster than a real test could be performed, so the cost and complexity of the testing is reduced....

  15. Computer-Aided Test Flow in Core-Based Design

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the test-pattern generation and fault coverage determination in the core based design. The basic core-test strategy that one has to apply in the core-based design is stated in this work. A Computer-Aided Test (CAT) flow is proposed resulting in accurate fault coverage of

  16. Data Fusion Modeling for an RT3102 and Dewetron System Application in Hybrid Vehicle Stability Testing

    Directory of Open Access Journals (Sweden)

    Zhibin Miao

    2015-08-01

    Full Text Available More and more hybrid electric vehicles are driven since they offer such advantages as energy savings and better active safety performance. Hybrid vehicles have two or more power driving systems and frequently switch working condition, so controlling stability is very important. In this work, a two-stage Kalman algorithm method is used to fuse data in hybrid vehicle stability testing. First, the RT3102 navigation system and Dewetron system are introduced. Second, a modeling of data fusion is proposed based on the Kalman filter. Then, this modeling is simulated and tested on a sample vehicle, using Carsim and Simulink software to test the results. The results showed the merits of this modeling.

  17. Pressure Distribution Tests on a Series of Clark Y Biplane Cellules with Special Reference to Stability

    Science.gov (United States)

    Noyes, Richard W

    1933-01-01

    The pressure distribution data discussed in this report represents the results of part of an investigation conducted on the factors affecting the aerodynamic safety of airplanes. The present tests were made on semispan, circular-tipped Clark Y airfoil models mounted in the conventional manner on a separation plane. Pressure readings were made simultaneously at all test orifices at each of 20 angles of attack between -8 degrees and +90 degrees. The results of the tests on each wing arrangement are compared on the bases of maximum normal force coefficient, lateral stability at a low rate of roll, and relative longitudinal stability. Tabular data are also presented giving the center of pressure location of each wing.

  18. Severe Accident Test Station Design Document

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  19. Severe Accident Test Station Design Document

    International Nuclear Information System (INIS)

    Snead, Mary A.; Yan, Yong; Howell, Michael; Keiser, James R.; Terrani, Kurt A.

    2015-01-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  20. Interfacial stability of soil covers on lined surface impoundments

    International Nuclear Information System (INIS)

    Mitchell, D.H.; Gates, T.E.

    1986-04-01

    The factors affecting the interfacial stability of soil covers on geomembranes were examined to determine the maximum stable slopes for soil cover/geomembrane systems. Several instances of instability of soil covers on geomembranes have occurred at tailings ponds, leaving exposed geomembranes with the potential for physical ddamage and possibly chemical and ultraviolet degradation. From an operator's viewpoint, it is desirable to maximize the slope of lined facilities in order to maximize the volume-to-area ratio; however, the likelihood for instability also increases with increasing slope. Frictional data obtained from direct shear tests are compared with stability data obtained using a nine-square-meter (m 2 ) engineering-scale test stand to verify that direct shear test data are valid in slope design calculations. Interfacial frictional data from direct shear tests using high-density polyethylene and a poorly graded sand cover agree within several degrees with the engineering-scale tests. Additional tests with other soils and geomembranes are planned. The instability of soil covers is not always an interfacial problem; soil erosion and limited drainage capacity are additional factors that must be considered in the design of covered slopes. 7 refs., 5 figs., 2 tabs

  1. Design and testing of the AGS Booster BPM detector

    International Nuclear Information System (INIS)

    Thomas, R.; Ciardullo, D.J.; Van Zwienen, W.

    1991-01-01

    The AGS Booster beam position monitor system must accurately measure the position of beams and bunches over a wide range of intensity. The frequency of operation must also cover a wide range (600 kHz to 4.2 MHz) since the Booster accelerates both protons and heavy ions. Split-cylinder electrodes were chosen to monitor the position of the beam because of their good low frequency response and high linearity. The need to accelerate low-energy partially-stripped heavy ions requires the pick-up electrodes (PUEs) to operate in a 3 x 10 -11 torr vacuum. The PUEs are to measure the beam position to an absolute accuracy of ±0.5 mm and must therefore be mechanically stable despite the requirements that they be vacuum fired at 950 degree C and baked periodically to 300 degree C. This presentation describes both the mechanical design of the PUEs and the automated test procedure used to ensure the stability, accuracy, and linearity of each unit. 3 refs., 5 figs

  2. Accelerated testing for studying pavement design and performance (FY 2003) : research summary.

    Science.gov (United States)

    2008-01-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by : the highway departments of Missouri, Iowa, Kansas and Nebraska, has supported an : accelerated pavement testing (APT) project to compare the performance of stabilized ...

  3. Technical justifications for the tests and criteria in the waste form technical position appendix on cement stabilization

    International Nuclear Information System (INIS)

    Siskind, B.; Cowgill, M.G.

    1992-01-01

    As part of its technical assistance to the Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) developed a background document for the cement stabilization appendix, Appendix A, to Rev. 1 of the Technical Position on Waste Form (TP). Here we present an overview of this background document, which provides technical justification for the stability tests to be performed on cement-stabilized waste forms and for the criteria posed in each test, especially for those tests which have been changed from their counterparts in the May 1983 Rev. 0 TP. We address guidelines for procedures from Appendix A which are considered in less detail or not at all in the Rev. 0 of the TP, namely, qualification specimen preparation (mixing, curing, storage), statistical sampling and analysis, process control program specimen preparation and examination, and surveillance specimens. For each waste form qualification test, criterion or procedural guidelines, we consider the reason for its inclusion in Appendix A, the changes from Rev. 0 of the TP (if applicable), and a discussion of the justification or rationale for these changes

  4. Technical justifications for the tests and criteria in the waste form Technical position appendix on cement stabilization

    International Nuclear Information System (INIS)

    Siskind, B.; Cowgill, M.G.

    1992-01-01

    As part of its technical assistance to the Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) developed a background document for the cement stabilization appendix. Appendix A, to Rev. 1 of the Technical Position on Waste Form (TP). Here we present an overview of this background document, which provides technical justification for the stability tests to be performed on cement-stabilized waste forms and for the criteria posed in each test) especially for those tests which have been changed from their counterparts in the May 1983 Rev. 0 TP. We address guidelines for procedures from Appendix A which are considered in less detail or not at all in the Rev. 0 of the TP, namely, qualification specimen preparation (mixing, curing, storage), statistical sampling and analysis, process control program specimen preparation and examination, and surveillance specimens. For each waste form qualification test, criterion or procedural guideline, we consider the reason for its inclusion in Appendix A, the changes from Rev. 0 of the TP (if applicable), and a discussion of the justification or rationale for these changes. (author)

  5. Implementation Support of Security Design Patterns Using Test Templates

    Directory of Open Access Journals (Sweden)

    Masatoshi Yoshizawa

    2016-06-01

    Full Text Available Security patterns are intended to support software developers as the patterns encapsulate security expert knowledge. However, these patterns may be inappropriately applied because most developers are not security experts, leading to threats and vulnerabilities. Here we propose a support method for security design patterns in the implementation phase of software development. Our method creates a test template from a security design pattern, consisting of an “aspect test template” to observe the internal processing and a “test case template”. Providing design information creates a test from the test template with a tool. Because our test template is reusable, it can easily perform a test to validate a security design pattern. In an experiment involving four students majoring in information sciences, we confirm that our method can realize an effective test, verify pattern applications, and support pattern implementation.

  6. Computer-Aided Test Flow in Core-Based Design

    OpenAIRE

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the test-pattern generation and fault coverage determination in the core based design. The basic core-test strategy that one has to apply in the core-based design is stated in this work. A Computer-Aided Test (CAT) flow is proposed resulting in accurate fault coverage of embedded cores. The CAT now is applied to a few cores within the Philips Core Test Pilot IC project

  7. Design and Construction of a Hydroturbine Test Facility

    Science.gov (United States)

    Ayli, Ece; Kavurmaci, Berat; Cetinturk, Huseyin; Kaplan, Alper; Celebioglu, Kutay; Aradag, Selin; Tascioglu, Yigit; ETU Hydro Research Center Team

    2014-11-01

    Hydropower is one of the clean, renewable, flexible and efficient energy resources. Most of the developing countries invest on this cost-effective energy source. Hydroturbines for hydroelectric power plants are tailor-made. Each turbine is designed and constructed according to the properties, namely the head and flow rate values of the specific water source. Therefore, a center (ETU Hydro-Center for Hydro Energy Research) for the design, manufacturing and performance tests of hydraulic turbines is established at TOBB University of Economics and Technology to promote research in this area. CFD aided hydraulic and structural design, geometry optimization, manufacturing and performance tests of hydraulic turbines are the areas of expertise of this center. In this paper, technical details of the design and construction of this one of a kind test facility in Turkey, is explained. All the necessary standards of IEC (International Electrotechnical Commission) are met since the test facility will act as a certificated test center for hydraulic turbines.

  8. Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility

    Science.gov (United States)

    Paxton, Brendan

    Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high

  9. Ares-I-X Stability and Control Flight Test: Analysis and Plans

    Science.gov (United States)

    Brandon, Jay M.; Derry, Stephen D.; Heim, Eugene H.; Hueschen, Richard M.; Bacon, Barton J.

    2008-01-01

    The flight test of the Ares I-X vehicle provides a unique opportunity to reduce risk of the design of the Ares I vehicle and test out design, math modeling, and analysis methods. One of the key features of the Ares I design is the significant static aerodynamic instability coupled with the relatively flexible vehicle - potentially resulting in a challenging controls problem to provide adequate flight path performance while also providing adequate structural mode damping and preventing adverse control coupling to the flexible structural modes. Another challenge is to obtain enough data from the single flight to be able to conduct analysis showing the effectiveness of the controls solutions and have data to inform design decisions for Ares I. This paper will outline the modeling approaches and control system design to conduct this flight test, and also the system identification techniques developed to extract key information such as control system performance (gain/phase margins, for example), structural dynamics responses, and aerodynamic model estimations.

  10. Physical Analysis Work for Slope Stability at Shah Alam, Selangor

    Science.gov (United States)

    Ishak, M. F.; Zaini, M. S. I.

    2018-04-01

    Slope stability analysis is performed to assess the equilibrium conditions and the safe design of a human-made or natural slope to find the endangered areas. Investigation of potential failure and determination of the slope sensitivity with regard to safety, reliability and economics were parts of this study. Ground anchor is designed to support a structure in this study. Ground anchor were implemented at the Mechanically Stabilized Earth (MSE) wall along Anak Persiaran Jubli Perak to overcome the further cracking of pavement parking, concrete deck and building of the Apartments. A result from the laboratory testing of soil sample such as index test and shear strength test were applied to the Slope/W software with regard to the ground anchors that were implemented. The ground anchors were implemented to increase the value of the factor of safety (FOS) of the MSE Wall. The value of the factor of safety (FOS) before implementing the ground anchor was 0.800 and after the ground anchor was implemented the value increase to 1.555. The increase percentage of factor of safety by implementing on stability of slope was 94.38%.

  11. Design of a fusion engineering test facility

    International Nuclear Information System (INIS)

    Sager, P.H.

    1980-01-01

    The fusion Engineering Test Facility (ETF) is being designed to provide for engineering testing capability in a program leading to the demonstration of fusion as a viable energy option. It will combine power-reactor-type components and subsystems into an integrated tokamak system and provide a test bed to test blanket modules in a fusion environment. Because of the uncertainties in impurity control two basic designs are being developed: a design with a bundle divertor (Design 1) and one with a poloidal divertor (Design 2). The two designs are similar where possible, the latter having somewhat larger toroidal field (TF) coils to accommodate removal of the larger torus sectors required for the single-null poloidal divertor. Both designs have a major radius of 5.4 m, a minor radius of 1.3 m, and a D-shaped plasma with an elongation of 1.6. Ten TF coils are incorporated in both designs, producing a toroidal field of 5.5 T on-axis. The ohmic heating and equilibrium field (EF) coils supply sufficient volt-seconds to produce a flat-top burn of 100 s and a duty cycle of 135 s, including a start of 12 s, a burn termination of 10 s, and a pumpdown of 13 s. The total fusion power during burn is 750 MW, giving a neutron wall loading of 1.5 MW/m 2 . In Design 1 of the poloidal field (PF) coils except the fast-response EF coils are located outside the FT coils and are superconducting. The fast-response coils are located inside the TF coil bore near the torus and are normal conducting so that they can be easily replaced.In Design 2 all of the PF coils are located outside the TF coils and are superconducting. Ignition is achieved with 60 MW of neutral beam injection at 150 keV. Five megawatts of radio frequency heating (electron cyclotron resonance heating) is used to assist in the startup and limit the breakdown requirement to 25 V

  12. TEST-RETEST RELIABILITY OF THE CLOSED KINETIC CHAIN UPPER EXTREMITY STABILITY TEST (CKCUEST) IN ADOLESCENTS: RELIABILITY OF CKCUEST IN ADOLESCENTS.

    Science.gov (United States)

    de Oliveira, Valéria M A; Pitangui, Ana C R; Nascimento, Vinícius Y S; da Silva, Hítalo A; Dos Passos, Muana H P; de Araújo, Rodrigo C

    2017-02-01

    The Closed Kinetic Chain Upper Extremity Stability Test (CKCUEST) has been proposed as an option to assess upper limb function and stability; however, there are few studies that support the use of this test in adolescents. The purpose of the present study was to investigate the intersession reliability and agreement of three CKCUEST scores in adolescents and establish clinimetric values for this test. Test-retest reliability. Twenty-five healthy adolescents of both sexes were evaluated. The subjects performed two CKCUEST with an interval of one week between the tests. An intraclass correlation coefficient (ICC 3,3 ) two-way mixed model with a 95% interval of confidence was utilized to determine intersession reliability. A Bland-Altman graph was plotted to analyze the agreement between assessments. The presence of systematic error was evaluated by a one-sample t test. The difference between the evaluation and reevaluation was observed using a paired-sample t test. The level of significance was set at 0.05. Standard error of measurements and minimum detectable changes were calculated. The intersession reliability of the average touches score, normalized score, and power score were 0.68, 0.68 and 0.87, the standard error of measurement were 2.17, 1.35 and 6.49, and the minimal detectable change was 6.01, 3.74 and 17.98, respectively. The presence of systematic error (p test with moderate to excellent reliability when used with adolescents. The CKCUEST is a measurement with moderate to excellent reliability for adolescents. 2b.

  13. Graphical Tests for Power Comparison of Competing Designs.

    Science.gov (United States)

    Hofmann, H; Follett, L; Majumder, M; Cook, D

    2012-12-01

    Lineups have been established as tools for visual testing similar to standard statistical inference tests, allowing us to evaluate the validity of graphical findings in an objective manner. In simulation studies lineups have been shown as being efficient: the power of visual tests is comparable to classical tests while being much less stringent in terms of distributional assumptions made. This makes lineups versatile, yet powerful, tools in situations where conditions for regular statistical tests are not or cannot be met. In this paper we introduce lineups as a tool for evaluating the power of competing graphical designs. We highlight some of the theoretical properties and then show results from two studies evaluating competing designs: both studies are designed to go to the limits of our perceptual abilities to highlight differences between designs. We use both accuracy and speed of evaluation as measures of a successful design. The first study compares the choice of coordinate system: polar versus cartesian coordinates. The results show strong support in favor of cartesian coordinates in finding fast and accurate answers to spotting patterns. The second study is aimed at finding shift differences between distributions. Both studies are motivated by data problems that we have recently encountered, and explore using simulated data to evaluate the plot designs under controlled conditions. Amazon Mechanical Turk (MTurk) is used to conduct the studies. The lineups provide an effective mechanism for objectively evaluating plot designs.

  14. Axial compressor blade design for desensitization of aerodynamic performance and stability to tip clearance

    Science.gov (United States)

    Erler, Engin

    Tip clearance flow is the flow through the clearance between the rotor blade tip and the shroud of a turbomachine, such as compressors and turbines. This flow is driven by the pressure difference across the blade (aerodynamic loading) in the tip region and is a major source of loss in performance and aerodynamic stability in axial compressors of modern aircraft engines. An increase in tip clearance, either temporary due to differential radial expansion between the blade and the shroud during transient operation or permanent due to engine wear or manufacturing tolerances on small blades, increases tip clearance flow and results in higher fuel consumption and higher risk of engine surge. A compressor design that can reduce the sensitivity of its performance and aerodynamic stability to tip clearance increase would have a major impact on short and long-term engine performance and operating envelope. While much research has been carried out on improving nominal compressor performance, little had been done on desensitization to tip clearance increase beyond isolated observations that certain blade designs such as forward chordwise sweep, seem to be less sensitive to tip clearance size increase. The current project aims to identify through a computational study the flow features and associated mechanisms that reduces sensitivity of axial compressor rotors to tip clearance size and propose blade design strategies that can exploit these results. The methodology starts with the design of a reference conventional axial compressor rotor followed by a parametric study with variations of this reference design through modification of the camber line and of the stacking line of blade profiles along the span. It is noted that a simple desensitization method would be to reduce the aerodynamic loading of the blade tip which would reduce the tip clearance flow and its proportional contribution to performance loss. However, with the larger part of the work on the flow done in this

  15. On Front Slope Stability of Berm Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    2013-01-01

    The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison...... with the reshaping of a large Norwegian breakwater exposed to the North Sea waves. As a motivation for applying the Van der Meer formula a discussion of design parameters related to berm breakwater stability formulae is given. Comparisons of front erosion predicted by the use of the Van der Meer formula with model...... test results including tests presented in Sigurdarson and Van der Meer (2011) are discussed. A proposal is presented for performance of new model tests with the purpose of developing more accurate formulae for the prediction of front slope erosion as a function of front slope, relative berm height...

  16. Integral Design workshops: organization, structure and testing

    OpenAIRE

    Zeiler, W Wim; Savanovic, P Perica

    2010-01-01

    The purpose of this paper is to achieve an understanding of design activities in the context of building design. The starting point is an overview of design research and design methodology. From the insights gained by this analysis of design in this specific context, we present an 'organization structure and design' workshop approach for collaborative multi-discipline design management. The workshops set-up, used to implement and to test the approach, are presented as well as the experiences ...

  17. Stability and disturbance of large dc superconducting magnets

    International Nuclear Information System (INIS)

    Wang, S.T.

    1981-01-01

    This paper addresses the stability aspects of several successful dc superconducting magnets such as large bubble chamber magnets, and magnets for the Mirror Fusion Test Facility and MHD Research Facility. Specifically, it will cover Argonne National Laboratory 12-Foot Bubble Chamber magnets, the 15-foot Bubble Chamber magnets at Fermi National Laboratory, the MFTF-B Magnet System at Lawrence Livermore National Laboratory, the U-25B Bypass MHD Magnet, and the CFFF Superconducting MHD magnet built by Argonne National Laboratory. All of these magnets are cooled in pool-boiling mode. Magnet design is briefly reviewed. Discussed in detail are the adopted stability critera, analyses of stability and disturbance, stability simulation, and the final results of magnet performance and the observed coil disturbances

  18. Stabilizing IkappaBalpha by "consensus" design.

    Science.gov (United States)

    Ferreiro, Diego U; Cervantes, Carla F; Truhlar, Stephanie M E; Cho, Samuel S; Wolynes, Peter G; Komives, Elizabeth A

    2007-01-26

    IkappaBalpha is the major regulator of transcription factor NF-kappaB function. The ankyrin repeat region of IkappaBalpha mediates specific interactions with NF-kappaB dimers, but ankyrin repeats 1, 5 and 6 display a highly dynamic character when not in complex with NF-kappaB. Using chemical denaturation, we show here that IkappaBalpha displays two folding transitions: a non-cooperative conversion under weak perturbation, and a major cooperative folding phase upon stronger insult. Taking advantage of a native Trp residue in ankyrin repeat (AR) 6 and engineered Trp residues in AR2, AR4 and AR5, we show that the cooperative transition involves AR2 and AR3, while the non-cooperative transition involves AR5 and AR6. The major structural transition can be affected by single amino acid substitutions converging to the "consensus" ankyrin repeat sequence, increasing the native state stability significantly. We further characterized the structural and dynamic properties of the native state ensemble of IkappaBalpha and the stabilized mutants by H/(2)H exchange mass spectrometry and NMR. The solution experiments were complemented with molecular dynamics simulations to elucidate the microscopic origins of the stabilizing effect of the consensus substitutions, which can be traced to the fast conformational dynamics of the folded ensemble.

  19. Creating Ribo-T: (Design, Build, Test)n.

    Science.gov (United States)

    Carlson, Erik D

    2015-11-20

    Engineering biology is especially challenging given our relatively poor ability to rationally design within life's complex design landscape. Thus, moving through the engineering "design, build, test" cycle multiple times accumulates system knowledge and hopefully yields a successful design. Here I discuss the engineering process behind our recently published work creating a ribosome with tethered subunits, Ribo-T.

  20. Short-term stability test for thorium soil candidate a reference material

    Energy Technology Data Exchange (ETDEWEB)

    Clain, Almir F.; Fonseca, Adelaide M.G.; Dantas, Vanessa V.D.B.; Braganca, Maura J.C.; Souza, Poliana S., E-mail: almir@ird.gov.br, E-mail: adelaide@ird.gov.br, E-mail: vanessa@ird.gov.br, E-mail: maura@ird.gov.br, E-mail: poliana@bolsista.ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This work describes a methodology to determine the soil short-term stability after the steps of production in laboratory. The short-term stability of the soil is an essential property to be determined in order to producing a reference material. The soil is a candidate of reference material for chemical analysis of thorium with metrological traceability to be used in environmental analysis, equipment calibration, validation methods, and quality control. A material is considered stable in a certain temperature if the property of interest does not change with time, considering the analytical random fluctuations. Due to this, the angular coefficient from the graphic of Th concentration versus elapsed time must be near to zero. The analytical determinations of thorium concentration were performed by Instrumental Neutron activation Analysis. The slopes and their uncertainties were obtained from the regression lines at temperatures of 20 deg C and 60 deg C, with control temperature of -20 deg C. From the obtained data a t-test was applied. In both temperatures the calculated t-value was lower than the critical value, so we can conclude with 95% confidence level that no significant changes happened during the period studied concerning thorium concentration in soil at temperatures of 20 deg C and 60 deg C, showing stability at these temperatures. (author)

  1. Short-term stability test for thorium soil candidate a reference material

    International Nuclear Information System (INIS)

    Clain, Almir F.; Fonseca, Adelaide M.G.; Dantas, Vanessa V.D.B.; Braganca, Maura J.C.; Souza, Poliana S.

    2015-01-01

    This work describes a methodology to determine the soil short-term stability after the steps of production in laboratory. The short-term stability of the soil is an essential property to be determined in order to producing a reference material. The soil is a candidate of reference material for chemical analysis of thorium with metrological traceability to be used in environmental analysis, equipment calibration, validation methods, and quality control. A material is considered stable in a certain temperature if the property of interest does not change with time, considering the analytical random fluctuations. Due to this, the angular coefficient from the graphic of Th concentration versus elapsed time must be near to zero. The analytical determinations of thorium concentration were performed by Instrumental Neutron activation Analysis. The slopes and their uncertainties were obtained from the regression lines at temperatures of 20 deg C and 60 deg C, with control temperature of -20 deg C. From the obtained data a t-test was applied. In both temperatures the calculated t-value was lower than the critical value, so we can conclude with 95% confidence level that no significant changes happened during the period studied concerning thorium concentration in soil at temperatures of 20 deg C and 60 deg C, showing stability at these temperatures. (author)

  2. Emailing Drones: From Design to Test Range to ARS Offices and into the Field

    Science.gov (United States)

    Fuka, D. R.; Singer, S.; Rodriguez, R., III; Collick, A.; Cunningham, A.; Kleinman, P. J. A.; Manoukis, N. C.; Matthews, B.; Ralston, T.; Easton, Z. M.

    2017-12-01

    Unmanned aerial vehicles (UAVs or `drones') are one of the newest tools available for collecting geo- and biological-science data in the field, though today's commercial drones only come in a small range of options. While scientific research has benefitted from the enhanced topographic and surface characterization data that UAVs can provide through traditional image based remote sensing techniques, drones have significantly greater mission-specific potential than are currently utilized. The reasons for this under-utilization are twofold, 1) because with their broad capabilities comes the need to be careful in implementation, and as such, FAA and other regulatory agencies around the world have blanket regulations that can inhibit new designs from being implemented, and 2) current multi-mission-multi-payload commercial drones have to be over-designed to compensate for the fact that they are very difficult to stabilize for multiple payloads, leading to a much higher cost than necessary. For this project, we explore and demonstrate a workflow to optimize the design, testing, approval, and implementation of embarrassingly inexpensive mission specific drones, with two use cases. The first will follow the process from design (at VTech and UH Hilo) to field implementation (by USDA-ARS in PA and Extension in VA) of several custom water quality monitoring drones, printed on demand at ARS and Extension offices after testing at the Pan-Pacific UAS Test Range Complex (PPUTRC). This type of customized drone can allow for an increased understanding in the transition from non-point source to point source agri-chemical and pollutant transport in watershed systems. The second use case will follow the same process, resulting in customized drones with pest specific traps built into the design. This class of customized drone can facilitate IPM pest monitoring programs nationwide, decreasing the intensive and costly quarantine and population elimination measures that currently exist

  3. Eye-head stabilization mechanism for a humanoid robot tested on human inertial data

    DEFF Research Database (Denmark)

    Vannucci, Lorenzo; Falotico, Egidio; Tolu, Silvia

    2016-01-01

    they keep the image stationary on the retina. In this work we present the first complete model of eye-head stabilization based on the coordination of VCR and VOR. The model is provided with learning and adaptation capabilities based on internal models. Tests on a simulated humanoid platform replicating...

  4. Design, fabrication, and testing of a helium-cooled module for the ITER divertor

    International Nuclear Information System (INIS)

    Baxi, C.B.; Smith, J.P.; Youchison, D.

    1994-08-01

    The International Thermonuclear Reactor (ITER) will have a single-null divertor with total power flow of 200 MW and a peak heat flux of about 5 MW/m 2 . The reference coolant for the divertor is water. However, helium is a viable alternative and offers advantages from safety considerations, such as excellent radiation stability and chemical inertness. In order to prove the feasibility of helium cooling at ITER relevant heat flux conditions, General Atomics designed, fabricated, and tested a helium-cooled divertor module. The module was made from dispersion strengthened copper, with a heat flux surface 25 mm wide and 80 mm long, designed for twice the ITER divertor heat flux. Different techniques were examined to enhance the heat transfer, which in turn reduced the flow and pumping power required to cool the module. It was concluded that an extended surface was the most practical solution. An optimization study was performed to find the best extended surface parameters. The optimum extended surface geometry consisted of fins: 10 mm high, 0.4 mm thick with a 1 mm pitch. It was estimated to require a pumping power of 150 W to remove 20 kW of power. This is more than an order of magnitude reduction in pumping power requirement, compared to smooth surface. The module was fabricated by electric discharge machining (EDM) process. The testing was carried out at SNLA during August 1993. The testing confirmed the design calculations. The peak heat flux during the test was 10 MW/m 2 applied over a surface area of 20 cm 2 . The pumping power calculated from flow rate and pressure drop measurement was about 160 W, which was less than 1% of the power removed. It is planned to test the module to higher temperature limits and higher heat fluxes during coming months. As a result of this effort we conclude that helium cooling of the ITER divertor is feasible without requiring a very large helium pressure or a large pumping power

  5. Design and synthesis of a novel multifunctional stabilizer for highly stable uc(dl)-tetrahydropalmatine nanosuspensions and in vitro study

    Science.gov (United States)

    Yan, Beibei; Wang, Yancai; Wang, Lulu; Zhou, Yuqi; Shang, Xueyun; Zhao, Juan; Liu, Yangyang; Du, Juan

    2018-05-01

    The present study aimed to prepare stable uc(dl)-tetrahydropalmatine (uc(dl)-THP) nanosuspensions of optimized formulation with PEGylated chitosan as a multifunctional stabilizer using the antisolvent precipitation method. A central composite design project of three factors and five-level full factorial (53) was applied to design the experimental program, and response surface methodology analysis was used to optimize the experimental conditions. The effects of critical influencing factors such as PEGylated chitosan concentration, operational temperature, and ultrasonic energy on particle size and zeta potential were investigated. Under the optimization nanosuspension formulation, the particle size was 269 nm and zeta potential was at 37.4 mV. Also, the uc(dl)-THP nanosuspensions maintained good physical stability after 2 months, indicating the potential ability of the multifunctional stabilizer for stable nanosuspension formulation. Hence, the present findings indicated that PEGylated chitosan could be used as the ideal stabilizer to form a physically stable nanosuspension formulation.

  6. Engineering design of vertical test stand cryostat

    International Nuclear Information System (INIS)

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.

    2011-01-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN 2 ) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B and PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface 2 shield has been performed to check the effectiveness of LN 2 cooling and for compliance with ASME piping code allowable stresses.

  7. The design of multi-lead-compensators for stabilization and pole placement in double-integrator networks

    NARCIS (Netherlands)

    Wan, Yan; Roy, Sandip; Saberi, Ali; Stoorvogel, Antonie Arij

    2010-01-01

    We study decentralized controller design for stabilization and pole-placement, in a network of autonomous agents with double-integrator internal dynamics and arbitrary observation topology. We show that a simple multi-lead-compensator architecture, in particular one in which each agent uses a

  8. Characterizing the Role of Nanoparticle Design on Tumor Transport and Stability in the Extracellular Environment

    Science.gov (United States)

    Albanese, Alexandre

    Nanotechnology has emerged as an exciting strategy for the delivery of diagnostic and therapeutic agents into established tumors. Advancements in nanomaterial synthesis have generated an extensive number of nanoparticle designs made from different materials. Unfortunately, it remains impossible to predict a design's effectiveness for in vivo tumor accumulation. Little is known about how a nanoparticle's morphology and surface chemistry affect its interactions with cells and proteins inside the tumor tissue. This thesis focuses on the development of in vitro experimental tools to evaluate how nanoparticle design affects transport in a three-dimensional tumor tissue and stability in the tumor microenvironment. Nanoparticle transport was evaluated using a novel 'tumor-on-a-chip' system where multicellular tumor spheroids were immobilized in a microfluidic channel. This setup created a three-dimensional tumor environment displaying physiological cell density, extracellular matrix organization, and interstitial flow rates. The tumor-on-a-chip demonstrated that accumulation of nanoparticles was limited to diameters below 110 nm and was improved by receptor targeting. Nanoparticle stability in the tumor microenvironment was evaluated using media isolated from different tumor cell lines. Nanoparticle diameter and surface chemistry were important determinants of stability in cancer cell-conditioned media. Small nanoparticles with unstable surface chemistries adsorbed cellular proteins on their surface and were prone to aggregation. Nanoparticle aggregation altered cellular interactions leading to changes in cell uptake. Using a novel technique to generate different aggregate sizes possessing a uniform surface composition, it was determined that aggregation can change receptor affinity, cell internalization mechanisms and sub-cellular sequestration patterns. Data from this thesis characterize the behavior of nanoparticles within modeled tumor environments and provide some

  9. Analysis of the particle stability in a new designed ultrasonic levitation device.

    Science.gov (United States)

    Baer, Sebastian; Andrade, Marco A B; Esen, Cemal; Adamowski, Julio Cezar; Schweiger, Gustav; Ostendorf, Andreas

    2011-10-01

    The use of acoustic levitation in the fields of analytical chemistry and in the containerless processing of materials requires a good stability of the levitated particle. However, spontaneous oscillations and rotation of the levitated particle have been reported in literature, which can reduce the applicability of the acoustic levitation technique. Aiming to reduce the particle oscillations, this paper presents the analysis of the particle stability in a new acoustic levitator device. The new acoustic levitator consists of a piezoelectric transducer with a concave radiating surface and a concave reflector. The analysis is conducted by determining numerically the axial and lateral forces that act on the levitated object and by measuring the oscillations of a sphere particle by a laser Doppler vibrometer. It is shown that the new levitator design allows to increase the lateral forces and reduce significantly the lateral oscillations of the levitated object.

  10. Honeycomb technology materials, design, manufacturing, applications and testing

    CERN Document Server

    Bitzer, Tom

    1997-01-01

    Honeycomb Technology is a guide to honeycomb cores and honeycomb sandwich panels, from the manufacturing methods by which they are produced, to the different types of design, applications for usage and methods of testing the materials. It explains the different types of honeycomb cores available and provides tabulated data of their properties. The author has been involved in the testing and design of honeycomb cores and sandwich panels for nearly 30 years. Honeycomb Technology reflects this by emphasizing a `hands-on' approach and discusses procedures for designing sandwich panels, explaining the necessary equations. Also included is a section on how to design honeycomb energy absorbers and one full chapter discussing honeycomb core and sandwich panel testing. Honeycomb Technology will be of interest to engineers in the aircraft, aerospace and building industries. It will also be of great use to engineering students interested in basic sandwich panel design.

  11. Design and test of a high pressure centrifugal compressor

    International Nuclear Information System (INIS)

    Choi, Jae Ho; Han, Chak Heui; Paeng, Ki Seok; Chen, Seung Bae; Kim, Yong Ryun

    2005-01-01

    This paper presents an aerodynamic design, flow analysis and performance test of a pressure ratio 4:1 centrifugal compressor for gas turbine engine. The compressor is made up of a centrifugal impeller, a two-stage diffuser consisted of radial and axial types. The impeller has a 45 degree backswept angle and the design running tip clearance is 5% of impeller exit height. Three-dimensional numerical analysis is performed to analyze the flows in the impeller, diffuser and deswirler considering the impeller tip clearance. Test module and rig facilities for the compressor stage performance test are designed and fabricated. The overall compressor stage performances as well as the static pressure fields on the impeller and diffuser are measured. Two diffusers of wedge and airfoil types are tested with an impeller. The calculation and test results show that flow fields downstream the deswirler at the design and off-design points are highly nonuniform and the airfoil diffuser has the better aerodynamic characteristics than those of wedge diffuser

  12. Electrochemical behavior and pH stability of artificial salivas for corrosion tests.

    Science.gov (United States)

    Queiroz, Gláucia Maria Oliveira de; Silva, Leandro Freitas; Ferreira, José Tarcísio Lima; Gomes, José Antônio da Cunha P; Sathler, Lúcio

    2007-01-01

    It is assumed that the compositions of artificial salivas are similar to that of human saliva. However, the use of solutions with different compositions in in vitro corrosion studies can lead dissimilar electrolytes to exhibit dissimilar corrosivity and electrochemical stability. This study evaluated four artificial salivas as regards pH stability with time, redox potentials and the polarization response of an inert platinum electrode. The tested solutions were: SAGF medium, Mondelli artificial saliva, UFRJ artificial saliva (prepared at the School of Pharmacy, Federal University of Rio de Janeiro, RJ, Brazil) and USP-RP artificial saliva (prepared at the School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil). It was observed that pH variations were less than 1 unit during a 50-hour test. The SAGF medium, and the UFRJ and USP-RP solutions exhibited more oxidizing characteristics, whereas the Mondelli solution presented reducing properties. Anodic polarization revealed oxidation of the evaluated electrolytes at potentials below +600 mV SCE. It was observed that the UFRJ and USP-RP solutions presented more intense oxidation and reduction processes as compared to the Mondelli and SAGF solutions.

  13. Study of deep cavern stability design method in radioactive waste repository

    International Nuclear Information System (INIS)

    Dewa, Katsuyuki; Kumasaka, Hiroo; Utsugida, Yoshizo

    1991-01-01

    This paper proposes a stability design method regarding the strain of rock and the strength of support, and discusses the result of stability analysis of the shafts and disposal tunnels. In the case of upper class crystalline rock, it is possible to excavate an arched tunnel without support at the depth of 1,000 m. However, support is necessary in the case of middle and lower class rocks. Moreover, if the concrete support of over 100 cm is impossible, it is necessary to change the depth of 1,000 m to 600 m for the lower class rock. In the case of sedimentary rock, a circular profile is necessary for drilling at the depth of 500 m, it is very difficult to drill without support in all classes of sedimentary rocks. Stress release ratios are small except for the upper class or 25 % in the middle class and 20 % in the lower class. This means that drilling by machine is necessary to prevent the loosening of rock as much as possible. (J.P.N.)

  14. Test-Retest Reliability and Practice Effects of the Stability Evaluation Test.

    Science.gov (United States)

    Williams, Richelle M; Corvo, Matthew A; Lam, Kenneth C; Williams, Travis A; Gilmer, Lesley K; McLeod, Tamara C Valovich

    2017-01-17

    Postural control plays an essential role in concussion evaluation. The Stability Evaluation Test (SET) aims to objectively analyze postural control by measuring sway velocity on the NeuroCom's VSR portable force platform (Natus, San Carlos, CA). To assess the test-retest reliability and practice effects of the SET protocol. Cohort. Research Laboratory. Fifty healthy adults (males=20, females=30, age=25.30±3.60 years, height=166.60±12.80 cm, mass=68.80±13.90 kg). All participants completed four trials of the SET. Each trial consisted of six 20-second balance tests with eyes closed, under the following conditions: double-leg firm (DFi), single-leg firm (SFi), tandem firm (TFi), double-leg foam (DFo), single-leg foam (SFo), and tandem foam (TFo). Each trial was separated by a 5-minute seated rest period. The dependent variable was sway velocity (deg/sec), with lower values indicating better balance. Sway velocity was recorded for each of the six conditions as well as a composite score for each trial. Test-retest reliability was analyzed across four trials with Intraclass Correlation Coefficients. Practice effects analyzed with repeated measures analysis of variance, followed by Tukey post-hoc comparisons for any significant main effects (preliability values were good to excellent: DFi (ICC=0.88;95%CI:0.81,0.92), SFi (ICC=0.75;95%CI:0.61,0.85), TFi (ICC=0.84;95%CI:0.75,0.90), DFo (ICC=0.83;95%CI:0.74,0.90), SFo (ICC=0.82;95%CI:0.72,0.89), TFo (ICC=0.81;95%CI:0.69,0.88), and composite score (ICC=0.93;95%CI:0.88,0.95). Significant practice effects (preliability for the assessment of postural control in healthy adults. Due to the practice effects noted, a familiarization session is recommended (i.e., all 6 conditions) prior to recording the data. Future studies should evaluate injured patients to determine meaningful change scores during various injuries.

  15. Bifurcation analysis and stability design for aircraft longitudinal motion with high angle of attack

    Directory of Open Access Journals (Sweden)

    Xin Qi

    2015-02-01

    Full Text Available Bifurcation analysis and stability design for aircraft longitudinal motion are investigated when the nonlinearity in flight dynamics takes place severely at high angle of attack regime. To predict the special nonlinear flight phenomena, bifurcation theory and continuation method are employed to systematically analyze the nonlinear motions. With the refinement of the flight dynamics for F-8 Crusader longitudinal motion, a framework is derived to identify the stationary bifurcation and dynamic bifurcation for high-dimensional system. Case study shows that the F-8 longitudinal motion undergoes saddle node bifurcation, Hopf bifurcation, Zero-Hopf bifurcation and branch point bifurcation under certain conditions. Moreover, the Hopf bifurcation renders series of multiple frequency pitch oscillation phenomena, which deteriorate the flight control stability severely. To relieve the adverse effects of these phenomena, a stabilization control based on gain scheduling and polynomial fitting for F-8 longitudinal motion is presented to enlarge the flight envelope. Simulation results validate the effectiveness of the proposed scheme.

  16. Axial compressor gas path design for desensitization of aerodynamic performance and stability to tip clearance

    Science.gov (United States)

    Cevik, Mert

    Tip clearance is the necessary small gap left between the moving rotor tip and stationary shroud of a turbomachine. In a compressor, the pressure driven flow through this gap, called tip clearance flow, has a major and generally detrimental impact on compressor performance (pressure ratio and efficiency) and aerodynamic stability (stall margin). The increase in tip clearance, either temporary during transient engine operations or permanent from wear, leads to a drop in compressor performance and aerodynamic stability which results in a fuel consumption increase and a reduced operating envelope for a gas turbine engine. While much research has looked into increasing compressor performance and stall margin at the design (minimum or nominal) tip clearance, very little attention has been paid for reducing the sensitivity of these parameters to tip clearance size increase. The development of technologies that address this issue will lead to aircraft engines whose performance and operating envelope are more robust to operational demands and wear. The current research is the second phase of a research programme to develop design strategies to reduce the sensitivity of axial compressor performance and aerodynamic stability to tip clearance. The first phase had focused on blade design strategies and had led to the discovery and explanation of two flow features that reduces tip sensitivity, namely increased incoming meridional momentum in the rotor tip region and reduction/elimination of double leakage. Double leakage is the flow that exits one tip clearance and enters the tip clearance of the adjacent blade instead of convecting downstream out of the rotor passage. This flow was shown to be very detrimental to compressor performance and stall margin. Two rotor design strategies involving sweep and tip stagger reduction were proposed and shown by CFD simulations to exploit these features to reduce sensitivity. As the second phase, the objectives of the current research

  17. E-4 Test Facility Design Status

    Science.gov (United States)

    Ryan, Harry; Canady, Randy; Sewell, Dale; Rahman, Shamim; Gilbrech, Rick

    2001-01-01

    Combined-cycle propulsion technology is a strong candidate for meeting NASA space transportation goals. Extensive ground testing of integrated air-breathing/rocket system (e.g., components, subsystems and engine systems) across all propulsion operational modes (e.g., ramjet, scramjet) will be needed to demonstrate this propulsion technology. Ground testing will occur at various test centers based on each center's expertise. Testing at the NASA John C. Stennis Space Center will be primarily concentrated on combined-cycle power pack and engine systems at sea level conditions at a dedicated test facility, E-4. This paper highlights the status of the SSC E-4 test Facility design.

  18. Using partial safety factors in wind turbine design and testing

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W.D. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    This paper describes the relationship between wind turbine design and testing in terms of the certification process. An overview of the current status of international certification is given along with a description of limit-state design basics. Wind turbine rotor blades are used to illustrate the principles discussed. These concepts are related to both International Electrotechnical Commission and Germanischer Lloyd design standards, and are covered using schematic representations of statistical load and material strength distributions. Wherever possible, interpretations of the partial safety factors are given with descriptions of their intended meaning. Under some circumstances, the authors` interpretations may be subjective. Next, the test-load factors are described in concept and then related to the design factors. Using technical arguments, it is shown that some of the design factors for both load and materials must be used in the test loading, but some should not be used. In addition, some test factors not used in the design may be necessary for an accurate test of the design. The results show that if the design assumptions do not clearly state the effects and uncertainties that are covered by the design`s partial safety factors, outside parties such as test labs or certification agencies could impose their own meaning on these factors.

  19. Designing a Software Test Automation Framework

    Directory of Open Access Journals (Sweden)

    Sabina AMARICAI

    2014-01-01

    Full Text Available Testing is an art and science that should ultimately lead to lower cost businesses through increasing control and reducing risk. Testing specialists should thoroughly understand the system or application from both the technical and the business perspective, and then design, build and implement the minimum-cost, maximum-coverage validation framework. Test Automation is an important ingredient for testing large scale applications. In this paper we discuss several test automation frameworks, their advantages and disadvantages. We also propose a custom automation framework model that is suited for applications with very complex business requirements and numerous interfaces.

  20. Multiscale stabilization for convection-dominated diffusion in heterogeneous media

    KAUST Repository

    Calo, Victor M.

    2016-02-23

    We develop a Petrov-Galerkin stabilization method for multiscale convection-diffusion transport systems. Existing stabilization techniques add a limited number of degrees of freedom in the form of bubble functions or a modified diffusion, which may not be sufficient to stabilize multiscale systems. We seek a local reduced-order model for this kind of multiscale transport problems and thus, develop a systematic approach for finding reduced-order approximations of the solution. We start from a Petrov-Galerkin framework using optimal weighting functions. We introduce an auxiliary variable to a mixed formulation of the problem. The auxiliary variable stands for the optimal weighting function. The problem reduces to finding a test space (a dimensionally reduced space for this auxiliary variable), which guarantees that the error in the primal variable (representing the solution) is close to the projection error of the full solution on the dimensionally reduced space that approximates the solution. To find the test space, we reformulate some recent mixed Generalized Multiscale Finite Element Methods. We introduce snapshots and local spectral problems that appropriately define local weight and trial spaces. In particular, we use energy minimizing snapshots and local spectral decompositions in the natural norm associated with the auxiliary variable. The resulting spectral decomposition adaptively identifies and builds the optimal multiscale space to stabilize the system. We discuss the stability and its relation to the approximation property of the test space. We design online basis functions, which accelerate convergence in the test space, and consequently, improve stability. We present several numerical examples and show that one needs a few test functions to achieve an error similar to the projection error in the primal variable irrespective of the Peclet number.

  1. Reliability and Validity of the Hip Stability Isometric Test (HipSIT): A New Method to Assess Hip Posterolateral Muscle Strength.

    Science.gov (United States)

    Almeida, Gabriel Peixoto Leão; das Neves Rodrigues, Helena Larissa; de Freitas, Bruno Wesley; de Paula Lima, Pedro Olavo

    2017-12-01

    Study Design Cross-sectional study. Background The Hip Stability Isometric Test (HipSIT) evaluates the strength of the hip posterolateral stabilizers in a position that favors greater activation of the gluteus maximus and gluteus medius and lower activation of the tensor fascia lata. Objectives To check the validity and reliability of the HipSIT and to evaluate the HipSIT in women with patellofemoral pain (PFP). Methods The HipSIT was evaluated with a handheld dynamometer. During testing, the participants were sidelying, with their legs positioned at 45° of hip flexion and 90° of knee flexion. Participants were instructed to raise the knee of the upper leg while keeping the upper and lower heels in contact. To establish reliability and validity, 49 women were tested with the HipSIT by 2 different evaluators on day 1, and then again 7 days later. The strength of the hip extensors, abductors, and external rotators was also evaluated. Twenty women with unilateral PFP were also evaluated. Results The HipSIT has excellent intrarater and interrater reliability. The standard error of measurement was 0.01 kgf/kg, and the minimal detectable change was 0.036 kgf/kg. The HipSIT showed good validity in isolated hip abduction, external rotation, and extension (Pstrength deficits in women with PFP. J Orthop Sports Phys Ther 2017;47(12):906-913. Epub 9 Oct 2017. doi:10.2519/jospt.2017.7274.

  2. Peach Bottom Cycle 2 Low Flow Stability Tests analysis using RELAP5/PARCS

    International Nuclear Information System (INIS)

    Costa, A.L.; Salah, A.B.; D'Auria, F.

    2004-01-01

    Nowadays, the coupled codes technique, which consists in incorporating threedimensional (3D) neutron modeling of the reactor core into system codes, is extensively used for simulating transients that involve core spatial asymmetric phenomena and strong feedback effects between core neutronics and reactor loop thermal-hydraulics. So, in this work, the coupled codes technique using RELAP5/3.3-PARCS is applied to simulate stability transients in a BWR (Boiling Water Reactor). Validation has been performed against Peach Bottom-2 Low-Flow Stability Tests. In these transients dynamically complex neutron kinetics coupling with thermal-hydraulics events take place in response to a core pressure perturbation. The calculated coupled code results are herein compared against the available experimental data. (author)

  3. Toward a design for the ITER plasma shape and stability control system

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Leuer, J.A.; Kellman, A.G.; Haney, S.W.; Bulmer, R.H.; Pearlstein, L.D.; Portone, A.

    1994-07-01

    A design strategy for an integrated shaping and stability control algorithm for ITER is described. This strategy exploits the natural multivariable nature of the system so that all poloidal field coils are used to simultaneously control all regulated plasma shape and position parameters. A nonrigid, flux-conserving linearized plasma response model is derived using a variational procedure analogous to the ideal MHD Extended Energy Principle. Initial results are presented for the non-rigid plasma response model approach applied to an example DIII-D equilibrium. For this example, the nonrigid model is found to yield a higher passive growth rate than a rigid current-conserving plasma response model. Multivariable robust controller design methods are discussed and shown to be appropriate for the ITER shape control problem

  4. Thermal Stability Test of Sugar Alcohols as Phase Change Materials for Medium Temperature Energy Storage Application

    OpenAIRE

    Solé, Aran; Neumann, Hannah; Niedermaier, Sophia; Cabeza, Luisa F.; Palomo, Elena

    2014-01-01

    Sugar alcohols are potential phase change materials candidates as they present high phase change enthalpy values, are non-toxic and low cost products. Three promising sugar-alcohols were selected: D-mannitol, myo-inositol and dulcitol under high melting enthalpy and temperature criterion. Thermal cycling tests were performed to study its cycling stability which can be determining when selecting the suitable phase change material. D-mannitol and dulcitol present poor thermal stability...

  5. Medial stabilized and posterior stabilized TKA affect patellofemoral kinematics and retropatellar pressure distribution differently.

    Science.gov (United States)

    Glogaza, Alexander; Schröder, Christian; Woiczinski, Matthias; Müller, Peter; Jansson, Volkmar; Steinbrück, Arnd

    2018-06-01

    Patellofemoral kinematics and retropatellar pressure distribution change after total knee arthroplasty (TKA). It was hypothesized that different TKA designs will show altered retropatellar pressure distribution patterns and different patellofemoral kinematics according to their design characteristics. Twelve fresh-frozen knee specimens were tested dynamically in a knee rig. Each specimen was measured native, after TKA with a posterior stabilized design (PS) and after TKA with a medial stabilized design (MS). Retropatellar pressure distribution was measured using a pressure sensitive foil which was subdivided into three areas (lateral and medial facet and patellar ridge). Patellofemoral kinematics were measured by an ultrasonic-based three-dimensional motion system (Zebris CMS20, Isny Germany). Significant changes in patellofemoral kinematics and retropatellar pressure distribution were found in both TKA types when compared to the native situation. Mean retropatellar contact areas were significantly smaller after TKA (native: 241.1 ± 75.6 mm 2 , MS: 197.7 ± 74.5 mm 2 , PS: 181.2 ± 56.7 mm 2 , native vs. MS p patellofemoral kinematics were found in both TKA designs when compared to the native knee during flexion and extension with a more medial patella tracking. Patellofemoral kinematics and retropatellar pressure change after TKA in different manner depending on the type of TKA used. Surgeons should be aware of influencing the risks of patellofermoral complications by the choice of the prosthesis design.

  6. DEVELOPING THE STABILIZED MAPPING SYSTEM FOR THE GYROCOPTER – REPORT FROM THE FIRST TESTS

    Directory of Open Access Journals (Sweden)

    J. Kolecki

    2016-06-01

    Full Text Available The LiDAR mapping carried out using gyrocopters provides a relatively cheap alternative for traditional mapping involving airplanes. The costs of the fuel and the overall maintenance are much lower when compared to planes. At the same time the flight kinematics of the gyrocopter makes it an ideal vehicle for corridor mapping. However a limited payload and a strongly limited space prevent using stabilized platforms dedicated for aerial photogrammetry. As the proper stabilization of the laser scanner during the flight is crucial in order to keep the desirable quality of the LiDAR data, it was decided to develop the prototype of the stabilized, ultra-light mapping platform that can meet the restricted requirements of the gyrocopter. The paper starts with the brief discussion of the legal and practical aspects of the LiDAR data quality, dealing mostly with the influence of the flight imperfections on the point pattern and point density. Afterwards the mapping system prototype is characterized, taking into account three main components: stabilized platform, sensors and control. Subsequently first in-flight tests are described. Though the data are still not perfect mostly due to vibrations, the stabilization provides a substantial improvement of their geometry, reducing both roll and pitch deflections.

  7. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines.

    Science.gov (United States)

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A

    2013-01-01

    The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation.

  8. Assessing the feasibility of yttria-stabilized zirconia in novel designs as mandibular anterior fixed lingual retention following orthodontic treatment

    Science.gov (United States)

    Stout, Matthew

    The purpose of this study is to explore the feasibility of yttria-stabilized zirconia (Y-TZP) in fixed lingual retention as an alternative to stainless steel. Exploratory Y-TZP specimens were milled to establish design parameters. Next, specimens were milled according to ASTM standard C1161-13 and subjected to four-point flexural test to determine materials properties. Finite Element (FE) Analysis was employed to evaluate nine novel cross-sectional designs and compared to stainless steel wire. Each design was analyzed under the loading conditions to determine von Mises and bond stress. The most promising design was fabricated to assess accuracy and precision of current CAD/CAM milling technology. The superior design had a 1.0 x 0.5 mm semi-elliptical cross section and was shown to be fabricated reliably. Overall, the milling indicated a maximum percent standard deviation of 9.3 and maximum percent error of 13.5 with a cost of $30 per specimen. Y-TZP can be reliably milled to dimensions comparable to currently available metallic retainer wires. Further research is necessary to determine the success of bonding protocol and clinical longevity of Y-TZP fixed retainers. Advanced technology is necessary to connect the intraoral scan to an aesthetic and patient-specific Y-TZP fixed retainer.

  9. Design of a materials testing experiment for the INTOR

    International Nuclear Information System (INIS)

    Vogel, M.A.; Opperman, E.K.

    1981-01-01

    The United States, Japan, USSR and the European community are jointly participating in the design of an International Tokamak Reactor called INTOR. In support of the US contribution to the INTOR design, the features of an experiment for bulk neutron irradiation damage studies were developed. It is anticipated that materials testing will be an important part of the programmatic mission of INTOR and consequently the requirements for materials testing in INTOR must be identified early in the reactor design to insure compatibility. The design features of the experiment, called a Channel Test, are given in this paper. The major components of the channel test are the water cooled heat sink (channel module) and the specimen capsule. The temperature within each of the 153 specimen capsules is predetermined by engineering the thermal barrier between the specimen capsule and heat sink. Individual capsules can be independently accessed and are designed to operate at a predetermined temperature within the range of 50 to 700 0 C. The total irradiation volume within a single channel test is 45 liters. Features of the channel test that result in experimental versatility and simplified remote access and handling are discussed

  10. Stability of selected volatile contact allergens in different patch test chambers under different storage conditions

    DEFF Research Database (Denmark)

    Mose, Kristian Fredløv; Andersen, Klaus Ejner; Christensen, Lars Porskjaer

    2012-01-01

    Background. Patch test preparations of volatile substances may evaporate during storage, thereby giving rise to reduced patch test concentrations. Objectives. To investigate the stability of selected acrylates/methacrylates and fragrance allergens in three different test chambers under different...... both storage conditions, whereas MMA and 2-HPA required cool storage for maintenance of the limit. Conclusion. The Van der Bend® transport container was the best device for storage of samples of volatile contact allergens....

  11. Optical design and testing: introduction.

    Science.gov (United States)

    Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin

    2014-10-10

    Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.

  12. On-line tuning of a fuzzy-logic power system stabilizer

    International Nuclear Information System (INIS)

    Hossein-Zadeh, N.; Kalam, A.

    2002-01-01

    A scheme for on-line tuning of a fuzzy-logic power system stabilizer is presented. firstly, a fuzzy-logic power system stabilizer is developed using speed deviation and accelerating power as the controller input variables. The inference mechanism of fuzzy-logic controller is represented by a decision table, constructed of linguistic IF-THEN rules. The Linguistic rules are available from experts and the design procedure is based on these rules. It assumed that an exact model of the plant is not available and it is difficult to extract the exact parameters of the power plant. Thus, the design procedure can not be based on an exact model. This is an advantage of fuzzy logic that makes the design of a controller possible without knowing the exact model of the plant. Secondly, two scaling parameters are introduced to tune the fuzzy-logic power system stabilizer. These scaling parameters are the outputs of another fuzzy-logic system, which gets the operating conditions of power system as inputs. These mechanism of tuning the fuzzy-logic power system stabilizer makes the fuzzy-logic power system stabilizer adaptive to changes in the operating conditions. Therefore, the degradation of the system response, under a wide range of operating conditions, is less compared to the system response with a fixed-parameter fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. The tuned stabilizer has been tested by performing nonlinear simulations using a synchronous machine-infinite bus model. The responses are compared with a fixed parameters fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. It is shown that the tuned fuzzy-logic power system stabilizer is superior to both of them

  13. Time and Temperature Test Results for PFP Thermal Stabilization Furnaces

    International Nuclear Information System (INIS)

    COMPTON, J.A.

    2000-01-01

    The national standard for plutonium storage acceptability (standard DOE-STD-3013-99, generally known as ''the 3013 standard'') has been revised to clarify the requirement for processes that will produce acceptable storage materials. The 3013 standard (Reference 1) now states that ''Oxides shall be stabilized by heating the material in an oxidizing atmosphere to a Material Temperature of at least 950 C (1742 F) for not less than 2 hours.'' The process currently in use for producing stable oxides for storage at the Plutonium Finishing Plant (PFP) heats a furnace atmosphere to 1000 C and holds it there for 2 hours. The temperature of the material being stabilized is not measured directly during this process. The Plutonium Process Support Laboratories (PPSL) were requested to demonstrate that the process currently in use at PFP is an acceptable method of producing stable plutonium dioxide consistently. A spare furnace identical to the production furnaces was set up and tested under varying conditions with non-radioactive surrogate materials. Reference 2 was issued to guide the testing program. The process currently in use at the PFP for stabilizing plutonium-bearing powders was shown to heat all the material in the furnace to at least 950 C for at least 2 hours. The current process will work for (1) relatively pure plutonium dioxide, (2) dioxide powders mixed with up to 20 weight percent magnesium oxide, and (3) dioxide powders with up to 11 weight percent magnesium oxide and 20 weight percent magnesium nitrate hexahydrate. Time and temperature data were also consistent with a successful demonstration for a mixture containing 10 weight percent each of sodium and potassium chloride; however, the molten chloride salts destroyed the thermocouples in the powder and temperature data were unavailable for part of that run. These results assume that the current operating limits of no more than 2500 grams per furnace charge and a powder height of no more than 1.5 inches remain

  14. The test-negative design for estimating influenza vaccine effectiveness.

    Science.gov (United States)

    Jackson, Michael L; Nelson, Jennifer C

    2013-04-19

    The test-negative design has emerged in recent years as the preferred method for estimating influenza vaccine effectiveness (VE) in observational studies. However, the methodologic basis of this design has not been formally developed. In this paper we develop the rationale and underlying assumptions of the test-negative study. Under the test-negative design for influenza VE, study subjects are all persons who seek care for an acute respiratory illness (ARI). All subjects are tested for influenza infection. Influenza VE is estimated from the ratio of the odds of vaccination among subjects testing positive for influenza to the odds of vaccination among subjects testing negative. With the assumptions that (a) the distribution of non-influenza causes of ARI does not vary by influenza vaccination status, and (b) VE does not vary by health care-seeking behavior, the VE estimate from the sample can generalized to the full source population that gave rise to the study sample. Based on our derivation of this design, we show that test-negative studies of influenza VE can produce biased VE estimates if they include persons seeking care for ARI when influenza is not circulating or do not adjust for calendar time. The test-negative design is less susceptible to bias due to misclassification of infection and to confounding by health care-seeking behavior, relative to traditional case-control or cohort studies. The cost of the test-negative design is the additional, difficult-to-test assumptions that incidence of non-influenza respiratory infections is similar between vaccinated and unvaccinated groups within any stratum of care-seeking behavior, and that influenza VE does not vary across care-seeking strata. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Test Framing Generates a Stability Bias for Predictions of Learning by Causing People to Discount their Learning Beliefs

    Science.gov (United States)

    Ariel, Robert; Hines, Jarrod C.; Hertzog, Christopher

    2014-01-01

    People estimate minimal changes in learning when making predictions of learning (POLs) for future study opportunities despite later showing increased performance and an awareness of that increase (Kornell & Bjork, 2009). This phenomenon is conceptualized as a stability bias in judgments about learning. We investigated the malleability of this effect, and whether it reflected people’s underlying beliefs about learning. We manipulated prediction framing to emphasize the role of testing vs. studying on memory and directly measured beliefs about multi-trial study effects on learning by having participants construct predicted learning curves before and after the experiment. Mean POLs were more sensitive to the number of study-test opportunities when performance was framed in terms of study benefits rather than testing benefits and POLs reflected pre-existing beliefs about learning. The stability bias is partially due to framing and reflects discounted beliefs about learning benefits rather than inherent belief in the stability of performance. PMID:25067885

  16. Solar Dynamic Power System Stability Analysis and Control

    Science.gov (United States)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  17. Design and simulations for RFPI system test jig

    International Nuclear Information System (INIS)

    Keshwani, Rajesh; Khole, Shailesh; Sujo, C.I.; Shukla, Hitesh; Afaash, M.; Bharade, Sandeep; Joshi, Gopal

    2015-01-01

    RFPI system for condition monitoring and protection of RF systems of LEHIPA has been designed. The intention of this system is to protect and monitor different high power RF components. The system consists of variety of analog and digital cards to process, acquire and monitor signals from RF sensors, photo multiplier tubes (PMT), field emission probes, photo sensors, etc. The system can also accept and process digital inputs or contacts and analog input signals from other subsystems, indicating their status. It comprises of analog signal processing electronics, condition monitoring, data acquisition and fault reporting features. Since RFPI system should process and take action within prescribed time limit, the testing of system is critical issue. In order to carry out stand-alone field testing of such elaborate electronic system, variety of carefully designed electronic test circuit with suitable rangeability is required. These include fast current sources, fast amplifiers, fast rectifiers, etc. This paper elaborates on specifications, design approach, circuit design and simulations for various circuits used in test jig

  18. Permeability test and slope stability analysis of municipal solid waste in Jiangcungou Landfill, Shaanxi, China.

    Science.gov (United States)

    Yang, Rong; Xu, Zengguang; Chai, Junrui; Qin, Yuan; Li, Yanlong

    2016-07-01

    With the rapid increase of city waste, landfills have become a major method to deals with municipal solid waste. Thus, the safety of landfills has become a valuable research topic. In this paper, Jiangcungou Landfill, located in Shaanxi, China, was investigated and its slope stability was analyzed. Laboratory tests were used to obtain permeability coefficients of municipal solid waste. Based on the results, the distribution of leachate and stability in the landfill was computed and analyzed. These results showed: the range of permeability coefficient was from 1.0 × 10(-7) cm sec(-1) to 6.0 × 10(-3) cm sec(-1) on basis of laboratory test and some parameters of similar landfills. Owing to the existence of intermediate cover layers in the landfill, the perched water level appeared in the landfill with heavy rain. Moreover, the waste was filled with leachate in the top layer, and the range of leachate level was from 2 m to 5 m in depth under the waste surface in other layers. The closer it gets to the surface of landfill, the higher the perched water level of leachate. It is indicated that the minimum safety factors were 1.516 and 0.958 for winter and summer, respectively. Additionally, the slope failure may occur in summer. The research of seepage and stability in landfills may provide a less costly way to reduce accidents. Landslides often occur in the Jiangcungou Landfill because of the high leachate level. Some measures should be implemented to reduce the leachate level. This paper investigated seepage and slope stability of landfills by numerical methods. These results may provide the basis for increasing stability of landfills.

  19. Investigations on hydrodynamic stability of two phase flow in a low pressure natural circulation system

    Energy Technology Data Exchange (ETDEWEB)

    Shaorong, Wu; Dazhong, Wang; Meisheng, Yao; Jinhai, Bo; Yunxian, Tong; Shengyao, Jiang; Bing, Han [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    Appropriately scaled ``Loop Stability`` tests and ``Channel Stability`` tests were performed with single heated channel system and two parallel channel system separately at the Institute of Nuclear Energy Technology (INET) of the Tsinghua University in China. A broad range of several operational parameters such as heating power, system pressure, test inlet subcooling and resistance coefficient were investigated. It was found that under certain geometric conditions and operating parameters a self-sustaining, low frequency, even amplitude mass flow oscillation may be excited at very low steam qualities and subcooling conditions. Stability maps under different conditions have been provided to assist the design of the NHR. (author). 6 refs, 15 figs.

  20. Stability of FDG-PET Radiomics features - An integrated analysis of test-retest and inter-observer variability

    Energy Technology Data Exchange (ETDEWEB)

    Leijenaar, Ralph T. H.; Carvalho, Sara; Rios Velazquez, Emmanuel [Dept. of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht Univ. Medical Center, Maastricht (Netherlands)] [and others

    2013-10-15

    Purpose: Besides basic measurements as maximum standardized uptake value (SUV){sub max} or SUV{sub mean} derived from 18F-FDG positron emission tomography (PET) scans, more advanced quantitative imaging features (i.e. 'Radiomics' features) are increasingly investigated for treatment monitoring, outcome prediction, or as potential biomarkers. With these prospected applications of Radiomics features, it is a requisite that they provide robust and reliable measurements. The aim of our study was therefore to perform an integrated stability analysis of a large number of PET-derived features in non-small cell lung carcinoma (NSCLC), based on both a test-retest and an inter-observer setup. Methods: Eleven NSCLC patients were included in the test-retest cohort. Patients underwent repeated PET imaging within a one day interval, before any treatment was delivered. Lesions were delineated by applying a threshold of 50 % of the maximum uptake value within the tumor. Twenty-three NSCLC patients were included in the inter-observer cohort. Patients underwent a diagnostic whole body PET-computed tomography (CT). Lesions were manually delineated based on fused PET-CT, using a standardized clinical delineation protocol. Delineation was performed independently by five observers, blinded to each other. Fifteen first order statistics, 39 descriptors of intensity volume histograms, eight geometric features and 44 textural features were extracted. For every feature, test-retest and inter-observer stability was assessed with the intra-class correlation coefficient (ICC) and the coefficient of variability, normalized to mean and range. Similarity between test-retest and inter-observer stability rankings of features was assessed with Spear man's rank correlation coefficient. Results: Results showed that the majority of assessed features had both a high test-retest (71%) and inter-observer (91%) stability in terms of their ICC. Overall, features more stable in repeated PET

  1. Designing of new structure PID controller of boost converter for solar photovoltaic stability

    Science.gov (United States)

    Shabrina, Hanifati Nur; Setiawan, Eko Adhi; Sabirin, Chip Rinaldi

    2017-03-01

    Nowadays, the utilization of renewable energy as the source on distributed generation system is increasing. It aims to reduce reliance and power losses from utility grid and improve power stability in near loads. One example of renewable energy technology that have been highly proven on the market is solar photovoltaic (PV). This technology converts photon from sunlight into electricity. However, the fluctuation of solar radiation that often occurs become the main problem for this system. Due to this condition, the power conversion is needed to convert the change frequently in photovoltaic panel into a stable voltage to the system. Developing control of boost converter has important role to keep ability of system stabilization. A conventional PID (Proportional, Integral, Derivative) control is mostly used to achieve this goal. In this research, a design of new structure PID controller of boost converter is offered to better optimize system stability comparing to the conventional PID. Parameters obtained from this PID structure have been successfully yield a stable boost converter output at 200 V with 10% overshoot, 1.5 seconds of settling time, and 1.5% of steady-state error.

  2. Design of a Single Motor Based Leg Structure with the Consideration of Inherent Mechanical Stability

    Science.gov (United States)

    Taha Manzoor, Muhammad; Sohail, Umer; Noor-e-Mustafa; Nizami, Muhammad Hamza Asif; Ayaz, Yasar

    2017-07-01

    The fundamental aspect of designing a legged robot is constructing a leg design that is robust and presents a simple control problem. In this paper, we have successfully designed a robotic leg based on a unique four bar mechanism with only one motor per leg. The leg design parameters used in our platform are extracted from design principles used in biological systems, multiple iterations and previous research findings. These principles guide a robotic leg to have minimal mechanical passive impedance, low leg mass and inertia, a suitable foot trajectory utilizing a practical balance between leg kinematics and robot usage, and the resultant inherent mechanical stability. The designed platform also exhibits the key feature of self-locking. Theoretical tools and software iterations were used to derive these practical features and yield an intuitive sense of the required leg design parameters.

  3. Stability Test and Quantitative and Qualitative Analyses of the Amino Acids in Pharmacopuncture Extracted from Scolopendra subspinipes mutilans

    Science.gov (United States)

    Cho, GyeYoon; Han, KyuChul; Yoon, JinYoung

    2015-01-01

    Objectives: Scolopendra subspinipes mutilans (S. subspinipes mutilans) is known as a traditional medicine and includes various amino acids, peptides and proteins. The amino acids in the pharmacopuncture extracted from S. subspinipes mutilans by using derivatization methods were analyzed quantitatively and qualitatively by using high performance liquid chromatography (HPLC) over a 12 month period to confirm its stability. Methods: Amino acids of pharmacopuncture extracted from S. subspinipes mutilans were derived by using O-phthaldialdehyde (OPA) & 9-fluorenyl methoxy carbonyl chloride (FMOC) reagent and were analyzed using HPLC. The amino acids were detected by using a diode array detector (DAD) and a fluorescence detector (FLD) to compare a mixed amino acid standard (STD) to the pharmacopuncture from centipedes. The stability tests on the pharmacopuncture from centipedes were done using HPLC for three conditions: a room temperature test chamber, an acceleration test chamber, and a cold test chamber. Results: The pharmacopuncture from centipedes was prepared by using the method of the Korean Pharmacopuncture Institute (KPI) and through quantitative analyses was shown to contain 9 amino acids of the 16 amino acids in the mixed amino acid STD. The amounts of the amino acids in the pharmacopuncture from centipedes were 34.37 ppm of aspartate, 123.72 ppm of arginine, 170.63 ppm of alanine, 59.55 ppm of leucine and 57 ppm of lysine. The relative standard deviation (RSD %) results for the pharmacopuncture from centipedes had a maximum value of 14.95% and minimum value of 1.795% on the room temperature test chamber, the acceleration test chamber and the cold test chamber stability tests. Conclusion: Stability tests on and quantitative and qualitative analyses of the amino acids in the pharmacopuncture extracted from centipedes by using derivatization methods were performed by using HPLC. Through research, we hope to determine the relationship between time and the

  4. Design, modeling and testing of data converters

    CERN Document Server

    Kiaei, Sayfe; Xu, Fang

    2014-01-01

    This book presents the a scientific discussion of the state-of-the-art techniques and designs for modeling, testing and for the performance analysis of data converters. The focus is put on sustainable data conversion. Sustainability has become a public issue that industries and users can not ignore. Devising environmentally friendly solutions for data conversion designing, modeling and testing is nowadays a requirement that researchers and practitioners must consider in their activities. This book presents the outcome of the IWADC workshop 2011, held in Orvieto, Italy.

  5. Final focus test beam

    International Nuclear Information System (INIS)

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration

  6. A borehole stability study by newly designed laboratory tests on thick-walled hollow cylinders

    Directory of Open Access Journals (Sweden)

    S.S. Hashemi

    2015-10-01

    Full Text Available At several mineral exploration drilling sites in Australia, weakly consolidated formations mainly consist of sand particles that are poorly bonded by cementing agents such as clay, iron oxide cement or calcite. These formations are being encountered when drilling boreholes to the depth of up to 200 m. To study the behaviour of these materials, thick-walled hollow cylinder (TWHC and solid cylindrical synthetic specimens were designed and prepared by adding Portland cement and water to sand grains. The effects of different parameters such as water and cement contents, grain size distribution and mixture curing time on the characteristics of the samples were studied to identify the mixture closely resembling the formation at the drilling site. The Hoek triaxial cell was modified to allow the visual monitoring of grain debonding and borehole breakout processes during the laboratory tests. The results showed the significance of real-time visual monitoring in determining the initiation of the borehole breakout. The size-scale effect study on TWHC specimens revealed that with the increasing borehole size, the ductility of the specimen decreases, however, the axial and lateral stiffnesses of the TWHC specimen remain unchanged. Under different confining pressures the lateral strain at the initiation point of borehole breakout is considerably lower in a larger size borehole (20 mm compared to that in a smaller one (10 mm. Also, it was observed that the level of peak strength increment in TWHC specimens decreases with the increasing confining pressure.

  7. Design of stability-guaranteed fuzzy logic controller for nuclear steam generators

    International Nuclear Information System (INIS)

    Cho, Byung Hak

    1996-02-01

    A fuzzy logic controller(FLC) and a fuzzy logic filter(FLF), which have a special type of fuzzifier, inference engine, and defuzzifier, are applied to the water level control of a nuclear steam generator (S/G). It is shown that arbitrary two-input, single-output linear state feedback controllers can be adequately expressed by this FLC. A procedure to construct stability-guaranteed FLC rules is proposed. It contains the following steps: (1) The stable sector of linear feedback gains is obtained from the suboptimal concept based on LQR theory and the Lyapunov's stability criteria: (2) The stable sector of linear gains is mapped into two linear rule tables that are used as limits for the FLC rules: (3) The construction of an FLC rule table is done by choosing certain rules that lie between these limits. This type of FLC guarantees asymptotic stability of the control system. The FLF generates a feedforward signal of S/G feedwater from the steam flow measurement using a fuzzy concept. Through computer simulation, it is found that the FLC with the FLF works better than well-tuned PID controller with variable gains to reduce swell/shrink phenomena especially for the water level deviation and abrupt steam flow disturbances that are typical in the existing power plants. A neurofuzzy logic controller (NFLC), that is implemented by using multi-layered neural network to have the same function as the FLC discussed above, is designed. The automatic generation of NFLC rule table is accomplished by using back-error-propagation (BEP) algorithm. There are two separated paths at the error back-propagation in the S/G. One is to consider the level dynamics depending on the tank capacity, and the other is to take into account the reverse dynamics of S/G. The amounts of error back-propagated through these paths show opposite effects to the BEP algorithm each other at the swell/shrink phenomena. Through the computer simulation, it is found that the BEP algorithm adequately generates NFLC

  8. Stabilization of inorganic mixed waste to pass the TCLP and STLC tests using clay and pH-insensitive additives

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.S.; Anson, J.R.; Painter, S.M. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-12-31

    Stabilization is a best demonstrated available technology, or BDAT. This technology traps toxic contaminants in a matrix so that they do not leach into the environment. The stabilization process routinely uses pozzolanic materials. Portland cement, fly ash-lime mixes, gypsum cements, and clays are some of the most common materials. In many instances, materials that can pass the Toxicity Characteristic Leaching Procedure (TCLP the federal leach test) or the Soluble Threshold Leachate Concentration (STLC the California leach test) must have high concentrations of lime or other caustic material because of the low pH of the leaching media. Both leaching media, California`s and EPA`s, have a pH of 5.0. California uses citric acid and sodium citrate while EPA uses acetic acid and sodium acetate. The concentration in the leachate is approximately ten times higher for the STLC procedure than the TCLP. These media can form ligands that provide excellent metal leaching. Because of the aggressive nature of the leaching medium, stabilized wastes in many cases will not pass the leaching tests. At the Lawrence Livermore National Laboratory (LLNL), additives such as dithiocarbamates and thiocarbonates, which are pH-insensitive and provide resistance to ligand formation, are used in the waste stabilization process. Attapulgite, montmorillonite, and sepiolite clays are used because they are forgiving (recipe can be adjusted before the matrix hardens) when formulating a stabilization matrix, and they have a neutral pH. By using these clays and additives, LLNL`s highly concentrated wastewater treatment sludges have passed the TCLP and STLC tests. The most frequently used stabilization process consists of a customized recipe involving waste sludge, clay and dithiocarbamate salt, mixed with a double planetary mixer into a pasty consistency. TCLP and STLC data on this waste matrix have shown that the process matrix meets land disposal requirements.

  9. Immunochemical faecal occult blood tests have superior stability and analytical performance characteristics over guaiac-based tests in a controlled in vitro study.

    LENUS (Irish Health Repository)

    Lee, Chun Seng

    2011-06-01

    The aims of this study were (1) to determine the measurement accuracy of a widely used guaiac faecal occult blood test (gFOBT) compared with an immunochemical faecal occult blood test (iFOBT) during in vitro studies, including their analytical stability over time at ambient temperature and at 4°C; and (2) to compare analytical imprecision and other characteristics between two commercially available iFOBT methods.

  10. Engineering design of a fusion test reactor (FTR) and fusion engineering research facility (FERF) based on a toroidal theta pinch

    International Nuclear Information System (INIS)

    Abdou, M.; Burke, R.J.; Dauzvardis, P.V.; Foss, M.; Gerstl, S.A.W.; Maroni, V.A.; Pierce, A.W.; Turner, A.F.; Krakowski, R.A.; Linford, R.K.; Oliphant, T.A.; Ribe, F.L.; Thomassen, K.I.

    1975-01-01

    This paper describes two advanced toroidal theta-pinch devices which are being proposed for future construction. The Fusion Test Reactor (FTR) is being designed to produce thermonuclear energy (at 20 MeV/neutron) equal to the maximum plasma energy (Q=1) and to demonstrate α-particle heating. The Fusion Engineering and Research Facility (FERF) is being designed to test materials in a fusion environment where the average 14-MeV neutron flux from the plasma is greater than or of the order of 5.10 13 n/cm 2 .s over large surface areas. These devices employ the staged theta-pinch principle where the heating is accomplished by rapid (about 0.1 μs) implosion and expansion followed by a slow compression of the plasma. The rapid implosion injects as much heat as possible at as large a plasma radious as possible so that the plasma remains stable even after further compression. The final compression to ignition requires the transfer of a large amount of magnetic energy which implies a long transfer time (about 1 ms) for realistic voltages in the driving circuit. Throughout the heating and burn cycle the plasma must remain in equilibrium and stable to the dominant MHD-modes. A sufficiently large plasma radius guarantees stability against the m = 1 modes. These equilibrium and stability conditions and the requirements on thermonuclear burn determine the design parameters for either machine. The design parameters must also be consistent with economic limitations and technological feasibility of components. In addition to these requirements, the FERF must provide a steady and reliable source of fusion neutrons. (author)

  11. SMART wind turbine rotor. Design and field test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  12. Freeze-dried snake antivenoms formulated with sorbitol, sucrose or mannitol: comparison of their stability in an accelerated test.

    Science.gov (United States)

    Herrera, María; Tattini, Virgilio; Pitombo, Ronaldo N M; Gutiérrez, José María; Borgognoni, Camila; Vega-Baudrit, José; Solera, Federico; Cerdas, Maykel; Segura, Alvaro; Villalta, Mauren; Vargas, Mariángela; León, Guillermo

    2014-11-01

    Freeze-drying is used to improve the long term stability of pharmaceutical proteins. Sugars and polyols have been successfully used in the stabilization of proteins. However, their use in the development of freeze-dried antivenoms has not been documented. In this work, whole IgG snake antivenom, purified from equine plasma, was formulated with different concentrations of sorbitol, sucrose or mannitol. The glass transition temperatures of frozen formulations, determined by Differential Scanning Calorimetry (DSC), ranged between -13.5 °C and -41 °C. In order to evaluate the effectiveness of the different stabilizers, the freeze-dried samples were subjected to an accelerated stability test at 40 ± 2 °C and 75 ± 5% relative humidity. After six months of storage at 40 °C, all the formulations presented the same residual humidity, but significant differences were observed in turbidity, reconstitution time and electrophoretic pattern. Moreover, all formulations, except antivenoms freeze-dried with mannitol, exhibited the same potency for the neutralization of lethal effect of Bothrops asper venom. The 5% (w:v) sucrose formulation exhibited the best stability among the samples tested, while mannitol and sorbitol formulations turned brown. These results suggest that sucrose is a better stabilizer than mannitol and sorbitol in the formulation of freeze-dried antivenoms under the studied conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Feasibility Study for Implementing Magnetic Suspension in the Glenn Research Center 225 cm2 Supersonic Wind Tunnel for Testing the Dynamic Stability of Blunt Bodies

    Science.gov (United States)

    Sevier, Abigail; Davis, David O.; Schoenenberger, Mark; Barnhart, Paul

    2016-01-01

    The implementation of a magnetic suspension system in the NASA Glenn Research Center (GRC) 225 cm2 Supersonic Wind Tunnel would be a powerful test technique that could accurately determine the dynamic stability of blunt body entry vehicles with no sting interference. This paper explores initial design challenges to be evaluated before implementation, including defining the lowest possible operating dynamic pressure and corresponding model size, developing a compatible video analysis technique, and incorporating a retractable initial support sting.

  14. Solid breeder test blanket module design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ying, A. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States)]. E-mail: ying@fusion.ucla.edu; Abdou, M. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Calderoni, P. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Sharafat, S. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Youssef, M. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); An, Z. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Abou-Sena, A. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Kim, E. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Reyes, S. [LANL, Livermore, CA (United States); Willms, S. [LANL, Los Alamos, NM (United States); Kurtz, R. [PNNL, Richland, WA (United States)

    2006-02-15

    This paper presents the design and analysis for the US ITER solid breeder blanket test articles. Objectives of solid breeder blanket testing during the first phase of the ITER operation focus on exploration of fusion break-in phenomena and configuration scoping. Specific emphasis is placed on first wall structural response, evaluation of neutronic parameters, assessment of thermomechanical behavior and characterization of tritium release. The tests will be conducted with three unit cell arrays/sub-modules. The development approach includes: (1) design the unit cell/sub-module for low temperature operations and (2) refer to a reactor blanket design and use engineering scaling to reproduce key parameters under ITER wall loading conditions, so that phenomena under investigation can be measured at a reactor-like level.

  15. Research on differences and correlation between tensile, compression and flexural moduli of cement stabilized macadam

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-07-01

    Full Text Available In order to reveal the differences and conversion relations between the tensile, compressive and flexural moduli of cement stabilized macadam, in this paper, we develop a new test method for measuring three moduli simultaneously. By using the materials testing system, we test three moduli of the cement stabilized macadam under different loading rates, propose a flexural modulus calculation formula which considers the shearing effect, reveal the change rules of the tensile, compression and flexural moduli with the loading rate and establish the conversion relationships between the three moduli. The results indicate that: three moduli become larger with the increase of the loading rate, showing a power function pattern; with the shear effect considered, the flexural modulus is increased by 47% approximately over that in the current test method; the tensile and compression moduli of cement stabilized macadam are significantly different. Therefore, if only the compression modulus is used as the structural design parameter of asphalt pavement, there will be a great deviation in the analysis of the load response. In order to achieve scientific design and calculation, the appropriate design parameters should be chosen based on the actual stress state at each point inside the pavement structure.

  16. 40 CFR 792.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Testing facility management. 792.31... facility management. For each study, testing facility management shall: (a) Designate a study director as... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  17. NASA reliability preferred practices for design and test

    Science.gov (United States)

    1991-01-01

    Given here is a manual that was produced to communicate within the aerospace community design practices that have contributed to NASA mission success. The information represents the best technical advice that NASA has to offer on reliability design and test practices. Topics covered include reliability practices, including design criteria, test procedures, and analytical techniques that have been applied to previous space flight programs; and reliability guidelines, including techniques currently applied to space flight projects, where sufficient information exists to certify that the technique will contribute to mission success.

  18. Design and performance test of a thermal tuning system for the PEFP DTL

    International Nuclear Information System (INIS)

    Kim, Kyung Ryul; Park, Jun; Kim, Hyung Gyun; Kim, Hee Seob; Yoon, Chong Chul; Son, Yoon Gyu; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2010-01-01

    The resonance control cooling system (RCCS) is the thermal tuning system for controlling the resonance frequency, 350 MHz, of the drift tube linac (DTL) in the Proton Engineering Frontier Project (PEFP). The PEFP uses 12 separate RCCS water pumping skids to control the resonance of the 20-MeV DTL (DTL21-24), 100-MeV DTL (DTL101-107) and the radio frequency quadrupole (RFQ) accelerating structures. The nominal operating inlet water temperature of the RCCS is 27 .deg. C and should be adjustable depending on the operational RF duty modes (21 to 33 .deg. C) with a stability of less than 0.1 .deg. C. In this work, we completed fabrication of the RCCS22-24 and the RCCS101-103. This paper discusses the fabrication, performance test, and analysis of the RCCS water pumping skids. First, the fabrication of the RCCS for the 20-MeV DTL is discussed. Second, the layout of the water pumping skid, including the selection of piping components, instrumentation and controller hardware and software, is presented. Third, the performance test of the RCCS for the 20-MeV DTL, including the continuous driving test, the function test of each components and temperature control test are achieved. Finally, empirical pressure and flow rate data from the RCCS22 water pumping tests are used to verify the design and numerical modeling of the RCCS101-103.

  19. Temporal Stability of Strength-Based Assessments: Test-Retest Reliability of Student and Teacher Reports

    Science.gov (United States)

    Romer, Natalie; Merrell, Kenneth W.

    2013-01-01

    This study focused on evaluating the temporal stability of self-reported and teacher-reported perceptions of students' social and emotional skills and assets. We used a test-retest reliability procedure over repeated administrations of the child, adolescent, and teacher versions of the "Social-Emotional Assets and Resilience Scales".…

  20. MATLAB Stability and Control Toolbox Trim and Static Stability Module

    Science.gov (United States)

    Kenny, Sean P.; Crespo, Luis

    2012-01-01

    MATLAB Stability and Control Toolbox (MASCOT) utilizes geometric, aerodynamic, and inertial inputs to calculate air vehicle stability in a variety of critical flight conditions. The code is based on fundamental, non-linear equations of motion and is able to translate results into a qualitative, graphical scale useful to the non-expert. MASCOT was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental nonlinear equations of motion, MASCOT then calculates vehicle trim and static stability data for the desired flight condition(s). Available flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind, and sideslip, plus three take-off rotation conditions. Results are displayed through a unique graphical interface developed to provide the non-stability and control expert conceptual design engineer a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. If desired, the user can also examine the detailed, quantitative results.

  1. New method of thermal cycling stability test of phase change material

    Directory of Open Access Journals (Sweden)

    Putra Nandy

    2017-01-01

    Full Text Available Phase Change Material (PCM is the most promising material as thermal energy storage nowadays. As thermal energy storage, examination on endurance of material for long-term use is necessary to be carried out. Therefore, thermal cycling test is performed to ensure thermal stability of PCM. This study have found a new method on thermal cycling test of PCM sample by using thermoelectric as heating and cooling element. RT 22 HC was used as PCM sample on this thermal cycling test. The new method had many advantages compared to some references of the same test. It just needed a small container for PCM sample. The thermoelectric could release heat to PCM sample and absorb heat from PCM sample uniformly, respectively, was called as heating and cooling process. Hence, thermoelectric had to be supported by a relay control device to change its polarity so it could heat and cool PCM sample alternately and automatically. On the other hand, the thermoelectric was cheap, easy to be found and available in markets. It can be concluded that new method of thermal cycling test by using thermoelectric as source of heating and cooling can be a new reference for performing thermal cycling test on PCM.

  2. Element diameter free stability parameters for stabilized methods applied to fluids

    International Nuclear Information System (INIS)

    Franca, L.P.; Madureira, A.L.

    1992-08-01

    Stability parameters for stabilized methods in fluids are suggested. The computation of the largest eigenvalue of a generalized eigenvalue problem replaces controversial definitions of element diameters and inverse estimate constants, used heretofore to compute these stability parameters. The design is employed in the advective-diffusive model, incompressible Navier-Stokes equations and the Stokes problem. (author)

  3. Borehole stability in densely welded tuffs

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1992-07-01

    The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs

  4. Cap stabilization for reclaimed uranium sites

    International Nuclear Information System (INIS)

    Abt, S.R.; Nelson, J.D.; Johnson, T.L.; Hawkins, E.F.

    1989-01-01

    The reclamation and stabilization of uranium-mill tailings sites requires engineering designs to protect against the disruption of tailings and the potential release of radioactive materials. The reclamation design is to be effective for 200-1000 years. This paper presents recently developed or refined techniques and methodologies used to evaluate uranium-tailings-reclamation plans designed to provide long-term stability against failure modes. Specific cap-design aspects presented include design flood selection, influence of fluvial geomorphology on site stabilization, stable slope prediction, slope stabilization using riprap, and riprap selection relative to rock quality and durability. Design relationships are presented for estimating flow through riprap, sizing riprap, and estimating riprap flow resistance for overtopping conditions. Guidelines for riprap-layer thickness and gradation are presented. A riprap-rating procedure for estimating rock quality and durability is also presented

  5. Remarks on boiling water reactor stability analysis. Pt. 2. Stability monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Carsten; Hennig, Dieter; Hurtado, Antonio [Technische Univ. Dresden (Germany). Chair of Hydrogen and Nuclear Energy; Schuster, Roland [Kernkraftwerk Brunsbuettel GmbH und Co. oHG, Brunsbuettel (Germany); Lukas, Bernard [EnBW Kernkraft GmbH, Philippsburg (Germany). Kernkraftwerk Philippsburg; Aguirre, Carlos [Kernkraftwerk Leibstadt AG, Aargau (Switzerland)

    2012-12-15

    In part 1 of this article we explained the partly relative complex solution manifold of the differential equations describing the stability behaviour of a BWR, in particular the coexistence of different types of solutions, such as the coexistence of unstable limit cycles and stable fixed points are of interest from the operational safety point of view. The part 2 is devoted to the surveillance of the stability behaviour. We summarize some stability monitoring methods and suggest to support stability tests by RAM-ROM analyses in order to reveal in advance the stability 'landscape' of the BWR in a parameter region high sensitive for appearing of linear unstable states. The analysis of an especial stability test, performed at NPP Leibstadt (KKL), makes it clear that the measurement results can only be interpreted by application of bifurcation analysis. (orig.)

  6. A default Bayesian hypothesis test for ANOVA designs

    NARCIS (Netherlands)

    Wetzels, R.; Grasman, R.P.P.P.; Wagenmakers, E.J.

    2012-01-01

    This article presents a Bayesian hypothesis test for analysis of variance (ANOVA) designs. The test is an application of standard Bayesian methods for variable selection in regression models. We illustrate the effect of various g-priors on the ANOVA hypothesis test. The Bayesian test for ANOVA

  7. Design and synthesis of dimethylaminomethyl-substituted curcumin derivatives/analogues: potent antitumor and antioxidant activity, improved stability and aqueous solubility compared with curcumin.

    Science.gov (United States)

    Fang, Xubin; Fang, Lei; Gou, Shaohua; Cheng, Lin

    2013-03-01

    A series of dimethylaminomethyl-substituted curcumin derivatives/analogues were designed and synthesized. All compounds effectively inhibited HepG2, SGC-7901, A549 and HCT-116 tumor cell lines proliferation in MTT assay. Particularly, compounds 2a and 3d showed much better activity than curcumin against all of the four tumor cell lines. Antioxidant test revealed that these compounds had higher free radical scavenging activity than curcumin towards both DPPH and galvinoxyl radicals. Furthermore, the aqueous solubility and stability of the target compounds were also significantly improved compared with curcumin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Design, implementation and testing of master slave robotic surgical system

    International Nuclear Information System (INIS)

    Ali, S.A.

    2015-01-01

    The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom) haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system. (author)

  9. Design, Implementation and Testing of Master Slave Robotic Surgical System

    Directory of Open Access Journals (Sweden)

    Syed Amjad Ali

    2015-01-01

    Full Text Available The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system

  10. Design, parametrization, and pole placement of stabilizing output feedback compensators via injective cogenerator quotient signal modules.

    Science.gov (United States)

    Blumthaler, Ingrid; Oberst, Ulrich

    2012-03-01

    Control design belongs to the most important and difficult tasks of control engineering and has therefore been treated by many prominent researchers and in many textbooks, the systems being generally described by their transfer matrices or by Rosenbrock equations and more recently also as behaviors. Our approach to controller design uses, in addition to the ideas of our predecessors on coprime factorizations of transfer matrices and on the parametrization of stabilizing compensators, a new mathematical technique which enables simpler design and also new theorems in spite of the many outstanding results of the literature: (1) We use an injective cogenerator signal module ℱ over the polynomial algebra [Formula: see text] (F an infinite field), a saturated multiplicatively closed set T of stable polynomials and its quotient ring [Formula: see text] of stable rational functions. This enables the simultaneous treatment of continuous and discrete systems and of all notions of stability, called T-stability. We investigate stabilizing control design by output feedback of input/output (IO) behaviors and study the full feedback IO behavior, especially its autonomous part and not only its transfer matrix. (2) The new technique is characterized by the permanent application of the injective cogenerator quotient signal module [Formula: see text] and of quotient behaviors [Formula: see text] of [Formula: see text]-behaviors B. (3) For the control tasks of tracking, disturbance rejection, model matching, and decoupling and not necessarily proper plants we derive necessary and sufficient conditions for the existence of proper stabilizing compensators with proper and stable closed loop behaviors, parametrize all such compensators as IO behaviors and not only their transfer matrices and give new algorithms for their construction. Moreover we solve the problem of pole placement or spectral assignability for the complete feedback behavior. The properness of the full feedback behavior

  11. Thermal architecture design tests for the Planck/HFI instrument

    Energy Technology Data Exchange (ETDEWEB)

    Piat, M.; Leriche, B.; Torre, J.-P.; Lamarre, J.-M.; Benoit, A.; Crussaire, J.-P

    2000-04-07

    The ESA satellite project Planck is designed to survey the sky at sub-millimetre and millimetre wavelengths in a drift scan mode. The High-Frequency Instrument (HFI) will use 48 bolometers cooled to 100 mK by a dilution cooler. In this paper, we describe how the scan strategy leads to requirements on the 0.1 K stage temperature stability and how a combination of a passive and an active system can be used to approach this specification.

  12. 21 CFR 58.31 - Testing facility management.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Testing facility management. 58.31 Section 58.31... management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  13. Engineering design of IFMIF/EVEDA lithium test loop. Electro-magnetic pump and pressure drop

    International Nuclear Information System (INIS)

    Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Wakai, Eiichi; Nakamura, Kazuyuki; Horiike, H.; Yamaoka, N.; Matsushita, I.

    2011-01-01

    The Engineering Validation and Engineering Design Activities (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) is proceeding as one of the ITER Broader Approach (ITER-BA). A Li circulation loop for testing hydraulic stability of the Li target (high speed free-surface flow of liquid Li as a beam target) and Li purification traps are under construction in the Japan Atomic Energy Agency as a major Japanese activities in the EVEDA. This paper presents specification of an electro-magnetic pump (EMP) for the EVEDA Li Test Loop (ELTL) and evaluation of the pressure drop in the main loop of the ELTL. The EMP circulates the liquid Li at a large flow rate up to 0.05 m 3 /s (3000 l/min) under a vacuum cover gas (Ar) pressure of 10 -3 Pa, thus the evaluation of cavitation generation is a crucial issue. The EMP used in the ELTL consists of two EMPs aligned in series through a U-tube whose size of one EMP is 0.8 m square and 2.6 m in length. The calculation of the pressure drop in the main Li loop to the EMP is approx. 25 kPa at the design maximum flow rate of 0.05 m 3 /s. On the other hand the height from the EMP to a Li tank to supply Li to the EMP is designed to be 9.72 m, and secures a static pressure and the cavitation number of 18 kPa and 3.4 respectively at the maximum flow rate in a vacuum condition. As a result, it is confirmed to prevent cavitation at the inlet of the EMP in this design. (author)

  14. How many trials are needed to achieve performance stability of the Timed Up & Go test in patients with hip fracture?

    DEFF Research Database (Denmark)

    Kristensen, Morten T; Ekdahl, Charlotte; Kehlet, Henrik

    2010-01-01

    To examine the number of trials needed to achieve performance stability of the Timed Up & Go (TUG) test using a standardized walking aid in patients with hip fracture who are allowed full weight bearing (FWB).......To examine the number of trials needed to achieve performance stability of the Timed Up & Go (TUG) test using a standardized walking aid in patients with hip fracture who are allowed full weight bearing (FWB)....

  15. Design and analysis pertaining to the aerodynamic and stability characteristics of a hybrid wing-body cargo aircraft

    Directory of Open Access Journals (Sweden)

    Ishaan PRAKASH

    2017-09-01

    Full Text Available Recent trends in aircraft design research have resulted in development of many unconventional configurations mostly aimed at improving aerodynamic efficiency. The blended wing body (BWB is one such configuration that holds potential in this regard. In its current form the BWB although promises a better lift to drag (L/D ratio it is still not able to function to its maximum capability due to design modifications such as twist and reflexed airfoils to overcome stability problems in the absence of a tail. This work aims to maximize the impact of a BWB. A design approach of morphing the BWB with a conventional aft fuselage is proposed. Such a configuration intends to impart full freedom to the main wing and the blended forward fuselage to contribute in lift production while the conventional tail makes up for stability. The aft fuselage, meanwhile, also ensures that the aircraft is compatible with current loading and airdrop operations. This paper is the culmination of obtained models results and inferences from the first phase of the project wherein development of aerodynamic design and analysis methodologies and mission specific optimization have been undertaken.

  16. 21 CFR 211.166 - Stability testing.

    Science.gov (United States)

    2010-04-01

    ... record of such data shall be maintained. Accelerated studies, combined with basic stability information on the components, drug products, and container-closure system, may be used to support tentative expiration dates provided full shelf life studies are not available and are being conducted. Where data from...

  17. A Bayesian Optimal Design for Sequential Accelerated Degradation Testing

    Directory of Open Access Journals (Sweden)

    Xiaoyang Li

    2017-07-01

    Full Text Available When optimizing an accelerated degradation testing (ADT plan, the initial values of unknown model parameters must be pre-specified. However, it is usually difficult to obtain the exact values, since many uncertainties are embedded in these parameters. Bayesian ADT optimal design was presented to address this problem by using prior distributions to capture these uncertainties. Nevertheless, when the difference between a prior distribution and actual situation is large, the existing Bayesian optimal design might cause some over-testing or under-testing issues. For example, the implemented ADT following the optimal ADT plan consumes too much testing resources or few accelerated degradation data are obtained during the ADT. To overcome these obstacles, a Bayesian sequential step-down-stress ADT design is proposed in this article. During the sequential ADT, the test under the highest stress level is firstly conducted based on the initial prior information to quickly generate degradation data. Then, the data collected under higher stress levels are employed to construct the prior distributions for the test design under lower stress levels by using the Bayesian inference. In the process of optimization, the inverse Gaussian (IG process is assumed to describe the degradation paths, and the Bayesian D-optimality is selected as the optimal objective. A case study on an electrical connector’s ADT plan is provided to illustrate the application of the proposed Bayesian sequential ADT design method. Compared with the results from a typical static Bayesian ADT plan, the proposed design could guarantee more stable and precise estimations of different reliability measures.

  18. Design of a Realistic Test Simulator For a Built-In Self Test Environment

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2010-12-01

    Full Text Available This paper presents a realistic test approach suitable to Design For Testability (DFT and Built- In Self Test (BIST environments. The approach is culminated in the form of a test simulator which is capable of providing a required goal of test for the System Under Test (SUT. The simulator uses the approach of fault diagnostics with fault grading procedure to provide the tests. The tool is developed on a common PC platform and hence no special software is required. Thereby, it is a low cost tool and hence economical. The tool is very much suitable for determining realistic test sequences for a targeted goal of testing for any SUT. The developed tool incorporates a flexible Graphical User Interface (GUI procedure and can be operated without any special programming skill. The tool is debugged and tested with the results of many bench mark circuits. Further, this developed tool can be utilized for educational purposes for many courses such as fault-tolerant computing, fault diagnosis, digital electronics, and safe - reliable - testable digital logic designs.

  19. Long term evaluation and identification of the proper testing program for ASTM Class C fly ash stabilized soils : technical summary.

    Science.gov (United States)

    1993-07-01

    The objectives of this research were to further evaluate the characteristics of locally produced fly ash and to develop test procedures which would expedite the evaluation of fly ash stabilized soils. Because cement and lime stabilization techniques ...

  20. Diffractive optics: design, fabrication, and test

    National Research Council Canada - National Science Library

    O'Shea, Donald C

    2004-01-01

    This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs...

  1. Design of horizontal test cryostat for testing two 650 MHz cavities: cryogenic considerations

    Science.gov (United States)

    Khare, P.; Gilankar, S.; Kush, P. K.; Lakshminarayanan, A.; Choubey, R.; Ghosh, R.; Jain, A.; Patel, H.; Gupta, P. D.; Hocker, A.; Ozelis, J. P.; Geynisman, M.; Reid, C.; Poloubotko, V.; Mitchell, D.; Peterson, T. J.; Nicol, T. H.

    2017-02-01

    Horizontal Test Cryostat has been designed for testing two 650 MHz "dressed" Superconducting Radio Frequency (SCRF) cavities in a single testing cycle at Raja Ramanna Centre for Advanced Technology, India (RRCAT) in collaboration with Fermi National Accelerator Laboratory, USA (FNAL). This cryostat will facilitate testing of two 5-cell 650 MHz SCRF cavities, in CW or pulsed regime, for upcoming High Intensity Superconducting Proton Accelerator projects at both countries. Two such HTS facilities are planned, one at RRCAT for Indian Spallation Neutron Source project (ISNS), which is on the horizon, and the other at FNAL, USA. A test cryostat, a part of horizontal test stand-2 (HTS-2) will be set up at RRCAT for Indian project. In order to maximize the utility of this facility, it can also be used to test two dressed 9-cell 1.3 GHz cavities and other similarly-sized devices. The facility assumes, as an input, the availability of liquid nitrogen at 80 K and liquid helium at 4.5 K and 2 K, with a refrigeration capacity of approximately 50 W at 2 K. Design work of cryostat has been completed and now procurement process is in progress. This paper discusses salient features of the cryostat. It also describes different design calculations and ANSYS analysis for cool down of few subsystems like cavity support system and liquid nitrogen cooled thermal radiation shield of horizontal test cryostat..

  2. Engineering Task Plan for Hose-In-Hose Transfer Lines for the Interim Stabilization Program

    International Nuclear Information System (INIS)

    TORRES, T.D.

    2000-01-01

    The document is the Engineering Task Plan for the engineering, design services, planning, project integration and management support for the design, modification, installation and testing of an over ground transfer (OGT) system to support the interim stabilization of S/SX and U Tank Farms

  3. Testing Universal Design of a Public Media Website with Diverse Users.

    Science.gov (United States)

    Chen, Weiqin; Kessel, Siri; Sanderson, Norun C; Tatara, Naoe

    2016-01-01

    Testing with users can identify more issues than other testing methods. Many researchers have argued for the importance of user testing in Universal Design. However, testing Universal Design with diverse users poses many challenges. In this paper we will share our experience with testing the Universal Design of a public media website with real users. We discuss the challenges faced and lessons learned in the process.

  4. Improved Precision and Efficiency of a Modified ORG0020 Dynamic Respiration Test Setup for Compost Stability Assessment

    Directory of Open Access Journals (Sweden)

    Diana Guillen Ferrari

    2017-12-01

    Full Text Available The ORG0020 dynamic respiration test is effective at distinguishing source segregated organic waste derived composts across a wide range of stabilities when compared to other standard tests; however, using the original diaphragm pump and manifold setup, the test is affected by variability in flow rate with time and across sample replicate vessels. Here, we demonstrate the use of a multichannel peristaltic pump to deliver a more consistent air flow to individual vessels. Using finished and unfinished industry compost samples from different sites with varying stabilities, we provide evidence of greater precision of the modified setup compared to the original. Furthermore, the reduced need for air flow adjustment resulted in improved running cost efficiency with less labour demand. Analysis of compost sample oxygen demand supports the current test air flow rate of 25–75 mL min−1, although the improved air flow control will enable future narrowing of the acceptable range for better inter-laboratory performance.

  5. Space shuttle maneuvering engine reusable thrust chamber program. Task 11: Low epsilon stability test report data dump

    Science.gov (United States)

    Pauckert, R. P.

    1974-01-01

    The stability characteristics of the like-doublet injector were defined over the range of OME chamber pressures and mixture ratios. This was accomplished by bomb testing the injector and cavity configurations in solid wall thrust chamber hardware typical of a flight contour with fuel heated to regenerative chamber outlet temperatures. It was found that stability in the 2600-2800 Hz region depends upon injector hydraulics and on chamber acoustics.

  6. Design of polymer motifs for nucleic acid recognition and assembly stabilization

    Science.gov (United States)

    Zhou, Zhun

    This dissertation describes the synthesis and assembly of bio-functional polymers and the applications of these polymers to drug encapsulation, delivery, and multivalent biomimetic macromolecular recognition between synthetic polymer and nucleic acids. The main content is divided into three parts: (1) polyacidic domains as strongly stabilizing design elements for aqueous phase polyacrylate diblock assembly; (2) small molecule/polymer recognition triggered macromolecular assembly and drug encapsulation; (3) trizaine derivatized polymer as a novel class of "bifacial polymer nucleic acid" (bPoNA) and applications of bPoNA to nanoparticle loading of DNA/RNA, silencing delivery as well as control of aptamer function. Through the studies in part (1) and part (2), it was demonstrated that well-designed polymer motifs are not only able to enhance assemblies driven by non-specific hydrophobic effect, but are also able to direct assemblies based on specific recognitions. In part (3) of this dissertation, this concept was further extended by the design of polyacrylate polymers that are capable of discrete and robust hybridization with nucleic acids. This surprising finding demonstrated both fundamental and practical applications. Overall, these studies provided insights into the rational design elements for improving the bio-functions of synthetic polymers, and significantly expanded the scope of biological applications in which polymers synthesized via controlled radical polymerization may play a role.

  7. Long term stability of yttria-stabilized zirconia waste forms. Stability for secular change of partitioned TRU waste composition by disintegration

    International Nuclear Information System (INIS)

    Kuramoto, Ken-ichi; Banba, Tsunetaka; Mitamura, Hisayoshi; Sakai, Etsuro; Uno, Masayoshi; Kinoshita, H.; Yamanaka, Shinsuke

    1999-01-01

    In this study, the stability of YSZ waste forms for secular change of partitioned TRU waste composition by disintegration, one of important terms in long-term stability, is the special concern. Designed amount of waste and YSZ powder were mixed and sintered. These TRU waste forms were submitted to tests of phase stability, chemical durability, mechanical property and compactness. The results were compared with those of another YSZ waste forms, non-radioactive Ce and/or Nd doped YSZ samples, and glass and Synroc waste forms. Experimental results show following: (1) Phase stability of (Np+Am)-, (Np+U)-, and (Np+U+Bi)-doped YSZ waste forms could be maintained of that of the initial Np+Am-doped YSZ waste form permanently even when the composition of partitioned TRU waste were changed by disintegration. (2) Secular change also accelerated volume increase of YSZ waste forms as well as alpha-decay damage. (3) Hv, E and K IC of (Np+U)- and (Np+U+Bi)-doped YSZ waste forms were independent of the secular change of the partitioned TRU waste composition by disintegration. (4) Mechanical properties of YSZ waste forms were more than those of a glass and Synroc waste forms. (5) Compactness of YSZ waste forms was good as waste forms for the partitioned TRU wastes. (J.P.N.)

  8. Number of test trials needed for performance stability and interrater reliability of the one leg stand test in patients with a major non-traumatic lower limb amputation

    DEFF Research Database (Denmark)

    Kristensen, Morten Tange; Nielsen, Anni Østergaard; Madsen Topp, Ulla

    2014-01-01

    Balance is beneficial for daily functioning of patients with a lower limb amputation and sometimes assessed by the one-leg stand test (OLST). The aims of the study were to examine (1) the number of trials needed to achieve performance stability, (2) the interrater reliability of the OLST in patie......Balance is beneficial for daily functioning of patients with a lower limb amputation and sometimes assessed by the one-leg stand test (OLST). The aims of the study were to examine (1) the number of trials needed to achieve performance stability, (2) the interrater reliability of the OLST...... in patients with a major non-traumatic lower limb amputation, and (3) to provide a test procedure....

  9. The study on length and diameter ratio of nail as preliminary design for slope stabilization

    Science.gov (United States)

    Gunawan, Indra; Silmi Surjandari, Niken; Muslih Purwana, Yusep

    2017-11-01

    Soil nailing technology has been widely applied in practice for reinforced slope. The number of studies for the effective design of nail-reinforced slopes has also increased. However, most of the previous study was focused on a safety factor of the slope; the ratio of length and diameter itself has likely never been studied before. The aim of this study is to relate the length and diameter ratio of the nail with the safety factor of the 20 m height of sand slope in the various angle of friction and steepness of the slope. Simplified Bishop method was utilized to analyze the safety factor of the slope. This study is using data simulation to calculate the safety factor of the slope with soil nailing reinforcement. The results indicate that safety factor of slope stability increases with the increase of length and diameter ratio of the nail. At any angle of friction and steepness of the slope, certain effective length and diameter ratio was obtain. These results may be considered as a preliminary design for slope stabilization.

  10. Dynamic postural stability in blind athletes using the biodex stability system.

    Science.gov (United States)

    Aydoğ, E; Aydoğ, S T; Cakci, A; Doral, M N

    2006-05-01

    Three systems affect the upright standing posture in humans - visual, vestibular, and somatosensory. It is well known that the visually impaired individuals have bad postural balance. On the other hand, it is a well documented fact that some sports can improve postural balance. Therefore, it is aimed in this study to evaluate the dynamic postural stability in goal-ball athletes. Twenty blind goal-ball players, 20 sighted and 20 sedentary blind controls were evaluated using the Biodex Stability System. Three adaptation trials and three test evaluations (a 20-second balance test at a platform stability of 8) were applied to the blind people, and to the sighted with eyes open and closed. Dynamic postural stability was measured on the basis of three indices: overall, anteroposterior, and mediolateral. Means of each test score were calculated. The tests results were compared for the blind athletes, sighted (with eyes open and closed) subjects, and sedentary blind people. There were significant differences between the results of the blind people and the sighted subjects with regards to all of the three indices. Although the stability of goal-ball players was better than sedentary blinds', only ML index values were statistically different (4.47 +/- 1.24 in the goal-ball players; 6.46 +/- 3.42 in the sedentary blind, p = 0.04). Dynamic postural stability was demonstrated to be affected by vision; and it was found that blind people playing goal-ball 1 - 2 days per week have higher ML stability than the sedentary sighted people.

  11. Structural Design Optimization of a Tiltrotor Aircraft Composite Wing to Enhance Whirl Flutter Stability

    DEFF Research Database (Denmark)

    Kim, Taeseong; Kim, Jaehoon; Shin, Sang Joon

    2013-01-01

    In order to enhance the aeroelastic stability of a tiltrotor aircraft, a structural optimization framework is developed by applying a multi-level optimization approach. Each optimization level is designed to achieve a different purpose; therefore, relevant optimization schemes are selected for each...... level. Enhancement of the aeroelastic stability is selected as an objective in the upper-level optimization. This is achieved by seeking the optimal structural properties of a composite wing, including its mass, vertical, chordwise, and torsional stiffness. In the upper-level optimization, the response...... surface method (RSM), is selected. On the other hand, lower-level optimization seeks to determine the local detailed cross-sectional parameters, such as the ply orientation angles and ply thickness, which are relevant to the wing structural properties obtained at the upper-level. To avoid manufacturing...

  12. A Design of Power System Stabilization for SVC System Using a RVEGA

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hyeng Hwan; Hur, Dong Ryol; Lee, Jeong Phil; Wang, Yong Peel [Dong-A University, Pusan (Korea)

    2001-07-01

    In this paper, it is suggested that the selection method of parameter of Power System Stabilizer (PSS) with robustness in low frequency oscillation for Static VAR Compensator (SVC) using a Real Variable Elitism Genetic Algorithm (RVEGA). A SVE, one of the Flexible AC Transmission System (FACTS), constructed by a fixed capacitor (FC) and a thyristor controlled reactor (TCR), is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage. The proposed PSS parameters are optimized using RVEGA in order to maintain optimal operation of generator under the various operating conditions. To decrease the computational time, real variable string is adopted. To verify the robustness of the proposed method, we considered the dynamic response of generator speed deviation and generator terminal voltage by applying a power fluctuation and three-phase fault at heavy load, normal load and light load. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system. (author). 20 refs., 14 figs., 3 tabs.

  13. Testing effects in mixed- versus pure-list designs.

    Science.gov (United States)

    Rowland, Christopher A; Littrell-Baez, Megan K; Sensenig, Amanda E; DeLosh, Edward L

    2014-08-01

    In the present study, we investigated the role of list composition in the testing effect. Across three experiments, participants learned items through study and initial testing or study and restudy. List composition was manipulated, such that tested and restudied items appeared either intermixed in the same lists (mixed lists) or in separate lists (pure lists). In Experiment 1, half of the participants received mixed lists and half received pure lists. In Experiment 2, all participants were given both mixed and pure lists. Experiment 3 followed Erlebacher's (Psychological Bulletin, 84, 212-219, 1977) method, such that mixed lists, pure tested lists, and pure restudied lists were given to independent groups. Across all three experiments, the final recall results revealed significant testing effects for both mixed and pure lists, with no reliable difference in the magnitude of the testing advantage across list designs. This finding suggests that the testing effect is not subject to a key boundary condition-list design-that impacts other memory phenomena, including the generation effect.

  14. Beryllium satellite thrust cone design, manufacture and test

    International Nuclear Information System (INIS)

    Schneiter, H.; Chandler, D.

    1977-01-01

    Pre-formed beryllium sheet material has been used in the design, manufacturing and test of a satellite thrust cone structure. Adhesive bonding was used for attachment of aluminium flanges and conical segment lap strips. Difficulties in beryllium structure design such as incompatibilities with aluminium and handling problems are discussed. Testing to optimize beryllium-beryllium and beryllium-aluminium adhesive bonds is described. The completed thrust cone assembly has been subjected to static load testing and the results are presented. A summary of the relative merits of the use of beryllium in satellite structures is given with recommendations for future users. (author)

  15. Retention of the posterior cruciate ligament versus the posterior stabilized design in total knee arthroplasty: a prospective randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    van den Akker-Scheek Inge

    2009-09-01

    Full Text Available Abstract Background Prosthetic design for the use in primary total knee arthroplasty has evolved into designs that preserve the posterior cruciate ligament (PCL and those in which the ligament is routinely sacrificed (posterior stabilized. In patients with a functional PCL the decision which design is chosen depends largely on the favour and training of the surgeon. The objective of this study is to determine whether the patient's perceived outcome and speed of recovery differs between a posterior cruciate retaining total knee arthroplasty and a posterior stabilized total knee arthroplasty. Methods/Design A randomized controlled trial will be conducted. Patients who are admitted for primary unilateral TKA due to primary osteoarthrosis are included when the following inclusion criteria are met: non-fixed fixed varus or valgus deformity less than 10 degrees, age between 55 and 85 years, body mass index less than 35 kg/m2 and ASA score (American Society of Anaesthesiologists I or II. Patients are randomized in 2 groups. Patients in the posterior cruciate retaining group will receive a prosthesis with a posterior cut-out for the posterior cruciate ligament and relatively flat topography. In patients allocated to the posterior stabilized group, in which the posterior cruciate ligament is excised, the design may substitute for this function by an intercondylar tibial prominence that articulates with the femur in flexion. Measurements will take place preoperatively and 6 weeks, 3 months, 6 months and 1 year postoperatively. At all measurement points patient's perceived outcome will be assessed using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC. Secondary outcome measures are quality of life (SF-36 and physician reported functional status and range of motion as determined with the Knee Society Clinical Rating System (KSS. Discussion In the current practice both posterior cruciate retaining and posterior stabilized designs

  16. Computer-Aided Test Flow in Core-Based Design

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the efficient test-pattern generation in a core-based design. A consistent Computer-Aided Test (CAT) flow is proposed based on the required core-test strategy. It generates a test-pattern set for the embedded cores with high fault coverage and low DfT area overhead. The CAT

  17. Designing and implementing test automation frameworks with QTP

    CERN Document Server

    Bhargava, Ashish

    2013-01-01

    A tutorial-based approach, showing basic coding and designing techniques to build test automation frameworks.If you are a beginner, an automation engineer, an aspiring test automation engineer, a manual tester, a test lead or a test architect who wants to learn, create, and maintain test automation frameworks, this book will accelerate your ability to develop and adapt the framework.

  18. Design and Optimization of a Hypersonic Test Facility for Sub-Scale Testing

    National Research Council Canada - National Science Library

    O'Kresik, Stephen

    2003-01-01

    ... to 7.5 with a maximum system mass flow rate variation from 3 to 45 lbm/s. Additionally, a dynamic design process was outlined to assist other designers in producing similar test stands. Finally, a software analysis package was developed to analyze proposed changes in the support system architecture.

  19. A Study of the Lateral Stability of Self-Propelled Fruit Harvesters

    Directory of Open Access Journals (Sweden)

    Maurizio Cutini

    2017-11-01

    Full Text Available Self-propelled fruit harvesters (SPFHs are agricultural machines designed to facilitate fruit picking and other tasks requiring operators to stay close to the foliage or to the upper part of the canopy. They generally consist of a chassis with a variable height working platform that can be equipped with lateral extending platforms. The positioning of additional masses (operators, fruit bins and the maximum height of the platform (up to three meters above the ground strongly affect machine stability. Since there are no specific studies on the lateral stability of SPFHs, this study aimed to develop a specific test procedure to fill this gap. A survey of the Italian market found 20 firms manufacturing 110 different models of vehicles. Observation and monitoring of SPFHs under real operational conditions revealed the variables mostly likely to affect lateral stability: the position and mass of the operators and the fruit bin on the platform. Two SPFHs were tested in the laboratory to determine their centre of gravity and lateral stability in four different settings reproducing operational conditions. The test setting was found to affect the stability angle. Lastly, the study identified two specific settings reproducing real operational conditions most likely to affect the lateral stability of SPFHs: these should be used as standard, reproducible settings to enable a comparison of results.

  20. Using GIFTS on the Cray-1 for the large coil test facility test: stand design analysis

    International Nuclear Information System (INIS)

    Baudry, T.V.; Gray, W.H.

    1981-06-01

    The GIFTS finite element program has been used extensively throughout the Large Coil Test Facility (LCTF) test stand design analysis. Effective use has been made of GIFTS both as a preprocessor to other finite element programs and as a complete structural analysis package. The LCTF test stand design involved stress analysis ranging from simple textbook-type problems to very complicated three-dimensional structural problems. Two areas of the design analysis are discussed

  1. Stability Enhancement of Multi machine AC Systems by Synchronverter HVDC control

    Directory of Open Access Journals (Sweden)

    Raouia Aouini

    2016-06-01

    Full Text Available This paper investigates the impact of the Synchronverter based HVDC control on power system stability. The study considers multi machine power systems, with realistic parameters. A specific tuning method of the parameters of the regulators is used. The proposed control scheme is based on the sensitivity of the poles of the HVDC neighbor zone to the control parameters, and next, on their placement using residues. The transient stability of the HVDC neighbor zone is a priori taken into account at the design stage. The new tuning method is evaluated in comparison with the standard vector control via simulation tests. Extensive tests are performed using Matlab/Simulink implementation of the IEEE 9 bus/3 machines test system. The results prove the superiority of the proposed control to the classic vector control. The synchronverter control allows to improve not only the local performances of the HVDC link, but also the overall transient stability of the AC zone in which the HVDC is inserted. (where

  2. Engineering Task Plan for Hose-In-Hose Transfer Lines for the Interim Stabilization Program

    International Nuclear Information System (INIS)

    RUNG, M.P.

    2000-01-01

    This document is the Engineering Task Plan for the engineering, design services, planning, project integration and management support for the design, modification, installation and testing of an over ground transfer (OGT) system to support the interim stabilization of nine tanks in the 241-S/SX Tank Farms

  3. Soil stabilization 1982

    Science.gov (United States)

    Barenberg, E. J.; Thompson, M. R.; Tayabji, S. D.; Nussbaum, P. J.; Ciolko, A. T.

    Seven papers cover the following areas: design, construction and performance of lime, fly ash, and slag pavement; evaluation of heavily loaded cement stabilized bases; coal refuse and fly ash compositions; potential highway base course materials; lime soil mixture design considerations for soils of southeastern United States; short term active soil property changes caused by injection of lime and fly ash; soil cement for use in stream channel grade stabilization structures; and reaction products of lime treated southeastern soils.

  4. Design, fracture control, fabrication, and testing of pressurized space-vehicle structures

    Science.gov (United States)

    Babel, H. W.; Christensen, R. H.; Dixon, H. H.

    1974-01-01

    The relationship between analysis, design, fabrication, and testing of thin shells is illustrated by Saturn S-IVB, Thor, Delta, and other single-use and reusable large-size cryogenic aluminum tankage. The analyses and design to meet the design requirements are reviewed and include consideration of fracture control, general instability, and other failure modes. The effect of research and development testing on the structure is indicated. It is shown how fabrication and nondestructive and acceptance testing constrain the design. Finally, qualification testing is reviewed to illustrate the extent of testing used to develop the Saturn S-IVB.

  5. Design of Multilayer Insulation for the Multipurpose Hydrogen Test Bed

    Science.gov (United States)

    Marlow, Weston A.

    2011-01-01

    Multilayer insulation (MLI) is a critical component for future, long term space missions. These missions will require the storage of cryogenic fuels for extended periods of time with little to no boil-off and MLI is vital due to its exceptional radiation shielding properties. Several MLI test articles were designed and fabricated which explored methods of assembling and connecting blankets, yielding results for evaluation. Insight gained, along with previous design experience, will be used in the design of the replacement blanket for the Multipurpose Hydrogen Test Bed (MHTB), which is slated for upcoming tests. Future design considerations are discussed which include mechanical testing to determine robustness of such a system, as well as cryostat testing of samples to give insight to the loss of thermal performance of sewn panels in comparison to the highly efficient, albeit laborious application of the original MHTB blanket.

  6. Proceedings of Design, Automation and Test in Europe (DATE07)

    DEFF Research Database (Denmark)

    Welcome to the DATE 07 Conference Proceedings. DATE combines the world’s leading electronic systems design conference and Europe's leading international exhibition for electronic design, automation and test, from system level hardware and software implementation right down to integrated circuit...... with 78 sessions covering the latest in system design and embedded software, IC design methodologies and EDA tool developments. One of the main strengths of the conference is a wide but high-quality coverage of design, design automation and test topics, from the system level (including PCB and FPGA......) to the integrated circuit level. In addition, for the third year a special embedded software track is offered to allow for the increasing importance of software in embedded systems. Compared with previous years, submissions in design, test and embedded software have grown significantly, showing a clear trend toward...

  7. Retention of the posterior cruciate ligament versus the posterior stabilized design in total knee arthroplasty : a prospective randomized controlled clinical trial

    NARCIS (Netherlands)

    van den Boom, L.G.H.; Brouwer, R.W.; van den Akker-Scheek, I.; Bulstra, S.K.; van Raaij, J.J.A.M.

    2009-01-01

    Background: Prosthetic design for the use in primary total knee arthroplasty has evolved into designs that preserve the posterior cruciate ligament (PCL) and those in which the ligament is routinely sacrificed (posterior stabilized). In patients with a functional PCL the decision which design is

  8. Do Test Design and Uses Influence Test Preparation? Testing a Model of Washback with Structural Equation Modeling

    Science.gov (United States)

    Xie, Qin; Andrews, Stephen

    2013-01-01

    This study introduces Expectancy-value motivation theory to explain the paths of influences from perceptions of test design and uses to test preparation as a special case of washback on learning. Based on this theory, two conceptual models were proposed and tested via Structural Equation Modeling. Data collection involved over 870 test takers of…

  9. Biomass Combustion Control and Stabilization Using Low-Cost Sensors

    Directory of Open Access Journals (Sweden)

    Ján Piteľ

    2013-01-01

    Full Text Available The paper describes methods for biomass combustion process control and burning stabilization based on low-cost sensing of carbon monoxide emissions and oxygen concentration in the flue gas. The designed control system was tested on medium-scale biomass-fired boilers and some results are evaluated and presented in the paper.

  10. A Fractual Mechanical Testing and Design Strategy for FRC Structures

    DEFF Research Database (Denmark)

    Stang, Henrik; Olesen, John Forbes

    1999-01-01

    A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications.......A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications....

  11. IFMIF target and test cell - design and integration

    International Nuclear Information System (INIS)

    Heinzel, V.

    2007-01-01

    The International Fusion Material Irradiation Facility (IFMIF) aims at the qualification of appropriate materials for a Demonstration Fusion Power Plant (DEMO) to a fluence of up to 150 dpa (displacement per atom) at a DEMO typical neutron spectrum. It comprises two accelerators each providing a deuteron beam with 125 mA and 40 MeV. The deuterons strike a lithium target and create via stripping reactions neutrons. The neutrons are mainly forward directed into the High-Flux-Test-Module (HFTM). The Medium Flux-Test-Modules (MFTM) and the Low-Flux-Test-Modules (LFTM) are arranged in beam direction behind. In the HFTM a damage rate in steel of more than 20 dpa/fpy (displacement per atome per full power year) will be provide in a volume of 0.5 litre. The neutron spectrum is prone to produce helium and tritium in steel like in the first wall of a DEMO reactor. The Medium- Flux-Test-Modules are designed for creep fatigues in situ and tritium release test. The test modules are cooled with helium. The target is a lithium jet with a free surface towards the deuteron beams. The jet follows a concave curved so called back wall. Centrifugal forces increase the static pressure, which prevents lithium boiling at the beam tube pressure and the power release of 10 MW due to the deuteron beams. The target and Test Cell (TTC) houses the target and the test modules as well as the lithium supply tubes and a quench tank into which the lithium splashes after the target. The lithium containing components have a temperature of 250 to 350 C. Nuclear reactions mainly in beam direction contribute to heat releases in TTC components. The TTC is filled with a noble gas with almost atmospheric pressure. Natural convection transfers heat to the walls but also mitigates temperature peaks. The Forschungszentrum Karlsruhe (FZK) has developed or validated tools for: - The extended Monte Carlo Code McDeLicious for calculations of the neutron source term, dpa rates in the material specimens, activation

  12. INTRA-RATER RELIABILITY OF THE MULTIPLE SINGLE-LEG HOP-STABILIZATION TEST AND RELATIONSHIPS WITH AGE, LEG DOMINANCE AND TRAINING.

    Science.gov (United States)

    Sawle, Leanne; Freeman, Jennifer; Marsden, Jonathan

    2017-04-01

    Balance is a complex construct, affected by multiple components such as strength and co-ordination. However, whilst assessing an athlete's dynamic balance is an important part of clinical examination, there is no gold standard measure. The multiple single-leg hop-stabilization test is a functional test which may offer a method of evaluating the dynamic attributes of balance, but it needs to show adequate intra-tester reliability. The purpose of this study was to assess the intra-rater reliability of a dynamic balance test, the multiple single-leg hop-stabilization test on the dominant and non-dominant legs. Intra-rater reliability study. Fifteen active participants were tested twice with a 10-minute break between tests. The outcome measure was the multiple single-leg hop-stabilization test score, based on a clinically assessed numerical scoring system. Results were analysed using an Intraclass Correlations Coefficient (ICC 2,1 ) and Bland-Altman plots. Regression analyses explored relationships between test scores, leg dominance, age and training (an alpha level of p = 0.05 was selected). ICCs for intra-rater reliability were 0.85 for the dominant and non-dominant legs (confidence intervals = 0.62-0.95 and 0.61-0.95 respectively). Bland-Altman plots showed scores within two standard deviations. A significant correlation was observed between the dominant and non-dominant leg on balance scores (R 2 =0.49, ptest demonstrated strong intra-tester reliability with active participants. Younger participants who trained more, have better balance scores. This test may be a useful measure for evaluating the dynamic attributes of balance. 3.

  13. The iliolumbar ligament : its influence on stability of the sacroiliac joint

    NARCIS (Netherlands)

    Pool-Goudzwaard, A.L.; Hoek van Dijke, G; Mulder, P; Spoor, C.W.; Snijders, C.; Stoeckart, R.

    2003-01-01

    STUDY DESIGN: In human specimens the influence of the iliolumbar ligament on sacroiliac joint stability was tested during incremental moments applied to the sacroiliac joints. OBJECTIVES: To assess whether the iliolumbar ligament is able to restrict sacroiliac joint mobility in embalmed cadavers.

  14. The HSOB GAIA: a cryogenic high stability cesic optical bench for missions requiring sub-nanometric optical stability

    Science.gov (United States)

    Courteau, Pascal; Poupinet, Anne; Kroedel, Mathias; Sarri, Giuseppe

    2017-11-01

    Global astrometry, very demanding in term of stability, requires extremely stable material for optical bench. CeSiC developed by ECM and Alcatel Alenia Space for mirrors and high stability structures, offers the best compromise in term of structural strength, stability and very high lightweight capability, with characteristics leading to be insensitive to thermo-elastic at cryogenic T°. The HSOB GAIA study realised by Alcatel Alenia Space under ESA contract aimed to design, develop and test a full scale representative High Stability Optical Bench in CeSiC. The bench has been equipped with SAGEIS-CSO laser metrology system MOUSE1, Michelson interferometer composed of integrated optics with a nm resolution. The HSOB bench has been submitted to an homogeneous T° step under vacuum to characterise the homothetic behaviour of its two arms. The quite negligible inter-arms differential measured with a nm range reproducibility, demonstrates that a complete 3D structure in CeSiC has the same CTE homogeneity as characterisation samples, fully in line with the GAIA need (1pm at 120K). This participates to the demonstration that CeSiC properties at cryogenic T° is fully appropriate to the manufacturing of complex highly stable optical structures. This successful study confirms ECM and Alcatel Alenia Space ability to define and manufacture monolithic lightweight highly stable optical structures, based on inner cells triangular design made only possible by the unique CeSiC manufacturing process.

  15. Engineering test facility design definition

    Science.gov (United States)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  16. Design of stability-guaranteed neurofuzzy logic controller for nuclear steam generators

    International Nuclear Information System (INIS)

    Cho, B.H.; No, H.C.

    1996-01-01

    A neurofuzzy logic controller (NFLC), which is implemented by using a multilayer neural network with special types of fuzzifier, inference engine and defuzzifier, is applied to the water level control of a nuclear steam generator (SG). This type of NFLC has the structural advantage that arbitrary two-input, single-output linear controllers can be adequately mapped into a set of specific control rules of the NFLC. In order to design a stability-guaranteed NFLC, the stable sector of the given linear gain is obtained from Lyapunov's stability criteria. Then this sector is mapped into two linear rule tables that are used as the limits of NFLC control rules. The automatic generation of NFLC rule tables is accomplished by using the back-error-propagation (BEP) algorithm. There are two separate paths for the error back propagation in the SG. One considers the level dynamics depending on the tank capacity and the other takes into account the reverse dynamics of the SG. The amounts of error back propagated through these paths show opposite effects in the BEP algorithm from each other for the swell-shrink phenomenon. Through computer simulation it is found that the BEP algorithm adequately generates NFLC rule tables according to given learning parameters. (orig.)

  17. Robust SMES controller design for stabilization of inter-area oscillation considering coil size and system uncertainties

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai

    2010-01-01

    It is well known that the superconducting magnetic energy storage (SMES) is able to quickly exchange active and reactive power with the power system. The SMES is expected to be the smart storage device for power system stabilization. Although the stabilizing effect of SMES is significant, the SMES is quite costly. Particularly, the superconducting magnetic coil size which is the essence of the SMES, must be carefully selected. On the other hand, various generation and load changes, unpredictable network structure, etc., cause system uncertainties. The power controller of SMES which is designed without considering such uncertainties, may not tolerate and loses stabilizing effect. To overcome these problems, this paper proposes the new design of robust SMES controller taking coil size and system uncertainties into account. The structure of the active and reactive power controllers is the 1st-order lead-lag compensator. No need for the exact mathematical representation, system uncertainties are modeled by the inverse input multiplicative perturbation. Without the difficulty of the trade-off of damping performance and robustness, the optimization problem of control parameters is formulated. The particle swarm optimization is used for solving the optimal parameters at each coil size automatically. Based on the normalized integral square error index and the consideration of coil current constraint, the robust SMES with the smallest coil size which still provides the satisfactory stabilizing effect, can be achieved. Simulation studies in the two-area four-machine interconnected power system show the superior robustness of the proposed robust SMES with the smallest coil size under various operating conditions over the non-robust SMES with large coil size.

  18. Robust SMES controller design for stabilization of inter-area oscillation considering coil size and system uncertainties

    Science.gov (United States)

    Ngamroo, Issarachai

    2010-12-01

    It is well known that the superconducting magnetic energy storage (SMES) is able to quickly exchange active and reactive power with the power system. The SMES is expected to be the smart storage device for power system stabilization. Although the stabilizing effect of SMES is significant, the SMES is quite costly. Particularly, the superconducting magnetic coil size which is the essence of the SMES, must be carefully selected. On the other hand, various generation and load changes, unpredictable network structure, etc., cause system uncertainties. The power controller of SMES which is designed without considering such uncertainties, may not tolerate and loses stabilizing effect. To overcome these problems, this paper proposes the new design of robust SMES controller taking coil size and system uncertainties into account. The structure of the active and reactive power controllers is the 1st-order lead-lag compensator. No need for the exact mathematical representation, system uncertainties are modeled by the inverse input multiplicative perturbation. Without the difficulty of the trade-off of damping performance and robustness, the optimization problem of control parameters is formulated. The particle swarm optimization is used for solving the optimal parameters at each coil size automatically. Based on the normalized integral square error index and the consideration of coil current constraint, the robust SMES with the smallest coil size which still provides the satisfactory stabilizing effect, can be achieved. Simulation studies in the two-area four-machine interconnected power system show the superior robustness of the proposed robust SMES with the smallest coil size under various operating conditions over the non-robust SMES with large coil size.

  19. Consensus on Intermediate Scale Salt Field Test Design

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L; Mills, Melissa Marie; Matteo, Edward N

    2017-03-01

    This report summarizes the first stage in a collaborative effort by Sandia, Los Alamos, and Lawrence Berkeley National Laboratories to design a small-diameter borehole heater test in salt at the Waste Isolation Pilot Plant (WIPP) for the US Department of Energy Office of Nuclear Energy (DOE-NE). The intention is to complete test design during the remainder of fiscal year 2017 (FY17), and the implementation of the test will begin in FY18. This document is the result of regular meetings between the three national labs and the DOE-NE, and is intended to represent a consensus of these meetings and discussions.

  20. Design of Test Parts to Characterize Micro Additive Manufacturing Processes

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Mischkot, Michael

    2015-01-01

    The minimum feature size and obtainable tolerances of additive manufacturing processes are linked to the smallest volumetric elements (voxels) that can be created. This work presents the iterative design of a test part to investigate the resolution of AM processes with voxel sizes at the micro...... scale. Each design iteration reduces the test part size, increases the number of test features, improves functionality, and decreases coupling in the part. The final design is a set of three test parts that are easy to orient and measure, and that provide useful information about micro additive...... manufacturing processes....

  1. Gaze Stabilization Test Asymmetry Score as an Indicator of Previous Concussion in a Cohort of Collegiate Football Players.

    Science.gov (United States)

    Honaker, Julie A; Criter, Robin E; Patterson, Jessie N; Jones, Sherri M

    2015-07-01

    Vestibular dysfunction may lead to decreased visual acuity with head movements, which may impede athletic performance and result in injury. The purpose of this study was to test the hypothesis that athletes with history of concussion would have differences in gaze stabilization test (GST) as compared with those without a history of concussion. Cross-sectional, descriptive. University Athletic Medicine Facility. Fifteen collegiate football players with a history of concussion, 25 collegiate football players without a history of concussion. Participants completed the dizziness handicap inventory (DHI), static visual acuity, perception time test, active yaw plane GST, stability evaluation test (SET), and a bedside oculomotor examination. Independent samples t test was used to compare GST, SET, and DHI scores per group, with Bonferroni-adjusted alpha at P history of concussion. The results support further research on the use of GST for sport-related concussion evaluation and monitoring. Inclusion of objective vestibular tests in the concussion protocol may reveal the presence of peripheral vestibular or visual-vestibular deficits. Therefore, the GST may add an important perspective on the effects of concussion.

  2. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  3. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  4. Temporal stability of preferences and willingness to pay for natural areas in choice experiments: A test-retest

    NARCIS (Netherlands)

    Schaafsma, M.; Brouwer, R.; Liekens, I.; de Nocker, L.

    2014-01-01

    The main objective of this paper is to test the temporal stability of stated preferences and willingness to pay (WTP) values from a Choice Experiment (CE) in a test-retest. The same group of participants was asked the same choice tasks in an internet-based CE, conducted twice with a time interval of

  5. Computer aided modeling of soil mix designs to predict characteristics and properties of stabilized road bases.

    Science.gov (United States)

    2009-07-01

    "Considerable data exists for soils that were tested and documented, both for native properties and : properties with pozzolan stabilization. While the data exists there was no database for the Nebraska : Department of Roads to retrieve this data for...

  6. Intelligence Tests with Higher G-Loadings Show Higher Correlations with Body Symmetry: Evidence for a General Fitness Factor Mediated by Developmental Stability

    Science.gov (United States)

    Prokosch, M.D.; Yeo, R.A.; Miller, G.F.

    2005-01-01

    Just as body symmetry reveals developmental stability at the morphological level, general intelligence may reveal developmental stability at the level of brain development and cognitive functioning. These two forms of developmental stability may overlap by tapping into a ''general fitness factor.'' If so, then intellectual tests with higher…

  7. Overview of the IFMIF test facility design in IFMIF/EVEDA phase

    International Nuclear Information System (INIS)

    Tian, Kuo; Abou-Sena, Ali; Arbeiter, Frederik; García, Ángela; Gouat, Philippe; Heidinger, Roland; Heinzel, Volker; Ibarra, Ángel; Leysen, Willem; Mas, Avelino; Mittwollen, Martin; Möslang, Anton; Theile, Jürgen; Yamamoto, Michiyoshi; Yokomine, Takehiko

    2015-01-01

    Highlights: • This paper summarizes the current design status of IFMIF EVEDA test facility. • The principle functions of the test facility and key components are described. • The brief specifications of the systems and key components are addressed. - Abstract: The test facility (TF) is one of the three major facilities of the International Fusion Material Irradiation Facility (IFMIF). Engineering designs of TF main systems and key components have been initiated and developed in the IFMIF EVEDA (Engineering Validation and Engineering Design Activities) phase since 2007. The related work covers the designs of a test cell which is the meeting point of the TF and accelerator facility and lithium facility, a series of test modules for experiments under different irradiation conditions, an access cell to accommodate remote handling systems, four test module handling cells for test module processing and assembling, and test facility ancillary systems for engineering support on energy, media, and control infrastructure. This paper summarizes the principle functions, brief specifications, and the current design status of the above mentioned IFMIF TF systems and key components.

  8. OPTIMUM DESIGN OF EXPERIMENTS FOR ACCELERATED RELIABILITY TESTING

    Directory of Open Access Journals (Sweden)

    Sebastian Marian ZAHARIA

    2014-05-01

    Full Text Available In this paper is presented a case study that demonstrates how design to experiments (DOE information can be used to design better accelerated reliability tests. In the case study described in this paper, will be done a comparison and optimization between main accelerated reliability test plans (3 Level Best Standard Plan, 3 Level Best Compromise Plan, 3 Level Best Equal Expected Number Failing Plan, 3 Level 4:2:1 Allocation Plan. Before starting an accelerated reliability test, it is advisable to have a plan that helps in accurately estimating reliability at operating conditions while minimizing test time and costs. A test plan should be used to decide on the appropriate stress levels that should be used (for each stress type and the amount of the test units that need to be allocated to the different stress levels (for each combination of the different stress types' levels. For the case study it used ALTA 7 software what provides a complete analysis for data from accelerated reliability tests

  9. ''Football'' test coil: a simulated service test of internally-cooled, cabled superconductor

    International Nuclear Information System (INIS)

    Marston, P.G.; Iwasa, Y.; Thome, R.J.; Hoenig, M.O.

    1981-01-01

    Internally-cooled, cabled superconductor, (ICCS), appears from small-scale tests to be a viable alternative to pool-boiling cooled superconductors for large superconducting magnets. Potential advantages may include savings in helium inventory, smaller structure and ease of fabrication. Questions remain, however, about the structural performance of these systems. The ''football'' test coil has been designed to simulate the actual ''field-current-stress-thermal'' operating conditions of a 25 ka ICCS in a commercial scale MHD magnet. The test procedure will permit demonstration of the 20 year cyclic life of such a magnet in less than 20 days. This paper describes the design, construction and test of that coil which is wound of copper-stabilized niobium-titanium cable in steel conduit. 2 refs

  10. The Effect of Spinal Tap Test on Different Sensory Modalities of Postural Stability in Idiopathic Normal Pressure Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Katrin Abram

    2016-09-01

    Full Text Available Background/Aims: Postural instability in patients with normal pressure hydrocephalus (NPH is a most crucial symptom leading to falls with secondary complications. The aim of the current study was to evaluate the therapeutic effect of spinal tap on postural stability in these patients. Methods: Seventeen patients with clinical symptoms of NPH were examined using gait scale, computerized dynamic posturography (CDP, and neuropsychological assessment. Examinations were done before and after spinal tap test. Results: The gait score showed a significant improvement 24 h after spinal tap test in all subtests and in the sum score (p Conclusion: Postural stability in NPH is predominantly affected by deficient vestibular functions, which did not improve after spinal tap test. Conditions which improved best were mainly independent from visual control and are based on proprioceptive functions.

  11. Design verification testing for fuel element type CAREM

    International Nuclear Information System (INIS)

    Martin Ghiselli, A.; Bonifacio Pulido, K.; Villabrille, G.; Rozembaum, I.

    2013-01-01

    The hydraulic and hydrodynamic characterization tests are part of the design verification process of a nuclear fuel element prototype and its components. These tests are performed in a low pressure and temperature facility. The tests requires the definition of the simulation parameters for setting the test conditions, the results evaluation to feedback mathematical models, extrapolated the results to reactor conditions and finally to decide the acceptability of the tested prototype. (author)

  12. Passivity-Based Control for Two-Wheeled Robot Stabilization

    Science.gov (United States)

    Uddin, Nur; Aryo Nugroho, Teguh; Agung Pramudito, Wahyu

    2018-04-01

    A passivity-based control system design for two-wheeled robot (TWR) stabilization is presented. A TWR is a statically-unstable non-linear system. A control system is applied to actively stabilize the TWR. Passivity-based control method is applied to design the control system. The design results in a state feedback control law that makes the TWR closed loop system globally asymptotically stable (GAS). The GAS is proven mathematically. The TWR stabilization is demonstrated through computer simulation. The simulation results show that the designed control system is able to stabilize the TWR.

  13. The design of multi-lead-compensators for stabilization and pole placement in double-integrator networks under saturation

    NARCIS (Netherlands)

    Wan, Yan; Roy, Sandip; Saberi, Ali; Stoorvogel, Antonie Arij

    2009-01-01

    We study decentralized controller design for stabilization and pole-placement, in a network of autonomous agents with double-integrator internal dynamics and arbitrary observation topology. We show that a simple multi-lead-compensator architecture, in particular one in which each agent uses a

  14. Test Area North Pool Stabilization Project: Environmental assessment

    International Nuclear Information System (INIS)

    1996-05-01

    The Test Area North (TAN) Pool is located within the fenced TAN facility boundaries on the Idaho National Engineering Laboratory (INEL). The TAN pool stores 344 canisters of core debris from the March, 1979, Three Mile Island (TMI) Unit 2 reactor accident; fuel assemblies from Loss-of-Fluid Tests (LOFT); and Government-owned commercial fuel rods and assemblies. The LOFT and government owned commercial fuel rods and assemblies are hereafter referred to collectively as open-quotes commercial fuelsclose quotes except where distinction between the two is important to the analysis. DOE proposes to remove the canisters of TMI core debris and commercial fuels from the TAN Pool and transfer them to the Idaho Chemical Processing Plant (ICPP) for interim dry storage until an alternate storage location other than at the INEL, or a permanent federal spent nuclear fuel (SNF) repository is available. The TAN Pool would be drained and placed in an industrially and radiologically safe condition for refurbishment or eventual decommissioning. This environmental assessment (EA) identifies and evaluates environmental impacts associated with (1) constructing an Interim Storage System (ISS) at ICPP; (2) removing the TMI and commercial fuels from the pool and transporting them to ICPP for placement in an ISS, and (3) draining and stabilizing the TAN Pool. Miscellaneous hardware would be removed and decontaminated or disposed of in the INEL Radioactive Waste Management Complex (RWMC). This EA also describes the environmental consequences of the no action alternative

  15. Stabilization of inorganic mixed waste to pass the TCLP and STLC tests using clay and pH-insensitive additives

    International Nuclear Information System (INIS)

    Bowers, J.S.; Anson, J.R.; Painter, S.M.; Maitino, R.E.

    1995-03-01

    Stabilization traps toxic contaminants (usually both chemically and physically) in a matrix so that they do not leach into the environment. Typical contaminants are metals (mostly transition metals) that exhibit the characteristic of toxicity. The stabilization process routinely uses pozzolanic materials. Portland cement, fly ash-lime mixes, gypsum cements, and clays are some of the most common materials. In many instances, materials that can pass the Toxicity Characteristic Leaching Procedure (TCLP-the federal leach test) or the Soluble Threshold Leachate Concentration (STLC-the California leach test) must have high concentrations of lime or other caustic material because of the low pH of the leaching media. Both leaching media, California's and EPA's, have a pH of 5.0. California uses citric acid and sodium citrate while EPA uses acetic acid and sodium acetate. These media can form ligands that provide excellent metal leaching. Because of the aggressive nature of the leaching medium, stabilized wastes in many cases will not pass the leaching tests. At the Lawrence Livermore National Laboratory, additives such as dithiocarbamates and thiocarbonates, which are pH-insensitive and provide resistance to ligand formation, are used in the waste stabilization process. Attapulgite, montmorillonite, and sepiolite clays are used because they are forgiving (recipe can be adjusted before the matrix hardens). The most frequently used stabilization process consists of a customized recipe involving waste sludge, clay and dithiocarbamate salt, mixed with a double planetary mixer into a pasty consistency. TCLP and STLC data on this waste matrix have shown that the process matrix meets land disposal requirements

  16. Surface stability test plan for protective barriers

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1989-01-01

    Natural-material protective barriers for long-term isolation of buried waste have been identified as integral components of a plan to isolate a number of Hanford defense waste sites. Standards currently being developed for internal and external barrier performance will mandate a barrier surface layer that is resistant to the eolian erosion processes of wind erosion (deflation) and windborne particle deposition (formation of sand dunes). Thus, experiments are needed to measure rates of eolian erosion processes impacting those surfaces under different surface and climatological conditions. Data from these studies will provide information for use in the evaluation of selected surface layers as a means of providing stable cover over waste sites throughout the design life span of protective barriers. The multi-year test plan described in this plan is directed at understanding processes of wind erosion and windborne particle deposition, providing measurements of erosion rates for models, and suggesting construction materials and methods for reducing the effect of long-term eolian erosion on the barrier. Specifically, this plan describes possible methods to measure rates of eolian erosion, including field and laboratory procedure. Advantages and disadvantages of laboratory (wind tunnel) tests are discussed, and continued wind tunnel tests are recommended for wind erosion studies. A comparison between field and wind tunnel erosive forces is discussed. Plans for testing surfaces are described. Guidance is also presented for studying the processes controlling sand dune and blowout formation. 24 refs., 7 figs., 3 tabs

  17. Design and study of Engineering Test Facility - Helium Circulator

    International Nuclear Information System (INIS)

    Jiang Huijing; Ye Ping; Zhao Gang; Geng Yinan; Wang Jie

    2015-01-01

    Helium circulator is one of the key equipment of High-temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM). In order to simulate most normal and accident operating conditions of helium circulator in HTR-PM, a full scale, rated flow rate and power, engineering test loop, which was called Engineering Test Facility - Helium Circulator (ETF-HC), was designed and established. Two prototypes of helium circulator, which was supported by Active Magnetic Bearing (AMB) or sealed by dry gas seals, would be tested on ETF-HC. Therefore, special interchangeable design was under consideration. ETF-HC was constructed compactly, which consisted of eleven sub-systems. In order to reduce the flow resistance of the circuit, special ducts, elbows, valves and flowmeters were selected. Two stages of heat exchange loops were designed and a helium - high pressure pure water heat exchanger was applied to ensure water wouldn't be vaporized while simulating accident conditions. Commissioning tests were carried out and operation results showed that ETF-HC meets the requirement of helium circulator operation. On this test facility, different kinds of experiments were supposed to be held, including mechanical and aerodynamic performance tests, durability tests and so on. These tests would provide the features and performance of helium circulator and verify its feasibility, availability and reliability. (author)

  18. Designing testing service at baristand industri Medan’s liquid waste laboratory

    Science.gov (United States)

    Kusumawaty, Dewi; Napitupulu, Humala L.; Sembiring, Meilita T.

    2018-03-01

    Baristand Industri Medan is a technical implementation unit under the Industrial and Research and Development Agency, the Ministry of Industry. One of the services often used in Baristand Industri Medan is liquid waste testing service. The company set the standard of service is nine working days for testing services. At 2015, 89.66% on testing services liquid waste does not meet the specified standard of services company because of many samples accumulated. The purpose of this research is designing online services to schedule the coming the liquid waste sample. The method used is designing an information system that consists of model design, output design, input design, database design and technology design. The results of designing information system of testing liquid waste online consist of three pages are pages to the customer, the recipient samples and laboratory. From the simulation results with scheduled samples, then the standard services a minimum of nine working days can be reached.

  19. Final design of ITER port plug test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cerisier, Thierry, E-mail: thierry.cerisier@yahoo.fr [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Levesy, Bruno [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Romannikov, Alexander [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation); Rumyantsev, Yuri [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Cordier, Jean-Jacques; Dammann, Alexis [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Minakov, Victor; Rosales, Natalya; Mitrofanova, Elena [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Portone, Sergey; Mironova, Ekaterina [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation)

    2016-11-01

    Highlights: • We introduce the port plug test facility (purpose and status of the design). • We present the PPTF sub-systems. • We present the environmental and functional tests. • We present the occupational and nuclear safety functions. • We conclude on the achievements and next steps. - Abstract: To achieve the overall ITER machine availability target, the availability of diagnostics and heating port plugs shall be as high as 99.5%. To fulfill this requirement, it is mandatory to test the port plugs at operating temperature before installation on the machine and after refurbishment. The ITER port plug test facility (PPTF) is composed of several test stands that can be used to test the port plugs whereas at the end of manufacturing (in a non-nuclear environment), or after refurbishment in the ITER hot cell facility. The PPTF provides the possibility to perform environmental (leak tightness, vacuum and thermo-hydraulic performances) and functional tests (radio frequency acceptance tests, behavior of the plugs’ steering mechanism and calibration of diagnostics) on upper and equatorial port plugs. The final design of the port plug test facility is described. The configuration of the standalone test stands and the integration in the hot cell facility are presented.

  20. Basic principles of test-negative design in evaluating influenza vaccine effectiveness.

    Science.gov (United States)

    Fukushima, Wakaba; Hirota, Yoshio

    2017-08-24

    Based on the unique characteristics of influenza, the concept of "monitoring" influenza vaccine effectiveness (VE) across the seasons using the same observational study design has been developed. In recent years, there has been a growing number of influenza VE reports using the test-negative design, which can minimize both misclassification of diseases and confounding by health care-seeking behavior. Although the test-negative designs offer considerable advantages, there are some concerns that widespread use of the test-negative design without knowledge of the basic principles of epidemiology could produce invalid findings. In this article, we briefly review the basic concepts of the test-negative design with respect to classic study design such as cohort studies or case-control studies. We also mention selection bias, which may be of concern in some countries where rapid diagnostic testing is frequently used in routine clinical practices, as in Japan. Copyright © 2017. Published by Elsevier Ltd.

  1. A study on high speed coupling design for wind turbine using a finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Woo; Kang, Jong Hun [Dept. of Mechatronics Engineering, Jungwon University, Geosan (Korea, Republic of); Han, Jeong Young [Pusan Educational Center for Computer Aided Machine Design, Pusan University, Busan (Korea, Republic of)

    2016-08-15

    The purpose of this study is to design a high speed coupling for 3 MW wind turbines and evaluate its structural stability. A basic analysis was performed to assess the structural stability of two materials, SPS6 steel plate and a composite material (Glass7628, Glass/Epoxy), in relation to misalignment in the axial and radial directions. The entire model was analyzed for a high speed coupling based on the SPS6 steel plate, which was found to have higher stability among the two materials, and safety factors were estimated for various levels of power delivery. To test the proposed high speed coupling design, a performance test was carried out to verify the stability of the final product.

  2. A study on high speed coupling design for wind turbine using a finite element analysis

    International Nuclear Information System (INIS)

    Lee, Hyoung Woo; Kang, Jong Hun; Han, Jeong Young

    2016-01-01

    The purpose of this study is to design a high speed coupling for 3 MW wind turbines and evaluate its structural stability. A basic analysis was performed to assess the structural stability of two materials, SPS6 steel plate and a composite material (Glass7628, Glass/Epoxy), in relation to misalignment in the axial and radial directions. The entire model was analyzed for a high speed coupling based on the SPS6 steel plate, which was found to have higher stability among the two materials, and safety factors were estimated for various levels of power delivery. To test the proposed high speed coupling design, a performance test was carried out to verify the stability of the final product

  3. Modeling and optimization of operating parameters for a test-cell option of the Fusion Power Demonstration-II tandem mirror design

    International Nuclear Information System (INIS)

    Haney, S.W.; Fenstermacher, M.E.

    1985-01-01

    Models of tandem mirror devices operated with a test-cell insert have been used to calculate operating parameters for FPD-II+T, an upgrade of the Fusion Power Demonstration-II device. Two test-cell configurations were considered, one accommodating two 1.5 m blanket test modules and the other having four. To minimize the cost of the upgrade, FPD-II+T utilizes the same coil arrangement and machine dimensions outside of the test cell as FPD-II, and the requirements on the end cell systems have been held near or below those for FPD-II. The maximum achievable test cell wall loading found for the short test-cell was 3.5 MW/m 2 while 6.0 MW/m 2 was obtainable in the long test-cell configuration. The most severe limitation on the achievable wall loading is the upper limit on test-cell beta set by MHD stability calculations. Modification of the shape of the magnetic field in the test-cell by improving the magnet design could raise this beta limit and lead to improved test-cell performance

  4. Crashworthy airframe design concepts: Fabrication and testing

    Science.gov (United States)

    Cronkhite, J. D.; Berry, V. L.

    1982-01-01

    Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.

  5. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.

    Science.gov (United States)

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-02-28

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Conceptual Design for a High-Temperature Gas Loop Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    James B. Kesseli

    2006-08-01

    This report documents an early-stage conceptual design for a high-temperature gas test loop. The objectives accomplished by the study include, (1) investigation of existing gas test loops to determine ther capabilities and how the proposed system might best complement them, (2) development of a preliminary test plan to help identify the performance characteristics required of the test unit, (3) development of test loop requirements, (4) development of a conceptual design including process flow sheet, mechanical layout, and equipment specifications and costs, and (5) development of a preliminary test loop safety plan.

  7. Report on the Second ARM Mobile Facility (AMF2) Roll, Pitch, and Heave (RPH) Stabilization Platform: Design and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, Richard L. [Argonne National Lab. (ANL), Argonne, IL (United States); Martin, Timothy J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    One of the primary objectives of the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s second Mobile Facility (AMF2) is to obtain reliable measurements of solar, surface, and atmospheric radiation, as well as cloud and atmospheric properties, from ocean-going vessels. To ensure that these climatic measurements are representative and accurate, many AMF2 instrument systems are designed to collect data in a zenith orientation. A pillar of the AMF2 strategy in this effort is the use of a stable platform. The purpose of the platform is to 1) mitigate vessel motion for instruments that require a truly vertical orientation and keep them pointed in the zenith direction, and 2) allow for accurate positioning for viewing or shading of the sensors from direct sunlight. Numerous ARM instruments fall into these categories, but perhaps the most important are the vertically pointing cloud radars, for which vertical motions are a critical parameter. During the design and construction phase of AMF2, an inexpensive stable platform was purchased to perform the stabilization tasks for some of these instruments. The first table compensated for roll, pitch, and yaw (RPY) and was reported upon in a previous technical report (Kafle and Coulter, 2012). Subsequently, a second table was purchased specifically for operation with the Marine W-band cloud radar (MWACR). Computer programs originally developed for RPY were modified to communicate with the new platform controller and with an inertial measurements platform that measures true ship motion components (roll, pitch, yaw, surge, sway, and heave). This platform could not be tested dynamically for RPY because of time constraints requiring its deployment aboard the container ship Horizon Spirit in September 2013. Hence the initial motion tests were conducted on the initial cruise. Subsequent cruises provided additional test results. The platform, as tested, meets all the design and

  8. Optimal robust stabilizer design based on UPFC for interconnected power systems considering time delay

    Directory of Open Access Journals (Sweden)

    Koofigar Hamid Reza

    2017-09-01

    Full Text Available A robust auxiliary wide area damping controller is proposed for a unified power flow controller (UPFC. The mixed H2 / H∞ problem with regional pole placement, resolved by linear matrix inequality (LMI, is applied for controller design. Based on modal analysis, the optimal wide area input signals for the controller are selected. The time delay of input signals, due to electrical distance from the UPFC location is taken into account in the design procedure. The proposed controller is applied to a multi-machine interconnected power system from the IRAN power grid. It is shown that the both transient and dynamic stability are significantly improved despite different disturbances and loading conditions.

  9. SP-100 GES/NAT radiation shielding systems design and development testing

    International Nuclear Information System (INIS)

    Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.; Reese, J.C.; Thomas, K.; Wiltshire, F.

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned

  10. No difference in gait between posterior cruciate retention and the posterior stabilized design after total knee arthroplasty

    NARCIS (Netherlands)

    van den Boom, Lennard G. H.; Halbertsma, Jan P. K.; van Raaij, Jos J. A. M.; Brouwer, Reinoud W.; Bulstra, Sjoerd K.; van den Akker-Scheek, Inge

    2014-01-01

    In the present study, knee joint kinematics (e.g. knee flexion/extension) and kinetics (e.g. knee flexion moments) are assessed after total knee arthroplasty (TKA) between patients implanted with either a unilateral posterior stabilized (PS) and a posterior cruciate-retaining (PCR) design. It was

  11. Explicit strong stability preserving multistep Runge–Kutta methods

    KAUST Repository

    Bresten, Christopher; Gottlieb, Sigal; Grant, Zachary; Higgs, Daniel; Ketcheson, David I.; Né meth, Adrian

    2015-01-01

    High-order spatial discretizations of hyperbolic PDEs are often designed to have strong stability properties, such as monotonicity. We study explicit multistep Runge-Kutta strong stability preserving (SSP) time integration methods for use with such discretizations. We prove an upper bound on the SSP coefficient of explicit multistep Runge-Kutta methods of order two and above. Numerical optimization is used to find optimized explicit methods of up to five steps, eight stages, and tenth order. These methods are tested on the linear advection and nonlinear Buckley-Leverett equations, and the results for the observed total variation diminishing and/or positivity preserving time-step are presented.

  12. Explicit strong stability preserving multistep Runge–Kutta methods

    KAUST Repository

    Bresten, Christopher

    2015-10-15

    High-order spatial discretizations of hyperbolic PDEs are often designed to have strong stability properties, such as monotonicity. We study explicit multistep Runge-Kutta strong stability preserving (SSP) time integration methods for use with such discretizations. We prove an upper bound on the SSP coefficient of explicit multistep Runge-Kutta methods of order two and above. Numerical optimization is used to find optimized explicit methods of up to five steps, eight stages, and tenth order. These methods are tested on the linear advection and nonlinear Buckley-Leverett equations, and the results for the observed total variation diminishing and/or positivity preserving time-step are presented.

  13. Control room design and human factors using a virtual reality based tool for design, test and training

    International Nuclear Information System (INIS)

    Lirvall, Peter

    1998-02-01

    This report describes a user-centred approach to control room design adopted by IFE for the nuclear industry. The novelty of this approach is the development of a Control Room Philosophy, and the use of Virtual Reality (VR) technology as a tool in the design process, integrated with a specially developed Design Documentation System (DDS) and a process display prototyping tool PICASSO-3. The control room philosophy identifies all functional aspects of a control centre, to define the baseline principles and guidelines for the design. The use of VR technology enables end-users of the control room design (e.g. control room operators) to specify their preferred design of the new control room, and to replace the need for a physical mock-up to test and evaluate the proposed design. The DDS, integrated with the VR design tool, guides the control room operators, through a structured approach, to document the proposed design in a complete design specification. The VR tool, specially developed by IFE, is called the VR based Design, Test and Training tool (VR DTandT). It is not only intended to visualise the design, but also to test and evaluate the design. When the design is implemented, the same model is re-used as a VR based training simulator for operators. A special feature in the VR DTandT tool is that the verification and validation (VandV) tests, concerning human factors, are according to the regulative standards for nuclear control rooms

  14. Highly Organic Soil Stabilization by Using Sugarcane Bagasse Ash (SCBA

    Directory of Open Access Journals (Sweden)

    Abu Talib Mohd Khaidir

    2017-01-01

    Full Text Available The study objective is to develop alternative binders that are environment friendly by utilizing sugarcane bagasse ash (SCBA in the organic soil stabilization. Together with SCBA, Ordinary Portland Cement (OPC, calcium chloride (CaCl2 and silica sand (K7 were used as additives to stabilize the peat. In obtaining the optimal mix design, specimens of stabilized peat were tested in unconfined compression. It was found that stabilized peat comprising 20% and 5% (PCB1-20 and PCB2-5 partial replacement of OPC with SCBA 1 and SCBA 2 attain the maximum unconfined compressive strength (UCS and discovered greater than UCS of peat-cement (PC specimen. At the optimal mix design, the UCS of the stabilized peat specimens increased with increasing of curing time, preloading rate, OPC and K7 dosage. For PCB1-20 mixture, inclusion of a minimum OPC of 300kg/m3 and K7 of 500kg/m3 along with curing under 20kPa pressure is recommendable for the peat stabilization to be effective. However for PCB2-5, it suggested to use more OPC and K7 dosage or alternatively increase the preloading during curing to 40kPa in order to achieve target UCS. It can be concluded that SCBA 1 has better quality than SCBA 2 in peat stabilization especially the contribution made by its fine particle size.

  15. A study on stability of rotating magnets

    International Nuclear Information System (INIS)

    Higuchi, N.; Kaiho, K.; Ishii, I.

    1996-01-01

    Superconducting power generators are being developed in Japan, as a part of a R and D program on energy technology, the New Sunshine Project. In this development, national laboratories are taking a role of fundamental studies to contribute to the R and D being carried out mainly by the manufacturers involved in a research association, Super-GM. Stabilities of magnets in a high gravitational field up to 2,000 G are discussed, based upon the experimental results of forced quench tests in a set of rotating magnets, in order to establish the stability design criterion of field windings of superconducting generators. Relations of propagation velocities, recovery currents, minimum quench energy and heat transfer characteristics are studied, a good agreement between the experimental results and a theory confirmed the improvement of magnet stability in a high gravitational field because of the enhanced heat transfer characteristics

  16. 10 CFR 63.133 - Design testing.

    Science.gov (United States)

    2010-01-01

    ... design, such as, for example, borehole and shaft seals, backfill, and drip shields, as well as the... placement is begun. (d) Tests must be conducted to evaluate the effectiveness of borehole, shaft, and ramp seals before full-scale operation proceeds to seal boreholes, shafts, and ramps. ...

  17. The stability of clay using mount Sinabung ash with unconfined compression test (uct) value

    Science.gov (United States)

    Puji Hastuty, Ika; Roesyanto; Hutauruk, Ronny; Simanjuntak, Oberlyn

    2018-03-01

    The soil has a important role as a highway’s embankment material (sub grade). Soil conditions are very different in each location because the scientifically soil is a very complex and varied material and the located on the field is very loose or very soft, so it is not suitable for construction, then the soil should be stabilized. The additive material commonly used for soil stabilization includes cement, lime, fly ash, rice husk ash, and others. This experiment is using the addition of volcanic ash. The purpose of this study was to determine the Index Properties and Compressive Strength maximum value with Unconfined Compression Test due to the addition of volcanic ash as a stabilizing agent along with optimum levels of the addition. The result showed that the original soil sample has Water Content of 14.52%; the Specific Weight of 2.64%; Liquid limit of 48.64% and Plasticity Index of 29.82%. Then, the Compressive Strength value is 1.40 kg/cm2. According to USCS classification, the soil samples categorized as the (CL) type while based on AASHTO classification, the soil samples are including as the type of A-7-6. After the soil is stabilized with a variety of volcanic ash, can be concluded that the maximum value occurs at mixture variation of 11% Volcanic Ash with Unconfined Compressive Strength value of 2.32 kg/cm2.

  18. An Alternative Stability Equation For Rock Armoured Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Hald, Tue; Burcharth, H. F.

    2000-01-01

    Rubble mound breakwaters are by far the most common type of breakwater, the importance of which is clearly reflected in the vast amount of published research. Especially, the hydraulic stability of the main armour layer has been studied in order to obtain reliable design equations. It should...... equations and model test results still exists. When turning toward prototype the situation is even worse. With the objective to reduce some of the variability an alternative approach based on force considerations is presented. The paper will describe a new stability equation for rock armoured slopes derived...

  19. Deep Borehole Field Test Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.

  20. Vibrational Stability of SRF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Volk, J.T.; /Fermilab

    2009-05-01

    Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

  1. Dish/Stirling Hybrid-Receiver Sub-Scale Tests and Full-Scale Design

    International Nuclear Information System (INIS)

    Andraka, Charles; Bohn, Mark S.; Corey, John; Mehos, Mark; Moreno, James; Rawlinson, Scott

    1999-01-01

    We have designed and tested a prototype dish/Stirling hybrid-receiver combustion system. The system consists of a pre-mixed natural-gas burner heating a pin-finned sodium heat pipe. The design emphasizes simplicity, low cost, and ruggedness. Our test was on a 1/6 th -scale device, with a nominal firing rate of 18kWt, a power throughput of 13kWt, and a sodium vapor temperature of 750 ampersand deg;C. The air/fuel mixture was electrically preheated to 640 ampersand deg;C to simulate recuperation. The test rig was instrumented for temperatures, pressures, flow rates, overall leak rate, and exhaust emissions. The data verify our burner and heat-transfer models. Performance and post-test examinations validate our choice of materials and fabrication methods. Based on the 1/6 th -scale results, we are designing a till-scale hybrid receiver. This is a fully-integrated system, including burner, pin-fin primary heat exchanger, recuperator (in place of the electrical pre-heater used in the prototype system), solar absorber, and sodium heat pipe. The major challenges of the design are to avoid pre-ignition, achieve robust heat-pipe performance, and attain long life of the burner matrix, recuperator, and flue-gas seals. We have used computational fluid dynamics extensively in designing to avoid pre-ignition and for designing the heat-pipe wick, and we have used individual component tests and results of the 1/6 th -scale test to optimize for long life. In this paper, we present our design philosophy and basic details of our design. We describe the sub-scale test rig and compare test results with predictions. Finally, we outline the evolution of our full-scale design, and present its current status

  2. Multi-machine power system stabilizers design using chaotic optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-07-15

    In this paper, a multiobjective design of the multi-machine power system stabilizers (PSSs) using chaotic optimization algorithm (COA) is proposed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The PSSs parameters tuning problem is converted to an optimization problem which is solved by a chaotic optimization algorithm based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Two different objective functions are proposed in this study for the PSSs design problem. The first objective function is the eigenvalues based comprising the damping factor, and the damping ratio of the lightly damped electro-mechanical modes, while the second is the time domain-based multi-objective function. The robustness of the proposed COA-based PSSs (COAPSS) is verified on a multi-machine power system under different operating conditions and disturbances. The results of the proposed COAPSS are demonstrated through eigenvalue analysis, nonlinear time-domain simulation and some performance indices. In addition, the potential and superiority of the proposed method over the classical approach and genetic algorithm is demonstrated.

  3. Accounting for Proof Test Data in a Reliability Based Design Optimization Framework

    Science.gov (United States)

    Ventor, Gerharad; Scotti, Stephen J.

    2012-01-01

    This paper investigates the use of proof (or acceptance) test data during the reliability based design optimization of structural components. It is assumed that every component will be proof tested and that the component will only enter into service if it passes the proof test. The goal is to reduce the component weight, while maintaining high reliability, by exploiting the proof test results during the design process. The proposed procedure results in the simultaneous design of the structural component and the proof test itself and provides the designer with direct control over the probability of failing the proof test. The procedure is illustrated using two analytical example problems and the results indicate that significant weight savings are possible when exploiting the proof test results during the design process.

  4. The effect of proximal tibial slope on dynamic stability testing of the posterior cruciate ligament- and posterolateral corner-deficient knee.

    Science.gov (United States)

    Petrigliano, Frank A; Suero, Eduardo M; Voos, James E; Pearle, Andrew D; Allen, Answorth A

    2012-06-01

    Proximal tibial slope has been shown to influence anteroposterior translation and tibial resting point in the posterior cruciate ligament (PCL)-deficient knee. The effect of proximal tibial slope on rotational stability of the knee is unknown. Change in proximal tibial slope produced via osteotomy can influence both static translation and dynamic rotational kinematics in the PCL/posterolateral corner (PLC)-deficient knee. Controlled laboratory study. Posterior drawer, dial, and mechanized reverse pivot-shift (RPS) tests were performed on hip-to-toe specimens and translation of the lateral and medial compartments measured utilizing navigation (n = 10). The PCL and structures of the PLC were then sectioned. Stability testing was repeated, and compartmental translation was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5° or -5° of tibial slope variation, after which stability testing was repeated (n = 10). Analysis was performed using 1-way analysis of variance (ANOVA; α = .05). Combined sectioning of the PCL and PLC structures resulted in a 10.5-mm increase in the posterior drawer, 15.5-mm increase in the dial test at 30°, 14.5-mm increase in the dial test at 90°, and 17.9-mm increase in the RPS (vs intact; P slope (high tibial osteotomy [HTO] +5°) in the PCL/PLC-deficient knee reduced medial compartment translation by 3.3 mm during posterior drawer (vs deficient; P slope (HTO -5°) caused a 4.8-mm increase in medial compartment translation (vs deficient state; P slope diminished static posterior instability of the PCL/PLC-deficient knee as measured by the posterior drawer test but had little effect on rotational or dynamic multiplanar stability as assessed by the dial and RPS tests, respectively. Conversely, decreasing posterior slope resulted in increased posterior instability and a significant increase in the magnitude of the RPS. These results suggest that increasing posterior tibial slope may improve

  5. Design, construction and testing of a DC bioeffects test enclosure for small animals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, M J; Preache, M M

    1980-11-01

    This final report describes both the engineering development of a DC bioeffects test enclosure for small laboratory animals, and the biological protocol for the use of such enclosures in the testing of animals to determine possible biological effects of the environment associated with HVDC transmission lines. The test enclosure which has been designed is a modular unit, which will house up to eight rat-sized animals in individual compartments. Multiple test enclosures can be used to test larger numbers of animals. A prototype test enclosure has been fabricated and tested to characterize its electrical performance characteristics. The test enclosure provides a simulation of the dominant environment associated with HVDC transmission lines; namely, a static electric field and an ion current density. A biological experimental design has been developed for assessing the effects of the dominant components of the HVDC transmission line environment.

  6. Multi-laboratory precision of Marshall design related tests

    CSIR Research Space (South Africa)

    Denneman, E

    2008-07-01

    Full Text Available The Marshall method is still the method of choice for the design of Hot-Mix Asphalt (HMA) in South Africa. During the validation of a HMA mix design, considerable variability was encountered in Marshall test results for the same mix supplied...

  7. Designing, Probing, and Stabilizing Exotic Fabry-Perot Cavities for Studying Strongly Correlated Light

    Science.gov (United States)

    Ryou, Albert

    Synthetic materials made of engineered quasiparticles are a powerful platform for studying manybody physics and strongly correlated systems due to their bottom-up approach to Hamiltonian modeling. Photonic quasiparticles called polaritons are particularly appealing since they inherit fast dynamics from light and strong interaction from matter. This thesis describes the experimental demonstration of cavity Rydberg polaritons, which are composite particles arising from the hybridization of an optical cavity with Rydberg EIT, as well as the tools for probing and stabilizing the cavity. We first describe the design, construction, and testing of a four-mirror Fabry-Perot cavity, whose small waist size on the order of 10 microns is comparable to the Rydberg blockade radius. By achieving strong coupling between the cavity photon and an atomic ensemble undergoing electromagnetically induced transparency (EIT), we observe the emergence of the dark-state polariton and characterize its single-body properties as well as the single-quantum nonlinearity. We then describe the implementation of a holographic spatial light modulator for exciting different transverse modes of the cavity, an essential tool for studying polariton-polariton scattering. For compensating optical aberrations, we employ a digital micromirror device (DMD), combining beam shaping with adaptive optics to produce diffraction-limited light. We quantitatively measure the purity of the DMD-produced Hermite-Gauss modes and confirm up to 99.2% efficiency. One application of the technique is to create Laguerre-Gauss modes, which have been used to probe synthetic Landau levels for photons in a twisted, nonplanar cavity. Finally, we describe the implementation of an FPGA-based FIR filter for stabilizing the cavity. We digitally cancel the acoustical resonances of the feedback-controlled mechanical system, thereby demonstrating an order-of-magnitude enhancement in the feedback bandwidth from 200 Hz to more than 2 k

  8. Design type testing for digital instrumentation and control systems

    International Nuclear Information System (INIS)

    Bastl, W.; Mohns, G.

    1997-01-01

    The design type qualification of digital safety instrumentation and control is outlined. Experience shows that the concepts discussed, derived from codes, guidelines and standards, achieve useful results. It has likewise become clear that the systematics of design type qualification of the hardware components is also applicable to the software components. Design type qualification of the software, a premiere, could be performed unexpectedly smoothly. The hardware design type qualification proved that the hardware as a substrate of functionality and reliability is an issue that demands full attention, as compared to conventional systems. Another insight is that design qualification of digital instrumentation and control systems must include plant-independent systems tests. Digital instrumentation and control systems simply work very differently from conventional control systems, so that this testing modality is inevitable. (Orig./CB) [de

  9. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  10. Designing a Fuzzy Logic Controller to Enhance Directional Stability of Vehicles under Difficult Maneuvers

    OpenAIRE

    Mehrdad N. Khajavi; Golamhassan Paygane; Ali Hakima

    2009-01-01

    Vehicle which are turning or maneuvering at high speeds are susceptible to sliding and subsequently deviate from desired path. In this paper the dynamics governing the Yaw/Roll behavior of a vehicle has been simulated. Two different simulations have been used one for the real vehicle, for which a fuzzy controller is designed to increase its directional stability property. The other simulation is for a hypothetical vehicle with much higher tire cornering stiffness which is ca...

  11. Testing the Limits of Temporal Stability: Willingness to Pay Values among Grand Canyon Whitewater Boaters Across Decades

    Science.gov (United States)

    Neher, Chris; Duffield, John; Bair, Lucas; Patterson, David; Neher, Katherine

    2017-12-01

    We directly compare trip willingness to pay (WTP) values between 1985 and 2015 stated preference surveys of private party Grand Canyon boaters using identically designed valuation methods. The temporal gap of 30 years between these two studies is well beyond that of any tests of WTP temporal stability in the literature. Comparisons were made of mean WTP estimates for four hypothetical Colorado River flow level scenarios. WTP values from the 1985 survey were adjusted to 2015 levels using the consumer price index. Mean WTP precision was estimated through simulation. No statistically significant differences were detected between the adjusted Bishop et al. (1987) and the current study mean WTP estimates. Examination of pooled models of the data from the studies suggest that while the estimated WTP values are stable over time, the underlying valuation functions may not be, particularly when the data and models are corrected to account for differing bid structures and possible panel effects.

  12. Test-based approach to cable tray support system analysis and design: Behavior and test methods

    Energy Technology Data Exchange (ETDEWEB)

    Reigles, Damon G., E-mail: dreigles@engnovex.com [engNoveX, Inc., 19C Trolley Square, Wilmington, DE 19806 (United States); Brachmann, Ingo; Johnson, William H. [Bechtel Nuclear, Security & Environmental, 12011 Sunset Hills Rd, Suite 110, Reston, VA 20190 (United States); Gürbüz, Orhan [Tobolski Watkins Engineering, Inc., 4125 Sorrento Valley Blvd, Suite B, San Diego, CA 92121 (United States)

    2016-06-15

    Highlights: • Describes dynamic response behavior of unistrut type cable tray supports. • Summarizes observations from past full-scale shake table test programs. • Outlines testing methodologies necessary to identify key system parameters. - Abstract: Nuclear power plant safety-related cable tray support systems subjected to seismic loadings were originally understood and designed to behave as linear elastic systems. This behavioral paradigm persisted until the early 1980s when, due to evolution of regulatory criteria, some as-installed systems needed to be qualified to higher seismic motions than originally designed for. This requirement prompted a more in-depth consideration of the true seismic response behavior of support systems. Several utilities initiated extensive test programs, which demonstrated that trapeze strut-type cable tray support systems exhibited inelastic and nonlinear response behaviors with plastic hinging at the connections together with high damping due to bouncing of cables in the trays. These observations were used to demonstrate and justify the seismic adequacy of the aforementioned as-installed systems. However, no formalized design methodology or criteria were ever established to facilitate use of these test data for future evaluations. This paper assimilates and reviews the various test data and conclusions for the purpose of developing a design methodology for the seismic qualification of safety-related cable tray support systems.

  13. Stability Tests of Positive Fractional Continuous-time Linear Systems with Delays

    Directory of Open Access Journals (Sweden)

    Tadeusz Kaczorek

    2013-06-01

    Full Text Available Necessary and sufficient conditions for the asymptotic stability of positive fractional continuous-time linear systems with many delays are established. It is shown that: 1 the asymptotic stability of the positive fractional system is independent of their delays, 2 the checking of the asymptotic stability of the positive fractional systems with delays can be reduced to checking of the asymptotic stability of positive standard linear systems without delays.

  14. Development of high-stability magnet power supply

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W.S.; Kim, M.J.; Jeong, I.W. [Graduate School of Wind Energy, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 (Korea, Republic of); Kim, D.E. [Pohang Accelerator Laboratory, Pohang University of Science and Technology, 80 Jigokro-127-beongil, Nam-gu, Pohang, Gyeongbuk 37673 (Korea, Republic of); Park, H.C. [Graduate School of Wind Energy, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 (Korea, Republic of); Park, K.H. [Pohang Accelerator Laboratory, Pohang University of Science and Technology, 80 Jigokro-127-beongil, Nam-gu, Pohang, Gyeongbuk 37673 (Korea, Republic of)

    2016-06-21

    A very stable (≤10 ppm) magnet power supply (MPS) is required in an accelerator to achieve acceptable beam dynamics. Many factors affect the stability of an MPS, so design of the MPS requires much attention to noise-reduction schemes and to good processing of the signals from the feedback stage. This paper describes some design considerations for an MPS installed and operated in the Pohang Accelerator Laboratory: (1) control method, (2) oversampling technology, (3) ground isolation between hardware modules and (4) low-pass filter design to reduce the switching noise and rectifier ripple components, and shows the stability of three designed devices. The MPS design considerations were verified and validated in simulations and experiments. This paper also shows the relationship between stability and measurement aperture time of digital voltage meter 3458 A to measure stability of a current.

  15. Optimal testlet pool assembly for multistage testing designs

    NARCIS (Netherlands)

    Ariel, A.; Veldkamp, Bernard P.; Breithaupt, Krista

    2006-01-01

    Computerized multistage testing (MST) designs require sets of test questions (testlets) to be assembled to meet strict, often competing criteria. Rules that govern testlet assembly may dictate the number of questions on a particular subject or may describe desirable statistical properties for the

  16. An Experience of Thermowell Design in RCP Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Kim, B. D.; Youn, Y. J.; Jeon, W. J.; Kim, S.; Bae, B. U.; Cho, Y. J.; Choi, H. S.; Park, J. K; Cho, S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Flow rates for the test should vary in the range of 90% to 130% of rated flowrate under prototypic operational conditions, as shown in Table 1. Generally for the flow control, a combination of a control valve and an orifice was used in previous RCP test facilities. From the commissioning startup of the RCP test facility, it was found the combination of valve and orifice induced quite a large vibration for the RCP. As a solution to minimize the vibration and to facilitate the flowrate control, one of KAERI's staff suggested a variable restriction orifice (VRO), which controls most of the required flowrates except highest flowrates, as shown in Fig. 2. For the highest flowrates, e.g., around run-out flowrate (130%), control valves in bypass lines were also used to achieve required flowrates. From a performance test, it was found the VRO is very effective measures to control flowrates in the RCP test facility. During the commissioning startup operation, one of thermowells located at the upstream of the RCP was cracked due to high speed coolant velocity, which was - fortunately - found under a leakage test before running the RCP test loop. The cracked thermowell, whose tapered-shank was detached from the weld collar after uninstalling, is shown in Fig. 3. As can be seen the figure, most of the cross-section at the root of the thermowell shank was cracked. In this paper, an investigation of the integrity of thermowells in the RCP test facility was performed according to the current code and overall aspects on the thermowell designs were also discussed. An RCP test facility has been constructed in KAERI. During the commissioning startup operation, one of thermowells was cracked due to high speed coolant velocity. To complete the startup operation, a modified design of thermowells was proposed and all the original thermowells were replaced by the modified ones. From evaluation of the original and modified designs of thermowells according to the recent PTC code, the

  17. Definitive design status of the SP-100 Ground Engineering System Test Site

    International Nuclear Information System (INIS)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper

  18. Definitive design status of the SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper.

  19. Improvement of Transient Stability in a Hybrid Power Multi-System Using a Designed NIDC (Novel Intelligent Damping Controller

    Directory of Open Access Journals (Sweden)

    Ting-Chia Ou

    2017-04-01

    Full Text Available This paper endeavors to apply a novel intelligent damping controller (NIDC for the static synchronous compensator (STATCOM to reduce the power fluctuations, voltage support and damping in a hybrid power multi-system. In this paper, we discuss the integration of an offshore wind farm (OWF and a seashore wave power farm (SWPF via a high-voltage, alternating current (HVAC electric power transmission line that connects the STATCOM and the 12-bus hybrid power multi-system. The hybrid multi-system consists of a battery energy storage system (BESS and a micro-turbine generation (MTG. The proposed NIDC consists of a designed proportional–integral–derivative (PID linear controller, an adaptive critic network and a proposed functional link-based novel recurrent fuzzy neural network (FLNRFNN. Test results show that the proposed controller can achieve better damping characteristics and effectively stabilize the network under unstable conditions.

  20. Transient stability index for online stability assessment and contingency evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ribbens-Pavella, M; Murthy, P G; Horward, J L; Carpentier, J L

    1982-04-01

    An on-line methodology is proposed for assessing the robustness of a power system from the point of view of transient stability, and a scalar expression, the transient stability index, is accordingly derived. The reliability and sensitivity of this index are tested by means of simulations for a number of power system cases. The index is shown to be appropriate for online stability assessment, contingency evaluation and preventive control. 14 refs.

  1. Structural stability analysis considerations in fusion reactor plasma chamber design

    International Nuclear Information System (INIS)

    Delaney, M.J.; Cramer, B.A.

    1978-01-01

    This paper presents an approach to analyzing a toroidal plasma chamber for the prevention of both static and dynamic buckling. Results of stability analyses performed for the doublet shaped plasma chamber of the General Atomic 3.8 meter radius TNS ignition test reactor are presented. Load conditions are the static external atmospheric pressure load and the dynamic plasma disruption pulse load. Methods for analysis of plasma chamber structures are presented for both types of load. Analysis for static buckling is based on idealizing the plasma chamber into standard structural shapes and applying classical cylinder and circular torus buckling equations. Results are verified using the Buckling of Shells of Revolution (BOSOR4) finite difference computer code. Analysis for the dynamic loading is based on a pulse buckling analysis method for circular cylinders

  2. Study of necking stability in tension test of zircaloy-2, on range from 170 0 C to 620 0 C

    International Nuclear Information System (INIS)

    Okuda, M.Y.

    1975-01-01

    The objective of this work is to study necking behavior of Zircaloy-2 in a tension test in which the temperature range varies from 170 0 C to 620 0 C by means of a model. This model provides strain rate variations in the beginning of necking and the parameters in the / necking stability. A new parameter Ψ is presented which permits necking / stability description in metals by means of a simple tension test. It is also proceeded a behavioral study of ε versus ε curve after necking formation. (author)

  3. R and D on passive stabilization loop at EAST

    International Nuclear Information System (INIS)

    Ji, X.; Song, Y.T.; Wu, S.T.; Shen, G.; Wang, Z.; Cao, L.; Zhou, Z.; Liu, X.; Peng, X.; Wang, C.; Wang, S.; Zhu, N.; Zhang, P.; Wu, J.; Gong, X.; Shen, B.; Gao, D.; Fu, P.; Wan, B.; Li, J.

    2012-01-01

    Highlights: ► The passive stabilization loop (PSL) is part of the plasma stabilization system built in the EAST. The project of PSL has been carried out. ► The EM and structural analysis of PSL has been done. ► The R and D of the silvered craft for the PSL is done. ► The R and D of the insulation structure for the PSL is done. - Abstract: The passive stabilization loop (PSL) is part of the plasma stabilization system built in the EAST. Its purpose is to provide passive feedback control of the plasma vertical instability on short time scales. To accommodate with the new stage for high performance plasma and enhance the control of vertical stabilization in EAST, the project of PSL has been carried out. The eddy currents are induced by the vertical displacement events (VDEs) and disruption. The distribution of the eddy currents depend on the structure of the PSL and the formation of the induction. The global model is created and meshed by the ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The stress and the strain caused by the eddy currents and the magnetic field are calculated. To decrease the resistance of the joint and enhance anti-corrosion of the joint surface, the silvered craft is used. In the experiment of test model, the resistance is decreased to half after silvered with the same matrix material and under the same preload. The PSL is insulated from the vacuum vessel at the supports of passive stabilizers. The insulation structure is designed and tested with ceramic material. The PSL is designed, fabricated and assembled with the total resistance 150 μΩ. It can supply passive feedback control to the plasma by the eddy currents induced by the VDEs, which could enhance the vertical placement control of plasma.

  4. R and D on passive stabilization loop at EAST

    Energy Technology Data Exchange (ETDEWEB)

    Ji, X., E-mail: jixiang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China); Song, Y.T.; Wu, S.T.; Shen, G.; Wang, Z.; Cao, L.; Zhou, Z.; Liu, X.; Peng, X.; Wang, C.; Wang, S.; Zhu, N.; Zhang, P.; Wu, J.; Gong, X.; Shen, B.; Gao, D.; Fu, P.; Wan, B.; Li, J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The passive stabilization loop (PSL) is part of the plasma stabilization system built in the EAST. The project of PSL has been carried out. Black-Right-Pointing-Pointer The EM and structural analysis of PSL has been done. Black-Right-Pointing-Pointer The R and D of the silvered craft for the PSL is done. Black-Right-Pointing-Pointer The R and D of the insulation structure for the PSL is done. - Abstract: The passive stabilization loop (PSL) is part of the plasma stabilization system built in the EAST. Its purpose is to provide passive feedback control of the plasma vertical instability on short time scales. To accommodate with the new stage for high performance plasma and enhance the control of vertical stabilization in EAST, the project of PSL has been carried out. The eddy currents are induced by the vertical displacement events (VDEs) and disruption. The distribution of the eddy currents depend on the structure of the PSL and the formation of the induction. The global model is created and meshed by the ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The stress and the strain caused by the eddy currents and the magnetic field are calculated. To decrease the resistance of the joint and enhance anti-corrosion of the joint surface, the silvered craft is used. In the experiment of test model, the resistance is decreased to half after silvered with the same matrix material and under the same preload. The PSL is insulated from the vacuum vessel at the supports of passive stabilizers. The insulation structure is designed and tested with ceramic material. The PSL is designed, fabricated and assembled with the total resistance 150 {mu}{Omega}. It can supply passive feedback control to the plasma by the eddy currents induced by the VDEs, which could enhance the vertical placement control of plasma.

  5. OPSAID Initial Design and Testing Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Steven A.; Stamp, Jason Edwin [Sandia National Laboratories, Albuquerque, NM; Chavez, Adrian R. [Sandia National Laboratories, Albuquerque, NM

    2007-11-01

    Process Control System (PCS) security is critical to our national security. Yet, there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy's Office of Electricity Delivery and Reliability, aims to address this issue through developing and testing an open source architecture for PCS security. Sandia National Laboratories, along with a team of PCS vendors and owners, have developed and tested this PCS security architecture. This report describes their progress to date.2 AcknowledgementsThe authors acknowledge and thank their colleagues for their assistance with the OPSAID project.Sandia National Laboratories: Alex Berry, Charles Perine, Regis Cassidy, Bryan Richardson, Laurence PhillipsTeumim Technical, LLC: Dave TeumimIn addition, the authors are greatly indebted to the invaluable help of the members of the OPSAID Core Team. Their assistance has been critical to the success and industry acceptance of the OPSAID project.Schweitzer Engineering Laboratory: Rhett Smith, Ryan Bradetich, Dennis GammelTelTone: Ori Artman Entergy: Dave Norton, Leonard Chamberlin, Mark AllenThe authors would like to acknowledge that the work that produced the results presented in this paper was funded by the U.S. Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) as part of the National SCADA Test Bed (NSTB) Program. Executive SummaryProcess control systems (PCS) are very important for critical infrastructure and manufacturing operations, yet cyber security technology in PCS is generally poor. The OPSAID (Open PCS (Process Control System) Security Architecture for Interoperable Design) program is intended to address these security shortcomings by accelerating the availability and deployment of comprehensive security technology for PCS, both for existing PCS

  6. Design considerations of the irradiation test vehicle for the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  7. Design considerations of the irradiation test vehicle for the advanced test reactor

    International Nuclear Information System (INIS)

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1997-01-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements

  8. LECOTELO - conceptual design, testings and realisation

    International Nuclear Information System (INIS)

    Ioan, M.; Hororoi, M.; Gutue, A.; Tudor, A.; Nistor, D.; Lebu, V.; Catana, A.; Ghita, G.; Pauna, E.; Cojocaru, V.; Tencu, V.

    2013-01-01

    A synthesis of all Computer Aid Design (CAD) and Computational Fluid Dynamics (CFD) works for LEad COrrosion TEsting LOop (LECOTELO) facility is presented. This facility was conceived to assure all conditions requested by corrosion/erosion tests in pure hot lead for different materials of interest for Lead cooled Fast Reactor (LFR). The main vessel will be able to receive at least 36 material samples; each of them must be swept on both sides by a lead flow at a very well known speed. The main circuit is composed by the following components: the centrifugal pump, flow-meters, heat exchanger, pre-heater, testing vessel, melting vessel, gas system, void system, electrical heaters, valves, etc. The main circuit has a capacity of 12 litters (0,012 m3). (authors)

  9. Seismic stability analysis of rock slopes by yield design theory using the generalized Hoek-Brown criterion

    Directory of Open Access Journals (Sweden)

    Belghali Mounir

    2018-01-01

    Full Text Available The stability of rock slope is studied using the kinematic approach of yield design theory, under the condition of plane strain and by considering the last version of the Hoek-Brown failure criterion. This criterion, which is suitable to intact rock or rock mass highly fractured regarded as isotropic and homogeneous, is widely accepted by the rock mechanics community and has been applied in numerous projects around the world. The failure mechanism used to implement the kinematic approach is a log-spiral rotational mechanism. The stability analysis is carried out under the effects of gravity forces and a surcharge applied along the upper plateau of the slope. To take account of the effects of forces developed in the rock mass during the passage of a seismic wave, the conventional pseudo-static method is adopted. This method is often used in slope stability study for its simplicity and efficiency to simulate the seismic forces. The results found are compared with published numerical solutions obtained from other approaches. The comparison showed that the results are almost equal. The maximum error found is less than 1%, indicating that this approach is effective for analyzing the stability of rock slopes. The relevance of the approach demonstrated, investigations are undertaken to study the influence of some parameters on the stability of the slope. These parameters relate to the mechanical strength of the rock, slope geometry and loading.

  10. Design and Testing for a New Thermosyphon Irradiation Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) requires most materials and all fuel experiments to be placed in a pressure containment vessel to ensure that internal contaminants such as fission products cannot be released into the primary coolant. It also requires that all experiments be capable of withstanding various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. These requirements are intended to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant, and by reducing heat loads to the HFIR primary coolant, thus ensuring that no boiling can occur. A proposed design for materials irradiation would remove these limitations by providing the required primary containment with an internal cooling flow. This would allow for experiments to be irradiated without concern for coolant contamination (e.g., from cladding failure of advanced fuel pins) or for specimen heat load. This report describes a new materials irradiation experiment design that uses a thermosyphon cooling system to allow experimental materials direct access to a liquid coolant. The new design also increases the range of conditions that can be tested in HFIR. This design will provide a unique capability to validate the performance of current and advanced fuels and materials. Because of limited supporting data for this kind of irradiation vehicle, a test program was initiated to obtain operating data that can be used to (1) qualify the vehicle for operation in HFIR and (2) validate computer models used to perform design- and safety-basis calculations. This report also describes the test facility and experimental data, and it provides a comparison of the experimental data to computer simulations. A total of 51 tests have been completed: four tests with pure steam, 12 tests with argon, and 35 tests with helium. A total

  11. Eccentric Coil Test Facility (ECTF)

    International Nuclear Information System (INIS)

    Burn, P.B.; Walstrom, P.L.; Anderson, W.C.; Marguerat, E.F.

    1975-01-01

    The conceptual design of a facility for testing superconducting coils under some conditions peculiar to tokamak systems is given. A primary element of the proposed facility is a large 25 MJ background solenoid. Discussions of the mechanical structure, the stress distribution and the thermal stability for this coil are included. The systems for controlling the facility and diagnosing test coil behavior are also described

  12. Certification testing of the MOX Fresh Fuel Package (MFFP)

    International Nuclear Information System (INIS)

    Nichols, J.C. III; Yapuncich, F.L.

    2004-01-01

    Packaging Technology, Inc. (PacTec) is designing the MFFP as part of the Duke, COGEMA, Stone and Webster (DCS) consortium. DCS is tasked with providing the Department of Energy (DOE) with domestic MOX fuel fabrication and reactor irradiation services for the purpose of disposing of surplus weapons usable plutonium. This paper will discuss the development of the MFFP certification test program. The MFFP was subjected to a total of eleven free and puncture drops of the course of the certification testing. Because of the plutonium content, the design must be a Type BF, which among other things requires a containment boundary with a tested leakage rate of 1 x 10 -7 cm 3 /s air at 1 atm absolute and 25 C, or less. Both economics (desire for maximized payload) and operational (conveyance mode restricts size and weight) constraints lead to a highly optimized design. The optimized package design led to a significant test program which needed to address the containment boundary stability, puncture resistance of the package and lid end impact limiter, structural performance of the light weight lid structure, and stability of the internal structures. The test program efficiently balanced the test objectives while minimizing the number of costly hardware items used during this destructive testing. This balance achieved by strategic replacement of mock and prototypic payloads, impact limiters, and by careful test order considerations. The paper will conclude with a selected summary of the testing and an assessment of the test programs thoroughness

  13. Designing healthy communities: Testing the walkability model

    OpenAIRE

    Zuniga-Teran, Adriana; Orr, Barron; Gimblett, Randy; Chalfoun, Nader; Marsh, Stuart; Guertin, David; Going, Scott

    2017-01-01

    Research from multiple domains has provided insights into how neighborhood design can be improved to have a more favorable effect on physical activity, a concept known as walkability. The relevant research findings/hypotheses have been integrated into a Walkability Framework, which organizes the design elements into nine walkability categories. The purpose of this study was to test whether this conceptual framework can be used as a model to measure the interactions between the built environme...

  14. Design and testing of wood containers for radioactive waste

    International Nuclear Information System (INIS)

    Roberts, R.S.; Barry, P.E.

    1981-01-01

    A wood container for shipping and storing radioactive waste was designed to eliminate the problems caused by the weight, cost, and shape of the steel containers previously used. Tests specified by federal regulations (compression, free-drop, penetration, and vibration) were conducted on two of the containers, one loaded to 2500 lb and one loaded to 5000 lb. The 5000-lb container failed the free-drop test, but the 2500-lb container easily passed the tests and therefore qualifies as a Type A container. Its simplicity of design, low weight, and ease in handling have proved to be time-saving and cost-effective

  15. Design and Preliminary Testing of the International Docking Adapter's Peripheral Docking Target

    Science.gov (United States)

    Foster, Christopher W.; Blaschak, Johnathan; Eldridge, Erin A.; Brazzel, Jack P.; Spehar, Peter T.

    2015-01-01

    The International Docking Adapter's Peripheral Docking Target (PDT) was designed to allow a docking spacecraft to judge its alignment relative to the docking system. The PDT was designed to be compatible with relative sensors using visible cameras, thermal imagers, or Light Detection and Ranging (LIDAR) technologies. The conceptual design team tested prototype designs and materials to determine the contrast requirements for the features. This paper will discuss the design of the PDT, the methodology and results of the tests, and the conclusions pertaining to PDT design that were drawn from testing.

  16. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  17. Subsurface Characterization using Geophysical Seismic Refraction Survey for Slope Stabilization Design with Soil Nailing

    Science.gov (United States)

    Ashraf Mohamad Ismail, Mohd; Ng, Soon Min; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    The application of geophysical seismic refraction for slope stabilization design using soil nailing method was demonstrated in this study. The potential weak layer of the study area is first identify prior to determining the appropriate length and location of the soil nail. A total of 7 seismic refraction survey lines were conducted at the study area with standard procedures. The refraction data were then analyzed by using the Pickwin and Plotrefa computer software package to obtain the seismic velocity profiles distribution. These results were correlated with the complementary borehole data to interpret the subsurface profile of the study area. It has been identified that layer 1 to 3 is the potential weak zone susceptible to slope failure. Hence, soil nails should be installed to transfer the tensile load from the less stable layer 3 to the more stable layer 4. The soil-nail interaction will provide a reinforcing action to the soil mass thereby increasing the stability of the slope.

  18. Design And Ground Testing For The Expert PL4/PL5 'Natural And Roughness Induced Transition'

    Science.gov (United States)

    Masutti, Davie; Chazot, Olivier; Donelli, Raffaele; de Rosa, Donato

    2011-05-01

    Unpredicted boundary layer transition can impact dramatically the stability of the vehicle, its aerodynamic coefficients and reduce the efficiency of the thermal protection system. In this frame, ESA started the EXPERT (European eXPErimental Reentry Testbed) program to pro- vide and perform in-flight experiments in order to obtain aerothermodynamic data for the validation of numerical models and of ground-to-flight extrapolation methodologies. Considering the boundary layer transition investigation, the EXPERT vehicle is equipped with two specific payloads, PL4 and PL5, concerning respectively the study of the natural and roughness induced transition. The paper is a survey on the design process of these two in-flight experiments and it covers the major analyses and findings encountered during the development of the payloads. A large amount of transition criteria have been investigated and used to estimate either the dangerousness of the height of the distributed roughness, arising due to nose erosion, or the effectiveness of height of the isolated roughness element forcing the boundary layer transition. Supporting the PL4 design, linear stability computations and CFD analyses have been performed by CIRA on the EXPERT flight vehicle to determine the amplification factor of the boundary layer instabilities at different point of the re-entry trajectory. Ground test experiments regarding the PL5 are carried on in the Mach 6 VKI H3 Hypersonic Wind Tunnel with a Reynolds numbers ranging from 18E6/m to 26E6/m. Infrared measurements (Stanton number) and flow visualization are used on a 1/16 scaled model of the EXPERT vehicle and a flat plate to validate the Potter and Whitfield criterion as a suitable methodology for ground-to-flight extrapolation and the payload design.

  19. Development of a hardware-based AC microgrid for AC stability assessment

    Science.gov (United States)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  20. The stability test of natural remanent magnetization (NRM) vulcanic rock of merapi mountain in central Java

    International Nuclear Information System (INIS)

    Husna; Rauf, Nurlela; Bijaksana, Satria

    2002-01-01

    An assessment has been done on magnetic properties of the rock from the area around the top of Merapi Mountain. The research conducted In form of stability test of Natural Remanent Magnetization (NRM), Which 16 specimens that used in that test were taken from Pasar Bubar, Kali Gendol and Kali Gendong Alternating Field Demagnetization Methods applied on measurement of intensity and direction of NRM and demagnetization process. The result shown that the rock from Pasar Bubar had mean intensity of 2255486 mA/meter with a range of declination 32.80 -650 and inclination -37.40 -3.90, Kali Gendol had mean intensity of 2469.387 mA/meter with range of declination of 356.10-110 and inclination of -490 --0.10, and Kali Gendong had mean Intensity of 4139.062 mA/meter with range of declination of 62.10 -12540 and inclination of -0.80 -3520. The stability test is determined from intensity curve, stereo net Plot. Zijderveld diagram and Maximum Angular Deviation (MAD) According the result, the specimen from kali gendol were the most stable and qualifield for further used on paleomagnetic study