WorldWideScience

Sample records for sr2ce1xsnxo4 blue phosphors

  1. An open aperture z-scan study of Sr2CeO4 blue phosphor

    International Nuclear Information System (INIS)

    Seema, R.; Sandeep, C.S. Suchand; Philip, Reji; Kalarikkal, Nandakumar

    2011-01-01

    Highlights: → Sr 2 CeO 4 blue phosphor has been prepared by a solid state reaction method. → The XRD study confirms that the structure of the system is orthorhombic. → The TEM reveals that Sr 2 CeO 4 is composed of elongated spherical structures of length ∼0.2-0.6 μm. → The FFT of TEM, XRD peaks and the JCPDS values are compared, from which the Sr 2 CeO 4 phase is reconfirmed. → A z-scan measurement gives the effective two-photon absorption coefficient to be 3.9 x 10 -11 m/W. - Abstract: Sr 2 CeO 4 blue phosphor has been prepared by the solid-state reaction method. The X-ray diffraction (XRD) study confirms the structure of the system to be orthorhombic. High resolution electron transmission microscopy reveals that Sr 2 CeO 4 prepared by the solid state reaction method is composed of elongated spherical structures of length ∼0.2-0.6 μm and width ∼90-150 nm. The excitation spectrum shows a broad band which peaks at 275 nm. The emission spectrum shows a broad band which peaks at 467 nm when excited at 275 nm. The emission band is assigned to the energy transfer between the molecular orbital of the ligand and charge transfer (CT) state of the Ce 4+ ion. The Commission International de l'Eclairage (CIE) co-ordinates are x = 0.15, and y = 0.23. The nonlinear absorption behavior of Sr 2 CeO 4 has been investigated using the open aperture z-scan technique. The calculated effective two-photon absorption coefficient shows that the Sr 2 CeO 4 blue phosphor is a promising optical limiting material.

  2. Li4SrCa(SiO4)2:Ce3+, a highly efficient near-UV and blue emitting orthosilicate phosphor

    International Nuclear Information System (INIS)

    Zhang, Jilin; Zhang, Weilu; Qiu, Zhongxian; Zhou, Wenli; Yu, Liping; Li, Zhiqiang; Lian, Shixun

    2015-01-01

    High quantum efficiency is a vital parameter of phosphors for practical application. An efficient near-UV and blue emitting phosphor Li 4 SrCa(SiO 4 ) 2 :Ce 3+ was synthesized by a traditional solid-state reaction, and luminescent properties were studied in detail. The Ce 3+ -activated phosphor can emit both a near-UV light centred at 345 nm and a blue light peaking at 420 nm when Ce 3+ occupies the Sr and Ca site, respectively. The internal quantum efficiency (IQE) of Li 4 SrCa(SiO 4 ) 2 :0.03Ce 3+ is as high as 97% under the excitation at 288 nm, while the external quantum efficiency (EQE) is 66%. The IQE and EQE values of Li 4 SrCa(SiO 4 ) 2 :0.03Ce 3+ under the excitation at 360 nm are 82% and 31%, respectively. - Highlights: • Phosphor Li 4 SrCa(SiO 4 ) 2 :Ce 3+ emits a near-UV (345 nm) and a blue light (420 nm). • Emission band at 345 nm originates from Ce 3+ on Sr site. • Emission band at 420 nm belongs to Ce 3+ on Ca site. • Internal quantum efficiency is 97% for Li 4 SrCa(SiO 4 ) 2 :0.03Ce 3+ excited at 288 nm

  3. Photoluminescent properties of Sr2CeO4: Eu3+ and Sr2CeO4: Eu2+ phosphors suitable for near ultraviolet excitation

    International Nuclear Information System (INIS)

    Suresh, K.; Poornachandra Rao, N.V.; Murthy, K.V.R.

    2014-01-01

    Powder phosphors of 1 mol% Eu 3+ - and Eu 2+ -doped strontium cerium oxide (Sr 2 CeO 4 ) were synthesized by standard solid-state reaction method. Eu 3+ - and Eu 2+ -doped Sr 2 CeO 4 phosphors fired at 1100 ℃ for 2 h were analysed by X-ray diffraction (XRD) and photoluminescence (PL) techniques. The XRD patterns confirm that the obtained phosphors are a single phase of Sr 2 CeO 4 composed of orthorhombic structure. Room temperature PL excitation spectrum of air-heated Sr 2 CeO 4 : Eu phosphor has exhibited bands at 260, 280 and 350 nm. Whereas the excitation spectrum of Sr 2 CeO 4 : Eu phosphor heated under reducing (carbon) atmosphere exhibited single broadband range from 260 to 390 nm. The (PL) emission peaks of both the phosphors at 467 (blue), 537 (green) and 616 nm (red) generate white light under 260, 280 and 350 nm excitation wavelengths. The Commission International de l'Eclairage (CIE) colour coordinates conforms that these phosphors emitting white light. The results reveal that these phosphors are multifunctional phosphors which emit white light under these excitations that they could be used as white components for display and lamp devices and as well as possible good light-conversion phosphor LEDs under near-ultraviolet (nUV) chip. (author)

  4. Luminescent and morphological study of Sr2CeO4 blue phosphor prepared from oxalate precursors

    International Nuclear Information System (INIS)

    Ferrari, Jefferson L.; Pires, Ana M.; Serra, Osvaldo A.; Davolos, Marian R.

    2011-01-01

    Luminescent and morphological studies of Sr 2 CeO 4 blue phosphor prepared from cerium-doped strontium oxalate precursor are reported. Powder samples were prepared from 5 and 25 mol% Ce 3+ -doped strontium oxalate as well as from a mechanical mixture of strontium oxalate and cerium oxalate at a 4:1 ratio, respectively. All the samples were characterized by XRD, IR, PLS, and SEM. The luminescent and structural properties of the Sr 2 CeO 4 material are little affected by the SrCO 3 remaining from precursors. The Sr 2 CeO 4 material consists in one-dimensional chains of edge-sharing CeO 6 octahedra that are linked together by Sr 2+ ions. The carbonate ion might be associated with oxygen ions of the linear chain, and also with the oxygen atoms located in the equatorial position, which consequently affects the charge transfer bands between O 2- and Ce 4+ . As observed by SEM, the morphological changes are related to each kind of precursor and thermal treatment, along with irregular powder particles within the size range 0.5-2 μm.

  5. Composition Screening in Blue-Emitting Li4Sr1+xCa0.97-x(SiO4)2:Ce3+ Phosphors for High Quantum Efficiency and Thermally Stable Photoluminescence.

    Science.gov (United States)

    Zhang, Jingchen; Zhang, Jilin; Zhou, Wenli; Ji, Xiaoyu; Ma, Wentao; Qiu, Zhongxian; Yu, Liping; Li, Chengzhi; Xia, Zhiguo; Wang, Zhengliang; Lian, Shixun

    2017-09-13

    Photoluminescence quantum efficiency (QE) and thermal stability are important for phosphors used in phosphor-converted light-emitting diodes (pc-LEDs). Li 4 Sr 1+x Ca 0.97-x (SiO 4 ) 2 :0.03Ce 3+ (-0.7 ≤ x ≤ 1.0) phosphors were designed from the initial model of Li 4 SrCa(SiO 4 ) 2 :Ce 3+ , and their single-phased crystal structures were found to be located in the composition range of -0.4 ≤ x ≤ 0.7. Depending on the substitution of Sr 2+ for Ca 2+ ions, the absolute QE value of blue-emitting composition-optimized Li 4 Sr 1.4 Ca 0.57 (SiO 4 ) 2 :0.03Ce 3+ reaches ∼94%, and the emission intensity at 200 °C remains 95% of that at room temperature. Rietveld refinements and Raman spectral analyses suggest the increase of crystal rigidity, increase of force constant in CeO 6 , and decrease of vibrational frequency by increasing Sr 2+ content, which are responsible for the enhanced quantum efficiency and thermal stability. The present study points to a new strategy for future development of the pc-LEDs phosphors based on local structures correlation via composition screening.

  6. Blue to bluish-green tunable phosphor Sr2LiSiO4F:Ce3+,Tb3+ and efficient energy transfer for near-ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Xie, Mubiao; Zeng, Lihua; Ye, TingLi; Yang, Xi; Zhu, Xianmei; Peng, Siyun; Lei, Lei

    2014-01-01

    Ce 3+ and Tb 3+ activated Sr 2 LiSiO 4 F phosphors were prepared by a solid state reaction technique at high temperature, and their ultraviolet (UV)-visible spectroscopic properties were investigated. Under ultraviolet light excitation, Ce 3+ -doped Sr 2 LiSiO 4 F phosphors emit blue light (420 nm), while Tb 3+ -doped phosphors show yellowish green emission. Efficient energy transfer from Ce 3+ to Tb 3+ ions in co-doped samples was confirmed in terms of corresponding excitation and emission spectra. The energy transfer mechanism between Ce 3+ and Tb 3+ was discussed and demonstrated to be dipole–dipole interaction in Sr 2 LiSiO 4 F:Ce 3+ ,Tb 3+ phosphors. Due to energy transfer from Ce 3+ to Tb 3+ , Ce 3+ and Tb 3+ co-doped Sr 2 LiSiO 4 F phosphors show intense absorption in near-UV region, and present tunable emission from blue to bluish green under 360 nm light excitation. The results indicate that these phosphors can be considered as candidates for white LEDs pumped by n-UV chips. (paper)

  7. Potential tunable white-emitting phosphor LiSr4(BO3)3:Ce3+, Eu2+ for ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Wang Qian; Deng Degang; Hua Youjie; Huang Lihui; Wang Huanping; Zhao Shilong; Jia Guohua; Li Chenxia; Xu Shiqing

    2012-01-01

    A novel Ce 3+ /Eu 2+ co-activated LiSr 4 (BO 3 ) 3 phosphor has been synthesized by traditional solid-state reaction. The samples could display varied color emission from blue towards white and ultimately to yellow under the excitation of ultraviolet (UV) light with the appropriate adjustment of the relative proportion of Ce 3+ /Eu 2+ . The resonance-type energy transfer mechanism from Ce 3+ to Eu 2+ in LiSr 4 (BO 3 ) 3 :Ce 3+ , Eu 2+ phosphors is dominant by electric dipole–dipole interaction, and the critical distance is calculated to be about 29.14 Å by the spectra overlap method. White light was observed from LiSr 4 (BO 3 ) 3 :mCe 3+ , nEu 2+ phosphors with chromaticity coordinates (0.34, 0.30) upon 350 nm excitation. The LiSr 4 (BO 3 ) 3 :Ce 3+ , Eu 2+ phosphor has potential applications as an UV radiation-converting phosphor for white light-emitting diodes. - Highlights: ► White light was observed from the novel phosphor with chromaticity coordinate (0.34, 0.30). ► Resonant energy transfer between Ce 3+ and Eu 2+ occurs in the novel phosphor. ► This novel phosphor has potential applications as a UV-driven light-emitting phosphor.

  8. Luminescent properties of UV excitable blue emitting phosphors MSr4(BO3)3:Ce3+ (M = Li and Na)

    International Nuclear Information System (INIS)

    Guo Chongfeng; Ding Xu; Seo, Hyo Jin; Ren Zhaoyu; Bai Jintao

    2011-01-01

    Research highlights: → Novel blue emitting phosphors borate MSr 4 (BO 3 ) 3 (M = Li or Na) were prepared first. → Luminescent properties of phosphors borate MSr 4 (BO 3 ) 3 (M = Li or Na) were investigated extensively as candidates of blue emitting phosphor used for UV excited LED. → The optimal concentrations of dopant Ce 3+ ions in compound MSr 4 (BO 3 ) 3 (M = Li or Na) were determined as 0.05 for Li and x = 0.09 for Na excited by UV light respectively. - Abstract: A series of Ce 3+ doped novel borate phosphors MSr 4 (BO 3 ) 3 (M = Li or Na) were successfully synthesized by traditional solid-state reaction. The crystal structures and the phase purities of samples were characterized by powder X-ray diffraction. The optimal concentrations of dopant Ce 3+ ions in compound MSr 4 (BO 3 ) 3 (M = Li or Na) were determined through the measurements of photoluminescence spectra of phosphors. Ce 3+ doped phosphors MSr 4 (BO 3 ) 3 (M = Li or Na) show strong broad band absorption in UV spectral region and bright blue emission under the excitation of 345 nm light. In addition, the temperature dependences of emission spectra of M 1+x Sr 4-2x Ce x (BO 3 ) 3 (M = Li or Na) phosphors with optimal composition x = 0.05 for Li and x = 0.09 for Na excited under 355 nm pulse laser were also investigated. The experimental results indicate that the M 1+x Sr 4-2x Ce x (BO 3 ) 3 (M = Li or Na) phosphors are promising blue emitting phosphors pumped by UV light.

  9. Luminescence in Eu2+ and Ce3+ doped SrCaP2O7 phosphors

    Directory of Open Access Journals (Sweden)

    K.N. Shinde

    Full Text Available Eu2+ and Ce3+ doped SrCaP2O7 has been achieved by modified solid state diffusion in reducing atmosphere. The prepared phosphor powders have been identified by their characteristic X-ray diffraction patterns. The mixed phases of α-Sr2P2O7 type with orthorhombic and α-Ca2P2O7 type with monoclinic form were investigated. Its excitation wavelength ranging from 250 to 430 nm fits well with the characteristic emission of UV light-emitting diode (LED. The excitation and emission spectra indicate that these phosphors can be effectively excited by the near-UV light, and emits blue (visible range due to 4f7 → 4f65d1 transition of Eu2+ particularly, SrCaP2O7: Eu2+ whereas, photoluminescence excitation spectrum measurements of Ce3+ activated SrCaP2O7 shows that the phosphor can be efficiently excited by UV–Vis light from 280 to 310 nm to realize emission in the near visible range due to the 5d–4f transition of Ce3+ ions which is applicable for scintillation purpose. The impacts of doping of divalent europium and trivalent cerium on photoluminescence properties on SrCaP2O7 pyrophosphate phosphors were investigated and I propose a feasible interpretation. Keywords: Phosphor, Luminescence, XRD, LED, FTIR

  10. Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties.

    Science.gov (United States)

    Li, Haifeng; Zhao, Ran; Jia, Yonglei; Sun, Wenzhi; Fu, Jipeng; Jiang, Lihong; Zhang, Su; Pang, Ran; Li, Chengyu

    2014-03-12

    A series of novel red-emitting Sr1.7Zn0.3CeO4:Eu(3+) phosphors were synthesized through conventional solid-state reactions. The powder X-ray diffraction patterns and Rietveld refinement verified the similar phase of Sr1.7Zn0.3CeO4:Eu(3+) to that of Sr2CeO4. The photoluminescence spectrum exhibits that peak located at 614 nm ((5)D0-(7)F2) dominates the emission of Sr1.7Zn0.3CeO4:Eu(3+) phosphors. Because there are two regions in the excitation spectrum originating from the overlap of the Ce(4+)-O(2-) and Eu(3+)-O(2-) charge-transfer state band from 200 to 440 nm, and from the intra-4f transitions at 395 and 467 nm, the Sr1.7Zn0.3CeO4:Eu(3+) phosphors can be well excited by the near-UV light. The investigation of the concentration quenching behavior, luminescence decay curves, and lifetime implies that the dominant mechanism type leading to concentration quenching is the energy transfer among the nearest neighbor or next nearest neighbor activators. The discussion about the dependence of photoluminescence spectra on temperature shows the better thermal quenching properties of Sr1.7Zn0.3CeO4:0.3Eu(3+) than that of Sr2CeO4:Eu(3+). The experimental data indicates that Sr1.7Zn0.3CeO4:Eu(3+) phosphors have the potential as red phosphors for white light-emitting diodes.

  11. A novel yellow-emitting SrAlSi4N7:Ce3+ phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    International Nuclear Information System (INIS)

    Ruan, Jian; Xie, Rong-Jun; Funahashi, Shiro; Tanaka, Yoshinori; Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto; Li, Yuan-Qiang

    2013-01-01

    Ce 3+ -doped and Ce 3+ /Li + -codoped SrAlSi 4 N 7 phosphors were synthesized by gas pressure sintering of powder mixtures of Sr 3 N 2 , AlN, α-Si 3 N 4 , CeN and Li 3 N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi 4 N 7 :Ce 3+ (Ce 3+ /Li + ) were investigated in this work. The band structure calculated by the DMol 3 code shows that SrAlSi 4 N 7 has a direct band gap of 3.87 eV. The single crystal analysis of Ce 3+ -doped SrAlSi 4 N 7 indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi 4 N 7 was identified as a major phase of the fired powders, and Sr 5 Al 5 Si 21 N 35 O 2 and AlN as minor phases. Both Ce 3+ and Ce 3+ /Li + doped SrAlSi 4 N 7 phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce 3+ /Li + -doped SrAlSi 4 N 7 (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr 0.97 Al 1.03 Si 3.997 N/94/maccounttest14=t0005 1 8193 7 :Ce 3+ 0.03 with a commercial blue InGaN chip. It indicates that SrAlSi 4 N 7 :Ce 3+ is a promising yellow emitting down-conversion phosphor for white LEDs. - Graphical abstract: One-phosphor converted white light-emitting diode (LED) was fabricated by combining a blue LED chip and a yellow-emitting SrAlSi4N7:Ce 3+ phosphor (see inset), which has the color rendering index of 78 and color temperature of 6300 K. - Highlights: • We reported a new yellow nitride phosphor suitable for solid state lighting. • We solved the crystal structure and evidenced a disordered Si/Al distribution. • We fabricated a high color rendering white LEDs by using a single SrAlSi4N7:Ce

  12. Synthesis and characterization of Sr2CeO4: Eu3+ phosphor by different forms

    International Nuclear Information System (INIS)

    Murthy, K.V.R.; Rao, Ch. Atchyutha; Suresh, K.; Ratna Kumar, B.W.; Nageswara Rao, B.; Poornachandra Rao, N.V.; Subba Rao, B.

    2011-01-01

    High temperature solid state reaction method was explored to synthesize undoped Sr 2 CeO 4 and Eu 3+ RE doped Sr 2 CeO 4 phosphor using inorganic materials taking in three different forms like, form (i) Strontium Carbonate (SrCO 3 ), Cerium Oxide (CeO 2 ), (ii) Strontium Nitrate (Sr(NO 3 ) 2 ), Cerium Oxide (CeO 2 ) and (iii) Strontium Nitrate (Sr(NO 3 ) 2 ), Cerium Nitrate (Ce(NO 3 ) 3 .6(NH 2 .CO.NH 2 ) in stoichiometric proportions of Sr:Ce as 2:1 and ground into a fine powder using agate mortar and pestle about an hour. The grounded samples were placed in an alumina crucible and fired at 1200 deg C for 3 hours in a muffle furnace with a heating rate of 5 deg C/min. To investigate the crystal structure, phase, morphology and luminescent properties of the synthesized phosphors XRD, SEM, Photoluminescence (PL) spectra, TL and CIE techniques were used. The Photoluminescence (PL) emission and excitation spectra were measured by Spectrofluorophotometer (SHIMADZU, RF-5301 PC) using Xenon lamp as excitation source. To identify the crystal phase, XRD analysis was carried out with a powder diffractometer (Rigaku-D/max 2500) using CuKα radiation. The microstructures of the samples were studied using a scanning electron microscopy (SEM) (XL 30 CP Philips). All the analysis was recorded at room temperature. We have compared the results of the prepared samples by different forms. From the XRD analysis it was found that the prepared phosphors are mostly in single phase of Sr 2 CeO 4 with an orthorhombic structure. From the XRD data, using Scherrer's formula the calculated average crystallite size is (i) ∼ 28 nm (ii) ∼ 9 nm (iii) ∼ 7 nm using FWHM. This indicates that, the prepared phosphors via high temperature solid state reaction method is in nano size. Sr 2 CeO 4 exhibits photoluminescence due to the charge transfer (CT) mechanism. The sample displays a broad excitation spectrum range from ∼ 220 to 400 nm. Under 350 nm excitation, the undoped Sr 2 CeO 4 shows

  13. Study of effect of co-doping on CIE coordinates of strontium cerium oxide phosphor (Sr_2CeO_4)

    International Nuclear Information System (INIS)

    Zambare, Pradip Z.; Ahirrao, P.B.; Chaudhari, D.B.; Zambare, A.P.; Mahajan, O.H.

    2016-01-01

    The phosphors Sr_2CeO_4 doped europium and gadolinium were synthesized by modified solid state diffusion method. From emission spectra, the CIE coordinates (x, y) of x% Eu"3"+ and 0.5 %Gd"3"+ doped Sr_2CeO_4 phosphors was calculated. In present paper, we investigate luminescence properties and colorimetric study of Sr_2CeO_4 doped 0.5% Gd"3"+, x% Eu"3"+. The phosphors Sr_2CeO_4 doped europium and gadolinium were successfully synthesized by modified solid state diffusion method. X-ray diffraction (XRD) profile confirms the orthorhombic nature of Eu"3"+ and 0.5% Gd"3"+ doped Sr_2CeO_4 phosphors. In addition, scanning electron Microscopy (SEM), Fourier-Transformation IR spectroscopy (FTIR), was also used to study the synthesized phosphors

  14. Tunable emission and the systematic study on energy-transfer properties of Ce3+- and Tb3+-co-doped Sr3(PO4)2 phosphors

    International Nuclear Information System (INIS)

    Liu, Zhijun

    2015-01-01

    An emitting color tunable phosphor Sr 3 (PO 4 ) 2 :Ce 3+ , Tb 3+ was synthesized by the traditional high-temperature solid-state reaction method. The photoluminescence and energy-transfer (ET) properties of Ce 3+ - and Tb 3+ -doped Sr 3 (PO 4 ) 2 host were studied in detail. The obtained phosphors show both a blue emission from Ce 3+ and a yellowish green emission from Tb 3+ with considerable intensity under ultraviolet (UV) excitation (∝311 nm). When the content of Ce 3+ was fixed at 0.03, the emission chromaticity coordinates could be adjusted from blue to green region by tuning the contents of Tb 3+ ions with the aid of ET process. The critical distance between Ce 3+ and Tb 3+ is 14.69 A. The ET mechanism from Ce 3+ to Tb 3+ ions was identified with dipole-dipole interaction. The obtained phosphor exhibits a strong excitation in UV spectral region and high-efficient ET from Ce 3+ to Tb 3+ ions. It may find applications as a green light-emitting UV-convertible phosphor in white LED devices. (orig.)

  15. Luminescence properties and energy transfer investigations of Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphors

    International Nuclear Information System (INIS)

    Yang, Zaifa; Xu, Denghui; Sun, Jiayue; Du, Jiangnan; Gao, Xuedong

    2016-01-01

    Highlights: • A phosphor Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ for UV-based white LEDs was firstly synthesized successfully. • The phase structure and photoluminescence properties of samples were studied in detail. • The energy transfer process from Ce"3"+ to Tb"3"+ ions was illustrated in detail. • Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor has potential applications as an UV-convertible phosphor for white light emitting diodes. - Abstract: A series of Ce"3"+ or Tb"3"+ doped and Ce"3"+/Tb"3"+ co-doped Sr_3Lu(PO_4)_3 phosphors were prepared via the conventional high temperature solid-state reaction. The phase structure, photoluminescence and energy transfer properties of samples were studied in detail. The optimal proportion of Ce"3"+ single doping is 4 mol% with maximal fluorescence intensity. The Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor shows both a blue emission (428 nm) from Ce"3"+ and a yellowish-green emission (545 nm) from Tb"3"+ with considerable intensity under ultraviolet (UV) excitation (268 nm). The energy transfer from Ce"3"+ to Tb"3"+ ions takes place in the Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor on the basis of the analysis of the luminescence spectra. The energy transfer mechanism from Ce"3"+ to Tb"3"+ ions was proved to be dipole–dipole interaction. The energy transfer behaviors in Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor is also investigated by the lifetime measurement. The results show that this phosphor has potential applications for UV white-light LEDs.

  16. A novel yellow-emitting SrAlSi4N7:Ce3+ phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    Science.gov (United States)

    Ruan, Jian; Xie, Rong-Jun; Funahashi, Shiro; Tanaka, Yoshinori; Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto; Li, Yuan-Qiang

    2013-12-01

    Ce3+-doped and Ce3+/Li+-codoped SrAlSi4N7 phosphors were synthesized by gas pressure sintering of powder mixtures of Sr3N2, AlN, α-Si3N4, CeN and Li3N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi4N7:Ce3+(Ce3+/Li+) were investigated in this work. The band structure calculated by the DMol3 code shows that SrAlSi4N7 has a direct band gap of 3.87 eV. The single crystal analysis of Ce3+-doped SrAlSi4N7 indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi4N7 was identified as a major phase of the fired powders, and Sr5Al5Si21N35O2 and AlN as minor phases. Both Ce3+ and Ce3+/Li+ doped SrAlSi4N7 phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce3+/Li+-doped SrAlSi4N7 (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr0.97Al1.03Si3.997N\\94\\maccounttest14=t0005_18193 7:Ce3+0.03 with a commercial blue InGaN chip. It indicates that SrAlSi4N7:Ce3+ is a promising yellow emitting down-conversion phosphor for white LEDs.

  17. Eu and Sr2CeO4 : Eu phosphors suitable for near ultraviolet excitation

    Indian Academy of Sciences (India)

    Administrator

    The study on white light phosphors suitable for near- ultraviolet (nUV) ... Rare earth ion-doped phosphors have been used in varied fields ... practical applications. .... by naked eyes. ... induced by Sr2CeO4 host matrix (Arunachalam Laxmanan.

  18. Synthesis and luminescence properties of Ce{sup 3+} doped MWO{sub 4} (M=Ca, Sr and Ba) microcrystalline phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Dabre, K.V. [Department of Physics, Arts, Commerce and Science College, Koradi, Nagpur (India); Dhoble, S.J., E-mail: sjdhoble@rediffmail.com [Department of Physics, R.T.M. Nagpur University, Nagpur 440033 (India); Lochab, Jyoti [Radiotherapy Department, Safdarjung Hospital, New Delhi (India)

    2014-05-01

    The Ce{sup 3+} doped and undoped samples of alkali earth metal tungstate MWO{sub 4} (M=Ca, Sr, and Ba) phosphors are synthesized by a co-precipitation method in controlled pH environment. The resulting phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), photoluminescence (PL) and thermoluminescence (TL). XRD pattern and SEM micrographs reveal the formation of agglomerated microcrystalline phosphor. FTIR spectra show the strong absorption around 821 cm{sup −1} due to characteristic vibrations of (WO{sub 4}){sup 2−} complex. PL excitation spectra show broadband in the UV region having peak at 280 nm, and the emission spectrum shows broadband in the visible region with peak in the blue region. The PL emission intensity increases with Ce{sup 3+} concentration with the most effective concentration at 5 mol%. The complex TL glow curve of Ce{sup 3+} doped phosphors is deconvoluted by using a TLAnal computer program. The trap parameters obtained by TLAnal were compared with those calculated by Chen's method and a possible model for TL is discussed. - Highlights: • M{sub 1−x}WO{sub 4}:Ce{sub x} (M=Ca, Sr, and Ba) phosphors are synthesized by the co-precipitation method in controlled pH environment. • Phosphor exhibits broad emission band with maximum in the blue region. • Enhancement of PL emission intensity due to doping of Ce in a host lattice. • The complex TL glow curves were deconvoluted by TLAnal. • FTIR spectra show the main transmittance peaks related to v{sub 3} and v{sub 4} vibration modes of W–O bonds.

  19. Luminescence properties of Sr{sub 3-x-3y/2}M{sub x}Ce{sub y}AlO{sub 4}F (M=Ca, Ba, 0{<=}x{<=}0.9, 0.001{<=}y{<=}0.05) phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye-Min [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Park, Sangmoon, E-mail: spark@silla.ac.kr [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of)

    2012-09-15

    Luminescent materials composed of Sr{sub 3-x-3y/2}M{sub x}Ce{sub y}AlO{sub 4}F (M=Ca, Ba, 0{<=}x{<=}0.9, 0.001{<=}y{<=}0.05) were prepared by the solid-state reaction method. X-ray diffraction (XRD) patterns of the obtained oxyfluorides are exhibited for indexing peak positions. Dynamic excitation and emission spectra of the Ce{sup 3+}-activated oxyfluoride phosphors are clearly monitored. The critical emission quenching as a function of Ce{sup 3+} contents in Sr{sub 2.5-3y/2}M{sub 0.5}Ce{sub y}AlO{sub 4}F phosphors is revealed at quite low concentrations of the activator. CIE coordinates of blue and green Sr{sub 2.5-3y/2}M{sub 0.5}Ce{sub y}AlO{sub 4}F phosphors are clearly measured. The relative quantum efficiency of Sr{sub 2.4985}Ca{sub 0.5}Ce{sub 0.005}AlO{sub 4}F based on the integrated emission is determined. The Sr{sub 3-x-3y/2}M{sub x}Ce{sub y}AlO{sub 4}F phosphors excited near 410 nm light could be prominent phosphors in applications of NUV-LED. - Highlights: Black-Right-Pointing-Pointer Blue and green emitting oxyfluoride phosphors are excitated near 410 nm Black-Right-Pointing-Pointer Ce{sup 3+}-activated oxyfluoride phosphors are quite effective to prepare white light for near-UV LED applications. Black-Right-Pointing-Pointer Gradual substitution of Ce{sup 3+} content in the oxyfluoride hosts changes CIE values.

  20. Hydrothermal synthesis and tunable luminescent properties of Sr{sub 2-x}Dy {sub x}CeO{sub 4} rod-like phosphors derived from co-precipitation precursors

    Energy Technology Data Exchange (ETDEWEB)

    He Xianghong [School of Chemistry and Chemical Engineering, Jiangsu Teachers' University of Technology, Changzhou, Jiangsu 213001 (China) and Jiangsu Province Key Laboratory of Precious Metal Chemistry and Technology, Changzhou, Jiangsu 213001 (China)]. E-mail: hexh@jstu.edu.cn; Li Weihua [School of Chemistry and Chemical Engineering, Jiangsu Teachers' University of Technology, Changzhou, Jiangsu 213001 (China); Jiangsu Province Key Laboratory of Precious Metal Chemistry and Technology, Changzhou, Jiangsu 213001 (China); Zhou Quanfa [School of Chemistry and Chemical Engineering, Jiangsu Teachers' University of Technology, Changzhou, Jiangsu 213001 (China); Jiangsu Province Key Laboratory of Precious Metal Chemistry and Technology, Changzhou, Jiangsu 213001 (China)

    2006-09-25

    Uniform rod-like Sr{sub 2-x}Dy {sub x}CeO{sub 4} nano-phosphors with orthorhombic structure were prepared via a hydrothermal method, in the absence of any surfactant or template. The structure, morphology, particle size, and tunable luminescence properties of the samples were investigated by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis absorption and photoluminescence spectrum, respectively. The as-prepared phase-pure Sr{sub 2-x}Dy {sub x}CeO{sub 4} nanorods had the length of 50-150 nm and width of 80 nm. The Dy{sup 3+} ions emission in Sr{sub 2-x}Dy {sub x}CeO{sub 4} could be effectively excited through the energy absorbed by Sr{sub 2}CeO{sub 4} host. The tunable photoluminescence has been observed from Sr{sub 2}CeO{sub 4} doped with Dy{sup 3+} ions. Emission color of Sr{sub 2-x}Dy {sub x}CeO{sub 4} phosphor could be regulated from blue-white to white to yellow by adjusting the Dy{sup 3+} doping content in Sr{sub 2}CeO{sub 4} host, which originated from energy transfer between two different emission centers.

  1. Luminescence and luminescence quenching of Sr{sub 3}Lu{sub 2}(Si{sub 3}O{sub 9}){sub 2}:Ce{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Mikalauskaite, I.; Raudonyte-Svirbutaviciene, E. [Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Linkeviciute, A. [State Research Institute, Centre for Physical Sciences and Technology, Sauletekio Avenue 3, LT-10257 Vilnius (Lithuania); Urbonas, M. [Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Katelnikovas, A., E-mail: arturas.katelnikovas@chf.vu.lt [Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania)

    2017-04-15

    A series of near-UV to blue emitting Sr{sub 3}Lu{sub 2}(Si{sub 3}O{sub 9}){sub 2}:Ce{sup 3+} phosphors were prepared by a solid state reaction. The optical properties of synthesized phosphors were investigated as a function of Ce{sup 3+} concentration and temperature. These luminescent materials strongly absorb UV radiation shorter than 360 nm. The optimal Ce{sup 3+} concentration was 0.1% (external quantum efficiency ca. 45%). Temperature dependent measurements showed that Sr{sub 3}Lu{sub 2}(Si{sub 3}O{sub 9}){sub 2}:Ce{sup 3+} phosphors possess good thermal stability and loses only about 40% to 50% of initial intensity in the temperature range of 77–500 K depending on activator concentration.

  2. Tunable emission and the systematic study on energy-transfer properties of Ce{sup 3+}- and Tb{sup 3+}-co-doped Sr{sub 3}(PO{sub 4}){sub 2} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhijun [Guangzhou Maritime Institute, Department of Shipping Engineering, Guangzhou (China)

    2015-09-15

    An emitting color tunable phosphor Sr{sub 3}(PO{sub 4}){sub 2}:Ce{sup 3+}, Tb{sup 3+} was synthesized by the traditional high-temperature solid-state reaction method. The photoluminescence and energy-transfer (ET) properties of Ce{sup 3+}- and Tb{sup 3+}-doped Sr{sub 3}(PO{sub 4}){sub 2} host were studied in detail. The obtained phosphors show both a blue emission from Ce{sup 3+} and a yellowish green emission from Tb{sup 3+} with considerable intensity under ultraviolet (UV) excitation (∝311 nm). When the content of Ce{sup 3+} was fixed at 0.03, the emission chromaticity coordinates could be adjusted from blue to green region by tuning the contents of Tb{sup 3+} ions with the aid of ET process. The critical distance between Ce{sup 3+} and Tb{sup 3+} is 14.69 A. The ET mechanism from Ce{sup 3+} to Tb{sup 3+} ions was identified with dipole-dipole interaction. The obtained phosphor exhibits a strong excitation in UV spectral region and high-efficient ET from Ce{sup 3+} to Tb{sup 3+} ions. It may find applications as a green light-emitting UV-convertible phosphor in white LED devices. (orig.)

  3. The effect of doping Mg2+ on structure and properties of Sr(1.992-x)MgxSiO4: 0.008Eu2+ blue phosphor synthesized by co-precipitation method

    Science.gov (United States)

    Yang, Lingxiang; Wang, Jin-shan; Zhu, Da-chuan; Pu, Yong; Zhao, Cong; Han, Tao

    2018-01-01

    In order to improve the luminescence property of silicate phosphors, a series of Sr(1.992-x)MgxSiO4: 0.008Eu2+(x = 0, 0.25, 0.50, 0.75) blue phosphors have been synthesized using one-step calcination of a precursor prepared by chemical co-precipitation. And then the crystal structure and luminescence properties of the phosphors are investigated by means of X-Ray Diffraction and spectrophotometer. The results show that β-phase existed in the mixed phases of Sr2SiO4 (β+α‧) would transform to α‧-phase with Mg2+ ions doping into the silicate host until it disappeared. On the other hand, the introduction of Mg2+ ions can enhance the intensity of the excitation spectrum and promote the excitation sensitivity of Sr(1.992-x)MgxSiO4: 0.008Eu2+ phosphors in NUV region. Under NUV excitation at 350 nm, all samples exhibit a broadband emission in range of 400-550 nm due to the 4f65d14f7(8S7/2) transition of Eu2+ ions. According to Multi-peak fitting to emission spectra by Gauss method, the broad emission band consists of two single bands with peaks Em1 and Em2 locating at 460 and 490 nm, which corresponds to Eu2+ ions occupying the ten-fold oxygen-coordinated Sr1 site and the nine-fold oxygen-coordinated Sr2 site, respectively. The luminescence intensity of Sr(1.992-x)MgxSiO4:0.008Eu2+(x = 0, 0.25, 0.50, 0.75) blue phosphors has been enhanced remarkably after Mg2+ ions are added. Meanwhile, the chromaticity coordinates change from the blue-green region to the blue region as x moves from 0 to 0.75. Moreover, the decay curves are measured and can be well fitted with double exponential decay equation. It shows that the average lifetime is extended with the concentration of Mg2+ ions increasing. These results indicate that Sr(1.992-x)MgxSiO4: 0.008Eu2+(x = 0, 0.25, 0.50, 0.75) can be used as a potential blue phosphor in near UV-excited white LEDs.

  4. Synthesis and Luminescent Characteristics of Ce3+-Activated Borosilicate Blue-Emitting Phosphors for LEDs

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2016-01-01

    Full Text Available The phosphors Sr3B2SiO8:Ce3+ have been successfully synthesized via solid-state reaction process. Emission/excitation spectra and photoluminescence decay behaviors were investigated in detail. Under the excitation of 340 nm, the emission spectrum presented an asymmetry emission band extended from 350 to 600 nm, which with the main peak at 425 nm can be fitted in two peaks (23940 cm−1 and 21934 cm−1. The chromaticity coordinates of Sr3-xB2SiO8:xCe3+ are fixed in the blue region; when the intensity of Ce3+ reached the maximum, the chromaticity coordinate is (0.154, 0.088 which is more close to the standard CIE of blue light (0.140, 0.080. The results showed the kind of phosphor may have potential applications in the fields of UV-excited white LEDs.

  5. Luminescence properties and energy transfer investigations of Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zaifa; Xu, Denghui, E-mail: xudh@btbu.edu.cn; Sun, Jiayue; Du, Jiangnan; Gao, Xuedong

    2016-09-15

    Highlights: • A phosphor Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} for UV-based white LEDs was firstly synthesized successfully. • The phase structure and photoluminescence properties of samples were studied in detail. • The energy transfer process from Ce{sup 3+} to Tb{sup 3+} ions was illustrated in detail. • Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphor has potential applications as an UV-convertible phosphor for white light emitting diodes. - Abstract: A series of Ce{sup 3+} or Tb{sup 3+} doped and Ce{sup 3+}/Tb{sup 3+} co-doped Sr{sub 3}Lu(PO{sub 4}){sub 3} phosphors were prepared via the conventional high temperature solid-state reaction. The phase structure, photoluminescence and energy transfer properties of samples were studied in detail. The optimal proportion of Ce{sup 3+} single doping is 4 mol% with maximal fluorescence intensity. The Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphor shows both a blue emission (428 nm) from Ce{sup 3+} and a yellowish-green emission (545 nm) from Tb{sup 3+} with considerable intensity under ultraviolet (UV) excitation (268 nm). The energy transfer from Ce{sup 3+} to Tb{sup 3+} ions takes place in the Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphor on the basis of the analysis of the luminescence spectra. The energy transfer mechanism from Ce{sup 3+} to Tb{sup 3+} ions was proved to be dipole–dipole interaction. The energy transfer behaviors in Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphor is also investigated by the lifetime measurement. The results show that this phosphor has potential applications for UV white-light LEDs.

  6. Study on luminescence and thermal stability of blue-emitting Sr_5(PO_4)_3F: Eu"2"+phosphor for application in InGaN-based LEDs

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Zhi-Ming; Wu, Zhan-Chao; Wang, Fang-Fang; Li, Zhen-Jiang

    2017-01-01

    Highlights: • A blue phosphor Sr_5(PO_4)_3F: Eu"2"+ was prepared at low temperature of 800 °C. • The broad excitation band of the phosphor matches well with NUV LED chips. • The phosphor shows high color purity and good color stability. • A bright blue-emitting LED was fabricated with this phosphor on an InGaN chip. - Abstract: A series of blue-emitting phosphors Sr_5(PO_4)_3F: Eu"2"+ were synthesized by traditional high temperature solid-state reaction method. The micro-morphology and photoluminescence properties of the phosphors were investigated. The Sr_5(PO_4)_3F: Eu"2"+ phosphors exhibit broad excitation spectra ranging from 250 to 420 nm, and an intense asymmetric blue emission band peaking at 435 nm. Two different Eu"2"+ emission centers in Sr_5(PO_4)_3F: Eu"2"+ phosphors were confirmed via their fluorescence properties. The concentration quenching mechanism, fluorescence lifetime and thermal stability of Sr_5(PO_4)_3F: Eu"2"+ phosphors were studied in detail. The thermal stability can be improved obviously by anion substitution. The CIE chromaticity coordinates of Sr_5(PO_4)_3F: Eu"2"+ phosphors with different Eu"2"+-doped concentrations were calculated. A blue light-emitting diode was fabricated by combination of a 370 nm InGaN chip and the prepared phosphor Sr_5(PO_4)_3F: Eu"2"+. The present work suggests that Sr_5(PO_4)_3F: Eu"2"+ is a potential phosphor applied in InGaN-based LEDs.

  7. Red/blue-shift dual-directional regulation of α-(Ca, Sr)2SiO4:Eu(2+) phosphors resulting from the incorporation content of Eu(2+)/Sr(2+) ions.

    Science.gov (United States)

    Lu, Zhijuan; Mao, Zhiyong; Chen, Jingjing; Wang, Dajian

    2015-09-21

    In this work, tunable emission from green to red and the inverse tuning from red to green in α-(Ca, Sr)2SiO4:Eu(2+) phosphors were demonstrated magically by varying the incorporation content of Eu(2+) and Sr(2+) ions, respectively. The tunable emission properties and the tuning mechanism of red-shift resulting from the Eu(2+) content as well as that of blue-shift induced by the Sr(2+) content were investigated in detail. As a result of fine-controlling the incorporation content of Eu(2+), the emission peak red-shifts from 541 nm to 640 nm. On the other hand, the emission peak inversely blue-shifts from 640 nm to 546 nm through fine-adjusting the incorporation content of Sr(2+). The excellent tuning characteristics for α-(Ca, Sr)2SiO4:Eu(2+) phosphors presented in this work exhibited their various application prospects in solid-state lighting combining with a blue chip or a near-UV chip.

  8. Synthesis and optical properties of red/blue-emitting Sr2MgSi2O7:Eu3+/Eu2+ phosphors for white LED

    Directory of Open Access Journals (Sweden)

    Tong Thi Hao Tam

    2016-06-01

    Full Text Available Phosphor-converted white light emitting diodes (white LEDs have received great attention in recent years since they have several excellent features such as high lumen output, low power consumption, long lifetime and environmentally friendly. In this work, we report the co-precipitation synthesis of red/blue Sr2MgSi2O7:Eu3+/Eu2+ phosphors with various Eu doping concentration. The results show that the obtained Sr2MgSi2O7:Eu3+/Eu2+ phosphors have good crystallinity and emit strong red (Sr2MgSi2O7:Eu3+ and blue (Sr2MgSi2O7:Eu2+ emissions under near UV light excitation. The sharp emission peaks at 577, 590, 612, 653, and 701 nm corresponded to the typical 5D0 → 7Fj (j = 0,1,2,3,4 transitions of Eu3+, and the blue emission peaking at 460 nm is attributed to the typical 4f65d1-4f7 transition of Eu2+ in the same Sr2MgSi2O7 host lattice. Both phosphors can be well excited in the wavelength range of 260–400 nm where the near UV-LED is well matched. The above results suggest that the Sr2MgSi2O7:Eu3+/Eu2+ phosphors are promising red/blue-emitting phosphors for the application in near UV pumped phosphor-converted white LEDs.

  9. Synthesis and Luminescent Characteristics of Ce3+-Activated Borosilicate Blue-Emitting Phosphors for LEDs

    OpenAIRE

    Yu, Hong; Chen, Jinlei; Gan, Shucai

    2016-01-01

    The phosphors Sr3B2SiO8:Ce3+ have been successfully synthesized via solid-state reaction process. Emission/excitation spectra and photoluminescence decay behaviors were investigated in detail. Under the excitation of 340 nm, the emission spectrum presented an asymmetry emission band extended from 350 to 600 nm, which with the main peak at 425 nm can be fitted in two peaks (23940 cm−1 and 21934 cm−1). The chromaticity coordinates of Sr3-xB2SiO8:xCe3+ are fixed in the blue region; when the inte...

  10. Blue emitting KSCN:xCe phosphor for solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Chikte, Devayani, E-mail: devi.awade@gmail.com [G.N. Khalsa College, Matunga, Mumbai 400019 (India); Omanwar, S.K. [Department of Physics, S.G.B. Amravati University, Amravati (India); Moharil, S.V. [Department of Physics, R.T.M. Nagpur University, Nagpur 440010 (India)

    2014-01-15

    The intense blue emitting phosphor KSCN:xCe (x=0.005, 0.01, 0.02, 0.04) is synthesized by a simple, time saving, economical method of re-crystallization through aqueous solution at 353 K. Photoluminescence measurements showed that the said phosphor exhibits emission with good intensity peaking at 450 nm corresponding to d→f transitions of Ce{sup 3+} ion. The excitation spectra monitored at 450 nm shows small peak at 282 nm and broad intense excitation band peaking at 350 nm. The latter lies in near ultraviolet (350–410 nm) emission of UV LED. The phosphor KSCN:0.02Ce{sup 3+} shows CIE 1931 color coordinates as (0.1484, 0.0602) whereas the commercial blue phosphor BAM:Eu{sup 2+} shows the color co-ordinates as (0.1417, 0.1072), respectively, indicating better color purity for KSCN: 0.02Ce{sup 3+} compared to the BAM:Eu{sup 2+} phosphor. The color coordinates of KSCN: 0.02Ce{sup 3+} phosphor (0.1484, 0.0602) are nearer to the color coordinate for blue color suggested by the color systems EBUPAL/SECAM, sRGB Blue as well as Adobe blue(0.15, 0.06). -- Highlights: • Novel phosphor KSCN:xCe prepared for the first time. • Method is simple, time saving, economical, easy to handle. • Intense, blue, Characteristic Ce{sup 3+} emission at 450 nm. • nUV excitation, suitable for solid state lighting.

  11. Photoluminescence analysis of Ce3+:Zn2SiO4 & Li++ Ce3+:Zn2SiO4: phosphors by a sol-gel method

    Science.gov (United States)

    Babu, B. Chandra; Vandana, C. Sai; Guravamma, J.; Rudramadevi, B. Hemalatha; Buddhudu, S.

    2015-06-01

    Here, we report on the development and photoluminescence analysis of Zn2SiO4, Ce3+:Zn2SiO4 & Li+ + Ce3+: Zn2SiO4 novel powder phosphors prepared by a sol-gel technique. The total amount of Ce3+ ions was kept constant in this experiment at 0.05 mol% total doping. The excitation and emission spectra of undoped (Zn2SiO4) and Ce3+ doped Zn2SiO4 and 0.05 mol% Li+ co-doped samples have been investigated. Cerium doped Zn2SiO4 powder phosphors had broad blue emission corresponding to the 2D3/22FJ transition at 443nm. Stable green-yellow-red emission has been observed from Zn2SiO4 host matrix and also we have been observed the enhanced luminescence of Li+ co-doped Zn2SiO4:Ce3+. Excitation and emission spectra of these blue luminescent phosphors have been analyzed in evaluating their potential as luminescent screen coating phosphors.

  12. Study on luminescence and thermal stability of blue-emitting Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+}phosphor for application in InGaN-based LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie; Zhang, Zhi-Ming [State Key Laboratory Base of Eco-chemical Engineering, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wu, Zhan-Chao, E-mail: wuzhan_chao@163.com [State Key Laboratory Base of Eco-chemical Engineering, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Fang-Fang [State Key Laboratory Base of Eco-chemical Engineering, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Li, Zhen-Jiang, E-mail: zjli126@126.com [State Key Laboratory Base of Eco-chemical Engineering, College of Sino-German Science and Technology, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, Shandong (China)

    2017-07-15

    Highlights: • A blue phosphor Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} was prepared at low temperature of 800 °C. • The broad excitation band of the phosphor matches well with NUV LED chips. • The phosphor shows high color purity and good color stability. • A bright blue-emitting LED was fabricated with this phosphor on an InGaN chip. - Abstract: A series of blue-emitting phosphors Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} were synthesized by traditional high temperature solid-state reaction method. The micro-morphology and photoluminescence properties of the phosphors were investigated. The Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} phosphors exhibit broad excitation spectra ranging from 250 to 420 nm, and an intense asymmetric blue emission band peaking at 435 nm. Two different Eu{sup 2+} emission centers in Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} phosphors were confirmed via their fluorescence properties. The concentration quenching mechanism, fluorescence lifetime and thermal stability of Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} phosphors were studied in detail. The thermal stability can be improved obviously by anion substitution. The CIE chromaticity coordinates of Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} phosphors with different Eu{sup 2+}-doped concentrations were calculated. A blue light-emitting diode was fabricated by combination of a 370 nm InGaN chip and the prepared phosphor Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+}. The present work suggests that Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} is a potential phosphor applied in InGaN-based LEDs.

  13. Synthesis and Luminescence Properties of Blue Na(Sr0.97-xCa(x))PO4:0.03Eu2+ Phosphors for White Light Emitting Diode Applications.

    Science.gov (United States)

    Hakeem, D A; Park, K

    2015-07-01

    The crystal structure and luminescence properties of Na(Sr0.97-xCax)PO4:0.03Eu2+ (0 phosphors were studied, depending on the Ca2+ concentration. All the Na(Sr0.97-xCax)PO4:0.03Eu2+ phosphors had a hexagonal crystal structure. The excitation spectra of the prepared phosphors showed a broad band ranging from 250 to 420 nm, which arises due to the 4f-5d transitions of Eu2+ ions. Upon the excitation of 334 nm wavelength, the emission spectra showed a broad blue band ranging from 400 to 700 nm peaking at 450 nm. Among the prepared phosphors, the Na(Sr0.72Ca0.25)PO4:0.03Eu2+ showed the strongest emission intensity and could be applied as a blue emitting phosphor for UV-based w-LEDs.

  14. Blue photoluminescence and long lasting phosphorescence properties of a novel chloride phosphate phosphor: Sr5(PO4)3Cl:Eu2+

    International Nuclear Information System (INIS)

    Wu, Chuanqiang; Zhang, Jiachi; Feng, Pengfei; Duan, Yiming; Zhang, Zhiya; Wang, Yuhua

    2014-01-01

    A novel blue emitting long lasting phosphorescence phosphor Sr 5 (PO 4 ) 3 Cl:Eu 2+ is synthesized by solid state method at 1223 K in reducing atmosphere. The afterglow emission spectrum shows one broad band centered at 441 nm due to the 5d–4f transition of Eu 2+ at six coordinated Sr(II) sites and the color coordinates are calculated to be (0.149, 0.095) which is close to the light blue region. The excitation band is in 240–430 nm and partly overlaps the solar irradiation on Earth's surface. The long lasting phosphorescence of the optimal sample doping by 0.1 mol%Eu 2+ can be recorded for about 1040 s (0.32 mcd/m 2 ). Thermoluminescence shows that there are at least three types of traps corresponding to peaks at 340 K, 382 K, 500 K, respectively. The filling and fading experiments reveal that the traps in Sr 5 (PO 4 ) 3 Cl:Eu 2+ are independent. The shallow traps (340 K) essentially contribute to the visible long lasting phosphorescence, while the deep traps (382 K and 500 K) are proved to be very stable. Thus, the Sr 5 (PO 4 ) 3 Cl:Eu 2+ material shows potential applications as not only a long lasting phosphorescence phosphor, but also an optical storage material. -- Highlights: • The blue long lasting phosphorescence of Sr 5 (PO 4 ) 3 Cl:Eu 2+ is first reported. • Filling and fading experiments are carried out for revealing natures of traps. • The afterglow mechanism for independent traps of Sr 5 (PO 4 ) 3 Cl:Eu 2+ is proposed

  15. Preparation and luminescence properties of Ce3+ and Ce3+/Tb(3+)-activated Y4Si2O7N2 phosphors.

    Science.gov (United States)

    Xia, Zhiguo; Wu, Weiwei

    2013-09-28

    Ce(3+) and Ce(3+)/Tb(3+)-activated Y4Si2O7N2 phosphors are synthesized by the solid-state method, which can be efficiently excited by near ultraviolet (UV) light emitting diode (LED) chips. The PL spectrum of Y4Si2O7N2:Ce(3+) shows a broad hump between 380 and 650 nm, assigned to the electron transition from the 4f energy level to different 5d sub levels of the Ce(3+) ions at different Y(3+) sites. The color of the Y4Si2O7N2:Ce(3+) phosphor can shift from blue to green by introducing Tb(3+). In addition, the energy transfer process from Ce(3+) to Tb(3+) in the Y4Si2O7N2 host was investigated and discussed in terms of both the luminescence spectra and decay curves. The energy transfer critical distance has been calculated and evaluated by the concentration quenching method. Therefore, the Ce(3+) and Ce(3+)/Tb(3+)-activated Y4Si2O7N2 phosphors can serve as key materials for phosphor-converted white-light UV-LEDs.

  16. Photoluminescence properties and energy transfer in Ce(3+) /Dy(3+) co-doped Sr(3) MgSi(2) O(8) phosphors for potential application in ultraviolet white light-emitting diodes.

    Science.gov (United States)

    Yu, Hong; Zi, Wenwen; Lan, Shi; Gan, Shucai; Zou, Haifeng; Xu, Xuechun; Hong, Guangyan

    2013-01-01

    Sr(3) MgSi(2) O(8) :Ce(3+) , Dy(3+) phosphors were prepared by a solid-state reaction technique and the photoluminescence properties were investigated. The emission spectra show not only a band due to Ce(3+) ions (403 nm) but also as a band due to Dy(3+) ions (480, 575 nm) (UV light excitation). The photoluminescence properties reveal that effective energy transfer occurs in Ce(3+) /Dy(3+) co-doped Sr(3) MgSi(2) O(8)phosphors, and the co-doping of Ce(3+) could enhance the emission intensity of Dy(3+) to a certain extent by transferring its energy to Dy(3+) . The Ce(3+) /Dy(3+) energy transfer was investigated by emission/excitation spectra, and photoluminescence decay behaviors. In Sr2.94 MgSi2 O8 :0.01Ce(3+) , 0.05Dy(3+) phosphors, the fluorescence lifetime of Dy(3+) (from 3.35 to 27.59 ns) is increased whereas that of Ce(3+) is greatly decreased (from 43.59 to 13.55 ns), and this provides indirect evidence of the Ce(3+) to Dy(3+) energy transfer. The varied emitted color of Sr(3) MgSi(2) O(8):Ce(3+) , Dy(3+) phosphors from blue to white were achieved by altering the concentration ratio of Ce(3+) and Dy(3+) . These results indicate Sr(3) MgSi(2) O(8):Ce(3+) , Dy(3+) may be as a candidate phosphor for white light-emitting diodes. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Synthesis, luminescence, and energy-transfer properties of β-Na2Ca4(PO4)2(SiO4):A (A = Eu(2+), Dy(3+), Ce(3+)/Tb(3+)) phosphors.

    Science.gov (United States)

    Li, Kai; Shang, Mengmeng; Geng, Dongling; Lian, Hongzhou; Zhang, Yang; Fan, Jian; Lin, Jun

    2014-07-07

    A series of β-Na2Ca4(PO4)2(SiO4) (β-NCPS):A (A = Eu(2+), Dy(3+), Ce(3+)/Tb(3+)) phosphors were prepared via a high-temperature solid-state reaction route. The X-ray diffraction, Fourier transform infrared, photoluminescence (PL), cathodoluminescence (CL) properties, fluorescent lifetimes, and absolute quantum yield were exploited to characterize the samples. Under UV radiation, the β-NCPS:Eu(2+) phosphors present bright green emissions, and the β-NCPS:Ce(3+) phosphors show strong blue emissions, which are attributed to their 4f(6)5d(1) → 4f(7) and 5d-4f allowed transitions, respectively. The β-NCPS:Ce(3+), Tb(3+) phosphors display intense tunable color from blue to green and high absolute quantum yields (81% for β-NCPS:0.12Ce(3+) and 83% for β-NCPS:0.12Ce(3+), 0.08Tb(3+)) when excited at 365 nm. Simultaneously, the energy transfer from Ce(3+) to Tb(3+) ions is deduced from the spectral overlap between Ce(3+) emission and Tb(3+) excitation spectra and demonstrated by the change of emission spectra and decay lifetimes. Moreover, the energy-transfer mechanism from Ce(3+) to Tb(3+) ions is confirmed to be exchange interaction according to the discussion of expression from Dexter and Reisfeld. Under a low-voltage electron-beam excitation, the β-NCPS:A (A = Eu(2+), Dy(3+), Ce(3+)/Tb(3+)) phosphors exhibit their characteristic emissions, and the emission profiles of β-NCPS:Ce(3+),Tb(3+) phosphors are obviously different from those of the PL spectra; this difference might be ascribed to their different luminescence mechanisms. These results in PL and CL properties suggest that β-NCPS:A (A = Eu(2+), Dy(3+), Ce(3+)/Tb(3+)) phosphors are potential candidates for solid-state lighting and field-emission displays.

  18. LiSr4(BO3)3:Ce3+ phosphor as a new material for ESR dosimetry

    International Nuclear Information System (INIS)

    Jiang, L.H.; Zhang, Y.L.; Gong, X.M.; Pang, R.; Zhang, S.; Li, C.Y.; Su, Q.

    2014-01-01

    LiSr 4 (BO 3 ) 3 :0.01Ce 3+ phosphor was investigated to assess its potential as a material for measurements of radiotherapeutic doses with electron spin resonance (ESR). The ESR spectrum of the phosphor irradiated with 60 Co features five ESR signals. An isochronal annealing experiment has shown that the strongest of these signals is associated with the same trap center as the 473 K peak on the TL glow curve of this material. The dose–response is linear in the studied range from 0.89 to 90.30 Gy. Fading of the signal was also investigated. - Highlights: • LiSr 4 (BO 3 ) 3 :Ce 3+ phosphor can be used as an ESR dosimeter for radiation therapy. • The ESR signal originates from the same traps as the TL. • Dose–response is linear, and the fading is slow

  19. Mechanoluminescence, photoluminescence and thermoluminescence studies of SrZrO3:Ce phosphor

    Directory of Open Access Journals (Sweden)

    Neha Tiwari

    2015-01-01

    Full Text Available The present paper reports the synthesis and characterization, photoluminescence thermoluminescence and mechanoluminescence studies of Ce3+ doped SrZrO3 phosphors. The effects of variable concentration of Cerium on meachanoluminescence (ML and photoluminescence behavior were studied. The samples were prepared by combustion a synthesis technique which is suitable for less time taking techniques also for large scale production for phosphors. The starting material used for sample preparation are Sr(NO33, Zr(NO33 XH2O and Ce(NO33 6H2O and urea used as a fuel. The prepared sample was characterized by X-ray diffraction technique (XRD with variable concentration of Ce (0.05–0.5 mol%. There is no any phase change found with increase the concentration of Ce. Sample shows orthorhombic structure and the particle size calculated by Scherer's formula. The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM technique. Mechanoluminescence studies on SrZrO3phosphors doped with Ce and underwent an impulsive deformation with an impact of a piston for Mechanoluminescence (ML investigations. Temporal characteristics in order to investigate about the luminescence centre responsible for ML peak, increasing impact velocity causes more number of electrons will be ionized to reach to the conduction band so there will be more number of electrons available to be recombined at recombination or luminescence centre. In photoluminescence study PL emission spectra show the isolated peak position observed at 388 nm near UV region of spectrum due to 5d–4f transition of Ce3+ion.Thermoluminescence study shows doping of Ce3+ ions reduced the TL intensity TL glow curve shows the high fading and less stability when it doped with cerium. The activation energy high for the doped SrZrO3 phosphor means that the trapped electron is highly trapped in trap level. The present study gives the advance application for fracture

  20. Combustion synthesis of Eu and Dy activated Sr3(VO4)2 phosphor ...

    Indian Academy of Sciences (India)

    phosphor as well as Sr3(VO4)2:Dy is blue and yellow emitting phosphor for solid state lighting i.e. white LEDs. The ... 2004; Pang et al 2004) doped with rare earth has expanded ... controlled since the LED light output (intensity and colour).

  1. Broadband Luminescence in Rare Earth Doped Sr2SiS4: Relating Energy Levels of Ce3+ and Eu2+

    Directory of Open Access Journals (Sweden)

    Anthony B. Parmentier

    2013-08-01

    Full Text Available Sr2SiS4:Ce3+ is an efficient blue-emitting (460 nm phosphor, excitable with light of wavelengths up to 420 nm. From the excitation spectrum, we construct the energy level scheme and use it to check the predictive power of the Dorenbos model, relating the positions of the Ce3+ energy levels with those of Eu2+ in the same host. For strontium thiosilicate, this method gives excellent results and allows us to determine which of two available crystallographic sites is occupied by cerium. We use the Dorenbos method for extracting information on the coordination of Ce3+ from the observed crystal field splitting.

  2. Crystal structure, energy transfer and tunable luminescence properties of Ca8ZnCe(PO4)7:Eu2+,Mn2+ phosphor

    Science.gov (United States)

    Ding, Chong; Tang, Wanjun

    2018-02-01

    Single-phased Ca8ZnCe(PO4)7:Eu2+,Mn2+ phosphors with whitlockite-type structure have been prepared via the combustion-assisted synthesis technique. The XRD pattern show that the as-obtained phosphors crystallize in a trigonal phase with space group of R-3c (161). Ca8ZnCe(PO4)7 host is full of sensitizers (Ce3+) and the Ce3+ emission at different lattice sites has been discussed. The efficient energy transfers from Ce3+ ions to Eu2+/Mn2+ ions and from Eu2+ to Mn2+ have been validated. Under UV excitation, the emitting color of Ca8ZnCe(PO4)7:Eu2+/Mn2+ samples can be modulated from violet blue to green and from violet blue to red-orange by the energy transfers of Ce3+→Eu2+ and Ce3+→Mn2+, respectively. Additionally, white emission has been obtained through adjusting the relative concentrations of Eu2+ and Mn2+ ions in the Ca8ZnCe(PO4)7 host under UV excitation. These results indicate that as-prepared Ca8ZnCe(PO4)7:Eu2+,Mn2+ may be a potential candidate as color-tunable white light-emitting phosphors.

  3. Red Emission of SrAl2O4:Mn4+ Phosphor for Warm White Light-Emitting Diodes

    Science.gov (United States)

    Chi, N. T. K.; Tuan, N. T.; Lien, N. T. K.; Nguyen, D. H.

    2018-05-01

    In this work, SrAl2O4:Mn4+ phosphor is prepared by co-precipitation. The phase structure, morphology, composition and luminescent performance of the phosphor are investigated in detail with x-ray diffraction, field emission scanning electron microscopy, steady-state photoluminescence (PL) spectra, and temperature-dependent PL measurements. The phosphor shows a strong red emission peak at ˜ 690 nm, which is due to the transition between electronic levels and the electric dipole transition 2Eg to 4A2g of Mn4+ ions located at the sites with D3d local symmetry. The sample doped with 0.04 mol.% Mn4+ exhibits intense red emission with high thermal stability and appropriate International Commission on Illumination (CIE) coordinates (x = 0.6959, y = 0.2737). It is also found that the phosphor absorption in an extended band from 250 nm to 500 nm has three peaks at 320 nm, 405 nm, and 470 nm, which match well with the emission band of ultraviolet (UV) lighting emission diode (LED) or blue LED chips. These results demonstrate that SrAl2O4:Mn4+ phosphor can play the role of activator in narrow red-emitting phosphor, which is potentially useful in UV (˜ 320 nm) or blue (˜ 460 nm) LED.

  4. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    Science.gov (United States)

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, Ba)Al2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips. PMID:29057839

  5. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, BaAl2O4:Eu2+, Dy3+ Phosphors

    Directory of Open Access Journals (Sweden)

    Qidi Xie

    2017-10-01

    Full Text Available (Sr, Ca, BaAl2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, CaAl2O4:Eu2+,Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, BaAl2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED. Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(InN near UV chips.

  6. Luminescent Properties of Sr4Si3O8Cl4:Eu2+, Bi3+ Phosphors for Near UV InGaN-Based Light-Emitting-Diodes

    Directory of Open Access Journals (Sweden)

    Wangqing Shen

    2015-12-01

    Full Text Available Sr4Si3O8Cl4 co-doped with Eu2+, Bi3+ were prepared by the high temperature reaction. The structure and luminescent properties of Sr4Si3O8Cl4:Eu2+, Bi3+ were investigated. With the introduction of Bi3+, luminescent properties of these phosphors have been optimized. Compared with Sr3.90Si3O8Cl4:0.10Eu2+, the blue-green phosphor Sr3.50Si3O8Cl4:0.10Eu2+, 0.40Bi3+ shows stronger blue-green emission with broader excitation in near-UV range. Bright blue-green light from the LED means this phosphor can be observed by the naked eye. Hence, it may have an application in near UV LED chips.

  7. Crystal structure, thermally stability and photoluminescence properties of novel Sr10(PO4)6O:Eu2+ phosphors

    International Nuclear Information System (INIS)

    Guo, Qingfeng; Liao, Libing; Mei, Lefu; Liu, Haikun

    2015-01-01

    A series of novel luminescent phosphors Sr 10 (PO 4 ) 6 O:Eu 2+ with apatite structure were synthesized via a high temperature solid-state reaction. The phase structure, photoluminescence (PL) properties, the PL thermal stability, as well as the fluorescence decay curves of the samples were investigated to characterize the resulting samples, and the selected Sr 9.97 (PO 4 ) 6 O:0.03Eu 2+ phosphor exhibits strong thermal quenching resistance, retaining the luminance of 88.73% at 150 °C. The quenching concentration of Eu 2+ in Sr 10 (PO 4 ) 6 O was about 0.03 attributing to the dipole–quadrupole interaction. The Sr 10 (PO 4 ) 6 O:Eu 2+ phosphor exhibited a broad-band blue emission at 439 nm upon excitation at 346 nm. The results indicate that Sr 10 (PO 4 ) 6 O:Eu 2+ phosphors have potential applications as near UV-convertible phosphors for white-light UV LEDs. - Graphical abstract: Sr 10 (PO 4 ) 6 O:Eu 2+ phosphors have potential applications as near UV-convertible phosphors for white-light UV LEDs. - Highlights: • Sr 9.97 (PO 4 ) 6 O:0.03Eu 2+ phosphor exhibits strong thermal quenching resistance. • Two different Eu 2+ emission centers exists in Sr 10 (PO 4 ) 6 O. • The activation energy was also estimated for the Eu 2+ luminescence center

  8. Synthesis, structural and luminescent aspect of Tb3+ doped Sr2SnO4 phosphor

    International Nuclear Information System (INIS)

    Taikar, Deepak R.

    2016-01-01

    A novel green emitting, Tb 3+ doped Sr 2 SnO 4 phosphor was synthesized by the co-precipitation method and its photoluminescence characterization was performed. Sr 2 SnO 4 has an ordered tetragonal K 2 NiF 4 -type structure with space group I4/mmm. The structure of Sr 2 SnO 4 consists of SnO 6 octahedra. From the structure of Sr 2 SnO 4 , it was observed that the sites of Sn 4+ ions have inverse symmetry while the Sr 2+ ions have the low symmetry. X-ray powder diffraction (XRD) analysis confirmed the formation of Sr 2 SnO 4 :Tb 3+ . Photoluminescence measurements showed that the phosphor exhibited bright green emission at about 543 nm attributed to 5 D 4 à 7 F 5 transition of Tb 3+ ion under UV excitation. The emission spectra did not exhibit conventional blue emission peaks of Tb 3+ ions due to 5 D 3 → 7 F J transitions in the spectral region 350-470 nm. The excitation spectra indicate that this compound may be useful as a lamp phosphor. (author)

  9. Nanocrystalline Sr2CeO4 thin films grown on silicon by laser ablation

    International Nuclear Information System (INIS)

    Perea, Nestor; Hirata, G.A.

    2006-01-01

    Blue-white luminescent Sr 2 CeO 4 thin films were deposited by using pulsed laser ablation (λ = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr 2 CeO 4 grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr 2 CeO 4 however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems

  10. Combinatorial search for green and blue phosphors of high thermal stabilities under UV excitation based on the K(Sr1-x-y)PO4:Tb3+ xEu2+y system.

    Science.gov (United States)

    Chan, Ting-Shan; Liu, Yao-Min; Liu, Ru-Shi

    2008-01-01

    The present investigation aims at the synthesis of KSr 1-x-y PO 4:Tb(3+) x Eu(2+) y phosphors using the combinatorial chemistry method. We have developed square-type arrays consisting of 121 compositions to investigate the optimum composition and luminescence properties of KSrPO 4 host matrix under 365 nm ultraviolet (UV) light. The optimized compositions of phosphors were found to be KSr 0.93PO 4:Tb(3+) 0.07 (green) and KSr 0.995PO 4:Eu(2+) 0.005 (blue). These phosphors showed good thermal luminescence stability better than commercially available YAG:Ce at temperature above 200 degrees C. The result indicates that the KSr 1-x-y PO 4:Tb(3+) x Eu (2+)y can be potentially useful as a UV radiation-converting phosphor for light-emitting diodes.

  11. Structural, luminescent and thermal properties of blue SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} phosphor filled low-density polyethylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Bem, D.B. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Luyt, A.S. [Department of Chemistry, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Dejene, F.B., E-mail: dejenebf@qwa.ufs.ac.z [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 70000, Port Elizabeth 6031 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2009-12-01

    The performance of nanophase luminophors is usually compromised by environmentally induced degradation. In this study, composites of low density polyethylene (LDPE) with various concentrations of the blue-emitting europium and dysprosium co-doped strontium aluminate (SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+}) phosphor were investigated. The blue long-lasting phosphorescence of the composites was observed in the dark after removal of the excitation light. X-ray diffraction analysis revealed the presence of the SrAl{sub 2}O{sub 4} phase in the composites. PL spectra of the composites have two sets of peaks, major broad bands peaking at about 4855 A and minor ones at wavelengths between 4115 and 4175 A, attributed to the 4f-5d transition of Eu{sup 2+}. DSC and TGA results show that the introduction of the phosphor in LDPE matrix caused a slight reduction in the crystallinity of LDPE but a significant increase in the stability of the composites.

  12. Synthesis and Luminescence Properties of Novel Ce(3+)- and Eu(2+)-Doped Lanthanum Bromothiosilicate La3Br(SiS4)2 Phosphors for White LEDs.

    Science.gov (United States)

    Lee, Szu-Ping; Liu, Shuang-De; Chan, Ting-Shan; Chen, Teng-Ming

    2016-04-13

    Novel Ce(3+)- and Eu(2+)-doped lanthanum bromothiosilicate La3Br(SiS4)2:Ce(3+)and La3Br(SiS4)2:Eu(2+) phosphors were prepared by solid-state reaction in an evacuated and sealed quartz glass ampule. The La3Br(SiS4)2:Ce(3+) phosphor generates a cyan emission upon excitation at 375 nm, whereas the La3Br(SiS4)2:Eu(2+) phosphor could be excited with extremely broad range from UV to blue region (300 to 600 nm) and generates a reddish-orange broadband emission centered at 640 nm. In addition, thermal luminescence properties of La3Br(SiS4)2:Ce(3+)and La3Br(SiS4)2:Eu(2+) phosphors from 20 to 200 °C were investigated. The combination of a 450 nm blue InGaN-based LED chip with the red-emitting La3Br(SiS4)2:Eu(2+) phosphor, and green-emitting BOSE:Eu(2+) commercial phosphor produced a warm-white light with the CRI value of ∼95 and the CCT of 5,120 K. Overall, these results show that the prepared phosphors may have potential applications in pc-WLED.

  13. Synthesis and Luminescent Properties of Sr{sub 2}SiO{sub 4} Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, H; Watari, T; Eguchi, T; Yada, M, E-mail: watarit@cc.saga-u.ac.jp [Graduate School of Science and Engineering, Saga University, 1 Hojo-Machi, Saga 840-8502 (Japan)

    2011-05-15

    Sr{sub 2}SiO{sub 4}:Eu{sup 2+} phosphors and Sr{sub 2}SiO{sub 4}:Eu{sup 2+}, Dy{sup 3+} persistent phosphors were synthesized by solid-state reaction method at 1300deg. C using SrCO{sub 3}, SiO{sub 2}(silica: 3 {mu} m and fumed silica: 7nm), Eu{sub 2}O{sub 3}(0.01 to 0.06 mol% Eu) and Dy{sub 2}O{sub 3}(0.005 to 0.02 mol% Dy) powders. The amount of the stable {beta}- Sr{sub 2}SiO{sub 4} phase had decreased and the amount of the {alpha}'-Sr{sub 2}SiO{sub 4} increased with the increase of the Eu content. The solid solution of Eu{sup 2+} ion stabilized {alpha}'-Sr{sub 2}SiO{sub 4} at room temperature. The emission color of the Sr{sub 2}SiO{sub 4}:Eu{sup 2+} products changed from the turquoise blue to yellow with the increase of the Eu content. The maximum emission peak position changed to the higher wavelength with the increase of the Eu content. The emission peak at 490nm(green color) was from {beta}- Sr{sub 2}SiO{sub 4} phase and that at 560nm(yellow color) was from {alpha}'-Sr{sub 2}SiO{sub 4} phase. The change of the phase content in the products affects the color and the emission peak. The emission intensity of the products from fumed silica is stronger than the products from silica. Sr{sub 1.98-x}SiO{sub 4}:Eu{sub 0.02}, Dy{sub x} persistent phosphors products showed the persistent emission for a few minutes with the naked eyes. The behavior was observed from all products. The product from fumed silica at x = 0.01 showed the strong emission for tens of seconds.

  14. An orange emitting phosphor Lu2−xCaMg2Si2.9Ti0.1O12:xCe with pure garnet phase for warm white LEDs

    International Nuclear Information System (INIS)

    Chu, Yaoqing; Zhang, Qinghong; Xu, Jiayue; Li, Yaogang; Wang, Hongzhi

    2015-01-01

    A new silicate garnet phosphor, Lu 2−x CaMg 2 Si 2.9 Ti 0.1 O 12 :xCe was synthesized by a high temperature solid-state reaction under reductive atmosphere. X-ray diffraction (XRD) showed that the powder was pure garnet phase. The emission and excitation spectrum indicated that the Lu 2−x CaMg 2 Si 2.9 Ti 0.1 O 12 :xCe phosphors could absorb blue light in the spectral range of 400–550 nm efficiently and exhibit bright yellow–orange emission in the range of 520–750 nm. With the increase of Ce 3+ concentration, the emission band of Ce 3+ showed a red shift. Interestingly, the concentration quenching occurred when the Ce 3+ concentration exceeded 4 mol%. The temperature-dependent luminescent properties of the phosphors were discussed and the Lu 1.96 CaMg 2 Si 2.9 Ti 0.1 O 12 :0.04Ce phosphors showed good performances in color temperature (2430 K) and potential applications for warm white LEDs. - Graphical Abstract: This image shows that the phosphor of Lu 1.96 CaMg 2 Si 2.9 Ti 0.1 O 12 :0.04Ce can generate a uniform yellow tint under natural light illumination and emit orange–red light when excited by blue light. With a fixed 467 nm emission light, warm white light can be produced by this phosphor, which indicates that the phosphor is potentially applicable in warm white light emitting diodes based on GaN chips. - Highlights: • A new silicate garnet phosphor was synthesized by solid-state method. • Secondary phases can be avoided when a small amount of Si 4+ were replaced by Ti 4+ . • A broad emission band of Ce 3+ in the phosphors was described. • The phosphors are potentially applicable in warm white light emitting diodes

  15. Synthesis and photoluminescence properties of LiSrPO{sub 4}:Eu{sup 2+} phosphor for solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Game, D. N., E-mail: deorao.game@gmail.com [Deccan Education Society’s Technical Institute, Fergusson College Campus, Pune (India); Taide, S. T.; Khan, Z. S.; Omanwar, S. K. [Department of Physics, Sant Gadge Baba, Aravati University, Amravati (India); Ingale, N. B. [Prof. Ram Meghe Institute of Technology and Research, Badnera, Amravati (India)

    2016-05-06

    A novel method to prepare orthophosphate LiSrPO{sub 4}: Eu{sup 2+} phosphor for white light-emitting diodes (w-LEDs) is given in this paper. Phosphor was successfully synthesized by Pechini (citrate gel) method which is efficient than conventional high temperature solid state reaction. X-ray powder diffraction (XRD) analysis confirmed the single phase formation of LiSrPO{sub 4}:Eu{sup 2+} with monoclinic crystal structure. Luminescence results showed that the phosphor could be efficiently excited by near UV and exhibited bright blue emission at λ{sub em} = 420 nm corresponding to 5d– 4f transition of Eu{sup 2+}. The phosphor exhibits blue emission bands under 350 nm excitation. This mercury-free excitation is useful for solid state lighting and light-emitting diode (LED). Hence it could be useful for solid state lighting and light-emitting diode (LED) application.

  16. Luminescence Properties of Self-Activated Mm(VO4)2 (M = Mg, Ca, Sr, and Ba) Phosphors Synthesized by Solid-State Reaction Method.

    Science.gov (United States)

    Min, Xin; Huang, Zhaohui; Fang, Minghao; Liu, Yan'gai; Tang, Chao; Wu, Xiaowen

    2016-04-01

    In this paper, M3(VO4)2 (M = Mg, Ca, Sr, and Ba) self-activated phosphors were prepared by a solid-state reaction method at 1,000 °C for 5 h. The phase formation and micrographs were analyzed by X-ray diffraction and scanning electron microscopy. The Ca3(VO4)2 phosphor does not show any emission peaks under excitation with ultraviolet (UV) light. However, the M3(VO4)2 (M = Mg, Sr, and Ba) samples are effectively excited by UV light chips ranging from 200 nm to 400 nm and exhibit broad emission bands due to the charge transfer from the oxygen 2p orbital to the vacant 3d orbital of the vanadium in the VO4. The color of these phosphors changes from yellow to light blue via blue-green with increasing ionic radius from Mg to Sr to Ba. The luminescence lifetimes and quantum yield decrease with the increasing unit cell volume and V-V distance, in the order of Mg3(VO4)2 to Sr3(VO4)2 to Ba3(VO4)2. The emission intensity decreases with the increase of temperatures, but presents no color shift. This confirms that these self-activated M3(VO4)2 phosphors can be suggested as candidates of the single-phase phosphors for light using UV light emitting diodes (LEDs).

  17. Luminescence Properties of Ca19Ce(PO4)14:A (A = Eu3+/Tb3+/Mn2+) Phosphors with Abundant Colors: Abnormal Coexistence of Ce4+/3+-Eu3+ and Energy Transfer of Ce3+ → Tb3+/Mn2+ and Tb3+-Mn2.

    Science.gov (United States)

    Shang, Mengmeng; Liang, Sisi; Lian, Hongzhou; Lin, Jun

    2017-06-05

    A series of Eu 3+ /Tb 3+ /Mn 2+ -ion-doped Ca 19 Ce(PO 4 ) 14 (CCPO) phosphors have been prepared via the conventional high-temperature solid-state reaction process. Under UV radiation, the CCPO host presents a broad blue emission band from Ce 3+ ions, which are generated during the preparation process because of the formation of deficiency. The Eu 3+ -doped CCPO phosphors can exhibit magenta to red-orange emission as a result of the abnormal coexistence of Ce 3+ /Ce 4+ /Eu 3+ and the metal-metal charge-transfer (MMCT) effect between Ce 3+ and Eu 3+ . When Tb 3+ /Mn 2+ are doped into the hosts, the samples excited with 300 nm UV light present multicolor emissions due to energy transfer (ET) from the host (Ce 3+ ) to the activators with increasing activator concentrations. The emitting colors of CCPO:Tb 3+ phosphors can be tuned from blue to green, and the CCPO:Mn 2+ phosphors can emit red light. The ET mechanism from the host (Ce 3+ ) to Tb 3+ /Mn 2+ is demonstrated to be a dipole-quadrapole interaction for Ce 3+ → Tb 3+ and an exchange interaction for Ce 3+ → Mn 2+ in CCPO:Tb 3+ /Mn 2+ . Abundant emission colors containing white emission were obtained in the Tb 3+ - and Mn 2+ -codoped CCPO phosphors through control of the levels of doped Tb 3+ and Mn 2+ ions. The white-emitted CCPO:Tb 3+ /Mn 2+ phosphor exhibited excellent thermal stability. The photoluminescence properties have shown that these materials might have potential for UV-pumped white-light-emitting diodes.

  18. Fluorescence properties of novel near-infrared phosphor CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J.X., E-mail: tmjx@jnu.edu.c [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zhang, F.J.; Peng, W.F.; Wan, W.J.; Xiao, Q.L.; Chen, Q.Q.; Cao, L.W. [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Wang, Z.L. [School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming 650031 (China)

    2010-10-15

    Research highlights: Novel near-infrared (NIR) phosphor, CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}, was synthesized. The phosphor gives strong Nd{sup 3+} characteristic NIR emissions in the range of 880-930 nm. The NIR emission intensity gets a 200 times enhancement benefited from the efficient energy transfer from a co-doped Ce{sup 3+}. The energy transfer mechanism was also briefly based on detailed investigation on spectrum and fluorescence lifetime. - Abstract: Novel near-infrared (NIR) phosphor, CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}, was synthesized by co-precipitation method followed by firing at 1300 {sup o}C in reduced atmosphere. When irradiated with blue light, the phosphor gives strong Nd{sup 3+} characteristic NIR emissions in the range of 880-930 nm. The NIR emission intensity gets a 200 times enhancement by co-doping of Ce{sup 3+}. Detailed investigation on spectrum and fluorescence lifetimes indicated the NIR luminescence enhancement is obtained from an energy transfer process. The process initiates with efficient absorption of blue light by Ce{sup 3+} ions via an allowed 4f-5d transition, follow by efficient energy transfer from Ce{sup 3+} to Nd{sup 3+}, and emitting strong Nd{sup 3+} characteristic fluorescence.

  19. Improvement of the Water Resistance of a Narrow-Band Red-Emitting SrLiAl3 N4 :Eu(2+) Phosphor Synthesized under High Isostatic Pressure through Coating with an Organosilica Layer.

    Science.gov (United States)

    Tsai, Yi-Ting; Nguyen, Hoang-Duy; Lazarowska, Agata; Mahlik, Sebastian; Grinberg, Marek; Liu, Ru-Shi

    2016-08-08

    A SrLiAl3 N4 :Eu(2+) (SLA) red phosphor prepared through a high-pressure solid-state reaction was coated with an organosilica layer with a thickness of 400-600 nm to improve its water resistance. The observed 4f(6) 5d→4f(7) transition bands are thought to result from the existence of Eu(2+) at two different Sr(2+) sites. Luminescence spectra at 10 K revealed two zero-phonon lines at 15377 (for Eu(Sr1)) and 15780 cm(-1) (for Eu(Sr2)). The phosphor exhibited stable red emission under high pressure up to 312 kbar. The configurational coordinate diagram gave a theoretical explanation for the Eu(2+/3+) result. The coated samples showed excellent moisture resistance while retaining an external quantum efficiency (EQE) of 70 % of their initial EQE after aging for 5 days under harsh conditions. White-light-emitting diodes of the SLA red phosphor and a commercial Y3 Al5 O12 :Ce(3+) yellow phosphor on a blue InGaN chip showed high color rendition (CRI=89, R9=69) and a low correlated color temperature of 2406 K. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanocrystalline Sr{sub 2}CeO{sub 4} thin films grown on silicon by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Perea, Nestor [Posgrado en Fisica de Materiales, CICESE-UNAM, Km. 107 Carretera Tijuana-Ensenada, Ensenada, B.C., 22860 (Mexico); Hirata, G.A. [Centro de Ciencias de la Materia Condensada-UNAM, Km. 107 Carretera Tijuana Ensenada, Ensenada, B.C. 22860 (Mexico)]. E-mail: hirata@ccmc.unam.mx

    2006-02-21

    Blue-white luminescent Sr{sub 2}CeO{sub 4} thin films were deposited by using pulsed laser ablation ({lambda} = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr{sub 2}CeO{sub 4} grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr{sub 2}CeO{sub 4} however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems.

  1. Synthesis, Thermal and Luminescence Characteristics of Eu-activated SrZn2Si2O7 as a Nanocrystalline Blue-emitting Phosphor for LEDs Application

    International Nuclear Information System (INIS)

    Sameie, H.; Salimi, R.; Alvani, A.A.S.; Sarabi, A.A.; Farsi, M.A.M.; Roohnikan, M.; Mohammadloo, H.E.; Tahriri, M.

    2011-01-01

    In this research, blue-emitting nanocrystalline phosphor SrZn 2 Si 2 O 7 : Eu 2+ was successfully synthesized with two routes: solid state reaction (SS) and sol-gel method (SG). The effects of preparation processes on the crystallization, morphology and optical properties were investigated by appropriate techniques. From the photoluminescence results, obtained phosphors emit strong blue light due to 4f 6 5d 1 ( 2 D)→4f 7 ( 8 S 7/2 ) transition of Eu 2+ ions which act as luminescence centers. The experimental results reveal that the excitation and emission intensities for SS are better than SG due to higher calcination temperature, whereas the samples synthesized by wet chemical method have relatively regular morphology. (author)

  2. Photoluminescence and phosphorescence properties of Sr1-xZn2-y(PO4)2:Eux2+,Mny2+ phosphor for UV-based white-LEDs

    International Nuclear Information System (INIS)

    Jeong, Junho; Jayasimhadri, M.; Sueb Lee, Ho; Jang, Kiwan; Soo Yi, Soung; Hyun Jeong, Jung; Kim, Changdae

    2009-01-01

    Sr 1-x Zn 2-y (PO 4 ) 2 :Eu x 2+ ,Mn y 2+ (SZP: Eu x 2+ ,Mn y 2+ ) phosphors (x=0, 0.01 and y=0, 0.01) were prepared by using a stoichiometric solid-state reaction method and their photoluminescence and phosphorescence decay properties were investigated. The emission spectrum of SrZn 2 (PO 4 ) 2 :Eu 0.01 2+ , Mn 0.01 2+ measured under 400 nm excitation was composed of the violettish blue and the emerald green emissioins centered at 421 and 547 nm, respectively. The excitation wavelength of the emission peak at 547 nm was about 421 nm in the excitation spectrum of SZP:Mn 0.01 2+ . Since, this value is equal to the transition energy of Eu 2+ , the energy transfer from Eu 2+ to Mn 2+ in SZP:Eu 0.01 2+ ,Mn 0.01 2+ phosphor has been demonstrated. The CIE chromaticity coordinates of SZP:Eu 0.01 2+ ,Mn 0.01 2+ phosphor were (0.330, 0.328) under the excitation wavelength 375 nm at room temperature. The phosphorescence from SZP:Eu 0.01 2+ ,Mn 0.01 2+ could be seen by naked eyes for few seconds and it has persisted for about 4.4 h while monitoring by using a PMT spectrometer. Therefore, SZP:Eu x 2+ ,Mn y 2+ phosphor may be a potential candidate for the UV-based white light-emitting diodes (LEDs).

  3. New NaSrPO4:Sm phosphor as orange-red emitting material

    Indian Academy of Sciences (India)

    Because NaSr1−xPO4:xSm3+ phosphor features a high colour-rendering index and chemical stability, it is potentially ... use blue LED chips (GaN or InGaN) with a yellow phosphor ... excitation by doping Sm3+ rare earth ions into a suitable.

  4. Near infrared fluorescence and energy transfer in Ce/Nd Co-doped Ca{sub x}Sr{sub 1-x}S

    Energy Technology Data Exchange (ETDEWEB)

    Meng Jianxin, E-mail: tmjx@jnu.edu.c [Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Department of Chemistry, Jinan University, Guangzhou 510632 (China); Wan Wenjiao; Fan Lili; Yang Chuangtao; Chen Qingqing [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Cao Liwei; Man Shiqing [Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China)

    2011-01-15

    Novel near infrared (NIR) phosphors Ca{sub x}Sr{sub 1-x}S:Ce{sup 3+},Nd{sup 3+} were synthesized by a solid state reaction. The NIR emission was realized through an efficient absorption by the allowed 4f-5d transition of Ce{sup 3+} and efficient energy transfer to Nd{sup 3+} via well-matched energy levels. Ce{sup 3+} and Nd{sup 3+} content in CaS/SrS was optimized. It was found that CaS:Ce{sup 3+},Nd{sup 3+} gave much stronger NIR emission than that of SrS:Ce{sup 3+},Nd{sup 3+}. Further studies on Ca{sub x}Sr{sub 1-x}S:Ce{sup 3+},Nd{sup 3+} indicated that both visible emission of Ce{sup 3+} and NIR emission of Nd{sup 3+} were observably affected by Ca/Sr ratio. The energy transfer efficiency, which can be estimated from fluorescence lifetime of Ce{sup 3+}, increased from 52% to 74% for the Ca{sub x}Sr{sub 1-x}S:Ce{sup 3+},Nd{sup 3+} (x=0 to 1) series, accompanied with a shift of maximal emission wavelength of Ce{sup 3+} from 482 to 505 nm. The results showed that overlap between emission spectrum of Ce{sup 3+} and excitation spectrum of Nd{sup 3+} plays an important role in the energy transfer efficiency, and Ce{sup 3+} emitting in green or blue-greenish region sensitized the Nd{sup 3+} NIR fluorescence emission more efficiently than that in blue region.

  5. Structure dependent luminescence characterization of green-yellow emitting Sr{sub 2}SiO{sub 4}:Eu{sup 2+} phosphors for near UV LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.K. [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); Hannah, M.E.; Piquette, A. [Central Research, OSRAM SYLVANIA, 71 Cherry Hill Drive Beverly, MA 01915 (United States); Hirata, G.A. [Centro de Nanociencias y Nanotecnolgia, Universidad Nacional Autonoma de Mexico, Km. 107 Carretera Tijuana-Ensenada Apdo, Ensenada, MX CP 22860 (Mexico); Talbot, J.B. [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); Mishra, K.C. [Central Research, OSRAM SYLVANIA, 71 Cherry Hill Drive Beverly, MA 01915 (United States); McKittrick, J., E-mail: jmckittrick@ucsd.edu [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States)

    2012-01-15

    This paper reports on the luminescence properties of mixtures of {alpha}- and {beta}-(Sr{sub 0.97}Eu{sub 0.03}){sub 2}SiO{sub 4} phosphors. These phosphors were prepared by 3 different synthesis techniques: a modified sol-gel/Pechini method, a co-precipitation method and a combustion method. The structural and optical properties of these phosphors were compared to those of solid state synthesized powders. The emission spectra consist of a weak broad blue band centered near 460 nm and a strong broad green-yellow band centered between 543 and 573 nm depending on the crystal structure. The green-yellow emission peak blue-shifts as the amount of {beta} phase increases and the photoluminescence emission intensity and quantum efficiency of the mixed phase powders is greater than those of predominant {alpha}-phase powders when excited between 370 and 410 nm. Thus, (Sr{sub 1-x}Eu{sub x}){sub 2}SiO{sub 4} with larger proportion of the {beta} phase are more promising candidates than single {alpha}-phase powders for use as a green-yellow emitting phosphor for near UV LED applications. Finally the phosphors prepared by the sol-gel/Pechini method, which have larger amount of {beta} phase, have a higher emission intensity and quantum efficiency than those prepared by co-precipitation or combustion synthesis. - Highlights: > Mixtures of {alpha}- and {beta}-Sr{sub 2}SiO{sub 4}:Eu{sup 2+} phosphors were prepared by 3 different synthesis methods. > Emission peak blue-shifts as the amount of {beta} phase increases. > Emission intensity and QE of the {alpha}+{beta} powders are greater than those of single {alpha} phase. > Phosphors prepared by sol-gel/Pechini have the highest emission intensity and QE.

  6. A novel UV-emitting phosphor: LiSr4(BO3)3: Pb2+

    International Nuclear Information System (INIS)

    Pekgözlü, İlhan

    2013-01-01

    Pure and Pb 2+ doped LiSr 4 (BO 3 ) 3 materials were prepared by a solution combustion synthesis method. The phase analysis of all synthesized materials were determined using the powder XRD. The synthesized materials were investigated using spectrofluorometer at room temperature. The excitation and emission bands of LiSr 4 (BO 3 ) 3 : Pb 2+ were observed at 284 and 328 nm, respectively. The dependence of the emission intensity on the Pb 2+ concentration for the LiSr 4 (BO 3 ) 3 were studied in detail. It was observed that the concentration quenching of Pb 2+ in LiSr 4 (BO 3 ) 3 is 0.005 mol. The Stokes shifts of LiSr 4 (BO 3 ) 3 : Pb 2+ phosphor was calculated to be 4723 cm –1 . -- Highlights: • A novel UV-emitting phosphor: LiSr 4 (BO 3 ) 3 : Pb 2+ ” synthesized for the first time. • The emission band of LiSr 4 (BO 3 ) 3 : Pb 2+ was observed at 328 nm upon excitation with 284 nm. • LiSr 4 (BO 3 ) 3 : Pb 2+ is a good phosphor for broadband UV application

  7. Ca8Mg(SiO4)4Cl2:Ce3+, Tb3+: A potential single-phased phosphor for white-light-emitting diodes

    International Nuclear Information System (INIS)

    Zhu Ge; Wang Yuhua; Ci Zhipeng; Liu Bitao; Shi Yurong; Xin Shuangyu

    2012-01-01

    A single-phased white-light-emitting phosphor Ca 8 Mg(SiO 4 ) 4 Cl 2 :Ce 3+ , Tb 3+ (CMSC:Ce 3+ , Tb 3+ ) is synthesized by a high temperature solid-state reaction method, and its photoluminescence properties are investigated. The obtained phosphor exhibits a strong excitation band between 250 and 410 nm, matching well with the dominant emission band of a UV light-emitting-diode (LED) chip. Energy transfer from Ce 3+ to Tb 3+ ions has been investigated and demonstrated to be a resonant type via a dipole–dipole mechanism. The energy transfer efficiency as well as the critical distance is also estimated. Furthermore, the phosphors can generate light from yellow-green through white and eventually to blue by properly tuning the relative ratio of Ce 3+ to Tb 3+ ions grounded on the principle of energy transfer. The results show that this phosphor has potential applications as a single-phased phosphor for UV white-light LEDs. - Highlights: ► The luminescence properties of Ca 8 Mg(SiO 4 ) 4 Cl 2 :Ce 3+ , Tb 3+ were investigated for the first time. ► The strong absorption of phosphors matches well with the emission band of UV LED chips. ► The energy transfer from Ce 3+ to Tb 3+ in Ca 8 Mg(SiO 4 ) 4 Cl 2 was investigated in detail. ► The white light (CIE=(0.29, 0.34)) is generated by tuning the relative ratio of Ce 3+ to Tb 3+ .

  8. Blue-emitting LaSi3N5:Ce3+ fine powder phosphor for UV-converting white light-emitting diodes

    Science.gov (United States)

    Suehiro, Takayuki; Hirosaki, Naoto; Xie, Rong-Jun; Sato, Tsugio

    2009-08-01

    We have synthesized the pure ternary nitride phosphor, LaSi3N5:Ce3+ from the multicomponent oxide system La2O3-CeO2-SiO2, by using the gas-reduction-nitridation method. Highly pure, single-phase LaSi3N5:Ce3+ powders possessing particle sizes of ˜0.4-0.6 μm were obtained with the processing temperature ≤1500 °C. The synthesized LaSi3N5:Ce3+ exhibits tunable blue broadband emission with the dominant wavelength of 464-475 nm and the external quantum efficiency of ˜34%-67% under excitation of 355-380 nm. A high thermal stability of LaSi3N5:Ce3+ compared to the existing La-Si-O-N hosts was demonstrated, indicating the promising applicability as a blue-emitting phosphor for UV-converting white light-emitting diodes.

  9. Concentration Dependence of Luminescent Properties for Sr2TiO4:Eu3+ Red Phosphor and Its Charge Compensation

    Directory of Open Access Journals (Sweden)

    Zhou Lu

    2012-01-01

    Full Text Available Sr2TiO4:Eu3+ phosphors using M+ (M = Li+, Na+, and K+ as charge compensators were prepared by the solid-state reaction. The powders were investigated by powder X-ray diffraction (XRD and photoluminescence spectra (PL to study the phase composition, structure, and luminescent properties. The results showed that Li+ ion was the best charge compensator. The phase was Sr2TiO4 when the doping concentration was small (x≤10.0%. When x reached 15.0%, the phase turned into Sr3Ti3O7 because of the structure damage. The phosphor could be effectively excited by ultraviolet (365, 395 nm and blue light (465 nm, and thenitemitted intense red light that peaked at around 620 nm (5D0→7F2. In addition, the emission of 700 nm (5D0→7F4 enhanced the red light color purity. The CIE chromaticity coordinates of samples with the higher red emission were between (0.650, 0.344 and (0.635, 0.352. Doped layered titanate Sr2TiO4:Eu3+ is a promising candidate red phosphor for white LEDs which can be suited for both near-UV LED chip and blue LED chip.

  10. [The spectrogram characteristics of organic blue-emissive light-emitting excitated YAG : Ce phosphor].

    Science.gov (United States)

    Xi, Jian-Fei; Zhang, Fang-Hui; Mu, Qiang; Zhang, Mai-Li

    2011-09-01

    It is demonstrated that the panchromatic luminescence devices with organic blue-emissive light-emitting was fabricated. This technique used down conversion, which was already popular in inorganic power LEDs to obtain white light emission. A blue OLED device with a configuration of ITO/2T-NATA (30 nm)/AND : TBPe (50 Wt%, 40 nm)/Alq3 (100 nm)/LiF(1 nm)/Al(100 nm) was prepared via vacuum deposition process, and then coated with YAG : Ce phosphor layers of different thicknesses to obtain a controllable and uniform shape while the CIE coordinates were fine tuned. This development not only decreased steps of technics and degree of difficulty, but also applied the mature technology of phosphor. The results showed that steady spectrogram was obtained in the devices with phosphor, with a best performance of a maximum luminance of 13 840 cd x m(-2) which was about 2 times of that of the devices without phosphor; a maximum current efficiency of 17.3 cd x A(-1) was increased more two times more than the devices without phosphor. The emission spectrum could be adjusted by varying the concentration and thickness of the phosphor layers. Absoulte spectrogram of devices was in direct proportion with different driving current corresponding.

  11. Single-phased white-light-emitting Sr3NaLa(PO4)3F: Eu2+,Mn2+ phosphor via energy transfer

    International Nuclear Information System (INIS)

    Shanshan, Hu; Wanjun, Tang

    2014-01-01

    Single-phased white-light-emitting Sr 3 NaLa(PO 4 ) 3 F:Eu 2+ ,Mn 2+ phosphor is synthesized via the combustion-assisted synthesis technique. Upon excitation of 344 nm ultraviolet (UV) light, two intense broad bands have clearly been obtained due to the allowed 5d–4f transition of Eu 2+ and the forbidden 4 T 1 − 6 A 1 transition of Mn 2+ , respectively. As a result of fine-tuning of the emission composition of the Eu 2+ and Mn 2+ ions, white-light emission can be realized by combining the emission of Eu 2+ and Mn 2+ in a single host lattice under UV light excitation. The obtained phosphor exhibits a strong excitation band between 250 and 420 nm, matching well with the dominant emission band of a UV light-emitting-diode (LED) chip, which could be a promising candidate for UV-converting white-light-emitting diodes (LEDs). -- Highlights: • Single-phased Sr 3 NaLa(PO 4 ) 3 F:Eu 2+ ,Mn 2+ phosphors are synthesized. • Sr 3 NaLa(PO 4 ) 3 F:Eu 2+ ,Mn 2+ shows a blue emission band and a yellow emission band. • White-emitting can be obtained by tuning the compositions of the Eu 2+ and Mn 2+

  12. Photoluminescence in Pb{sup 2+} activated SrB{sub 4}O{sub 7} and SrB{sub 2}O{sub 4} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Gawande, A.B., E-mail: gawandeab@gmail.com [Department of Physics, SGB Amravati University, Amravati-444602, Maharashtra (India); Ingle, J.T. [J. D. Institute of Engineering and Technology, Yavatmal, Maharashtra (India); Sonekar, R.P., E-mail: sonekar_rp@yahoo.com [Department of Physics, G.S. College, Khamgaon District, Buldhana, Maharashtra (India); Omanwar, S.K. [Department of Physics, SGB Amravati University, Amravati-444602, Maharashtra (India)

    2014-05-01

    The powder samples of SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} were prepared by solution combustion synthesis method. The synthesis is based on the exothermic reaction between the fuel (Urea) and Oxidizer (Ammonium nitrate). The synthesized materials were characterized using TG–DTA, powder XRD, SEM and the photoluminescence properties were studied using a Hitachi F-7000 spectrophotometer at room temperature. Both the samples SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} show broad emission of Pb{sup 2+} respectively at 307 nm and 360 nm (corresponds to {sup 3}P{sub 1} to {sup 1}S{sub 0} transition). The optimum concentrations of Pb{sup 2+} in both the phosphors SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} were found to be 3 mol% (relative to Sr) and for this concentration the critical transfer distance R{sub 0} were calculated to be 10.21 Å and 12.22 Å respectively. The Stokes shifts were calculated to be respectively 4464 cm{sup −1} and 8454 cm{sup −1}. The emission bands of both the phosphors are in the UV region and the phosphors can be potential candidates for application in UV lamps. - Highlights: • SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} have been synthesized by Novel solution combustion synthesis technique. • The synthesized materials were characterized using TG–DTA, powder XRD and SEM. • Photoluminescence spectra of synthesized materials showed the characteristic transition in Pb{sup 2+}. • Stokes shift, optimum concentration and critical transfer distance R{sub 0} were determined.

  13. Synthesis and luminescence properties of novel Sr{sub 3}Gd(PO{sub 4}){sub 3}:Dy{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiguang; Sun, Jiayue, E-mail: Jiayue_sun@126.com; Cui, Dianpeng; Di, Qiumei; Zeng, Junhui

    2015-02-15

    Sr{sub 3}(Gd{sub 1−x}Dy{sub x})(PO{sub 4}){sub 3} phosphors for white light-emitting diodes (w-LEDs) were prepared by the conventional solid-state reaction. X-ray diffraction (XRD) and photoluminescence spectra were utilized to characterize the structure and luminescence properties of the as-synthesized phosphors. Luminescence properties shows that the phosphor can be efficiently excited by the ultraviolet visible light in the region from 300 to 450 nm, and it exhibits blue (483 nm) and yellow (575 nm) emission corresponding to {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} transition and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transition, respectively. It has been found that concentration quenching occurs via dipole–dipole interaction according to Dexter's theory. The temperature dependence of photoluminescence properties is investigated from 25 to 250 °C and the prepared Sr{sub 3}Gd(PO{sub 4}){sub 3}:Dy{sup 3+} phosphors show good thermal quenching properties. - Highlights: • Sr{sub 3}Gd(PO{sub 4}){sub 3}:Dy{sup 3+} phosphors were synthesized by a solid-state reaction method. • The phosphor could be efficiently excited by the UV–vis light region from 300 to 450 nm. • Sr{sub 3}Gd(PO{sub 4}){sub 3}:Dy{sup 3+} phosphors exhibited blue (483 nm) and yellow (575 nm) emission. • The Sr{sub 3}Gd(PO{sub 4}){sub 3}:Dy{sup 3+} phosphors concentration quenching occurred as a result of dipole–dipole interaction. • Sr{sub 3}Gd(PO{sub 4}){sub 3}:Dy{sup 3+} phosphors showed good thermal quenching properties.

  14. Facile preparation and formation mechanism of Sr2Si5N8:Eu2+ red-emitting phosphors

    Science.gov (United States)

    Wang, Yang; Wang, Yunli; Wang, Ming; Shao, Yiran; Zhu, Yingchun

    2018-05-01

    The red-emitting Sr2Si5N8:Eu2+ phosphors have been synthesized in a new facile process using (oxy)nitride precursors by inductive calcination under N2 atmosphere at ordinary pressure. Different from the prevailing methods, lower cost raw materials, simpler pretreatment, without harsh conditions and a shorter reaction time are achieved. It was found that red-emitting Sr2Si5N8:Eu2+ phosphors were synthesized with high crystallinity and purity after 1 h inductive calcination. The formation mechanism was characterized by XRD, SEM, TEM and Fluorescence microscopy. It was demonstrated that a hexagonal mesophase of Sr-doped α-Si3N4 was primarily formed in the reaction process, which transformed into the final product of the orthorhombic Sr2Si5N8:Eu2+ phosphors. During the reaction process, the color of the samples transforms from greenish-yellow to orange and eventually to red. The as-prepared phosphors have a wide excitation in the range of 250 ∼ 570 nm which matches blue light chips and give a red-light emission peaking at 610 nm. The results indicate a promising prospect for a simple, efficient and inexpensive way to prepare Sr2Si5N8:Eu2+ phosphors for blue/UV-based warm-white LEDs and other fluorescent applications.

  15. Photoluminescence study of Dy3+ doped SrCeVO5 phosphor

    International Nuclear Information System (INIS)

    Suresh, K.; Dai, Ch. Vijay Anil; Murthy, K.V.R.

    2016-01-01

    Dy 3+ doped SrCeVO 5 phosphor was synthesized by the solid-state reaction method. Photoluminescence (PL) technique was performed to characterize the sample. The excitation spectra monitored under 520 nm and 610 nm wavelength was characterized by a broad band ranging from 220-400 nm. From the excitation spectra two main bands at 265 nm and 325 nm were observed. The PLE intensity of 520 nm monitored shows high intensity than 610 nm spectrum. The emission spectra of SrCeVO 5 phosphor under excitations at 265 nm and 325 nm exhibited main peak at 515 nm (cyan) which is a strong, intense well resolved peak with FWHM (full width at half maximum) of 130 nm is observed. This emission is mainly may be due to Ce ion but not Dy ion. The same emission under 640 and 670 nm excitations (up conversion) with good intensity was also observed. Commission international de l'eclairage (CIE) co-ordinates under these excitations revealed that this phosphor emit cyan colour and could be used for the generation of white light in display and lamp devices. (author)

  16. Synthesis and dosimetric characterization of Sr{sub 4}Al{sub 14}O{sub 25}: Ce{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Leon M, M. I.; Sosa A, M.; Vallejo, M. A.; Azorin V, J. C. [Universidad de Guanajuato, Division de Ciencias e Ingenierias, Loma del Bosque No. 103, 37150 Leon, Guanajuato (Mexico); Diaz T, L. A., E-mail: leonmm2011@licifug.ugto.mx [Centro de Investigaciones en Optica, A. C., Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados, 37150 Leon, Guanajuato (Mexico)

    2015-10-15

    Full text: Strontium aluminates phosphors activated by Ce{sup +2} were prepared by combustion method at 600 degrees C and calcined on air and reducing atmospheres. Photoluminescence (Pl) and thermoluminescence (Tl) properties were investigated and X-ray powder diffraction analysis confirmed the formation of Sr{sub 4}Al{sub 14}O{sub 25}: Ce{sup +2}. The Pl spectrum shows a peak around 430 nm (330 nm excitation).Thermoluminescence studies were done with two different concentrations of Ce, 0.5% mol and 1% mol respective. According to our studies, the Tl intensity is proportional to dopant concentration, irradiation dose and calcination atmosphere. (Author)

  17. Enhancement of photoluminescence properties and modification of crystal structures of Si3N4 doping Li2Sr0.995SiO4:0.005Eu2+ phosphors

    International Nuclear Information System (INIS)

    Song, Kaixin; Zhang, Fangfang; Chen, Daqin; Wu, Song; Zheng, Peng; Huang, Qingming; Jiang, Jun; Xu, Junming; Qin, Huibin

    2015-01-01

    Highlights: • Si 3 N 4 modified Li 2 Sr 0.995 SiO 4 :0.005Eu 2+ phosphors were prepared. • The luminescence intensity of Li 2 Sr 0.995 SiO 4 :Eu 2+ was enhanced by doping Si 3 N 4 . • The fluorescence decay times and thermal stability were enhanced by doping Si 3 N 4 . - Abstract: Si 3 N 4 modified Li 2 Sr 0.995 SiO 4 :0.005Eu 2+ (Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ ) phosphors were synthesized with the conventional solid-state reaction in the reduced atmosphere. The crystal structure and vibrational modes were analyzed by X-ray diffraction, Raman scattering spectroscopy and Rietveld crystal structure refinement. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra showed that Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ powder exhibited a broad yellow emission band centered at 560 nm under the excitation of 460 nm visible light, due to the 4f 6 5d 14f 7 transition of Eu 2+ . The partial nitridation of Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ (x = 0.01) phosphors led to a large enhancement in the luminescence intensity, as much as 190%. At the same time, the fluorescence decay behavior curves further showed that the photoluminescence efficiencies of Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ phosphors were enhanced by addition of Si 3 N 4 . The temperature quenching characteristics confirmed that the oxynitride based Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ showed slightly higher stability. It is implied that Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ phosphors had a possible potential application on white LEDs to match blue light chips

  18. Synthesis and TL/OSL properties of a novel high-sensitive blue-emitting LiSrPO{sub 4}:Eu{sup 2+} phosphor for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Palan, C.B.; Koparkar, K.A.; Omanwar, S.K. [Sant Gadge Baba Amravati University, Department of Physics, Amravati (India); Bajaj, N.S. [Toshniwal Arts, Commerce and Science College, Sengoan, Hingoli District, MH (India); Soni, A. [Bhabha Atomic Research Centre, Radiological Physics and Advisory Division, Mumbai (India)

    2016-07-15

    In this study, a series of Eu{sup 2+}-doped LiSrPO{sub 4} phosphors were synthesized via solid-state method. The structural and morphological characterizations were done through X-ray diffraction and scanning electronic microscope. Additionally, the photoluminescence (PL), thermoluminescence (TL) and optically stimulated luminescence (OSL) behaviours of LiSrPO{sub 4}:Eu{sup 2+} phosphors were studied. The LiSrPO{sub 4}:Eu{sup 2+} phosphor shows OSL sensitivity about 8 times than that of α-Al{sub 2}O{sub 3}:C phosphor and 6 times than that of LiMgPO{sub 4}:Tb{sup 3+}, B phosphor. Moreover, TL sensitivity was about 15 times more as compared to α-Al{sub 2}O{sub 3}:C phosphor. The kinetic parameters of TL curve were calculated using peak shape method. In TL/OSL mode, dose-response was almost linear nature, in the range of measurement. The minimum detectable dose was found to be 25.18 μGy with 3σ of background. Also, reusability was also studies, which shows the phosphor can be reusable for 10 cycles with 0.1 % change in OSL output. (orig.)

  19. Sr2CeO4: Electronic and structural properties

    International Nuclear Information System (INIS)

    Rocha, Leonardo A.; Schiavon, Marco A.; Nascimento, Clebio S.; Guimarães, Luciana; Góes, Márcio S.; Pires, Ana M.; Paiva-Santos, Carlos O.

    2014-01-01

    Highlights: • Sr 2 CeO 4 it was obtained from the heat treatment of Ce 3+ -doped strontium oxalate. • Rietveld analysis made it possible to obtain information about crystalline structure. • Experimental band gap value was compared with theoretical obtained by Sparkle/PM7. • The materials obtained shows intense photoluminescence and scintillator properties. - Abstract: This work presents on the preparation and photoluminescent properties of Sr 2 CeO 4 obtained from the heat treatment of Ce(III)-doped strontium oxalate (10, 25 and 33 mol%). The oxalate precursors were heat treated at 1100 °C for 12 h. The structure of this photoluminescent material was evaluated by the Rietveld method. The route used in this work to prepare the materials showed to be viable when compared to other synthesis reported in the literature. The Sr 2 CeO 4 material showed a broad and intense band emission with a maximum around 485 nm. The quantitative phase analysis showed that the Sr 2 CeO 4 photoluminescent phase is the majority one compared to the impurity phases of SrCeO 3 and SrCO 3 . From all results it was possible to verify a complete elimination of the CeO 2 phase for the sample obtained from the heat treatment of oxalate precursor containing 33 mol% of cerium(III). The material showed excellent properties for possible candidate as scintillator materials, and in the improvement of efficiency of solar cells when excited in the UV–vis region. The CIE chromaticity diagram it is also reported in this work

  20. Synthesis and luminescence properties of novel LiSrPO{sub 4}:Dy{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayue, E-mail: jiayue_sun@126.com [School of Science, Beijing Technology and Business University, Beijing 100048 (China); Zhang, Xiangyan [School of Science, Beijing Technology and Business University, Beijing 100048 (China); Xia, Zhiguo, E-mail: xiazg426@yahoo.com.cn [School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083 (China); Du, Haiyan [School of Science, Beijing Technology and Business University, Beijing 100048 (China)

    2011-11-15

    Graphical abstract: Novel LiSrPO4:Dy{sup 3+} phosphors were synthesized by solid-state reaction, and Dy{sup 3+}-doped concentration dependent luminescence properties, concentration quenching effect and the decay times were investigated in detail. Highlights: {yields} LiSrPO{sub 4}:Dy{sup 3+} could be excited by UV light and exhibited blue and yellow emission. {yields} Concentration quenching effect of LiSrPO{sub 4}:Dy{sup 3+} samples were investigated in detail. {yields} Decay times are estimated to be 0.57-0.89 ms for Dy{sup 3+} in LiSrPO{sub 4} host. -- Abstract: Novel LiSrPO{sub 4}:Dy{sup 3+} phosphors for white light-emitting diodes (w-LEDs) were synthesized by the conventional solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the phase formation of LiSrPO{sub 4}:Dy{sup 3+} materials. Luminescence properties results showed that the phosphor could be efficiently excited by the UV-vis light region from 250 to 460 nm, and it exhibited blue (483 nm) and yellow (574 nm) emission corresponding to {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 15/2} transitions and {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 13}/{sub 2} transitions, respectively. The luminescence intensity of LiSrPO{sub 4}:xDy{sup 3+} phosphor firstly increased and then decreased with increasing Dy{sup 3+} concentration, and reached the maximum at x = 0.03. It was found that concentration quenching occurred as a result of dipole-dipole interaction according to the Dexter's theory. The decay time was also determined for various concentrations of Dy{sup 3+} in LiSrPO{sub 4}.

  1. One-Step Preparation of Blue-Emitting (La,Ca)Si3(O,N)5:Ce3+ Phosphors for High-Color Rendering White Light-Emitting Diodes

    Science.gov (United States)

    Yaguchi, Atsuro; Suehiro, Takayuki; Sato, Tsugio; Hirosaki, Naoto

    2011-02-01

    Highly phase-pure (La,Ca)Si3(O,N)5:Ce3+ blue-emitting phosphors were successfully synthesized via the one-step solid-state reaction from the system La2O3-CaO-CeO2-Si3N4. The synthesized (La,Ca)Si3(O,N)5:Ce3+ exhibits tunable blue broadband emission with the dominant wavelength of 466-479 nm and the external quantum efficiency up to ˜45% under 380 nm near-UV (NUV) excitation. Spectral simulations of the trichromatic white light-emitting diodes (LEDs) using (La,Ca)Si3(O,N)5:Ce3+ demonstrated markedly higher color rendering index Ra values of 93-95, compared to 76-90 attained by the systems using a conventional BAM:Eu2+ phosphor or InGaN blue LED. The present achievement indicates the promising applicability of (La,Ca)Si3(O,N)5:Ce3+ as a blue luminescent source for NUV-converting high-color rendering white LEDs.

  2. Luminescence of (Ca,Sr)3(VO4)2: Pr3+, Eu3+ phosphor for use in CuPc-based solar cells and white light-emitting diodes

    International Nuclear Information System (INIS)

    Lin, Han-Yu; Chang, Wei-Fu; Chu, Sheng-Yuan

    2013-01-01

    The purpose of this study is to enhance the red emission intensity and expand the blue excitation band of a (Ca,Sr) 2.82 (VO 4 ) 2 :0.12Eu 3+ phosphor for use in copper phthalocyanine (CuPc)-based solar cells and white light-emitting diodes. It was found that substitution of 3% Sr 2+ replacing Ca 2+ enhanced red emission intensity of Ca 2.82 (VO 4 ) 2 :0.12Eu 3+ by 14% under 465-nm by excitation. The Pr 3+ co-doping effect was realized when blue excitation intensity of (Ca 0.97 Sr 0.03 ) 2.82 (VO 4 ) 2 :0.12Eu 3+ , located in the weakest absorption of CuPc, was improved by 126% with the addition of 0.6 mol% Pr 3+ . The absorption spectrum of CuPc/optimized (Ca 0.9668 Sr 0.03 ) 2.82 (VO 4 ) 2 :0.006Pr 3+ , 0.12Eu 3+ mixtures provided evidence that the (Ca 0.9668 Sr 0.03 ) 2.82 (VO 4 ) 2 :0.006Pr 3+ , 0.12Eu 3+ phosphor could increase the efficiency of incident photons on CuPc-based solar cells. Moreover, the good temperature stability of emission intensity and chromaticity of (Ca 0.9668 Sr 0.03 ) 2.82 (VO 4 ) 2 :0.006Pr 3+ , 0.12Eu 3+ indicated a potential for this phosphor to be applied on the white light-emitting diodes. - Highlights: ► Substitution of 3% Sr 2+ replacing Ca 2+ enhanced red emission intensity of Ca 2.82 (VO 4 ) 2 :0.12Eu 3+ by 14% under 465 nm by excitation. ► Addition of 0.6 mol% Pr 3+ enhanced blue excitation intensity of (Ca 0.97 Sr 0.03 ) 2.82 (VO 4 ) 2 :0.12Eu 3+ , located in the weakest absorption of CuPc, by 126%. ► According to absorption measurements of CuPc/optimized (Ca 0.9668 Sr 0.03 ) 2.82 (VO 4 ) 2 :0.006Pr 3+ , 0.12Eu 3+ mixtures for the first time, the feasibility of our phosphor to assist CuPc in converting blue-wavelength photons was proved. ► High temperature stability of emission intensity and chromaticity of (Ca 0.9668 Sr 0.03 ) 2.82 (VO 4 ) 2 :0.006Pr 3+ , 0.12Eu 3+ indicated our phosphor is acceptable for WLED applications.

  3. Photoluminescence properties and energy-transfer of thermal-stable Ce3+, Mn2+-codoped barium strontium lithium silicate red phosphors

    International Nuclear Information System (INIS)

    Zhang Xinguo; Gong Menglian

    2011-01-01

    Research highlights: → Excited by UV, strong red luminescence is observed from Ce 3+ , Mn 2+ -codoped barium strontium lithium silicate (BSLS), while violet-blue emission from Ce 3+ sole doped BSLS. → These results indicate the Mn 2+ -derived red emission is originated by an efficient Ce 3+ → Mn 2+ energy transfer. → The red emission becomes stronger with increased Sr content, and shows red-shift. → These phosphors demonstrate good thermal stability even in 180 o C, which is suitable for NUV LED application. - Abstract: A series of thermal-stable Ce 3+ , Mn 2+ -codoped barium strontium lithium silicate (BSLS) phosphors was synthesized by a high-temperature solid-state reaction. The XRD patterns of this phosphor seem to be a new phase that has not been reported before. BSLS:Ce 3+ , Mn 2+ showed two emission bands under 365 nm excitation: one observed at 421 nm was attributed to Ce 3+ emission, and the other found in red region was assigned to Mn 2+ emission through Ce 3+ -Mn 2+ efficient energy transfer. The Mn 2+ emission shifted red along with the replacement of barium by strontium, which was due to the change of crystal field. A composition-optimized phosphor, BSLS:0.10Ce 3+ , 0.05Mn 2+ (Ba = 65), exhibited strong and broad red-emitting and supreme thermal stability. The results suggest that this phosphor is suitable as a red component for NUV LED or high pressure Hg vapor (HPMV) lamp.

  4. Synthesis, structure, and photoluminescence properties of novel KBaSc2 (PO4 )3 :Ce(3+) /Eu(2+) /Tb(3+) phosphors for white-light-emitting diodes.

    Science.gov (United States)

    Jiao, Mengmeng; Lü, Wei; Shao, Baiqi; Zhao, Lingfei; You, Hongpeng

    2015-08-24

    A series of novel KBaSc2 (PO4 )3 :Ce(3+) /Eu(2+) /Tb(3+) phosphors are prepared using a solid-state reaction. X-ray diffraction analysis and Rietveld structure refinement are used to check the phase purity and crystal structure of the prepared samples. Ce(3+) - and Eu(2+) -doped phosphors both have broad excitation and emission bands, owing to the spin- and orbital-allowed electron transition between the 4f and 5d energy levels. By co-doping the KBaSc2 (PO4 )3 :Eu(2+) and KBaSc2 (PO4 )3 :Ce(3+) phosphors with Tb(3+) ions, tunable colors from blue to green can be obtained. The critical distance between the Eu(2+) and Tb(3+) ions is calculated by a concentration quenching method and the energy-transfer mechanism for Eu(2+) →Tb(3+) is studied by utilizing the Inokuti-Hirayama model. In addition, the quantum efficiencies of the prepared samples are measured. The results indicate that KBaSc2 (PO4 )3 :Eu(2+) ,Tb(3+) and KBaSc2 (PO4 )3 :Ce(3+) ,Tb(3+) phosphors might have potential applications in UV-excited white-light-emitting diodes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Structures and luminescent properties of single-phase La{sub 5.90−x}Ba{sub 4+x}(SiO{sub 4}){sub 6−x}(PO{sub 4}){sub x}F{sub 2}:0.10Ce{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Qingfeng; Liao, Libing, E-mail: clayl@cugb.edu.cn; Mei, Lefu, E-mail: mlf@cugb.edu.cn; Liu, Haikun

    2016-04-15

    A series of blue-emitting La{sub 5.90−x}Ba{sub 4+x}(SiO{sub 4}){sub 6−x}(PO{sub 4}){sub x}F{sub 2}:0.10Ce{sup 3+} (x= 0, 1, 2, and 3) phosphors with apatite structure were synthesized by a solid-state reaction. The crystal structure and the photoluminescence properties were investigated in detail. The crystallographic occupancy of Ce{sup 3+} in La{sub 2.90}Ce{sub 0.10}Ba{sub 7}(SiO{sub 4}){sub 3}(PO{sub 4}){sub 3}F{sub 2} and La{sub 5.90}Ce{sub 0.10}Ba{sub 4}(SiO{sub 4}){sub 6}F{sub 2} were studied based on Rietveld refinements results and the crystal chemistry rules. La{sub 5.90−x}Ba{sub 4+x}(SiO{sub 4}){sub 6−x}(PO{sub 4}){sub x}F{sub 2}:0.10Ce{sup 3+} exhibited strong blue light emission in the range of 407–414 nm with high thermal stability upon excitation at 276 nm. Besides, the activation energy E of La{sub 5.90}Ce{sub 0.10}Ba{sub 4}(SiO{sub 4}){sub 6}F{sub 2} and La{sub 2.90}Ce{sub 0.10}Ba{sub 7}(SiO{sub 4}){sub 3}(PO{sub 4}){sub 3}F{sub 2} phosphors were calculated to be 0.152 and 0.177 eV. These results suggest that La{sub 5.90−x}Ba{sub 4+x}(SiO{sub 4}){sub 6−x}(PO{sub 4}){sub x}F{sub 2}:0.10Ce{sup 3+} is a potential blue phosphor candidate for near-UV-pumped w-LEDs.

  6. Tunable blue-green color emitting phosphors Sr{sub 3}YNa(PO{sub 4}){sub 3}F:Eu{sup 2+}, Tb{sup 3+} based on energy transfer for near-UV white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yahong, E-mail: yhjin@gdut.edu.cn; Lv, Yang; Hu, Yihua, E-mail: huyh@gdut.edu.cn; Chen, Li; Ju, Guifang; Mu, Zhongfei

    2017-05-15

    A series of Eu{sup 2+} and Tb{sup 3+} doped Sr{sub 3}YNa(PO{sub 4}){sub 3}F phosphors have been synthesized via a high temperature solid state reaction method. Eu{sup 2+} activated Sr{sub 3}YNa(PO{sub 4}){sub 3}F phosphors can be efficiently excited by light in the range of 220–420 nm, which matches well with the commercial n-UV LEDs, and show intense blue emission centered at 456 nm. The optimal doping concentration of Eu{sup 2+} is determined to be 1 mol%. The concentration quenching mechanism of Eu{sup 2+} in SYNPF host is mainly attributed to the dipole-dipole interaction. Energy transfer from Eu{sup 2+} to Tb{sup 3+} is observed when Eu{sup 2+} and Tb{sup 3+} are co-doped into Sr{sub 3}YNa(PO{sub 4}){sub 3}F host. Under excitation of 380 nm, the emission color can be varied from blue to green along with the increase of Tb{sup 3+} doping concentration. Based on decay curves, the energy transfer from the Eu{sup 2+} to Tb{sup 3+} ions is demonstrated to be a dipole–dipole mechanism. According to thermal quenching study by yoyo experiments of heating-cooling, Sr{sub 3}YNa(PO{sub 4}){sub 3}F:Eu{sup 2+}, Tb{sup 3+} shows good thermal stability. The thermal quenching mechanism is also discussed. The results indicate that as-prepared samples might be of potential application in w-LEDs.

  7. Novel yellow-emitting Sr8MgLn(PO4)7:Eu2+ (Ln=Y, La) phosphors for applications in white LEDs with excellent color rendering index.

    Science.gov (United States)

    Huang, Chien-Hao; Chen, Teng-Ming

    2011-06-20

    Eu(2+)-activated Sr(8)MgY(PO(4))(7) and Sr(8)MgLa(PO(4))(7) yellow-emitting phosphors were successfully synthesized by solid-state reactions for applications in excellent color rendering index white light-emitting diodes (LEDs). The excitation and reflectance spectra of these phosphors show broad band excitation and absorption in the 250-450 nm near-ultraviolet region, which is ascribed to the 4f(7) → 4f(6)5d(1) transitions of Eu(2+). Therefore, these phosphors meet the application requirements for near-UV LED chips. Upon excitation at 400 nm, the Sr(8)MgY(PO(4))(7):Eu(2+) and Sr(8)MgLa(PO(4))(7):Eu(2+) phosphors exhibit strong yellow emissions centered at 518, 610, and 611 nm with better thermal stability than (Ba,Sr)(2)SiO(4) (570 nm) commodity phosphors. The composition-optimized concentrations of Eu(2+) in Sr(8)MgLa(PO(4))(7):Eu(2+) and Sr(8)MgY(PO(4))(7):Eu(2+) phosphors were determined to be 0.01 and 0.03 mol, respectively. A warm white-light near-UV LED was fabricated using a near-UV 400 nm chip pumped by a phosphor blend of blue-emitting BaMgAl(10)O(17):Eu(2+) and yellow-emitting Sr(8)MgY(PO(4))(7):0.01Eu(2+) or Sr(8)MgLa(PO(4))(7):0.03Eu(2+), driven by a 350 mA current. The Sr(8)MgY(PO(4))(7):0.01Eu(2+) and Sr(8)MgLa(PO(4))(7):0.03Eu(2+) containing LEDs produced a white light with Commission International de I'Eclairage (CIE) chromaticity coordinates of (0.348, 0.357) and (0.365, 0.328), warm correlated color temperatures of 4705 and 4100 K, and excellent color rendering indices of 95.375 and 91.75, respectively. © 2011 American Chemical Society

  8. Luminescence of a new class of UV-blue-emitting phosphors MSi2O2-deltaN2+2/3delta:Ce3+ (M = Ca, Sr, Ba)

    NARCIS (Netherlands)

    Li, Y.Q.; With, de G.; Hintzen, H.T.J.M.

    2005-01-01

    The luminescence properties of Ce3+,Na+-codoped MSi2O22dN2+2/3d (M 5 Ca, Sr, Ba) are reported. The undoped and Ce3+,Na+-codoped MSi2O22dN2+2/3d powders were prepared by a solid-state reaction at temperatures between 1300–1400 uC under N2–H2 (10%) atmosphere in the system MO–SiO2–Si3N4 (M 5 Ca, Sr,

  9. Combustion synthesis of CaSc2O4:Ce3+ nano-phosphors in a closed system

    International Nuclear Information System (INIS)

    Peng Wenfang; Zou Shaoyu; Liu Guanxi; Xiao Quanlan; Zhang Rui; Xie Lijuan; Cao Liwei; Meng Jianxin; Liu Yingliang

    2011-01-01

    Highlights: → CaSc 2 O 4 :Ce 3+ nano-phosphors can be prepared by a single-step combustion method. → The ignition temperature is the lowest in the combustion synthesis of Ce 3+ /Eu 2+ doped phosphors. → The as-prepared nano-phosphors give a uniform particle size in the range of 15-20 nm and have highly dispersity and fluorescence intensity. → It is a convenient method for preparation of monodispersed oxide nano-phosphors, especially those being sensitive to air at high temperature. - Abstract: The CaSc 2 O 4 :Ce 3+ nano-phosphors were successfully prepared by a single-step combustion method at an ignition temperature as low as 200 deg. C in a closed autoclave using glycine as a fuel and PEG4000 as a dispersant. The samples were characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscope (TEM). The results revealed that CaSc 2 O 4 :Ce 3+ nano-phosphors can be conveniently prepared at an ignition temperature as low as 200 deg. C, which was much lower than that in the ordinary combustion methods. The optimized ignition temperature was 220 deg. C. The CaSc 2 O 4 :Ce 3+ nano-phosphors give a uniform particle size in the range of 15-20 nm. The low ignition temperature and the addition of PEG4000 dispersant play important roles in the formation of small sized nanoparticles. The as-prepared nano-phosphors were incompact aggregates, but highly dispersed nano-phosphors can be obtained after further ultrasonic treatment. The CaSc 2 O 4 :Ce 3+ nano-phosphors give satisfactory luminescence characteristic benefiting from the closed circumstance, in which cerium atoms can be isolated from the oxidizing atmosphere and non-fluorescent Ce 4+ ions can be ruled out. The present highly dispersed CaSc 2 O 4 :Ce 3+ nano-phosphors with efficient fluorescence are promising in the field of biological labeling, and the present low temperature combustion method is facile and convenient and can

  10. Effects of nanostructuring on luminescence properties of SrS:Ce,Sm phosphor: An experimental and phenomenological study

    Science.gov (United States)

    Yazdanmehr, Mohsen; Sadeghi, Hossein; Tehrani, Masoud Kavosh; Hashemifar, Seyed Javad; Mahdavi, Mohammad

    2018-01-01

    In this work, we employ various experimental techniques to illustrate the effects of nanostructuring on improvement of the luminescence properties of the polycrystalline SrS co-activated by cerium and samarium dopants (SrS : Ce , Sm). The nano and microstructure SrS : Ce , Sm powders were synthesized by the co-precipitation and solid state diffusion methods, respectively, followed by the spark plasma sintering (SPS) process to densify powders into pellet shape. It is observed that the photo-luminescence (PL), radio-luminescence (RL), and optically stimulated luminescence (OSL) emission intensity of the nanostructure samples are significantly improved with respect to the microstructure samples. Moreover, by using an accurate photomultiplier tube, we measured the CW-OSL decay curves of the samples to demonstrate much higher and faster sensitivity of the nanostructure SrS : Ce , Sm for in-flight and online OSL radiation dosimetry. The obtained absorption and emission spectra are used for phenomenology of the electronic band structure of the SrS : Ce , Sm micro and nano-phosphors inside the band gap. The proposed phenomenological electronic structures are then used to clarify the role of Ce3+ and Sm3+ localized energy levels in the luminescence properties of the nano and microstructure samples. It is argued that electronic transitions from the 2T2g state of Ce3+ and the 4G5/2 state of Sm3+ have strong contribution to the PL and RL emission spectra, while in the OSL mechanism, the Sm3+ 4G5/2 state is mainly responsible for electrons trapping.

  11. Temperature dependent luminescence and energy transfer properties of Na2SrMg(PO4)2:Eu2+, Mn2+ phosphors.

    Science.gov (United States)

    Geng, Dongling; Shang, Mengmeng; Zhang, Yang; Lian, Hongzhou; Lin, Jun

    2013-11-21

    Eu(2+) singly and Eu(2+)/Mn(2+) co-doped Na2SrMg(PO4)2 (NSMP) phosphors have been prepared via a high-temperature solid-state reaction process. Upon UV excitation of 260-360 nm, the NSMP:xEu(2+) phosphors exhibit a violet band located at 399 nm and a blue band centered at 445 nm, which originate from Eu(2+) ions occupying two different crystallographic sites: Eu(2+)(I) and Eu(2+)(II), respectively. Excitation wavelengths longer than 380 nm can selectively excite Eu(2+)(II) to emit blue light. Energy transfer processes in the Eu(2+)(I)-Eu(2+)(II) and Eu(2+)-Mn(2+) pairs have been observed and investigated by luminescence spectra and decay curves. The emission color of as-prepared samples can be tuned by changing the relative concentrations of Eu(2+) and Mn(2+) ions and adjusting the excitation wavelength. Under UV excitation of 323 nm, the absolute quantum yield of NSMP:0.005Eu(2+) is 91%, which is higher than most of the other Eu(2+)-doped phosphors reported previously. The temperature dependent luminescence properties and decay curves (4.3-450 K) of NSMP:Eu(2+) and NSMP:Eu(2+), Mn(2+) phosphors have been studied in detail. Thermal quenching of Eu(2+) has been observed while the emission band of Mn(2+) shows a blue-shift and an abnormal increase of intensity with increasing temperature. The unusual thermal quenching behavior indicates that the NSMP compound can serve as a good lattice host for Mn(2+) ions which can be used as a red-emitting phosphor. Additionally, the lifetimes for Eu(2+)(I) and Eu(2+)(II) increase with increasing temperatures.

  12. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    OpenAIRE

    Qidi Xie; Bowen Li; Xin He; Mei Zhang; Yan Chen; Qingguang Zeng

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to ...

  13. Luminescence enhancement of (Sr1-x Mx )2 SiO4 :Eu2+ phosphors with M (Ca2+ /Zn2+ ) partial substitution for white light-emitting diodes.

    Science.gov (United States)

    Wang, Yulong; Zhang, Wentao; Gao, Yang; Long, Jianping; Li, Junfeng

    2017-02-01

    Eu 2 + -doped Sr 2 SiO 4 phosphor with Ca 2 + /Zn 2 + substitution, (Sr 1-x M x ) 2 SiO 4 :Eu 2 + (M = Ca, Zn), was prepared using a high-temperature solid-state reaction method. The structure and luminescence properties of Ca 2 + /Zn 2 + partially substituted Sr 2 SiO 4 :Eu 2 + phosphors were investigated in detail. With Ca 2 + or Zn 2 + added to the silicate host, the crystal phase could be transformed between the α-form and the β-form of the Sr 2 SiO 4 structure. Under UV excitation at 367 nm, all samples exhibit a broad band emission from 420 to 680 nm due to the 4f 6 5d 1  → 4f 7 transition of Eu 2 + ions. The broad emission band consists of two peaks at 482 and 547 nm, which correspond to Eu 2 + ions occupying the ten-fold oxygen-coordinated Sr.(I) site and the nine-fold oxygen-coordinated Sr.(II) site, respectively. The luminescence properties, including the intensity and lifetime of Sr 2 SiO 4 :Eu 2 + phosphors, improved remarkably on Ca 2 + /Zn 2 + addition, and promote its application in white light-emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Investigation of thermoluminescence and electron-vibrational interaction parameters in SrAl2O4:Eu2+, Dy3+ phosphors

    International Nuclear Information System (INIS)

    Pardhi, Shilpa A.; Nair, Govind B.; Sharma, Ravi; Dhoble, S.J.

    2017-01-01

    Combustion synthesis method was employed for the synthesis of green-emitting monoclinic SrAl 2 O 4 :Eu 2+ , Dy 3+ phosphors. The phase-purity of the prepared phosphors were examined using X-ray diffraction (XRD). The prepared phosphors exhibited green light emission with the peak centred at 510 nm, under 350 nm UV excitation. The excitation and emission spectra were analysed and the parameters of electron-vibrational interaction (EVI), such as the Huang–Rhys factor, effective phonon energy and zero-phonon line position were estimated using the spectrum fitting method. Thermoluminescence (TL) behaviour of the as-prepared phosphors were analysed for UV and 137 Cs γ-ray source irradiation. TL glow curves for UV-irradiated SrAl 2 O 4 :Eu 2+ , Dy 3+ phosphors were analysed. - Highlights: • Photoluminescence and thermoluminescence properties of SrAl 2 O 4 :Eu 2+ ,Dy 3+ phosphors were analysed. • Electron-vibrational interaction (EVI) parameters of SrAl 2 O 4 :Eu 2+ ,Dy 3+ phosphors were determined. • The phosphors are found to exhibit green light emission.

  15. Luminescence properties of Na2Sr2Al2PO4Cl9:Sm3+ phosphor

    Science.gov (United States)

    Tamboli, Sumedha; Shahare, D. I.; Dhoble, S. J.

    2018-04-01

    A series of Sm3+ ions doped Na2Sr2Al2PO4Cl9 phosphors were synthesized via solid state synthesis method. Photoluminescence (PL) emission spectra were obtained by keeping excitation wavelength at 406 nm. Emission spectra show three emission peaks at 563 nm, 595 nm and 644 nm. The CIE chromaticity diagram shows emission colour of the phosphor in the orange-red region of the visible spectrum, indicating that the phosphor may be useful in preparing orange light-emitting diodes. Na2Sr2Al2PO4Cl9:Sm3+ phosphors were irradiated by γ-rays from a 60Co source and β-rays from a 90Sr source. Their thermoluminescence (TL) glow curves were obtained by Nucleonix 1009I TL reader. TL Trapping parameters such as activation energy of trapped electrons and order of kinetics were obtained by using Chen's peak shape method, Glow curve fitting method and initial rise method.

  16. Enhanced Ce{sup 3+} photoluminescence by Li{sup +} co-doping in CaO phosphor and its use in blue-pumped white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Zhendong, E-mail: haozd@ciomp.ac.cn; Zhang, Xia; Luo, Yongshi; Zhang, Ligong; Zhao, Haifeng; Zhang, Jiahua, E-mail: zhangjh@ciomp.ac.cn

    2013-08-15

    In this paper, we demonstrate a method to improve the photoluminescence of CaO: Ce{sup 3+} phosphor and delineate its first use in blue-pumped white LEDs. The results show that the yellow emission of Ce{sup 3+} is enhanced by a factor of 1.88 by adding Li{sup +} into CaO host at 474 nm blue light excitation. On analyzing the diffuse reflection spectra and fluorescence decay curves, we reveal that the photoluminescence enhancement is originated from the rise of absorbance to the excitation photons but not from the improvement of the luminescent efficiency. Li{sup +}-improved CaO: Ce{sup 3+} exhibits more red component when it is compared with the commercial Y{sub 3}Al{sub 5}O{sub 12}: Ce{sup 3+} (YAG: Ce{sup 3+}) phosphor, indicating its potential application for high color rendering white LEDs. Thus, a white LED is fabricated by combining blue InGaN LED chip with CaO: Ce{sup 3+}, Li{sup +} phosphor and a warm white light with high color rendering index (R{sub a}) of 80, low correlated color temperature (T{sub c}) of 4524 K, and sufficient luminous efficiency of 50 lm W{sup −1} is obtained. -- Highlights: • The photoluminescence of Ce{sup 3+} in CaO host was enhanced by Li{sup +} co-doping. • A CaO: Ce{sup 3+}, Li{sup +} based white LED was fabricated for the first time. • An efficient warm white light was obtained. • CaO: Ce{sup 3+}, Li{sup +} is expected to be used as a yellow phosphor for blue-pumped white LEDs.

  17. Optimized photoluminescence of SrB 2O 4:Eu 3+ red-emitting phosphor by charge compensation

    Science.gov (United States)

    Zhao, Lai-Shi; Liu, Jie; Wu, Zhan-Chao; Kuang, Shao-Ping

    2012-02-01

    A novel red-emitting phosphor, SrB 2O 4:Eu 3+, was synthesized by high temperature solid-state reaction and its photoluminescence properties were studied. The emission spectrum consists of four major emission bands. The emission peaks are located at 593, 612, 650 and 703 nm, corresponding to the 5D0 → 7F1, 5D0 → 7F2, 5D0 → 7F3 and 5D0 → 7F4 typical transitions of Eu 3+, respectively. The effects of Eu 3+ doping content and charge compensators (Li +, Na +, K +) on photoluminescence of SrB 2O 4:Eu 3+ phosphor were studied. The results show that the emission intensity can be affected by above factors and Na + is the optimal charge compensator for SrB 2O 4:Eu 3+. The photoluminescence of NaSrB 2O 4:Eu 3+ was compared with that of Y 2O 2S:Eu 3+. It implies that SrB 2O 4:Eu 3+ is a good candidate as a red-emitting phosphor pumped by near-ultraviolet (NUV) InGaN chip for fabricating white light-emitting diodes (WLEDs).

  18. Luminescence, Energy Transfer and Tunable Color of Ce3+- and Tb3+-Activated Na3Gd(BO3)2 Phosphors

    Science.gov (United States)

    Zhang, Xinguo; Pan, Jialiang; Mo, Fuwang

    2017-07-01

    A series of blue Na3Gd(BO3)2:Ce3+ and blue-to-green color-tunable Na3Gd (BO3)2:Ce3+,Tb3+ phosphors were synthesized by the solid-state method. The luminescence, concentration quenching and energy transfer (ET) process of Na3Gd(BO3)2:Ce3+,Tb3+ were investigated. Both Ce3+ and Tb3+ occupy the Gd3+ site in the Na3Gd(BO3)2 host. Na3Gd(BO3)2:Ce3+ exhibits strong ultraviolet absorption and broadband blue emission. The Ce3+ sensitization effect on Tb3+ has been verified by the variation of PL/PLE spectra, the Ce3+ decay lifetimes and the energy transfer efficiency of Na3Gd(BO3)2:Ce3+,Tb3+ phosphors. The maximum Ce3+-Tb3+ ET efficiency has been calculated to be 95%. The emitting color of the obtained phosphors can be modulated from blue (0.179, 0.204) through bluish-green (0.271, 0.391) to green (0.349, 0.551) by properly changing the ratio of Ce3+/Tb3+.

  19. Improved photoluminescence properties of a new green SrB2O4:Tb3+ phosphor by charge compensation

    International Nuclear Information System (INIS)

    Wu, Zhan-Chao; Wang, Ping; Liu, Jie; Li, Chao; Zhou, Wen-Hui; Kuang, Shao-Ping

    2012-01-01

    Highlights: ► New green-emitting SrB 2 O 4 :Tb 3+ phosphor was synthesized by solid-state reaction. ► Li + , Na + , and K + can all increase luminescent intensity of SrB 2 O 4 :Tb 3+ . ► Na + is the optimal charge compensator among Li + , Na + and K + . ► SrB 2 O 4 :Tb 3+ is a promising green phosphor for fabricating WLED. -- Abstract: A new green-emitting SrB 2 O 4 :Tb 3+ phosphor was synthesized by solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed all the samples with orthorhombic formation of SrB 2 O 4 . The excitation spectra indicate the phosphor can be effectively excited by near ultraviolet (NUV) light, making it attractive as conversion phosphor for LED applications. The phosphor exhibits a bright green emission with the highest photoluminescence (PL) intensity at 544 nm excited by 378 nm light. The critical quenching concentration of Tb 3+ in SrB 2 O 4 :Tb 3+ is about 10 mol%. The effects of charge compensators (Li + , Na + , and K + ) on photoluminescence of SrB 2 O 4 :Tb 3+ were also studied. The results show that the emission intensity can be improved by all the three charge compensators and Na + is the optimal one for SrB 2 O 4 :Tb 3+ . All properties show that the phosphor is a promising green phosphor pumped by NUV InGaN chip for fabricating white light-emitting diodes (WLEDs).

  20. Effect of UV irradiation on different types of luminescence of SrAl2 O4 :Eu,Dy phosphors.

    Science.gov (United States)

    Jha, Piyush

    2016-11-01

    This paper reports the luminescence behavior of Sr 0.097 Al 2 O 4 :Eu 0.01 ,Dy 0.02 phosphors under UV-irradiation. The effect of UV-irradiation on afterglow (AG), thermoluminescence (TL) and mechanoluminescence (ML) of Sr 0.097 Al 2 O 4 :Eu 0.01 ,Dy 0.02 phosphors is investigated. The space group of Sr 0.097 Al 2 O 4 :Eu 0.01 ,Dy 0.02 phosphors is monoclinic P2 1 . The prepared phosphors exhibit a long AG, intense TL and ML. It is found that the AG, ML intensity and TL increase with increasing duration of irradiation time. The ML intensity decreases with successive impact of the load onto the phosphors, whereby the diminished ML intensity can be recovered by UV-irradiation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. [Effect of charge compensation on emission spectrum of Sr2SiO4 : Dy3+ phosphor].

    Science.gov (United States)

    Li, Pan-Lai; Wang, Zhi-Jun; Yang, Zhi-Ping; Guo, Qing-Lin

    2009-01-01

    The Sr2SiO4 : Dy3+ phosphor was synthesized by the high temperature solid-state reaction method in air. Dy2O3 (99.9%), SiO2 (99.9%), SrCO3 (99.9%), Li2CO3 (99.9%), Na2CO3 (99.9%) and K2CO3 (99.9%) were used as starting materials, and the Dy3+ doping concentration was 2 mol%. The emission spectrum was measured by a SPEX1404 spectrophotometer, and all the characterization of the phosphors was conducted at room temperature. The emission spectrum of Sr2 SiO4 : Dy3+ phosphor showed several bands centered at 486, 575 and 665 nm under the 365 nm excitation. The effect of Li+, Na+ and K+ on the emission spectra of Sr2SiO4 : Dy3+ phosphor was studied. The results show that the location of the emission spectrum of Sr2SiO4 : Dy3+ phosphor was not influenced by Li+, Na+ and K+. However, the emission spectrum intensity was greatly influenced by Li+, Na+ and K+, and the evolvement trend was monotone with different charge compensation, i. e. the emission spectrum intensity of Sr2SiO4 : Dy3+ phosphor firstly increased with increasing Li+ concentration, then decreased. However the charge compensation concentration corresponding to the maximum emission intensity was different with different charge compensation, and the concentration is 4, 3 and 3 mol% corresponding to Li+, Na+ and K+, respectively. And the theoretical reason for the above results was analyzed.

  2. Analysis of (Ba,Ca,Sr)3MgSi2O8:Eu2+, Mn2+ phosphors for application in solid state lighting

    International Nuclear Information System (INIS)

    Han, J.K.; Piqutte, A.; Hannah, M.E.; Hirata, G.A.; Talbot, J.B.; Mishra, K.C.; McKittrick, J.

    2014-01-01

    The luminescence properties of Eu 2+ and Mn 2+ co-activated (Ba,Ca,Sr) 3 MgSi 2 O 8 phosphors prepared by combustion synthesis were studied. Eu 2+ -activated (Ba,Ca,Sr) 3 MgSi 2 O 8 has a broad blue emission band centered at 450–485 nm and Eu 2+ –Mn 2+ -activated (Ba,Ca,Sr) 3 MgSi 2 O 8 exhibits a red emission around 620–703 nm, depending on the relative concentrations of Ba, Ca and Sr. The particle size of Eu 2+ and Mn 2+ co-activated (Ba,Ca) 3 MgSi 2 O 8 ranges from 300 nm to 1 μm depending on the metal ion and are agglomerated due to post-synthesis, high temperature annealing. The green emission of Ba 3 MgSi 2 O 8 originates from secondary phases (Ba 2 SiO 4 and BaMgSiO 4 ) confirmed by emission spectra and X-ray diffraction patterns. The secondary phases of Ba 3 MgSi 2 O 8 are removed by the addition of Sr. The quantum efficiencies range from 45% to 70% under 400 nm excitation and the lifetime of red emission of Ba 3 MgSi 2 O 8 decreases significantly with increasing temperature, which is 54% at 400 K of that at 80 K compared to that of blue emission (90% at 400 K of that at 80 K). -- highlights: • (Ba,Ca,Sr) 3 MgSi 2 O 8 :Eu 2+ , Mn 2+ phosphors were prepared by a combustion synthesis method. • The emission spectra consist of broad blue-emission band and red-emission band. • The quantum efficiencies range between 45% and 70%, depending on the relative concentrations of Ba, Ca and Sr. • The secondary phases were eliminated by additions of Sr. • Lifetime of the red-emission decreases with increasing temperature, suggesting that these phosphors are not useful for solid state lighting applications

  3. Tunable emission in Ln3+ (Ce3+/Dy3+, Ce3+/Tb3+) doped KNa3Al4Si4O16 phosphor synthesized by combustion method

    Science.gov (United States)

    Kolte, M. M.; Pawade, V. B.; Bhattacharya, A. B.; Dhoble, S. J.

    2018-05-01

    Ln3+ (Ln = Ce3+/Dy3+, Ce3+/Tb3+) doped KNa3Al4Si4O16 phosphor has been synthesized by Combustion method (CS) at 550° C successfully. Ln3+ (Ln = Ce3+, Dy3+, Tb3+) ions when doped in KNa3Al4Si4O16 host lattice, it shows blue and green emission band under the near Ultraviolet (NUV) excitation wavelength. The Photoluminescence excitation (PLE) and emission spectra are observed due to f-f and d-f transition of rare earth ions. Also, an effective energy transfer (ET) study from Ce3+ → Dy3+ and Ce3+ → Tb3+ ions has been studied and confirmed on the basis of Dexter-Foster theory. Further synthesized phosphor is well characterized by XRD, SEM, TEM and decay time measurement. However, the analysis of crystallite size, lattice strain has been studied by using theoretical as well as experimental techniques. Hence, the observed tunable emission in Ln3+ doped KNa3Al4Si4O16 phosphor may be applicable for solid state lighting technology.

  4. Enhancement of white-light-emission from single-phase Sr5(PO4)3F:Eu(2+),Mn(2+) phosphors for near-UV white LEDs.

    Science.gov (United States)

    Feng, Yaomiao; Huang, Jinping; Liu, Lili; Liu, Jie; Yu, Xibin

    2015-09-07

    A series of single-phase broadband white-light-emitting Sr5(PO4)3F:Eu(2+),Mn(2+) phosphors were prepared by a solid state reaction. The luminescence property, and the crystal and electronic structures of the fluorophosphates were studied by photoluminescence analysis, XRD Rietveld refinement and density functional theory calculation (DFT), respectively. Under near ultraviolet excitation in the 250 to 430 nm wavelength range, the phosphors exhibit two emission bands centered at 440 and 556 nm, caused by the Eu(2+) and Mn(2+) ions. By altering the relative ratios of Eu(2+) and Mn(2+) in the compounds, the emission color could be modulated from blue to white. The efficient energy transfer from the Eu(2+) to Mn(2+) ions could be ascribed to the well crystallized host lattice and the facile substitution of Eu(2+) and Mn(2+) for Sr(2+) sites due to similar ionic radii. A series of fluxes were investigated to improve the photoluminescence intensity. When KCl was used as flux in the synthesis, the photoluminescence intensity of Sr5(PO4)3F:Eu(2+),Mn(2+) was enhanced by 85% compared with no fluxes added. These results demonstrate that the single-phase Sr5(PO4)3F:Eu(2+),Mn(2+) with enhanced luminescence efficiency could be promising as a near UV-convertible direct white-light-emitting phosphor for WLED applications.

  5. Luminescent properties and energy transfer in the green phosphors LaBSiO5:Tb3+, Ce3+.

    Science.gov (United States)

    Wang, Zhengliang; Cheng, Ping; He, Pei; Liu, Yong; Zhou, Yayun; Zhou, Qiang

    2015-09-01

    LaBSiO5 phosphors doped with Ce(3+) and Tb(3+) were synthesized using the conventional solid-state method at 1100 °C. The phase purity and luminescent properties of these phosphors are investigated. LaBSiO5:Tb(3+) phosphors show intense green emission, and LaBSiO5 phosphors doped with Ce(3+) show blue-violet emission under UV light excitation. LaBSiO5 phosphors co-doped with Ce(3+) and Tb(3+) exhibit blue-violet and green emission under excitation by UV light. The blue-violet emission is due to the 5d-4f transition of Ce(3+) and the green emission is ascribed to the (5) D4 → (7) F5 transition of Tb(3+). The spectral overlap between the excitation band of Tb(3+) and the emission band of Ce(3+) supports the occurrence of energy transfer from Ce(3+) to Tb(3+), and the energy transfer process was investigated. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Synthesis and luminescence properties of glass ceramics containing MSiO3:Eu2+ (M=Ca, Sr, Ba) phosphors for white LED

    International Nuclear Information System (INIS)

    Cui Zhiguang; Jia Guohua; Deng Degang; Hua Youjie; Zhao Shilong; Huang Lihui; Wang Huanping; Ma Hongping; Xu Shiqing

    2012-01-01

    Eu 2+ doped silicate glasses were prepared of the system 52SiO 2 -48MO: xEu 2+ (in molar ratio, M=Ca, Sr, Ba; x=1, 3, 5, 7, 9) by a high temperature melt-quenching method in a reducing atmosphere. Glass ceramics containing MSiO 3 :Eu 2+ (M=Ca, Sr, Ba) nano-phosphors were obtained after the heat treatment of the glass samples. The excitation, emission spectra and lifetime decay curves of 4f 6 5d 14f 7 of Eu 2+ were measured and interpreted with respect to their crystal structures and multi-site occupations of divalent europium in the hosts. Their excitation bands mainly extend from 450 to 250 nm, which is adaptable to the main emission region of the UV LED chip. With UV light excitation, the Eu 2+ emission in CaSiO 3 , SrSiO 3 and BaSiO 3 shows blue, green and yellow colors centered at 440, 505 and 555 nm, respectively. The critical Eu 2+ concentration was studied and determined to be x=5 for both CaSiO 3 and SrSiO 3 and x=7 for BaSiO 3 phosphors. The results show that the Eu 2+ doped glass ceramic phosphors containing MSiO 3 (M=Ca, Sr, Ba) nano-crystals can be used as potential matrix materials for a high power white LED pumped by the UV LED chip. - Highlights: → Glass ceramic containing MSiO 3 :Eu 2+ (M=Ca, Sr, Ba) phosphors prepared. → Derived phosphors emit intensively blue, green and yellow colors. → Their luminescence properties and crystal structures have been investigated. → Concentration quenching effects observed and analyzed. → Potential application for UV chip exciting white LED evaluated.

  7. Phosphors for solid-state lighting: New systems, deeper understanding

    Science.gov (United States)

    Denault, Kristin Ashley

    We explore the structure-composition-property relationships in phosphor materials using a multitude of structural and optical characterization methods including high resolution synchrotron X-ray and neutron powder diffraction and total scattering, low-temperature heat capacity, temperature- and time-resolved photoluminescence, and density functional theory calculations. We describe the development of several new phosphor compositions and provide an in-depth description of the structural and optical properties. We show structural origins of improved thermal performance of photoluminescence and methods for determining structural rigidity in phosphor hosts that may lead to improved luminescent properties. New white light generation strategies are also explored. We begin by presenting the development of a green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1- x(SiO5)x:Ce3+. An examination of the host lattice, and the local structure around the Ce3+ activator ions points to how chemical substitutions play a crucial role in tuning the optical properties of the phosphor. The emission wavelength can be tuned from green to yellow by tuning the composition, x. Photoluminescent quantum yield is determined to be 70+/-5% for some of the examples in the series with excellent thermal properties. Phosphor-converted LED devices are fabricated using an InGaN LED and are shown to exhibit high color rendering white light. Next, we identify two new phosphor solid-solution systems, (Ba1- xSrx)9 Sc2Si6O24:Ce3+,Li+ and Ba9(Y1-ySc y)2Si6O24:Ce3+. The substitution of Sr for Ba in (Ba1-xSrx ) 9Sc2Si6O24:Ce 3+,Li + results in a decrease of the alkaline earth-oxygen bond distances at all three crystallographic sites, leading to changes in optical properties. The room temperature photoluminescent measurements show the structure has three excitation peaks corresponding to Ce3+ occupying the three independent alkaline earth sites. The emission of (Ba 1- xSrx) 9Sc2Si 6O24:Ce3

  8. Luminescent properties of Mg3Ca3(PO4)4: Eu2+ blue-emitting phosphor for white light emitting diodes

    International Nuclear Information System (INIS)

    Li Yinqun; Deng Degang; Wang Qian; Li Gaofeng; Hua Youjie; Jia Guohua; Huang Lihui; Zhao Shilong; Wang Huanping; Li Chenxia; Xu Shiqing

    2012-01-01

    A blue-emitting phosphor, Eu 2+ -activated Mg 3 Ca 3 (PO 4 ) 4 phosphor was synthesized by conventional solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the phase formation. Photoluminescence (PL) results showed that Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ could be efficiently excited by UV–visible light from 250 to 430 nm, which matched well with the emission wavelengths of near-UV and UV LED chips. The effects of the doped-Eu 2+ concentration in Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ on the PL were also investigated. The result reveals that Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ is a potential blue-emitting phosphor for white LEDs. - Graphical Abstract: The excitation spectra show a broad peak from 250 to 430 nm, which means Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ phosphor can be suitable for application in white LEDs excited by the near-UV and UV LEDs. The emission spectrum peaked at 456 nm with the full-width half-maximum (FWHM) of 102 nm is attributed to the 4f 6 5d 14f 7 transition of the Eu 2+ ion. The asymmetric emission spectra show that Eu 2+ has more one emission center in Mg 3 Ca 3 (PO 4 ) 4 , which can be deconvoluted into at least four Gaussian components peaked at 423, 446, 483 and 510 nm. Highlights: ► Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ phosphor could be effectively excited by UV chips (360–430 nm). ► Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ phosphor is a potential blue-emitting phosphor for white LEDs. ► Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ phosphor shows a broadband emission.

  9. Site Occupancies, Luminescence, and Thermometric Properties of LiY9(SiO4)6O2:Ce3+ Phosphors.

    Science.gov (United States)

    Zhou, Weijie; Pan, Fengjuan; Zhou, Lei; Hou, Dejian; Huang, Yan; Tao, Ye; Liang, Hongbin

    2016-10-04

    In this work, we report the tunable emission properties of Ce 3+ in an apatite-type LiY 9 (SiO 4 ) 6 O 2 compound via adjusting the doping concentration or temperature. The occupancies of Ce 3+ ions at two different sites (Wyckoff 6h and 4f sites) in LiY 9 (SiO 4 ) 6 O 2 have been determined by Rietveld refinements. Two kinds of Ce 3+ f-d transitions have been studied in detail and then assigned to certain sites. The effects of temperature and doping concentration on Ce 3+ luminescence properties have been systematically investigated. It is found that the Ce 3+ ions prefer occupying Wyckoff 6h sites and the energy transfer between Ce 3+ at two sites becomes more efficient with an increase in doping concentration. In addition, the charge-transfer vibronic exciton (CTVE) induced by the existence of free oxygen ion plays an important role in the thermal quenching of Ce 3+ at 6h sites. Because of the tunable emissions from cyan to blue with increasing temperature, the phosphors LiY 9 (SiO 4 ) 6 O 2 :Ce 3+ are endowed with possible thermometric applications.

  10. Synthesis and luminescence properties of Ce{sup 3+}-doped Y{sub 3}Al{sub 3.5}Ga{sub 1.5}O{sub 12} green phosphor for white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Yaochun [Fujian Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Yu, Yuxi, E-mail: yu_heart@xmu.edu.cn [Fujian Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Chen, Guolong [Fujian Engineering Research Center for Solid-state Lighting, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Fang, Jiyu [Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2016-04-15

    A series of Ce{sup 3+}-doped Y{sub 3}Al{sub 3.5}Ga{sub 1.5}O{sub 12} green phosphors were successfully synthesized by a solid-state reaction method. The microstructure, morphology, luminescence spectra, luminescence quantum yield (QY) and thermal stability of the phosphor were investigated. The critical concentration of Ce{sup 3+} ions in Y{sub 3−m}Al{sub 3.5}Ga{sub 1.5}O{sub 12}:mCe{sup 3+} is m=0.06. The QY of Y{sub 2.94}Al{sub 3.5}Ga{sub 1.5}O{sub 12}:0.06Ce{sup 3+} phosphor is as high as 94% under excitation at 450 nm and its luminescence intensity at 150 °C still maintains 90% of that measured at 25 °C, which are just a little worse than those of commercial Lu{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} green phosphor but much better than those of commercial (Sr,Ba){sub 2}SiO{sub 4}:Eu{sup 2+} green phosphor. A white LED lamp was fabricated by employing Y{sub 2.94}Al{sub 3.5}Ga{sub 1.5}O{sub 12}:0.06Ce{sup 3+} as a green phosphor and commercial (Ca,Sr)AlSiN{sub 3}:Eu{sup 2+} as a red phosphor (628 nm), its Ra value, correlated color temperature (CCT), CIE1931 chromaticity coordinates and luminous efficiency is 84, 3081 K, (x=0.4369, y=0.4142) and 102 lm/W, respectively. The experimental results demonstrate that Y{sub 2.94}Al{sub 3.5}Ga{sub 1.5}O{sub 12}:0.06Ce{sup 3+} is a promising green phosphor not only can be used for high color rendering index white LEDs but also for high-power white LEDs.

  11. Preparation, characterization and luminescence of Sm~(3+) or Eu~(3+) doped Sr_2CeO_4 by a modified sol-gel method

    Institute of Scientific and Technical Information of China (English)

    张春祥; 史建设; 杨绪杰; 陆路德; 汪信

    2010-01-01

    Superfine Sr2CeO4:RE3+ (RE=Eu, Sm) phosphors were synthesized at relatively low temperature by a modified sol-gel method using nitrates as raw materials, ethylenediaminetetraacetic acid (EDTA) as complexing agent. Single phase phosphors could be obtained at calcination temperature above 800 °C and pH value higher than 6.4 of initial solution. The as-prepared powders consisted of uniform crotch-like grains. The preparation process was monitored by thermogravimetric and differential thermal analysis (TG-DTA) ...

  12. Can one observe by μ SR the transition from uncorrelated to correlated spin fluctuations? Example: Nd1.4Ce0.2Sr0.4CuO4

    International Nuclear Information System (INIS)

    Pinkpank, M.; Amato, A.; Gygax, F.N.; Schenck, A.; Henggeler, W.; Fischer, P.

    1997-01-01

    μSR-measurements in ZF and LF on Nd 1.4 Ce 0.2 Sr 0.4 CuO 4-δ show a sharp increase of the depolarisation rate (λ) below ∼ 2K. This increase can be explained by the transition from uncorrelated to correlated spin fluctuations, which is in agreement with results obtained by neutron scattering

  13. Photoluminescence and scintillation properties of Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) crystals

    Science.gov (United States)

    Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    Apatite crystals with chemical compositions of 0.5% Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) were synthesized by the Floating Zone method, and then we evaluated their photoluminescence (PL) and scintillation properties. All the Ce-doped samples exhibited PL and scintillation with an intense broad emission in 400-550 nm in which the origin was attributed to the 5d-4f transition of Ce3+, and the emission peak became broader with increasing the concentration of Lu3+. Both PL and scintillation decay time profiles were best-approximated by a sum of two exponential decay functions, and the origin of slower component was attributed to the 5d-4f transition of Ce3+. In the X-ray induced afterglow measurements, the Ce-doped Sr2(Gd0.4Lu0.6)8(SiO4)6O2 sample exhibited the lowest afterglow level. Furthermore, the Ce-doped Sr2(Gd0.5Lu0.5)8(SiO4)6O2 and Sr2(Gd0.4Lu0.6)8(SiO4)6O2 samples showed a clear full energy deposited peak under 5.5 MeV 241Am α-ray irradiation, and the estimated absolute scintillation light yields were around 290 and 1300 ph/5.5 MeV-α, respectively.

  14. Enhancement of photoluminescence properties and modification of crystal structures of Si{sub 3}N{sub 4} doping Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kaixin, E-mail: kxsong@hdu.edu.cn [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhang, Fangfang [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Chen, Daqin [College of Materials Sciences and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Song; Zheng, Peng [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Qingming [Instrument Analysis and Testing Center, Fuzhou University, Fuzhou 350002 (China); Jiang, Jun [Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Junming; Qin, Huibin [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-10-15

    Highlights: • Si{sub 3}N{sub 4} modified Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} phosphors were prepared. • The luminescence intensity of Li{sub 2}Sr{sub 0.995}SiO{sub 4}:Eu{sup 2+} was enhanced by doping Si{sub 3}N{sub 4}. • The fluorescence decay times and thermal stability were enhanced by doping Si{sub 3}N{sub 4}. - Abstract: Si{sub 3}N{sub 4} modified Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} (Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+}) phosphors were synthesized with the conventional solid-state reaction in the reduced atmosphere. The crystal structure and vibrational modes were analyzed by X-ray diffraction, Raman scattering spectroscopy and Rietveld crystal structure refinement. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra showed that Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} powder exhibited a broad yellow emission band centered at 560 nm under the excitation of 460 nm visible light, due to the 4f{sup 6}5d{sup 1} → 4f{sup 7} transition of Eu{sup 2+}. The partial nitridation of Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} (x = 0.01) phosphors led to a large enhancement in the luminescence intensity, as much as 190%. At the same time, the fluorescence decay behavior curves further showed that the photoluminescence efficiencies of Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} phosphors were enhanced by addition of Si{sub 3}N{sub 4}. The temperature quenching characteristics confirmed that the oxynitride based Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} showed slightly higher stability. It is implied that Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} phosphors had a possible potential application on white LEDs to match blue light chips.

  15. Combustion synthesis of CaSc{sub 2}O{sub 4}:Ce{sup 3+} nano-phosphors in a closed system

    Energy Technology Data Exchange (ETDEWEB)

    Peng Wenfang; Zou Shaoyu; Liu Guanxi; Xiao Quanlan; Zhang Rui; Xie Lijuan; Cao Liwei [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Meng Jianxin, E-mail: tmjx@jnu.edu.cn [Institute of Nano-Chemistry, Jinan University, Guangzhou 510632 (China); Liu Yingliang [Institute of Nano-Chemistry, Jinan University, Guangzhou 510632 (China)

    2011-06-09

    Highlights: > CaSc{sub 2}O{sub 4}:Ce{sup 3+} nano-phosphors can be prepared by a single-step combustion method. > The ignition temperature is the lowest in the combustion synthesis of Ce{sup 3+}/Eu{sup 2+} doped phosphors. > The as-prepared nano-phosphors give a uniform particle size in the range of 15-20 nm and have highly dispersity and fluorescence intensity. > It is a convenient method for preparation of monodispersed oxide nano-phosphors, especially those being sensitive to air at high temperature. - Abstract: The CaSc{sub 2}O{sub 4}:Ce{sup 3+} nano-phosphors were successfully prepared by a single-step combustion method at an ignition temperature as low as 200 deg. C in a closed autoclave using glycine as a fuel and PEG4000 as a dispersant. The samples were characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscope (TEM). The results revealed that CaSc{sub 2}O{sub 4}:Ce{sup 3+} nano-phosphors can be conveniently prepared at an ignition temperature as low as 200 deg. C, which was much lower than that in the ordinary combustion methods. The optimized ignition temperature was 220 deg. C. The CaSc{sub 2}O{sub 4}:Ce{sup 3+} nano-phosphors give a uniform particle size in the range of 15-20 nm. The low ignition temperature and the addition of PEG4000 dispersant play important roles in the formation of small sized nanoparticles. The as-prepared nano-phosphors were incompact aggregates, but highly dispersed nano-phosphors can be obtained after further ultrasonic treatment. The CaSc{sub 2}O{sub 4}:Ce{sup 3+} nano-phosphors give satisfactory luminescence characteristic benefiting from the closed circumstance, in which cerium atoms can be isolated from the oxidizing atmosphere and non-fluorescent Ce{sup 4+} ions can be ruled out. The present highly dispersed CaSc{sub 2}O{sub 4}:Ce{sup 3+} nano-phosphors with efficient fluorescence are promising in the field of biological labeling

  16. Enhancing the Photocatalytic Activity of Sr4 Al14 O25 : Eu2+ , Dy3+ Persistent Phosphors by Codoping with Bi3+ Ions.

    Science.gov (United States)

    García, Carlos R; Oliva, Jorge; Romero, Maria Teresa; Diaz-Torres, Luis A

    2016-03-01

    The photocatalytic activity of Bismuth-codoped Sr 4 Al 14 O 25 : Eu 2+ , Dy 3+ persistent phosphors is studied by monitoring the degradation of the blue methylene dye UV light irradiation. Powder phosphors are obtained by a combustion synthesis method and a postannealing process in reductive atmosphere. The XRD patterns show a single orthorhombic phase Sr 4 Al 14 O 25 : Eu 2+ , Dy 3+ , Bi 3+ phosphors even at high Bismuth dopant concentrations of 12 mol%, suggesting that Bi ions are well incorporated into the host lattice. SEM micrographs show irregular micrograins with sizes in the range of 0.5-20 μm. The samples present an intense greenish-blue fluorescence and persistent emissions at 495 nm, attributed to the 5d-4f allowed transitions of Eu 2+ . The fluorescence decreases as Bi concentration increases; that suggest bismuth-induced traps formation that in turn quench the luminescence. The photocatalytic evaluation of the powders was studied under both 365 nm UV and solar irradiations. Sample with 12 mol% of Bi presented the best MB degradation activity; 310 min of solar irradiation allow 100% MB degradation, whereas only 62.49% MB degradation is achieved under UV irradiation. Our results suggest that codoping the persistent phosphors with Bi 3+ can be an alternative to enhance their photocatalytic activity. © 2016 The American Society of Photobiology.

  17. Luminescent properties of red-emitting LiSr4B3O(9−3x/2)Nx:Eu2+ phosphor for white-LEDs

    International Nuclear Information System (INIS)

    Yu Hua; Deng Degang; Xu Shiqing; Yu Cuiping; Yin Haoyong; Nie Qiulin

    2012-01-01

    An Eu 2+ -activated oxynitride LiSr (4−y) B 3 O (9−3x/2) N x :yEu 2+ red-emitting phosphor was synthesized by solid-state reactions. The synthesized phosphor crystallized in a cubic system with space group Ia–3d. The LiSr 4 B 3 O (9−3x/2) N x :Eu 2+ phosphors exhibited a broad red emission band with a peak at 610 nm and a full width at half maximum of 106 nm under 410 nm excitation, which is ascribed to the 4f 6 5d 14f 7 transition of Eu 2+ . The optimal doped nitrogen concentration was observed to be x=0.75. The average decay times of two different emission centers were estimated to be 568 and 489 ns in the LiSr 3.99 B 3 O 8.25 N 0.5 :0.01Eu 2+ phosphors, respectively. Concentration quenching of Eu 2+ ions occurred at y=0.07, and the critical distance was determined as 17.86 Å. The non-radiative transitions via dipole–dipole interactions resulted in the concentration quenching of Eu 2+ -site emission centers in the LiSr 4 B 3 O 9 host. These results indicate LiSr 4 B 3 O (9−3x/2) N x :Eu 2+ phosphor is promising for application in white near-UV LEDs. - Highlights: ► An oxynitride LiSr 4 B 3 O 9 N:Eu 2+ red-emitting phosphor was prepared at low synthesis temperature. ► The introduced nitrogen improved the excitation and emission intensity of the phosphor. ► The wide excitation band matches well with near-UV LED chips. ► The emission spectrum of the phosphor showed a broad full width at half maximum of about 106 nm.

  18. Luminescent properties and energy transfer of CaO:Ce3+, Mn2+ phosphors for white LED

    International Nuclear Information System (INIS)

    Liu, Qipeng; Yin, Huijun; Liu, Tao; Wang, CuiQing; Liu, Riqiang; Lü, Wei; You, Hongpeng

    2016-01-01

    We have synthesized yellow–orange CaO:Ce 3+ ,Mn 2+ phosphors by solid-state reaction. Photoluminescence properties and energy transfer mechanism from Ce 3+ to Mn 2+ ions have been investigated. The Ce 3+ activated phosphors exhibit strong absorption in the range of 250–490 nm and a yellow emission centered at 554 nm. When Mn 2+ ions were codoped, CaO:Ce 3+ ,Mn 2+ phosphors exhibit yellow emission band of Ce 3+ as well as orange emission band centered at 600 nm of Mn 2+ . We observed an efficient energy transfer from Ce 3+ to Mn 2+ ions in CaO:Ce 3+ ,Mn 2+ , which was verified from the lifetime decay curves and was discussed by Dexter's energy transfer theory. The critical distance of the energy transfer from Ce 3+ to Mn 2+ ions has also been calculated to be 12.3 Å by spectral overlap methods following Dexter's theory and by concentration quenching mechanism to be 15.2 Å. Moreover, by combining the synthesized phosphors and InGaN blue chip (460 nm), warm-white light has been created.

  19. Preparation of MAl 2 O 4 : Eu 2+ , Sm 3+ (M = Ca, Sr, Ba) Phosphors ...

    African Journals Online (AJOL)

    A series of MAl2O4: Eu2+, Sm3+ (M = Ca, Sr, Ba) phosphors was prepared by the combustion method, and the influence of these alkaline earth metals on the structure and luminescent performances for these phosphors was investigated. A relationship was established between their composition, crystallization capacity and ...

  20. Structural characterization and optical properties of Eu"2"+ and Dy"2"+ doped Sr_2SiO_4 phosphor by solid state reaction method

    International Nuclear Information System (INIS)

    Verma, Durga; Verma, Mohan L.; Upma; Patel, R.P.

    2016-01-01

    Thermoluminescence, SEM, FTIR Divalent dysprosium and europium doped strontium silicate (Sr_2SiO_4) phosphors were synthesized with the high-temperature solid-state reaction technique. The obtained phosphor was well characterized by powder X-ray diffraction, scanning electron microscopy, FTIR, UV-visible spectroscopy and thermoluminescence. The crystal structure of the prepared phosphor has an orthorhombic structure with space group Pnma. From scanning electron microscopy (SEM), agglomerations of particles were observed due to the high temperature synthesis process. The chemical composition of the sintered Sr_2SiO_4:Dy"2"+ and Sr_2SiO_4: Eu"2"+ phosphor was confirmed by energy dispersive X-ray spectroscopy (EDX). The UV-VIS analysis can be thought as a good quality check for the optical behavior of materials. The Fourier transmission infrared spectroscopy (FTIR) confirms the present elements in phosphor. Thermoluminescence study was carried out for the phosphor with UV irradiation show one glow peak. The trapping parameters associated with the prominent glow peak of Sr_2SiO_4:Dy"2"+ and Sr_2SiO_4:Eu"2"+ are calculated using Chen's glow curve method. The release of holes/electrons from defect centers at the characteristic trap site initiates the luminescence process in this material. (author)

  1. Persistent luminescence and thermoluminescence of UV/VIS -irradiated SrAl2O4: Eu2+, Dy3+ phosphor

    International Nuclear Information System (INIS)

    Pereyda-Pierre, C.; Meléndrez, R.; García, R.; Pedroza-Montero, M.; Barboza-Flores, M.

    2011-01-01

    The persistent luminescence and thermoluminescence properties of SrAl 2 O 4 : Eu 2+ , Dy 3+ phosphors excited with UV–VIS light in the 200–500 nm region were investigated. The thermoluminescence glow curve was found to be composed of peaks around 70, 125 and 245 °C. The persistent luminescence and thermoluminescence excitation spectra exhibited a broad band around 300–500 nm centered at 400 and 420 nm respectively. A linear behavior of the integrated thermoluminescence intensity and persistent luminescence versus irradiation time was found for the first 60 s. The charge detrapping from the 70 °C trapping levels was the major contributor to the observed persistent luminescence at room temperature. The SrAl 2 O 4 : Eu 2+ , Dy 3+ phosphors have suitable properties to be applied as storage and persistent luminescence UV–VIS irradiation dose phosphor. -- Highlights: ► SrAl 2 O 4 :Eu 2+ , Dy 3+ persistent luminescence and thermoluminescence was measured. ► The phosphor was irradiated with UV–VIS photons in the 200–500 nm wavelength range. ► SrAl 2 O 4 :Eu 2+ , Dy 3+ behaves adequately as persistent and storage UV–VIS dosimeter. ► The persistent luminescence dosimetry does not require heat or light stimulation.

  2. Luminescence properties of cerium-doped di-strontium magnesium di-silicate phosphor by the solid-state reaction method

    Science.gov (United States)

    Prasad Sahu, Ishwar

    2016-05-01

    A series of Sr2MgSi2O7:xCe3+ (x = 1.0%, 2.0%, 3.0%, 4.0% and 5.0%) phosphors were synthesized by the solid-state reaction method. The phosphor with optimum thermoluminescence, photoluminescence and mechanoluminescence (ML) intensity was characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared techniques. The trapping parameters (i.e. activation energy, frequency factor and order of the kinetics) of each synthesized phosphor have been calculated using the peak shape method and the results have been discussed. Under ultraviolet excitation (325 nm), Sr2MgSi2O7:xCe3+ phosphors were composed of a broad band peaking at 385 nm, belonging to the broad emission band which emits violet-blue color. Commission International de I'Eclairage coordinates have been calculated for each sample and their overall emission is near violet-blue light. In order to investigate the suitability of the samples for industrial uses, color purity and color rendering index were calculated. An ML intensity of optimum [Sr2MgSi2O7:Ce3+ (3.0%)] phosphor increases linearly with increasing impact velocity of the moving piston which suggests that these phosphors can be used as fracto-ML-based devices. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity of the moving piston.

  3. Cu"+ luminescence in Na_2Sr_2Al_2PO_4Cl_9 halophosphate phosphor

    International Nuclear Information System (INIS)

    Yerpude, Vrushali; Dhoble, S.J.; Ghormare, K.B.

    2016-01-01

    This article reports the luminescence of copper doped halophosphate Na_2Sr_2Al_2PO_4Cl_9. The phosphor was synthesized by wet chemical method by varying Cu concentrations as 0.02, 0.05, 0.1, 0.2 and 0.5 mole %.The material was further dried in the oven at 80 °C with subsequent quenching at 200°C. Photoluminescence (PL) properties were studied with Shimadzu RF-5301 PC Spectroflurophotometer. PL excitation spectra of monitored at 439 nm emission wavelength, shows a prominent peak around 381 nm from the ground state electronic configuration 3d"1"0.The PL emission spectra of the phosphor monitored at 381 nm excitation wavelength in the blue region shows a broadband band around 412 nm with a shoulder peak at 440 nm, corresponding to the 3d"1"0 ↔ 3d"94s transitions of copper, which are strictly forbidden for the free ion but become partially allowed in crystals or glasses by coupling with lattice vibrations of odd parity resulting in broad excitation and emission bands. The luminescence intensity is found to increase progressively with the doping concentrations of activator and the maximum intensity is observed for 0.1 mole %. The PL spectra is found to be the same for all concentrations with difference only in the intensity. The excited states energies and the Stokes shift are reported to be very sensitive to the size and the symmetry of the copper site, leading to strong modulations of the spectral distribution, depending on the nature of the material. (author)

  4. Properties–structure relationship research on LiCaPO4:Eu2+ as blue phosphor for NUV LED application

    International Nuclear Information System (INIS)

    Zhang, Xinguo; Mo, Fuwang; Zhou, Liya; Gong, Menglian

    2013-01-01

    Graphical abstract: The graphical abstract shows the excitation and emission spectrum of LiCaPO 4 :Eu 2+ , and the CIE coordinates of LiCaPO 4 :Eu 2+ . The inset shows the photo of blue LED prepared by LiCaPO 4 :Eu 2+ and NUV chip. It indicates that this phosphor can be excited by UV light and emit strong greenish-blue light. Highlights: •Pure phase blue phosphors of LiCaPO 4 :Eu 2+ with a hexagonal structure were first prepared via solid-state method. •The crystallographic site of Eu 2+ ion in the LiCaPO 4 lattice was identified as 8-fold Ca 2+ site. •The phosphor exhibits excellent thermal stability and the corresponding mechanism was thermal assisted ionization. •Bright and high color purity blue LED prototype based on LiCaPO 4 :Eu 2+ phosphor was fabricated. -- Abstract: Blue-emitting phosphors of Eu 2+ -activated LiCaPO 4 with a hexagonal structure were prepared via a conventional solid-state method. The XRD, PL spectra and thermal quenching were applied to characterize the phosphors. The crystallographic site of Eu 2+ ion in the LiCaPO 4 lattice was identified and discussed. The optimized LiCaPO 4 :0.03Eu 2+ exhibits the bright greenish-blue emission with CIE coordinates of (0.119, 0.155) and a quantum efficiency of 52%. The critical energy-transfer distance was confirmed as ∼18 Å by both calculated crystal structure method and experimental spectral method. The thermal stability of LiCaPO 4 :Eu 2+ was evaluated by temperature-dependent PL spectra, and the thermal quenching mechanism was found to be thermal assisted ionization. Prototype blue LEDs with high color purity and good current stability were fabricated

  5. Synthesis and photoluminescence characteristics of (Y,Gd)BO3:RE (RE = Eu(3+), Ce(3+), Dy(3+) and Tb(3+)) phosphors for blue chip and near-UV white LEDs.

    Science.gov (United States)

    Rangari, V V; Singh, V; Dhoble, S J

    2016-03-01

    A series of Eu(3+)-, Ce(3+)-, Dy(3+)- and Tb(3+)-doped (Y,Gd)BO3 phosphors was synthesized by a solid-state diffusion method. X-Ray diffraction confirmed their hexagonal structure and the scanning electron microscopy results showed crystalline particles. The excitation spectra revealed that (Y,Gd)BO3 phosphors doped with Eu(3+), Ce(3+), Dy(3+) and Tb(3+) are effectively excited with near UV-light of 395 nm/blue light, 364, 351 and 314 nm, respectively. Photoluminescence spectra of Eu(3+)-, Ce(3+)- and Tb(3+)/Dy(3+)-doped phosphor showed intense emission of reddish orange, blue and white light, respectively. The phosphor Y0.60Gd0.38BO3:Ce0.02 showed CIE 1931 color coordinates of (0.158, 0.031) and better color purity compared with commercially available blue BAM:Eu(2+) phosphor. The phosphor (Y,Gd)BO3 doped with Eu(3+), Dy(3+) and Tb(3+) showed CIE 1931 color coordinates of (0.667, 0.332), (0.251, 0.299) and (0.333, 0.391) respectively. Significant photoluminescence characteristics of the prepared phosphors indicate that they might serve as potential candidates for blue chip and near-UV white light-emitting diode applications. Copyright © 2015 John Wiley & Sons, Ltd.

  6. A novel UV-emitting phosphor: NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Pekgözlü, İlhan, E-mail: pekgozluilhan@yahoo.com

    2016-01-15

    Pb{sup 2+} doped NaSr{sub 4}(BO{sub 3}){sub 3} materials were prepared by a solution combustion synthesis method. The phase analysis of all synthesized materials was carried out using the powder XRD. The synthesized materials were investigated using spectrofluorometer at room temperature. The excitation and emission bands of NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+} were observed at 291 and 368 nm, respectively. The dependence of the emission intensity on the Pb{sup 2+} concentration for the NaSr{sub 4}(BO{sub 3}){sub 3} was studied in detail. It was observed that the concentration quenching of Pb{sup 2+} in NaSr{sub 4}(BO{sub 3}){sub 3} is 0.01 mol. The Stokes shifts of NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+} phosphor were calculated to be 7190 cm{sup −1}. - Highlights: • A novel UV-emitting phosphor, NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+}, was prepared by combustion method. • The excitation and emission bands of NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+} were observed at 291 and 368 nm, respectively. • It was observed that the concentration quenching of Pb{sup 2+} in NaSr{sub 4}(BO{sub 3}){sub 3} is 0.01 mol.

  7. Color-tunable and white luminescence properties via energy transfer in single-phase KNaCa2(PO4)2:A (A = Ce3+, Eu2+, Tb3+, Mn2+, Sm3+) phosphors.

    Science.gov (United States)

    Geng, Dongling; Shang, Mengmeng; Zhang, Yang; Lian, Hongzhou; Lin, Jun

    2013-12-02

    A series of single-phase phosphors based on KNaCa2(PO4)2 (KNCP):A (A = Ce(3+), Eu(2+), Tb(3+), Mn(2+), Sm(3+)) have been prepared via the Pechini-type sol-gel method. Photoluminescence (PL) and cathodoluminescence (CL) properties of Ce(3+)-, Eu(2+)-, Tb(3+)-, Mn(2+)-, and Sm(3+)-activated KNCP phosphors were investigated. For the A singly doped KNCP samples, they exhibit the characteristic emissions of the A activator. Na(+) ions exhibit the best charge compensation result among Li(+), Na(+), and K(+) ions for Ce(3+)-, Tb(3+)-, and Sm(3+)-doped KNCP samples. The energy transfers from Ce(3+) to Tb(3+) and Mn(2+) ions as well as Eu(2+) to Tb(3+) and Mn(2+) have been validated. The emission colors of KNCP:Ce(3+)/Eu(2+), Tb(3+)/Mn(2+), Na(+) samples can be adjusted by energy transfer process and changing the Tb(3+)/Mn(2+) concentration. More importantly, white light emission in KNCP:Eu(2+), Mn(2+) system has been obtained. The KNCP:Tb(3+), Na(+) sample shows tunable luminescence from blue to cyan and then to green with the change of Tb(3+) concentration due to the cross-relaxation from (5)D3 to (5)D4. A white emission can also be realized in the single-phase KNCP host by reasonably adjusting the doping concentrations of Tb(3+) and Sm(3+) (reddish-orange emission) under low-voltage electron beam excitation. Additionally, the temperature-dependent PL properties of as-prepared phosphors reveal that the KNCP host has good thermal stability. Therefore, the KNCP:A (A = Ce(3+), Eu(2+), Tb(3+), Mn(2+), Sm(3+)) phosphors could be regarded as good candidates for UV W-LEDs and FEDs.

  8. Sol–gel assisted synthesis and photoluminescence property of Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}, Dy{sup 3+} red phosphor for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao, E-mail: zhangwentao2005@163.com [College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, Chengdu 610059 (China); Wang, Yulong; Gao, Yang [College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Long, Jianping [College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, Chengdu 610059 (China); Li, Junfeng [College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China)

    2016-05-15

    Eu{sup 2+}, Dy{sup 3+} co-doped Sr{sub 2}Si{sub 5}N{sub 8} red phosphors were prepared using a sol–gel-nitridation method at a lower temperature comparing with traditional solid state reaction. Effects of synthesis process, Eu{sup 2+} and Dy{sup 3+} doping concentration on the crystal structure and luminescence property of as-prepared phosphors were investigated. X-ray diffraction patterns indicated that all Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}, Dy{sup 3+} phosphors have the standard phase of Sr{sub 2}Si{sub 5}N{sub 8} structure. With a broad excitation from UV to blue light, a strong emission of Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}, Dy{sup 3+} with 4f{sup 6}5d{sup 1}→4f{sup 7} transition of Eu{sup 2+} ions was obtained at red region in photoluminescence spectra. Emission peaks in spectra were red-shifted from 611 to 632 nm for all Sr{sub 2}Si{sub 5}N{sub 8}:xEu{sup 2+} as Eu{sup 2+} ion concentrations increased, which due to Eu{sup 2+} ions occupying from the tenfold coordinated site (Sr1) to the eightfold coordinated site (Sr2). These Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} phosphors with Dy{sup 3+} co-doping showed excellent luminescence properties, included emission intensity and luminescence quenching. It is potential that Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}, Dy{sup 3+} phosphors can be applied in white LEDs combining with blue InGaN LEDs. - Highlights: • Eu{sup 2+}/Dy{sup 3+} co-doped Sr{sub 2}Si{sub 5}N{sub 8} red phosphor were prepared by sol–gel-nitridation. • Sol–gel-nitridation method decreased the crystallization temperature of Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}, Dy{sup 3+} effectively. • Luminescence properties of Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} were improved obviously by Dy{sup 3+} co-doping. • Luminescence properties of Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}, Dy{sup 3+} phosphors are superior to commercial Y{sub 2}O{sub 2}S:Eu{sup 3+}.

  9. Photoluminescence and phosphorescence properties of Sr{sub 1-x}Zn{sub 2-y}(PO{sub 4}){sub 2}:Eu{sub x}{sup 2+},Mn{sub y}{sup 2+} phosphor for UV-based white-LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Junho; Jayasimhadri, M. [Research Institute of Basic Science, Changwon National University, Changwon 641-773 (Korea, Republic of); Sueb Lee, Ho [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jang, Kiwan, E-mail: kwjang@changwon.ac.k [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Soo Yi, Soung [Department of Photonics, Silla University, Pusan 617-736 (Korea, Republic of); Hyun Jeong, Jung [Department of Physics, Pukyong National University, Pusan 608-737 (Korea, Republic of); Kim, Changdae [Department of Physics, Mokpo National University, Mokpo 534-729 (Korea, Republic of)

    2009-07-01

    Sr{sub 1-x}Zn{sub 2-y}(PO{sub 4}){sub 2}:Eu{sub x}{sup 2+},Mn{sub y}{sup 2+} (SZP: Eu{sub x}{sup 2+},Mn{sub y}{sup 2+}) phosphors (x=0, 0.01 and y=0, 0.01) were prepared by using a stoichiometric solid-state reaction method and their photoluminescence and phosphorescence decay properties were investigated. The emission spectrum of SrZn{sub 2}(PO{sub 4}){sub 2}:Eu{sub 0.01}{sup 2+}, Mn{sub 0.01}{sup 2+} measured under 400 nm excitation was composed of the violettish blue and the emerald green emissioins centered at 421 and 547 nm, respectively. The excitation wavelength of the emission peak at 547 nm was about 421 nm in the excitation spectrum of SZP:Mn{sub 0.01}{sup 2+}. Since, this value is equal to the transition energy of Eu{sup 2+}, the energy transfer from Eu{sup 2+} to Mn{sup 2+} in SZP:Eu{sub 0.01}{sup 2+},Mn{sub 0.01}{sup 2+} phosphor has been demonstrated. The CIE chromaticity coordinates of SZP:Eu{sub 0.01}{sup 2+},Mn{sub 0.01}{sup 2+} phosphor were (0.330, 0.328) under the excitation wavelength 375 nm at room temperature. The phosphorescence from SZP:Eu{sub 0.01}{sup 2+},Mn{sub 0.01}{sup 2+} could be seen by naked eyes for few seconds and it has persisted for about 4.4 h while monitoring by using a PMT spectrometer. Therefore, SZP:Eu{sub x}{sup 2+},Mn{sub y}{sup 2+}phosphor may be a potential candidate for the UV-based white light-emitting diodes (LEDs).

  10. Synthesis and luminescence characterization of Pr3+ doped Sr1.5Ca0.5SiO4 phosphor

    Science.gov (United States)

    Vidyadharan, Viji; Mani, Kamal P.; Sajna, M. S.; Joseph, Cyriac; Unnikrishnan, N. V.; Biju, P. R.

    2014-12-01

    Luminescence properties of Pr3+ activated Sr1.5Ca0.5SiO4 phosphors synthesized by solid state reaction method are reported in this work. Blue, orange red and red emissions were observed in the Pr3+ doped sample under 444 nm excitation and these emissions are assigned as 3P0 → 3H4, 3P0 → 3H6 and 3P0 → 3F4 transitions. The emission intensity shows a maximum corresponding to the 0.5 wt% Pr3+ ion. The decay analysis was done for 0.05 and 0.5 wt% Pr3+ doped samples for the transition 3P0 → 3H6. The life times of 0.05 and 0.5 wt% Pr3+ doped samples were calculated by fitting to exponential and non-exponential curve respectively, and are found to be 156 and 105 μs respectively. The non-exponential behaviour arises due to the statistical distribution of the distances between the ground state Pr3+ ions and excited state Pr3+ ions, which cause the inhomogeneous energy transfer rate. The XRD spectrum confirmed the triclinic phase of the prepared phosphors. The compositions of the samples were determined by the energy dispersive X-ray spectra. From the SEM images it is observed that the particles are agglomerated and are irregularly shaped. IR absorption bands were assigned to different vibrational modes. The well resolved peaks shown in the absorption spectra are identical to the excitation spectra of the phosphor samples. Pr3+ activated Sr1.5Ca0.5SiO4 phosphors can be efficiently excited with 444 nm irradiation and emit multicolour visible emissions. From the CIE diagram it can be seen that the prepared phosphor samples give yellowish-green emission.

  11. Tuning the luminescence color and enhancement of afterglow properties of Sr(4−x−y)CaxBayAl14O25:Eu2+,Dy3+ phosphor by adjusting the composition

    International Nuclear Information System (INIS)

    Luitel, Hom Nath; Watari, Takanori; Chand, Rumi; Torikai, Toshio; Yada, Mitsunori; Mizukami, Hiroshi

    2013-01-01

    Graphical abstract: Excitation and fluorescence emission spectra of three extreme compositions of Ca, Sr and Ba in Sr 4 Al 14 O 25 phosphor (viz. 4CaO·7Al 2 O 3 , 4SrO·7Al 2 O 3 and 4BaO·7Al 2 O 3 ) doped with 4 at% Eu 2+ and 8 at% Dy 3+ (inset shows the digital micrograph of corresponding phosphors). -- Highlights: • Bright phosphor, Sr (4−x−y) Ca x Ba y Al 14 O 25 :Eu 2+ ,Dy 3+ , was synthesized by adjusting the composition. • The solid solubility of Ca and Ba in the Sr 4 Al 14 O 25 host was determined to be 20 and 10 mol%, respectively. • Substituting part of Sr by Ca, the emission color can be well tuned from blue to green. • A white afterglow was observed when 3.2 mol of Sr was substituted by Ca. • The afterglow luminescence was enhanced by 1.5 times by 0.2 mol Ca substitution. -- Abstract: Color point tuning is an important challenge for improving the practical applications of various displays, especially there are very limited white color single hosts that emits in the white spectrum. In this paper, the possibility of color tuning by substituting part of host lattice cation (Sr 2+ ions) by Ca 2+ or Ba 2+ ions in an efficient strontium aluminate phosphor, Sr 4 Al 14 O 25 :Eu 2+ ,Dy 3+ , is reported and found to be very promising for displays. A detail study by replacing part of Sr 2+ with Ca 2+ or Ba 2+ has been investigated. X-ray diffraction study showed that crystal structure of Sr 4 Al 14 O 25 is preserved up to 20 mol of Ca 2+ ion exchange while it is limited to 10 mol of Ba 2+ ions exchange. Substantial shift in the emission band and color were observed by substitution of Sr 2+ by Ca 2+ or Ba 2+ ions. A bluish-white emission and afterglow was observed at higher Ca 2+ ions substitution. Further, partial Ca 2+ substitutions (up to 0.8 mol) resulted in enhanced afterglow of Sr 4 Al 14 O 25 :Eu 2+ ,Dy 3+ phosphor. However, Ba 2+ substitution decreased the fluorescence as well afterglow of the Sr 4 Al 14 O 25 :Eu 2+ ,Dy 3+ phosphor

  12. Y/Gd-free yellow Lu{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} phosphor for white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwangwon [Department of Display Science and Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Kim, Taehoon; Yu, Youngmoon [LED-Marine Convergence Technology R& BD Center, Pukyong National University, Busan 608−739 (Korea, Republic of); Seo, Kwangil [L-Stone Co. Ltd., Bucheon 421−807 (Korea, Republic of); Kim, Jongsu, E-mail: jsukim@pknu.ac.kr [Department of Display Science and Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2016-05-15

    Solid solubility limit of Ce{sup 3+} ions into Lu-based garnet, Lu{sub 3(1−x)}Ce{sub 3x}Al{sub 5}O{sub 12}, was determined as below 6.7 mol% (3x<0.2 mol) through Raman spectra and X−ray diffraction patterns. Above the solid solubility limit (3x≥0.2 mol), Lu{sub 3(1−x)}Ce{sub 3x}Al{sub 5}O{sub 12} phosphors showed the significant redshift to the yellow spectral region without Y{sup 3+} and Gd{sup 3+} ions. The redshift was explained in terms of the local compressive strain at the Ce{sup 3+} sites. The optimized sample (3x=0.4 mol) had a dominant emission wavelength of 548 nm, color coordinate of CIEx=0.421, CIEy=0.548, quantum efficiency of 80%, absorbance of 91%, lumen maintenance of 90% and high color stability at 473 K under 450 nm excitation wavelength, suggesting substitutability for the commercial yellow (Y, Gd){sub 3}(Al, Ga){sub 5}O{sub 12}:Ce{sup 3+} phosphor. The measured decay times at higher Ce{sup 3+} concentration are significantly shortened at higher temperature than that of those at lower Ce{sup 3+} concentration. The yellow Lu{sub 2.6}Ce{sub 0.4}Al{sub 5}O{sub 12} and a commercial red (Sr, Ca)AlSiN{sub 3}:Eu{sup 2+} phosphor were applied to the pc-WLED, it gave an excellent luminous efficiency (138 lm/W) with a slightly lower color rendering index (Ra=76.4) under correlated color temperature of 6500 K compared to those of the (Y, Gd){sub 3}(Al, Ga){sub 5}O{sub 12}:Ce{sup 3+}-based one (136 lm/W, Ra=78.7). Especially, the quantities of the used phosphors were significantly decreased by 20% for the yellow LuAG:Ce and by 40% for the red (Sr, Ca)AlSiN{sub 3}:Eu{sup 2+}. Thus, the Y/Gd−free pure LuAG:Ce yellow phosphors can be used as alternative to the commercial yellow YAG:Ce phosphor.

  13. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al₂O₄:Eu2+, Dy3+ Phosphors.

    Science.gov (United States)

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-10-18

    (Sr, Ca, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al₂O₄:Eu 2+ ,Dy 3+ phosphors, the different phase formation from monoclinic SrAl₂O₄ phase to hexagonal SrAl₂O₄ phase to monoclinic CaAl₂O₄ phase was observed when the Ca content increased. The emission color of SrAl₂O₄:Eu 2+ , Dy 3+ phosphors varied from green to blue. For the (Sr, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors, different phase formation from the monoclinic SrAl₂O₄ phase to the hexagonal BaAl₂O₄ phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl₂O₄:Eu 2+ , Dy 3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr 2+ with Ba 2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips.

  14. Effect of Al/Ga substitution on the structural and luminescence properties of Y3(Al1-xGax)5O12: Ce3+ phosphors

    Science.gov (United States)

    Fu, Sheng; Tan, Jin; Bai, Xin; Yang, Shanjie; You, Lei; Du, Zhengkang

    2018-01-01

    As candidates for display and lighting materials, a series of gallium-substituted cerium-doped yttrium aluminum garnet (Y3(GaxAl1-x)5O12: Ce3+) phosphors were synthesized by high temperature solid-state reaction. The phases, morphology, luminescence spectra and thermal stability of the phosphors were investigated. The volatilization of Ga2O3 induces the constituents out of stoichiometric ratio and different impurities in the system. The excitation and emission spectra occur red shift (339 nm - 351 nm) and blue shift (465 nm - 437 nm), and blue shift (541 nm - 517 nm), respectively. The spectra have no further blue shift and the luminescence intensity decrease with x over 0.4. Combining crystal structure with PL spectrum, the distortion of dodecahedron and crystal field splitting of 5d level of Ce3+ are influenced by Ga3+ in octahedral coordination polyhedron rather than tetrahedron. The crystalline perfection and Ga3+ occupying the tetrahedron induce less garnet phase formation, more impurities and the 5d level located in the conductive bands, thus accounting for the x = 0.4 turning points of the PL and PLE intensity. Based on the thermal quenching and CIE, the Y3(GaxAl1-x)5O12: Ce3+0.06 phosphors have great potential for use on the w-LED.

  15. Multichannel Luminescence Properties of Mixed-Valent Eu2+/Eu3+ Coactivated SrAl3BO7 Nanocrystalline Phosphors for Near-UV LEDs.

    Science.gov (United States)

    Liu, Xiaoming; Xie, Weijie; Lü, Ying; Feng, Jingchun; Tang, Xinghua; Lin, Jun; Dai, Yuhua; Xie, Yu; Yan, Liushui

    2017-11-20

    Up to now, orchestrating the coexistence of Eu 2+ and Eu 3+ activators in a single host lattice has been an extremely difficult task, especially for the appearance of the characteristic emission of Eu 2+ and Eu 3+ in order to generate white light. Nevertheless, here we demonstrate a new Eu 2+ /Eu 3+ coactivated SrAl 3 BO 7 nanocrystalline phosphor with abundant and excellent multichannel luminescence properties. A series of Eu 2+ /Eu 3+ coactivated SrAl 3 BO 7 nanocrystalline phosphors were prepared through a Pechini-type sol-gel method followed by a reduction process. With excitation of UV/NUV light, the prepared SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphors show not only the characteristic f-f transitions of Eu 3+ ion ( 5 D J → 7 F J,J' , J, J' = 0-3), but also the 5d → 4f transitions of Eu 2+ ion with comparable intensity from 400 to 700 nm in the whole visible spectral region. The luminescence color of the SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphor can be tuned from blue, blue-green, white, and orange to orange-red by changing the excitation wavelength, the overall doping concentration of europium ions (Eu 2+ , Eu 3+ ), and the relative ratio of Eu 2+ to Eu 3+ ions to some extent. A single-phase white-light emission has been realized in SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphor. The obtained SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphor has potential application in the area of NUV white-light-emitting diodes.

  16. Synthesis and photoluminescence properties of Pb{sup 2+} doped inorganic borate phosphor NaSr{sub 4}(BO{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, A. O., E-mail: abhi2718@gmail.com; Koparkar, K. A.; Omanwar, S. K. [Department of Physics, SantGadge Baba Amravati University, Amravati MH, 444602 (India); Bajaj, N. S. [Department of Physics, Toshniwal Art, Commerce and Science College, Sengoan, Hingoli MH (India)

    2016-05-06

    A series of Inorganic borate phosphors NaSr{sub 4}(BO{sub 3}){sub 3} doped with Pb{sup 2+} was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb{sup 2+} concentration for the NaSr{sub 4}(BO{sub 3}){sub 3} were studied in details. The concentration quenching of Pb{sup 2+} doped NaSr{sub 4}(BO{sub 3}){sub 3} was observed at 0.02 mol. The Stokes shifts of NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+} phosphor was calculated to be 7574 cm{sup −1}.

  17. Oxygen nonstoichiometry and thermodynamic quantities in solid solution SrFe1-xSnxO3-δ

    Science.gov (United States)

    Merkulov, O. V.; Markov, A. A.; Leonidov, I. A.; Patrakeev, M. V.; Kozhevnikov, V. L.

    2018-06-01

    The oxygen content (3-δ) variations in tin substituted derivatives SrFe1-xSnxO3-δ, where x = 0.05, 0.1, 0.17 and 0.25, of perovskite-like strontium ferrite, have been studied by coulometric titration measurements within oxygen partial pressure (pO2) range 10-19-10-2 atm at 800-950 °С. The obtained dependencies of (3-δ) from pO2 and temperature are used for calculations of partial molar thermodynamic functions of oxygen in the oxide structure. It is found that a satisfactory explanation of the experimental results can be attained within frameworks of the ideal solution model with ion and electron defects appearing in the result of oxidation and disproportionation of iron cations. The increase of the oxidation reaction enthalpy with tin content is consistent with the increase of the unit cell parameter, i.e., the stretch and relaxation of Fe-O chemical bonds.

  18. Influence of dopant concentration on spectroscopic properties of Sr2CeO4:Yb nanocrystals

    Science.gov (United States)

    Stefanski, M.; Kędziorski, A.; Hreniak, D.; Strek, W.

    2017-12-01

    Optical properties of Sr2CeO4:Yb nanocrystals synthesized via Pechini's method are reported. The samples were characterized by X-ray diffraction data measurements. The unit cell parameters were determined using Rietveld refinement. It was found that they decreased with increasing amount of Yb ions. The absorption, excitation, emission spectra and luminescence decay profiles of the Sr2CeO4:Yb nanocrystals were investigated. It was observed that optical properties were strongly dependent on Yb concentration. It was found that Yb3+-O2- charge transfer transitions have great influence on the absorption spectra. It can be seen in the emission spectra that in addition to standard bands/lines corresponding to Ce-O metal-to-ligand charge transfer of Sr2CeO4 and f-f transitions of Yb3+, there is emission band centered at 744 nm. Its intensity depends on the concentration of the dopant. Recorded decay times become shorter with increasing dopant concentration due to the Yb3+ concentration quenching. Excitation spectra indicate the energy transfer from Ce-O charge transfer states to Yb3+2F5/2 state. The issue of appearance of down-conversion process in Sr2CeO4:Yb nanocrystals is considered.

  19. Analysis of (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8}:Eu{sup 2+}, Mn{sup 2+} phosphors for application in solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.K. [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); Piqutte, A.; Hannah, M.E. [OSRAM SYLVANIA Central Research, 71 Cherry Hill Drive Beverly, MA 01915 (United States); Hirata, G.A. [Centro de Nanociencias y Nanotecnolgía, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada Apdo, Ensenada MX CP 22860 (Mexico); Talbot, J.B. [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); University of California, San Diego, Department of Nanoengineering, La Jolla, CA 92093 (United States); Mishra, K.C. [OSRAM SYLVANIA Central Research, 71 Cherry Hill Drive Beverly, MA 01915 (United States); McKittrick, J., E-mail: jmckittrick@ucsd.edu [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); University of California, San Diego, Department of Mechanical and Aerospace Engineering, La Jolla, CA 92093 (United States)

    2014-04-15

    The luminescence properties of Eu{sup 2+} and Mn{sup 2+} co-activated (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8} phosphors prepared by combustion synthesis were studied. Eu{sup 2+}-activated (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8} has a broad blue emission band centered at 450–485 nm and Eu{sup 2+}–Mn{sup 2+}-activated (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8} exhibits a red emission around 620–703 nm, depending on the relative concentrations of Ba, Ca and Sr. The particle size of Eu{sup 2+} and Mn{sup 2+} co-activated (Ba,Ca){sub 3}MgSi{sub 2}O{sub 8} ranges from 300 nm to 1 μm depending on the metal ion and are agglomerated due to post-synthesis, high temperature annealing. The green emission of Ba{sub 3}MgSi{sub 2}O{sub 8} originates from secondary phases (Ba{sub 2}SiO{sub 4} and BaMgSiO{sub 4}) confirmed by emission spectra and X-ray diffraction patterns. The secondary phases of Ba{sub 3}MgSi{sub 2}O{sub 8} are removed by the addition of Sr. The quantum efficiencies range from 45% to 70% under 400 nm excitation and the lifetime of red emission of Ba{sub 3}MgSi{sub 2}O{sub 8} decreases significantly with increasing temperature, which is 54% at 400 K of that at 80 K compared to that of blue emission (90% at 400 K of that at 80 K). -- highlights: • (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8}:Eu{sup 2+}, Mn{sup 2+} phosphors were prepared by a combustion synthesis method. • The emission spectra consist of broad blue-emission band and red-emission band. • The quantum efficiencies range between 45% and 70%, depending on the relative concentrations of Ba, Ca and Sr. • The secondary phases were eliminated by additions of Sr. • Lifetime of the red-emission decreases with increasing temperature, suggesting that these phosphors are not useful for solid state lighting applications.

  20. Luminescent properties and energy transfer of CaO:Ce{sup 3+}, Mn{sup 2+} phosphors for white LED

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qipeng, E-mail: dadi0314@163.com [Lunan Institute of Coal Chemical Industry, Jining 272000, Shandong (China); Yin, Huijun; Liu, Tao; Wang, CuiQing; Liu, Riqiang [Lunan Institute of Coal Chemical Industry, Jining 272000, Shandong (China); Lü, Wei [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); You, Hongpeng, E-mail: hpyou@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-09-15

    We have synthesized yellow–orange CaO:Ce{sup 3+},Mn{sup 2+} phosphors by solid-state reaction. Photoluminescence properties and energy transfer mechanism from Ce{sup 3+} to Mn{sup 2+} ions have been investigated. The Ce{sup 3+} activated phosphors exhibit strong absorption in the range of 250–490 nm and a yellow emission centered at 554 nm. When Mn{sup 2+} ions were codoped, CaO:Ce{sup 3+},Mn{sup 2+} phosphors exhibit yellow emission band of Ce{sup 3+} as well as orange emission band centered at 600 nm of Mn{sup 2+}. We observed an efficient energy transfer from Ce{sup 3+} to Mn{sup 2+} ions in CaO:Ce{sup 3+},Mn{sup 2+}, which was verified from the lifetime decay curves and was discussed by Dexter's energy transfer theory. The critical distance of the energy transfer from Ce{sup 3+} to Mn{sup 2+} ions has also been calculated to be 12.3 Å by spectral overlap methods following Dexter's theory and by concentration quenching mechanism to be 15.2 Å. Moreover, by combining the synthesized phosphors and InGaN blue chip (460 nm), warm-white light has been created.

  1. Solid state speciation of uranium and its local structure in Sr2CeO4 using photoluminescence spectroscopy

    Science.gov (United States)

    Sahu, M.; Gupta, Santosh K.; Jain, D.; Saxena, M. K.; Kadam, R. M.

    2018-04-01

    An effort was taken to carry our speciation study of uranium ion in technologically important cerate host Sr2CeO4 using time resolved photoluminescence spectroscopy. Such studies are not relevant only to nuclear industry but can give rich insight into fundamentals of 5f electron chemistry in solid state systems. In this work both undoped and varied amount of uranium doped Sr2CeO4 compound is synthesized using complex polymerization method and is characterized systematically using X-ray diffraction (XRD), Raman spectroscopy, photoluminescence spectroscopy and scanning electron microscopy (SEM). Both XRD and Raman spectroscopy confirmed the formation of pure Sr2CeO4 which has tendency to decompose peritectically to SrCeO3 and SrO at higher temperature. Uranium doping is confirmed by XRD. Uranium exhibits a rich chemistry owing to its variable oxidation state from +3 to +6. Each of them exhibits distinct luminescence properties either due to f-f transitions or ligand to metal charge transfer (LMCT). We have taken Sr2CeO4 as a model host lattice to understand the photophysical characteristics of uranium ion in it. Emission spectroscopy revealed the stabilization of uranium as U (VI) in the form of UO66- (octahedral uranate) in Sr2CeO4. Emission kinetics study reflects that uranate ions are not homogeneously distributed in Sr2CeO4 and it has two different environments due to its stabilization at both Sr2+ as well as Ce4+ site. The lifetime population analysis interestingly pinpointed that majority of uranate ion resided at Ce4+ site. The critical energy-transfer distance between the uranate ion was determined based on which the concentration quenching mechanism was attributed to electric multipolar interaction. These studies are very important in designing Sr2CeO4 based optoelectronic material as well exploring it for actinides studies.

  2. Synthesis and photoluminescent properties of Sr{sub (1−x)}Si{sub 2}O{sub 2}N{sub 2}: xEu{sup 2+} phosphor prepared by polymer metal complex method for WLEDs applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Dhia A., E-mail: dhia_hassan@yahoo.com [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Department of Chemistry, College of Education for Pure Science, University of Basrah, Basrah 61004 (Iraq); Xu, Jian; Chen, Yibin; Li, Langkai [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Zeng, Renjie, E-mail: rjzeng@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Fujian Key Lab of Advanced Special Materials, Xiamen University, Xiamen 361005 (China)

    2016-07-15

    Highlights: • SrSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+} phosphor was prepared by polymer metal complex (pechini method). • The annealing time was decreased from 6 h in solid state method to 3 h. • The particles are crystalline and dispersed well with average size 6.5 μm. - Abstract: Green emitting Sr{sub (1−x)}Si{sub 2}O{sub 2}N{sub 2}: xEu{sup 2+} (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.1) phosphors were synthesized by polymer metal complex or pechini method. The XRD results confirm the formation of a pure phase at 1400 °C for 3 h. The SEM and particles size results indicate that the prepared phosphor consists of a polyhedral crystalline shape with well dispersed and the average particle size around 6.5 μm. The maximum PL intensity was found at 0.04% Eu{sup 2+} with a wide emission band between 460 and 640 nm and a green emission peak at 531.4 nm. The external quantum efficiency of 0.04% Eu{sup 2+} sample was 43.13%. The results indicate that pechini method is an alternative way and close in efficiency to the solid state method to prepare SrSi{sub 2}O{sub 2}N{sub 2} phosphor with higher homogeneity and more uniform size distribution for near UV and blue region applications for white light emitting diodes WLEDs.

  3. Acetate reduction synthesis of Sr2Si5N8:Eu2+ phosphor and its luminescence properties

    International Nuclear Information System (INIS)

    Piao Xianqing; Machida, Ken-ichi; Horikawa, Takashi; Yun Bonggoo

    2010-01-01

    A novel synthesis method was developed for the efficient red phosphor, Eu 2+ -activated Sr 2 Si 5 N 8 , by employing the strontium acetate as both the reducing agent and strontium source. The phase purity of final product was strongly dependent on the heating rate of the precursors. Sr 2 Si 5 N 8 :Eu 2+ (2 at%) phosphor presented a broadband excitation spectrum in the range 300-500 nm, matching well with the blue emission (400/460 nm) of current InGaN light-emitting diodes (LEDs). The red emission peaking at 619 nm gave the relatively high (about 155%) intensity compared with the Y 3 Al 5 O 12 (YAG) (P46-Y3) standard phosphor. In addition, the saturated chromatic coordinates (0.638, 0.359) allowed it a promising candidate as a red phosphor in white LEDs application for illumination or display.

  4. Phosphorescent and thermoluminescent properties of SrAl2O4:Eu2+, Dy3+ phosphors prepared by solid state reaction method

    International Nuclear Information System (INIS)

    Mothudi, B.M.; Ntwaeaborwa, O.M.; Kumar, A.; Sohn, K.; Swart, H.C.

    2012-01-01

    Long persistent SrAl 2 O 4 :Eu 2+ phosphors co-doped with Dy 3+ were prepared by the solid state reaction method. The main diffraction peaks of the monoclinic structure of SrAl 2 O 4 were observed in all the samples. The broad band emission spectra at 497 nm for SrAl 2 O 4 :Eu 2+ , Dy 3+ were observed and the emission is attributed to the 4f 6 5d 1 to 4f 7 transition of Eu 2+ ions. The samples annealed at 1100–1200 °C showed similar broad TL glow curves centered at 120 °C. The similar TL glow curves suggest that the traps responsible for them are similar. The long afterglow displayed by the phosphors annealed at different temperatures, may be attributed to the Dy 3+ ions acting as the hole trap levels, which play an important role in prolonging the duration of luminescence.

  5. Fabrication Flexible and Luminescent Nanofibrillated Cellulose Films with Modified SrAl2O4: Eu, Dy Phosphors via Nanoscale Silica and Aminosilane

    Directory of Open Access Journals (Sweden)

    Longfei Zhang

    2018-05-01

    Full Text Available Flexible 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO-oxidized nanofibrillated cellulose (ONFC films with long afterglow luminescence containing modified SrAl2O4: Eu2+, Dy3+ (SAOED phosphors were fabricated by a template method. Tetraethyl orthosilicate (TEOS and (3-aminopropyl trimethoxy-silane (APTMS were employed cooperatively to improve the water resistance and compatibility of the SAOED particles in the ONFC suspension. The structure and morphology after modification evidenced the formation of a superior SiO2 layer and coarse amino-compounds on the surface of the phosphors. Homogeneous dispersions containing ONFC and the modified phosphors were prepared and the interface of composite films containing the amino-modified particles showed a more closely packed structure and had less voids at the interface between the cellulose and luminescent particles than that of silica-modified phosphors. The emission spectra for luminescent films showed a slight blue shift (3.2 nm at around 512 nm. Such flexible films with good luminescence, thermal resistance, and mechanical properties can find applications in fields like luminous flexible equipment, night indication, and portable logo or labels.

  6. EPR study of concentration dependence in Ce, Ce : La and Ce:Y doped SrF2

    NARCIS (Netherlands)

    Dankert, O.; Vainchtein, David; Datema, H.C.; den Hartog, Hendrik

    1995-01-01

    Experimental results of an EPR-study of the concentration dependence of the doubly integrated intensity and linewidth of the signals associated with tetragonal Ce3+-F--dipoles in Sr1-xCexF2+x, Sr-1-0.005-x Ce0.005LaxF2+0.005+x and Sr-1-0.005-x Ce0.005YxF2+0.005+x are presented. Both show a nonlinear

  7. SrAl2O4:Eu2+ (1%) luminescence under UV, VUV and electron beam excitation

    Science.gov (United States)

    Nazarov, M.; Mammadova, S.; Spassky, D.; Vielhauer, S.; Abdullayeva, S.; Huseynov, A.; Jabbarov, R.

    2018-01-01

    This paper reports the luminescence properties of nanosized SrAl2O4:Eu2+ (1%) phosphors. The samples were prepared by combustion method at 600 °C, followed by annealing of the resultant combustion ash at 1000 °C in a reductive (Ar + H2) atmosphere. X-ray diffraction (XRD), photo luminescence (PL) and cathodoluminescence (CL) analysis and thermal stimulated luminescence (TSL) method were applied to characterize the phosphor. For the first time a peak at 375 nm was observed in CL spectra of SrAl2O4:Eu2+ (1%) nanophosphors. Luminescence excitation spectra analysis have shown that this peak is related to crystal defects. Also in TSL curve one strong peak was observed in the region above room temperature (T = 325 K), which is attributed to lattice defects, namely oxygen vacancies. A green LED was fabricated by the combination of the SrAl2O4:Eu2+ (1%) nanosized phosphor and a 365 nm UV InGaN chip.

  8. Optimization and complexing agent-assisted synthesis of green SrAl{sub 2}O{sub 4}: Eu{sup 2+}, Dy{sup 3+} phosphors through sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Du, Hongli; Shan, Wenfei; Wang, Liying; Xu, De; Yin, Hao [School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Chen, Yanwen [Hunan Labour Protection Institute of Nonferrous Metals, Changsha 410014 (China); Guo, Dongcai, E-mail: dcguo2001@hnu.edu.cn [School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Hunan Provincial Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions, Changsha 410082 (China)

    2016-08-15

    A novel Eu{sup 2+}–Dy{sup 3+}co-doped strontium aluminate green long-lasting phosphors were synthesized via conventional sol–gel method with citric acid and polyethylene glycol used as chelating agent, respectively. Orthogonal experiments were employed to optimize the main synthesis conditions and obtain the optimum technological parameters. Subsequently, the crystal structure, morphology, decay curve and luminescence property of the composites were characterized. X-ray diffraction (XRD) showed that the samples were composed of single-phase SrAl{sub 2}O{sub 4}. Scanning electron microscopy (SEM) revealed that the resultant nanoparticles performed graininess with a size of 100 nm around. The excitation and emission spectra indicated that, excitation broadband chiefly lay in the ultraviolet range, and nanocrystalline particles emitted strong light at 510 nm, which corresponding to the typical characteristic 5d–4f transition of Eu{sup 2+} ion excited at around 360 nm. The long afterglow photoluminescence of nanoparticles SrAl{sub 2}O{sub 4}: Eu{sup 2+}, Dy{sup 3+} (denoted as SAO: ED) was observed in the dark with the naked eye even after the removal of the excitation light. The luminescence properties suggested that SAO: ED phosphor may be regarded as a potential green phosphor candidate for near-UV and blue light-emitting diodes (LEDs).

  9. Enhanced luminescence in SrMgAl(x)O(17±δ):yMn4+ composite phosphors.

    Science.gov (United States)

    Cao, Renping; Sharafudeen, Kaniyarakkal N; Qiu, Jianrong

    2014-01-03

    Red-emitting SrMgAlxO17±δ:yMn(4+) composite phosphors (x=10-100; y=0.05-4.0 mol%) are synthesized by solid-state reaction method in air. Addition of Al2O3 leads to the formation of two concomitant phases, i.e., SrMgAl10O17 and Al2O3 phases in the composite phosphor. Red emission from Mn(4+) ions in the composite phosphors is greatly enhanced due to multiple scattering and absorption of excitation light between SrMgAl10O17 and Al2O3 phases. SrMgAlxO17±δ:yMn(4+) composite phosphors would be a promising candidate as red phosphor in the application of a 397 nm near UV-based W-LED. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Structure, luminescence and thermal quenching properties of Eu doped Sr{sub 2−x}Ba{sub x}Si{sub 5}N{sub 8} red phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.H.; Chen, L.; Zhou, X.F.; Liu, R.H., E-mail: griremlrh@126.com; Zhuang, W.D.

    2017-02-15

    Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} phosphors were synthesized at 1610 ℃ for 4 h via the solid-state reaction method. The XRD results confirm that the complete solid solutions are formed. With the increase of x, the emission spectra show an obvious blue-shift from 610 nm to 585 nm under the excitation of 460 nm. The color tone can be tuned from yellow to red. The corresponding mechanism for the blue-shift of peak-wavelength is studied in detail. The results of decomposed Gaussian spectra and fluorescence lifetime show that the local coordination structure surrounding activator ions changes with increasing x value. It is found that the probability of Eu occupying Sr1 and Sr2 site is dependent on Ba/Sr ratio. The variation of thermal quenching properties and the corresponding mechanism is discussed in detail. The results indicate that Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} is a promising orange red-emitting phosphor for near UV or blue light-pumped white light-emitting-diodes (wLEDs). - Graphical abstract: Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} solid solutions were prepared by the solid-state reaction method. The structure, luminescence and thermal quenching properties with varying Ba/Sr ratio were investigated in detail. - Highlights: • The stucture and luminescence properties of Eu doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} phosphors were investigated. • The samples with the intermediate compositions(x=1.0,1.5) show better stability than the end members of both Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} and Ba{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}. • The possible mechanism for the improvement of thermal quenching properties was proposed.

  11. Luminescence properties of Eu{sup 2+} doped SrB{sub 4}O{sub 7} phosphor for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Palan, C.B., E-mail: chetanpalan27@yahoo.in; Bajaj, N.S.; Omanwar, S.K.

    2016-04-15

    Highlights: • Report TL/OSL properties of SrB{sub 4}O{sub 7}:Eu{sup 2+} under beta irradiations. • OSL Sensitivity was about 33% than that of commercially available α-Al{sub 2}O{sub 3.} • TL glow peaks was appear at 305° C and TL sensitivity about 200 times higher than TLD-500. • OSL decay pattern was faster than α- Al{sub 2}O{sub 3}:C and dose response was linear nature. - Abstract: In this report, we presented the TL/OSL properties of Eu doped SrB{sub 4}O{sub 7} phosphor under β-irradiation. This phosphor was synthesized by using solid state method. The phosphor shows OSL sensitivity about 33% than that of commercially available α-Al{sub 2}O{sub 3}: C phosphor. CW-OSL curve possess two components having photoionization cross-sections 0.707 × 10{sup −17} and 18.58 × 10{sup −17} cm{sup 2} respectively and TL sensitivity about 200 times higher than TLD-500. The kinetic parameters such as activation energy, frequency factor and order of kinetics of TL curve were calculated by using peak shape method. In TL/OSL mode dose-response was almost linear in the range of measurements. The MDD was found to be 1.26 mGy with 3σ of background. Also reusability studies showed the phosphor can be reused for 10 cycles with 1% change in the OSL output. The PL spectra of SrB{sub 4}O{sub 7} showed emission in NUV region when excited with 318 nm under UV source.

  12. Tunable luminescence properties and energy transfer in Ba{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+},Tb{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Cheng [Department of Physics and Electronic Engineering, Baoding University, Baoding 071002 (China); Ma, Hengxin [College of Science, Agricultural University of Hebei, Baoding 071002 (China); Liu, Yufeng, E-mail: liuyufeng4@126.com [State Key Lab of Power Systems, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Liu, Qingbo [Department of Physics and Electronic Engineering, Baoding University, Baoding 071002 (China); Dong, Guoyi [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Yu, Quanmao [Institute of Functional Materials, Jiangxi University of Finance and Economics, Nanchang 330013 (China)

    2014-11-15

    Highlights: • Effective energy transfer from Ce{sup 3+} to Tb{sup 3+} in Ba{sub 3}Lu(PO{sub 4}){sub 3} was confirmed. • The reason of energy transfer from Ce{sup 3+} to Tb{sup 3+} was investigated in detail. • Ba{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} can be a potential green-emitting phosphor for UV LEDs. - Abstract: A series of novel color-tunable phosphors Ba{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+},Tb{sup 3+} have been synthesized by solid-state reaction. X-ray diffraction, photoluminescence emission and excitation spectra, lifetime, as well as the effect of Tb{sup 3+} concentration were employed to characterize the resulting samples. The emission spectra of Ba{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+},Tb{sup 3+} phosphor contains both the asymmetric broad-band Ce{sup 3+} ion emission and the line-type Tb{sup 3+} ion emission. Under ultraviolet light excitation, Ba{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+},Tb{sup 3+} can achieve tunable emission from deep blue to yellowish-green by changing the concentration of Tb{sup 3+}. The results indicated that these phosphors could be considered as double emission phosphors for field emission displays.

  13. Improvement of photoluminescence properties and thermal stability of Y2.9Ce0.1Al5−xSixO12 phosphors with Si3N4 addition

    International Nuclear Information System (INIS)

    Zhang, Fangfang; Song, Kaixin; Jiang, Jun; Wu, Song; Zheng, Peng; Huang, Qingming; Xu, Junming; Qin, Huibin

    2014-01-01

    Highlights: • Y 2.9 Ce 0.1 Al 5−x Si x O 12 phosphors were prepared by solid-state reaction in reduced air ambience. • Si 4+ could be incorporated into the host lattice of Y 3 Al 5 O 12 through partial occupation of the Al 3+ sites. • Si 3 N 4 addition can improve photoluminescence efficiency and thermal stability of Y 3 Al 5 O 12 :Ce. - Abstract: A series of Si 3 N 4 doping Y 2.9 Ce 0.1 Al 5−x Si x O 12−3x/2 N 4x/3 phosphors were prepared by solid-state reaction in 95%N 2 –5%H 2 reduced air ambience. The XRD characteristics plus Rietveld refinement results shows that the as-sintered powders are unique crystal phase with the same crystal structure of Y 3 Al 5 O 12 (PDF No. 79-1891). The N element was not detected by the analysis of X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectrum (EDS). The photoluminescence spectra (PL and PLE) tests show that the exciting and emitting intensity of PLE and PL gradually increase due to the increase of Si 3 N 4 concentration. Meanwhile, the phosphorescence decay times are prolonged from 45 ns (x = 0) to 78 ns (x = 0.3), under the monitor of 530 nm wavelength. The thermoluminescence tests (TL) confirm the thermal stability of as-phosphors with Si 3 N 4 addition is much better than that of the pristine Y 2.9 Ce 0.1 Al 5 O 12 phosphors

  14. Color-tunable and highly thermal stable Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors

    International Nuclear Information System (INIS)

    Zhang, Haiming; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu; Deng, Jiankun; Liu, Wei-Ren; Zeng, Yuan; Zheng, Lingling; Zhao, Minyi

    2017-01-01

    Tb"3"+ activated Sr_2MgAl_2_2O_3_6 phosphor was prepared by a high-temperature solid-state reaction route. The X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy were used to characterize the as-prepared samples. The Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors show intense green light emission under UV excitation. The phosphor exhibit two groups of emission lines from about 370 to 700 nm, which originating from the characteristic "5D_3-"7F_J and "5D_4-"7F_J transitions of the Tb"3"+ ion, respectively. The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed. The emission colors of these phosphors can be tuned from bluish-green to green by adjusting the Tb"3"+ doping concentration. Furthermore, the thermal quenching temperature (T_1_/_2) is higher than 500 K. The excellent thermal stability and color-tunable luminescent properties suggest that the developed material is a promising green-emitting phosphor candidate for optical devices. - Highlights: • A Color-tunable emitting phosphor Sr_2MgAl_2_2O_3_6:Tb"3"+ was prepared successfully via high-temperature solid-state reaction. • The photoluminescence of Sr_2MgAl_2_2O_3_6:Tb"3"+ shows highly thermal stable. • The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed.

  15. Color tunable emission in Ce3+ and Tb3+ co-doped Ba2Ln(BO3)2Cl (Ln=Gd and Y) phosphors for white light-emitting diodes.

    Science.gov (United States)

    Zhang, Niumiao; Guo, Chongfeng; Jing, Heng; Jeong, Jung Hyun

    2013-12-01

    Ce(3+) and Tb(3+) co-doped Ba2Ln(BO3)2Cl (Ln=Y and Gd) green emitting phosphors were prepared by solid state reaction in reductive atmosphere. The emission and excitation spectra as well as luminescence decays were investigated, showing the occurrence of efficient energy transfer from Ce(3+) to Tb(3+) in this system. The phosphors exhibit both a blue emission from Ce(3+) and a green emission from Tb(3+) under near ultraviolet light excitation with 325-375 nm wavelength. Emission colors of phosphors could be tuned from deep blue through cyan to green by adjusting the Tb(3+) concentrations. The energy transfer efficiency and emission intensity of Ba2Y(BO3)2Cl:Ce(3+), Tb(3+) precede those of Ba2Gd(BO3)2Cl:Ce(3+), Tb(3+), and the sample Ba2Y(BO3)2Cl:0.03Ce(3+), 0.10Tb(3+) is the best candidate for n-UV LEDs. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Effect of synthesis methods on luminescence properties of LiCaPO{sub 4}:Ce phosphor for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Palan, C.B., E-mail: chetupalan@rediffmail.com; Omanwar, S.K.

    2016-10-15

    The polycrystalline doped and un-doped LiCaPO{sub 4} phosphors were successfully prepared via solid state diffusion [SSD] and sol–gel [SG] methods. The sol–gel method was implied to decrease the processing time and heating temperature. The prepared un-doped and doped LiCaPO{sub 4} phosphors were characterized through X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Additionally photoluminescence (PL), thermoluminescence (TL) and optically stimulated luminescence (OSL) properties were studied. The XRD patterns of prepared LiCaPO{sub 4} and LiCaPO{sub 4}:Ce phosphors were well matched with the ICDD file. The average particles size of LiCaPO{sub 4} and LiCaPO{sub 4}:Ce phosphors were found to be in the range 2–10 μm by SSD method and 2-5 μm by SG method. The excitation spectra of LiCaPO{sub 4} and LiCaPO{sub 4}:Ce phosphors consist of broad band in the range 200–330 nm and maximum intensity was observed at 314 nm. Also emission spectra consist of broad band in range from 330–500 nm and maximum intensity was observed at 369 nm. With the increase of Ce{sup 3+} ions concentration, the emission spectra of LiCaPO{sub 4}:Ce{sup 3+} phosphors shifted to a longer wavelength. The prepared phosphors were showed excellent TL properties under β irradiation. The OSL sensitivity of the LiCaPO{sub 4}:Ce phosphor synthesized by the SSD method was the nearly same as compared with the OSL sensitivity of LiCaPO{sub 4}:Ce phosphor synthesized by the SG method.

  17. Luminescence and energy transfer of Tm3+ or/and Dy3+ co-doped in Sr3Y(PO4)3 phosphors with UV excitation for WLEDs

    International Nuclear Information System (INIS)

    Wang, Jiyou; Wang, Jianbo; Duan, Ping

    2014-01-01

    Powder samples Sr 3 Y 1−x−y (PO 4 ) 3 :xTm 3+ -yDy 3+ were synthesized by the conventional solid-state reaction method. By appropriate tuning of activator content, the emission color can be adjusted around blue to white and yellow. It was discovered that the energy transfer from Tm 3+ to Dy 3+ was demonstrated to be via the intensity of Dy 3+ emission increase with the increase of Tm 3+ concentration. By changing the doping concentration of Tm 3+ and Dy 3+ in Sr 3 Y(PO 4 ) 3 , white-emitting phosphors are produced by 350 nm excitation wavelength, their corresponding color coordinates are very close to the white color chromaticity coordinates (x=0.33, y=0.33). Finally, Sr 3 Y 1−x−y (PO 4 ) 3 :xTm 3+ −yDy 3+ phosphors could be a good promising single-component white light-emitting UV-convertible phosphor in the field of white LEDs. -- Highlights: • The Sr 3 Y 1−x−y (PO 4 ) 3 :xTm 3+ −yDy 3+ phosphors were synthesized by the conventional solid-state reaction method. • The energy transfer in between Tm 3+ and Dy 3+ was observed and explained. • The phosphors can be efficiently excited by a UV light. • The Sr 3 Y 1−x−y (PO 4 ) 3 :xTm 3+ -yDy 3+ phosphor could be a better candidate white phosphor for UV W-LEDs

  18. Tunable luminescence in Bi{sup 3+} and Eu{sup 3+} co-doped Sr{sub 3}AlO{sub 4}F Oxyfluorides phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Minhee [Center for Green Fusion Technology and Department of Engineering in Energy & Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Cho, So-Hye [Center for Materials Architecturing, Institute of Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Park, Sangmoon, E-mail: spark@silla.ac.kr [Center for Green Fusion Technology and Department of Engineering in Energy & Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of)

    2015-05-15

    Luminescent materials composed of Sr{sub 3−3(m+n)/2}Bi{sub m}Eu{sub n}AlO{sub 4}F (m=0.001–0.05, n=0–0.1) were prepared by the solid-state reaction method. The excitation and emission spectra of Sr{sub 3−3m/2}Bi{sub m}AlO{sub 4}F (m=0.001–0.05) were investigated using photoluminescence spectroscopy; broad-band emission peaks owing to the {sup 3}P{sub 1}→{sup 1}S{sub 0} transitions of the Bi{sup 3+} activator were observed centered near 427 nm. Critical emission quenching, as a function of Bi{sup 3+} content in Sr{sub 3−3m/2}Bi{sub m}AlO{sub 4}F, was observed at relatively low concentrations of the activator. The quantum efficiency of Sr{sub 2.985}Bi{sub 0.01}AlO{sub 4}F in comparison with sodium salicylate was explored. When Sr{sup 2+} ions in the oxyfluoride host were replaced by Bi{sup 3+} and Eu{sup 3+} ions, the effective s{sup 2}–sp and f–f transitions of the Bi{sup 3+} and Eu{sup 3+} ions, respectively, were simultaneously observed. The diverse excitation and emission photoluminescence spectra and color CIE coordinates, as well as the blue to orange-red emission, obtained using Sr{sub 3−3(m+n)/2}Bi{sub m}Eu{sub n}AlO{sub 4}F (m=0–0.05, n=0–0.1) phosphors are also discussed. - Highlights: • Sr{sub 3−3(m+n)/2}Bi{sub m}Eu{sub n}AlO{sub 4}F (m=0.001–0.05, n=0–0.1) phosphors was prepared. • Emission owing to the {sup 3}P{sub 1}→{sup 1}S{sub 0} transitions of the Bi{sup 3+} activator was observed. • Quantum efficiency of Sr{sub 2.985}Bi{sub 0.01}AlO{sub 4}F was explored. • s{sup 2}–sp and f–f transitions of the Bi{sup 3+} and Eu{sup 3+} ions were simultaneously observed. • CIE values including the emissions from blue to red regions were achieved.

  19. Intense blue upconversion emission and intrinsic optical bistability in Tm3+/Yb3+/Zn2+ tridoped YVO4 phosphors

    Science.gov (United States)

    Yadav, Manglesh; Mondal, Manisha; Mukhopadhyay, Lakshmi; Rai, Vineet Kumar

    2018-04-01

    Tm3+/Yb3+/Zn2+:yttrium metavanadate (YVO4) phosphors prepared through chemical coprecipitation and the solid state reaction method have been structurally characterized by an x-ray diffraction (XRD) study. Photoluminescence study of the developed phosphors under ultraviolet (UV) and near infrared (NIR) excitation has been performed. The excitation spectrum of the tetragonal zircon type YVO4 phosphors corresponding to the emission at ˜476 nm exhibits a broad excitation peak in the 250-350 nm region, which is due to charge distribution in the {{{{VO}}}4}3- group. Under 980 nm CW diode laser excitation, enhancements of about ˜3000 times and ˜40 times have been observed for the blue band in the tridoped Tm3+Yb3+Zn2+:YVO4 phosphors compared to those of the Tm3+:YVO4 singly and Tm3+/Yb3+:YVO4 codoped phosphors, respectively. A downconversion (DC) emission study shows an enhancement of about ˜50 times for the blue band in the tridoped phosphors compared to that of the singly doped phosphors. Optical bistability (OB) behavior of the developed phosphors has been also investigated upon 980 nm excitation. The calculated Commission Internationale de l’Éclairage (CIE) color coordinates lie in the blue region with 96.5% color purity under 980 nm excitation, having a color temperature of ˜3400 K. Our observations show that the developed phosphors may be suitably used in dual mode luminescence spectroscopy, display devices, and UV LED chips.

  20. Thermally stable green Ba(3)Y(PO(4))3:Ce(3+),Tb(3+) and red Ca(3)Y(AlO)(3)(BO(3))4:Eu(3+) phosphors for white-light fluorescent lamps.

    Science.gov (United States)

    Huang, Chien-Hao; Kuo, Te-Wen; Chen, Teng-Ming

    2011-01-03

    A class of thermal stable of green-emitting phosphors Ba(3)Y(PO(4))(3):Ce(3+),Tb(3+) (BYP:Ce(3+),Tb(3+)) and red-emitting phosphors Ca(3)Y(AlO)(3)(BO(3))(4):Eu(3+) (CYAB:Eu(3+)) for white-light fluorescent lamps were synthesized by high temperature solid-state reaction. We observed a decay of only 3% at 150 °C for BYP:0.25Ce3+,0.25Tb3+ (3% for LaPO4:Ce(3+),Tb(3+)), and a decay of 4% for CYAB:0.5Eu(3+) (7% for Y(2)O(3):Eu(3+), 24% for Y(2)O(2)S:Eu(3+)). The emission intensity of composition-optimized Ba(3)(Y(0.5)Ce(0.25)Tb(0.25))(PO(4))(3) is 70% of that of commercial LaPO(4):Ce(3+),Tb(3+) phosphors, and the CIE chromaticity coordinates are found to be (0.323, 0.534). The emission intensity of Ca(3)(Y(0.5)Eu(0.5))(AlO)(3)(BO(3))(4) is 70% and 83% of those of Y(2)O(3):Eu(3+) and Y(2)O(2)S:Eu(3+) phosphors, respectively, and the CIE chromaticity coordinates are redder (0.652, 0.342) than those of Y(2)O(3):Eu(3+) (0.645, 0.347) and Y(2)O(2)S:Eu(3+) (0.647, 0.343). A white-light fluorescent lamp is fabricated using composition-optimized Ba(3)(Y(0.5)Ce(0.25)Tb(0.25))(PO(4))(3) and Ca(3)(Y(0.5)Eu(0.5))(AlO)(3)(BO(3))(4) phosphors and matching blue-emitting phosphors. The results indicate that the quality of the brightness and color reproduction is suitable for application in shortwave UV fluorescent lamps. The white-light fluorescent lamp displays CIE chromaticity coordinates of x = 0.33, y = 0.35, a warm white light with a correlated color temperature of 5646 K, and a color-rendering index of Ra = 70.

  1. Tuning the diurnal natural daylight with phosphor converted white LED – Advent of new phosphor blend composition

    International Nuclear Information System (INIS)

    Kim, Yoon Hwa; Arunkumar, Paulraj; Park, Seung Hyok; Yoon, Ho Shin; Im, Won Bin

    2015-01-01

    Highlights: • Designed phosphor blend that mimics diurnal daylight for health benefits. • Developed new phosphor blend composition that mimics natural sunlight under near UV. • The phosphor blend also exhibits high CRI (≥90) under blue LED excitation. • Fabricated WLED exhibited ∼91% spectral resemblance with daylight at 4500 K. • While ∼39.2% spectral resemblance were observed for YAG:Ce 3+ at 4500 K. - Abstract: We demonstrate the feasibility of developing phosphor converted white LED (pc-WLED) that mimics diurnal natural daylight with the newly designed phosphor blend in the color temperature (CCT) 2700–6000 K for health benefits. Natural daylight (sunlight) spectrum possesses broad emission in the visible region and closely approximates black body radiator, with color rendition index (CRI) of 100 under wide CCT (2500–6500 K). Current white light LEDs although are efficient and durable, they are not broad enough compared to daylight. We report new phosphor blend based on Sr 3 MgSi 2 O 8 :Eu 2+ blue phosphor with broad emission and high CRI ≥ 96 under both near UV and blue excitation. The fabricated WLED has exhibited ∼91% spectral resemblance with natural daylight compared to 39.2% for YAG:Ce 3+ white LED at 4500 K. The developed phosphor blend tunes the spectrum in wider CCT and would be a prospective candidate for full spectrum daylight WLED

  2. Luminescent properties of Eu2+ and Ce3+ ions in strontium litho-silicate Li2SrSiO4

    International Nuclear Information System (INIS)

    Dotsenko, V.P.; Levshov, S.M.; Berezovskaya, I.V.; Stryganyuk, G.B.; Voloshinovskii, A.S.; Efryushina, N.P.

    2011-01-01

    The luminescent properties of Eu 2+ and Ce 3+ ions in Li 2 SrSiO 4 have been studied upon excitation in the 2-20 eV region. Based on the results of luminescent measurements, values of the crystal field splitting and the centroid shift of the Ce 3+ 5d configuration in Li 2 SrSiO 4 were found and compared with those of Ce 3+ ions in some other inorganic compounds. The Eu 2+ ions in Li 2 SrSiO 4 exhibit a broad band emission with a maximum at 576 nm, which is due to the 4f 6 5d→4f 7 transition. It was shown that the long-wavelength position of the Eu 2+ emission in Li 2 SrSiO 4 is caused by the large crystal-field splitting of the Eu 2+ 4f 6 5d configuration and relatively high degree of covalency of the Eu-O bond. The stabilization of Eu 2+ ions in Li 2 SrSiO 4 during the synthesis process requires a strong reducing agent. Two phenomenological approaches to explain the low stability of Eu 2+ in Li 2 SrSiO 4 are also discussed.

  3. Dependence of optical properties on the composition of (Ba{sub 1−x−y}Sr{sub x}Eu{sub y})Si{sub 2}O{sub 2}N{sub 2} phosphors for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Mei, E-mail: zmjenny@163.com; He, Xin; Luo, Jianyi; Zeng, Qingguang

    2014-10-15

    BaSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+} is an efficient phosphor because of its high quantum yield and quenching temperature. Partial substitution of Ba{sup 2+} by Sr{sup 2+} is the most promising approach to tune the color of phosphors. In this study, a series of (Ba{sub 1−x−y}Sr{sub x}Eu{sub y})Si{sub 2}O{sub 2}N{sub 2} (x = 0.0–0.97, y = 0.00–0.10) phosphors are synthesized via high-temperature solid-state reactions. Intense green to yellow phosphors can be obtained by the partial substitution of the host lattice cation Ba{sup 2+} by either Sr{sup 2+} or Eu{sup 2+}. The luminescent properties and the relationships among the lowest 5d absorption bands, Stokes shifts, centroid shifts, and the splitting of Eu{sup 2+} are studied systematically. Then, based on (Ba{sub 1−x−y}Sr{sub x}Eu{sub y})Si{sub 2}O{sub 2}N{sub 2} phosphors and near-ultraviolet (∼395 nm)/blue (460 nm) InGaN chips, intense green–yellow light emitting diodes (LEDs) and white LEDs are fabricated. (Ba{sub 0.37}Sr{sub 0.60})Si{sub 2}O{sub 2}N{sub 2}: 0.03Eu{sup 2+} phosphors present the highest efficiency, and the luminous efficiency of white LEDs can reach 17 lm/w. These results indicate that (Ba{sub 1−x−y}Sr{sub x}Eu{sub y})Si{sub 2}O{sub 2}N{sub 2} phosphors are promising candidates for solid-state lighting. - Highlights: • The optical properties of Eu{sup 2+} in the (Ba, Sr)Si{sub 2}O{sub 2}N{sub 2} solid-solutions are studied systematically. • The relationship among the lowest 5d absorption bands, Stocks shifts etc.of Eu{sup 2+} are also studied. • The electroluminescent properties of pc-LEDs are studied in details.

  4. Luminescent properties of MAl(SO4)2 Br:Eu(3+) (M = Sr or Mg) red phosphors for near-UV light-emitting diodes.

    Science.gov (United States)

    Deshmukh, Priti B; Puppalwar, S P; Dhoble, N S; Dhoble, S J

    2015-02-01

    Eu(3+) -activated MAl(SO4 )2 Br phosphors (where M = Mg or Sr) are successfully prepared using a wet chemical reaction technique. The samples are characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopies. The XRD pattern revealed that both the samples are microcrystalline in nature. PL of Eu(3+) -doped SrAl(SO4 )2 Br and MgAl(SO4 )2 Br phosphors exhibited characteristic red emission coming from the (5) D0  → (7) F2 (616 nm) electron transition, when excited by 396 nm wavelength of light. The maximum intensity of luminescence was observed at a concentration of 1 mol% Eu(3+) . The intensity of the electric dipole transition at 616 nm is greater than that of the magnetic dipole transition at 594 nm. The results showed that MAl(SO4 )2 Br:Eu(3+) , (M = Mg, Sr) phosphors have potential application in near-UV light-emitting diodes as efficient red-emitting phosphor. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Red-emitting SrIn2O4 : Eu3+ phosphor powders for applications in solid state white lamps

    International Nuclear Information System (INIS)

    Rodriguez-Garcia, C E; Perea-Lopez, N; Hirata, G A; Baars, S P den

    2008-01-01

    Red-emitting phosphor powders of SrIn 2 O 4 activated with Eu 3+ ions were fabricated by high pressure assisted combustion synthesis. X-ray diffraction analysis of these oxide phosphors revealed the formation of single-phase orthorhombic SrIn 2 O 4 for concentrations up to 4 at% Eu. A detailed photoluminescence (PL) and cathodoluminescence study showed bright red emission originated within the 5 D 0 → 7 F J intra-shell transitions of Eu 3+ . Furthermore, PL excitation spectroscopy revealed that an efficient energy transfer from the SrIn 2 O 4 host lattice onto the Eu ions is accomplished in addition to the excitation band peaked at 396 nm that directly excites the Eu ions, making this material an excellent candidate for applications in solid state white lamps. (fast track communication)

  6. White-emission in single-phase Ba2Gd2Si4O13:Ce3 +,Eu2 +,Sm3 + phosphor for white-LEDs

    Science.gov (United States)

    Jiang, Xiumin; Zhang, Yuqian; Zhang, Jia

    2018-03-01

    To develop new white-light-emitting phosphor, a series of Ce3 +-Eu2 +-Sm3 + doped Ba2Gd2Si4O13 (BGS) phosphors were prepared by the solid-state reaction method, and their photoluminescence properties were studied. The Ce3 + and Eu2 + single-doped BGS show broad emission bands around in the region of 350-550 and 420-650 nm, respectively. By co-doping Ce3 +-Eu2 + into BGS, the energy transfer (ET) from Ce3 + to Eu2 + is inefficient, which could be due to the competitive absorption between the two activator ions. The Sm3 +-activated BGS exhibits an orangey-red emission in the region of 550-750 nm. To achieve white emission, the BGS:0.06Ce3 +,0.04Eu2 +,ySm3 + (0 ≤ y ≤ 0.18) phosphors were designed, in which the ET from Ce3 +/Eu2 + to Sm3 + was observed. The emission color can be tuned by controlling the Sm3 + concentration, and white emission was obtained in the BGS:0.06Ce3 +,0.04Eu2 +,0.06Sm3 + sample. The investigation of thermal luminescence stability for the typical BGS:0.06Ce3 +,0.04Eu2 +,0.06Sm3 + sample reveals that the emission intensities of both Eu2 + and Sm3 + demonstrate continuous decrease but the Ce3 + emission is enhanced gradually with increasing temperature. The corresponding reason has been discussed.

  7. A new series of borophosphate phosphor Cd{sub 3}BPO{sub 7}:M (M = Ce{sup 3+}, Tb{sup 3+}, Mn{sup 2+}) with tunable luminescence and energy transfer properties

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiyu; Liu, Wei, E-mail: weiliu@ouc.edu.cn; Liu, Shuang; Cao, Lixin; Su, Ge; Gao, Rongjie; Jiang, Yu

    2016-04-25

    A new series of Cd{sub 3}BPO{sub 7}:M (M = Ce{sup 3+}, Tb{sup 3+}, Mn{sup 2+}) phosphors have been synthesized and characterized using X-ray powder diffraction as well as excitation and emission spectroscopy. Based on the Cd{sub 3}BPO{sub 7} host, the singly doping Ce{sup 3+}, Tb{sup 3+} and Mn{sup 2+} yield the blue, green and red-emitting phosphors respectively under the irradiation range from 270 to 300 nm UV. By appropriate tuning of Tb{sup 3+} or Mn{sup 2+} activator content, the emission color of the Cd{sub 3}BPO{sub 7}:Ce{sup 3+}/M (M = Tb{sup 3+} or Mn{sup 2+}) phosphors can be changed from blue to green or pink, respectively. Under UV excitation, the mixture of the as-prepared blue, green and red phosphors yields the warm white light, which exhibits their potential application as UV-convertible phosphors for WLEDs. - Highlights: • A new series of Cd{sub 3}BPO{sub 7}:M (M = Ce{sup 3+}, Tb{sup 3+}, Mn{sup 2+}) phosphors have been prepared. • The energy transfer from Ce{sup 3+} to Tb{sup 3+} is observed in Cd{sub 3}BPO{sub 7}:Ce{sup 3+}, Tb{sup 3+}. • Warm white light can be achieved by mixing physically the obtained tirphosphors.

  8. TL dosimetric characterization of gamma irradiated SrSO{sub 4}:Eu phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Jayasudha, S., E-mail: jsnair.india@gmail.com [Mahatma Gandhi College, Kesavadasapuram, Pattom Palace P.O., Thiruvananthapuram 695004 (India); Madhukumar, K.; Nair, C.M.K.; Nair, Resmi G. [Mahatma Gandhi College, Kesavadasapuram, Pattom Palace P.O., Thiruvananthapuram 695004 (India); Rajesh, S. [Department of Materials & Ceramic Engineering, University of Aveiro, Aveiro 3810-193 (Portugal); Elias, T.S. [State Institute of Cancer Research, Medical College P.O., Thiruvananthapuram 695011 (India); Anandakumar, V.M. [Mahatma Gandhi College, Kesavadasapuram, Pattom Palace P.O., Thiruvananthapuram 695004 (India); State Institute of Cancer Research, Medical College P.O., Thiruvananthapuram 695011 (India); Department of Materials & Ceramic Engineering, University of Aveiro, Aveiro 3810-193 (Portugal); Gopakumar, N. [Mahatma Gandhi College, Kesavadasapuram, Pattom Palace P.O., Thiruvananthapuram 695004 (India)

    2017-03-15

    Thermoluminescence (TL) characteristics of SrSO{sub 4}:Eu nanostructured phosphor under gamma excitation has been studied and their suitability for environmental radiation dosimetry applications is discussed. The dopant level is tuned for optimum TL response. The effect of radiation dose and heating rate were investigated. The phosphor preserves linearity in the low dose region, 0.1 Gy to 20 Gy. PL studies of irradiated and un-irradiated phosphors reveal that the dopant Eu exists in divalent state and are the luminescence emission centres in the material. The fading properties of SrSO{sub 4}:Eu phosphor are observed to be better than that of the commercial dosimeters TLD-200 and TLD-400. The kinetic parameters are calculated using Chen's method and initial rise method and verified by Computerized Glow curve Deconvolution (CGCD). The sensitivity of the synthesized phosphor is found to be very high when compared with that of the commercial standard dosimeter CaSO{sub 4}:Dy. The phosphor is found to be stable for short term radiation monitoring.

  9. Effects of Sr2+ substitution on photoluminescence characteristics of Ba1−x−ySryZrSi3O9:xEu2+ phosphors

    International Nuclear Information System (INIS)

    Chiang, Chung-Hao; Gong, Syuan-Jhih; Lin, Han-Yu; Zhan, Ting-Shi; Chu, Sheng-Yuan

    2014-01-01

    In this work, single-phase Ba 1−x−y Sr y ZrSi 3 O 9 :xEu 2+ phosphors were synthesized via the solid-state reaction method. The crystal structure and luminescence properties were investigated using X-ray diffraction and photoluminescence measurements, respectively. An increase of the dopant Sr 2+ increased the emission intensity of the phosphors. The peak intensity of the samples was at y = 0.4 under near-ultraviolet light excitation (397 nm). The wavelength of the emission peaks red-shifts slightly from 477 to 483 nm due to the splitting of the 5d energy level. Sr 2+ ions have a smaller ionic radius than that of Ba 2+ ions, and thus the dopant changes the crystal structure, improving the energy transfer efficiency between luminescence centers. More Eu 2+ solid solubility was found in Ba 0.6−x Sr 0.4 ZrSi 3 O 9 :xEu 2+ phosphors (10 mol. %) than in the host BaZrSi 3 O 9 (6 mol. %), which enhanced the emission intensity. In addition, the thermal reliability of the phosphors was studied

  10. TL characterization of Ag co-doped SrSO{sub 4}:Eu phosphor for gamma dosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Jayasudha, S., E-mail: jsnair.india@gmail.com [Mahatma Gandhi College, Pattom Palace P.O., Thiruvananthapuram 695004 (India); Madhukumar, K.; Nair, C.M.K.; Nair, Resmi G.; Anandakumar, V.M. [Mahatma Gandhi College, Pattom Palace P.O., Thiruvananthapuram 695004 (India); Elias, T.S. [State Institute of Cancer Research, Medical College P.O., Thiruvananthapuram 695011 (India); Rajesh, S. [Campus Universitario de Santiago, Aveiro (Portugal)

    2017-04-15

    High temperature thermoluminescence (TL) emissions and improvement in fading due to the co-doping ofr Ag in the SrSO{sub 4}:Eu phosphor synthesized through chemical precipitation technique when subjected to γ-excitation is discussed. The dopant concentrations were tuned for optimum TL sensitivity. Preliminary crystallographic and structural studies of the phosphors were done using PXRD, SEM, and TEM. The phosphor has a single phase orthorhombic lattice structure and the crystallites are found to be nanostructured. The presence of dopants in the host matrix is established through EDS and ICP-AES studies. The TL glow curve shows a single intense emission at 314 ├ó┬ü┬░C under γ- exposure of dose 1 Gy, which is given from a {sup 60}Co build-up. The dosimetric properties such as sensitivity, dose dependence, fading and reusability of SrSO{sub 4}:Eu,Ag phosphor were also studied. It is observed that co-doping with Ag improves the fading rate of the SrSO{sub 4}:Eu phosphor by about 5%. Even though the luminescence intensity is found to be less than that of SrSO{sub 4}:Eu phosphor, the Ag co-doped phosphor becomes significant owing to its improved fading rate and high temperature afterglow. The gamma sensitivity of the SrSO{sub 4}:Eu,Ag(0.5,0.5 mol%) phosphor is compared to that of the standard CaSO{sub 4}:Dy TLD phosphor. The TL kinetic parameters were calculated using IR, Chen's peak shape method and verified by the theoretical fit using GCD functions. - Highlights: • A High temperature TL emission is observed for the SrSO{sub 4}:Eu,Ag phosphor. • TL intensity is 10 times higher than that of standard CaSO{sub 4}:Dy. • Fading rate of SrSO{sub 4}:Eu phosphor is improved by 5% with Ag co-doping. • Linear dose response in the range 10mGy-10Gy. • t .

  11. Luminescent processes in SrAl2O4: Eu2+, Dy3+ phosphors exposed to ultraviolet radiation

    International Nuclear Information System (INIS)

    Arellano T, O.; Castaneda, B.; Pedroza M, M.; Melendrez, R.; Chernov, V.; Barboza F, M.; Yen, W.M.

    2006-01-01

    The long persistent response of the SrAl 2 O 4 : Eu 2+ , Dy 3+ phosphors has been utilized in the development of new luminescent devices with low voltage requirements, incorporated in luminous paints and emergency light illumination. We have studied the experimental characteristics of thermoluminescence (TL) and afterglow (AG) processes in UV irradiated long persistent phosphors SrAl 2 O 4 : Eu 2+ , Dy 3+ . The TL signal is achieved by thermal stimulation of material and it involves the release of trapped charge carriers in the form of electrons and/or electrons and holes generated by irradiation exposure of the dosimetric materials, while the AG signal is obtained at RT without thermal stimulation. In both cases, the intensity of the response is proportional to the radiation dose. For our UV irradiated SrAl 2 O 4 : Eu 2+ , Dy 3+ samples, the TL glow curve depicted at least five peaks around 318, 424, 457, 488 and 515 K with activation energy values of 0.28, 0.67, 1.00, 1.35 and 1.62 eV, respectively. In this respect, the initial rise method was used to estimate experimentally the peak positions. Then, these experimental data were used as initial values to determine the kinetics parameters through a computer deconvolution and fitting process. Besides, the AG response was analyzed and we found it has at least three exponential processes with different lifetimes around 56, 180 and 1230 s, respectively. In addition, the afterglow dosimetry performance of this SrAl 2 O 4 : Eu 2+ , Dy 3+ phosphor exhibited a linear behavior for the first fifty seconds of ultraviolet irradiation. For higher ultraviolet time exposure the behavior is sub linear with no apparent saturation during ten minutes. The afterglow dosimetry response was performed with a source of 400 nm that corresponds to the main band component of the afterglow excitation spectrum in the 250-500 nm range. The TL glow intensity peaked at 460 K and AG intensity responses are strongly dependents on the excitation

  12. Integrated chemical process for exothermic wave synthesis of high luminance YAG:Ce phosphors

    International Nuclear Information System (INIS)

    Won, C.W.; Nersisyan, H.H.; Won, H.I.; Youn, J.W.

    2011-01-01

    In this paper, high-luminance yellow-emitting Y 3 Al 5 O 12 :Ce 3+ phosphor (YAG:Ce) microparticles were prepared in a solid flame using a 1.425Y 2 O 3 +2.5Al 2 O 3 +0.15CeO 2 +k(KClO 3 +urea)+mNH 4 F precursor mixture (here k is the number of moles of the KClO 3 +urea red-ox mixture, and m is the number of moles of NH 4 F). The self-sustaining combustion process for the entire reaction sample was provided by the heat generated from the KClO 3 +urea mixture. Parametric studies demonstrated that the maximum temperature in the combustion wave varied from 885 to 1200 deg. C for k=2.0-3.0 mole and m=0-1.5 mole. X-ray analysis results showed that the product obtained in the solid flame consisted of Y 3 Al 5 O 12 :Ce 3+ and KCl phases. Therefore, after dissolving potassium chloride in distillated water, pure-phase YAG:Ce phosphor powder was obtained. The as-prepared YAG:Ce phosphor particles had diameters of 10-25 μm and good dispersity and exhibited luminescence properties comparable to those of YAG:Ce phosphor powders prepared by conventional high-temperature processing. - Highlights: → A new solid-flame strategy was developed for synthesizing high-luminance YAG:Ce phosphor. → Adding KClO 3 +CO(NH 2 ) 2 +NH 4 F mixture to oxide powders provides a low-temperature combustion process. → YAG:Ce phosphor particles 10-25 μm in diameter were obtained at 1000-1100 deg. C within tens of seconds. → As-prepared YAG:Ce emission intensity was 90.1-103.2% compared to that of the reference sample.

  13. High-Throughput Synthesis and Characterization of Eu Doped Ba xSr2- xSiO4 Thin Film Phosphors.

    Science.gov (United States)

    Frost, Sara; Guérin, Samuel; Hayden, Brian E; Soulié, Jean-Philippe; Vian, Chris

    2018-06-20

    High-throughput techniques have been employed for the synthesis and characterization of thin film phosphors of Eu-doped Ba x Sr 2- x SiO 4 . Direct synthesis from evaporation of the constituent elements under a flux of atomic oxygen on a sapphire substrate at 850 °C was used to directly produce thin film libraries (415 nm thickness) of the crystalline orthosilicate phase with the desired compositional variation (0.24 > x > 1.86). The orthosilicate phase could be synthesized as a pure, or predominantly pure, phase. Annealing the as synthesized library in a reducing atmosphere resulted in the reduction of the Eu while retaining the orthosilicate phase, and resulted in a materials thin film library where fluorescence excited by blue light (450 nm) was observable by the naked eye. Parallel screening of the fluorescence from the combinatorial libraries of Eu doped Ba x Sr 2- x SiO 4 has been implemented by imaging the fluorescent radiation over the library using a monochrome digital camera using a series of color filters. Informatics tools have been developed to allow the 1931 CIE color coordinates and the relative quantum efficiencies of the materials library to be rapidly assessed and mapped against composition, crystal structure and phase purity. The range of compositions gave values of CIE x between 0.17 and 0.52 and CIE y between 0.48 and 0.69 with relative efficiencies in the range 2.0 × 10 -4 -7.6 × 10 -4 . Good agreement was obtained between the thin film phosphors and the fluorescence characteristics of a number of corresponding bulk phosphor powders. The thermal quenching of fluorescence in the thin film libraries was also measured in the temperature range 25-130 °C: The phase purity of the thin film was found to significantly influence both the relative quantum efficiency and the thermal quenching of the fluorescence.

  14. Tuning the diurnal natural daylight with phosphor converted white LED – Advent of new phosphor blend composition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Hwa [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Research Institute, Force4 Corp., Daechon-dong, Buk-gu, Gwangju 500-470 (Korea, Republic of); Arunkumar, Paulraj [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Park, Seung Hyok; Yoon, Ho Shin [Research Institute, Force4 Corp., Daechon-dong, Buk-gu, Gwangju 500-470 (Korea, Republic of); Im, Won Bin, E-mail: imwonbin@jnu.ac.kr [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of)

    2015-03-15

    Highlights: • Designed phosphor blend that mimics diurnal daylight for health benefits. • Developed new phosphor blend composition that mimics natural sunlight under near UV. • The phosphor blend also exhibits high CRI (≥90) under blue LED excitation. • Fabricated WLED exhibited ∼91% spectral resemblance with daylight at 4500 K. • While ∼39.2% spectral resemblance were observed for YAG:Ce{sup 3+} at 4500 K. - Abstract: We demonstrate the feasibility of developing phosphor converted white LED (pc-WLED) that mimics diurnal natural daylight with the newly designed phosphor blend in the color temperature (CCT) 2700–6000 K for health benefits. Natural daylight (sunlight) spectrum possesses broad emission in the visible region and closely approximates black body radiator, with color rendition index (CRI) of 100 under wide CCT (2500–6500 K). Current white light LEDs although are efficient and durable, they are not broad enough compared to daylight. We report new phosphor blend based on Sr{sub 3}MgSi{sub 2}O{sub 8}:Eu{sup 2+} blue phosphor with broad emission and high CRI ≥ 96 under both near UV and blue excitation. The fabricated WLED has exhibited ∼91% spectral resemblance with natural daylight compared to 39.2% for YAG:Ce{sup 3+} white LED at 4500 K. The developed phosphor blend tunes the spectrum in wider CCT and would be a prospective candidate for full spectrum daylight WLED.

  15. New thermally stable red-emitting phosphors Pr{sup 3+}, M{sup +}:SrB{sub 4}O{sub 7} (M=Li, Na, K)

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, F.B., E-mail: fbxiong@xmut.edu.cn [Department of Optoelectronics, Xiamen University of Technology, Xiamen 361024 (China); Fujian Provincial Key Laboratory of Optoelectronic Information Materials and Devices, Xiamen University of Technology, Xiamen 361024 (China); Lin, H.F.; Xu, Y.C.; Shen, H.X. [Department of Optoelectronics, Xiamen University of Technology, Xiamen 361024 (China); Zhu, W.Z. [Department of Optoelectronics, Xiamen University of Technology, Xiamen 361024 (China); Fujian Provincial Key Laboratory of Optoelectronic Information Materials and Devices, Xiamen University of Technology, Xiamen 361024 (China)

    2016-09-15

    New red-emitting phosphors Pr{sup 3+}, M{sup +}:SrB{sub 4}O{sub 7} (M=Li, Na, K) in pure phase were synthesized via high-temperature solid-state reaction. Luminescent properties of those phosphors were characterized in detail. Pr{sup 3+}, M{sup +}:SrB{sub 4}O{sub 7} (M=Li, Na, K) can be excited under the range of 430–500 nm excitation, which covers the emission spectra of blue InGaN chip, exhibits pure red emission bands centered at 605 and 662 nm. The alkali-metal Li{sup +}, Na{sup +}, or K{sup +} acting as charge compensators can improve fluorescent emission intensities of Pr{sup 3+} ions, and Pr{sup 3+}, Na{sup +}:SrB{sub 4}O{sub 7} shows the strongest emission intensities among those phosphors. Concentration quenching could be attributed to electric dipole–dipole interaction among Pr{sup 3+} ions. The temperature-dependent luminescence indicated Pr{sup 3+}, Na{sup +}:SrB{sub 4}O{sub 7} shows highly thermal stability. Those work suggests that Pr{sup 3+}, M{sup +}:SrB{sub 4}O{sub 7} (M=Li, Na, K) as thermally stable red-emitting phosphor might be potentially applied in WLED.

  16. Photoluminescence properties and energy transfer of color tunable MgZn₂(PO₄)₂:Ce³⁺,Tb³⁺ phosphors.

    Science.gov (United States)

    Xu, Mengjiao; Wang, Luxiang; Jia, Dianzeng; Zhao, Hongyang

    2015-11-21

    A series of Ce(3+)/Tb(3+) co-doped MgZn2(PO4)2 phosphors have been synthesized by the co-precipitation method. Their structure, morphology, photoluminescence properties, decay lifetime, thermal stability and luminous efficiency were investigated. The possible energy transfer mechanism was proposed based on the experimental results and detailed luminescence spectra and decay curves of the phosphors. The critical distance between Ce(3+) and Tb(3+) ions was calculated by both the concentration quenching method and the spectral overlap method. The energy transfer mechanism from the Ce(3+) to Tb(3+) ion was determined to be dipole-quadrupole interaction, and the energy transfer efficiency was 85%. By utilizing the principle of energy transfer and appropriate tuning of Ce(3+)/Tb(3+) contents, the emission color of the obtained phosphors can be tuned from blue to green light. The MgZn2(PO4)2:Ce(3+),Tb(3+) phosphor is proved to be a promising UV-convertible material capable of green light emitting in UV-LEDs due to its excellent thermal stability and luminescence properties.

  17. Formation of Deep Electron Trap by Yb3+ Codoping Leads into Super-Long Persistent Luminescence in Ce3+-doped Yttrium Aluminum Gallium Garnet Phosphors.

    Science.gov (United States)

    Ueda, Jumpei; Miyano, Shun; Tanabe, Setsuhisa

    2018-05-23

    The Y 3 Al 2 Ga 3 O 12 :Ce 3+ -Cr 3+ compound is one of the brightest persistent phosphors, but its persistent luminescence (PersL) duration is not so long due to the relatively shallow Cr 3+ electron trap. Comparing the vacuum referred binding energy of the electron trapping state by Cr 3+ and those by lanthanide ions, we selected Yb 3+ as a deeper electron trapping center. The Y 3 Al 2 Ga 3 O 12 :Ce 3+ -Yb 3+ phosphors show Ce 3+ :5d→4f green persistent luminescence after ceasing blue light excitation. The formation of Yb 2+ was confirmed by the increased intensity of absorption at 585 nm during the charging process. This result indicates that the Yb 3+ ions act as electron traps by capturing an electron. From the thermoluminescence glow curves, it was found the Yb 3+ trap makes much deeper electron trap with 1.01 eV depth than the Cr 3+ electron trap with 0.81 eV depth. This deeper Yb 3+ trap provides much slower detrapping rate of filled electron traps than the Cr 3+ -codoped persistent phosphor. In addition, by preparing transparent ceramics and optimizing Ce 3+ and Yb 3+ concentrations, the Y 3 Al 2 Ga 3 O 12 :Ce 3+ (0.2%)-Yb 3+ (0.1%) as-made transparent ceramic phosphor showed super long persistent luminescence for over 138.8 hours after ceasing blue light charging.

  18. Photoluminescence Properties of Red-Emitting Ca3Sr3-x(PO4)4:xEu3+ Phosphors for White Light-Emitting Diodes.

    Science.gov (United States)

    Hakeem, D A; Park, K

    2015-07-01

    The photoluminescent properties of the Eu(3+)-activated Ca3Sr3(PO4)4 phosphors prepared by a solution combustion method were investigated. The excitation spectra of Ca3Sr3-x(PO4)4:xEu3+ (0.05 ≤ x ≤ 0.6) phosphors under 614 nm wavelength showed a broad band centered at 266 nm along with other peaks at 320, 362, 381, 394, 414, 464, and 534 nm. The emission spectra observed in the range of 450 to 750 nm under excitation at 394 nm were ascribed to the 5D0-7F1-4 transitions of Eu3+ ions. The Ca3Sr3-x(PO4)4:xEu3+ phosphors showed the strongest red emission at 614 nm due to the electric dipole 5DO -->7F2 transition of Eu3+. The strongest emission intensity was obtained for the Eu3+ ions of x = 0.5. The prepared Ca3Sr3-x(PO4)4:xEu3+ can be used as an efficient red phosphor for UV-based white LEDs.

  19. Red, Green, and Blue Photoluminescence of Ba2SiO4:M (M = Eu3+, Eu2+, Sr2+ Nanophosphors

    Directory of Open Access Journals (Sweden)

    Claudia Wickleder

    2013-07-01

    Full Text Available Divalent europium doped barium orthosilicate is a very important phosphor for the production of light emitting diodes (LEDs, generally associated to the green emission color of micron-sized crystals synthesized by means of solid-state reactions. This work presents the combustion synthesis as an energy and time-saving preparation method for very small nano-sized Ba2SiO4 particles, flexibly doped to acquire different emission energies. The size of the resulting spherical nanoparticles (NPs of the green emitting Ba2SiO4:Eu2+ was estimated to about 35 nm applying the Scherrer equation and further characterized with aid of atomic force microscopy (AFM as well as scanning electron microscopy (SEM. This phosphor is able to build homogeneous luminescent suspensions and was successfully down-sized without changing the optical properties in comparison to the bulk phosphors. Besides the X-ray diffraction (XRD analysis and the different types of microscopy, the samples were characterized by luminescence spectroscopy. Undoped Ba2SiO4 NPs are not luminescent, but show characteristic red emission of the 5D0 → 7FJ (J = 0–4 electronic transitions when doped with Eu3+ ions. Moreover, these orthosilicate nanoparticles generate blue light at low temperatures due to impurity-trapped excitons, introduced by the partial substitution of the Ba2+ with Sr2+ ions in the Ba2SiO4 lattice causing a substantial distortion. A model for the temperature behavior of the defect luminescence as well as for their nature is provided, based on temperature-dependent luminescence spectra and lifetime measurements.

  20. Effect of charge compensator ions (R+ = Li+, Na+ and K+) on Sr2MgSi2O7:Dy3+ phosphors by solid-state reaction method

    Science.gov (United States)

    Sahu, Ishwar Prasad

    2016-09-01

    The Sr2MgSi2O7:Dy3+ and Sr2MgSi2O7:Dy3+, R+ (R+ = Li+, Na+ and K+) phosphors were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The prepared phosphors were excited at 350 nm, and their corresponding emission spectrum were recorded at blue (482 nm) and yellow (575 nm) region due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions, respectively, of Dy3+ ions. Commission Internationale de L'Eclairage coordinates have been calculated for each sample and its value exhibited that overall emission is near white light. The possible mechanisms of discussed white light emitting phosphors were also investigated. In order to investigate the suitability of the samples as white color light sources for industrial uses, color purity, correlated color temperature (CCT) and color rendering index (CRI) were calculated. Values of color purity, CCT and CRI were found well within the defined acceptable range. With incorporating (R+ = Li+, Na+ and K+) as charge compensator ions, the emission intensity of Sr2MgSi2O7:Dy3+ can be obviously enhanced. The results indicate that prepared phosphors may be a potential application in display devices.

  1. Effect of charge compensator ions (R+ = Li+, Na+ and K+) on Sr2MgSi2O7:Dy3+ phosphors by solid-state reaction method

    International Nuclear Information System (INIS)

    Sahu, Ishwar Prasad

    2016-01-01

    The Sr 2 MgSi 2 O 7 :Dy 3+ and Sr 2 MgSi 2 O 7 :Dy 3+ , R + (R + = Li + , Na + and K + ) phosphors were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The prepared phosphors were excited at 350 nm, and their corresponding emission spectrum were recorded at blue (482 nm) and yellow (575 nm) region due to the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions, respectively, of Dy 3+ ions. Commission Internationale de L'Eclairage coordinates have been calculated for each sample and its value exhibited that overall emission is near white light. The possible mechanisms of discussed white light emitting phosphors were also investigated. In order to investigate the suitability of the samples as white color light sources for industrial uses, color purity, correlated color temperature (CCT) and color rendering index (CRI) were calculated. Values of color purity, CCT and CRI were found well within the defined acceptable range. With incorporating (R + = Li + , Na + and K + ) as charge compensator ions, the emission intensity of Sr 2 MgSi 2 O 7 :Dy 3+ can be obviously enhanced. The results indicate that prepared phosphors may be a potential application in display devices. (orig.)

  2. A novel orange emissive phosphor SrWO4:Sm3+ for white light-emitting diodes

    International Nuclear Information System (INIS)

    Ju Zhenghua; Wei Ruiping; Ma Jingxin; Pang Chaoran; Liu Weisheng

    2010-01-01

    Research highlights: → A novel orange emissive phosphor SrWO 4 :Sm 3+ was firstly reported. → The optics properties of Sm 3+ -doped SrWO 4 phosphor were successfully discussed. → The temperature-dependent luminescence indicates the phosphor exhibits a small thermal-quenching property. → The phosphor is a potential candidate as orange-emitting component for white LED. - Abstract: A novel orange emissive phosphor, Sm 3+ -doped SrWO 4 , was synthesized by high temperature solid-state reaction in air atmosphere. The excitation spectra show that the phosphors can be efficiently excited by ultraviolet and near-ultraviolet light, the optimized concentration is 4 mol%. Three emission peaks locate at 562, 596 and 642 nm, corresponding to CIE chromaticity coordinates of (x = 0.54, y = 0.46), which indicates the orange light emitting. The decay curves are well fitted with triple-exponential decay models. The quantum yield of the Sr 0.96 Sm 0.04 WO 4 phosphor is about 70.65% under excitation of 377 nm. Furthermore, the temperature-dependent luminescence indicates the phosphor exhibits a small thermal-quenching property. So the phosphor is able to be applied to UV-LED chip-based white light-emitting diodes.

  3. Effect of Ce{sup 3+} ion on Dy{sup 3+} or Mn{sup 2+} in KMgSO{sub 4}Cl synthesized by centrifuge method

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Nita [Department of Physics R.T.M. Nagpur University, Nagpur 440033 (India); Dhoble, N.S. [Department of Chemistry, Sevadal Mahila Mahavidyalaya, Nagpur 440018 (India); Gedam, S.C., E-mail: gedam_sc@rediffmail.com [K.Z.S. Science College, Kalmeshwar, Nagpur 441501 (India); Dhoble, S.J. [Department of Physics R.T.M. Nagpur University, Nagpur 440033 (India)

    2016-04-15

    In this paper effect of Ce{sup 3+} ion on Dy{sup 3+} and Mn{sup 2+} ions in microcrystalline KMgSO{sub 4}Cl host prepared by ethanol (centrifuge technique) method has been discussed. In KMgSO{sub 4}Cl sample X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) characteristics have been studied. Powder X-ray diffraction analysis shows the crystalline nature of the phosphor prepared by this new route. The morphological structures of the samples were conducted using SEM technique. An average crystallite size was found to be 5 μm. Photoluminescence in KMgSO{sub 4}Cl:Ce{sup 3+} is observed at 324 nm and 344 nm along with red emission broad band at around 644 nm. In KMgSO{sub 4}Cl: Ce, Dy phosphor Ce{sup 3+} emission around 324 and 344 nm overlaps rather well with Dy{sup 3+} excitation. The addition of Ce{sup 3+} showed higher photoluminescence (PL) intensity for the Dy{sup 3+} emissions around 482 and 576 nm excited via Ce{sup 3+} ions at 284 nm due to {sup 4}F{sub 9/2} to {sup 6}H{sub 15/2} and {sup 6}H{sub 13/2} levels. Ce{sup 3+}→Mn{sup 2+} energy transfer process occurs in KMgSO{sub 4}Cl host. KMgSO{sub 4}Cl: Mn does not give PL at 284 nm excitation but for co-doped samples with cerium, Mn{sup 2+} ions exhibits efficient fluorescence at around 560 nm due to {sup 4}T{sub 1}–{sup 6}A{sub 1} transition. KMgSO{sub 4}Cl: Dy or KMgSO{sub 4}Cl: Mn directly exciting does not show any emission while addition of Mn{sup 2+}, enhances red emission of Ce{sup 3+} at 644 nm. The CIE co-ordinates of KMgSO{sub 4}Cl:Ce; KMgSO{sub 4}Cl:Ce, Dy and KMgSO{sub 4}Cl:Ce, Mn phosphors reveals that the emission colour varies from blue to deep-red. Hence this material may be a potential lamp phosphor. - Highlights: • KMgSO{sub 4}Cl: Ce3{sup +} along with Dy3{sup +} and Mn2{sup +} was prepared by centrifuge method. • Particle size was found to be 5 μm using SEM technique. • The emission varies from blue to deep-red.

  4. Photocatalytic Activity and Optical Properties of Blue Persistent Phosphors under UV and Solar Irradiation

    Directory of Open Access Journals (Sweden)

    C. R. García

    2016-01-01

    Full Text Available Blue phosphorescent strontium aluminosilicate powders were prepared by combustion synthesis route and a postannealing treatments at different temperatures. X-ray diffraction analysis showed that phosphors are composed of two main hexagonal phases: SrAl2O4 and Sr3Al32O51. The morphology of the phosphors changed from micrograins (1000°C to a mixture of bars and hexagons (1200°C and finally to only hexagons (1300°C as the annealing temperature is increased. Photoluminescence spectra showed a strong blue-green phosphorescent emission centered at λem=455 nm, which is associated with 4f65d14f6  (8S7/2 transition of the Eu2+. The sample annealed at 1200°C presents the highest luminance value (40 Cd/m2 with CIE coordinates (0.1589, 0.1972. Also, the photocatalytic degradation of methylene blue (MB under UV light (at 365 nm was monitored. Samples annealed at 1000°C and 1300°C presented the highest percentage of degradation (32% and 38.5%, resp. after 360 min. In the case of photocatalytic activity under solar irradiation, the samples annealed at 1000°C, 1150°C, and 1200°C produced total degradation of MB after only 300 min. Hence, the results obtained with solar photocatalysis suggest that our powders could be useful for water cleaning in water treatment plants.

  5. Photoluminescence characterization of Dy3+ and Eu2+ ion in M5(PO4)3F (M = Ba, Sr, Ca) phosphors

    International Nuclear Information System (INIS)

    Nagpure, I.M.; Shinde, K.N.; Dhoble, S.J.; Kumar, Animesh

    2009-01-01

    Photoluminescence investigation of Eu and Dy activated phosphate based phosphors prepared by combustion synthesis, characterized by XRD (X-ray diffraction) and photoluminescence techniques, has been reported. PL excitation spectrum of M 5 (PO 4 ) 3 F:Dy phosphors shows the excitation peaks ranging from 300 to 400 nm due to 4f → 4f transitions of Dy 3+ ions. PL emission spectrum of Dy 3+ ion under 348 nm excitation gives PL emission at 482 nm (blue) due to 4 F 9/2 → 6 H 15/2 transitions, 574 nm (yellow) emission due to 4 F 9/2 → 6 H 13/2 transitions and 670 nm (red) due to 4 F 9/2 → 6 H 11/2 transitions, gives BYR (blue-yellow-red) emissions. The Eu 2+ broad band PL emission spectrum was observed in M 5 (PO 4 ) 3 F:Eu phosphor at 440 nm in the blue region of the spectrum due to 5d → 4f transition at 352 nm excitation. The 300-400 nm is Hg-free excitation (Hg excitation is 85% 254 nm wavelength of light and 15% other wavelengths), which is characteristic of solid-state lighting phosphors. Hence PL emission in divalent europium and trivalent dysprosium may be efficient photoluminescent materials for solid-state lighting phosphors.

  6. Luminescence characteristics of Sr{sub 1-x}Ba{sub x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} phosphors for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Anoop, G.; Cho, I.H.; Suh, D.W.; Yoo, J.S. [Display Materials Laboratory, School of Chemical Engineering and Materials Science, Chung-Ang University, Heukseok-Dong 221, Dongjak-gu, Seoul 156-756 (Korea, Republic of)

    2012-12-15

    Sr{sub 1-x}Ba{sub x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} phosphors were synthesized using high temperature solid state reaction. The effect of Ba incorporation on the structural and luminescence characteristics of SrSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} phosphors were studied. The phosphors were crystallized in triclinic crystal structure and the cell volume increases monotonically with Ba addition. The PL emission peak wavelength red shifts with Ba up to x = 0.50 beyond which no red shift is observed. The XPS analysis shows that nitrogen is being incorporated into the host lattice along with Ba addition up to x = 0.50. The as synthesized phosphors show high thermal stability. Phosphor converted light emitting diodes were realized using Sr{sub 1-x}Ba{sub x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} phosphors (x = 0 and x = 0.40) showing luminance efficacies of 108 and 101 lm W{sup -1}. The CIE chromaticity coordinates of Sr{sub 1-x}Ba{sub x}Si{sub 2}O{sub 2}N{sub 2}:Eu (x = 0 and x = 0.40) phosphors. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. SiO{sub 2} effect on spectral and colorimetric properties of europium doped SrO{sub 2}-MgO-xSiO{sub 2} (0.8 {<=} x {<=} 1.6) phosphor for white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B J; Jang, K W; Lee, H S; Jayasimhadri, M; Cho, E J [Department of Physics, Changwon National University, Changwon, 641-773 (Korea, Republic of); Yi, S S [Department of Photonics, Silla University, Pusan 617-736 (Korea, Republic of); Jeong, J H [Department of Physics, Pukyong National University, Pusan 608-737 (Korea, Republic of)], E-mail: kwjang@changwon.ac.kr

    2009-05-21

    Silicate phosphors with compositions 1.99 SrO{sub 2}-1.0 MgO-xSiO{sub 2}-0.01 Eu{sub 2}O{sub 3} (x = 0.8, 1.0, 1.2, 1.4 and 1.6) were prepared in a reducing atmosphere via a solid state reaction. The resultant phosphors were examined by using x-ray diffraction and confirmed to be a mixture of monoclinic Sr{sub 2}SiO{sub 4} and orthorhombic Mg{sub 2}(Si{sub 2}O{sub 4}). The scanning electron microscope images revealed that SiO{sub 2} content does not influence the morphology of the resultant phosphors. It was also observed that the excitation spectra are dependent on the monitored emission wavelength, and the emission spectra are dependent on the excitation wavelength and the SiO{sub 2} content. The energy transfer between Eu{sup 2+} ions occupying different Sr{sup 2+} sites was discussed. The colour coordinates for these phosphors are tunable based on both the excitation wavelength and the SiO{sub 2} content.

  8. A novel double perovskite tellurate Eu3+-doped Sr2MgTeO6 red-emitting phosphor with high thermal stability

    Science.gov (United States)

    Liang, Jingyun; Zhao, Shancang; Yuan, Xuexia; Li, Zengmei

    2018-05-01

    A series of novel double perovskite tellurate red-emitting phosphors Sr2MgTeO6:xEu3+ (x = 0.05-0.40) were successfully synthesized by a high-temperature solid-state reaction method. The phase structure, photoluminescence properties and thermal stability of the phosphor were investigated in detail. The phosphor shows dominant emission peak at 614 nm belonging to the 5D0 → 7F2 electric dipole transition under 465 nm excitation. The luminescence intensity keeps increasing with increasing the content of Eu3+ to 25 mol%, and the critical transfer distance of Eu3+ was calculated to be 12 Å. The quenching temperature for Sr2MgTeO6:0.25Eu3+ was estimated to be above 500 K. This spectral feature reveals high color purity and excellent chromaticity coordinate characteristics. Therefore, Eu3+-doped Sr2MgTeO6 phosphors are potential red phosphors for blue chip-based white light-emitting diode and display devices.

  9. Luminescent properties of Na2CaSiO4:Eu2+ and its potential application in white light emitting diodes

    International Nuclear Information System (INIS)

    Wang, Zhijun; Li, Panlai; Li, Ting; Zhang, Xing; Li, Qingxuan; Yang, Zhiping; Guo, Qinglin

    2013-01-01

    Graphical abstract: Na 2 CaSiO 4 :Eu 2+ phosphor can be effectively excited by an ultraviolet and near-ultraviolet light, and produce a bright blue emission centered at 436 nm. The CIE chromaticity coordinations (x, y) of Na 2 CaSiO 4 :Eu 2+ (NSCE)/Li 2 SrSiO 4 :Eu 2+ (LSSE) vary with the molar ratio of the two constituents. When NSCE/LSSE is 1:3, the CIE chromaticity coordination is (0.332, 0.346), which is close to that of the natural sunlight (0.33, 0.33). The results indicate that Na 2 CaSiO 4 :Eu 2+ may be a promising blue phosphor for UV chip-based multi-phosphor converted white light emitting diodes. Highlights: ► Na 2 CaSiO 4 :Eu 2+ shows the blue emission with a peak at 436 nm and broad excitation band in the UV/n-UV range. ► White light with CIE coordinates (0.332, 0.346) is generated by mixing the blue phosphor with the Li 2 SrSiO 4 :Eu 2+ yellow phosphor. ► Na 2 CaSiO 4 :Eu 2+ would be a promising blue phosphor candidate for UV chip-based multi-phosphor converted white LEDs. - Abstract: A novel blue phosphor Na 2 CaSiO 4 :Eu 2+ is synthesized by a high temperature solid-state reaction, and its luminescent properties are systematically studied. Na 2 CaSiO 4 :Eu 2+ can be effectively excited by the 354 nm radiation, and create blue emission (436 nm). The emission intensity of Na 2 CaSiO 4 :Eu 2+ is influenced by the Eu 2+ doping content, and the optimal doping content is 1.5%, and the concentration quenching mechanism of Eu 2+ in Na 2 CaSiO 4 can be attributed to the multipolar interaction. The white light with CIE coordinates (0.332, 0.346) is generated by mixing the blue phosphor Na 2 CaSiO 4 :Eu 2+ with the yellow phosphor Li 2 SrSiO 4 :Eu 2+ . The results indicate that Na 2 CaSiO 4 :Eu 2+ may be a potential blue emitting phosphor for UV chip-based multi-phosphor converted white light emitting diodes

  10. Luminescence properties of Ce3+ and Tb3+ co-activated ZnAl2O4 phosphor

    International Nuclear Information System (INIS)

    Tshabalala, K.G.; Cho, S.-H.; Park, J.-K.; Pitale, Shreyas S.; Nagpure, I.M.; Kroon, R.E.; Swart, H.C.; Ntwaeaborwa, O.M.

    2012-01-01

    In this study, a solution combustion method was used to prepare green emitting Ce 3+ –Tb 3+ co-activated ZnAl 2 O 4 phosphor. The samples were annealed at 700 °C in air or hydrogen atmosphere to improve their crystallinity and optical properties. X-ray diffraction study confirmed that both as-prepared and post-preparation annealed samples crystallized in the well known cubic spinel structure of ZnAl 2 O 4 . An agglomeration of irregular platelet-like particles whose surfaces were encrusted with smaller spheroidal particles was confirmed by scanning electron microscopy (SEM). The fluorescence data collected from the annealed samples with different concentrations of Ce 3+ and Tb 3+ show the enhanced green emission at 543 nm associated with 5 D 4 → 7 F 5 transitions of Tb 3+ . The enhancement was attributed to energy transfer from Ce 3+ to Tb 3+ . Possible mechanism of energy transfer via a down conversion process is discussed. Furthermore, cathodoluminescence (CL) intensity degradation of this phosphor was also investigated and the degradation data suggest that the material was chemically stable and the CL intensity was also stable after 10 h of irradiation by a beam of high energy electrons.

  11. Remarkable changes in the photoluminescent properties of Y2Ce2O7:Eu(3+) red phosphors through modification of the cerium oxidation states and oxygen vacancy ordering.

    Science.gov (United States)

    Raj, Athira K V; Prabhakar Rao, P; Sreena, T S; Sameera, S; James, Vineetha; Renju, U A

    2014-11-21

    A new series of red phosphors based on Eu(3+)-doped yttrium cerate [Y1.9Ce2O7:0.1Eu(3+), Y2Ce1.9O7:0.1Eu(3+) and Y2Ce2-xO7:xEu(3+) (x = 0.05, 0.10, 0.15, 0.20, 0.25 and 0.50)] was prepared via a conventional solid-state method. The influence of the substitution of Eu(3+) at the aliovalent site on the photoluminescent properties was determined by powder X-ray diffraction, FT Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy with energy-dispersive spectroscopy, UV-visible absorption spectroscopy, photoluminescence spectroscopy and lifetime measurements. The substitution of Eu(3+) at the Ce(4+) site induces a structural transition from a defect fluorite to a C-type structure, which increases the oxygen vacancy ordering and the distortion of the Eu(3+) environment, and decreases the formation of Ce(3+) states. In contrast, phosphors with isovalent substitution at the Y(3+) site exhibit the biphasic nature of defect fluorite and a C-type structure, thereby increasing the number of Ce(3+) oxidation states. These modifications resulted in remarkable changes in the photoluminescent properties of Y2Ce1.9O7:0.1Eu(3+) red phosphors, with emission intensities 3.8 times greater than those of the Ce0.9O2:0.1Eu(3+) and Y1.9Ce2O7:0.1Eu(3+). The photoluminescent properties of Y2Ce2-xO7:xEu(3+) were studied at different Eu(3+) concentrations under excitation with blue light. These phosphors emit intense red light due to the (5)D0-(7)F2 transition under excitation at 466 nm and no concentration quenching is observed with up to 50 mol% Eu(3+). They show increased lifetimes in the range 0.62-0.72 ms at Eu(3+) concentrations. The cation ordering linked to the oxygen vacancy ordering led to the uniform distribution of Eu(3+) ions in the lattice, thus allowing higher doping concentrations without quenching and consequently increasing the lifetime of the (5)D0 states. Our results demonstrate that significant improvements in

  12. Controllable upconversion luminescence and temperature sensing behavior in NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors

    Science.gov (United States)

    Pang, Tao; Wang, Jiajun

    2018-01-01

    The hexagonal NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors are synthesized by a hydrothermal method. Under 980 nm excitation, the phosphor emits green, red and far-red light in the visible wavelength region, corresponding to the 5S2/5F4 → 5I8, 5F5 → 5I8 and 5S2/5F4 → 5I7 transitions of Ho3+ ions, respectively. When adjusting the Ce3+ concentration from 0% to 16%, the dominant wavelength shifts ˜43 nm toward the longer wavelength. Two cross-relaxation processes between Ho3+ and Ce3+ are responsible for the change in chromaticity. Also, the ability of the Ce3+ concentration to regulate the luminescence color depends on the pumping power and temperature of samples. More interestingly, the phosphors are potentially applicable as the optical thermometric materials. In the case of 16% Ce3+ doping, the maximum sensitivity (0.1446 K-1) about 4-35 times as high as the reported values of several typical thermometric materials is obtained.

  13. Photoluminescence, energy transfer and tunable color of Ce(3+), Tb(3+) and Eu(2+) activated oxynitride phosphors with high brightness.

    Science.gov (United States)

    Lü, Wei; Huo, Jiansheng; Feng, Yang; Zhao, Shuang; You, Hongpeng

    2016-06-21

    New tuneable light-emitting Ca3Al8Si4O17N4:Ce(3+)/Tb(3+)/Eu(2+) oxynitride phosphors with high brightness have been prepared. When doped with trivalent cerium or divalent europium they present blue luminescence under UV excitation. The energy transfer from Ce(3+) to Tb(3+) and Ce(3+) to Eu(2+) ions is deduced from the spectral overlap between Ce(3+) emission and Tb(3+)/Eu(2+) excitation spectra. The energy-transfer efficiencies and corresponding mechanisms are discussed in detail, and the mechanisms of energy transfer from the Ce(3+) to Tb(3+) and Ce(3+) to Eu(2+) ions are demonstrated to be a dipole-quadrupole and dipole-dipole mechanism, respectively, by the Inokuti-Hirayama model. The International Commission on Illumination value of color tuneable emission as well as luminescence quantum yield (23.8-80.6%) can be tuned by controlling the content of Ce(3+), Tb(3+) and Eu(2+). All results suggest that they are suitable for UV light-emitting diode excitation.

  14. Luminescence and color center distributions in K3YB6O12:Ce3+ phosphor

    International Nuclear Information System (INIS)

    Yang, Li; Wan, Yingpeng; Weng, Honggen; Huang, Yanlin; Chen, Cuili; Seo, Hyo Jin

    2016-01-01

    Polycrystalline Ce 3+ -doped K 3 YB 6 O 12 (1–14 mol%) phosphors were prepared by facile chemical sol–gel synthesis. The phase formation of the phosphors was confirmed by x-ray powder diffraction (XRD) analysis. The photoluminescence excitation spectra (PLE), emission spectra (PL) and the luminescence decay curves were tested. Under the near-UV light, the phosphors present the emission from blue color to yellowish green due to the allowed 4 f  –5 d transitions of Ce 3+ ions. The absolute quantum efficiency (QE) of K 3 YB 6 O 12 :Ce 3+ can reach 53% under the excitation of near-UV light. The luminescence thermal quenching of the phosphor was investigated by the temperature-dependent spectra. The crystallographic site of Ce 3+ ions in the lattice was identified and discussed on the basis of luminescence characteristics and structural data. There is only one isolated Ce 3+ center occupying the Y(II) sites in the lightly doped samples presenting a typical doublet emission profile. While the Ce 3+ multi-centers could be created with the enhancement of the doping levels, which could induce the distinct red-shift of the spectra due to the dipole–dipole interactions. The result in this work could be useful for the further investigation of other rare earth ions in this host. (paper)

  15. Ca2 Al2 SiO7 :Ce3+ phosphors for mechanoluminescence dosimetry.

    Science.gov (United States)

    Tiwari, Geetanjali; Brahme, Nameeta; Sharma, Ravi; Bisen, D P; Sao, Sanjay Kumar; Sahu, Ishwar Prasad

    2016-12-01

    A series of Ce 3+ ion single-doped Ca 2 Al 2 SiO 7 phosphors was synthesized by a combustion-assisted method at an initiating temperature of 600 °C. The samples were annealed at 1100 °C for 3 h and their X-ray diffraction patterns confirmed a tetragonal structure. The phase structure, particle size, surface morphology and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy techniques. Thermoluminescence (TL) intensity increased with increase in ultraviolet (UV) light exposure time up to 15 min. With further increase in the UV irradiation time the TL intensity decreases. The increase in TL intensity indicates that trap concentration increased with UV exposure time. A broad peak at 121 °C suggested the existence of a trapping level. The peak of mechanoluminescence (ML) intensity versus time curve increased linearly with increasing impact velocity of the moving piston. Mechanoluminescence intensity increased with increase in UV irradiation time up to 15 min. Under UV-irradiation excitation, the TL and ML emission spectra of Ca 2 Al 2 SiO 7 :Ce 3+ phosphor showed the characteristic emission of Ce 3+ peaking at 400 nm (UV-violet) and originating from the Ce 3+ transitions of 5d-4f ( 2 F 5/2 and 2 F 7/2 ). The photoluminescence (PL) emission spectra for Ca 2 Al 2 SiO 7 :Ce 3+ were similar to the ML/TL emission spectra. The mechanism of ML excitation and the suitability of the Ca 2 Al 2 SiO 7 :Ce 3+ phosphor for radiation dosimetry are discussed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Phosphorescent and thermoluminescent properties of SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} phosphors prepared by solid state reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Mothudi, B.M., E-mail: mothubm@unisa.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, University of South Africa, P.O. Box 392, Pretoria, ZA 6031 (South Africa); Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Kumar, A.; Sohn, K. [Department of Material Science and Metallurgical Engineering, Sunchon National University, Sunchon, Chonam 540-742 (Korea, Republic of); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2012-05-15

    Long persistent SrAl{sub 2}O{sub 4}:Eu{sup 2+} phosphors co-doped with Dy{sup 3+} were prepared by the solid state reaction method. The main diffraction peaks of the monoclinic structure of SrAl{sub 2}O{sub 4} were observed in all the samples. The broad band emission spectra at 497 nm for SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} were observed and the emission is attributed to the 4f{sup 6}5d{sup 1} to 4f{sup 7} transition of Eu{sup 2+} ions. The samples annealed at 1100-1200 Degree-Sign C showed similar broad TL glow curves centered at 120 Degree-Sign C. The similar TL glow curves suggest that the traps responsible for them are similar. The long afterglow displayed by the phosphors annealed at different temperatures, may be attributed to the Dy{sup 3+} ions acting as the hole trap levels, which play an important role in prolonging the duration of luminescence.

  17. Photoluminescent properties of LiSrxBa1-xPO4:RE3+ (RE = Sm3+, Eu3+) f-f transition phosphors

    International Nuclear Information System (INIS)

    Tu Dong; Liang Yujun; Liu Rong; Cheng Zheng; Yang Fan; Yang Wenlong

    2011-01-01

    Highlights: → Novel phosphors LiSr x Ba 1-x PO 4 : Sm 3+ and LiSr x Ba 1-x PO 4 : Eu 3+ have been synthesized by solid-state reaction method. → The LiSr x Ba 1-x PO 4 : Sm 3+ and LiSr x Ba 1-x PO 4 : Eu 3+ phosphors may be potential f-f transition phosphors used in LED. → The emission intensity of the LiSr x Ba 1-x PO 4 : Sm 3+ and LiSr x Ba 1-x PO 4 : Eu 3+ phosphors can be enhanced by increasing the value of x. - Abstract: Rare-earth ions (Sm 3+ or Eu 3+ ) doped LiSr x Ba 1-x PO 4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) f-f transition phosphor powders were prepared by a high temperature solid-state reaction. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the phase structure of the sample changes from LiBaPO 4 to LiSrPO 4 when x changes from 0 to 1.0. The excitation spectra indicate that only direct excitation of rare earth ions (Sm 3+ or Eu 3+ ) can be observed. The doped rare earth ions show their characteristic emission in LiSr x Ba 1-x PO 4 , i.e., Eu 3+5 D 0 - 7 F J (J = 0, 1, 2, 3, 4), Sm 3+4 G 5/2 → 6 H J (J = 5/2, 7/2, 9/2, 11/2), respectively. The dependence of the emission intensities of the LiSr x Ba 1-x PO 4 :Sm 3+ and LiSr x Ba 1-x PO 4 :Eu 3+ phosphors on the x value and Ln 3+ (Ln 3+ = Sm 3+ , Eu 3+ ) concentration is also investigated.

  18. High colour purity single-phased full colour emitting white LED phosphor Sr2V2O7:Eu3+

    International Nuclear Information System (INIS)

    Zhou Zhi; Zhou Nan; He Zhangxing; Liu Suqin; Liu Younian; Tian Ziwei; Wang Nanfang; Mao Zhiyong; Hintzen, H T

    2013-01-01

    Single-phased white-light-emitting phosphor Sr 2 V 2 O 7 :Eu 3+ was successfully synthesized by the solid-state method. The result of x-ray diffraction analysis indicated that the obtained phosphor has the same crystal structure as that of Sr 2 V 2 O 7 . The synthesized Sr 2 V 2 O 7 :Eu 3+ was combined with near-UV light (365 nm) chips and then assembled into ligtht-emitting diodes (LED) devices, which generated white light with colour coordinates of (0.324, 0.317). The white light was generated from yellow-green and red emissions, which should be attributed to the host Sr 2 V 2 O 7 and dopant Eu ions, respectively. The effects of the concentration of Eu ions and charge compensation on the emission intensity were carefully investigated. The results show that the energy migrates from the host to the dopant and also that Li 2 CO 3 should be the best charge compensator for this single-phased phosphor. In addition, the colour rendering index and luminescence efficiency of the fabricated LED devices with Sr 1.90 V 2 O 7 :0.10Eu 3+ phosphor were 91 and 32 lm W -1 , respectively, suggesting that Sr 1.90 V 2 O 7 :0.10Eu 3+ phosphor is a potential candidate for the phosphor-converted white-light-emitting diodes with near-UV chips.

  19. Luminescence properties of a single-component Na0.34Ca0.66Al1.66Si2.34O8:Ce3+, Sm3+ phosphor with tunable color tone for UV-pumped LEDs

    Science.gov (United States)

    Wang, Lei; Dong, Jie; Cui, Cai'e.; Tian, Yue; Huang, Ping

    2015-08-01

    A series of single-phase Na0.34Ca0.66Al1.66Si2.34O8:Ce3+, Sm3+ (NCASO) phosphors have been synthesized via a high temperature solid-state reaction method. The samples were studied based on photoluminescence (PL), photoluminescence excitation (PLE) spectra and fluorescence decay patterns. The obtained PLE exhibited a strong excitation band in the UV region between 250 and 380 nm. Under 340 nm excitation, NCASO:Ce3+, Sm3+ phosphor showed a broad emission band at 414 nm of Ce3+ and four emission bands from 550 nm to 725 nm of Sm3+. Spectra demonstrate nonradiative energy transfers (ET) occur from Ce3+-Sm3+. The analysis based on Inokuti-Hirayama model indicates that the ET is governed by electric dipole-dipole interaction. Moreover, the emitting colors can be adjusting from blue to white by proper tuning of the relative composition of Ce3+/Sm3+. These results show that NCASO:Ce3+, Sm3+ phosphors can be used as a potential single-phased white-emitting candidate for UV WLEDs.

  20. Study of formation of deep trapping mechanism by UV, beta and gamma irradiated Eu(3+) activated SrY2O4 and Y4Al2O9 phosphors.

    Science.gov (United States)

    Dubey, Vikas; Kaur, Jagjeet; Parganiha, Yogita; Suryanarayana, N S; Murthy, K V R

    2016-04-01

    This paper reports the thermoluminescence properties of Eu(3+) doped different host matrix phosphors (SrY2O4 and Y4Al2O9). The phosphor is prepared by high temperature solid state reaction method. The method is suitable for large scale production and fixed concentration of boric acid using as a flux. The prepared samples were characterized by X-ray diffraction technique and the crystallite size calculated by Scherer's formula. The prepared phosphor characterized by Scanning Electron Microscopic (SEM), Fourier Transform Infrared (FTIR), Energy Dispersive X-ray analysis (EDX), thermoluminescence (TL) and Transmission Electron Microscopic (TEM) techniques. The prepared phosphors for different concentration of Eu(3+) ions were examined by TL glow curve for UV, beta and gamma irradiation. The UV 254nm source used for UV irradiation, Sr(90) source was used for beta irradiation and Co(60) source used for gamma irradiation. SrY2O4:Eu(3+)and Y4Al2O9:Eu(3+) phosphors which shows both higher temperature peaks and lower temperature peaks for UV, beta and gamma irradiation. Here UV irradiated sample shows the formation of shallow trap (surface trapping) and the gamma irradiated sample shows the formation of deep trapping. The estimation of trap formation was evaluated by knowledge of trapping parameters. The trapping parameters such as activation energy, order of kinetics and frequency factor were calculated by peak shape method. Here most of the peak shows second order of kinetics. The effect of gamma, beta and UV exposure on TL studies was also examined and it shows linear response with dose which indicate that the samples may be useful for TL dosimetry. Formation of deep trapping mechanism by UV, beta and gamma irradiated Eu(3+) activated SrY2O4 and Y4Al2O9 phosphors is discussed in this paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Tricolor emission Ca3Si2O7:Ln (Ln=Ce, Tb, Eu) phosphors for near-UV white light-emitting-diode

    International Nuclear Information System (INIS)

    Mao, Zhi-yong; Zhu, Ying-chun; Gan, Lin; Zeng, Yi; Xu, Fang-fang; Wang, Yang; Tian, Hua; Li, Jian; Wang, Da-jian

    2013-01-01

    Tricolor emission in a same Ca 3 Si 2 O 7 host with independent Ln (Ln=Ce 3+ , Eu 2+ , Tb 3+ ) dopants is demonstrated to construct a near-UV white light emitting diode (LED). The luminescence properties and thermal quenching properties, as well as the applications in near-UV white LED are investigated. These phosphors show typical blue, red, and green, three-basal-color, luminescence in the CIE chromaticity diagram for Ce 3+ , Eu 2+ and Tb 3+ dopants, respectively. Thermal quenching properties show that the luminescence thermal stability strongly depends on the different dopant types; better thermal quenching property of Ce 3+ and Tb 3+ is recorded in comparison with that of Eu 2+ . The white LED prototype fabricated with near-UV chip and as-prepared tricolor phosphors exhibits acceptable CIE chromaticity coordinates (0.32, 0.30) with a CCT of 6000 K and a CRI of 87, indicating the potential application of Ca 3 Si 2 O 7 :Ln phosphors in near-UV white LED. - Highlights: ► Tricolor Ca 3 Si 2 O 7 : Ln phosphors were demonstrated to construct near-UV white LED. ► Eu 2+ doped Ca 3 Si 2 O 7 red-emitting phosphor was confirmed by this work once again. ► Thermal quenching properties for Ca 3 Si 2 O 7 :Ln phosphors were reported for the first time. ► Performances of fabricated white LED indicated the potential application of phosphors.

  2. Photoemission study of absorption mechanisms in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4

    International Nuclear Information System (INIS)

    Lindberg, P.A.P.; Shen, Z.; Wells, B.O.; Dessau, D.S.; Ellis, W.P.; Borg, A.; Kang, J.; Mitzi, D.B.; Lindau, I.

    1989-01-01

    Photoemission measurements in the constant-final-state (absorption) mode were performed on three different classes of high-temperature superconductors Bi 2.0 Sr 1.8 Ca 0.8 La 0.3 Cu 2.1 O 8+δ , BaBiO 3 , and Nd 1.85 Ce 0.15 CuO 4 using synchrotron radiation from 20 to 200 eV. Absorption signals from all elements but Ce are identified. The results firmly show that the Bi 6s electrons are more delocalized in BaBiO 3 than in Bi 2.0 Sr 1.8 Ca 0.8 La 0.3 Cu 2.1 O 8+δ , in agreement with the results of band-structure calculations. Differences in the absorption signals due to O and Bi excitations between BaBiO 3 and Bi 2.0 Sr 1.8 Ca 0.8 La 0.3 Cu 2.1 O 8+δ are discussed. Delayed absorption onsets attributed to giant resonances (Ba 4d→4f, La 4d→4f, and Nd 4d→4f transitions) are also reported

  3. Luminescent phosphors, based on rare earth substituted oxyfluorides in the A(1)3-x A(2)xMO4F family with A(1)/A(2)=Sr, Ca, Ba and M=Al, Ga

    International Nuclear Information System (INIS)

    Park, Sangmoon; Vogt, Thomas

    2009-01-01

    A new family of UV-activated phosphors made by substituting rare-earth activators such as trivalent Eu, Tb, Tm and Er into A(1) 3-x A(2) x MO 4 F host lattices (A(1)/A(2)=Sr, Ca, Ba; M=Al, Ga) are introduced and their activation and emission spectra as well as their CIE values reported. The Tm-substituted system can be activated using light with a wavelength of 360 nm. Relative intensities of a family of Tb-substituted green phosphors activated at 254 nm and with emissions centered near 548 nm are discussed.

  4. Design, synthesis and luminescence properties of Ba2 YB2 O6 Cl- and Ba2 YB2 O6 F-based phosphors.

    Science.gov (United States)

    Chen, Wanping; Yang, Xin; Liu, Yan; Dai, Xiaoyan

    2015-05-01

    Using a high-temperature solid-state reaction, the chlorine in Ba2 YB2 O6 Cl is gradually replaced by F, and a new compound with the nominal chemical formula Ba2 YB2 O6 F and two phosphors doped with Ce(3+) and Eu(3+) , respectively, are obtained. X-Ray diffraction and photoluminescence spectroscopy are used to characterize the as-synthesized samples. The as-synthesized Ba2 YB2 O6 Cl exhibits bright blue emission in the spectral range ~ 330-410 nm with a maximum around 363 nm under X-ray or UV excitation. Ba2 YB2 O6 F:0.01Ce(3+) exhibits blue emission in the range ~ 340-570 nm with a maximum around 383 nm. Ba2 YB2 O6 F:0.01Eu(3+) exhibits a predominantly (5) D0 -(7)  F2 emission (~610 nm) and the relative intensities of the (5) D0 -(7)  F0,1,2 emissions are tunable under different wavelength UV excitation. The luminescence behaviors of the two phosphors are explained simply in terms of the host composition and site occupancy probability of Ce(3+) and Eu(3+) , respectively. The results indicate that these phosphors have potential application as a blue phosphor or as a red phosphor. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Red-emitting SrIn{sub 2}O{sub 4} : Eu{sup 3+} phosphor powders for applications in solid state white lamps

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Garcia, C E [Physics of Materials Graduate Program, CICESE-UNAM, Km 107 Carretera Tijuana-Ensenada, Ensenada, B. C., 22860 (Mexico); Perea-Lopez, N; Hirata, G A [Center for Nanoscience and Nanotechnology-UNAM, Km 107 Carretera Tijuana-Ensenada, Ensenada, B. C., 22860 (Mexico); Baars, S P den [Solid State Lighting and Energy Center, University of California at Santa Barbara, Santa Barbara, CA 93106 (United States)], E-mail: ghirata@engineering.ucsb.edu

    2008-05-07

    Red-emitting phosphor powders of SrIn{sub 2}O{sub 4} activated with Eu{sup 3+} ions were fabricated by high pressure assisted combustion synthesis. X-ray diffraction analysis of these oxide phosphors revealed the formation of single-phase orthorhombic SrIn{sub 2}O{sub 4} for concentrations up to 4 at% Eu. A detailed photoluminescence (PL) and cathodoluminescence study showed bright red emission originated within the {sup 5} D{sub 0} {yields} {sup 7}F{sub J} intra-shell transitions of Eu{sup 3+}. Furthermore, PL excitation spectroscopy revealed that an efficient energy transfer from the SrIn{sub 2}O{sub 4} host lattice onto the Eu ions is accomplished in addition to the excitation band peaked at 396 nm that directly excites the Eu ions, making this material an excellent candidate for applications in solid state white lamps. (fast track communication)

  6. Transition of Emission Colours as a Consequence of Heat-Treatment of Carbon Coated Ce3+-Doped YAG Phosphors

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yin

    2017-10-01

    Full Text Available To modify the luminescence properties of Ce3+-doped Y3Al5O12 (YAG phosphors, they have been coated with a carbon layer by chemical vapor deposition and subsequently heat-treated at high temperature under N2 atmosphere. Luminescence of the carbon coated YAG:Ce3+ phosphors has been investigated as a function of heat-treatment at 1500 and 1650 °C. The 540 nm emission intensity of C@YAG:Ce3+ is the highest when heated at 1650 °C, while a blue emission at 400–420 nm is observed when heated at 1500 °C but not at 1650 °C. It is verified by X-ray diffraction (XRD that the intriguing luminescence changes are induced by the formation of new phases in C@YAG:Ce3+-1500 °C, which disappear in C@YAG:Ce3+-1650 °C. In order to understand the mechanisms responsible for the enhancement of YAG:Ce3+ emission and the presence of the blue emission observed for C@YAG:Ce3+-1500 °C, the samples have been investigated by a combination of several electron microscopy techniques, such as HRTEM, SEM-CL, and SEM-EDS. This local and cross-sectional analysis clearly reveals a gradual transformation of phase and morphology in heated C@YAG:Ce3+ phosphors, which is related to a reaction between C and YAG:Ce3+ in N2 atmosphere. Through reaction between the carbon layer and YAG host materials, the emission colour of the phosphors can be modified from yellow, white, and then back to yellow under UV excitation as a function of heat-treatment in N2 atmosphere.

  7. Site-occupancy, luminescent properties and energy transfer of a violet-to-red color-tunable phosphor Ca{sub 10}Li(PO{sub 4}){sub 7}: Ce{sup 3+}, Mn{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinguo, E-mail: mpcc1@qq.com [Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 (China); Xu, Jungu [Guangxi Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Nonferrous Metal and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Universities Key Laboratory of Non-ferrous Metal Oxide Electronic Functional Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004 (China); Gong, Menglian [School of Chemistry, Sun Yat-Sen University, Guangzhou 510275 (China)

    2017-03-15

    A series of color-tunable phosphors Ca{sub 10}Li(PO{sub 4}){sub 7}: Ce{sup 3+}, Mn{sup 2+} were synthesized by high-temperature solid-state reaction. Site occupancy of Ce{sup 3+} and Mn{sup 2+} in Ca{sub 10}Li(PO{sub 4}){sub 7} and corresponding luminescent properties were systemically studied. Rietveld refinement results indicate that the Ce{sup 3+} ions are preferred to occupy 7-cooridnated M1 and M3 sites, and Mn{sup 2+} ions are mainly occupying distorted octahedral M5 sites, which results in Ce{sup 3+} violet emission at 370 nm and Mn{sup 2+} red emission at 640 nm. The intensity of Mn{sup 2+} red emission is greatly enhanced through efficient Ce{sup 3+}-Mn{sup 2+} energy transfer (η{sub ET}=94%). The critical distance and corresponding mechanism of Ce{sup 3+}-Mn{sup 2+} energy transfer was found to be ~11 Å and dipole-quadrupole interaction, respectively. The emitting colors of Ca{sub 10}Li(PO{sub 4}){sub 7}: Ce{sup 3+}, Mn{sup 2+} phosphors can be tuned from violet through pink to red by adjusting the Ce{sup 3+}/Mn{sup 2+} ratio. The composition-optimized red phosphor Ca{sub 10}Li(PO{sub 4}){sub 7}: 0.05Ce{sup 3+}, 0.09Mn{sup 2+} exhibits excellent thermal stability at high temperature (~100% at 160 °C).

  8. Photoluminescence properties of color-tunable SrMgAl10O17:Eu2+,Mn2+ phosphors for UV LEDs

    International Nuclear Information System (INIS)

    Ju Guifang; Hu Yihua; Chen Li; Wang Xiaojuan

    2012-01-01

    Aluminate phosphors SrMgAl 10 O 17 codoped with Eu 2+ and Mn 2+ ions were prepared by solid-state reaction. The phase structure and photoluminescence properties of the as-prepared phosphors were characterized by powder X-ray diffraction, photoluminescence excitation and emission spectra. Upon excitation of UV light, two broad emission bands centered at 470 and 515 nm were observed, and they were assigned to Eu 2+ and Mn 2+ emissions, respectively. The emission color of the phosphors can be tuned from blue to cyan and finally to green by adjusting the concentration ratios of Eu 2+ and Mn 2+ . Effective energy transfer occurs from Eu 2+ to Mn 2+ in the host due to the spectral overlap between the emission band of Eu 2+ and the excitation bands of Mn 2+ . The energy transfer mechanism was demonstrated to be electric dipole–quadrupole interaction. The energy transfer efficiency and critical distance were also calculated. The phosphors exhibit strong absorption in near UV spectral region and therefore they are potentially useful as UV-convertible phosphors for white LEDs. - Highlights: ► The strong absorption of phosphors matches well with the emission band of UV LED. ► The energy transfer from Eu 2+ to Mn 2+ in SrMgAl 10 O 17 was investigated in detail. ► The emission color can be tuned by adjusting the content of Eu 2+ and Mn 2+ . ► Two methods were employed to calculate the critical distance of energy transfer.

  9. Luminescence properties of Sm{sup 3+}-doped Sr{sub 3}Sn{sub 2}O{sub 7} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Lei Bingfu, E-mail: tleibf@jnu.edu.cn [Department of Physics, Jinan University, Guangzhou 510632 (China); Department of Chemistry and Nanochemistry Institute, Jinan University, Guangzhou 510632 (China); Man Shiqing [Department of Chemistry and Nanochemistry Institute, Jinan University, Guangzhou 510632 (China); Department of Electronic Engineering, Jinan University, Guangzhou 510632 (China); Liu Yingliang [Department of Chemistry and Nanochemistry Institute, Jinan University, Guangzhou 510632 (China); Yue Song [Department of Physics, Jinan University, Guangzhou 510632 (China)

    2010-12-01

    We report on a luminescent phenomenon in Sm{sup 3+}-doped Sr{sub 3}Sn{sub 2}O{sub 7} afterglow phosphor. XRD, photoluminescence, afterglow emission spectra and long-lasting phosphorescence decay curve are used to characterize this phosphor. After irradiation by a 267-nm UV light for 5 min, the Sm{sup 3+}-doped Sr{sub 3}Sn{sub 2}O{sub 7} phosphor emits intense reddish-orange emitting afterglow from the {sup 4}G{sub 5/2} to {sup 6}H{sub J} (J = 5/2, 7/2, 9/2) transitions, and its afterglow can be seen with the naked eye in the dark clearly for more than 1 h after removal of the excitation source. Photoluminescence spectra reveal that the reddish-orange light-emitting long-lasting phosphorescence originate from the mixture of Sm{sup 3+} characteristic transitions. The afterglow decay curve of the Sm{sup 3+}-doped Sr{sub 3}Sn{sub 2}O{sub 7} phosphor contains a fast decay component and another slow decay one. The possible mechanism of this reddish-orange light-emitting LLP phosphor is also discussed based on the experiment results.

  10. Dose effects on the long persistent luminescence properties of beta irradiated SrAl2O4:Eu2+, Dy3+ phosphor

    International Nuclear Information System (INIS)

    Pedroza-Montero, M.; Castaneda, B.; Gil-Tolano, M.I.; Arellano-Tanori, O.; Melendrez, R.; Barboza-Flores, M.

    2010-01-01

    The SrAl 2 O 4 :Eu 2+ , Dy 3+ is a phosphor characterized by a long persistent luminescence (PLUM) when it is excited with UV-VIS light and ionizing radiation. In this paper, we study the PLUM behavior as a function of beta irradiation dose in the 0-650 Gy range with a fixed dose rate of 5 Gy/min. The PLUM intensity showed a complex decay behavior, exhibiting a near linear response in the 0-1.7 Gy low dose range and gradually increasing up to 160 Gy. The PLUM reached the saturation for higher doses (>275 Gy) with a slight decrease in the range of 300-650 Gy. In addition, a systematic PLUM enhancement was produced after a thermal cleaning procedure and irradiation at RT in a series of 10 cycles. The observed phenomenon may be related to a radiation-induced process of charge trapping accumulation, which is triggered by thermal stimulation during the irradiation stage. It improves the luminescent characteristics of SrAl 2 O 4 :Eu 2+ , Dy 3+ phosphors rendering them suitable for permanent display and illumination devices.

  11. Eu2+-doped Ba2GaB4O9Cl blue-emitting phosphor with high color purity for near-UV-pumped white light-emitting diodes

    Science.gov (United States)

    Gao, Zhiwen; Deng, Huajuan; Xue, Na; Jeong, Jung Hyun; Yu, Ruijin

    2018-01-01

    Eu2+-doped borate fluoride Ba2GaB4O9Cl was synthesized by the conventional high-temperature solid-state reaction. The crystal structure and luminescence properties of the phosphors, as well as their thermal luminescence quenching capabilities and CIE chromaticity coordinates were systematically investigated. Under the excitation at 340 nm, the phosphor exhibited an asymmetric broad-band blue emission with a peak at 445 nm, which is ascribed to the 4f-5d transition of Eu2+. It was further proved that energy transfer among the nearest neighbor ions is the major mechanism for concentration quenching of Eu2+ in Ba2-xGaB4O9Cl:xEu2+ phosphors. The luminescence quenching temperature is 432 K. The CIE color coordinates are very close to those of BaMgAl10O17:Eu2+ (BAM). All the properties indicated that the blue-emitting Ba2GaB4O9Cl:Eu2+ phosphor has potential application in white LEDs.

  12. Luminescence of Ce3+ at two different sites in ?-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation

    NARCIS (Netherlands)

    Hou, D.; Han, B.; Chen, W.; Liang, H.; Su, Q.; Dorenbos, P.; Huang, Y.; Gao, Z.; Tao, Y.

    2010-01-01

    A series of Ce3+ doped ?-Sr2?2xCexNaxP2O7 phosphor compounds has been prepared using a high-temperature solid-state reaction technique. The luminescence properties under vacuum ultraviolet-UV and x-ray excitation were studied. Luminescence spectra reveal three UV-emitting peaks at about 310, 330,

  13. Effect of Annealing Time of YAG:Ce3+ Phosphor on White Light Chromaticity Values

    Science.gov (United States)

    Abd, Husnen R.; Hassan, Z.; Ahmed, Naser M.; Almessiere, Munirah Abdullah; Omar, A. F.; Alsultany, Forat H.; Sabah, Fayroz A.; Osman, Ummu Shuhada

    2018-02-01

    Yttrium and aluminium nitrate phosphors doped with cerium nitrate and mixed with urea (fuel) are prepared by using microwave-induced combustion synthesis according to the formula Y(3-0.06)Al5O12:0.06Ce3+ (YAG:Ce3+) to produce white light emitting diodes by conversion from blue indium gallium nitride-light emitting diode chips. The sintering time with fixed temperature (1050°C) for phosphor powder was optimized and found to be 5 h. The crystallinity, structure, chemical composition, luminescent properties with varying currents densities and chromaticity were characterized by x-ray diffraction, field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, photoluminescence emission, electroluminescence and standard CIE 1931 chromaticity diagram, respectively. The energy levels of Ce3+ in YAG were discussed based on its absorption and excitation spectra. The results show that the obtained YAG:Ce3+ phosphor sintered for 5 h has good crystallinity with pure phase, low agglomerate with spherical shaped particles and strong yellow emission, offering cool-white LED with tuneable correlated color temperature and a good color rendering index compared to those prepared by sintering for 2 h and as-prepared phosphor powders.

  14. Physicochemical compatibility of SrCeO3 with potential SOFC cathodes

    International Nuclear Information System (INIS)

    Tolchard, J.; Grande, T.

    2007-01-01

    The chemical and physical compatibility of SrCeO 3 is investigated with respect to LaMO 3 (M=Mn, Fe, Co) and La 2-x Sr x NiO 4 (x=0, 0.8), via the reaction of fine-grained powder compacts and solid-state diffusion couples. Compositions were chosen so as to give predictive insight into possible candidate materials for all-oxide electrochemical devices. Results show the primary reaction in these systems to be the dissolution of SrO from SrCeO 3 into the LaMO 3 /La 2-x Sr x NiO 4 , and corresponding formation of La-doped CeO 2 . Reaction kinetics are observed to be relatively fast, with element profiles suggesting the diffusion of Sr 2+ in ceria to be surprisingly rapid. It is demonstrated that perovskite starting materials represent poor candidates for use with SrCeO 3 , reacting completely to form Ruddlesden-Popper/K 2 NiF 4 type oxides. Reaction with La 2 NiO 4 is less pronounced, and formation of secondary phases suppressed for the composition La 1.2 Sr 0.8 NiO 4 . It is thus concluded that Ruddlesden-Popper type oxides represent good candidate materials for use with a SrCeO 3 -based electrolytes when doped with appropriate levels of Sr. - Graphical abstract: Assessment of the SrCeO 3 proton conductor shows this material to have poor chemical compatibility with LaMO 3 perovskite systems, but predicts coexistence with Ruddlesden-Popper type oxides

  15. A novel high color purity blue-emitting phosphor: CaBi{sub 2}B{sub 2}O{sub 7}:Tm{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiangong, E-mail: lijiangong01@gmail.com [Department of Electronic Science and Engineering, Huanghuai University, Zhumadian 463000 (China); Yan, Huifang [Department of Foreign Languages and Literature, Huanghuai University, Zhumadian 463000 (China); Yan, Fengmei [Department of Chemistry and Chemical Engineering, Huanghuai University, Zhumadian 463000 (China)

    2016-07-15

    Graphical abstract: - Highlights: • A series of Tm{sup 3+}-doped CaBi{sub 2}B{sub 2}O{sub 7} blue-emitting phosphors were prepared. • The optimum doping content of Tm{sup 3+} ions was found. • The critical distance and concentration quenching mechanism was discussed. • The color purity of as prepared sample was analyzed and compared. - Abstract: A series of Tm{sup 3+}-doped CaBi{sub 2−x}B{sub 2}O{sub 7}:xTm{sup 3+} (0.02 ≤ x ≤ 0.12) blue-emitting phosphors with high color purity were prepared by solid-state reaction method. The crystal structure and luminescence properties of the as-prepared phosphors were studied. This phosphor shows a satisfactory blue performance (peak at 453 nm) due to the {sup 1}D{sub 2} → {sup 3}F{sub 4} transition of Tm{sup 3+} excited by 357 nm light. Investigation of Tm{sup 3+} content dependent emission spectra indicates that x = 0.04 is the optimum doping content of Tm{sup 3+} ions in the CaBi{sub 2}B{sub 2}O{sub 7} host. The critical distance and the concentration quenching mechanism were also investigated. In particular, the color purity of as prepared sample was analyzed and the result shows that the color purity of CaBi{sub 2}B{sub 2}O{sub 7}:Tm{sup 3+} is higher than the commercial blue phosphor BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} (BAM:Eu{sup 2+}) and the latest reported Tm{sup 3+} doped blue phosphors. The present work suggests that the CaBi{sub 2}B{sub 2}O{sub 7}:Tm{sup 3+} phosphor is a potential blue-emitting candidate for the application in the near-UV WLEDs.

  16. Improvement of photoluminescence properties and thermal stability of Y{sub 2.9}Ce{sub 0.1}Al{sub 5−x}Si{sub x}O{sub 12} phosphors with Si{sub 3}N{sub 4} addition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fangfang [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Song, Kaixin, E-mail: kxsong@hdu.edu.cn [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Jiang, Jun [Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wu, Song; Zheng, Peng [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Qingming [Instrument Analysis and Testing Center, Fuzhou University, Fuzhou 350002 (China); Xu, Junming; Qin, Huibin [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2014-12-05

    Highlights: • Y{sub 2.9}Ce{sub 0.1}Al{sub 5−x}Si{sub x}O{sub 12} phosphors were prepared by solid-state reaction in reduced air ambience. • Si{sup 4+} could be incorporated into the host lattice of Y{sub 3}Al{sub 5}O{sub 12} through partial occupation of the Al{sup 3+} sites. • Si{sub 3}N{sub 4} addition can improve photoluminescence efficiency and thermal stability of Y{sub 3}Al{sub 5}O{sub 12}:Ce. - Abstract: A series of Si{sub 3}N{sub 4} doping Y{sub 2.9}Ce{sub 0.1}Al{sub 5−x}Si{sub x}O{sub 12−3x/2}N{sub 4x/3} phosphors were prepared by solid-state reaction in 95%N{sub 2}–5%H{sub 2} reduced air ambience. The XRD characteristics plus Rietveld refinement results shows that the as-sintered powders are unique crystal phase with the same crystal structure of Y{sub 3}Al{sub 5}O{sub 12} (PDF No. 79-1891). The N element was not detected by the analysis of X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectrum (EDS). The photoluminescence spectra (PL and PLE) tests show that the exciting and emitting intensity of PLE and PL gradually increase due to the increase of Si{sub 3}N{sub 4} concentration. Meanwhile, the phosphorescence decay times are prolonged from 45 ns (x = 0) to 78 ns (x = 0.3), under the monitor of 530 nm wavelength. The thermoluminescence tests (TL) confirm the thermal stability of as-phosphors with Si{sub 3}N{sub 4} addition is much better than that of the pristine Y{sub 2.9}Ce{sub 0.1}Al{sub 5}O{sub 12} phosphors.

  17. Crystal structure and Temperature-Dependent Luminescence Characteristics of KMg4(PO4)3:Eu2+ phosphor for White Light-emitting diodes

    Science.gov (United States)

    Chen, Jian; Liu, Yangai; Mei, Lefu; Liu, Haikun; Fang, Minghao; Huang, Zhaohui

    2015-01-01

    The KMg4(PO4)3:Eu2+ phosphor was prepared by the conventional high temperature solid-state reaction. The crystal structure, luminescence and reflectance spectra, thermal stability, quantum efficiency and the application for N-UV LED were studied respectively. The phase formation and crystal structure of KMg4(PO4)3:Eu2+ were confirmed from the powder X-ray diffraction and the Rietveld refinement. The concentration quenching of Eu2+ in the KMg4(PO4)3 host was determined to be 1mol% and the quenching mechanism was certified to be the dipole–dipole interaction. The energy transfer critical distance of as-prepared phosphor was calculated to be about 35.84Å. Furthermore, the phosphor exhibited good thermal stability and the corresponding activation energy ΔE was reckoned to be 0.24eV. Upon excitation at 365nm, the internal quantum efficiency of the optimized KMg4(PO4)3:Eu2+ was estimated to be 50.44%. The white N-UV LEDs was fabricated via KMg4(PO4)3:Eu2+, green-emitting (Ba,Sr)2SiO4:Eu2+, and red-emitting CaAlSiN3:Eu2+ phosphors with a near-UV chip. The excellent color rendering index (Ra = 96) at a correlated color temperature (5227.08K) with CIE coordinates of x = 0.34, y = 0.35 of the WLED device indicates that KMg4(PO4)3:Eu2+ is a promising blue-emitting phosphor for white N-UV light emitting diodes (LEDs). PMID:25855866

  18. Luminescence properties of Ca2 Ga2 SiO7 :RE phosphors for UV white-light-emitting diodes.

    Science.gov (United States)

    Jiao, Mengmeng; Lv, Wenzhen; Lü, Wei; Zhao, Qi; Shao, Baiqi; You, Hongpeng

    2015-03-16

    A series of Eu(2+) -, Ce(3+) -, and Tb(3+) -doped Ca2 Ga2 SiO7 phosphors is synthesized by using a high-temperature solid-state reaction. The powder X-ray diffraction and structure refinement data indicate that our prepared phosphors are single phased and the phosphor crystalizes in a tetrahedral system with the ${P\\bar 42m}$ (113) space group. The Eu(2+) - and Ce(3+) -doped phosphors both have broad excitation bands, which match well with the UV light-emitting diodes chips. Under irradiation of λ=350 nm, Ca2 Ga2 SiO7 :Eu(2+) and Ca2 Ga2 SiO7 :Ce(3+) , Li(+) have green and blue emissions, respectively. Luminescence of Ca2 Ga2 SiO7 :Tb(3+) , Li(+) phosphor varies with the different Tb(3+) contents. The thermal stability and energy-migration mechanism of Ca2 Ga2 SiO7 :Eu(2+) are also studied. The investigation results indicate that the prepared Ca2 Ga2 SiO7 :Eu(2+) and Ca2 Ga2 SiO7 :Ce(3+) , Li(+) samples show potential as green and blue phosphors, respectively, for UV-excited white-light-emitting diodes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs

    Science.gov (United States)

    Arjoca, Stelian; Víllora, Encarnación G.; Inomata, Daisuke; Aoki, Kazuo; Sugahara, Yoshiyuki; Shimamura, Kiyoshi

    2015-05-01

    The growth of Ce:Y3Al5O12(Ce:YAG) single-crystal phosphors (SCPs) by the Czochralski technique is analyzed in terms of segregation coefficient, solubility and absorption cross-section. The emission characteristics of these SCPs are investigated in a wide temperature range, from liquid He temperature up to 500 °C. The internal quantum efficiency of SCPs achieves its maximum at about 250 °C. Thermal quenching of SCPs at high temperature is attributed to the Mott-Seitz mechanism. In the case of ceramic powder phosphors, a continuous droop is observed with the temperature due to defect-related non-radiative recombination paths. It is shown that (Ce:YAG SCPs + blue LEDs/LDs) can cover a wide range of color temperatures 5500-7000 K, with color rendering indices around 70. In conclusion, it is shown that Ce:YAG SCPs are the most efficient and temperature stable converters to fabricate high-brightness white light sources with high-power blue LEDs and LDs.

  20. Blue- and red-emitting phosphor nanoparticles embedded in a porous matrix

    Energy Technology Data Exchange (ETDEWEB)

    Taghavinia, N. [Physics Department, Sharif University of Technology, Tehran P.O. Box 11365-9161, Tehran 14588 (Iran, Islamic Republic of) and Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588 (Iran, Islamic Republic of)]. E-mail: taghavinia@sharif.edu; Lerondel, G. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Univ. de Technologie de Troyes, 10010 Troyes cedex (France); Makino, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yao, T. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2006-05-01

    Eu{sup 3+}- and Ce{sup 3+}-doped yttrium silicate, as well as Eu{sup 2+}-doped zinc silicate nanoparticles, were grown in a porous SiO{sub 2} matrix using an impregnation method. For Y{sub 2}Si{sub 2}O{sub 7}:Eu{sup 3+}, particles of about 50 nm size were obtained that exhibited several photoluminescence (PL) peaks in red. Different peaks showed slightly different decay times; however, their excitation mechanism was found the same. Increasing the Eu concentration increased the PL intensity while reducing the decay time. Y{sub 2}Si{sub 2}O{sub 7}:Ce{sup 3+} nanoparticles in the porous matrix showed bright blue emission, consisting of two peaks at 358 nm and 378 nm. Re-impregnation process was found effective in changing the relative intensity of the two peaks. Zn{sub 2}SiO{sub 4}:Eu{sup 2+} nanoparticles in porous glass consisted of amorphous particles of about 20 nm size inside the porous matrix. The luminescence was a broad peak centered at 418 nm. These phosphor systems, together with our previously reported Zn{sub 2}SiO{sub 4}:Mn{sup 2+} in porous SiO{sub 2} structure, comprise a red-green-blue system that can be used in display applications.

  1. Sr2+ and Cs+ ion exchange properties of KLn(PO3)4: Ln = Ce and Eu

    International Nuclear Information System (INIS)

    Samatha, B.; Achary, S.N.; Tyagi, A.K.; Ramkumar, Jayshree; Chandramouleeswaran, S.

    2014-01-01

    With the aim to study the potential of layered phosphates as ion exchangers two stoichiometric compositions as KLn(PO 3 ) 4 with Ln = Ce and Eu were prepared by solid state reaction and characterized by powder X-ray diffraction method. The Cs + and Sr 2+ exchange properties of both materials were investigated using standard solutions of Sr 2 + or Cs + in low acidic aqueous medium

  2. Novel Br-DPQ blue light-emitting phosphors for OLED.

    Science.gov (United States)

    Dahule, H K; Thejokalyani, N; Dhoble, S J

    2015-06-01

    A new series of blue light-emitting 2,4-diphenylquinoline (DPQ) substituted blue light-emitting organic phosphors namely, 2-(4-methoxy-phenyl)-4-phenyl-quinoline (OMe-DPQ), 2-(4-methyl-phenyl)-4-phenylquinoline (M-DPQ), and 2-(4-bromo-phenyl)-4-phenylquinoline (Br-DPQ) were synthesized by substituting methoxy, methyl and bromine at the 2-para position of DPQ, respectively by Friedländer condensation of 2-aminobenzophenone and corresponding acetophenone. The synthesized phosphors were characterized by different techniques, e.g., Fourier transform infra-red (FTIR), differential scanning calorimeter (DSC), UV-visible absorption and photoluminescence spectra. FTIR spectra confirms the presence of chemical groups such as C=O, NH, or OH in all the three synthesized chromophores. DSC studies show that these complexes have good thermal stability. Although they are low-molecular-weight organic compounds, they have the potential to improve the stability and operating lifetime of a device made out of these complexes. The synthesized polymeric compounds demonstrate a bright emission in the blue region in the wavelength range of 405-450 nm in solid state. Thus the attachment of methyl, methoxy and bromine substituents to the diphenyl quinoline ring in these phosphors results in colour tuning of the phosphorescence. An electroluminescence (EL) cell of Br-DPQ phosphor was made and its EL behaviour was studied. A brightness-voltage characteristics curve of Br-DPQ cell revealed that EL begins at 400 V and then the brightness increases exponentially with applied AC voltage, while current-voltage (I-V) characteristics revealed that the turn on voltage of the fabricated EL cell was 11 V. Hence this phosphor can be used as a promising blue light material for electroluminescent devices. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Synthesis and characterization of novel Na15 (SO4 )5 F4 Cl:Ce3+ halosulfate phosphors.

    Science.gov (United States)

    Bhake, A M; Nair, Govind B; Zade, G D; Dhoble, S J

    2016-12-01

    A series of Na 15 (SO 4 ) 5 F 4 Cl phosphors doped with Ce 3+ ions was prepared using the wet chemical method. X-Ray diffraction studies were used to determine their phase formation and purity. Fourier transform infrared spectroscopy effectively identified the chemical bonds present in the molecule. The photoluminescence properties of the as-prepared phosphors were investigated and the Ce 3+ ions in these hosts were found to give broadband emission in the UV range. For the thermoluminescence study, phosphors were irradiated with a 5 Gy dose of γ-rays from a 60 Co source. Chen's half-width method was employed to calculate the trapping parameters from the thermoluminescence glow curve. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Luminescent properties and energy transfer studies of color-tunable LuBO{sub 3}: Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinguo, E-mail: sysuzxg@gmail.com [School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 (China); School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Fu, Xionghui [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Song, Jiahui [Shenzhou High School, Hengshui 053800 (China); Gong, Menglian [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2016-08-15

    Highlights: • A series of color-tunable LuBO{sub 3}: Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} phosphors were synthesized. • Phosphors exhibit strong blue/green/red emission under UV excitation. • The reason of high Tb{sup 3+} content required for Ce{sup 3+} → Tb{sup 3+} → Eu{sup 3+} energy transfer is unveiled. • Green and red LED prototypes were fabricated and characterized. - Abstract: A series of LuBO{sub 3}: Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} phosphors were synthesized via solid state reaction. The Ce{sup 3+}/Tb{sup 3+} co-doped and Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} tri-doped phosphors absorb near UV light through 4f-5d transitions of Ce{sup 3+}, followed by sensitized Tb{sup 3+} green and Eu{sup 3+} red emission. Decay curves investigations for samples with various Tb{sup 3+} and Eu{sup 3+} contents reveal the occurrence of Ce{sup 3+} → Tb{sup 3+} → Eu{sup 3+} energy transfer. It is found that due to relative low Tb{sup 3+} → Eu{sup 3+} energy transfer rate, a high Tb{sup 3+} content (>40%) is required for efficient Ce{sup 3+} → Tb{sup 3+} → Eu{sup 3+} energy transfer. Emission color of LuBO{sub 3}: Ce{sup 3+}, Tb{sup 3+}, Eu{sup 3+} varies from blue through green to red with Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} ratio. The quantum efficiency of LuBO{sub 3}: Ce{sup 3+}, Tb{sup 3+} green phosphor and LuBO{sub 3}: Ce{sup 3+}, Tb{sup 3+}, Eu{sup 3+} red phosphor is 50% and 30%, respectively. Green and red LED prototypes were fabricated. The results show that the obtained phosphors are potential candidates as down-converted phosphors for NUV LEDs.

  5. Photoluminescence properties and thermal stability of blue-emitting Ba5-xCl(PO4)3:xEu2+ (0.004≤x≤0.016) phosphors.

    Science.gov (United States)

    Liu, Jie; Zhang, Zhi-Ming; Wu, Zhan-Chao; Wang, Fang-Fang; Li, Zhen-Jiang; Kuang, Shao-Ping; Wu, Ming-Mei

    2017-01-15

    A series of blue-emitting Ba 5-x Cl(PO 4 ) 3 :xEu 2+ (0.004≤x≤0.016) phosphors were synthesized by conventional high-temperature solid state reaction. The structure and photoluminescence (PL) properties of the phosphors were investigated. The as-prepared phosphors exhibit broad excitation band ranging from 250 to 420nm, and strong asymmetric blue emission band peaking at 436nm. The optimum concentration of Eu 2+ in the Ba 5 Cl(PO 4 ) 3 :Eu 2+ phosphor is x=0.01, and the concentration quenching mechanism is verified to be the combined actions of dipole-dipole interaction and radiation re-absorption mechanism. The thermal stability of Ba 5 Cl(PO 4 ) 3 :Eu 2+ was evaluated by temperature-dependent PL spectra. Compared with that of commercial BaMgAl 10 O 17 :Eu 2+ (BAM) phosphor, the Ba 5-x Cl(PO 4 ) 3 :xEu 2+ phosphors exhibit similarly excellent thermal quenching property. In addition, the CIE chromaticity coordinates of Ba 5-x Cl(PO 4 ) 3 :xEu 2+ (0.004≤x≤0.016) were calculated to evaluate the color quality. All the results indicate that Ba 5 Cl(PO 4 ) 3 :Eu 2+ is a promising candidate phosphor for near-ultraviolet (n-UV) pumped LED. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 紫外应力发光材料SrMgSi2O6∶Ce的制备与光谱性质研究%Ultraviolet Mechanoluminescence from SrMgSi2O6∶ Ce

    Institute of Scientific and Technical Information of China (English)

    付晓燕; 房立均; 付海霞; 张洪武

    2013-01-01

    UV mechanoluminescent (ML) phosphors SrMgSi2O6 ∶ Ce0.005,SrMgSi2O6∶Ce0.005,Er0.015 and Sr2 MgSi2O7∶ Ce0.005,Er0.015 were prepared via solid state reaction.The XRD results indicate that the structure of SrMgSi2O6 is identical to that of Sr2MgSi2O7,which has a tetragonal symmetry with a space group P421m.The emission bands of three samples are similar,which consist of a broad band with two peaks centered at 349 and 371 nm,caused by the f-d electron transition of Ce3+ ions.The ML results show that the ML intensities of these samples are well depended on the stress,indicating that these ML materials can be potentially used as sensors to detect the stress distribution of an object.Furthermore,the ML intensity of SrMgSi2O6∶Ce0.005,Er0.015 is obviously higher than those of SrMgSi2O6∶ Ce0.005 and Sr2MgSi2O7∶Ce0.005,Er0.015.The obtained results suggest that the trap and the worse symmetry of crystal structure are responsible for the higher ML intensity of SrMgSi2O6∶Ce0.005,Er0.015.Because of the UV emission of this material,it can be used as the excitation source to irradiate other color phosphors and then the various colors ML can be realized.%采用固相烧结法制备了3种紫外应力发光材料SrMgSi2O6∶Ce0.005、SrMgSi2O6∶Ce0005,Er0.015和Sr2MgSi2O7∶Ce0.005,Er0015.XRD测试结果表明:SrMgSi2O6与Sr2MgSi2O7具有相同的结构,掺杂离子的加入没有改变相结构.3种样品的荧光发射光谱很类似,均在330~400 nm紫外波段有较宽的发射谱带.应力发光曲线的测试结果表明,样品的应力发光强度与物体受力变化呈良好的对应关系,证明所制备的样品可以用来检测物体的受力情况.同时,研究了共掺杂离子以及改变基质结构对应力发光强度的影响,结果表明发光体中陷阱数目的增加以及基质对称性的降低有利于应力发光的产生.由于所开发的样品波长在紫外区,因而可以作为光源来激发其他颜色的光致发光材料从而实现多颜色应力发光材料的开发.

  7. Tunable white light of a Ce3+,Tb3+,Mn2+ triply doped Na2Ca3Si2O8 phosphor for high colour-rendering white LED applications: tunable luminescence and energy transfer.

    Science.gov (United States)

    Lü, Wei; Xu, Huawei; Huo, Jiansheng; Shao, Baiqi; Feng, Yang; Zhao, Shuang; You, Hongpeng

    2017-07-18

    A tunable white light emitting Na 2 Ca 3 Si 2 O 8 :Ce 3+ ,Tb 3+ ,Mn 2+ phosphor with a high color rendering index (CRI) has been prepared. Under UV excitation, Na 2 Ca 3 Si 2 O 8 :Ce 3+ phosphors present blue luminescence and exhibit a broad excitation ranging from 250 to 400 nm. When codoping Tb 3+ /Mn 2+ ions into Na 2 Ca 3 Si 2 O 8 , energy transfer from Ce 3+ to Tb 3+ and Ce 3+ to Mn 2+ ions is observed from the spectral overlap between Ce 3+ emission and Tb 3+ /Mn 2+ excitation spectra. The energy-transfer efficiencies and corresponding mechanisms are discussed in detail. The mechanism of energy transfer from Ce 3+ to Tb 3+ is demonstrated to be a dipole-quadrupole mechanism by the Inokuti-Hirayama model. The wavelength-tunable white light can be realized by coupling the emission bands centered at 440, 550 and 590 nm ascribed to the contribution from Ce 3+ , Tb 3+ and Mn 2+ , respectively. The commission on illumination value of color tunable emission can be tuned by controlling the content of Ce 3+ , Tb 3+ and Mn 2+ . Temperature-dependent luminescence spectra proved the good thermal stability of the as-prepared phosphor. White LEDs with CRI = 93.5 are finally fabricated using a 365 nm UV chip and the as-prepared Na 2 Ca 3 Si 2 O 8 :Ce 3+ ,Tb 3+ ,Mn 2+ phosphor. All the results suggest that Na 2 Ca 3 Si 2 O 8 :Ce 3+ ,Tb 3+ ,Mn 2+ can act as potential color-tunable and single-phase white emission phosphors for possible applications in UV based white LEDs.

  8. Color-tunable and luminescence properties of phosphors of Ce{sup 3+} and Tb{sup 3+} co-doped La{sub 5}Si{sub 3}O{sub 12}N for UV w-LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Junru; Chen, Jian; Liu, Yangai, E-mail: liuyang@cugb.edu.cn

    2016-02-15

    A series of Ce{sup 3+}, Tb{sup 3+} and Ce{sup 3+}/Tb{sup 3+} co-doped in La{sub 5}Si{sub 3}O{sub 12}N phosphors were synthesized by conventional high temperature solid state reaction method. With the increase of Tb{sup 3+}, the green emission was realized in (La{sub 0.94−y}Ce{sub 0.06}Tb{sub y}){sub 5}Si{sub 3}O{sub 12}N phosphors on the basis of the efficient energy transfer from Ce{sup 3+} to Tb{sup 3+} with an efficiency (η{sub T}) over 58.72%. The room temperature PL decay curves of the Ce{sup 3+} ions in (La{sub 0.94−y}Ce{sub 0.06}Tb{sub y}){sub 5}Si{sub 3}O{sub 12}N phosphors monitored at 460 nm with an excitation at 365 nm indicated that the energy transfer process between Ce{sup 3+} and Tb{sup 3+} indeed took place. The CIE chromaticity diagrams for (La{sub 0.94−y}Ce{sub 0.06}Tb{sub y}){sub 5}Si{sub 3}O{sub 12}N phosphors were also observed, which shows the color tuned from blue to blue-greenish to green with the increase of Tb{sup 3+} concentration from 0.01 to 0.08. These results demonstrated that Tb{sup 3+} ion with low 4f–4f absorption efficiency in near UV region can play the role of an activator in narrow green-emitting phosphor through efficient energy feeding by allowing 4f–5d absorption of Ce{sup 3+} with high oscillator strength. All the results indicated that the Ce{sup 3+} and Tb{sup 3+} activated La{sub 5}Si{sub 3}O{sub 12}N phosphor may be good candidates for blue-green components in n-UV white LEDs. - Highlights: • A series of Ce{sup 3+}, Tb{sup 3+} and Ce{sup 3+}/Tb{sup 3+} co-doped in La{sub 5}Si{sub 3}O{sub 12}N phosphors were synthesized by high temperature solid state reaction method. • The green emission was realized in (La{sub 0.94−y}Ce{sub 0.06}Tb{sub y})Si{sub 3}O{sub 12}N phosphors on the basis of the highly efficient energy transfer. • The Ce{sup 3+} and Tb{sup 3+} activated La{sub 5}Si{sub 3}O{sub 12}N phosphor may be good candidates for blue-green components in n-UV white LEDs.

  9. Luminescent phosphors, based on rare earth substituted oxyfluorides in the A(1){sub 3-x} A(2){sub x}MO{sub 4}F family with A(1)/A(2)=Sr, Ca, Ba and M=Al, Ga

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangmoon, E-mail: spark@silla.ac.k [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Vogt, Thomas [NanoCenter and Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29208, SC (United States)

    2009-09-15

    A new family of UV-activated phosphors made by substituting rare-earth activators such as trivalent Eu, Tb, Tm and Er into A(1){sub 3-x}A(2){sub x}MO{sub 4}F host lattices (A(1)/A(2)=Sr, Ca, Ba; M=Al, Ga) are introduced and their activation and emission spectra as well as their CIE values reported. The Tm-substituted system can be activated using light with a wavelength of 360 nm. Relative intensities of a family of Tb-substituted green phosphors activated at 254 nm and with emissions centered near 548 nm are discussed.

  10. Red electroluminescent process excited by hot holes in SrGa2S4:Ce, Mn thin film

    International Nuclear Information System (INIS)

    Tanaka, Katsu; Okamoto, Shinji

    2009-01-01

    This paper reports the first observation of red electroluminescence (EL) in SrGa 2 S 4 :Ce, Mn thin film. The EL spectrum consists of single broad emission band having a peak wavelength of 665 nm. The dominant EL decay time was 31 μs. The relationship between the applied voltage and the EL waveform was measured in single insulating thin film electroluminescent (TFEL) devices. An asymmetric EL waveform was observed in SrGa 2 S 4 :Ce, Mn TFEL devices under a rectangular applied voltage. The polarity of the EL waveform in these devices was different from the waveform in manganese-activated zinc sulfide ZnS:Mn devices. This indicates that hot holes excite the Mn 2+ ions to cause the red EL.

  11. Effects of Green - Emitting Phosphor (La,Ce,TbPO_4:Ce:Tb on Luminous Flux and Color Quality of White LED Lamps

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Phuong Thao

    2017-01-01

    Full Text Available In this paper, we present and analyze the influence of (La,Ce,TbPO_4:Ce:Tb green phosphor (LaTb toward the performance of the multi-chip white LED (MCW-LEDs lamps including color uniformity, lumen output, Color Rendering Index (CRI, and Color Quality Scale (CQS. By mixing the LaTb green phosphor and the YAG:Ce yellow phosphor compounding under condition of 7000 K MCW-LEDs, this new approach can produce a huge meaningful change in lumen output and the angular color distribution of MCW-LEDs. We also study the interaction between the concentration and size of the LaTb particles with output flux, color uniformity, CRI, and CQS. The obtained results demonstrate that the higher lumen output, the higher color uniformity enhancement could be attained by adding the LaTb particles with a size range around 6-8 µm and the concentration around 1.5% in phosphor layer. Meanwhile, the decrease of the color rendering value (CRI and the Color Quality Scale (CQS tend to be stable and insignificant. In other words, the obtained results provide a prospective method which plays an important role in the development of MCW-LED manufacturing technology.

  12. Luminescence studies of SrAl_2O_4:Dy"3"+ nanophosphors

    International Nuclear Information System (INIS)

    Sharma, Ravi

    2016-01-01

    Nanosized strontium aluminate phosphors activated by Dy"3"+ were prepared by combustion as well as by solid state reaction method. Nanophosphor was prepared by these methods at reaction temperatures 600°C and 1200°C respectively. Powder X-ray diffraction (XRD), scanning electron microscope analysis was used to characterize the prepared product. Themonoclinic phase was observed in the XRD pattern. The particle size of the samples was calculated around 35 nm. The SEM images show irregular shape of the prepared nanophosphor. Two peaks were found in the Mechanoluminescence (ML) response curve plotted between time and ML intensity. The H_3BO_3 added strontium aluminate phosphors activated with Dy show more bright ML peak as compared to the powders of SrAl_2O_4:Dy"3"+ without H_3BO_3. It was found that the PL and ML intensity increases with increasing concentration of Dy. The intensity becomes maximum for 3% of Dy. The photoluminescence emission shows two intense fluorescence transitions peaks at 498 nm and 583 nm, "4F_9_/_2 → "6H_1_5_/_2 in the blue and "4F_9_/_2 → "6H_1_3_/_2 in the yellow-orange wavelength region. (author)

  13. Luminescence properties of LiSr2Y1-xLnxO4 (Ln=Eu,Tb,Tm) (0≤x≤1)

    International Nuclear Information System (INIS)

    Kubota, S.; Suzuyama, Y.; Yamane, H.; Shimada, M.

    1998-01-01

    Investigations of the luminescence properties of LiSr 2 Y 1-x Eu x O 4 , LiSr 2 Y 1-x Tb x O 4 and LiSr 2 Y 1-x Tm x O 4 (0≤x≤1) at room temperature are reported. These samples were synthesized by a solid state reaction. The excitation spectra of Tb 3+ emission in LiSr 2 Y 1-x Tb x O 4 (0≤x≤1) consist of broad bands corresponding to a transition between the 4f 8 and 4f 7 5d 1 states of Tb 3+ . The maximum intensity is situated at about 318 nm. This is at a much longer wavelength than those of other Tb 3+ doped phosphors. This is explained by a large offset of the adiabatic potential curve of the 4f 7 5d 1 state. (orig.)

  14. Luminescent properties of green- or red-emitting Eu2+-doped Sr3Al2O6 for LED

    International Nuclear Information System (INIS)

    Zhang Jilin; Zhang Xinguo; Shi Jianxin; Gong Menglian

    2011-01-01

    Eu 2+ -doped Sr 3 Al 2 O 6 (Sr 3-x Eu x Al 2 O 6 ) was synthesized by a solid-state reaction under either H 2 and N 2 atmosphere or CO atmosphere. When H 2 was used as the reducing agent, the phosphor exhibited green emission under near UV excitation, while CO was used as the reducing agent, the phosphor mainly showed red emission under blue light excitation. Both emissions belong to the d-f transition of Eu 2+ ion. The relationship between the emission wavelengths and the occupation of Eu 2+ at different crystallographic sites was studied. The preferential substitution of Eu 2+ into different Sr 2+ cites at different reaction periods and the substitution rates under different atmospheres were discussed. Finally, green-emitting and red-emitting LEDs were fabricated by coating the phosphor onto near UV- or blue-emitting InGaN chips. - Highlights: →Sr 3 Al 2 O 6 :Eu 2+ is synthesized by a solid-state reaction under different atmospheres. →Phosphor obtained under H 2 +N 2 atmosphere emits green light under NUV excitation. →Phosphor obtained under CO atmosphere emits red light under blue light excitation. →Different emission wavelengths are due to Eu 2+ in different Sr 2+ sites. →The preferential substitution and the substitution rates of Eu 2+ are discussed.

  15. Photoluminescence and Energy Transfer Properties with Y+SiO4 Substituting Ba+PO4 in Ba3Y(PO4)3:Ce(3+)/Tb(3+), Tb(3+)/Eu(3+) Phosphors for w-LEDs.

    Science.gov (United States)

    Li, Kai; Liang, Sisi; Shang, Mengmeng; Lian, Hongzhou; Lin, Jun

    2016-08-01

    A series of Ce(3+), Tb(3+), Eu(3+) doped Ba2Y2(PO4)2(SiO4) (BYSPO) phosphors were synthesized via the high-temperature solid-state reaction route. X-ray diffraction, high-resolution transmission electron microscopy, Fourier transform infrared, solid-state NMR, photoluminescence (PL) including temperature-dependent PL, and fluorescent decay measurements were conducted to characterize and analyze as-prepared samples. BYSPO was obtained by the substitution of Y+SiO4 for Ba+PO4 in Ba3Y(PO4)3 (BYPO). The red shift of PL emission from 375 to 401 nm occurs by comparing BYSPO:0.14Ce(3+) with BYPO:0.14Ce(3+) under 323 nm UV excitation. More importantly, the excitation edge can be extended from 350 to 400 nm, which makes it be excited by UV/n-UV chips (330-410 nm). Tunable emission color from blue to green can be observed under 365 nm UV excitation based on the energy transfer from Ce(3+) to Tb(3+) ions after codoping Tb(3+) into BYSPO:0.14Ce(3+). Moreover, energy transfer from Tb(3+) to Eu(3+) ions also can be found in BYSPO:Tb(3+),Eu(3+) phosphors, resulting in the tunable color from green to orange red upon 377 nm UV excitation. Energy transfer properties were demonstrated by overlap of excitation spectra, variations of emission spectra, and decay times. In addition, energy transfer mechanisms from Ce(3+) to Tb(3+) and Tb(3+) to Eu(3+) in BYSPO were also discussed in detail. Quantum yields and CIE chromatic coordinates were also presented. Generally, the results suggest their potential applications in UV/n-UV pumped LEDs.

  16. Structural distortions in Sr3-xAxMO4F (A=Ca, Ba; M=Al, Ga, In) anti-Perovskites and corresponding changes in photoluminescence

    International Nuclear Information System (INIS)

    Sullivan, Eirin; Avdeev, Maxim; Vogt, Thomas

    2012-01-01

    The ordered oxyfluoride family Sr 3 − x A x MO 4 F (A=Ca, Ba and M=Al, Ga) has formed the basis of several new inorganic phosphors, and shows great potential for use in phosphor-conversion LED lamp devices. This study examines the correlation between subtle structural changes and photoluminescent behaviour in some of these materials. In order to ascertain whether cation charge compensation has any influence on structure and subsequent photoluminescent behaviour, a comparison was carried out between phases with the nominal compositions Sr 2.975 Ce 0.025 AlO 4 F and Sr 2.95 Ce 0.025 Na 0.025 AlO 4 F using structural characterisation based upon high-resolution neutron powder diffraction (NPD) data. Additionally, NPD data has been used to elucidate the role of different M cations in these materials, using Sr 2.25 Ba 0.6 Eu 0.1 M 0.95 In 0.05 O 4−α F 1−δ (M=Al, Ga) to determine the effect M cation size has on structure and photoluminescent properties. - Graphical abstract: The structure of Sr3-xAxMO4F (A=Ca, Ba and M=Al, Ga) and excitation and emission spectra for Sr 2.25 Ba 0.6 Eu 0.1 Ga 0.95 In 0.05 O 4−α F 1−δ . Highlights: ► Correlation between structural changes and photoluminescence in Sr 3−x A x MO 4 F (A=Ca, Ba, M=Al, Ga). ► Comparison of Sr 2.975 Ce 0.025 AlO 4 F and Sr 2.95 Ce 0.025 Na 0.025 AlO 4 F using high-resolution NPD. ► Study of the effect of cation charge-compensation on structure and photoluminescent behaviour. ► Examination of high-resolution NPD data for Sr 2.25 Ba 0.6 Eu 0.1 M 0.95 In 0.05 O 4−α F 1−δ (M=Al, Ga). ► Determination of the effect M cation size has on structure and photoluminescent properties.

  17. A SrBPO5: Eu2+ phosphor for neutron imaging

    International Nuclear Information System (INIS)

    Sakasai, K.; Katagiri, M.; Toh, K.; Nakamura, T.

    2001-01-01

    A SrBPO 5 : Eu 2+ phosphor material has been investigated for neutron imaging. This phosphor showed photostimulated luminescence (PSL) by illumination of 635 nm laser light after X-ray irradiation. The spectral characteristics of the phosphor were similar to those of BaFBr: Eu 2+ , which is a commonly used phosphor of imaging plates. In addition, we found that this phosphor also showed PSL for neutron irradiation. It comes from the fact that it contains atomic boron in base matrix. Therefore, this phosphor can be used for neutron imaging without adding neutron sensitive materials such as Gd in commercially available neutron imaging plates. The PSL intensity and the neutron detection will be increased by using enriched boron instead of natural boron. (author)

  18. Phase identification and superconducting transitions in Sr-doped Pr1.85Ce0.15CuO4

    International Nuclear Information System (INIS)

    Varela, A.; Vallet-Regi, M.; Gonazalez-Calbet, J.M.

    1997-01-01

    Sr-doped Pr 1.85 Ce 0.15 CuO 4+δ samples have been prepared with accurate control of the oxygen content. The stability of both T ' and T * phases is strongly dependent on Sr and oxygen content. An electron diffraction study indicates that, in some cases, anionic vacancies are ordered leading to a pseudo-tetragonal superlattice with unit cell parameters 22a t xc t . Structural transitions and superconducting phases created by hole doping in such a system are also reported. copyright 1997 Materials Research Society

  19. Luminescence properties of Ce{sup 3+} and Tb{sup 3+} co-activated ZnAl{sub 2}O{sub 4} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Tshabalala, K.G. [Department of Physics, University of the Free State, Bloemfontein, ZA 9300 (South Africa); Cho, S.-H.; Park, J.-K. [Nano-Materials Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of); Pitale, Shreyas S.; Nagpure, I.M.; Kroon, R.E.; Swart, H.C. [Department of Physics, University of the Free State, Bloemfontein, ZA 9300 (South Africa); Ntwaeaborwa, O.M., E-mail: ntwaeab@ufs.ac.za [Department of Physics, University of the Free State, Bloemfontein, ZA 9300 (South Africa)

    2012-05-15

    In this study, a solution combustion method was used to prepare green emitting Ce{sup 3+}-Tb{sup 3+} co-activated ZnAl{sub 2}O{sub 4} phosphor. The samples were annealed at 700 Degree-Sign C in air or hydrogen atmosphere to improve their crystallinity and optical properties. X-ray diffraction study confirmed that both as-prepared and post-preparation annealed samples crystallized in the well known cubic spinel structure of ZnAl{sub 2}O{sub 4}. An agglomeration of irregular platelet-like particles whose surfaces were encrusted with smaller spheroidal particles was confirmed by scanning electron microscopy (SEM). The fluorescence data collected from the annealed samples with different concentrations of Ce{sup 3+} and Tb{sup 3+} show the enhanced green emission at 543 nm associated with {sup 5}D{sub 4}{yields}{sup 7}F{sub 5} transitions of Tb{sup 3+}. The enhancement was attributed to energy transfer from Ce{sup 3+} to Tb{sup 3+}. Possible mechanism of energy transfer via a down conversion process is discussed. Furthermore, cathodoluminescence (CL) intensity degradation of this phosphor was also investigated and the degradation data suggest that the material was chemically stable and the CL intensity was also stable after 10 h of irradiation by a beam of high energy electrons.

  20. Optical properties of white organic light-emitting devices fabricated utilizing a mixed CaAl12O19:Mn4+ and Y3Al5O12:Ce3+ color conversion layer.

    Science.gov (United States)

    Jeong, H S; Kim, S H; Lee, K S; Jeong, J M; Yoo, T W; Kwon, M S; Yoo, K H; Kim, T W

    2013-06-01

    White organic light-emitting devices (OLEDs) were fabricated by combining a blue OLED with a color conversion layer made of mixed Y3Al5O12:Ce3+ green and Ca2AlO19:Mn4+ red phosphors. The X-ray diffraction patterns showed that Ce3+ ions in the Y3Al5O12:Ce3+ phosphors completely substituted for the Y3+ ions and the Mn4+ ions in the CaAl12O19:Mn4+ phosphors completely substituted for the Ca2+ ions. Electroluminescence spectra at 11 V for the OLEDs fabricated utilizing a color conversion layer showed that the Commission Internationale de l'Eclairage coordinates for the Y3Al5O12:Ce3+ and CaAl12O19:Mn4+ phosphors mixed at the ratio of 1:5 and 1:10 were (0.31, 0.34) and (0.32, 0.37), respectively, indicative of a good white color.

  1. Synthesis and luminescent properties of novel red-emitting M7Sn(PO46:Eu3+ (M = Sr, Ba phosphors

    Directory of Open Access Journals (Sweden)

    Guo Feng

    2018-03-01

    Full Text Available Novel Eu3+-activated M7Sn(PO46 (where M = Sr, Ba red-emitting phosphors were synthesized via conventional solid-state reaction method at 1200 °C for 2 h. The luminescence properties of the prepared samples and quenching concentration of Sr7-xSn(PO46:xEu3+ and Ba7-xSn(PO46:xEu3+ were investigated. These phosphors can be efficiently excited by UV (395 nm and visible blue (465 nm light nicely matching the output wavelengths of the near-UV LEDs and InGaN blue LED chips and emit the red light. The critical concentrations of the Eu3+ activator were found to be 0.175 mol and 0.21 mol per formula unit for Sr7-xSn(PO46:xEu3+ and Ba7-xSn(PO46:xEu3+, respectively. The M7-xSn(PO46:xEu3+ (M = Sr, Ba phosphor may be a good candidate for light-emitting diodes application.

  2. Photoluminescence characterization and energy transfer of color-tunable Li{sub 6}Y(BO{sub 3}){sub 3}:Ce{sup 3+},Tb{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Anxiang; Zhou, Liya, E-mail: zhouliyatf@163.com; Wang, Guofang; Gao, Fangfang; Wang, Qiuping; Chen, Xueting; Li, Yinghao

    2016-08-01

    Ce{sup 3+} and Tb{sup 3+} singly doped and co-doped Li{sub 6}Y(BO{sub 3}){sub 3} (LYB) phosphors were synthesized through a solid-state reaction. The phosphors were effectively excited by 350 nm, which matched the near-UV emitting InGaN chip. Luminescence spectra and decay lifetime curves of LYB:Ce{sup 3+},Tb{sup 3+} were measured to prove energy transfer from Ce{sup 3+} to Tb{sup 3+}. Through energy transfer, the intensity of the typical emission peak of Tb{sup 3+} at 546 nm in LYB:0.05Ce{sup 3+},0.03Tb{sup 3+} was approximately 1.8 times stronger than that in LYB:0.03Tb{sup 3+}. The mechanism of Ce{sup 3+}→Tb{sup 3+} energy transfer was a dipole–dipole interaction, and the energy transfer efficiency gradually increased to 29.27% with increasing Tb{sup 3+} doping concentration. Furthermore, the emission colors of LYB:Ce{sup 3+},Tb{sup 3+} varied from blue to green by adjusting the Ce{sup 3+}/Tb{sup 3+} ratio, indicating that the phosphors could be used as blue-to-green emitting phosphors for application in ultraviolet light-emitting diodes.

  3. Highly Efficient Green-Emitting Phosphors Ba2Y5B5O17 with Low Thermal Quenching Due to Fast Energy Transfer from Ce3+ to Tb3.

    Science.gov (United States)

    Xiao, Yu; Hao, Zhendong; Zhang, Liangliang; Xiao, Wenge; Wu, Dan; Zhang, Xia; Pan, Guo-Hui; Luo, Yongshi; Zhang, Jiahua

    2017-04-17

    This paper demonstrates a highly thermally stable and efficient green-emitting Ba 2 Y 5 B 5 O 17 :Ce 3+ , Tb 3+ phosphor prepared by high-temperature solid-state reaction. The phosphor exhibits a blue emission band of Ce 3+ and green emission lines of Tb 3+ upon Ce 3+ excitation in the near-UV spectral region. The effect of Ce 3+ to Tb 3+ energy transfer on blue to green emission color tuning and on luminescence thermal stability is studied in the samples codoped with 1% Ce 3+ and various concentrations (0-40%) of Tb 3+ . The green emission of Tb 3+ upon Ce 3+ excitation at 150 °C can keep, on average, 92% of its intensity at room temperature, with the best one showing no intensity decreasing up to 210 °C for 30% Tb 3+ . Meanwhile, Ce 3+ emission intensity only keeps 42% on average at 150 °C. The high thermal stability of the green emission is attributed to suppression of Ce 3+ thermal de-excitation through fast energy transfer to Tb 3+ , which in the green-emitting excited states is highly thermally stable such that no lifetime shortening is observed with raising temperature to 210 °C. The predominant green emission is observed for Tb 3+ concentration of at least 10% due to efficient energy transfer with the transfer efficiency approaching 100% for 40% Tb 3+ . The internal and external quantum yield of the sample with Tb 3+ concentration of 20% can be as high as 76% and 55%, respectively. The green phosphor, thus, shows attractive performance for near-UV-based white-light-emitting diodes applications.

  4. Color-tunable and highly thermal stable Sr{sub 2}MgAl{sub 22}O{sub 36}:Tb{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haiming; Zhang, Haoran; Liu, Yingliang [Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Lei, Bingfu, E-mail: tleibf@scau.edu.cn [Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Deng, Jiankun [Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Liu, Wei-Ren [Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan (China); Zeng, Yuan; Zheng, Lingling; Zhao, Minyi [Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China)

    2017-06-01

    Tb{sup 3+} activated Sr{sub 2}MgAl{sub 22}O{sub 36} phosphor was prepared by a high-temperature solid-state reaction route. The X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy were used to characterize the as-prepared samples. The Sr{sub 2}MgAl{sub 22}O{sub 36}:Tb{sup 3+} phosphors show intense green light emission under UV excitation. The phosphor exhibit two groups of emission lines from about 370 to 700 nm, which originating from the characteristic {sup 5}D{sub 3}-{sup 7}F{sub J} and {sup 5}D{sub 4}-{sup 7}F{sub J} transitions of the Tb{sup 3+} ion, respectively. The cross-relaxation mechanism between the {sup 5}D{sub 3} and {sup 5}D{sub 4} emission was investigated and discussed. The emission colors of these phosphors can be tuned from bluish-green to green by adjusting the Tb{sup 3+} doping concentration. Furthermore, the thermal quenching temperature (T{sub 1/2}) is higher than 500 K. The excellent thermal stability and color-tunable luminescent properties suggest that the developed material is a promising green-emitting phosphor candidate for optical devices. - Highlights: • A Color-tunable emitting phosphor Sr{sub 2}MgAl{sub 22}O{sub 36}:Tb{sup 3+} was prepared successfully via high-temperature solid-state reaction. • The photoluminescence of Sr{sub 2}MgAl{sub 22}O{sub 36}:Tb{sup 3+} shows highly thermal stable. • The cross-relaxation mechanism between the {sup 5}D{sub 3} and {sup 5}D{sub 4} emission was investigated and discussed.

  5. The behavior of thermally and optically stimulated luminescence of SrAl2O4:Eu2+,Dy3+ long persistent phosphor after blue light illumination

    International Nuclear Information System (INIS)

    Chernov, V.; Melendrez, R.; Pedroza-Montero, M.; Yen, W.M.; Barboza-Flores, M.

    2008-01-01

    The behavior of afterglow (AG), thermoluminescence (TL), infrared stimulated luminescence (IRSL) and phototransferred TL (PTTL) under thermal and/or infrared (IR) stimulation in blue (470 nm) light illuminated at room temperature (RT) SrAl 2 O 4 :Eu 2+ , Dy 3+ is presented. The TL glow curve consists of four peaks with maxima at about 340, 430, 560 and 680 K. The 340 and 440 K peaks are described well by second order kinetics with activation energies of 0.83 and 1.05 eV, respectively. The AG decay is fitted by the Becquerel's law with exponent 1.5 and correlates well with the thermal emptying of the traps responsible for the 340 K peak. The 340 and 430 K TL peak traps are destroyed under IR (830 nm) stimulation creating IRSL. IR stimulation after illumination with blue light and preliminary heating restore partially the 340 and 430 K TL peaks by phototransfer from deeper traps. The shape of the IRSL decay curves depends strongly on the preheating temperature and is determined by simultaneous refilling of the 340 and 430 K TL traps and their reverse filling due to phototransfer from the deeper traps under IR stimulation. The obtained data are interpreted by the transformation of Eu 2+ and Dy 3+ to Eu 3+ and Dy 2+ under blue light illumination and their reverse transformation under thermal or IR stimulation. The Eu 2+ ions are the luminescent centers and the Dy 2+ centers are the IR sensitive traps responsible for the TL peaks, AG and IRSL

  6. Tm3+ activated lanthanum phosphate: a blue PDP phosphor

    International Nuclear Information System (INIS)

    Rao, R.P.

    2005-01-01

    Plasma display panels (PDPs) are gaining attention due to their high performance and scalability as a medium for large format TVs. The performance and life of a PDP strongly depends upon the nature of phosphors. Currently, Eu 2+ activated barium magnesium aluminate (BAM) is being used as a blue component. Because of its low life, efforts are being made to explore new blue emitting phosphors. One of the alternatives to BAM is Tm 3+ activated lanthanum phosphate (LPTM) phosphor. LPTM phosphor samples are prepared by a solid-state as well as sol-gel process in presence of flux. The phosphor of the present investigation, having uniform and spherical shape particles in the range of 0.1-2 μm, is appropriate for thin phosphor screens required for PDP applications. It exhibits a narrow band emission in the blue region, peaking at 452 nm and also a number of narrow bands in the UV region when excited by 147 and 173 nm radiation from a xenon gas mixture. Various possible transitions responsible for UV and visible emission from Tm 3+ ion are presented. These phosphors also exhibit good color saturation and better stability when excited with VUV radiation. To achieve higher brightness, they are blended with other UV excited blue emitting phosphors such as BAM. Results related to morphology, excitation, after glow decay, emission and degradation of these phosphors in the powder form as well as in plasma display panels are presented and discussed

  7. Luminescent Enhancement of Na+ and Sm3+ Co-doping Reddish Orange SrCa3Si2O8 Phosphors

    Science.gov (United States)

    Chun, Fengjun; Zhang, Binbin; Li, Wen; Liu, Honggang; Deng, Wen; Chu, Xiang; Osman, Hanan; Zhang, Haitao; Yang, Weiqing

    2018-04-01

    Reddish orange SrCa3Si2O8 phosphors, prepared by the facile solid state reaction method, are a luminescent enhancement of Na+ and Sm3+ co-doping luminescent material. Na+ was designed to compensate the charge imbalance of Sm3+ ion substituting for the Sr2+ ion of orthorhombic SrCa3Si2O8 crystals. The results suggest that Na+ can effectively enhance the luminescent intensity of the reddish orange light peaked at about 562 nm (4 G 5/2 → 6 H 5/2), 600 nm (4 G 5/2 → 6 H 7/2) and 645 nm (4 G 5/2 → 6 H 9/2) excited by the near ultraviolet excited light 404 nm (4 L 13/2 → 6 H 5/2). The energy transfer has been further verified by the florescence lifetime. Additionally, the luminescent lifetime τ of as-grown phosphors was separated into two parts, a rapid lifetime and a slow lifetime. The average lifetime results ranged from 2.098 to 1.329 ms which were influenced by the concentration of Sm3+ doping. The systematic researches of as-grown phosphors have clearly suggested a potential application for white-light-emitting diodes ( w-LEDs).

  8. Influence of the sintering temperature on the Sr content in a Ca_(_1_−_x_−_y_)Ce_xSr_yAl_zTi_(_1_−_z_)O_3 perovskite (x = 0.04–0.16) co-doped with Ce

    International Nuclear Information System (INIS)

    Kamel, Nour-el-hayet; Mouheb, Yasmina; Kamel, Ziane; Moudir, Dalila; Aouchiche, Fairouz; Arabi, Azeddine

    2016-01-01

    A Sr-Ce co-doped perovskite, with the chemical formula: Ca_(_1_−_x_−_y_)Ce_xSr_yAl_zTi_(_1_−_z_)O_3 (y = 0.04, 0.08, 0.12 and 0.16, x = 0.05) is synthesized by sol–gel process. The influence of the sintering temperature, Ts, on the rate of inserted Sr was investigated at 1223, 1373 and 1473 K. The Sr amount sequestered in the perovskite reaches 85% (y = 0.16, 9.50 wt%) for Ts = 1373 K, giving sintering densities between 3.520 and 4.400. XRD analysis reveals an orthorhombic CaTiO_3 structure. The lattice parameters obey to Vegard’s law for Ts = 1373 and 1473 K. SEM analysis shows orthorhombic grains of 0.514 μm × 1 μm mean dimensions. MCC1 and MCC2 tests, performed on minerals sintered at 1373 K, indicate that the most durable one is that containing 9.50 wt% Sr. MCC1 test gave 6.998·10"−"6 g/cm"2 d of Sr, and MCC2 2.143·10"−"4 g/cm"2 d of Ce. The temperature favors the Sr dissolution to the detriment of Ce. The Ca dissolution rate reaches 1.002·10"−"6 to 2.005·10"−"6 g/cm"2 d. - Highlights: • Ca_(_1_−_x_−_y_)Ce_xSr_yAl_zTi_(_1_−_z_)O_3 perovskite is synthesized by sol–gel. • The influence of the sintering temperature, Ts, on the rate of inserted Sr was investigated at 1223, 1373 and 1473 K. • 85% of total Sr was sequestered in the perovskite for Ts = 1373 K. • MCC1 and MCC2 leach tests indicate that the most durable mineral is that containing 9.50 wt.% Sr. • MCC1 test gave 8.10 10"−"1"0 kg/m"2.d Sr. The lower is the leaching temperature the higher is the mineral durability.

  9. Persistent luminescence, TL and OSL characterization of beta irradiated SrAl2O4:Eu2+, Dy3+ combustion synthesized phosphor

    International Nuclear Information System (INIS)

    Zúñiga-Rivera, N.J.; García, R.; Rodríguez-Mijangos, R.; Chernov, V.; Meléndrez, R.; Pedroza-Montero, M.; Barboza-Flores, M.

    2014-01-01

    The persistent luminescence (PLUM), thermoluminescence (TL) and optically stimulated luminescence (OSL) properties of strontium aluminates co-doped with Eu +2 and Dy +3 exposed to beta radiation is reported. The phosphor was synthesized by the combustion synthesis method employing a highly exothermic redox reaction between the metal nitrates [Al(NO 3 ) 3 , Sr(NO 3 ) 2 , Eu(NO 3 ) 3 and Dy(NO 3 ) 3 ] and organic fuel carbohydrazide (CH 6 N 4 O). The long decay PLUM emission, TL and OSL were measured as a function of beta radiation dose. A wide emission band centered at 510 nm (green) related to Eu 2+ ions and lattice defects were observed for the synthesized samples. The presence of a variety of defects and aggregates were responsible for the observed broad 100 °C peaked TL glow curve of the irradiated sample which is composed of several overlapped TL peaks. The existence of multiple trapping levels, with different trapping/detrapping probabilities, is behind the particular features for the PLUM, TL and OSL emissions. We conclude that in the SrAl 2 O 4 :Eu 2+ , Dy 3+ phosphors, the low temperature TL peaked around 30–75 °C is responsible for the PLUM emission and those around 100 °C were related to very stable trapping states which provide suitable radiation storage properties to be used as a PLUM/TL/OSL radiation phosphor

  10. EFFECT OF ALKALINE IONS ON THE PHASE EVOLUTION, PHOTOLUMINESCENCE, AND AFTERGLOW PROPERTIES OF SrAl2O4: Eu2+, Dy3+ PHOSPHOR

    Directory of Open Access Journals (Sweden)

    HYUNHO SHIN

    2012-12-01

    Full Text Available A series of SrAl2O4: Eu2+, Dy3+ long-afterglow (LAG phosphors with varying concentration of Li+, Na+ and K+, has been synthesized. The increased concentration of the three types of alkaline ions does not decrease the quantity of the total luminescent phases (SrAl2O4 plus Sr4Al14O25, but a different set of secondary phases has been evoluted for the K+-added series due to the failure of the incorporation of relatively large K+ (1.38 Å to the Sr2+ (1.18 Å site in the hosts, unlike the cases of smaller Li+ (0.76 Å and Na+ (1.02 Å ions. PL excitation, PL emission, and LAG luminescence, are decreased by all investigated alkaline ions, which would be due to the diminished incorporation of Eu2+ and Dy3+ activators into the luminescent hosts by the alkaline ions. For the cases of the Li+ and Na+-added series, the incorporated Li+ or Na+ to the luminescent hosts would also limit the activation of Eu2+ and charge trapping/detrapping of Dy3+ to yield the diminished PL properties and LAG luminescence. The type of defect complex formed by the addition of Li+ and Na+ ions has been deduced and compared with that formed when no alkaline ion is added.

  11. Enhance luminescence by introducing alkali metal ions (R+ = Li+, Na+ and K+) in SrAl2O4:Eu3+ phosphor by solid-state reaction method

    Science.gov (United States)

    Prasad Sahu, Ishwar

    2016-05-01

    In the present article, the role of charge compensator ions (R+ = Li+, Na+ and K+) in europium-doped strontium aluminate (SrAl2O4:Eu3+) phosphors was synthesized by the high-temperature, solid-state reaction method. The crystal structures of sintered phosphors were in a monoclinic phase with space group P21. The trap parameters which are mainly activation energy (E), frequency factor (s) and order of the kinetics (b) were evaluated by using the peak shape method. The calculated trap depths are in the range from 0.76 to 0.84 eV. Photoluminescence measurements showed that the phosphor exhibited emission peak with good intensity at 595 nm, corresponding to 5D0-7F1 (514 nm) orange emission and weak 5D0-7F2 (614 nm) red emission. The excitation spectra monitored at 595 nm show a broad band from 220 to 320 nm ascribed to O-Eu charge-transfer state transition and the other peaks in the range of 350-500 nm originated from f-f transitions of Eu3+ ions. The strongest band at 394 nm can be assigned to 7F0-5L6 transition of Eu3+ ions due to the typical f-f transitions within Eu3+ of 4f6 configuration. The latter lies in near ultraviolet (350-500 nm) emission of UV LED. CIE color chromaticity diagram and thermoluminescence spectra confirm that the synthesized phosphors would emit an orange-red color. Incorporating R+ = Li+, Na+ and K+ as the compensator charge, the emission intensity of SrAl2O4:Eu3+ phosphor can be obviously enhanced and the emission intensity of SrAl2O4:Eu3+ doping Li+ is higher than that of Na+ or K+ ions.

  12. Photoluminescence properties of blue light excited Ca{sub 8}La{sub 2}(PO{sub 4}){sub 6}O{sub 2}:Eu{sup 3+} red phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yongzheng; Liu, Fengxin; Hou, Jingshan; Zhang, Yan; Zheng, Xinfeng; Zhang, Na [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Zhao, Guoying, E-mail: zhaogy135@sit.edu.cn [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Liao, Meisong [Key Laboratory of Materials for High Powder Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Dai, Guozhang; Long, Mengqiu [School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Liu, Yufeng, E-mail: yfliu@mail.sitp.ac.cn [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China)

    2016-09-15

    A series of red emitting Ca{sub 8}La{sub 2}(PO{sub 4}){sub 6}O{sub 2}:xEu{sup 3+} (0≤x≤0.4) phosphors were synthesized by the conventional solid state reaction, and their photoluminescence properties were investigated in this work. Upon excitation of blue light, the Ca{sub 8}La{sub 2}(PO{sub 4}){sub 6}O{sub 2}:xEu{sup 3+} phosphors exhibit strong red emission at 616 nm, which corresponds to the dominant transition of Eu{sup 3+} ions in Ca{sub 8}La{sub 2}(PO{sub 4}){sub 6}O{sub 2} host, originating from the electric dipole transition {sup 5}D{sub 0}–{sup 7}F{sub 2}. Moreover, Ca{sub 8}La{sub 2}(PO{sub 4}){sub 6}O{sub 2}:0.3Eu{sup 3+} phosphor shows more intense photoluminescence than that of other phosphors, where the concentration of Eu{sup 3+} ion is not equal to 0.3. The CIE chromaticity coordinate (0.657, 0.343) of Ca{sub 8}La{sub 2}(PO{sub 4}){sub 6}O{sub 2}:0.3Eu{sup 3+} phosphor is close to National Television Standard Committee standard value (0.670, 0.330) of red phosphors, which indicates Ca{sub 8}La{sub 2}(PO{sub 4}){sub 6}O{sub 2}:0.3Eu{sup 3+} is potential to apply in white light-emitting diodes as an excellent red emitting phosphor.

  13. Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M=Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500 deg. C

    International Nuclear Information System (INIS)

    Mothudi, B.M.; Ntwaeaborwa, O.M.; Botha, J.R.; Swart, H.C.

    2009-01-01

    Eu 2+ and Dy 3+ co-doped calcium aluminate, barium aluminate and strontium aluminate phosphors were synthesized at an initiating combustion temperature of 500 deg. C using urea as an organic fuel. The crystallinity of the phosphors was investigated by using X-ray diffraction (XRD) and the morphology was determined by a scanning electron microscope (SEM). The low temperature monoclinic structure for both CaAl 2 O 4 and SrAl 2 O 4 and the hexagonal structure of BaAl 2 O 4 were observed. The effect of the host materials on the photoluminescence (PL) and phosphorescence properties were investigated by using a He-Cd Laser and a Cary Eclipse fluorescence spectrophotometer, respectively. The broad band emission spectra observed at 449 nm for CaAl 2 O 4 :Eu 2+ , Dy 3+ , 450 nm (with a shoulder-peak at 500 nm) for BaAl 2 O 4 :Eu 2+ , Dy 3+ and 528 nm for SrAl 2 O 4 :Eu 2+ , Dy 3+ are attributed to the 4f 6 5d 1 to 4f 7 transition in the Eu 2+ ion in the different hosts.

  14. Synthesis and luminescence properties of SrMoO{sub 4}:RE{sup 3+} (RE = Eu or Tb) phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Shinho [Silla University, Busan (Korea, Republic of)

    2014-05-15

    SrMoO{sub 4}:RE{sup 3+} (RE = Eu or Tb) phosphors were synthesized with different concentrations of activator ions by using the conventional solid-state reaction method. The effects of the concentration of activator ions on the structural, morphological, and optical properties of strontium molybdate phosphors were investigated by using X-ray diffraction, scanning electron microscopy, and fluorescence spectrophotometry, respectively. XRD patterns revealed that all synthesized phosphors showed the tetragonal SrMoO{sub 4} structure, irrespective of the type and the concentration of activator ions. The crystallite size showed an overall increasing tendency with increasing concentration of activator ions. The emission spectra of Eu{sup 3+}-doped SrMoO{sub 4} phosphors under excitation at 295 nm exhibited one intense red band at 619 nm and five weak bands centered at 541, 561, 596, 657, and 704 nm, respectively. For the Tb{sup 3+}-doped SrMoO{sub 4} phosphors, a strong emission peak at 550 nm and two weak lines, 494 and 591 nm, were observed. The intensities of all the emission bands reached maxima when 0.05 mol of Tb{sup 3+} ions was used. The results suggest that the optimum concentrations for synthesizing highly-luminescent red and green phosphors are 0.01 mol and 0.05 mol, respectively.

  15. Warm white light generation from single phase Sr3Y(PO4)3:Dy3+, Eu3+ phosphors with near ultraviolet excitation

    International Nuclear Information System (INIS)

    Huang, B.Y.; Feng, B.L.; Luo, L.; Han, C.L.; He, Y.T.; Qiu, Z.R.

    2016-01-01

    Highlights: • Novel single phase phosphors were synthesized in an ambient air atmosphere. • A direct band gap about 4.5 eV of the host is calculated for the first time. • It is suitable for near UV chip excitation. • It emits warm white light with better CIE and lower CCT over previous reports. • The thermal quenching is similar to that of YAG:0.06Ce 3+ commercial phosphor. - Abstract: Novel Sr 3 Y(PO 4 ) 3 :Dy 3+ , Eu 3+ (SYP:Dy 3+ , Eu 3+ ) phosphors were synthesized by a standard solid-state reaction under an ambient air atmosphere and their structural and optical properties were investigated. XRD and diffuse reflectance spectra (DRS) were used to explore structural properties. The former showed that single phase phosphors were obtained and that the rare earth ions entered into the cubic host by substituting the smaller Y 3+ ions and thereby enlarging the unit cell. The DRS indicated that the host has a direct bandgap of 4.5 eV. Under 393 nm excitation, a strong and stable warm white light emission with high color purity was achieved in SY 0.92 P:0.06Dy 3+ , 0.04Eu 3+ . The energy transfer from Dy 3+ to Eu 3+ ions was investigated and the related mechanism was discussed based on the optical spectra and emission decay curves. The thermal quenching of emission is similar to that of YAG:0.06Ce 3+ . The results show the single phase phosphor is potential in warm white LED.

  16. All-in-one light-tunable borated phosphors with chemical and luminescence dynamical control resolution.

    Science.gov (United States)

    Lin, Chun Che; Liu, Yun-Ping; Xiao, Zhi Ren; Wang, Yin-Kuo; Cheng, Bing-Ming; Liu, Ru-Shi

    2014-06-25

    Single-composition white-emitting phosphors with superior intrinsic properties upon excitation by ultraviolet light-emitting diodes are important constituents of next-generation light sources. Borate-based phosphors, such as NaSrBO3:Ce(3+) and NaCaBO3:Ce(3+), have stronger absorptions in the near-ultraviolet region as well as better chemical/physical stability than oxides. Energy transfer effects from sensitizer to activator caused by rare-earth ions are mainly found in the obtained photoluminescence spectra and lifetime. The interactive mechanisms of multiple dopants are ambiguous in most cases. We adjust the doping concentration in NaSrBO3:RE (RE = Ce(3+), Tb(3+), Mn(2+)) to study the energy transfer effects of Ce(3+) to Tb(3+) and Mn(2+) by comparing the experimental data and theoretical calculation. The vacuum-ultraviolet experimental determination of the electronic energy levels for Ce(3+) and Tb(3+) in the borate host regarding the 4f-5d and 4f-4f configurations are described. Evaluation of the Ce(3+)/Mn(2+) intensity ratios as a function of Mn(2+) concentration is based on the analysis of the luminescence dynamical process and fluorescence lifetime measurements. The results closely agree with those directly obtained from the emission spectra. Density functional calculations are performed using the generalized gradient approximation plus an on-site Coulombic interaction correction scheme to investigate the forbidden mechanism of interatomic energy transfer between the NaSrBO3:Ce(3+) and NaSrBO3:Eu(2+) systems. Results indicate that the NaSrBO3:Ce(3+), Tb(3+), and Mn(2+) phosphors can be used as a novel white-emitting component of UV radiation-excited devices.

  17. Formation of rod type structures of CaSO4: Ce,P,Dy TLD phosphor using different synthesis routes

    International Nuclear Information System (INIS)

    Atone, M.S.; Wani, J.A.; Dhoble, S.J.

    2011-01-01

    Effect of Ce and P co-activation in CaSO 4 : Dy, standard TLD phosphor prepared by different synthesis root techniques and it's structural morphology is reported first time in this paper. We have already reported the sensitization of luminescence in CaSO 4 : Dy with phosphorous (P) and cerium (Ce) ions separately via acid distillation route. In the current investigation, we have doped these impurities (Ce, P, Dy) simultaneously in CaSO 4 host lattice. We have employed a well known chemical precipitation method and modified acid distillation method and have attempted to analyse the surface morphology resulted from these two synthesis routes. Chemical precipitation usually takes place at room temperature and in this way allows the reaction to take place silently. In case of acid distillation method we have reduced the synthesis temperature to 493K which is considerably less than 653K employed in previously reported literature. In case of precipitation method particle shape seems to be spherical and particle size is around one micro range or in the neighbourhood of nanorange. However, in the case of modified acid distillation method particles have shaped in to rod like structures and particle size again falls in the micro range. The photoluminescence intensity of the phosphor prepared by chemical precipitation method is weak as compared to the phosphor prepared by modified acid distillation method. Both the phosphors prepared by different methods have shown characteristic transitions of dopants. The emission spectra of prepared phosphors at 309 nm and 329 nm of Ce 3+ ions overlap well with excitation of Dy 3+ ions. Thermoluminescence (TL) property of both phosphors is again good though certain variation is observed in case of phosphor prepared by modified acid distillation method which shows rod like structure of phosphor. This variation in TL may be attributed to change in surface morphology (formation of rod type structure of particles) of the phosphor. (author)

  18. Transition of Emission Colours as a Consequence of Heat-Treatment of Carbon Coated Ce3+-Doped YAG Phosphors.

    Science.gov (United States)

    Yin, Liang-Jun; Dierre, Benjamin; Sekiguchi, Takashi; van Ommen, J Ruud; Hintzen, Hubertus T Bert; Cho, Yujin

    2017-10-16

    To modify the luminescence properties of Ce 3+ -doped Y₃Al₅O 12 (YAG) phosphors, they have been coated with a carbon layer by chemical vapor deposition and subsequently heat-treated at high temperature under N₂ atmosphere. Luminescence of the carbon coated YAG:Ce 3+ phosphors has been investigated as a function of heat-treatment at 1500 and 1650 °C. The 540 nm emission intensity of C@YAG:Ce 3+ is the highest when heated at 1650 °C, while a blue emission at 400-420 nm is observed when heated at 1500 °C but not at 1650 °C. It is verified by X-ray diffraction (XRD) that the intriguing luminescence changes are induced by the formation of new phases in C@YAG:Ce 3+ -1500 °C, which disappear in C@YAG:Ce 3+ -1650 °C. In order to understand the mechanisms responsible for the enhancement of YAG:Ce 3+ emission and the presence of the blue emission observed for C@YAG:Ce 3+ -1500 °C, the samples have been investigated by a combination of several electron microscopy techniques, such as HRTEM, SEM-CL, and SEM-EDS. This local and cross-sectional analysis clearly reveals a gradual transformation of phase and morphology in heated C@YAG:Ce 3+ phosphors, which is related to a reaction between C and YAG:Ce 3+ in N₂ atmosphere. Through reaction between the carbon layer and YAG host materials, the emission colour of the phosphors can be modified from yellow, white, and then back to yellow under UV excitation as a function of heat-treatment in N₂ atmosphere.

  19. Studies on Y{sub 2}SiO{sub 5}:Ce phosphors prepared by gel combustion using new fuels

    Energy Technology Data Exchange (ETDEWEB)

    Muresan, L.E., E-mail: laura_muresan2003@yahoo.com [“Raluca Ripan” Institute for Research in Chemistry, Babeş Bolyai University, Fântânele 30, 400294 Cluj-Napoca (Romania); Oprea, B.F.; Cadis, A.I.; Perhaita, I. [“Raluca Ripan” Institute for Research in Chemistry, Babeş Bolyai University, Fântânele 30, 400294 Cluj-Napoca (Romania); Ponta, O. [Faculty of Physics, Babeş Bolyai University, 400084 Cluj-Napoca (Romania)

    2014-12-05

    Highlights: • Y{sub 2}SiO{sub 5}:Ce was prepared by combustion using aspartic or glutamic acid as fuels. • Combustion process occurs differently depending on the fuels amount. • Single phase X2-Y{sub 2}SiO{sub 5} phosphors were obtained in fuel rich conditions. • PL measurements indicate that aspartic acid is a better fuel than glutamic. • Optimal preparative conditions were established for synthesis of Y{sub 2}SiO{sub 5}:Ce. - Abstract: Cerium activated yttrium silicate (Y{sub 2}SiO{sub 5}:Ce) phosphors were prepared by combustion, using yttrium–cerium nitrate as oxidizer, aspartic or glutamic acid as fuel and TEOS as source of silicon. In this study, aspartic and glutamic acid are used for the first time for the synthesis of Y{sub 2}SiO{sub 5}:Ce phosphors. The fuels molar amount was varied from 0.5 mol to 1.5 mol in order to reveal the thermal behavior of intermediary products (gels and ashes) same as the structural and luminescent characteristics of final products (phosphors). According to thermal analysis correlated with FTIR and XPS investigations, the combustion process occurs differently depending on the fuel amount; unreacted nitrate compounds have been identified in fuel lean conditions and carbonate based compounds along with organic residue in rich fuel conditions. The conversion to well crystallized silicates was revealed by changes of FTIR vibration bands and confirmed by XRD measurements. Based on luminescent spectra, aspartic acid is a better fuel than glutamic acid. A positive effect on the luminescence have been observed for samples fired in air due to complete remove of organic residue. The best luminescence was obtained for combustions with 0.75 mol aspartic acid and 1.25 mol glutamic respectively, fired at 1400 °C for 4 h in air atmosphere.

  20. Study on preparation of orange-emitting phosphor Y3Mg2AlSi2O12: Ce3+ for wLED

    Directory of Open Access Journals (Sweden)

    Yan Shirun

    2017-12-01

    Full Text Available Ce3+-doped garnet-structured orange-emitting phosphor Y3Mg2AlSi2O12:Ce3+ was prepared by sol-gel combustion using urea as a fuel.Effects of the reduction temperature,Ce3+ doping concentration on the structure,morphology,and photoluminescence property of the as-prepared phosphor were investigated by X-ray diffraction(XRD,scaning electron microscope(SEM,photoluminescence spectroscopy and UV-Vis reflection spectroscopy.The crystallinities,morphologies,and photoluminescence properties of the phosphors prepared by sol-gel combustion and solid-state reaction were compared.The reasons causing different performance of the phosphors were discussed.

  1. Thin film electroluminescent cells on the basis of Ce-doped CaGa2S4 and SrGa2S4 prepared by flash evaporation method

    International Nuclear Information System (INIS)

    Gambarov, E.; Bayramov, A.; Kato, A.; Iida, S.

    2006-01-01

    Ce-doped CaGa 2 S 4 and SrGa 2 S 4 thin film electroluminescent (TFEL) devices were prepared for the first time on the basis of films deposited by flash evaporation method. Significant crystallization, stoichiometry improvement of the films and increase of photoluminescence intensity were found after annealing in H 2 S and O 2 gas stream. EL spectra of the cells exhibited the characteristic double-band emission similar to that seen for Ce 3+ activated CaGa 2 S 4 and SrGa 2 S 4 films under photon excitation. Applied voltage and frequency dependences of the electroluminescence were studied. Low voltage operation as low as 20 V was observed for these cells. Luminance of about 4 cd/m 2 at 100 V operating voltage with 2.5 kHz frequency was achieved for the TFEL cell with films annealed in O 2 gas stream. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Blue and green emissions with high color purity from nanocrystalline Ca2Gd8Si6O26:Ln (Ln = Tm or Er) phosphors

    International Nuclear Information System (INIS)

    Seeta Rama Raju, G.; Park, Jin Young; Jung, Hong Chae; Pavitra, E.; Moon, Byung Kee; Jeong, Jung Hyun; Yu, Jae Su; Kim, Jung Hwan; Choi, Haeyoung

    2011-01-01

    Graphical abstract: Highlights: → Nanocrystalline Ca 2 Gd 8 Si 6 O 26 (CGS):Tm 3+ and CGS:Er 3+ phosphors were prepared by solvothermal reaction method. → The visible luminescence properties of phosphors were investigated by exciting with ultraviolet (UV) or near-UV light and low voltage electron beam (0.5-5 kV). → The photoluminescence spectra of CGS:Tm 3+ under 359 nm excitation and CGS:Er 3+ under 380 nm excitation showed the strong blue ( 1 D 2 → 3 F 4 at 456 nm) and green ( 4 S 3/24 I 15/2 at 550 nm) colors with the color purity 87% and 96%, respectively → The low accelerating voltage cathodoluminescence spectra of CGS:Tm 3+ and CGS:Er 3+ showed the strong blue and green emissions with the high color purity 95% and 96%, respectively. → The obtained results are hint at the promising applications to produce high quality LEDs and FED devices. - Abstract: Blue and green light emissive nanocrystalline Ca 2 Gd 8 Si 6 O 26 (CGS):Tm 3+ and CGS:Er 3+ phosphors with high color purity were prepared by solvothermal reaction method. The structural and morphological properties of these phosphors were evaluated by the powder X-ray diffraction (XRD) and scanning electron microscopy, respectively. From the XRD results, Tm 3+ :CGS and Er 3+ :CGS phosphors had the characteristic peaks of oxyapatite in the hexagonal lattice structure. The visible luminescence properties of phosphors were obtained by ultraviolet (UV) or near-UV light and low voltage electron beam (0.5-5 kV) excitation. The photoluminescence and cathodoluminescence properties were investigated by changing the variation of Tm 3+ or Er 3+ concentrations and the acceleration voltage, respectively. The CGS:Tm 3+ phosphors exhibited the blue emission due to 1 D 2 → 3 F 4 transition, while the CGS:Er 3+ phosphors showed the green emission due to 4 S 3/24 I 15/2 transition. The color purity and chromaticity coordinates of the fabricated phosphors are comparable to or better than those of standard

  3. The system Ba(H2PO4)2-Sr(H2PO4)2-H3PO4(30%)-H2O at 25, 40 and 60 deg C

    International Nuclear Information System (INIS)

    Taranenko, N.P.; Serebrennikova, G.M.; Stepin, B.D.; Oboznenko, Yu.V.

    1982-01-01

    The system Ba(H 2 PO 4 ) 2 -Sr(H 2 PO 4 ) 2 -H 3 PO 4 (30%)-H 2 O (25 deg C) belongs to eutonic type systems. Solubility isotherms of salt components at 40 and 60 deg C are calculated. Polytherms (25-60 deg C) of solubility of monosubstituted barium and strontium phosphates in 30-60% H 3 PO 4 are obtained. The value of cocrystallization coefficient of Sr 2 + and Ba(H 2 PO 4 ) 2 Dsub(Sr)=0.042+-0.005 remains stable in the temperature range of 25-60 deg C and concentrations 30-60% phosphoric acid at initial content [Sr 2 + ]=1x10 - 2 mass%

  4. Synthesis and photoluminescence properties of microcrystalline Sr{sub 2}ZnWO{sub 6}:RE{sup 3+} (RE = Eu, Dy, Sm and Pr) phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Dabre, K.V. [Department of Physics, Arts, Commerce and Science College, Koradi, Nagpur 441111 (India); Park, K. [Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 143-747 (Korea, Republic of); Dhoble, S.J., E-mail: sjdhoble@rediffmail.com [Department of Physics, R.T.M. Nagpur University, Nagpur 440033 (India)

    2014-12-25

    Graphical abstract: CIE chromaticity coordinate diagram (1931) indicating different colors of Sr{sub 2}ZnWO{sub 6}:RE{sup 3+} (RE = Eu (a), Dy (b and c), Sm (d–f) and Pr (g and h)) phosphor under different excitation 466 nm (a), 312 nm (b), 454 nm (c), 313 nm (d), 408 nm (e), 482 nm (f), 315 nm (g) and 450 nm (h). - Highlights: • Microcrystalline Sr{sub 2}ZnWO{sub 6}:RE{sup 3+} (RE = Eu, Dy, Sm and Pr) phosphors were synthesized by solid state method. • Photoluminescence properties of phosphor were investigated. • Color of the phosphor for different excitation has been verified by chromaticity diagram. • The host absorption and energy transfer were investigated. - Abstract: The novel microcrystalline Sr{sub 2}ZnWO{sub 6}:RE{sup 3+} (RE = Eu, Dy, Sm and Pr) phosphors were synthesized by solid-state reaction method at 1250 °C and their photoluminescence properties were investigated. The Eu{sup 3+} and Dy{sup 3+} activated phosphors show intense red (616 nm) and yellow (574 nm) emission respectively; which indicate that the rare earth ions are substituted at non-centrosymmetric site in the host lattice. Near white (Dy{sup 3+}) and reddish-orange (Sm{sup 3+}) emissions of rare earth ions in the host lattice show strong host absorption and energy transfer from the host to activator ion. Pr{sup 3+} activated phosphor shows a series of emission peaks in the visible region with the most intense peak in the blue region at 491 and 499 nm.

  5. Nonstoichiometry and stability in water of undoped SrCeO3

    Directory of Open Access Journals (Sweden)

    Jurado, J. R.

    2003-10-01

    Full Text Available Strontium cerate is the parent phase of an important class of proton-conducting perovskites with various potential technological applications. Phase formation and structure of SrCeO3 with Sr:Ce nonstoichiometry have been investigated for the series, Sr1±xCeO3±δ (0.98 ≤ x ≤ 1.04. Analyses by EPMA (electron probe micro analysis and X-ray diffraction (XRD indicate that, for samples sintered at 1350°C, the main phase is Sr-rich for all x. The accommodation of excess SrO in the bulk phase and/or intergranular regions is discussed. The stability of nominally stoichiometric SrCeO3 was examined in an atmosphere of high water vapour partial pressure (pH2O for 2 hours, degrading to Sr(OH2.H2O and CeO2 for pH2O ≥ 3.6atm.La fase SrCeO3 da origen a una importante familia de perovskitas conductoras protónicas con potenciales aplicaciones tecnológicas. En este trabajo se estudia la formación de la fase y la estructura de SrCeO3 con la relación Sr:Ce no estequiométrica para la serie Sr1±xCeO3±δ (0.98 ≤ x ≤ 1.04. Los análisis por microsonda (EPMA y difracción de rayos X (DRX indican que en las muestras sinterizadas a 1350°C, la fase principal es rica en estroncio para todo valor de x. Se discute la posible ubicación del exceso de SrO tanto en la región intergranular como en el propio grano. También se examina la estabilidad de la composición con estequiometría nominal SrCeO3 en una atmosfera con una alta presión de vapor de agua (pH2O, observándose que la degradación a Sr(OH2.H2O y CeO2 ocurre a pH2O ≥ 3.6atm (expuesto durante 2 horas.

  6. Effects of minor Zr and Sr on as-cast microstructure and mechanical properties of Mg-3Ce-1.2Mn-0.9Sc (wt.%) magnesium alloy

    International Nuclear Information System (INIS)

    Pan Fusheng; Yang Mingbo; Shen Jia; Wu Lu

    2011-01-01

    Research highlights: → Minor Zr and/or Sr additions can effectively refine the grains of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the tensile properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. - Abstract: The effects of minor Zr and Sr on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc (wt.%) alloy were investigated by using optical and electron microscopies, differential scanning calorimetry (DSC) analysis, and tensile and creep tests. The results indicate that adding minor Zr and/or Sr to the Mg-3Ce-1.2Mn-0.9Sc alloy does not cause an obvious change in the morphology and distribution of the Mg 12 Ce phase. However, the grains of the Zr and/or Sr-containing alloys are effectively refined. Among the Zr and/or Sr-containing alloys, the grains of the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr are the finest, followed by the alloys with the additions of 0.5 wt.%Zr and 0.1 wt.%Sr, respectively. In addition, small additions of Zr and/or Sr can improve the tensile and creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. Among the Zr and/or Sr-containing alloys, the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr obtains the optimum tensile and creep properties.

  7. Thermoluminescence properties of Eu-doped and Eu/Dy-codoped Sr2 Al2 SiO7 phosphors.

    Science.gov (United States)

    Jadhaw, Akhilesh; Sonwane, Vivek D; Gour, Anubha S; Jha, Piyush

    2017-11-01

    We report the thermoluminescence properties of Sr 1.96 Al 2 SiO 7 :Eu 0.04 and Sr 1.92 Al 2 SiO 7 :Eu 0.04 Dy 0.04 phosphors. These phosphors were prepared by a high-temperature solid-state reaction method. The prepared phosphors were characterized by X-ray diffraction. A 254 nm source was used for ultraviolet (UV) irradiation and a 60 Co source was used for γ-irradiation. The effect of heating rate and UV-exposure were examined. The thermoluminescence temperature shifts to higher values with increasing heating rate and thermoluminescence intensity increases with increasing UV exposure time. The trapping parameters such as activation energy (E), order of kinetics and frequency factor (s) were calculated by peak shape method. The effect of γ- and UV-irradiation on thermoluminescence studies was also examined. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Trivalent europium-doped strontium molybdate red phosphors in white light-emitting diodes: Synthesis, photophysical properties and theoretical calculations

    International Nuclear Information System (INIS)

    Yang, W.-Q.; Liu, H.-G.; Liu, G.-K.; Lin, Y.; Gao, M.; Zhao, X.-Y.; Zheng, W.-C.; Chen, Y.; Xu, J.; Li, L.-Z.

    2012-01-01

    Eu 3+ -doped strontium molybdate red phosphors (Sr 1−x MoO 4 :Eu x (x = 0.01–0.2)) for white light-emitting diodes (LED) were synthesized by the solid-state reaction method. The fluorescent intensities of the as-prepared phosphors were remarkably improved. The excitation and emission spectra demonstrate that these phosphors can be effectively excited by the near-UV light (395 nm) and blue light (466 nm). Their emitted red light peaks are located at 613 nm, and the highest quantum yield value (η) of the as-grown red phosphor, which is 95.85%, is much higher than that of commercial red phosphor (77.53%). These red phosphors plus commercial yellow powers (1:10) were successfully packaged with the GaN-based blue chips on a piranha frame by epoxy resins. The encapsulated white LED lamps show high performance of the CIE chromaticity coordinates and color temperatures. Moreover, to explain the fluorescent spectra of these phosphors, a complete 3003 × 3003 energy matrix was successfully built by an effective operator Hamiltonian including free ion and crystal field interactions. For the first time, the fluorescent spectra for Eu 3+ ion at the tetragonal (S 4 ) Sr 2+ site of SrMoO 4 crystal were calculated from a complete diagonalization (of energy matrix) method. The fitting values are close to the experimental results.

  9. Photocatalytic Ethanol Oxidative Dehydrogenation over Pt/TiO2: Effect of the Addition of Blue Phosphors

    Directory of Open Access Journals (Sweden)

    J. J. Murcia

    2012-01-01

    Full Text Available Ethanol oxidative dehydrogenation over Pt/TiO2 photocatalyst, in the presence and absence of blue phosphors, was performed. The catalyst was prepared by photodeposition of Pt on sulphated TiO2. This material was tested in a gas-solid photocatalytic fluidized bed reactor at high illumination efficiency. The effect of the addition of blue phosphors into the fluidized bed has been evaluated. The synthesized catalysts were extensively characterized by different techniques. Pt/TiO2 with a loading of 0.5 wt% of Pt appeared to be an active photocatalyst in the selective partial oxidation of ethanol to acetaldehyde improving its activity and selectivity compared to pure TiO2. In the same way, a notable enhancement of ethanol conversion in the presence of the blue phosphors has been obtained. The blue phosphors produced an increase in the level of ethanol conversion over the Pt/TiO2 catalyst, keeping at the same time the high selectivity to acetaldehyde.

  10. Comparing the physical properties of Pr/Gd and Pr/Ce substitutions in Ru(Gd1.5Ce0.5)Sr2Cu2O10- δ

    Science.gov (United States)

    Khajehnezhad, A.; Nikseresht, N.; Hadipour, H.; Akhavan, M.

    2008-06-01

    We have compared the electrical and magnetic properties of Ru(Gd1.5- x Pr x )Ce0.5Sr2Cu2O10- δ (Pr/Gd samples) with x = 0.0, 0.01, 0.03, 0.033, 0.035, 0.04, 0.05, 0.06, 0.1 and RuGd1.5(Ce0.5- x Pr x ) Sr2 Cu2O10- δ (Pr/Ce samples) with x = 0.0, 0.01, 0.03, 0.05, 0.08, 0.1, 0.15, 0.2 prepared by the standard solid-state reaction technique. We obtained the XRD patterns for different samples with various x. The lattice parameters versus x for different substitutions have been obtained from Rietveld analysis. To determine how the magnetic and superconducting properties of these layered cuprate systems can be affected by Pr substitution, the resistivity, and magnetoresistivity, with H ext varying from 0.0 to 15 kOe, have been measured at various temperatures. Superconducting transition temperature T c and magnetic transition T irr , have been obtained through resistivity and ac susceptibility measurements. The T c suppression due to Pr/Gd and Pr/Ce substitutions show competition between pair breaking by magnetic impurities, hole doping due to different valances of ions, difference in ionic radii, and oxygen stoichiometry. Pr/Gd substitution suppresses superconductivity more rapidly than for Pr/Ce, showing that the effect of hole doping and magnetic impurity pair breaking is stronger than the difference in ionic radii. In Pr/Gd substitution, the small difference between the ionic radii of Pr3+,4+ and Gd3+, and absorption of more oxygen due to the higher valence of Pr with respect to Gd, decreases the mean Ru-Ru distance, and as a result, the magnetic exchange interaction becomes stronger with the increase of x. However, Pr/Ce substitution has the opposite effect. The magnetic parameters such as H c , obtained through magnetization measurements versus applied magnetic field isotherm at 77 K and room temperatures, become stronger with x in Pr/Gd and weaker with x in Pr/Ce substitution.

  11. Synthesis, structure, and luminescence properties of SrSiAl2O3N2:Eu(2+) phosphors for light-emitting devices and field emission displays.

    Science.gov (United States)

    Wang, Xicheng; Zhao, Zhengyan; Wu, Quansheng; Li, Yanyan; Wang, Chuang; Mao, Aijun; Wang, Yuhua

    2015-06-28

    A series of SrSiAl2O3N2:Eu(2+) (0.005 ≤x≤ 0.05) phosphors were successfully synthesized through a pressureless, facile, and efficient solid state route. The crystal structure, band structure, and their photoluminescence and cathodoluminescence properties were investigated in detail. The phosphors exhibit rod shape morphology with a uniform Eu(2+) distribution. Under n-UV excitation the emission spectra shift from 477 to 497 nm with an increase of Eu(2+) concentration. The concentration quenching mechanism of Eu(2+) emission was dominated by the dipole-dipole interaction. The thermal stability is comparable to that of the commercial Ba2SiO4:Eu(2+) phosphor. The phosphor also exhibits high current saturation and high resistance under low voltage electron bombardment. All the results indicate that the SrSiAl2O3N2:Eu(2+) phosphors can be considered as candidates for application in both white LEDs and FEDs.

  12. White Light Emitting MZr4(PO4)6:Dy3+ (M = Ca, Sr, Ba) Phosphors for WLEDs.

    Science.gov (United States)

    Nair, Govind B; Dhoble, S J

    2017-03-01

    A series of MZr 4 (PO 4 ) 6 :Dy 3+ (M = Ca, Sr, Ba) phosphors were prepared by the solid state diffusion method. Confirmation of the phase formation and morphological studies were performed by X-ray powder diffraction (XRD) measurements and scanning electron microscopy, respectively. Photoluminescence (PL) properties of these phosphors were thoroughly analyzed and the characteristic emissions of Dy 3+ ions were found to arise from them at an excitation wavelength of 351 nm. The PL emission spectra of the three phosphors were analyzed and compared. The CIE chromaticity coordinates assured that the phosphors produced cool white-light emission and hence, they are potential candidates for UV excited white-LEDs (WLEDs). Graphical Abstract ᅟ.

  13. Phase transition and multicolor luminescence of Eu2+/Mn2+-activated Ca3(PO4)2 phosphors

    International Nuclear Information System (INIS)

    Li, Kai; Chen, Daqin; Xu, Ju; Zhang, Rui; Yu, Yunlong; Wang, Yuansheng

    2014-01-01

    Graphical abstract: We have synthesized Eu 2+ doped and Eu 2+ /Mn 2+ co-doped Ca 3 (PO 4 ) 2 phosphors. The emitting color varies from blue to green with increasing of Eu 2+ content for the Eu 2+ -doped phosphor, and the quantum yield of the 0.05Eu 2+ : Ca 2.95 (PO 4 ) 2 sample reaches 56.7%. Interestingly, Mn 2+ co-doping into Eu 2+ : Ca 3 (PO 4 ) 2 leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu 2+ → Mn 2+ energy transfer. - Highlights: • A series of novel Eu 2+ : Ca 3 (PO 4 ) 2 phosphors were successfully synthesized. • Phase transition of Ca 3 (PO 4 ) 2 from orthorhombic to rhombohedral occurred when Mn 2+ ions were doped. • The phosphors exhibited tunable multi-color luminescence. • The quantum yield of 0.05Eu 2+ : Ca 2.95 (PO 4 ) 2 phosphor can reach 56.7%. • The analyses of phosphors were carried out by many measurements. - Abstract: Intense blue-green-emitting Eu 2+ : Ca 3 (PO 4 ) 2 and tunable multicolor-emitting Eu 2+ /Mn 2+ : Ca 3 (PO 4 ) 2 phosphors are prepared via a solid-state reaction route. Eu 2+ -doped orthorhombic Ca 3 (PO 4 ) 2 phosphor exhibits a broad emission band in the wavelength range of 400–700 nm with a maximum quantum yield of 56.7%, and the emission peak red-shifts gradually from 479 to 520 nm with increase of Eu 2+ doping content. Broad excitation spectrum (250–420 nm) of Eu 2+ : Ca 3 (PO 4 ) 2 matches well with the near-ultraviolet LED chip, indicating its potential applications as tri-color phosphors in white LEDs. Interestingly, Mn 2+ co-doping into Eu 2+ : Ca 3 (PO 4 ) 2 leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu 2+ → Mn 2+ energy transfer, under 365 nm UV lamp excitation

  14. Ca8NaY(PO4)6F2:Eu2+,Mn2+: a potential color-tunable phosphor for white LEDs applications

    International Nuclear Information System (INIS)

    Fen, Zhang; Wanjun, Tang

    2015-01-01

    Eu 2+ - and/or Mn 2+ -activated Ca 8 NaY(PO 4 ) 6 F 2 phosphors have been prepared via a combustion-assisted synthesis route. The powder X-ray diffraction measurement revealed that Ca 8 NaY(PO 4 ) 6 F 2 crystallized in a hexagonal crystal system with the space group P6 3 /m (176). The photoluminescence spectrum of the Eu 2+ single-doped phosphor shows a broad blue emission band peaking at 451 nm under the excitation of UV irradiation. The Eu 2+ -/Mn 2+ -codoped phosphors show a blue emission band and an orange emission band, and the corresponding CIE coordinates intuitively indicate the tunable colors from blue to yellow area. The energy transfer from the Eu 2+ to Mn 2+ ions is demonstrated to be a quadrupole-quadrupole mechanism in terms of the experimental results and analysis of PL spectra and decay curves of the phosphors. The developed phosphors can be efficiently excited in the UV region and exhibit a tunable white-light emission, making them attractive as single-component white-light-emitting conversion phosphors for UV-based white LEDs. (orig.)

  15. Influence of the sintering temperature on the Sr content in a Ca{sub (1−x−y)}Ce{sub x}Sr{sub y}Al{sub z}Ti{sub (1−z)}O{sub 3} perovskite (x = 0.04–0.16) co-doped with Ce

    Energy Technology Data Exchange (ETDEWEB)

    Kamel, Nour-el-hayet; Mouheb, Yasmina, E-mail: mouhebyascrna@hotmail.com; Kamel, Ziane; Moudir, Dalila; Aouchiche, Fairouz; Arabi, Azeddine

    2016-08-15

    A Sr-Ce co-doped perovskite, with the chemical formula: Ca{sub (1−x−y)}Ce{sub x}Sr{sub y}Al{sub z}Ti{sub (1−z)}O{sub 3} (y = 0.04, 0.08, 0.12 and 0.16, x = 0.05) is synthesized by sol–gel process. The influence of the sintering temperature, Ts, on the rate of inserted Sr was investigated at 1223, 1373 and 1473 K. The Sr amount sequestered in the perovskite reaches 85% (y = 0.16, 9.50 wt%) for Ts = 1373 K, giving sintering densities between 3.520 and 4.400. XRD analysis reveals an orthorhombic CaTiO{sub 3} structure. The lattice parameters obey to Vegard’s law for Ts = 1373 and 1473 K. SEM analysis shows orthorhombic grains of 0.514 μm × 1 μm mean dimensions. MCC1 and MCC2 tests, performed on minerals sintered at 1373 K, indicate that the most durable one is that containing 9.50 wt% Sr. MCC1 test gave 6.998·10{sup −6} g/cm{sup 2} d of Sr, and MCC2 2.143·10{sup −4} g/cm{sup 2} d of Ce. The temperature favors the Sr dissolution to the detriment of Ce. The Ca dissolution rate reaches 1.002·10{sup −6} to 2.005·10{sup −6} g/cm{sup 2} d. - Highlights: • Ca{sub (1−x−y)}Ce{sub x}Sr{sub y}Al{sub z}Ti{sub (1−z)}O{sub 3} perovskite is synthesized by sol–gel. • The influence of the sintering temperature, Ts, on the rate of inserted Sr was investigated at 1223, 1373 and 1473 K. • 85% of total Sr was sequestered in the perovskite for Ts = 1373 K. • MCC1 and MCC2 leach tests indicate that the most durable mineral is that containing 9.50 wt.% Sr. • MCC1 test gave 8.10 10{sup −10} kg/m{sup 2}.d Sr. The lower is the leaching temperature the higher is the mineral durability.

  16. Combustion synthesis of Eu 2+ and Dy 3+ activated Sr 3 (VO 4 ) 2 ...

    Indian Academy of Sciences (India)

    2:Eu,Dy phosphors are presented in this paper. PL emission of Sr3(VO4)2:Eu phosphor shows green broad emission band centring at 511 nm and a red sharp band at 614 nm by excitation wavelength of 342 nm. The PL emission spectrum of ...

  17. Energy transfer in M₅(PO₄)₃  F:Eu²⁺,Ce³⁺ (M = Ca and Ba) phosphors.

    Science.gov (United States)

    Shinde, K N; Dhoble, S J

    2014-08-01

    M5(PO4)3F:Eu(2+) (M = Ca and Ba) co-doped with Ce(3+) phosphors were successfully prepared by the combustion synthesis method. The introduction of co-dopant (Ce(3+)) into the host enhanced the luminescent intensity of the M5(PO4)3F:Eu(2+) (M = Ca and Ba) efficiently. Previously, we have reported the synthesis and photoluminescence properties of same phosphors. The aim of this article is to report energy transfer mechanism between Ce(3+) ➔Eu(2+) ions in M5(PO4)3F:Eu(2+) (M = Ca and Ba) phosphors, where Ce(3+) ions act as sensitizers and Eu(2+) ions act as activators. The M5(PO4)3F:Eu(2+) (M = Ca and Ba) co-doped with Ce(3+) phosphor exhibits great potential for use in white ultraviolet (UV) light-emitting diode applications to serve as a single-phased phosphor that can be pumped with near-UV or UV light-emitting diodes. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Effect of thermal annealing on structural properties of SrGa2S4:Ce thin films prepared by flash evaporation

    International Nuclear Information System (INIS)

    Gambarov, E.F.; Bayramov, A.I.

    2009-01-01

    In the present report the preparation technology and structural characterization of Ce 3 +activated SrGa 2 S 4 thin films are given. SrGa 2 S 4 : e thin films are prepared by so called flash evaporation which is simple and inexpensive method for thin film deposition. X-ray diffraction shows that the as deposited films exhibit amorphous behavior, but after annealing in H S stream, the polycrystalline one. EPMA results indicate nearly stoichiometric composition of the thin films

  19. Light emission efficiency and imaging properties of YAP:Ce granular phosphor screens

    International Nuclear Information System (INIS)

    Kalivas, N.; Valais, I.; Nikolopoulos, D.; Konstantinidis, A.; Cavouras, D.; Kandarakis, I.; Gaitanis, A.; Nomicos, C.D.; Panayiotakis, G.

    2007-01-01

    Phosphor materials are used in medical imaging combined with radiographic film or other photodetectors. Cerium (Ce 3+ ) -doped scintillators are of particular interest for medical imaging, because of their very fast response. YAP:Ce scintillator-based image detectors have already been evaluated in single-crystal form and under conditions of positron emission tomography and synchrotron or γ-ray irradiation. Furthermore, YAP:Ce phosphor has been evaluated in conjunction with radiographic films. The present work reports experimental and theoretical data concerning the light output absolute luminescence efficiency (AE) of the YAP:Ce screens under irradiation conditions employed in medical X-ray projection imaging (i.e., in diagnostic radiology). projection imaging (i.e., in diagnostic radiology). YAP:Ce phosphor screens with surface densities ranging between 53 and 110 mg/cm 2 were prepared by sedimentation on fused silica substrates in our laboratory. The resulted surface density of the screens was determined by dividing the phosphor mass deposited on the screen surface with the area of the surface. Additionally this work addresses the imaging performance of YAP:Ce by estimation of the detective quantum efficiency (DQE), i.e., the square of the signal to noise ratio transfer. Absolute efficiency was found to decrease with X-ray tube voltage for for YAP:Ce phosphor. The highest experimental efficiency was obtained for the 53.7 mg/cm 2 and 88.0 mg/cm 2 YAP:Ce screens. The highest DQE value was found for the 88.0 mg/cm 2 screen irradiated at 60 kVp. (orig.)

  20. Synthesis and thermoluminescence characterization of Na6Mg(SO4)4:RE (RE = Ce, Tb) phosphors

    International Nuclear Information System (INIS)

    Kore, Bhushan P.; Dhoble, N.S.; Dhoble, S.J.

    2014-01-01

    Thermoluminescence (TL) properties of sulfate-based phosphors activated by different rare earths have received tremendous attention to the field of radiation dosimetry. Those TL materials based on CaSO 4 have been widely applied for medical and environmental dosimetry. Taking this fact into account we have synthesized Na 6 Mg(SO 4 ) 4 doped with Ce and Tb by wet chemical method. The prepared phosphor was characterized by XRD, FTIR, photoluminescence (PL) and thermoluminescence. For TL study, the phosphor is irradiated with γ-rays from 60 Co source. For studying luminescence properties, the prepared phosphor was annealed at different temperatures and effects of these annealing temperatures on Na 6 Mg(SO 4 ) 4 samples are investigated and quantified. The changes in the glow curve and PL emission spectrum are also investigated as a function of annealing temperature and the annealing temperature was optimized. For calculation of trapping parameters various methods such as peak shape (PS) method, initial rise (IR) method, various heating rate (VHR) method, and computerized glow curve deconvolution (CGCD) are employed. - Highlights: • Na 6 Mg(SO 4 ) 4 phosphor was successfully prepared by wet chemical method. • Effect of annealing temperatures on PL and TL properties has been studied. • Different trap analysis methods were used for calculating the trapping parameters. • Effect of these methods on activation energies were investigated in detail

  1. Luminescence properties of LiPrxCe1-xP4O12

    International Nuclear Information System (INIS)

    Shalapska, T.; Stryganyuka, G.; Trotsc, D.; Demkiv, T.; Gektin, A.; Voloshinovskii, A.; Dorenbos, P.

    2010-01-01

    LiPr 1-x Ce x P 4 O 12 (x=0, 0.002, 0.02; 0.1) powder samples were prepared using the melt solution technique. Luminescent parameters of LiPr 1-x Ce x P 4 O 12 phosphors have been investigated under ultraviolet-vacuum ultraviolet (3-12 eV) synchrotron radiation and X-rays excitation at room and near liquid He temperatures. Excitation luminescence spectra of Ce 3+ emission, luminescent spectra and decay curves from the lower excited state levels of the 4f 1 5d 1 and 5d 1 electronic configuration of the Pr 3+ and Ce 3+ , respectively, clearly indicate energy transfer from Pr 3+ to Ce 3+ . Energy migration proceeds via the Pr-sublattice followed by nonradiation transfer from Pr 3+ to Ce 3+ ions.

  2. Synthesis, luminescent properties and white light emitting diode application of Ba{sub 7}Zr(PO{sub 4}){sub 6}:Eu{sup 2+} yellow-emitting phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chenxia; Dai, Jian [College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 (China); Deng, Degang, E-mail: dengdegang@cjlu.edu.cn [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Shen, Changyu [College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 (China); Xu, Shiqing, E-mail: sxucjlu@163.com [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China)

    2015-10-15

    A yellow-emitting phosphor, Eu{sup 2+}-activated Ba{sub 7}Zr(PO{sub 4}){sub 6} phosphor was synthesized by solid-state reaction method and the luminescence properties were investigated. The phosphor exhibited strong absorption in near ultraviolet (n-UV) region, which matched well with the n-UV chip. Upon excitation at 370 nm, the Ba{sub 7}Zr(PO{sub 4}){sub 6}:Eu{sup 2+} phosphor has a broad yellow emission band with a peak at 585 nm and a full width at half maximum of 178 nm wider than that of the commercial yellow-emitting YAG:Ce{sup 3+} phosphor. The mechanism of concentration quenching of Eu{sup 2+} ions in Ba{sub 7}Zr(PO{sub 4}){sub 6} phosphor is verified to be energy transfer among the nearest neighbor Eu{sup 2+} ions. The CIE value and temperature dependence of photoluminescence were also discussed. Furthermore, a white-LED was fabricated using a 370 nm UV chip pumped with a blend of phosphors consisting of yellow-emitting Ba{sub 6.97}Zr(PO{sub 4}){sub 6}:0.03Eu{sup 2+} and blue-emitting BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors, which achieved a CIE of (0.3329, 0.3562) with a color-rendering index of 86.4 around the CCT of 5487 K.

  3. Synthesis and effect of Ce and Mn co-doping on photoluminescence characteristics of Ca6AlP5O20:Eu novel phosphors.

    Science.gov (United States)

    Shinde, K N; Dhoble, S J

    2013-01-01

    A series of Ca6AlP5O20 doped with rare earths (Eu and Ce) and co-doped (Eu, Ce and Eu,Mn) were prepared by combustion synthesis. Under Hg-free excitation, Ca6AlP5O20:Eu exhibited Eu(2+) (486 nm) emission in the blue region of the spectrum and under near Hg excitation (245 nm), Ca6AlP5O20:Ce phosphor exhibited Ce(3+) emission (357 nm) in the UV range. Photoluminescence (PL) peak intensity increased in Ca6AlP5O20:Eu,Ce and Ca6AlP5O20:Eu, Mn phosphors due to co-activators of Ce(3+) and Mn(2+) ions. As a result, these ions played an important role in PL emission in the present matrix. Ca6AlP5O20:Eu, Ce and Ca6AlP5O20:Eu, Mn phosphors provided energy transfer mechanisms via Ce(3+) → Eu(2+) and Eu(2+) → Mn(2+), respectively. Eu ions acted as activators and Ce ions acted as sensitizers. Ce emission energy was well matched with Eu excitation energy in the case of Ca6AlP5O20:Eu, Ce and Eu ions acted as activators and Mn ions acted as sensitizers in Ca6AlP5O20:Eu, Mn. This study included synthesis of new and efficient phosphate phosphors. The impact of doping and co-doping on photoluminescence properties and energy transfer mechanisms were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Luminescence properties of Eu2+- and Ce3+-doped CaAl2S4 and application in white LEDs

    International Nuclear Information System (INIS)

    Yu Ruijin; Wang Jing; Zhang Jianhui; Yuan Haibin; Su Qiang

    2008-01-01

    The Eu 2+ - and Ce 3+ -doped CaAl 2 S 4 phosphors were comparatively synthesized by conventional solid-state reaction and the evacuated sealed quartz ampoule. The X-ray diffraction (XRD) patterns show that the sample with better crystalline quality was prepared by the evacuated sealed quartz ampoule, resulting in the enhancement of the emission intensity of Eu 2+ ion by a factor of 1.7. The intensive green LEDs were also fabricated by combining CaAl 2 S 4 :Eu 2+ with near-ultraviolet InGaN chips (λ em =395 nm). The dependence of as-fabricated green LEDs on forward-bias currents shows that it presents good chromaticity stability and luminance saturation, indicating that CaAl 2 S 4 :Eu 2+ is a promising green-emitting phosphor for a near-UV InGaN-based LED. In addition, the optical properties of CaAl 2 S 4 :Ce 3+ were systematically investigated by means of diffuse reflectance, photoluminescence excitation and emission, concentrating quenching and the decay curve. - Graphical abstract: The Eu 2+ - and Ce 3+ -doped CaAl 2 S 4 phosphors were comparatively synthesized by two methods. The emission intensity of Eu 2+ ion in sample synthesized by the evacuated sealed quartz ampoule method is by a factor of 1.7 as strong as that of Eu 2+ ion in sample prepared by the conventional solid-state reaction method

  5. A WLED based on LuAG:Ce3+ PiG coated red-emitting K2SiF6:Mn4+ phosphor by screen-printing

    Science.gov (United States)

    Cao, Rui; Wu, Lingchao; Di, Xiaoxuan; Li, Pengzhi; Hu, Guangcai; Liang, Xiaojuan; Xiang, Weidong

    2017-08-01

    It is high-profile that the use of phosphor-in-glass (PiG) is extensive because of its excellent advantages in thermal resistance and lifetime aspects, and so on. Here, white light-emitting diodes (WLED) based on LuAG:Ce3+ PiG coated red-emitting K2SiF6:Mn4+ (KSF) phosphors by screen-printing are fabricated. Among all of these, the commercial LuAG phosphors and glass raw materials of TeO2-based glass, were weighted and milled in an agate thoroughly. Then, the mixture was melted and sintered at 850 K or so for 20 min in the ambient atmosphere through low temperature co-fired method, cold-forming LuAG PiG clump and cut into different LuAG PiG thicknesses. After that, the commercial red phosphor KSF was coated on LuAG PiG by screen-printing technique. Finally, high-performance WLEDs based on the TeO2-based glass were obtained, tested and characterized, which exhibit a highest color rendering index of 94.1, a lowest color temperature of 3744 K and a largest luminous efficiency of 101.02 lm·W-1. Most noticeably of all, the promising method has excellent developing potential for industrialization in high-power WLED.

  6. XAFS Analysis of Local Structure around Ce in Ca3Sc2Si3O12:Ce Phosphor for White LEDs

    International Nuclear Information System (INIS)

    Akai, Toshio; Shigeiwa, Motoyuki; Okamoto, Kaoru; Shimomura, Yasuo; Kijima, Naoto; Honma, Tetsuo

    2007-01-01

    We have studied the local structure around Ce atom in Ca3Sc2Si3O12 host crystal, which has been developed as a new green phosphor for white light emitting diodes (LEDs). As the local structure and chemical environment of the dopant atom are very important to improve the performance of the phosphor, we have used XAFS to get chemical and structural information around the Ce dopant. The XANES spectrum of the Ce LIII-edge reveals that the Ce atom is trivalent in Ca3Sc2Si3O12. There are two kinds of possible Ce substitution sites, Ca site and Sc site, in garnet type Ca3Sc2Si3O12 crystal structure. The Ce atom is found to be at the Ca site in the host crystal by the comparison of the Fourier transform of Ce K-edge EXAFS spectrum with those of Ca and Sc K-edge EXAFS spectra. The theoretical analysis with FEFF also clarified the Ce substitution at the Ca site. Furthermore, the result of the analysis indicates the structural disorder around Ca and Si atoms at 3.75 A. It is possible that there are some defects around the Ca and Si atoms at 3.75 A to compensate the excess positive charge by introduced Ce3+ at the Ca2+ site

  7. Luminescence properties and energy transfer of site-sensitive Ca(6-x-y)Mg(x-z)(PO(4))(4):Eu(y)(2+),Mn(z)(2+) phosphors and their application to near-UV LED-based white LEDs.

    Science.gov (United States)

    Kwon, Ki Hyuk; Im, Won Bin; Jang, Ho Seong; Yoo, Hyoung Sun; Jeon, Duk Young

    2009-12-21

    On the basis of the structural information that the host material has excellent charge stabilization, blue-emitting Ca(6-x-y)Mg(x)(PO(4))(4):Eu(y)(2+) (CMP:Eu(2+)) phosphors were synthesized and systematically optimized, and their photoluminescence (PL) properties were evaluated. Depending upon the amount of Mg added, the emission efficiency of the phosphors could be enhanced. The substitution of Eu(2+) affected their maximum wavelength (lambda(max)) and thermal stability because the substitution site of Eu(2+) could be varied. To obtain single-phase two-color-emitting phosphors, we incorporated Mn(2+) into CMP:Eu(2+) phosphors. Weak red emission resulting from the forbidden transition of Mn(2+) could be enhanced by the energy transfer from Eu(2+) to Mn(2+) that occurs because of the spectral overlap between the photoluminescence excitation (PLE) spectrum of Mn(2+) and the PL spectrum of Eu(2+). The energy transfer process was confirmed by the luminescence spectra, energy transfer efficiency, and decay curve of the phosphors. Finally, the optimized Ca(6-x-y)Mg(x-z)(PO(4))(4):Eu(y)(2+),Mn(z)(2+) (CMP:Eu(2+),Mn(2+)) phosphors were applied with green emitting Ca(2)MgSi(2)O(7):Eu(2+) (CMS:Eu(2+)) phosphors to ultraviolet (UV) light emitting diode (LED)-pumped white LEDs. The CMS:Eu(2+)-mixed CMP:Eu(2+), Mn(2+)-based white LEDs showed an excellent color rendering index (CRI) of 98 because of the broader emission band and more stable color coordinates than those of commercial Y(3)Al(5)O(12):Ce(3+) (YAG:Ce(3+))-based white LEDs under a forward bias current of 20 mA. The fabricated white LEDs showed very bright natural white light that had the color coordinate of (0.3288, 0.3401), and thus CMP:Eu(2+),Mn(2+) could be regarded as a good candidate for UV LED-based white LEDs.

  8. Thermoluminescence studies of γ-irradiated Al{sub 2}O{sub 3}:Ce{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, S. Satyanarayana [Physics R & D Center, PES Institute of Technology, BSK 3rd Stage, Bangalore 560085 (India); Nagabhushana, K.R., E-mail: bhushankr@gmail.com [Physics R & D Center, PES Institute of Technology, BSK 3rd Stage, Bangalore 560085 (India); Department of Physics, PES University, BSK 3rd Stage, Bangalore 560085 (India); Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2016-07-15

    Pure and Ce{sup 3+} doped Al{sub 2}O{sub 3} phosphors were synthesized by solution combustion method. The synthesized samples were characterized by X-ray diffraction (XRD) and its shows α-phase of Al{sub 2}O{sub 3}. Crystallite size was estimated by Williamson–Hall (W–H) method and found to be 49, 59 and 84 nm for pure, 0.1 mol% and 1 mol% Ce{sup 3+} doped Al{sub 2}O{sub 3} respectively. Trace elemental analysis of undoped Al{sub 2}O{sub 3} shows impurities viz. Fe, Cr, Mn, Mg, Ti, etc. Photoluminescence (PL) spectra of Al{sub 2}O{sub 3}:Ce{sup 3+} shows emission at 367 nm and excitation peak at 273 nm, which are corresponding to {sup 5}D → {sup 4}F and {sup 4}F → {sup 5}D transitions respectively. PL intensity decreases with concentration up to 0.4 mol%, beyond this mol% PL intensity increases with doping concentration up to 2 mol%. Thermoluminescence (TL) studies of γ-rayed pure and Ce{sup 3+} doped Al{sub 2}O{sub 3} have been studied. Two well resolved TL glow peaks at 457.5 K and 622 K were observed in pure Al{sub 2}O{sub 3}. Additional glow peak at 566 K was observed in Al{sub 2}O{sub 3}:Ce{sup 3+}. Maximum TL intensity was observed for Al{sub 2}O{sub 3}:Ce{sup 3+} (0.1 mol%) beyond this TL intensity decreases with increasing Ce{sup 3+} concentration. Computerized glow curve deconvolution (CGCD) method was used to resolve the multiple peaks and to calculate TL kinetic parameters. Thermoluminescence emission (TLE) spectra of pure Al{sub 2}O{sub 3} glow peaks (457.5 K and 622 K) shows sharp emission at 694 nm and two small humps at 672 nm and 709 nm. The sharp peak at 696 nm corresponds to Cr{sup 3+} impurity of {sup 2}E{sub g} → {sup 4}A{sub 2g} transition of R lines and 713 nm hump is undoubtedly belongs to Cr{sup 3+} emission of near neighbor pairs. The emission at 672 nm is characteristic of Mn{sup 4+} impurity ions of {sup 2}E → {sup 4}A{sub 2} transition. TLE of Al{sub 2}O{sub 3}:Ce{sup 3+} (0.1 mol%) shows additional broad emission at 412 nm

  9. Crystal structure and luminescence properties of (Ca{sub 2.94-x}Lu{sub x}Ce{sub 0.06})(Sc{sub 2-y}Mg{sub y})Si{sub 3}O{sub 12} phosphors for white LEDs with excellent colour rendering and high luminous efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yongfu; Zhang Xia; Hao Zhendong; Lu Wei; Liu Xingyuan; Zhang Jiahua [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033 (China); Wang Xiaojun, E-mail: zhangjh@ciomp.ac.cn [Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States)

    2011-02-23

    Lu-modified (Ca{sub 2.94-x}Lu{sub x}Ce{sub 0.06})(Sc{sub 2-y}Mg{sub y})Si{sub 3}O{sub 12} (CLSMS : Ce{sup 3+}) yellow emitting phosphors are prepared by a solid-state reaction. Controllable luminescent intensity and emitting colour are studied as a function of Lu and Mg contents. Fixing the Mg content to be 1, the effect of Lu content on crystal phase formation, luminescence properties and temperature characteristics is studied. It is revealed that the Lu-induced luminescent enhancement is the result of an increase in absorbance of Ce{sup 3+} rather than the internal quantum efficiency. Intense and broadband emission is realized by controlling the Lu content to obtain a pure CLSMS crystal phase. The maximum luminescence intensity is obtained at x = 0.54, which is as high as 156% of the Lu-free phosphor. The Lu-containing phosphor also exhibits better temperature characteristics for its big activation energy (0.20 eV) than the Lu-free one (0.18 eV). Combining the present phosphor with a blue light-emitting diode (LED) chip, a white LED with an excellent colour rendering index R{sub a} of 86 and a high luminous efficiency of 86 lm W{sup -1} is obtained. The results of the present study demonstrate that the CLSMS : Ce{sup 3+} phosphors show a good performance and are attractive candidates for commercial applications when used in white LEDs.

  10. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    KAUST Repository

    Chi, Yu-Chieh

    2015-12-21

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10−3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems.

  11. Synthesis and tunable luminescence properties of Eu2+ and Tb3+-activated Na2Ca4(PO4)3F phosphors based on energy transfer

    International Nuclear Information System (INIS)

    Zhou, Jun; Xia, Zhiguo; You, Hongpeng; Shen, Kai; Yang, Mengxia; Liao, Libing

    2013-01-01

    A series of color-tunable blue–green emitting Na 2 Ca 4 (PO 4 ) 3 F:Eu 2+ ,Tb 3+ phosphors were prepared by a high temperature solid-state reaction. Their luminescence properties reveal that there is an efficient energy transfer from Eu 2+ to Tb 3+ ions via a dipole–quadrupole mechanism where Eu 2+ ions exhibit a strong excitation band in near ultraviolet (UV) region, matching well with the dominant emission band of near UV (350–420 nm) LED chips, and Eu 2+ and Tb 3+ ions can give characteristic blue and green emission light. The varied color of the phosphors from blue to green can be achieved by properly tuning the relative ratio of Eu 2+ to Tb 3+ dopant through the energy transfer from Eu 2+ to Tb 3+ ions. Thermal quenching luminescence results reveal that Na 2 Ca 4 (PO 4 ) 3 F:Eu 2+ ,Tb 3+ exhibits good thermal stability. These results demonstrate that Tb 3+ ion with low 4f–4f absorption efficiency in near UV region can play the role of an activator in narrow green-emitting phosphor through efficient energy feeding by allowing 4f–5d absorption of Eu 2+ with high oscillator strength. The present Eu 2+ –Tb 3+ codoped Na 2 Ca 4 (PO 4 ) 3 F phosphor will have potential application for the near UV white LEDs. - Highlights: ► Color-tunable blue–green Na 2 Ca 4 (PO 4 ) 3 F:Eu 2+ ,Tb 3+ phosphors were prepared. ► Eu 2+ –Tb 3+ energy transfer process and mechanism discussed. ► Thermal quenching properties of blue and green phosphors were studied.

  12. Magnetism and superconductivity in Ru{sub 1-x}Sr{sub 2}RECu{sub 2+x}O{sub 8-d} (RE=Gd, Eu) and RuSr{sub 2}Gd{sub 1-y}Ce{sub y}Cu{sub 2}O{sub 8} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Klamut, P.W. [Dept. of Physics, Northern Illinois Univ., DeKalb, IL (United States)]|[Inst. of Low Temperature and Structure Research of Polish Academy of Sciences, Wroclaw (Poland); Dabrowski, B.; Mini, S.M.; Kolesnik, S.; Maxwell, M.; Mais, J. [Dept. of Physics, Northern Illinois Univ., DeKalb, IL (United States); Shengelaya, A.; Keller, H. [Physik-Inst., Univ. Zuerich, Zuerich (Switzerland); Khazanov, R. [Physik-Inst., Univ. Zuerich, Zuerich (Switzerland)]|[Lab. for Muon-Spin Spectroscopy, Paul Scherrer Inst., Villigen PSI (Switzerland); Savic, I. [Physik-Inst., Univ. Zuerich, Zuerich (Switzerland)]|[Faculty of Physics, Univ. of Belgrade, Belgrade (Yugoslavia); Sulkowski, C.; Wlosewicz, D.; Matusiak, M. [Inst. of Low Temperature and Structure Research of Polish Academy of Sciences, Wroclaw (Poland); Wisniewski, A.; Puzniak, R.; Fita, I. [Inst. of Physics of Polish Academy of Sciences, Warszawa (Poland)

    2002-07-01

    We discuss the properties of new superconducting compositions of ruthenocuprates Ru{sub 1-x}Sr{sub 2}RECu{sub 2+x}O{sub 8-d} (RE=Gd, Eu) that were synthesized at 600 atm. of oxygen at 1080 C. By changing ratio between the Ru and Cu, the temperature of superconducting transition (T{sub C}) raises up to T{sub C}{sup max} = 72 K for x=0.3, 0.4. The hole doping achieved along the series increases with Cu{yields}Ru substitution. For x {ne} 0, T{sub C} can be subsequently tuned between T{sub C}{sup max} and 0 K by changing oxygen content in the compounds. The magnetic characteristics of the RE=Gd and Eu based compounds are interpreted as indicative of constrained dimensionality of the superconducting phase. Muon spin rotation experiments reveal the presence of the magnetic transitions at low temperatures (T{sub m}=14-2 K for x=0.1-0.4) that can originate in the response of Ru/Cu sublattice. RuSr{sub 2}Gd{sub 1-y}Ce{sub 1-y}Cu{sub 2}O{sub 8} (0 {<=} y {<=} 0.1) compounds show the simultaneous increase of T{sub N} and decrease of T{sub C} with y. The effect should be explained by the electron doping that occurs with Ce{yields}Gd substitution. Properties of these two series allow us to propose phase diagram for 1212-type ruthenocuprates that links their properties to the hole doping achieved in the systems. Non-superconducting single-phase RuSr{sub 2}GdCu{sub 2}O{sub 8} and RuSr{sub 2}EuCu{sub 2}O{sub 8} are reported and discussed in the context of the properties of substituted compounds. (orig.)

  13. Electronic structure and optical properties of Sr{sub 2}SnO{sub 4} studied with FP-LAPW method in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Prijamboedi, B., E-mail: boedi@chem.itb.ac.id; Umar, S.; Failamani, F. [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2015-04-16

    Oxide material of Sr{sub 2}SnO{sub 4}, when it is doped with Ti becomes a phosphor material that can emit intense blue light at room temperature. It is important to study the electronic structure of this material in order to determine the optical processes that occur in Ti-doped Sr{sub 2}SnO{sub 4}. Electronic structure and optical properties of Sr{sub 2}SnO{sub 4} is studied using density functional theory framework with full potential linearized augmented plane waves plus local orbitals (FP-LAPW+lo) method. We use modified Becke-Johnson (mBJ) exchange-correlation potential to calculate the energy gap. Our calculation showed that Sr{sub 2}SnO{sub 4} has indirect band gap with band gap energy of around 4.2 eV. The experimental absorption spectra of Sr{sub 2}SnO{sub 4} indicated that this oxide has band gap of around 4.6 eV and it is closer to the results given by mBJ exchange-correlation potential. We also studied other optical properties of Sr{sub 2}SnO{sub 4} and it is found in agreement with the experimental results.

  14. Instense red phosphors for UV light emitting diode devices.

    Science.gov (United States)

    Cao, Fa-Bin; Tian, Yan-Wen; Chen, Yong-Jie; Xiao, Lin-Jiu; Liu, Yun-Yi

    2010-03-01

    Ca(x)Sr1-x-1.5y-0.5zMoO4:yEu3+ zNa+ red phosphors were prepared by solid-state reaction using Na+ as charge supply for LEDs (light emitting diodes). The content of charge compensator, Ca2+ concentration, synthesis temperature, reaction time, and Eu3+ concentration were the keys to improving the properties of luminescence and crystal structure of red phosphors. The photoluminescence spectra shows the red phosphors are effectively excited at 616 nm by 311 nm, 395 nm, and 465 nm light. The wavelengths of 395 and 465 nm nicely match the widely applied emission wavelengths of ultraviolet or blue LED chips. Its chromaticity coordinates (CIE) are calculated to be x = 0.65, y = 0.32. Bright red light can be observed by the naked eye from the LED-based Ca0.60Sr0.25MoO4:0.08Eu3+ 0.06Na+.

  15. Photoluminescence properties of a novel red phosphor Sr{sub 3}Ga{sub 2}O{sub 5}Cl{sub 2}:Eu{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonghua; Hu, Yihua; Zhang, Shaoan; Lin, Jun [Guangdong University of Technology, School of Physics and Optoelectronic Engineering, Guangzhou (China)

    2016-02-15

    Eu{sup 3+}-doped Sr{sub 3}Ga{sub 2}O{sub 5}Cl{sub 2} phosphors were synthesized successfully via a two-step solid-state reaction method. Phase purity and morphology of the phosphor were confirmed by XRD and SEM techniques. In the excitation spectra of Sr{sub 3}Ga{sub 2}O{sub 5}Cl{sub 2}:Eu{sup 3+} phosphor, the broad excitation band centering at 310 nm is due to the combination of charge transfer from Eu{sup 3+}→O{sup 2-} and host absorption. And it matches well the emission wavelength from UV LEDs. Sr{sub 3}Ga{sub 2}O{sub 5}Cl{sub 2}:Eu{sup 3+} phosphors show a bright orange-red luminescence under excitation with 301 nm. However, concentration quenching of Eu{sup 3+} in Sr{sub 3}Ga{sub 2}O{sub 5}Cl{sub 2}:Eu{sup 3+} occurs at a low content of 0.07 in this work. The quenching mechanism of Sr{sub 3}Ga{sub 2}O{sub 5}Cl{sub 2}:Eu{sup 3+} was discussed in detail on the basis of the experimental results. (orig.)

  16. Photoluminescence and phosphorescence properties of MAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} (M=Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Mothudi, B.M., E-mail: mothudibm@qwa.uovs.ac.z [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth, ZA 6031 (South Africa); Swart, H.C., E-mail: swarthc.sci@ufs.ac.z [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2009-12-01

    Eu{sup 2+} and Dy{sup 3+} co-doped calcium aluminate, barium aluminate and strontium aluminate phosphors were synthesized at an initiating combustion temperature of 500 deg. C using urea as an organic fuel. The crystallinity of the phosphors was investigated by using X-ray diffraction (XRD) and the morphology was determined by a scanning electron microscope (SEM). The low temperature monoclinic structure for both CaAl{sub 2}O{sub 4} and SrAl{sub 2}O{sub 4} and the hexagonal structure of BaAl{sub 2}O{sub 4} were observed. The effect of the host materials on the photoluminescence (PL) and phosphorescence properties were investigated by using a He-Cd Laser and a Cary Eclipse fluorescence spectrophotometer, respectively. The broad band emission spectra observed at 449 nm for CaAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+}, 450 nm (with a shoulder-peak at 500 nm) for BaAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} and 528 nm for SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} are attributed to the 4f{sup 6}5d{sup 1} to 4f{sup 7} transition in the Eu{sup 2+} ion in the different hosts.

  17. Luminescent properties of Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F oxyfluorides

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangmoon, E-mail: spark@silla.ac.kr [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of)

    2012-04-15

    Effective orange Sm{sup 3+}-doped Sr{sub 2.5}Ba{sub 0.5}AlO{sub 4}F phosphors excited at 254 and 408 nm excitation were prepared by the solid-state method. The excitation and emission spectra of Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F and Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4-{alpha}}F{sub 1-{delta}} (x=0.001{approx}0.1) based on photoluminescence spectroscopy are investigated. The defects in anion-deficient Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4-{alpha}}F{sub 1-{delta}} (x=0.001, 0.01) are monitored by broad-band photoluminescence emission centered near 480 nm along with the orange emission transitions of Sm{sup 3+}. CIE values and relative luminescent intensities of Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F and Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4-{alpha}}F{sub 1-{delta}} by changing the Sm{sup 3+} content (x=0.001{approx}0.1) are discussed. - Highlights: Black-Right-Pointing-Pointer Under the excitation of 408 nm competent orange emitting Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F phosphor is initiated. Black-Right-Pointing-Pointer Sm{sup 3+}-activated oxyfluoride phosphor is quite effective to prepare white-emitting light for near-UV LED applications. Black-Right-Pointing-Pointer Defects could be visibly created in the Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}Al O{sub 4}F host lattices when Sm{sup 3+} ions are doped less than 5 mol %. Black-Right-Pointing-Pointer The gradual substitution of Sm{sup 3+} contents in oxyfluoride hosts is amenable to change CIE values and desired emitting intensity.

  18. UV, blue and red upconversion emission in Tm3+ doped Y2O3 phosphor

    International Nuclear Information System (INIS)

    Pandey, Anurag; Kaushal Kumar; Rai, Vineet Kumar

    2012-01-01

    Optimized solution combustion route has been adopted to prepare Tm 3+ doped Y 2 O 3 phosphor. The X-ray diffraction analysis of the doped phosphor for getting the structural information has been performed. Intense UV, blue and red emissions exhibiting narrow band have been monitored using 980 nm diode laser excitation. The origin of UV, blue and red upconversion emissions has been explained based on the available data. (author)

  19. Persistent luminescence, TL and OSL characterization of beta irradiated SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} combustion synthesized phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Zúñiga-Rivera, N.J. [Departamento de Física, Posgrado en Nanotecnología, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); García, R.; Rodríguez-Mijangos, R.; Chernov, V.; Meléndrez, R.; Pedroza-Montero, M. [Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); Barboza-Flores, M., E-mail: mbarboza@cifus.uson.mx [Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico)

    2014-05-01

    The persistent luminescence (PLUM), thermoluminescence (TL) and optically stimulated luminescence (OSL) properties of strontium aluminates co-doped with Eu{sup +2} and Dy{sup +3} exposed to beta radiation is reported. The phosphor was synthesized by the combustion synthesis method employing a highly exothermic redox reaction between the metal nitrates [Al(NO{sub 3}){sub 3}, Sr(NO{sub 3}){sub 2}, Eu(NO{sub 3}){sub 3} and Dy(NO{sub 3}){sub 3}] and organic fuel carbohydrazide (CH{sub 6}N{sub 4}O). The long decay PLUM emission, TL and OSL were measured as a function of beta radiation dose. A wide emission band centered at 510 nm (green) related to Eu{sup 2+} ions and lattice defects were observed for the synthesized samples. The presence of a variety of defects and aggregates were responsible for the observed broad 100 °C peaked TL glow curve of the irradiated sample which is composed of several overlapped TL peaks. The existence of multiple trapping levels, with different trapping/detrapping probabilities, is behind the particular features for the PLUM, TL and OSL emissions. We conclude that in the SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} phosphors, the low temperature TL peaked around 30–75 °C is responsible for the PLUM emission and those around 100 °C were related to very stable trapping states which provide suitable radiation storage properties to be used as a PLUM/TL/OSL radiation phosphor.

  20. Surface and spectral studies of green emitting Sr{sub 3}B{sub 2}O{sub 6}:Tb{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Neharika [School of Physics, Shri Mata Vaishno Devi University, Katra 182320, J& K (India); Kumar, Vinay, E-mail: vinaykumar@smvdu.ac.in [School of Physics, Shri Mata Vaishno Devi University, Katra 182320, J& K (India); Sharma, J.; Singh, Vivek K. [School of Physics, Shri Mata Vaishno Devi University, Katra 182320, J& K (India); Ntwaeaborwa, O.M.; Swart, H.C. [Department of Physics, University of the Free State, PO Box 339, Bloemfontein ZA9300 (South Africa)

    2016-01-15

    Highlights: • XPS technique has been used to study the surface composition of the phosphor. • The phosphor is synthesized by combustion method using urea as fuel. • Multipole–multipole interaction was found to play a key role for concentration quenching of Tb{sup 3+} doped Sr{sub 3}B{sub 2}O{sub 6} phosphor. - Abstract: In this paper, we report the synthesis of trivalent Tb{sup 3+} doped Sr{sub 3}B{sub 2}O{sub 6} phosphor by combustion method using urea as an organic fuel. The structure of the product has been verified by X-ray diffraction study which shows a rhombohedral phase with a space group of R-3c having lattice constants a = 9.064 Å, b = 9.064 Å, c = 12.611 Å. X-ray photoelectron spectroscopy has been used to study the elemental composition and electronic states of the Tb{sup 3+} doped Sr{sub 3}B{sub 2}O{sub 6} phosphor. Photoluminescence spectra showed that the phosphor emits in the greenish region (with the main peak at 544 nm) of color gamut under UV excitation. The diffuse reflectance spectra of the Sr{sub 3}B{sub 2}O{sub 6} phosphor were studied. Lifetime and band gap of the phosphors were calculated to be 2.55 ms and 5.25 ± 0.02 eV, respectively.

  1. 4f and 5d energy levels of the divalent and trivalent lanthanide ions in M2Si5N8 (M=Ca, Sr, Ba)

    NARCIS (Netherlands)

    Kate, ten O.M.; Zhang, Z.; Dorenbos, P.; Hintzen, H.T.J.M.; Kolk, van der E.

    2013-01-01

    Optical data of Sm, Tb and Yb doped Ca2Si5N8 and Sr2Si5N8 phosphors that have been prepared by solid-state synthesis, are presented. Together with luminescence data from literature on Ce3+ and Eu2+ doping in the M2Si5N8 (M=Ca, Sr, Ba) hosts, energy level schemes were constructed showing the energy

  2. Color improvement of white-light through Mn-enhancing yellow-green emission of SrSi2O2N2:Eu phosphor for white light emitting diodes

    International Nuclear Information System (INIS)

    Fei Qinni; Liu Yanhua; Gu Tiecheng; Wang Dajian

    2011-01-01

    Photoluminescence (PL) enhancement of SrSi 2 O 2 N 2 :Eu and the resultant color improvement of white-light were investigated via co-doping Mn with Eu. We observed that a unique absorption of host lattice of SrSi 2 O 2 N 2 and its visible band emission peaked at around ∼550 nm for SrSi 2 O 2 N 2 :Mn 2+ in the wavelength range of 450-600 nm. This highly eye-sensitive ∼550 nm-peaked band emission of SrSi 2 O 2 N 2 doped with Mn 2+ happens to overlap the 535 nm-peaked band emission of SrSi 2 O 2 N 2 doped with Eu 2+ , resulting in an intensified photoluminescence in a maximum by 355%. By combining this as-prepared Mn intensified SrSi 2 O 2 N 2 :Eu phosphor with blue InGaN chip, the quality of white-light was improved to 93.3% for color rendering index and 3584 K for correlated color temperature. - Research highlights: Photoluminescence enhancement and resultant color improvement of SrSi 2 O 2 N 2 : Eu can be adjusted via co-doping Mn with Eu. The band emission peaked at ∼550 for Mn2+ overlaps that at ∼535 nm for Eu 2+ . A white-light with 93.3% for CRI and 3584 K for CCT is achieved.

  3. Synthesis and investigation of photo/cathodoluminescence properties of a novel green emission phosphor Sr{sub 8}ZnLu(PO{sub 4}){sub 7}:Eu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Long, Qiang; Wang, Chuang; Li, Yanyan; Ding, Jianyan [Department of Materials Science, School of Physical Science and Technology, Lanzhou University (China); Key Laborary of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Tianshui South Road No. 222, Lanzhou, Gansu 730000 (China); Wang, Yuhua, E-mail: wyh@lzu.edu.cn [Department of Materials Science, School of Physical Science and Technology, Lanzhou University (China); Key Laborary of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Tianshui South Road No. 222, Lanzhou, Gansu 730000 (China)

    2016-06-25

    An Eu{sup 2+}-activated Sr{sub 8}ZnLu(PO{sub 4}){sub 7} (SZLP:Eu{sup 2+}) green emitting phosphor was synthesized and its crystal structure has been refined and determined from the XRD profiles by Rietveld refinement method. The excitation spectra of the SZLP:Eu{sup 2+} phosphors covered the range from 250 to 450 nm, which matches well with n-UV chips. SZLP:Eu{sup 2+} exhibited broad-band green emission centered at about 520 nm under 400 nm irradiation with a high quantum efficiency (QE) value of 67.4% and good thermal stability, its emission intensity remains 77% at 150 °C of that measured at room temperature. In addition, to investigate its application in field emission displays, the cathodoluminescence spectra of SZLP:Eu{sup 2+} as a function of the accelerating voltage, probe current and the electron radiation time were also measured and discussed in detail. Excellent degradation resistance properties with good color stability were obtained by continuous low-voltage electron-beam excitation of the phosphor. - Highlights: • An novel green emitting phosphor was firstly synthesized by solid state reaction. • The excitation spectra match well with n-UV chips and the quantum efficiency is 67.4%. • The thermal stability of the phosphor is superior to commercial phosphors.

  4. Optical properties of SrAl{sub 2−x}Si{sub x}O{sub 4−x}N{sub x}:Eu{sup 2+}, Dy{sup 3+} phosphors for AC-LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bowen; Xie, Qidi; Qin, Huanhui [School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020 (China); Zhang, Mei, E-mail: zmjenny@163.com [School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020 (China); He, Xin; Long, Yongbing [School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020 (China); Xing, Lusheng [LED Institute, Wuyi University, Jiangmen, Guangdong 529020 (China)

    2016-09-15

    Series of green emitting SrAl{sub 2−x}Si{sub x}O{sub 4−x}N{sub x}:Eu{sup 2+}, Dy{sup 3+} phosphors have been synthesized via a high temperature solid-state method. The effects of (SiN){sup +} on phase structural, emission and excitation spectra and decay curves were investigated systematically. The X-ray diffraction (XRD) patterns show that the maximum amount of solubility is about x = 0.10. The emission wavelength can be red-shifted from 509 to 515 nm with increasing (SiN){sup +} concentration. Meanwhile, the average lifetime of samples are shortened from 845.86 to 765.34 ms, which can appropriately compensate for the AC time gap and the emission color of AC-LEDs will be improved. Finally, we use these phosphors and near UV-chips to fabricate LEDs, which show more stable luminescence properties accompanying with the decrease of the luminous efficiency as the (SiN){sup +} content increases. - Highlights: • The incorporation of (SiN){sup +} can shift the emission spectra to a long wavelength. • The color purity of SrAl{sub 2−x}Si{sub x}O{sub 4−x}N{sub x}:Eu{sup 2+}, Dy{sup 3+} phosphor can be improved to 48.65%. • The performance of pc-LEDs confirms (SiN){sup +} can improve the stable of phosphors.

  5. Lanthanide-doped Sr2YF7 nanoparticles: controlled synthesis, optical spectroscopy and biodetection

    Science.gov (United States)

    Yang, Yuhan; Tu, Datao; Zheng, Wei; Liu, Yongsheng; Huang, Ping; Ma, En; Li, Renfu; Chen, Xueyuan

    2014-09-01

    Sr2YF7, as an important matrix for trivalent lanthanide (Ln3+) ions to fabricate upconversion (UC) or downshifting (DS) phosphors, has been rarely reported. Herein, monodisperse and size-controllable tetragonal-phase Ln3+-doped Sr2YF7 nanoparticles (NPs) were synthesized via a facile thermal decomposition method. Upon excitation at 980 nm, UC luminescence properties of Sr2YF7:Ln3+/Yb3+ (Ln = Tm, Er) NPs were systematically surveyed. Particularly, after coating an inert Sr2YF7 shell, the UC luminescence intensities of Sr2YF7:Tm3+/Yb3+ and Sr2YF7:Er3+/Yb3+ NPs were enhanced by ~22 and 4 times, respectively. Furthermore, intense multicolor DS luminescence was also achieved in Ce3+/Tb3+ or Eu3+ doped Sr2YF7 NPs, with absolute quantum yields of 55.1% (Tb3+) and 11.2% (Eu3+). The luminescence lifetimes of 5D4 (Tb3+) and 5D0 (Eu3+) were determined to be 3.7 and 8.1 ms, respectively. By utilizing the long-lived luminescence of Ln3+ in these Sr2YF7 NPs, we demonstrated their application as sensitive heterogeneous time-resolved photoluminescence bioprobes to detect the protein of avidin and the tumor marker of the carcinoembryonic antigen (CEA) with their limits of detection down to 40.6 and 94.9 pM, and thus reveal the great potential of these Sr2YF7:Ln3+ nanoprobes in cancer diagnosis.Sr2YF7, as an important matrix for trivalent lanthanide (Ln3+) ions to fabricate upconversion (UC) or downshifting (DS) phosphors, has been rarely reported. Herein, monodisperse and size-controllable tetragonal-phase Ln3+-doped Sr2YF7 nanoparticles (NPs) were synthesized via a facile thermal decomposition method. Upon excitation at 980 nm, UC luminescence properties of Sr2YF7:Ln3+/Yb3+ (Ln = Tm, Er) NPs were systematically surveyed. Particularly, after coating an inert Sr2YF7 shell, the UC luminescence intensities of Sr2YF7:Tm3+/Yb3+ and Sr2YF7:Er3+/Yb3+ NPs were enhanced by ~22 and 4 times, respectively. Furthermore, intense multicolor DS luminescence was also achieved in Ce3+/Tb3+ or Eu3

  6. La0.3Sr0.2Mn0.1Zn0.4 oxide-Sm0.2Ce0.8O1.9 (LSMZ-SDC) nanocomposite cathode for low temperature SOFCs.

    Science.gov (United States)

    Raza, Rizwan; Abbas, Ghazanfar; Liu, Qinghua; Patel, Imran; Zhu, Bin

    2012-06-01

    Nanocomposite based cathode materials compatible for low temperature solid oxide fuel cells (LTSOFCs) are being developed. In pursuit of compatible cathode, this research aims to synthesis and investigation nanocomposite La0.3Sr0.2Mn0.1Zn0.4 oxide-Sm0.2Ce0.8O1.9 (LSMZ-SDC) based system. The material was synthesized through wet chemical method and investigated for oxide-ceria composite based electrolyte LTSOFCs. Electrical property was studied by AC electrochemical impedance spectroscopy (EIS). The microstructure, thermal properties, and elemental analysis of the samples were characterized by TGA/DSC, XRD, SEM, respectively. The AC conductivity of cathode was obtained for 2.4 Scm(-1) at 550 degrees C in air. This cathode is compatible with ceria-based composite electrolytes and has improved the stability of the material in SOFC cathode environment.

  7. Evaluation of sol-gel derived Eu2+ activated SrMgAl2SiO7 as a novel nanostructure luminescent pigment

    International Nuclear Information System (INIS)

    Sameie, H.; Salimi, R.; Sabbagh Alvani, A.A.; Sarabi, A.A.; Moztarzadeh, F.; Tahriri, M.

    2010-01-01

    A novel nanostructure pigment of Eu 2+ doped SrMgAl 2 SiO 7 was prepared via the sol-gel route. The phase composition and condition of crystallites during heating were characterized by X-ray diffraction (XRD) analysis. Investigation of optical properties by spectrophotometer illustrated that under short ultraviolet excitation wavelength, the main emission peak occurred at about 415-420 nm. Also, relatively pure purplish blue color was observed that can be ascribed to the 4f 6 5d 1 ( 2 D)→4f 7 ( 8 S 7/2 ) transition of Eu 2+ . The effect of calcination temperature on the luminescence properties of the phosphors was evaluated and, also in this case, scanning electron microscope (SEM) was employed. From colorimetry results, color coordinations of phosphor shift towards the deep blue region as calcination temperature increases. Finally, grain size of products at optimum calcination temperature was estimated to be about 20-30 nm using Scherrer's equation, which was consistent with transmission electron microscopy (TEM) observations.

  8. Warm white light generation from single phase Sr{sub 3}Y(PO{sub 4}){sub 3}:Dy{sup 3+}, Eu{sup 3+} phosphors with near ultraviolet excitation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.Y. [School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Feng, B.L. [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Luo, L., E-mail: luoli@gdut.edu.cn [School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Han, C.L. [School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); He, Y.T.; Qiu, Z.R. [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275 (China)

    2016-10-15

    Highlights: • Novel single phase phosphors were synthesized in an ambient air atmosphere. • A direct band gap about 4.5 eV of the host is calculated for the first time. • It is suitable for near UV chip excitation. • It emits warm white light with better CIE and lower CCT over previous reports. • The thermal quenching is similar to that of YAG:0.06Ce{sup 3+} commercial phosphor. - Abstract: Novel Sr{sub 3}Y(PO{sub 4}){sub 3}:Dy{sup 3+}, Eu{sup 3+} (SYP:Dy{sup 3+}, Eu{sup 3+}) phosphors were synthesized by a standard solid-state reaction under an ambient air atmosphere and their structural and optical properties were investigated. XRD and diffuse reflectance spectra (DRS) were used to explore structural properties. The former showed that single phase phosphors were obtained and that the rare earth ions entered into the cubic host by substituting the smaller Y{sup 3+} ions and thereby enlarging the unit cell. The DRS indicated that the host has a direct bandgap of 4.5 eV. Under 393 nm excitation, a strong and stable warm white light emission with high color purity was achieved in SY{sub 0.92}P:0.06Dy{sup 3+}, 0.04Eu{sup 3+}. The energy transfer from Dy{sup 3+} to Eu{sup 3+} ions was investigated and the related mechanism was discussed based on the optical spectra and emission decay curves. The thermal quenching of emission is similar to that of YAG:0.06Ce{sup 3+}. The results show the single phase phosphor is potential in warm white LED.

  9. The exploration and characterization of an orange emitting long persistent luminescence phosphor LiSr4(BO3)3:Eu2+

    International Nuclear Information System (INIS)

    Jin, Yahong; Hu, Yihua; Wu, Haoyi; Chen, Li; Wang, Xiaojuan

    2016-01-01

    An orange emitting long persistent phosphor LiSr 4 (BO 3 ) 3 :Eu 2+ was prepared successfully using a conventional solid state reaction method. The luminescent and persistent luminescence properties were studied using fluorescence spectra, decay curves, persistent luminescence spectra and thermoluminescence (TL) glow curves. The effects on the fluorescence and persistent luminescence properties by the dosage of Li 2 CO 3 were explored. The relationship between the Eu 2+ contents and persistent luminescence properties were studied. The optimal doping concentration of Eu 2+ was experimentally to be 1 mol%. The detailed processes and a possible mechanism were also discussed. - Highlights: • Li 2 CO 3 plays a critical role in producing persistent luminescence. • 40 % excess of Li 2 CO 3 makes the largest enhancement on persistent luminescence. • The optimal doping concentration of Eu 2+ was experimentally to be 1mol %. • Possible mechanism for persistent luminescence was discussed.

  10. Neutron-diffraction study of the crystal structure of the superconductor TiSr2(Eu0.8Ce0.2)2Cu2Oz

    International Nuclear Information System (INIS)

    Ishigaki, T.; Ogasawara, Y.; Oikawa, K.; Hoshikawa, A.; Kamiyama, T.

    2004-01-01

    TiSr 2 (RE 1-x Ce x ) 2 Cu 2 O z superconductors (T c ∼20 K) have a 1222-structure with fluorite blocks. Neutron diffraction has been performed on the Eu-containing compound TiSr 2 (Eu 0.8 Ce 0.2 ) 2 Cu 2 O z , with natural Eu, and its crystal structure was refined. The neutron powder diffraction experiment was carried out on the VEGA diffractometer at KENS. The sample was contained in a thin flat cell of 0.5 mm thickness in order to reduce the large absorption effects of natural Eu. The absorption correction for the flat sample was taken into account in the Rietveld refinement. The results show that the O(1) atom in the Ti-layer is shifted from the 4c-site to the split site (8j), and that the concentration is deficient (g∼0.19)

  11. The Sr2.75Ce0.25Co2O7-δ oxide, n=2 member of the Ruddlesden-Popper series: Structural and magnetic evolution depending on oxygen stoichiometry

    International Nuclear Information System (INIS)

    Demont, A.; Hebert, S.; Pelloquin, D.; Maignan, A.

    2008-01-01

    The second member of the Ruddlesden-Popper series, n=2 in Sr n+1 Co n O 3n+1 , has been stabilized by substituting cerium for strontium leading to the pure compound Sr 2.75 Ce 0.25 Co 2 O 7-δ . The oxygen vacancies of this phase can be partially filled by a post-annealing oxidizing treatment with δ decreasing from 1.1 to 0.3 for the as-prepared and oxidized phases, respectively. As the samples are oxidized from δ∼1.1 to 0.3, the a and b unit cell parameters decrease from 3.836 to 3.815 A and from 20.453 to 20.047 A, respectively. Despite the average value of the cobalt valence state, V Co ∼+3.5, obtained in the oxidized Sr 2.75 Ce +4 0.25 Co 2 O 6.7 phase, a clear ferromagnetic state wit T C =175 K and M S =0.8 μB/Co is reached. - Graphical abstract: Temperature dependence of the magnetic susceptibility of as-prepared and PO 2 annealing Sr 2.75 Ce 0.25 Co 2 O 7-δ RP2-type structures

  12. Phase-inversion tape-casting preparation and significant performance enhancement of Ce0.9Gd0.1O1.95- La0.6Sr0.4Co0.2Fe0.8O3-δ dual-phase asymmetric membrane for oxygen separation

    DEFF Research Database (Denmark)

    Huang, Hua; Cheng, Shiyang; Gao, Jianfeng

    2014-01-01

    The dual-phase Ce0.9Gd0.1O1.95–La0.6Sr0.4Co0.2Fe0.8O3−δ asymmetric membrane was prepared via a phase-inversion tape-casting method. The membrane consisted of a thicker porous support layer and a thinner dense layer. When the dense side of the membrane was coated with a La0.6Sr0.4CoO3−δ catalytic...

  13. A {mu}SR study of the magnetoresistive ruthenocuprates RuSr{sub 2}Nd{sub 1.8-x}Y {sub 0.2}Ce{sub x}Cu{sub 2}O{sub 10-{delta}} (x = 0.95 and 0.80)

    Energy Technology Data Exchange (ETDEWEB)

    Mclaughlin, A C [Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE (United Kingdom); Attfield, J P [Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King' s Buildings, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Van Duijn, J [Instituto de Investigacion en EnergIas Renovables, Universidad de Castilla la Mancha, Albacete, E02006 (Spain); Hillier, A D, E-mail: a.c.mclaughlin@abdn.ac.uk [ISIS facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2011-09-14

    Zero field muon spin relaxation (ZF-{mu}SR) has been used to study the magnetic properties of the underdoped giant magnetoresistive ruthenocuprates RuSr{sub 2}Nd{sub 1.8-x}Y {sub 0.2}Ce{sub x}Cu{sub 2}O{sub 10-{delta}} (x = 0.95, 0.80). The magnetoresistance (MR) is defined so that MR = (({rho}{sub H}-{rho}{sub 0})/{rho}{sub 0}) and the giant magnetoresistive ruthenocuprates RuSr{sub 2}Nd{sub 1.8-x}Y {sub 0.2}Ce{sub x}Cu{sub 2}O{sub 10-{delta}} exhibit a large reduction in electronic resistivity upon application of a magnetic field. The ZF-{mu}SR results show a gradual loss of initial asymmetry A{sub 0} at the ruthenium spin transition temperature, T{sub Ru}. At the same time the electronic relaxation rate, {lambda}, shows a gradual increase with decreasing temperature below T{sub Ru}. These results have been interpreted as evidence for Cu spin cluster formation below T{sub Ru}. These magnetically ordered clusters grow as the temperature is decreased thus causing the initial asymmetry to decrease slowly. Giant magnetoresistance is observed over a wide temperature range in the materials studied and the magnitude increases as the temperature is reduced from T{sub Ru} to 4 K which suggests a relation between Cu spin cluster size and |-MR|. (paper)

  14. Luminescence and thermoluminescence properties of Sr{sub 3}WO{sub 6}:Eu{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Emen, F.M., E-mail: femen106@gmail.com [Department of Chemistry, Faculty of Arts and Science, Mehmet Akif Ersoy University, TR 15030, Burdur (Turkey); Altinkaya, R. [Department of Chemistry, Faculty of Arts and Science, Mersin University, TR 33343, Mersin (Turkey)

    2013-02-15

    Sr{sub 3-x}WO{sub 6}:xEu{sup 3+} (x varies from 0.01 to 0.06) phosphors have been prepared at high temperature by the solid-state method. The crystal structure of Sr{sub 2.95}WO{sub 6}:0.05Eu{sup 3+} phosphor has been determined as a triclinic P-1 space group with a=8.3608 (19) A, b=8.2903 (24) A, c=8.2145 (23) A, {alpha}=89.79 (3){sup Degree-Sign }, {beta}=89.82 (3){sup Degree-Sign }, and {gamma}=89.753 (22){sup Degree-Sign }. The excitation spectrum of Sr{sub 2.95}WO{sub 6}:0.05Eu{sup 3+} phosphor reveals five excitation bands: one is assigned to the charge-transfer (CTLM) band of Sr{sub 3}WO{sub 6} host at 307 nm, and another is assigned to intra-4f transitions between 393 nm and 600 nm. The emission spectrum of Sr{sub 2.95}WO{sub 6}:0.05Eu{sup 3+} phosphor exhibits a series of emission bands, which are attributed to the {sup 5}D{sub 0}{yields}{sup 7}F{sub j} (j=0-4) transitions of Eu{sup 3+} ions. The luminescence studies revealed that the Eu{sup 3+} ions show high luminescent efficiency in emitting red light at 616 nm. The thermoluminescence glow curve shows one dominant glow peak observed at 56 Degree-Sign C which is related to the defects at shallow trap depth. The trap parameters mainly activation energy (E{sub a}) and the order of the kinetics (b) were evaluated by using Rasheedy's three points method (TPM). - Highlights: Black-Right-Pointing-Pointer The Sr{sub 3}WO{sub 6}:Eu{sup 3+} phosphor was prepared by using conventional ceramic method. Black-Right-Pointing-Pointer The diffraction peaks of phosphor have been indexed to triclinic system. Black-Right-Pointing-Pointer The emission peak at 616 nm belongs to {sup 5}D{sub 0}{yields}{sup 7}F{sub 2} electric dipole transitions of Eu{sup 3+}. Black-Right-Pointing-Pointer The emission band of WO{sub 6} and excitation bands of Eu{sup 3+} are overlapping each other. Black-Right-Pointing-Pointer The energy transfer from WO{sub 6} groups to the Eu{sup 3+} ions occurs under the UV excitation.

  15. Blue and green emission from Ce3+ and Tb3+ co-doped Y2O3 nanoparticles

    International Nuclear Information System (INIS)

    Loitongbam, Romeo Singh; Singh, W. Rameshwor; Phaomei, Ganngam; Singh, N. Shanta

    2013-01-01

    Tb 3+ doped Y 2 O 3 nanoparticles of 4–10 nm size were synthesized from nitrate precursors by the urea hydrolysis method in ethylene glycol medium at a low temperature of 140 °C. Characteristic green emission of Tb 3+ corresponding to 5 D 4 → 7 F J is observed to be very strong, which is further enhanced with heat treatment temperature. Characteristic blue color emission of Ce 3+ ion originating from 5d→ 2 F 7/2 (424 nm) and 2 F 5/2 (486 nm) transitions are found to be very strong in as-synthesized Ce 0.02 Tb 0.06 Y 1.92 O 3 nanoparticles. However, its luminescence intensity decreases with increase in heating temperature or increase in the particle size/crystallinity, whereas a weak emission peak of Tb 3+ ion at 545 nm is witnessed. The polycrystalline nature of the as-prepared sample changed to highly crystalline state when heated at an elevated temperature (1200 °C). -- Highlights: • Y 2 O 3 nanoparticles doped with Tb 3+ and Ce 3+ of 4–10 nm are synthesized. • Strong green emission of Tb 3+ from 5 D 4 → 7 F J transition is observed. • Strong blue emission of Ce 3+ from 5d→ 2 F 7/2 and 2 F 5/2 transitions is observed. • Ce 3+ emission decreases with annealing or increase in particle size. • Such nanoparticles can be used in LEDs and bio-labeling

  16. Electronic structure and luminescence properties of self-activated and Eu{sup 2+}/Ce{sup 3+} doped Ca{sub 3}Li{sub 4-y}Si{sub 2}N{sub 6-y}O{sub y} red-emitting phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Quansheng; Ding, Jianyan; Li, Yanyan; Wang, Xicheng [Key Laboratory for Special Function Materials and Structural Design of the Ministry of the Education (China); Department of Material Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Yuhua, E-mail: wyh@lzu.edu.cn [Key Laboratory for Special Function Materials and Structural Design of the Ministry of the Education (China); Department of Material Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2017-06-15

    The undoped and Eu{sup 2+}/Ce{sup 3+} doped Ca{sub 3}Li{sub 4-y}Si{sub 2}N{sub 6-y}O{sub y} (0≤y≤1.5) (CLSN) were successfully prepared by solid-state reaction and their luminescence properties were studied. The undoped CLSN shows red defect-related luminescence with maximum emission intensity at 710 nm, Eu{sup 2+} and Ce{sup 3+} doped CLSN also show red emission centered at 702 nm and 673 nm, respectively. The electronic structure and the thermal stability of CLSN were investigated in this work. The results indicate that CLSN:Eu{sup 2+}/Ce{sup 3+} could be conducive to the development of phosphor-converted light-emitting diodes.

  17. Lu{sub 3}(Al,Si){sub 5}(O,N){sub 12}:Ce{sup 3+} phosphors with broad emission band and high thermal stability for white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiaqing; Wang, Xiaojun; Xuan, Tongtong; Wang, Chunbo; Li, Huili, E-mail: hlli@phy.ecnu.edu.cn; Sun, Zhuo

    2015-02-15

    A yellow-orange emitting Lu{sub 3}Al{sub 5−x}Si{sub x}O{sub 12−x}N{sub x}:Ce{sup 3+} phosphor with excellent color rendering, high luminescent efficiency and high thermal stability was reported in this paper. It was synthesized by a conventional solid-state reaction method. The effect of Si{sup 4+}–N{sup 3−} incorporation on the optical properties of Lu{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} phosphor was investigated and compared to YAG:Ce{sup 3+} with the same compositions. Similarly, the addition of α-Si{sub 3}N{sub 4} leads to a distinct redshift and broadening of photoluminescent spectrum, which is assigned to the increased covalency and crystal field strength caused by N{sup 3−}. Nevertheless, an excellent thermal stability and a higher integrated intensity presented by α-Si{sub 3}N{sub 4}-doped LuAG:Ce{sup 3+} are distinctive. Further, the emission intensity can be greatly enhanced by adding NaF flux. Finally, the white LED flat lamp with a CRI as high as 83 and a luminous efficiency of 85 lm/W is successfully realized by using a single LuAG-based oxynitride phosphor combined with a blue LED chip, which is completely feasible for general indoor illuminations to replace the traditional fluorescent or incandescent lamps. - Highlights: • Si{sub 3}N{sub 4}-doped LuAG:Ce{sup 3+} oxynitride phosphors were synthesized by a solid-state reaction. • The effect of Si{sup 4+}–N{sup 3−} incorporation on the optical properties was investigated. • The addition of Si{sub 3}N{sub 4} leads to an obvious redshift of the emission spectra. • Lu{sub 3}Al{sub 5−x}Si{sub x}O{sub 12−x}N{sub x}:Ce{sup 3+} shows an excellent thermal stability and a higher intensity. • A warm white LED with CRI=83 is achieved by a single oxynitride phosphor.

  18. White-electroluminescent device with horizontally patterned blue/yellow phosphor-layer structure

    International Nuclear Information System (INIS)

    Won Park, Boo; Sik Choi, Nam; Won Park, Kwang; Mo Son, So; Kim, Jong Su; Kyun Shon, Pong

    2007-01-01

    White-electroluminescent (EL) devices with stripe-patterned and square-patterned phosphor-layer structures are fabricated through a screen printing method: electrode/BaTiO 3 insulator layer/patterned blue ZnS:Cu, Cl and yellow ZnS:Cu, Mn phosphor layer/ITO PET substrate. The luminous intensities of EL devices with stripe-patterned and square-patterned phosphor-layer structures are 33% and 23% higher than a conventional device with the phosphor-layer structure without any patterns using the phosphor blend. It can be explained in terms of the absorption of the emitted blue light of blue phosphor layer by the yellow-emitting phosphor layer. The EL device of our patterned phosphor-layer structure gives the possibility to enhance the luminance

  19. Defect mediated optical properties in ZnAl2O4 phosphor

    Science.gov (United States)

    Pathak, Nimai; Saxena, Suryansh; Kadam, R. M.

    2018-04-01

    The present work describes defect mediated optical properties in ZnAl2O4 phosphor material, synthesized through sol-gel combustion method, which has potential to be used both as a blue emitting phosphor material as well as white emitting, depending upon the annealing temperature during the synthesis procedure. Various defect centers such as anionic vacancy, cationic vacancy, antisite defects etc. create different electronic states inside the band gap, which are responsible for the multicolour emission. The interesting colour tunable emission characteristics can be linked with the various defect centers and their changes upon annealing.

  20. (Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties.

    Science.gov (United States)

    Shang, Mengmeng; Li, Guogang; Yang, Dongmei; Kang, Xiaojiao; Peng, Chong; Cheng, Ziyong; Lin, Jun

    2011-10-07

    (Zn(1-x-y)Mg(y))(2)GeO(4): xMn(2+) (y = 0-0.30; x = 0-0.035) phosphors with uniform submicrorod morphology were synthesized through a facile hydrothermal process. X-Ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the samples. SEM and TEM images indicate that Zn(2)GeO(4):Mn(2+) samples consist of submicrorods with lengths around 1-2 μm and diameters around 200-250 nm, respectively. The possible formation mechanism for Zn(2)GeO(4) submicrorods has been presented. PL and CL spectroscopic characterizations show that pure Zn(2)GeO(4) sample shows a blue emission due to defects, while Zn(2)GeO(4):Mn(2+) phosphors exhibit a green emission corresponding to the characteristic transition of Mn(2+) ((4)T(1)→(6)A(1)) under the excitation of UV and low-voltage electron beam. Compared with Zn(2)GeO(4):Mn(2+) sample prepared by solid-state reaction, Zn(2)GeO(4):Mn(2+) phosphors obtained by hydrothermal process followed by high temperature annealing show better luminescence properties. In addition, codoping Mg(2+) ions into the lattice to substitute for Zn(2+) ions can enhance both the PL and CL intensity of Zn(2)GeO(4):Mn(2+) phosphors. Furthermore, Zn(2)GeO(4):Mn(2+) phosphors exhibit more saturated green emission than the commercial FEDs phosphor ZnO:Zn, and it is expected that these phosphors are promising for application in field-emission displays.

  1. Preparation and photoluminescence properties of Mn2+-activated M2Si5N8 (M = Ca, Sr, Ba) phosphors

    NARCIS (Netherlands)

    Duan, C.J.; Otten, W.M.; Delsing, A.C.A.; Hintzen, H.T.J.M.

    2008-01-01

    Mn2+-doped M2Si5N8 (M=Ca, Sr, Ba) phosphors have been prepared by a solid-state reaction method at high temperature and their photoluminescence properties were investigated. The Mn2+-activated M2Si5N8 phosphors exhibit narrow emission bands in the wavelength range of 500–700 nm with peak center at

  2. Improvement of photoluminescence intensity of Ce-doped Y{sub 3}Al{sub 5}O{sub 12} phosphor by Si{sub 3}N{sub 4} addition

    Energy Technology Data Exchange (ETDEWEB)

    Shyu, Jiin-Jyh, E-mail: jjshyu@ttu.edu.tw; Yang, Chia-Wei

    2017-06-01

    Yttrium aluminum garnet (Y{sub 3}Al{sub 5}O{sub 12}, YAG) has been widely used as a host for luminescent ions. The present paper describes the effects of Si{sub 3}N{sub 4} addition on the formation and photoluminescence properties of the Ce-doped YAG yellow phosphors. Phosphor powders with the nominal compositions of Y{sub 2.95}Ce{sub 0.05}Al{sub 5-m}Si{sub m}O{sub 12-m}N{sub m} (m = 0–0.6) were prepared by calcining the mixed raw materials at 1500 °C in nitrogen atmosphere. X-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscope, and transmission electron microscopy equipped with an energy dispersive x-ray spectrometer were used to characterize the structure of the calcined powders. The photoluminescence properties were measured with fluorescence spectrophotometry. It was found that in the range of m = 0–0.27, single phase YAG solid solution (s.s.) in which the Y, Al, and O sites are partially occupied by Ce, Si, and N ions, respectively. The nitrogen ions do not distribute homogeneously over the YAG lattice. The tendency to bond with nitrogen ion for the cations is (Y, Ce) > Si > Al. With the increase in the Si{sub 3}N{sub 4} content, the increase in both the Ce{sup 3+}/(Ce{sup 3+} + Ce{sup 4+}) ratio and the Ce-N bonds improve the intensity of the photoluminescent emission. At m = 0.27, the emission intensity reaches a maximum which is about 2.5 and 1.6 times of that for the Si{sub 3}N{sub 4}-free composition (m = 0) calcined in air and nitrogen, respectively. When the Si{sub 3}N{sub 4} content (m) is higher than 0.27, the emission intensity decreases due to the existence of residual Si{sub 3}N{sub 4} phase. - Highlights: • Addition of Si{sub 3}N{sub 4} can increase the emission intensity of YAG:Ce up to 2.5 times. • Increase in the Ce{sup 3+}/Ce{sup 4+} ratio and the number of Ce-N bonds improve the emission. • The tendency to bond with nitrogen ion for cations in YAG:Ce is (Y, Ce) > Si > Al. • The incomplete dissolution

  3. Upconversion luminescence of Er3+/Yb3+ doped Sr5(PO4)3OH phosphor powders

    Science.gov (United States)

    Mokoena, P. P.; Swart, H. C.; Ntwaeaborwa, O. M.

    2018-04-01

    Sr5(PO4)3OH co-doped with Er3+and Yb3+ powder phosphors were synthesized by urea combustion method. The crystal structure was analyzed using X-ray diffraction (XRD). Particle morphology was analyzed using a Jeol JSM 7800F thermal field emission scanning electron microscope (FE-SEM) and the chemical composition analysis was carried out using an Oxford Instruments AzTEC energy dispersive spectrometer (EDS) attached to the FE-SEM. Upconversion emission was measured by using a FLS980 Spectrometer equipped with a 980 nm NIR laser as the excitation source, and a photomultiplier (PMT) detector. The XRD data of the Sr5(PO4)3OH powder exhibited characteristic diffraction patterns of the hexagonal structure referenced in the standard JCPDS card number 00-033-1348. The sharp peaks revealed the formation of crystalline Sr5(PO4)3OH. The powders were made up of hexagonal nanospheres. The enhanced red emission due to the 4F9/24I15/2 transitions of Er3+ was observed and was attributed to up conversion (UC) energy transfer from Yb3+. The upconversion energy transfer mechanism from Yb3+ to Er3+ is discussed.

  4. Synthesis of novel Dy3+ activated phosphate phosphors for NUV excited LED

    International Nuclear Information System (INIS)

    Shinde, K.N.; Dhoble, S.J.; Kumar, Animesh

    2011-01-01

    The new trivalent dysprosium activated X 6 AlP 5 O 20 (where X=Sr, Ba, Ca and Mg) phosphors were prepared by the combustion method. The prepared phosphors are characterized by XRD, photoluminescence and SEM techniques. Excited by 350 nm near-ultraviolet (NUV) light, the phosphors show an efficient blue and yellow band emissions, which originates from the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions of Dy 3+ ion, respectively. The excitation spectra of the phosphors are broadband extending from 340 to 400 nm, which are characteristics of NUV excited LED. The effect of the Dy 3+ concentration on the luminescence properties of X 6 AlP 5 O 20 :Dy 3+ (where X=Sr, Ba, Ca and Mg) phosphors is studied. Ca 6 AlP 5 O 20 phosphors show strong PL emission intensity around 25 times more as compared to Ba 6 AlP 5 O 20 , Sr 6 AlP 5 O 20 and Mg 6 AlP 5 O 20 phosphors. The investigated prepared phosphors are suitable for a NUV excited LED. - Research highlights: → Novel Dy 3+ activated X 6 AlP 5 O 20 (where X=Sr,Ba,Ca and Mg) phosphors were prepared by combustion method which is very low cost and time saving synthesis method. → The excitation spectra of the phosphors are broad band extending from 340 nm to 400 nm, which is characteristics of NUV excited LED. → PL emission spectra show two emissions (485 and 573 nm) and X 6 AlP 5 O 20 :Dy 3+ 0.5 mol% (where X=Sr,Ba,Ca and Mg) phosphors shows strongest PL emission intensity. → SEM analysis indicates that phosphor particles have irregular shape, porous morphology and less than 3-4 μm in size, which is suitable for the solid state lighting (coating purpose).

  5. Structural and luminescence properties of SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+},Nd{sup 3+} phosphor thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wako, A.H., E-mail: wakoah@ufs.ac.za [Department of Physics, University of the Free State, QwaQwa Campus, Private Bag X13, Phuthaditjhaba 9866 (South Africa); Dejene, F.B. [Department of Physics, University of the Free State, QwaQwa Campus, Private Bag X13, Phuthaditjhaba 9866 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA-9300 (South Africa)

    2016-01-01

    Thin films of Eu{sup 2+} doped and Dy{sup 3+},Nd{sup 3+} co-doped Strontium Aluminate (SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+},Nd{sup 3+}) phosphors were grown on Si(100) substrates by a pulsed laser deposition (PLD) technique using a 266 nm Nd:YAG pulsed laser under varying substrate temperature and the working atmosphere during the film deposition process. The effect of substrate temperatures and argon partial pressure on the structure and luminescence properties of the as-deposited SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+},Nd{sup 3+} phosphor thin films were analysed. XRD patterns showed that with increasing substrate temperature and argon partial pressure the peaks in the direction (220) shifted to the lower 2-theta angles. Photoluminescence (PL) data collected in air at room temperature revealed a slight shift in the peak wavelength of the PL spectra observed from the thin films when compared to the PL spectra of the phosphor in powder form, which is probably due to a change in the crystal field. The PL intensity of the samples was highest for 100 °C substrate temperature and 20 mTorr argon partial pressure. Due to this, the effect of argon partial pressure was studied at a constant substrate temperature of 100 °C while the effect of Substrate temperatures recorded at 20 mTorr argon pressure respectively.

  6. Red, green, and blue lanthanum phosphate phosphors obtained via surfactant-controlled hydrothermal synthesis

    International Nuclear Information System (INIS)

    Sousa Filho, Paulo C. de; Serra, Osvaldo A.

    2009-01-01

    A new solution route for the obtainment of highly pure luminescent rare-earth orthophosphates in hydrothermal conditions was developed. By starting from soluble precursors (lanthanide tripolyphosphato complexes, i.e. with P 3 O 10 5- as a complexing agent and as an orthophosphate source) and by applying surfactants in a water/toluene medium, the precipitations are confined to reverse micelle structures, thus yielding nanosized and homogeneous orthophosphates. The method was employed to obtain lanthanide-activated lanthanum phosphates, which can be applied as red (LaPO 4 :Eu 3+ ), green (LaPO 4 :Ce 3+ ,Tb 3+ ) and blue (LaPO 4 :Tm 3+ ) phosphors. The produced materials were analyzed by powder X-ray diffractometry, scanning electron microscopy, infrared spectroscopy and luminescence spectroscopy (emission, excitation, lifetimes and chromaticity coordinates).

  7. A study on the photographic characteristics related to the morphology of phosphor layers in the ca wo4 and gd2o2s : Tb screen

    International Nuclear Information System (INIS)

    Lee, In Ja; Huh, Joon

    1993-01-01

    Recently, various screen film system have been introduced in diagnostic radiology. There are two kinds of screen film system : blue emitting Ca WO 4 screen has been largely used in these days. However, it tends to be changed to use green emitting Gd 2 O 2 S : Tb screen. In this study, photographic characteristics of Ca WO 4 , and Gd 2 O 2 S : Tb screen were investigated with luminescence, spectroscopy. The morphology of Ca WO 4 , and Gd 2 O 2 S : Tb were also observed by using scanning electron microscope. The result obtained were as follows: 1. There was small difference in the thickness of phosphor layers for the front and back screen of blue emitting system, but little difference in those of green emitting system. 2. There was no difference in the size of phosphor particles between the front and back screen for each screen. However, the particle size was different for the various kinds of screens. 3. The shape of phosphor particle was round with many faces for all the screens. 4. In the exposure of X - ray with the same intensity, luminescent intensity of a green emitting system was 6∼7 times larger than that of a blue emitting system. 5. The thickness of phosphor layers does not affect on the sensitivity of the screens exposed by X - ray

  8. Near-UV and blue wavelength excitable Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} high efficiency red phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, A. [Smart Lighting Engineering Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Electrical Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Dutta, P.S., E-mail: duttap@rpi.edu [Smart Lighting Engineering Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Electrical Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2015-05-15

    Red phosphors with narrow emission around 615 nm (with FWHM~5–10 nm) having chemical compositions of A{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} (A=Mg, Sr) have been found to exhibit the highest luminescence amongst the molybdate–tungstate family when excited by sources in the 380–420 nm wavelength range. Thus they are most suitable for enhancing color rendering index and lowering color temperature in phosphor converted white LEDs (pc-WLEDs) with near-UV/blue LED excitation sources. The excitation band edge in the near UV/blue wavelength in the reported phosphor has been attributed to the coordination environment of the transition metal ion (Mo{sup 6+}, W{sup 6+}) and host crystal structure. Furthermore the quantum efficiency of the phosphors has been enhanced by adjusting activator concentration, suitable compositional alloying using substitutional alkaline earth metal cations and charge compensation mechanisms. - Graphical abstract: The charge transfer excitation of orthorhombic Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} is significantly higher than tetragonal CaMoO{sub 4}: Eu{sup 3+} phosphors making Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} prime candidates for fabrication of warm white phosphor-converted LEDs. - Highlights: • LED excitable Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} phosphors were synthesized. • These phosphors are 10 times more intense than CaMoO{sub 4}: Eu{sup 3+} red phosphors. • Their intensity and efficiency were enhanced by materials optimization techniques. • Such techniques include compositional alloying, charge compensation, etc.

  9. Distribution of stable traps for thermoluminescent processes in the phosphor SrAl2O4: Eu2+, Dy3+

    International Nuclear Information System (INIS)

    Pedroza M, M.; Castaneda, B.; Arellano T, O.; Melendrez, R.; Barboza F, M.

    2007-01-01

    Full text: The phosphor of persistent luminescence (PLUM) SrAl 2 O 4 :Eu 2+ , Dy 3+ exhibits one thermoluminescence curve after exposing it to UV radiation. The curve is made up of a wide band with a maximum around 455 K. Starting from the experimental deconvolution method proposed by McKeever, it was solved the number of peaks in the TL curve and it was analyzed the position of each TL peak regarding to the cut temperature (T stop ). In this analysis five maximum TL peaks were observed (at the diagram T stop vs T max ) around the 319, 425, 457, 488 and 515 K. Also, its were also found two regions that correspond to an overlap of stable traps, the first one in the region of the 380 K at 415 K and the second of the 430 to 455 K. The existence of a distribution of stable traps can be evaluated from the curve T stop vs T max where this distribution of stable traps is presented as a monotonous lineal increase with the temperature, because the TL independent processes appear like horizontal lines exactly in the specific temperatures (319, 425, 457, 488 and 515 K) where its are liberated most of the trapped charges. Using the preheating method and initial increase for the peak in 455 K the trap depths are determined, being obtained the following values of the activation energy 0.28, 0.67, 1, 1.5 and 1.62 eV. An arrangement of stable traps plays a decisive role in the emission of the persistent luminescence. Likewise, it was determined that all the thermoluminescent processes were characterized by a re trapping of the charge, reason by which these processes followed a second order kinetics. The TL peak of low temperature 319 K is related with those electronic traps that the PLUM takes place in SrAl 2 O 4 : Eu 2+ and with the same recombination centers. The PLUM emissions and the TL are centered around 510 nm attributed to the electronic transition 4f 6 5d 14f 7 corresponding to the Eu 2+ ion. In this work, it is explained the participation or contribution of the

  10. Combustion synthesis and characterization of blue long lasting phosphor CaAl2O4: Eu2+, Dy3+ and its novel application in latent fingerprint and lip mark detection

    Science.gov (United States)

    Sharma, Vishal; Das, Amrita; Kumar, Vijay; Kumar, Vinay; Verma, Kartikey; Swart, H. C.

    2018-04-01

    This work investigates the structural, optical and photometric characterization of a Eu2+/Dy3+ doped calcium aluminates phosphor (CaAl2O4: Eu2+/Dy3+) for finger and lip print detections. Synthesis of CaAl2O4: Eu2+/Dy3+ (CAED) phosphors were carried out via a combustion synthesis method with urea as a fuel. Eu2+/Dy3+ doped CaAl2O4 phosphors have been studied with X-ray diffraction (XRD, Energy Dispersive X-Ray Spectroscopy Selected Area Diffraction (SAED) and High resolution Transmission Electron Microscope (HR-TEM). The XRD pattern shows that the synthesized Eu2+/Dy3+ doped CaAl2O4 phosphor have a single monoclinic structure and show that the addition of the dopant/co-dopants didn't change the crystal structure. The formation of monoclinic phase was confirmed by the selected area diffraction pattern. The TEM micrograph displays the morphology of the synthesized Eu2+/Dy3+ doped CaAl2O4 phosphors as spherical particles with an average particle size of 33 nm. The optical band gap was calculated using the diffuse reflectance for the synthesized nanophosphor powders. The photoluminescence emission spectra was recorded for the synthesized powder, with an excitation wavelength of 326 nm and the major bands was recorded at 447 nm corresponding to the blue color and two minor bands were recorded at 577 nm and 616 nm. To the best of our knowledge, this work is the first to show the use of CaAl2O4: Eu2+/Dy3+ nanophosphor in developing latent fingerprint and lip print effectively.

  11. Novel green-emitting Na2CaPO4F:Eu2+ phosphors for near-ultraviolet white light-emitting diodes

    International Nuclear Information System (INIS)

    Huang, Chien-Hao; Chen, Yen-Chi; Kuo, Te-Wen; Chen, Teng-Ming

    2011-01-01

    In this study, green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions. The excitation spectra of the phosphors showed a broad hump between 250 and 450 nm; the spectra match well with the near-ultraviolet (NUV) emission spectra of light-emitting diodes (LEDs). The emission spectrum showed an intense broad emission band centered at 506 nm. White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02 Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package; the white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light. - Highlights: → Novel green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions in this research. → White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package. → The white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light.

  12. Electrochemical behaviours of Eu(III/E(II and Ce(IV/Ce(III in H3PO4-H2O media : solvation and complexation reactions

    Directory of Open Access Journals (Sweden)

    Belqat B.

    2018-01-01

    Full Text Available Many kinds of rare earth elements (REE such as europium and cerium have been make them essential elements in many high-tech components. The electrochemical studies can be presented as an interesting indication for europium and cerium extraction from phosphoric solutions, including solvation and complexation reactions. The normal redox potentials of Eu3+/Eu2+ and Ce4+/Ce3+ systems have been determined in H3PO4-H2O media with various phosphoric acid concentration. The solvation of these elements in phosphoric media is characterized by their transfer activity coefficients "f" calculated from the corresponding normal redox potentials. The corresponding solvation increases with increasing the H3PO4 concentration. For each REE, the electrochemical properties depend on its number of charges and on its basic properties. Results suggest that solvation and complexation of REE phosphates are important in controlling REE concentration.

  13. Wet chemical synthesis and luminescence in Ca5(PO4)3M:Eu2+ (M = Br, I) phosphors for solid state lighting

    Science.gov (United States)

    Mungmode, C. D.; Gahane, D. H.; Moharil, S. V.

    2018-05-01

    A simple wet chemical synthesis of Eu2+ activated Ca5(PO4)3Br and Ca5(PO4)3I phosphors and their photoluminescence is reported. Formation of Ca5(PO4)3Br is confirmed by X-ray diffraction (XRD). Synthesized phosphors are analyzed for photoluminescence (PL) spectrum. A bright blue emission is observed when phosphors are excited by near Ultra Violet (nUV) radiations. Photoluminescence emission spectrum for (Ca0.985Eu0.015)5(PO4)3Br is centered at 457 nm and for (Ca0.985Eu0.015)5(PO4)3 I it peaks at 455 nm when excited by 365 nm near UV radiation. Eu2+ luminescence in Ca5(PO4)3Br is reported for the first time. The phosphors can be efficiently excited by nUV radiations. This shows that phosphors may be used as blue phosphor in pcLED for Solid State Lighting.

  14. Spectroscopic properties of Eu{sup 3+}:KLa(WO{sub 4}){sub 2} novel red phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Rasu, K. Kavi; Balaji, D.; Babu, S. Moorthy, E-mail: babusm@yahoo.com

    2016-02-15

    Eu{sup 3+}:KLa(WO{sub 4}){sub 2} (Eu:KLW) phosphors were prepared through Pechini type sol–gel method. Low temperature synthesis was achieved through polyesterification between citric acid and ethylene glycol during the growth procedure. The properties of phosphors were analysed using X-ray diffractogram (XRD), scanning electron microscopy (SEM), Raman and luminescence spectroscopy. An effective energy transfer from the tungstate matrix to the activator Eu{sup 3+} was observed. Intense red emission in Eu:KLW phosphors was observed while excited with f–f transitions of Eu{sup 3+}. The Judd–Ofelt (J–O) intensity parameters Ω{sub 2} and Ω{sub 4} were obtained from the emission intensities of {sup 5}D{sub 0}→{sup 7}F{sub 2},{sub 4,} respectively by taking the magnetic dipole {sup 5}D{sub 0}→{sup 7}F{sub 1} emission band intensity as reference. The CIE colour co-ordinates of the Eu:KLW red phosphors was calculated (x=0.650, y=0.348), which are close to NTSC standard values. - Highlights: • Eu:KLW phosphors were synthesized by pechini type sol–gel method. • Structural, morphological, vibrational and luminescence properties were well investigation. • Eu{sup 3+}:KLa(WO{sub 4}){sub 2} phosphors has strong red emission at about 615 nm ({sup 5}D{sub 0}→{sup 7}F{sub 2}) under the excitation of near UV and blue LEDs regions. • Decay measurement and Judd–Ofelt parameter were calculated and dicussed. • These phosphors can serve as a potential candidate for red source for White LEDs application.

  15. Energy transfer and color tunable emission in Tb3+,Eu3+ co-doped Sr3LaNa(PO4)3F phosphors.

    Science.gov (United States)

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-05

    A group of color tunable Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369nm excitation, owing to efficient energy transfer of Tb 3+ →Eu 3+ , the emission spectra both have green emission of Tb 3+ and red emission of Eu 3+ . An efficient energy transfer occur in Tb 3+ , Eu 3+ co-doped Sr 3 LaNa(PO 4 ) 3 F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb 3+ and Eu 3+ was confirmed by the variations of emission and excitation spectra and Tb 3+ /Eu 3+ decay lifetimes in Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ . The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb 3+ content by changing Eu 3+ concentrations. The results show that the prepared Tb 3+ , Eu 3+ co-doped color tunable Sr 3 LaNa(PO 4 ) 3 F phosphor can be used for white LED. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Energy transfer and color tunable emission in Tb3 +,Eu3 + co-doped Sr3LaNa(PO4)3F phosphors

    Science.gov (United States)

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-01

    A group of color tunable Sr3LaNa(PO4)3F:Tb3 +,Eu3 + phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369 nm excitation, owing to efficient energy transfer of Tb3 + → Eu3 +, the emission spectra both have green emission of Tb3 + and red emission of Eu3 +. An efficient energy transfer occur in Tb3 +, Eu3 + co-doped Sr3LaNa(PO4)3F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb3 + and Eu3 + was confirmed by the variations of emission and excitation spectra and Tb3 +/Eu3 + decay lifetimes in Sr3LaNa(PO4)3F:Tb3 +,Eu3 +. The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb3 + content by changing Eu3 + concentrations. The results show that the prepared Tb3 +, Eu3 + co-doped color tunable Sr3LaNa(PO4)3F phosphor can be used for white LED.

  17. NIR emitting K2SrCl4:Eu2+, Nd3+ phosphor as a spectral converter for CIGS solar cell

    Science.gov (United States)

    Tawalare, P. K.; Bhatkar, V. B.; Omanwar, S. K.; Moharil, S. V.

    2018-05-01

    Intense near-infrared emitting phosphor K2SrCl4:Eu2+,Nd3+ with various concentrations of Nd3+ were synthesized. These are characterized with X-ray diffraction, reflectance, photoluminescence emission and photoluminescence excitation spectroscopy, PL lifetime measurements. The emission can be excited by a broad band in near ultra violet region as a consequence of Eu2+→Nd3+ energy transfer. The efficiency of Eu2+→Nd3+ energy transfer is as high as 95%. Fluorescence decay curves for Eu2+ doped samples are almost exponential and described by τ = 500 ns. Eu2+ lifetimes are shortened after Nd3+ doping. Near infrared Emission intensity is limited by Nd3+→Nd3+ energy transfer and the consequent concentration quenching. Nd3+ emission matches well with the spectral response of CIGS and CIS solar cells. Absorption of near ultra violet radiations followed by conversion to near infrared indicates the potential application in solar photovoltaics.

  18. Ce and Eu-doped LiSrAlF6 scintillators for neutron detectors

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kawaguchi, Noriaki; Fujimoto, Yutaka; Yokota, Yuui; Yamazaki, Atsushi; Watanabe, Kenichi; Kamada, Kei; Yoshikawa, Akira; Chani, Valery

    2011-01-01

    Ce 1%, Eu 1%, and Eu 2%-doped LiSrAlF 6 (LiSAF) single crystals were grown by the micro-pulling-down method for thermal neutron applications. The crystals were transparent, 2.0 mm in diameter and 20–40 mm in length. Neither visible inclusions nor cracks were observed. Their transmittance spectra were measured. The strong absorption lines were observed at 200, 240, and 300 nm for Ce:LiSAF due to Ce 3+ 4f–5d transition. In Eu:LiSAF, 200 (4f–5d) and 300 (4f–4f) nm absorption lines were detected. The samples demonstrated strong emission peaks at 300 nm (Ce:LiSAF) and 370 nm (Eu:LiSAFs) when they were irradiated with 241 Am α-rays simulating the α-particles from the 6 Li(n, α) reaction. Thermal neutron responses were examined under 252 Cf irradiation. The absolute light yield of Ce, Eu 1%, and Eu 2% crystals were 3400, 18000, and 30000 ph/n, respectively. Main components of the scintillation decay time of Ce, Eu 1%, and Eu 2%-doped LiSAFs were 63, 1293, and 1205 ns.

  19. White light-emitting diodes (LEDs) using (oxy)nitride phosphors

    International Nuclear Information System (INIS)

    Xie, R-J; Hirosaki, N; Sakuma, K; Kimura, N

    2008-01-01

    (Oxy)nitride phosphors have attracted great attention recently because they are promising luminescent materials for phosphor-converted white light-emitting diodes (LEDs). This paper reports the luminescent properties of (oxy)nitride phosphors in the system of M-Si-Al-O-N (M = Li, Ca or Sr), and optical properties of white LEDs using a GaN-based blue LED and (oxy)nitride phosphors. The phosphors show high conversion efficiency of blue light, suitable emission colours and small thermal quenching. The bichromatic white LEDs exhibit high luminous efficacy (∼55 lm W -1 ) and the multi-phosphor converted white LEDs show high colour rendering index (Ra 82-95). The results indicate that (oxy)nitride phosphors demonstrate their superior suitability to use as down-conversion luminescent materials in white LEDs

  20. The seeding effect of floating zone growth on Nd sub 1 sub . sub 8 sub 5 Ce sub 0 sub . sub 1 sub 5 CuO sub 4 and Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub - subdelta single crystals

    CERN Document Server

    Lin, C T; Liang, B

    2002-01-01

    Single crystals with the [100] orientation were selected and used as seeds to investigate the effect of travelling solvent floating zone growth on superconducting oxides of Nd sub 1 sub . sub 8 sub 5 Ce sub 0 sub . sub 1 sub 5 CuO sub 4 and Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub - subdelta. The number of nuclei was remarkably reduced and random nuclei could be eased when the seeding was applied during the growth of Nd sub 1 sub . sub 8 sub 5 Ce sub 0 sub . sub 1 sub 5 CuO sub 4 single crystals, compared to the crystals grown without seed. The crystal could preferentially grow on the seed although some additional nuclei occurred at the solid-liquid interface during the initial growth process. In consequence, the crystal ingot obtained is a large single grain having dimensions of 5 mm in diameter and 40 mm in length. The orientation of the seeded growth crystal was found to be 5deg off the [100] seed identified by an x-ray Laue pattern. For the growth of Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub - subdelta, it...

  1. High Q ceramics in the ACe2(MoO4)4 (A = Ba, Sr and Ca) system for LTCC applications

    International Nuclear Information System (INIS)

    Surjith, A.; Ratheesh, R.

    2013-01-01

    Highlights: ► Solid state synthesis of phase pure ACe 2 (MoO 4 ) 4 (A = Ba, Sr and Ca) ceramics. ► Structural and microstructural evaluation of the synthesized ceramic materials. ► Microwave dielectric property studies of ACe 2 (MoO 4 ) 4 (A = Ba, Sr and Ca) ceramics. ► Structure-property correlation through Laser Raman studies. - Abstract: Novel low temperature sinterable high Q ceramic systems ACe 2 (MoO 4 ) 4 (A = Ba, Sr and Ca) have been prepared through solid state ceramic method. The effect of ionic radii of alkaline earth cations on the structure, microstructure and microwave dielectric properties of these ceramics were studied using powder X-ray diffraction, Laser Raman spectroscopy, scanning electron microscopy and Vector Network Analyzer. A structural change from monoclinic to tetragonal structure was observed while substituting Sr 2+ and Ca 2+ cations in place of Ba 2+ . The Sr and Ca analogues possess better microwave dielectric properties compared to BaCe 2 (MoO 4 ) 4 . All the ceramics were well sintered below 840 °C with dielectric constant in the range 10.2–12.3 together with good quality factor. The SrCe 2 (MoO 4 ) 4 ceramic exhibits an unloaded quality factor of 6762 at 8.080662 GHz with a temperature coefficient of resonant frequency of −46 ppm/°C while the CaCe 2 (MoO 4 ) 4 ceramic shows an unloaded quality factor of 7549 at 6.928868 GHz and a temperature coefficient of resonant frequency of −44 ppm/°C.

  2. Evaluation of sol-gel derived Eu{sup 2+} activated SrMgAl{sub 2}SiO{sub 7} as a novel nanostructure luminescent pigment

    Energy Technology Data Exchange (ETDEWEB)

    Sameie, H.; Salimi, R. [Faculty of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sabbagh Alvani, A.A., E-mail: sabbagh_alvani@aut.ac.i [Color and Polymer Research Center (CPRC), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sarabi, A.A. [Faculty of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Moztarzadeh, F.; Tahriri, M. [Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2010-12-01

    A novel nanostructure pigment of Eu{sup 2+} doped SrMgAl{sub 2}SiO{sub 7} was prepared via the sol-gel route. The phase composition and condition of crystallites during heating were characterized by X-ray diffraction (XRD) analysis. Investigation of optical properties by spectrophotometer illustrated that under short ultraviolet excitation wavelength, the main emission peak occurred at about 415-420 nm. Also, relatively pure purplish blue color was observed that can be ascribed to the 4f{sup 6}5d{sup 1}({sup 2}D){yields}4f{sup 7}({sup 8}S{sub 7/2}) transition of Eu{sup 2+}. The effect of calcination temperature on the luminescence properties of the phosphors was evaluated and, also in this case, scanning electron microscope (SEM) was employed. From colorimetry results, color coordinations of phosphor shift towards the deep blue region as calcination temperature increases. Finally, grain size of products at optimum calcination temperature was estimated to be about 20-30 nm using Scherrer's equation, which was consistent with transmission electron microscopy (TEM) observations.

  3. Thermoluminescence response of K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3} nanophosphor Co-doped with Eu and Ce for gamma ray dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B. J. [Dept. of Physics, Abasaheb Garware College, Pune-411004 (India); Bhadane, Mahesh S.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India); Mandlik, N. T. [Dept. of Physics, Fergusson College, Pune-411004 (India); Kulkarni, M. S. [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Bhatt, B. C. [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2015-06-24

    K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3} nanophosphors co-doped with Eu and Ce were synthesized by the chemical co-precipitation method. These samples were further annealed at 700 °C structural reformation. The structural and morphological characteristics were studied using XRD and TEM techniques. The particle size calculated from XRD spectra was around 35 nm. The as synthesized sample shows cubic structure annealed at 700 °C. The as synthesized and annealed sample of K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3}: EuCe were irradiated with Co{sup 60} gamma rays for the doses from 2Gy to 1kGy. The TL characteristic sample of co-doped were studied for the dosimetric application by gamma radiation. The TL spectrum of annealed sample has single peaked at 160 °C. The Eu doped sample has a high TL sensitivity than Ce doped sample. But after co-doping with Eu and Ce, TL intensity observed to be decreased. The decrees in TL peak intensity of the phosphor on co-doping of Eu and Ce gives an insight into the emission mechanism of the phosphor which involves energy transfer from Eu to Ce. The TL response of all the samples were found to be linear for the dose from 2 Gy to 1 KGy. Therefore, K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3}: EuCe nanophosphor can be used for the measurement of high dose of gamma radiation.

  4. Optimizing Blue Persistent Luminescence in (Sr 1 Ba δ ) 2 MgSi 2 O 7: Eu 2+ ,Dy 3+ via Solid Solution for Use in Point-of-Care Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Erin; Cobb, Angelica; Duke, Anna; Paterson, Andrew; Brgoch, Jakoah (Luminostics); (Houston)

    2016-11-04

    Inorganic persistent luminescent phosphors are an excellent class of optical reporters for enabling sensitive point-of-care diagnostics, particularly with smartphone-based biosensing devices in testing formats such as the lateral flow assay (LFA). Here, the development of persistent phosphors for this application is focused on the solid solution (Sr1Baδ)2MgSi2O7:Eu2+,Dy3+ (δ = 0, 0.125, 0.25, 0.375), which is prepared using a high-temperature solid-state reaction as confirmed by synchrotron X-ray powder diffraction. The substitution of barium for strontium enables control over the Eu2+ 5d-orbital crystal field splitting (CFS) as a tool for tuning the emission wavelength while maintaining luminescence lifetimes >9 min across the composition range. Thermoluminescence measurements of the solid solution provide evidence that trap states contribute to the persistent lifetimes with the trap depths also remaining constant as a function of composition. Time-gated luminescence images of these compounds are captured on a smartphone arranged in a layout to mimic a point-of-care test and demonstrate the viability of using these materials as optical reporters. Moreover, comparing the blue-emitting (Sr0.625Ba0.375)2MgSi2O7:Eu2+,Dy3+ and the green-emitting SrAl2O4:Eu2+,Dy3+ in a single LFA-type format shows these two compounds can be detected and resolved simultaneously, thereby permitting the development of a multiplexed LFA.

  5. Luminescence and surface properties of Tb3+ doped Sr3(VO4)2 nanophosphors

    International Nuclear Information System (INIS)

    Bedyal, A.K.; Kumar, Vinay; Sharma, Vishal

    2013-01-01

    In this paper, we present a detailed investigation of the luminescence and surface properties of Tb 3+ doped Sr 3 (VO 4 ) 2 nanocrystalline phosphors, synthesized by the combustion method. X-ray diffraction (XRD) peaks in the patterns corresponding to the reflection of rhombohedral pure phase of Sr 3 (VO 4 ) 2 . The average particle sizes have been found in the range of 30-34 nm. Scanning electron microscopy (SEM) indicated that an agglomerated peanut like morphology was obtained. Photoluminescence (PL) spectroscopy has been utilized to investigate the spectral properties of the phosphor. Under 237 nm excitation, it shows several bands centered at 487, 544, 588 and 624 nm, which result from 5 D 4 → 7 F J (J = 6, 5, 4 and 3) transitions of Tb 3+ , and the green emission band ( 5 D 4 → 7 F 5 ) located at 544 nm is dominant. The chemical states and homogeneous dopants' distribution in the host were analyzed with X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectroscopy (TOF-SIMS), respectively. A ToF-SIMS imaging shows an uniform distribution of Tb 3+ in the Sr 3 (VO 4 ) 2 . (author)

  6. SrAl2O4:Eu2+(,Dy3+ Nanosized Particles: Synthesis and Interpretation of Temperature-Dependent Optical Properties

    Directory of Open Access Journals (Sweden)

    Huayna Terraschke

    2015-01-01

    Full Text Available SrAl2O4 nanosized particles (NPs undoped as well as doped with Eu2+ and Dy3+ were prepared by combustion synthesis for the discussion of their intensively debated spectroscopic properties. Emission spectra of SrAl2O4:Eu2+(,Dy3+ NPs are composed by a green band at 19 230 cm−1 (520 nm at room temperature, assigned to anomalous luminescence originated by Eu2+ in this host lattice. At low temperatures, a blue emission band at 22 520 cm−1 (444 nm is observed. Contrary to most of the interpretations provided in the literature, we assign this blue emission band very reliably to a normal 4f6(7FJ5d(t2g→4f7(8S7/2 transition of Eu2+ substituting the Sr2+ sites. This can be justified by the presence of a fine structure in the excitation spectra due to the different 7FJ levels (J=0⋯6 of the 4f6 core. Moreover, Fano antiresonances with the 6IJ (J=9/2,7/2 levels could be observed. In addition, the Stokes shifts (ΔES=1 980 cm−1 and 5 270 cm−1 for the blue and green emission, resp., the Huang-Rhys parameters of S=2.5 and 6, and the average phonon energies of ħω=480 cm-1 and 470 cm−1 coupled with the electronic states could be reliably determined.

  7. Pyrolysis synthesis of Zn{sub 2}SiO{sub 4}:Mn{sup 2+} phosphors – effect of fuel, flux and co-dopants

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, V.; Lakshmanan, Arunachalam, E-mail: arunachalamlakshmanan@yahoo.com

    2014-01-15

    Green emitting α-Zn{sub 2}SiO{sub 4}:Mn{sup 2+} phosphors were made by pyrolysis route at 600 °C followed by sintering at a moderate temperature of 1000 °C for 1 h duration. The effects of different fuels (urea, citric acid, polyethylene glycol and glycine), flux materials (H{sub 3}BO{sub 3}, NH{sub 4}Cl, NH{sub 4}F, NH{sub 4}Br, BaCl{sub 2}, BaBr{sub 2}, CaF{sub 2} and BaF{sub 2}), divalant co-dopants (Ca{sup 2+}, Ba{sup 2+}, Mg{sup 2+} and Sr{sup 2+}), trivalent co-dopants (Al{sup 3+}, Y{sup 3+} and Gd{sup 3+}) and sintering temperature (800–1000 °C) on the photoluminescence (PL) efficiency of Zn{sub 2}SiO{sub 4}:Mn{sup 2+} were studied. Among the fuels, urea and among the flux, H{sub 3}BO{sub 3} gave a maximum broad band green PL emission peak at 525 nm on excitation at 254 nm. Divalent co-dopants improved the PL intensity much more than the trivalent co-dopants used. Highest PL efficiency was observed with Sr{sup 2+} co-doped Zn{sub 2}SiO{sub 4}:Mn{sup 2+} sintered at 1000 °C in reducing atmosphere which was 20% higher than that of the commercial Zn{sub 2}SiO{sub 4}:Mn{sup 2+}. The formation of a single crystalline phase of willemite structure in the α-Zn{sub 2}SiO{sub 4}:Mn{sup 2+} samples synthesized was confirmed by powder XRD measurements. -- Highlights: • Zn{sub 2}SiO{sub 4}:Mn{sup 2+} green phosphors were made by pyrolysis route. • Effect of fuel, flux and co dopant on PL intensity. • Enhancement in luminescence with divalent co-dopants, notably Sr. • PL efficiency 20% higher than that of the commercial phosphor. • XRD confirm single phase willemite structure of Zn{sub 2}SiO{sub 4}:Mn{sup 2+}.

  8. Luminescence properties of novel red-emitting phosphor InNb1-xPxO4:Eu3+ for white light emitting-diodes

    Directory of Open Access Journals (Sweden)

    Tang An

    2015-06-01

    Full Text Available InNb1-xPxO4:Eu3+ red phosphors were synthesized by solid-state reaction and their luminescence properties were also studied through photoluminescence spectra. The excitation and emission spectra make it clear that the as-prepared phosphors can be effectively excited by near-ultraviolet (UV 394 nm light and blue 466 nm light to emit strong red light located at 612 nm, due to the Eu3+ transition of 5D0 → 7F2. The luminescence intensity is dependent on phosphorus content, and it achieves the maximum at x = 0.4. Excessive phosphorus in the phosphors can result in reduction of luminescence intensity owing to concentration quenching.With the increasing content of phosphorus, the phosphors are prone to emit pure red light. This shows that the InNb1.6P0.4O4:0.04Eu3+ phosphor may be a potential candidate as a red component for white light emitting-diodes.

  9. Synthesis and luminescence behavior of SrGd1.76Eu0.24O4 host for display and dosimetric applications

    Science.gov (United States)

    Singh, Jyoti; Manam, J.; Singh, Fouran

    2018-05-01

    Novel SrGd1.76Eu0.24O4 materials were synthesized by conventional high-temperature solid-state reaction method in air ambiance. The structural and luminescence properties of as-prepared phosphors were explored by XRD, FESEM, TEM, PL and TL techniques. The confirmation of orthorhombic phase formation was obtained by XRD studies. The agglomerated ginger-like morphology of as-synthesized SrGd1.76Eu0.24O4 samples was unfolded by FESEM and TEM studies. Upon 276 and 395 nm UV excitation, SrGd1.76Eu0.24O4 phosphors showed intense red emission. The TL glow curve of SrGd1.76Eu0.24O4 irradiated with γ-rays exhibits two well-resolved peaks at 393 K and 598 K having a shoulder at 537 K. Linearity in a wide dose range 500 Gy-3 kGy are observed in the as-formed SrGd1.76Eu0.24O4 samples. Intense red emission, linear dose response and high reproducibility of SrGd1.76Eu0.24O4 samples broadly indicated its suitability for display and TL dosimetry applications.

  10. Using rare earth doped thiosilicate phosphors in white light emitting LEDs: Towards low colour temperature and high colour rendering

    International Nuclear Information System (INIS)

    Smet, P.F.; Korthout, K.; Haecke, J.E. van; Poelman, D.

    2008-01-01

    Rare earth doped thiosilicates are promising materials for use in phosphor converted light emitting diodes (pcLEDs). These phosphors (including the hosts Ca 2 SiS 4 , BaSi 2 S 5 and Ba 2 SiS 4 in combination with Ce 3+ and/or Eu 2+ doping) cover the entire visible part of the spectrum, as the emission colour can be changed from deep blue to red. The photoluminescence emission spectrum and the overlap of the excitation spectrum with the emission of pumping LEDs is evaluated. The trade-off between high colour rendering and high electrical-to-optical power efficiency is discussed by simulation with both blue and UV emitting LEDs. Finally, a phosphor combination with low colour temperature (3000 K) and high colour rendering (CRI = 93) is proposed

  11. Some crystal chemistry of (Ln,Ce)2CuO4-δ superconductors

    International Nuclear Information System (INIS)

    Goodman, P.; Keating, A.; Myhra, S.; White, T.J.

    1989-01-01

    Compounds of the form (Ln, Sr, Ce) 2 CuO 4-δ (Ln = rare earth element) crystallise as the Nd 2 CuO 4 structure type, K 2 NiF 4 structure type or perfectly and imperfectly ordered intergrowths of these parent structures. These structurally similar phases exhibit superconductivity in which the charge carriers are holes (in Sr-doped material) or electrons (in Ce doped material). In this study, X-ray Photoelectron Spectroscopy (XPS) and High Resolution Electron Microscopy (HREM) were used to investigate the charge balancing mechanisms operating in each superconducting regime and the structural changes accompanying compositional variation. It was found that under slightly reducing conditions charge coupled cation substitutions predominate, whilst at low pO 2 ( -5 atm) perfectly ordered oxygen superlattices form. The structural and electronic changes which accompany deoxygenation were observed in situ during XPS and HREM observations. 29 refs., 8 figs., 3 tabs

  12. Enhancing the performance of Ce:YAG phosphor-in-silica-glass by controlling interface reaction

    International Nuclear Information System (INIS)

    Zhou, Beiying; Luo, Wei; Liu, Sheng; Gu, Shijia; Lu, Mengchen; Zhang, Yan; Fan, Yuchi; Jiang, Wan; Wang, Lianjun

    2017-01-01

    Dispersing the Ce"3"+ doped yttrium aluminum garnet (Ce:YAG) phosphor in the glass matrix has been widely investigated to replace conventional organic resin or silicone packaging. However, the reaction layer formed between commercial phosphors and glass matrix severely degrades the optical performance of Ce:YAG phosphor in silica glass (PiSG) materials. This paper demonstrates an ultra-fast method for preparing high performance PiSG materials. Instead of traditional melting process, the highly transparent PiSG samples can be rapidly fabricated from mixtures of commercial Ce:YAG phosphor and mesoporous SiO_2 (SBA-15) powders using spark plasma sintering (SPS) at relatively low temperature (1000 °C) within short time (10 min). Owing to the inhibition of the deleterious interface reactions between Ce:YAG phosphor and silica glass matrix, the phosphor has been perfectly preserved, and the internal relative quantum yield of the PiSG sample reaches as high as 93.5% when excited at 455 nm, which is the highest efficiency in current research. Furthermore, combining the PiSG sample, we successfully fabricate a light-emitting diode (LED) module exhibiting a superior performance with luminous efficacy of 127.9 lm/W, correlated color temperature of 5877 K and color rendering index of 69 at the operating current of 120 mA. This work on the high performance LED modules provides not only a new approach to fabricate the functional glass-based materials that is sensitive to the high temperature, but also a possibility to extend the lifetime and improve the optical performances of the glass based LEDs.

  13. Photoluminescence studies of organic phosphor coated diffusing surface using blue inorganic light-emitting diode as excitation source

    International Nuclear Information System (INIS)

    Singh, Gyanendra; Mehta, Dalip Singh

    2013-01-01

    We report the studies on photoluminescence (PL) of organic phosphor coated on a diffusing surface using a blue inorganic light-emitting diode (LED) array as an excitation source. The organic phosphor composite coated diffuser was used to scatter the directional blue light from the LED array. Some of the blue light is absorbed by the organic phosphor composite and the phosphor molecules are excited and re-emit light at longer wavelengths due to the PL process. The output light consists of scattered blue light plus phosphor generated broadband yellow light, thus making white light. The diffuser was made up of a plastic substrate coated with an organic composite of small molecule fluorescent material zinc(II)bis(8-hydroxyquinoline) (Znq 2 ) doped with different percentages of electro-phosphorescent metal complex iridium(III)bis(2-methyldibenzo-[f, h] quinoxaline) (acetylacetonate) ([Ir(MDQ) 2 (acac)]). By means of changing the concentration and the thickness of the phosphor composite material the colour coordinates of white light were achieved. The CIE coordinates and correlated colour temperature were calculated for various thicknesses and phosphor composite concentrations and the results are reported. (paper)

  14. Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5 : Eu2+ and Sr3SiO5 : Eu2+, Dy3+ phosphors

    International Nuclear Information System (INIS)

    Sun Xiaoyuan; Zhang Jiahua; Zhang Xia; Luo Yongshi; Wang Xiaojun

    2008-01-01

    We report the observation of long lasting yellow phosphorescence and photostimulated luminescence (PSL) in Sr 3 SiO 5 : Eu 2+ and Sr 3 SiO 5 : Eu 2+ , Dy 3+ phosphors. The decay patterns of phosphorescence and thermoluminescence curves demonstrate that introduction of Dy 3+ into Sr 3 SiO 5 : Eu 2+ can generate a large number of shallow traps and deep traps. The generated deep traps prolong the phosphorescence up to 6 h after UV irradiation. The PSL is studied under 808 nm excitation. Slow rising and falling edges of the emission in Sr 3 SiO 5 : Eu 2+ , Dy 3+ are observed, showing a retrapping process by the generated shallow traps due to co-doping Dy 3+ .

  15. 4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode

    KAUST Repository

    Duran Retamal, Jose Ramon

    2015-12-21

    Visible Light Communication (VLC) as a new technology for ultrahigh-speed communication is still limited when using slow modulation light-emitting diode (LED). Alternatively, we present a 4-Gbit/s VLC system using coherent blue-laser diode (LD) via 16-quadrature amplitude modulation orthogonal frequency division multiplexing. By changing the composition and the optical-configuration of a remote phosphor-film the generated white light is tuned from cool day to neutral, and the bit error rate is optimized from 1.9 × 10-2 to 2.8 × 10-5 in a blue filter-free link due to enhanced blue light transmission in forward direction. Briefly, blue-LD is an alternative to LED for generating white light and boosting the data rate of VLC. © 2015 Optical Society of America.

  16. 4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode

    KAUST Repository

    Duran Retamal, Jose Ramon; Oubei, Hassan M.; Janjua, Bilal; Chi, Yu-Chieh; Wang, Huai-Yung; Tsai, Cheng-Ting; Ng, Tien Khee; Hsieh, Dan-Hua; Kuo, Hao-Chung; Alouini, Mohamed-Slim; He, Jr-Hau; Lin, Gong-Ru; Ooi, Boon S.

    2015-01-01

    Visible Light Communication (VLC) as a new technology for ultrahigh-speed communication is still limited when using slow modulation light-emitting diode (LED). Alternatively, we present a 4-Gbit/s VLC system using coherent blue-laser diode (LD) via 16-quadrature amplitude modulation orthogonal frequency division multiplexing. By changing the composition and the optical-configuration of a remote phosphor-film the generated white light is tuned from cool day to neutral, and the bit error rate is optimized from 1.9 × 10-2 to 2.8 × 10-5 in a blue filter-free link due to enhanced blue light transmission in forward direction. Briefly, blue-LD is an alternative to LED for generating white light and boosting the data rate of VLC. © 2015 Optical Society of America.

  17. Morphology, structure and optical properties of hydrothermally synthesized CeO2/CdS nanocomposites

    Science.gov (United States)

    Mohanty, Biswajyoti; Nayak, J.

    2018-04-01

    CeO2/CdS nanocomposites were synthesized using a two-step hydrothermal technique. The effects of precursor concentration on the optical and structural properties of the CeO2/CdS nanoparticles were systematically studied. The morphology, composition and the structure of the CeO2/CdS nanocomposite powder were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectrum analysis (EDXA) and X-ray diffraction (XRD), respectively. The optical properties of CeO2/CdS nanocomposites were studied by UV-vis absorption and photoluminescence (PL) spectroscopy. The optical band gaps of the CeO2/CdS nanopowders ranged from 2.34 eV to 2.39 eV as estimated from the UV-vis absorption. In the room temperature photoluminescence spectrum of CeO2/CdS nanopowder, a strong blue emission band was observed at 400 nm. Since the powder shows strong visible luminescence, it may be used as a blue phosphor in future. The original article published with this DOI was submitted in error. The correct article was inadvertently left out of the original submission. This has been rectified and the correct article was published online on 16 April 2018.

  18. Phosphors for LED lamps

    Science.gov (United States)

    Murphy, James Edward; Manepalli, Satya Kishore; Kumar, Prasanth Nammalwar

    2013-08-13

    A phosphor, a phosphor blend including the phosphor, a phosphor prepared by a process, and a lighting apparatus including the phosphor blend are disclosed. The phosphor has the formula (Ca.sub.1-p-qCe.sub.pK.sub.q).sub.xSc.sub.y(Si.sub.1-rGa.sub.r).sub.zO.su- b.12+.delta. or derived from a process followed using disclosed amounts of reactants. In the formula, (02; and -0.1.ltoreq..delta..ltoreq.0.4. In one embodiment, 31; 2.ltoreq.y.ltoreq.2.15; and 3.ltoreq.z.ltoreq.3.2. Similarly, in another embodiment, 3.ltoreq.x.ltoreq.3.1; 22.15; and 2.8.ltoreq.z.ltoreq.3.2.

  19. Luminescence and Luminescence Quenching of K2Bi(PO4)(MoO4):Eu3+ Phosphors with Efficiencies Close to Unity.

    Science.gov (United States)

    Grigorjevaite, Julija; Katelnikovas, Arturas

    2016-11-23

    A very good light emitting diode (LED) phosphor must have strong absorption, high quantum efficiency, high color purity, and high quenching temperature. Our synthesized K 2 Bi(PO 4 )(MoO 4 ):Eu 3+ phosphors possess all of the mentioned properties. The excitation of these phosphors with the near-UV or blue radiation results in a bright red luminescence dominated by the 5 D 0 → 7 F 2 transition at ∼615 nm. Color coordinates are very stable when changing Eu 3+ concentration or temperature in the range of 77-500 K. Furthermore, samples doped with 50% and 75% Eu 3+ showed quantum efficiencies close to 100% which is a huge benefit for practical application. Temperature dependent luminescence measurements showed that phosphor performance increases with increasing Eu 3+ concentration. K 2 Eu(PO 4 )(MoO 4 ) sample at 400 K lost only 20% of the initial intensity at 77 K and would lose half of the intensity only at 578 K. Besides, the ceramic disks with thicknesses of 0.33 and 0.89 mm were prepared from K 2 Eu(PO 4 )(MoO 4 ) powder, and it turned out that they efficiently converted the radiation of 375 nm LED to the red light. The conversion of 400 nm LED radiation to the red light was not complete; thus, the light sources with various tints of purple color were obtained. The combination of ceramic disks with 455 nm LED yielded the light sources with tints of blue color due to the low absorption of ceramic disk in this spectral range. In addition, these phosphors possess a very unique emission spectra; thus, they could also be applied in luminescent security pigments.

  20. On the application of CaF2:Eu and SrF2:Eu phosphors in LED based phototherapy lamp

    Science.gov (United States)

    Belsare, P. D.; Moharil, S. V.; Joshi, C. P.; Omanwar, S. K.

    2013-06-01

    In the last few years the interest of scientific community has been increased towards solid state lighting based on LEDs because of their superior advantages over the conventional fluorescent lamps. As the GaN based LEDs are easily available efforts of the researchers are now on making the new phosphors which are excitable in the near UV region (360-400nm) for solid state lighting. This paper reports the photoluminescence characteristics of CaF2:Eu and SrF2:Eu phosphor prepared by wet chemical method. The violet emission of these phosphors with near UV excitation can be useful in making a phototherapy lamp based on LEDs for treating various skin diseases like acne vulgaris and hyperbilirubinemia.

  1. Synthesis, crystal structure and optical properties of the catena-metaphosphates Ce(PO3)4 and U(PO3)4

    International Nuclear Information System (INIS)

    Hoeppe, Henning A.; Daub, Michi

    2012-01-01

    The catena-metaphosphates of tetravalent cerium and tetravalent uranium were obtained as phase pure crystalline powders by reaction of the respective dioxides with phosphoric acid at 500 C. Ce(PO 3 ) 4 and U(PO 3 ) 4 crystallise in space group C2/c (Z = 16, a Ce = 13.7696(3) Aa, b Ce = 29.7120(7) Aa, c Ce = 8.9269(2) Aa, β Ce = 90.00(1) Aa 3 and a U = 13.786(3) Aa, b U = 29.843(6) Aa, c U = 8.9720(18) Aa, β U = 90.01(3) Aa 3 ). The vibrational and optical spectra of pale yellow Ce(PO 3 ) 4 and emerald-greenish U(PO 3 ) 4 are also reported. (orig.)

  2. Wavelength dependent loading of traps in the persistent phosphor SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, H.; Lovy, D. [Department of Physical Chemistry, University of Geneva, Quai E. Ansermet 30, CH-1211 Geneva 4 (Switzerland); Yoon, S.; Pokrant, S. [Laboratory Materials for Energy Conversion, Empa-Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600, Dübendorf (Switzerland); Gartmann, N.; Walfort, B. [LumiNova AG, Speicherstrasse 60a, CH-9053, Teufen (Switzerland); Bierwagen, J., E-mail: Jakob.Bierwagen@unige.ch [Department of Physical Chemistry, University of Geneva, Quai E. Ansermet 30, CH-1211 Geneva 4 (Switzerland)

    2016-02-15

    The persistent phosphorescence and thermoluminescence of SrAl{sub 2}O{sub 4}:Eu{sup 2+}:Dy{sup 3+} is reported for a variety of different excitation wavelengths and excitation temperatures, to provide new insights in the mechanism of the trapping and detrapping. These measurements reveal that the trapping is strongly dependent on the wavelength and temperature. First, with increasing loading temperature, the thermoluminescence peak shifts to lower temperatures which corresponds to a change of trap population. Secondly, the integrated thermoluminescent intensity increases with increasing loading temperature. All wavelength and temperature dependent experiments indicate that the loading of the traps is a thermally activated processes. Utilizing different wavelengths for loading, this effect can be enhanced or reduced. Furthermore excitation with UV-B-light reveals a tendency for detrapping the phosphor, reducing the resulting thermoluminescent intensity and changing the population of the traps.

  3. Thin-Film Photoluminescent Properties and the Atomistic Model of Mg2TiO4 as a Non-rare Earth Matrix Material for Red-Emitting Phosphor

    Science.gov (United States)

    Huang, Chieh-Szu; Chang, Ming-Chuan; Huang, Cheng-Liang; Lin, Shih-kang

    2016-12-01

    Thin-film electroluminescent devices are promising solid-state lighting devices. Red light-emitting phosphor is the key component to be integrated with the well-established blue light-emitting diode chips for stimulating natural sunlight. However, environmentally hazardous rare-earth (RE) dopants, e.g. Eu2+ and Ce2+, are commonly used for red-emitting phosphors. Mg2TiO4 inverse spinel has been reported as a promising matrix material for "RE-free" red light luminescent material. In this paper, Mg2TiO4 inverse spinel is investigated using both experimental and theoretical approaches. The Mg2TiO4 thin films were deposited on Si (100) substrates using either spin-coating with the sol-gel process, or radio frequency sputtering, and annealed at various temperatures ranging from 600°C to 900°C. The crystallinity, microstructures, and photoluminescent properties of the Mg2TiO4 thin films were characterized. In addition, the atomistic model of the Mg2TiO4 inverse spinel was constructed, and the electronic band structure of Mg2TiO4 was calculated based on density functional theory. Essential physical and optoelectronic properties of the Mg2TiO4 luminance material as well as its optimal thin-film processing conditions were comprehensively reported.

  4. 2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system

    KAUST Repository

    Lee, Changmin; Shen, Chao; Oubei, Hassan M.; Cantore, Michael; Janjua, Bilal; Ng, Tien Khee; Farrell, Robert M.; El-Desouki, Munir M.; Speck, James S.; Nakamura, Shuji; Ooi, Boon S.; DenBaars, Steven P.

    2015-01-01

    We demonstrate data transmission of unfiltered white light generated by direct modulation of a blue gallium nitride (GaN) laser diode (LD) exciting YAG:Ce phosphors. 1.1 GHz of modulation bandwidth was measured without a limitation from the slow 3.8 MHz phosphor response. A high data transmission rate of 2 Gbit/s was achieved without an optical blue-filter using a non-return-to-zero on-off keying (NRZ-OOK) modulation scheme. The measured bit error rate (BER) of 3.50 × 10−3 was less than the forward error correction (FEC) limit of 3.8 × 10−3. The generated white light exhibits CIE 1931 chromaticity coordinates of (0.3628, 0.4310) with a color rendering index (CRI) of 58 and a correlated color temperature (CCT) of 4740 K when the LD was operated at 300 mA. The demonstrated laser-based lighting system can be used simultaneously for indoor broadband access and illumination applications with good color stability.

  5. 2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system

    KAUST Repository

    Lee, Changmin

    2015-11-05

    We demonstrate data transmission of unfiltered white light generated by direct modulation of a blue gallium nitride (GaN) laser diode (LD) exciting YAG:Ce phosphors. 1.1 GHz of modulation bandwidth was measured without a limitation from the slow 3.8 MHz phosphor response. A high data transmission rate of 2 Gbit/s was achieved without an optical blue-filter using a non-return-to-zero on-off keying (NRZ-OOK) modulation scheme. The measured bit error rate (BER) of 3.50 × 10−3 was less than the forward error correction (FEC) limit of 3.8 × 10−3. The generated white light exhibits CIE 1931 chromaticity coordinates of (0.3628, 0.4310) with a color rendering index (CRI) of 58 and a correlated color temperature (CCT) of 4740 K when the LD was operated at 300 mA. The demonstrated laser-based lighting system can be used simultaneously for indoor broadband access and illumination applications with good color stability.

  6. Facile solution-precipitation assisted synthesis and luminescence property of greenish-yellow emitting Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Haipeng [School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083 (China); Huang, Zhaohui, E-mail: huang118@cugb.edu.cn [School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083 (China); Xia, Zhiguo, E-mail: xiazg@ustb.edu.cn [The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Xie, Yao [School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083 (China); Molokeev, Maxim S. [Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Department of Physics, Far Eastern State Transport University, Khabarovsk 680021 (Russian Federation); Atuchin, Victor V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Functional Electronics Laboratory, Tomsk State University, Tomsk 634050 (Russian Federation); Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-03-15

    Highlights: • Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphor was prepared by the solution-precipitation assisted route. • The phosphors have satisfactory smooth grain surface and particle size. • It shows greenish-yellow color emission (maximum at 540 nm) upon blue light excitation. • Eu{sup 2+} is coordinated with isolated oxygen atoms and those from PO{sub 4} polyhedra. - Abstract: Greenish-yellow emitting microcrystalline Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphor was successfully prepared by a solution-precipitation assisted high temperature reaction method. Phase structure, morphology and/or luminescence properties of the precursor and the as-prepared phosphors were characterized. The phase-pure Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphors were obtained with smooth grain surface and particle size of 2–8 μm. Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} exhibits bright greenish-yellow color emission with its maximum at 540 nm upon UV-blue light excitation. The maximum position of the broad emission band is independent on the calcination temperature. The emission intensity increases with increasing calcination temperature due to improved crystallinity. Besides, the presence of two Eu{sup 2+} emission centers in the Ca{sub 6}Ba(PO{sub 4}){sub 4}O crystal lattice was confirmed and the coordination effects are considered concerning the roles of isolated O atoms and those from the PO{sub 4} tetrahedra.

  7. Enhanced emission of encaged-OH--free Ca12(1-x)Sr12xAl14O33:0.1%Gd3+ conductive phosphors via tuning the encaged-electron concentration for low-voltage FEDs.

    Science.gov (United States)

    Zhang, Meng; Liu, Yuxue; Yang, Jian; Zhu, Hancheng; Yan, Duanting; Zhang, Xinyang; Liu, Chunguang; Xu, Changshan; Zhang, Hong

    2017-05-24

    Encaged-OH - -free Ca 12(1-x) Sr 12x Al 14 O 33 :0.1%Gd 3+ conductive phosphors were prepared through a melt-solidification process in combination with a subsequent heat treatment. Absorption spectra showed that the maximum encaged-electron concentration was increased to 1.08 × 10 21 cm -3 through optimizing the doping amount of Sr 2+ (x = 0.005). Meanwhile, FTIR and Raman spectra indicated that pure Ca 11.94 Sr 0.06 Al 14 O 33 :0.1%Gd 3+ conductive phosphor without encaged OH - and C 2 2- anions was acquired. For the conductive powders heat-treated in air for different times, the encaged-electron concentrations were tuned from 1.02 × 10 21 to 8.3 × 10 20 cm -3 . ESR, photoluminescence, and luminescence kinetics analyses indicated that the emission at 312 nm mainly originated from Gd 3+ ions surrounded by encaged O 2- anions, while Gd 3+ ions surrounded by encaged electrons had a negative contribution to the UV emission due to the existence of an energy transfer process. Under low-voltage electron-beam excitation (3 kV), enhanced cathodoluminescence (CL) of the conductive phosphors could be achieved by tuning the encaged-electron concentrations. In particular, for the encaged-OH - -free conductive phosphor, the emission intensity of the CL was about one order of magnitude higher than that of the conductive phosphor containing encaged OH - anions. Our results suggested that the encaged-OH - -free conductive phosphors have potential application in low-voltage FEDs.

  8. Blue emission in photoluminescence spectra of the red phosphor CaAlSiN3:Eu2+ at low Eu2+ concentration

    Science.gov (United States)

    Suda, Yoriko; Kamigaki, Yoshiaki; Yamamoto, Hajime

    2018-04-01

    In red phosphor CaAlSiN3:Eu2+, unintentional blue emission occurs with increasing intensity at low Eu2+ concentrations and also at low measurement temperatures. Time-resolved photoluminescence measurements were used to confirm the decrease in red emission and increase in blue emission with the decreasing Eu2+ concentration. The peak timing of blue emission occurred faster than that of red emission, and long lasting luminescence of red emission was observed as well as that of blue emission. The Eu2+ concentration dependences of the red and blue emissions were similar to those of the g values 4.75 (Eu2+) and 2.0025 (nitrogen vacancies), respectively, which were observed from electron spin resonance (ESR) measurements. The origin of the blue emission is proposed to be nitrogen vacancy defects, which had about the same ESR signal intensity as that of Eu2+ ions in CaAlSiN3:Eu2+ containing 0.01 at. % Eu2+. The possibility of red emission also arising from excited electron tunneling or thermal pathways via nitrogen vacancies is discussed. Long lasting red emission was observed, which is proposed to involve trapped electrons remaining at nitrogen vacancies, yielding blue emission and inducing red emission from Eu2+ ions.

  9. Unusual Concentration Induced Antithermal Quenching of the Bi(2+) Emission from Sr2P2O7:Bi(2.).

    Science.gov (United States)

    Li, Liyi; Peng, Mingying; Viana, Bruno; Wang, Jing; Lei, Bingfu; Liu, Yingliang; Zhang, Qinyuan; Qiu, Jianrong

    2015-06-15

    The resistance of a luminescent material to thermal quenching is essential for the application in high power LEDs. Usually, thermal luminescence quenching becomes more and more serious as the activator concentration increases. Conversely, we found here that a red phosphor Sr2P2O7:Bi(2+) is one of the exceptions to this as we studied the luminescence properties at low (10-300 K) and high (300-500 K) temperatures. As Bi(2+) ions are incorporated into Sr2P2O7, they exhibit the emissions at ∼660 and ∼698 nm at room temperature and are encoded, hereafter, as Bi(1) and Bi(2) due to the substitutions for two different crystallographic sites Sr(1) and Sr(2), respectively, in the compound. However, they will not substitute for these sites equally. At lower dopant concentration, they will occupy preferentially Sr(2) sites partially due to size match. As the concentration increases, more Bi(2+) ions start to occupy the Sr(1) sites. This can be verified by the distinct changes of emission intensity ratio of Bi(2) to Bi(1). As environment temperature increases, the thermal quenching happens, but it can be suppressed by the Bi(2+) concentration increase. This becomes even more pronounced in Bi(2+) heavily doped sample as we decompose the broad emission band into separated Bi(1) and Bi(2) Gaussian peaks. For the sample, the Bi(1) emission at ∼660 nm even shows antithermal-quenching particularly at higher temperatures. This phenomenon is accompanied by the blue shift of the overall emission band and almost no changes of lifetimes. A mechanism is proposed due to volume expansion of the unit cell, the increase of Bi(1) content, and temperature dependent energy transfer between Bi(2) and Bi(1). This work helps us better understand the complex luminescent behavior of Bi(2+) doped materials, and it will be helpful to design in the future the heavily doped phosphor for WLEDs with even better resistance to thermal quenching.

  10. Sol–gel synthesis and photoluminescence studies on colour tuneable Dy3+/Tm3+ co-doped NaGd(WO4)2 phosphor for white light emission

    International Nuclear Information System (INIS)

    Durairajan, A.; Balaji, D.; Rasu, K. Kavi; Moorthy Babu, S.; Hayakawa, Y.; Valente, M.A.

    2015-01-01

    A series of Dy 3+ /Tm 3+ ion co-doped NaGd(WO 4 ) 2 (NGW) phosphors were synthesised by a sol–gel method at low temperature for white light emission. The structural and luminescence properties of the synthesised phosphors were studied by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman and photoluminescence techniques. In Dy 3+ /Tm 3+ :NGW phosphors, the dopant ions substituted Gd 3+ ions that are located in S 4 sites of NGW host lattice. In NGW host, under UV excitation the Dy 3+ ions have shown strong yellow ( 4 F 9/2 → 6 H 13/2 ) and comparatively weak blue ( 4 F 9/2 → 6 H 15/2 ) emission transitions at 575 and 488 nm, respectively. Due to deficient blue colour the overall emission falls in yellow region. Hence, Tm 3+ ions having strong blue emission at 455 nm corresponding to the transition 1 D 2 → 3 F 4 were co-activated along with Dy 3+ ions in NGW matrix. By changing the doping concentrations of Tm 3+ and Dy 3+ ions in NGW, white light emission was tuned by 353 nm excitation wavelength. Their corresponding colour co-ordinates were calculated and found to be very close to the white colour chromaticity co-ordinates (0.333, 0.333). - Highlights: • Dy 3+ and Dy 3+ /Tm 3+ :NGW phosphors were synthesised by sol–gel methods. • The excitation spectrum confirmed the strong absorption in near-UV region. • The emission spectrum shows the yellow and white emission to doped and co-doped phosphors respectively. • The CIE co-ordinate conforms close to daylight emission

  11. Improved efficiency of dye-sensitized solar cells by doping of strontium aluminate phosphor in TiO2 photoelectrode

    Directory of Open Access Journals (Sweden)

    Hwangbo Seung

    2015-06-01

    Full Text Available SrAl2O4:Eu2+, Dy3+ phosphor was synthesized by chemical solution route to use as a dopant in TiO2 layer employed as a photoelectrode for down conversion of ultraviolet and near-ultraviolet to visible and near-infrared light in a dye-sensitized solar cell. Nano-crystalline structure of the SrAl2O4:Eu2+, Dy3+ powder was confirmed by X-ray diffraction analysis and field emission scanning electron microscopy. Monitored at 520 nm, SrAl2O4:Eu2+, Dy3+ phosphor showed emission peaks at 460 to 610 nm due to 4f6 4f7 transitions of Eu2+ ions. For the study, SrAl2O4:Eu2+, Dy3+ phosphor-doped TiO2 layer was deposited on fluorine-doped tin oxide coated glass by electrostatic spray deposition. The short circuit current, open circuit voltage, fill factor, and conversion efficiency of the cells were measured. Experimental results revealed that the device efficiency for the SrAl2O4:Eu2+, Dy3+ phosphor-doped TiO2 layer increased to 7.20 %, whereas that of the pure-TiO2 photoelectrode was 4.13 %.

  12. Rapid formation of red long afterglow phosphor Sr3Al2O6:Eu2+, Dy3+ by microwave irradiation

    International Nuclear Information System (INIS)

    Zhang Ping; Xu Mingxia; Zheng Zhentai; Sun Bo; Zhang Yanhui

    2007-01-01

    A new red long afterglow phosphor Sr 3 Al 2 O 6 :Eu 2+ , Dy 3+ nanocrystalline particles were prepared using a microwave oven operated at a frequency of 2.45 GHz and a power of 680 W in a weak reductive atmosphere. The phosphor nanocrystalline particles were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectrophotometer. The results reveal that the samples are composed of single Sr 3 Al 2 O 6 phase. The obtained nanocrystalline particles show small size (80-100 nm) and spherical shape. The excitation and emission spectra indicate that excitation broadband chiefly lies in visible range and the nanocrystalline particles emit strong light at 612 nm under around 473 nm excitation. The effect of Eu 2+ doping concentrations of the samples on the emission intensity is studied systematically. Furthermore, comparing with conventional heating method, the microwave method has the advantages such as short heating time and low energy consumption. However, the decay speed of the afterglow for Sr 3 Al 2 O 6 :Eu 2+ , Dy 3+ nanocrystalline particles is faster than that obtained by the conventional heating method

  13. Highly efficient phosphor-converted white organic light-emitting diodes with moderate microcavity and light-recycling filters.

    Science.gov (United States)

    Cho, Sang-Hwan; Oh, Jeong Rok; Park, Hoo Keun; Kim, Hyoung Kun; Lee, Yong-Hee; Lee, Jae-Gab; Do, Young Rag

    2010-01-18

    We demonstrate the combined effects of a microcavity structure and light-recycling filters (LRFs) on the forward electrical efficiency of phosphor-converted white organic light-emitting diodes (pc-WOLEDs). The introduction of a single pair of low- and high-index layers (SiO(2)/TiO(2)) improves the blue emission from blue OLED and the insertion of blue-passing and yellow-reflecting LRFs enhances the forward yellow emission from the YAG:Ce(3+) phosphors layers. The enhancement of the luminous efficacy of the forward white emission is 1.92 times that of a conventional pc-WOLED with color coordinates of (0.34, 0.34) and a correlated color temperature of about 4800 K.

  14. Origin and Luminescence of Anomalous Red-Emitting Center in Rhombohedral Ba9Lu2Si6O24:Eu(2+) Blue Phosphor.

    Science.gov (United States)

    Liu, Yongfu; Zhang, Changhua; Cheng, Zhixuan; Zhou, Zhi; Jiang, Jun; Jiang, Haochuan

    2016-09-06

    We obtain a blue phosphor, Ba9Lu2Si6O24:Eu(2+) (BLS:Eu(2+)), which shows a strong emission peak at 460 nm and a weak tail from 460 to 750 nm. A 610 nm red emission is observed for the first time in this kind of rhombohedral structure material, which is much different from the same crystal structure of Ba9Sc2Si6O24:Eu(2+) and Ba9Y2Si6O24:Eu(2+). The luminescence properties and decays from 10 to 550 K are discussed. The new red emission arises from a trapped exciton state of Eu(2+) at the Ba site with a larger coordination number (12-fold). It exhibits abnormal luminescence properties with a broad bandwidth and a large Stokes shift. Under the 400 nm excitation, the external quantum efficiency of BLS:Eu(2+) is 45.4%, which is higher than the 35.7% for the commercial blue phosphor BAM:Eu(2+). If the thermal stability of BLS:Eu(2+) can be improved, it will show promising applications in efficient near-UV-based white LEDs.

  15. Long persistent luminescence property of a novel green emitting SrLaGaO{sub 4}: Tb{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xiaoyan, E-mail: fuxiaoyan@xmut.edu.cn [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing 210044 (China); Zheng, Shenghui [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Shi, Junpeng [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Li, Yuechan [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Zhang, Hongwu, E-mail: hwzhang@iue.ac.cn [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2017-04-15

    A novel long persistent green emitting phosphor SrLaGaO{sub 4}: Tb{sup 3+} was synthesized via a conventional high temperature solid-state method. The obtained results indicated that the green long persistent emitting was similar to the photoluminescence, originating from the f-f transitions of Tb{sup 3+} centers which were supposed to occupy the random distribution Sr{sup 2+} and La{sup 3+} sites. The duration of green afterglow can be observed in the dark by naked eyes even after more than 3.5 h. The thermoluminescence results revealed that SrLaGaO{sub 4}: Tb{sup 3+} possessed three main traps calculated to be 0.62, 0.68 and 0.77 eV, which were responsible for the long persistent green luminescence. The further structure analysis revealed that the Tb{sup 3+} dopants not only acted as emission centers but also significantly influenced the density of traps, and the trapping centers were postulated nonrandom distribution under the assistance of high temperature, which resulted in the efficient persistent luminescence of Tb{sup 3+}. All the results showed that SrLaGaO{sub 4}: Tb{sup 3+} was a potential long persistent luminescent material.

  16. Two component butterfly hysteresis in RuSr2EuCeCu2O1 ruthenocuprate

    International Nuclear Information System (INIS)

    Zivkovic, I.; Drobac, D.; Prester, M.

    2006-01-01

    We report detailed studies of the ac susceptibility butterfly hysteresis on the RuSr 2 EuCeCu 2 O 1 (Ru1222) ruthenocuprate compound. Two separate contributions to these hysteresis have been identified and studied. One contribution is ferromagnetic-like and is characterized by the coercive field maximum. Another contribution, represented by the so called inverted maximum, is related to the unusual inverted loops, unique feature of Ru1222 butterfly hysteresis. The different nature of the two identified magnetic contributions is proved by the different temperature dependences involved. By lowering the temperature the inverted peak gradually disappears while the coercive field slowly raises. If the maximum dc field for the hysteresis is increased, the size of the inverted part of the butterfly hysteresis monotonously grows while the position of the peak saturates. In reaching saturation exponential field dependence has been demonstrated to take place. At T = 78 K the saturation field is 42 Oe

  17. Lanthanide doped BaTiO{sub 3}−SrTiO{sub 3} solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn; Xu, Wei; Zhou, Yang; Chen, Yan, E-mail: chenyan@hdu.edu.cn

    2016-08-15

    Lanthanide doped Ba{sub 1-x}Sr{sub x}TiO{sub 3} (x = 0–1) solid-solution phosphors were successfully prepared by a conventional solid-state reaction. Using Eu{sup 3+} dopants as the structural probe, the variation of {sup 5}D{sub 0} → {sup 7}F{sub 2}/{sup 5}D{sub 0} → {sup 7}F{sub 1} emission intensity ratio with increase of Eu{sup 3+} content and the excitation-wavelength-dependent luminescence in the Ba{sub 1-x}Sr{sub x}TiO{sub 3} sample were demonstrated to be originated from the different emission behaviors of Eu{sup 3+} in Ba{sup 2+}/Sr{sup 2+} site and Ti{sup 4+} site. Furthermore, upconversion luminescence for the Yb{sup 3+}/Er{sup 3+} co-doped Ba{sub 1-x}Sr{sub x}TiO{sub 3} samples were investigated, and it was found that the emission intensity of Yb{sup 3+}/Er{sup 3+}: Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} phosphor was about 5 and 2 times as high as those of Yb{sup 3+}/Er{sup 3+}: BaTiO{sub 3} and Yb{sup 3+}/Er{sup 3+}: SrTiO{sub 3} ones. Using the investigated Yb{sup 3+}/Er{sup 3+}: Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} solid-solution as the optical thermometric medium, the temperature sensitivity was determined to be 0.76% K{sup −1} at the temperature of 610 K based on the temperature-dependent fluorescence intensity ratio of the thermally coupled {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} emitting-states of Er{sup 3+}. - Highlights: • Lanthanide doped Ba{sub 1-x}Sr{sub x}TiO{sub 3} (x = 0–1) solid-solutions were fabricated. • Excitation-wavelength-dependent Eu{sup 3+} emissions were recorded. • Enhanced Er{sup 3+} luminescence was realized by partial substitution of Ba{sup 2+} by Sr{sup 2+}. • T-sensitive emissions of two Er{sup 3+} thermally coupled states were observed. • The upconversion phosphor exhibited a high sensitivity of 0.76% K{sup −1}.

  18. The Preparation and Optical Properties of Novel LiLa(MoO4)2:Sm3+,Eu3+ Red Phosphor

    Science.gov (United States)

    Luo, Li; Huang, Baoyu; He, Jingqi; Zhang, Wei; Zhao, Weiren; Wang, Jianqing

    2018-01-01

    Novel LiLa1−x−y(MoO4)2:xSm3+,yEu3+ (in short: LL1−x−yM:xSm3+,yEu3+) double molybdate red phosphors were synthesized by a solid-state reaction at as low temperature as 610 °C. The optimal doping concentration of Sm3+ in LiLa1−x(MoO4)2:xSm3+ (LL1−xM:xSm3+) phosphor is x = 0.05 and higher concentrations lead to emission quenching by the electric dipole—electric dipole mechanism. In the samples co-doped with Eu3+ ions, the absorption spectrum in the near ultraviolet and blue regions became broader and stronger than these of the Sm3+ single-doped samples. The efficient energy transfer from Sm3+ to Eu3+ was found and the energy transfer efficiency was calculated. Under the excitation at 403 nm, the chromaticity coordinates of LL0.95−yM:0.05Sm3+,yEu3+ approach to the NTSC standard values (0.670, 0.330) continuously with increasing Eu3+ doping concentration. The phosphor exhibits high luminous efficiency under near UV or blue light excitation and remarkable thermal stability. At 150 °C, the integrated emission intensity of the Eu3+ remained 85% of the initial intensity at room temperature and the activation energy is calculated to be 0.254 eV. The addition of the LL0.83M:0.05Sm3+,0.12Eu3+ red phosphors can improve the color purity and reduce the correlated color temperature of WLED lamps. Hence, LL1−x−yM:xSm3+,yEu3+ is a promising WLED red phosphor. PMID:29443910

  19. Synthesis and characterization of (Lu{sub 1−x−y}Y{sub x}Ce{sub y}){sub 2}SiO{sub 5} luminescent powders with fast decay time

    Energy Technology Data Exchange (ETDEWEB)

    Aburto-Crespo, M. [Programa de Posgrado en Física de Materiales CICESE-UNAM, Km. 107 Carretera Tij-Ens, Ensenada, B. C. 22860, México (Mexico); Hirata, G.A., E-mail: hirata@cnyn.unam.mx [Centro de Nanociencias y Nanotecnología-Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, Ensenada, B. C. 22860, México (Mexico); McKittrick, J. [University of California at San Diego, La Jolla, CA 92093-0411 (United States)

    2013-04-15

    The structural and luminescent properties of blue-emitting (Lu{sub 1−x−y}Y{sub x}Ce{sub y}){sub 2}SiO{sub 5} (0.1≤x≤0.4, y=0.05, 0.005) phosphors prepared by combustion synthesis and post-annealed at 1200 °C for different annealing times are reported. X-ray diffraction analysis revealed the formation of a (Lu,Y){sub 2}SiO{sub 5} solid solution as a majority phase with small traces of a residual phase that was identified as Lu{sub 2}SiO{sub 7}. Under long-UV excitation, the powders yield a very bright blue-emission consisting of two bands with maximum emissions located at λ=405 nm and λ=440 nm, both corresponding to the Ce{sup 3+} allowed transitions {sup 2}D{sub 3/2}→{sup 2}F{sub 5/2} and {sup 2}D{sub 5/2}→{sup 2}F{sub 7/2}, respectively. Moreover, luminescence decay times of 38–45 ns were measured, which depend on the composition, making these powders excellent candidates for application as scintillators in medical imaging. -- Highlights: ► A facile technique to fabricate (Lu,Y)-oxyorthosilicate nanophosphors is presented. ► The structural and excellent luminescent properties including excitation, emission and short decay times are reported. ► The Ce-doped oxyorthosilicates nanophosphors present a fast decay time of the order of 38–45 ns.

  20. Doping-induced quantum crossover in Er2Ti2 -xSnxO7

    Science.gov (United States)

    Shirai, M.; Freitas, R. S.; Lago, J.; Bramwell, S. T.; Ritter, C.; Živković, I.

    2017-11-01

    We present the results of the investigation of magnetic properties of the Er2Ti2 -xSnxO7 series. For small doping values, the ordering temperature decreases linearly with x , while the moment configuration remains the same as in the x =0 parent compound. Around x =1.7 doping level, we observe a change in the behavior, where the ordering temperature starts to increase and new magnetic Bragg peaks appear. For the first time, we present evidence of a long-range order (LRO) in Er2Sn2O7 (x =2.0 ) below TN=130 mK. It is revealed that the moment configuration corresponds to a Palmer-Chalker type with a value of the magnetic moment significantly renormalized compared to x =0 . We discuss our results in the framework of a possible quantum phase transition occurring close to x =1.7 .

  1. Investigating the capability of ToF-SIMS to determine the oxidation state of Ce

    Science.gov (United States)

    Seed Ahmed, H. A. A.; Swart, H. C.; Kroon, R. E.

    2018-04-01

    The capability of time of flight secondary ion mass spectrometry (ToF-SIMS) to determine the oxidation state of Ce ions doped in a phosphor was investigated. Two samples of SiO2:Ce (4 mol%) with known Ce3+/Ce4+ relative concentrations were subjected to ToF-SIMS measurements. The spectra were very similar and no significant differences in the relative peak intensities were observed that would readily allow one to distinguish Ce3+ from Ce4+. Although ToF-SIMS was therefore not useful to distinguish the charge state of Ce ions doped in this phosphor material, the idea in principle was also tested on two other samples, namely CeF3 and CeF4 These contain Ce as part of the host (i.e. much higher concentration) and are fluorides, which is significant because ToF-SIMS has previously been reported to be able to distinguish Eu2+ from Eu3+ in Eu doped Sr5(PO4)3F phosphor. The spectrum of CeF4 contained a small peak related to Ce4+ which was not observed in the CeF3 spectrum, yet the peak related to the Ce3+ ions was found to be much more intense in the spectrum of CeF4 than CeF3, showing that the ToF-SIMS signals cannot be directly interpreted as retaining the charge state of the ions in the original material. Nevertheless, the significant differences in the Ce-related peaks in the ToF-SIMS spectra from CeF3 and CeF4 show that the charge state of Ce may be distinguished. This study shows that while in principle ToF-SIMS may be used to distinguish the charge state of Ce ions, this depends on the sample and it would not be easy to interpret the spectra without a standard or reference.

  2. Broadband sensitized white light emission of g-C_3N_4/Y_2MoO_6:Eu"3"+ composite phosphor under near ultraviolet excitation

    International Nuclear Information System (INIS)

    Han, Bing; Xue, Yongfei; Li, Pengju; Zhang, Jingtao; Zhang, Jie; Shi, Hengzhen

    2015-01-01

    The g-C_3N_4/Y_2MoO_6:Eu"3"+ composite phosphors were synthesized and characterized by X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet visible diffuse reflection spectra, photoluminescence spectra and luminescence decay curves. Under the excitation of 360 nm near ultraviolet light, these composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained in term of appropriate quality proportion of Y_2MoO_6:Eu"3"+ relative to g-C_3N_4/Y_2MoO_6:Eu"3"+. In addition, the emission color can be also dependent on the excitation wavelength in g-C_3N_4/Y_2MoO_6:Eu"3"+ composite phosphor. - Graphical abstract: Under the excitation of 360 nm near ultraviolet light, the g-C_3N_4/Y_2MoO_6:Eu"3"+ composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained. - Highlights: • The g-C3N4/Y2MoO6:Eu"3"+ composite phosphors were synthesized and characterized. • White light emission was realized in the g-C3N4/Y2MoO6:Eu"3"+ composites under UV excitation. • A novel idea to realize the broadband sensitized white light emission in phosphors was provided.

  3. The photoluminescent property and optical transition analysis of host sensitized Ca{sub 0.5}Sr{sub 0.5}MoO{sub 4}:Dy{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhiping; Hou, Chuncai [College of Physics and Technology, Hebei University, Baoding, Hebei 071002 (China); Duan, Guangjie [College of Electronics and Information Engineering, Hebei University, Baoding, Hebei 071002 (China); Yang, Fu [College of Physics and Technology, Hebei University, Baoding, Hebei 071002 (China); College of Science, Hebei North University, Zhangjiakou 075000 (China); Liu, Pengfei; Wang, Can [College of Physics and Technology, Hebei University, Baoding, Hebei 071002 (China); Liu, Lipeng [College of Electronics and Information Engineering, Hebei University, Baoding, Hebei 071002 (China); Dong, Guoyi, E-mail: dongguoyitxzz@163.com [College of Physics and Technology, Hebei University, Baoding, Hebei 071002 (China)

    2014-08-01

    Highlights: • A novel host sensitized Ca{sub 0.5−x}Sr{sub 0.5}MoO{sub 4}:xDy{sup 3+} phosphors could be synthesized by solid state reaction. • The XRD and SEM figures were made to analyze the crystal phase and morphology of Ca{sub 0.5−x}Sr{sub 0.5}MoO{sub 4}:xDy{sup 3+} phosphors. • We research the emission and excitation properties by analyzing the relevant optical transition. • The energy transition is proved to exist by the analysis on luminescence spectra and luminescence decay curves. • The chromaticity coordinate of Ca{sub 0.5−x}Sr{sub 0.5}MoO{sub 4}:xDy{sup 3+} will be tunable as changing x. - Abstract: A series of Dy{sup 3+} doped Ca{sub 0.5}Sr{sub 0.5}MoO{sub 4} phosphors were synthesized by solid state reaction. The structure and the photoluminescent (PL) properties of the as-prepared powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscope and fluorescent spectrophotometry. The analyses on optical transition of Ca{sub 0.5}Sr{sub 0.5}MoO{sub 4}:xDy{sup 3+} phosphors indicate that the broad band of excitation spectrum comes from the charge transmission. The broad band of excitation spectrum matches well with the excitation energy level of Dy{sup 3+}, indicating the energy transfer from the host to Dy{sup 3+}. The chromaticity coordinates changed from blue–green to yellow area depending on the Dy{sup 3+} concentration. In addition, the main mechanism of the concentration quenching was the electric multiple interaction between Dy{sup 3+} ions.

  4. Persistent phosphors for painting, medical and biological applications

    International Nuclear Information System (INIS)

    Nazarov, M.

    2013-01-01

    Multiphase micro and nanoparticle persistent phosphors are synthesized and applied for different fields including painting, medical and biological investigations. A lot of examples show a broad range of applications of persistent luminescence from bulk materials to high tech products, especially in medicine. The development of high efficiency nanosized phosphor makes it possible to propose persistent materials as very good candidates for photodynamic therapy of cancer. An artificial block from slag, concrete, and sand covered with SrAl 2 O 4 :Eu 2+ , Dy 3+ based phosphor is prepared, and a new direction in biology for algae cultivation and artificial reef is discussed. For the first time, underwater luminescence is experimentally studied under real sea conditions. Bright blue-green long-lasting afterglow is registered at a depth of 5 m. The fishes are attracted by the light of the artificial reef. (author)

  5. Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors

    International Nuclear Information System (INIS)

    Wan Jing; Cheng Lihong; Sun Jiashi; Zhong Haiyang; Li Xiangping; Lu Weili; Tian Yue; Lin Hai; Chen Baojiu

    2010-01-01

    Dy 3+ single-doped and Eu 3+ /Dy 3+ co-doped gadolinium molybdate (Gd 2 (MoO 4 ) 3 ) phosphors were synthesized by a traditional solid-state reaction method. The XRD was used to confirm the crystal structure of the phosphors. The energy transfer between Eu 3+ and Dy 3+ was observed and studied. The Eu 3+ concentration can hardly affect the blue and yellow emission intensities of Dy 3+ , and the Eu 3+ emission intensity increases with the increase of Eu 3+ concentration. Co-doping with Eu 3+ compensated the red emission component of the Dy 3+ doped Gd 2 (MoO 4 ) 3 phosphor. Introducing proper amount of Eu 3+ can improve the colorimetric performance of the phosphors.

  6. Sr-90, Cs-137 and Ce-144 in commercial tea from several areas in China

    International Nuclear Information System (INIS)

    Sha Lianmao; Qiu Yundian; Wang Zhihui; Wang Fenghua

    1993-01-01

    18 kinds of tea, most of which are famous products, were collected in 1985 from 10 provinces of China. More than 1 kg of manufactured tea was collected from each sampling location and ashed in a stainless steel pan by a rapid ashing apparatus made in China Institute for Radiation Protection. A 10 g aliquot of the ashed sample was subjected to radiochemical analysis for 90 Sr. 117 Cs and 144 Ce. Strontium, Cesium and Cerium carriers were added to the samples. The chemical yield of Sr, Cs and Ce were determined by weighting. After the radiochemical separation the mounted precipitates were counted for activity using a thin window methane gas-flow proportional counter normally for 100 min. Statistical error due to counting in generally was 90 Sr, 2.2 +- 0.9 Bq/kg for 137 Cs and 0.8 +- 0.2 Bq/kg for 144 Ce. Among these data, the content of 144 Ce in each tea sample is the lowest for its shorter lift. Higher values of 90 Sr concentration occurred in each tea sample than that of 137 Cs. This seems to be due to the fact that 137 Cs is tightly bound by soil than 90 Sr and the extent to which 90 Sr is absorbed from the soil by plants is greater than 137 Cs. (2 figs., 1 tab.)

  7. The crystal structure of galgenbergite-(Ce), CaCe2(CO3)4•H2O

    Science.gov (United States)

    Walter, Franz; Bojar, Hans-Peter; Hollerer, Christine E.; Mereiter, Kurt

    2013-04-01

    Galgenbergite-(Ce) from the type locality, the railroad tunnel Galgenberg between Leoben and St. Michael, Styria, Austria, was investigated. There it occurs in small fissures of an albite-chlorite schist as very thin tabular crystals building rosette-shaped aggregates associated with siderite, ancylite-(Ce), pyrite and calcite. Electron microprobe analyses gave CaO 9.49, Ce2O3 28.95, La2O3 11.70, Nd2O3 11.86, Pr2O3 3.48, CO2 30.00, H2O 3.07, total 98.55 wt.%. CO2 and H2O calculated by stoichiometry. The empirical formula (based on Ca + REE ∑3.0) is C{{a}_{1.00 }}{{( {C{{e}_{1.04 }}L{{a}_{0.42 }}N{{d}_{0.42 }}P{{r}_{0.12 }}} )}_{2.00 }}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O , and the simplified formula is CaC{{e}_2}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O . According to X-ray single crystal diffraction galgenbergite-(Ce) is triclinic, space group Poverline{1},a=6.3916(5) , b = 6.4005(4), c = 12.3898(9) Å, α = 100.884(4), β = 96.525(4), γ = 100.492(4)°, V = 483.64(6) Å3, Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [ d calc in Å/( I)/ hkl]: 5.052/(100)/011; 3.011/(70)/0-22; 3.006/(66)/004; 5.899/(59)/-101; 3.900/(51)/1-12; 3.125/(46)/-201; 2.526/(42)/022; 4.694/(38)/-102. The infrared absorption spectrum reveals H2O (OH-stretching mode at 3,489 cm-1, HOH bending mode at 1,607 cm-1) and indicates the presence of distinctly non-equivalent CO3-groups by double and quadruple peaks of their ν1, ν2, ν3 and ν4 modes. The crystal structure of galgenbergite-(Ce) was refined with X-ray single crystal data to R1 = 0.019 for 2,448 unique reflections ( I > 2 σ( I)) and 193 parameters. The three cation sites of the structure Ca(1), Ce(2) and Ce(3) have a modest mixed site occupation by Ca and small amount of REE (Ce, La, Pr, Nd) and vice versa. The structure is based on double layers parallel to (001), which are composed of Ca(1)Ce(2)(CO3)2 single layers with an ordered chessboard like arrangement of Ca and Ce, and with a roof tile

  8. Contents of 90Sr, 137Cs and 144Ce in tea

    International Nuclear Information System (INIS)

    Sha Lianmao; Qiu Yundian; Wang Zhihui; Wang Fenghua

    1996-01-01

    The determination results of 90 Sr, 137 Cs and 144 Ce contents in 18 kinds of tea goods are reported. The tea samples were pretreated by ashing and analyzed by combined radiochemical procedure. the results showed the average contents of 90 Sr, 137 Cs and 144 Ce in tea goods available in 1985 are 17, 2.2 and 0.8 Bq/kg respectively

  9. Synthesis and luminescence properties of KSrPO{sub 4}:Eu{sup 2+} phosphor for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Palan, C. B., E-mail: chetanpalan27@yahoo.in [Department of Physics, Sant Gadge Baba Amravati University, Amravati-444602 (India); Bajaj, N. S. [Toshniwal ACS College, Sengaon, Hingoli-431542 (India); Omanwar, S. K.

    2016-05-06

    The KSrPO{sub 4}:Eu phosphor was synthesized via solid state method. The structural and morphological characterizations were done through XRD (X-ray diffraction) and SEM (Scanning Electronic Microscope). Additionally, the photoluminescence (PL), thermoluminescence (TL) and optically Stimulated luminescence (OSL) properties of powder KSrPO{sub 4}:Eu were studied. The PL spectra show blue emission under near UV excitation. It was advocated that KSrPO{sub 4}:Eu phosphor not only show OSL sensitivity (0.47 times) but also gives faster decay in OSL signals than that of Al{sub 2}O{sub 3}:C (BARC) phosphor. The TL glow curve consist of two shoulder peaks and the kinetics parameters such as activation energy and frequency factors were determined by using peak shape method and also photoionization cross-sections of prepared phosphor was calculated. The radiation dosimetry properties such as minimum detectable dose (MDD), dose response and reusability were reported.

  10. Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light-emitting diodes.

    Science.gov (United States)

    Pavitra, E; Raju, G Seeta Rama; Park, Jin Young; Wang, Lili; Moon, Byung Kee; Yu, Jae Su

    2015-05-20

    White light-emitting diode (WLED) products currently available on the market are based on the blue LED combined with yellow phosphor approach. However, these WLEDs are still insufficient for general illumination and flat panel display (FPD) applications because of their low color-rendering index (CRI UV) LED chips provide more efficient excitation than blue chips, YAG:Ce(3+) phosphors have very weak excitation in the near-UV spectral region. Hence, there is an increasing demand for novel yellow phosphor materials with excitation in the near-UV region. In this work, we report novel self-activated yellow Ca(5)Zn(3.92)In(0.08)(V(0.99)Ta(0.01)O(4))(6) (CZIVT) phosphors that efficiently convert near-UV excitation light into yellow luminescence. The crystal structure and lattice parameters of these CZIVT phosphors are elucidated through Rietveld refinement. Through doping with In(3+) and Ta(5+) ions, the emission intensity is enhanced in the red region, and the Stokes shift is controlled to obtain good color rendition. When a near-UV LED chip is coated with a combination of CZIVT and commercial blue Ba(0.9)Eu(0.1)MgAl(10)O(17) phosphors, a pleasant WLED with a high CRI of 82.51 and a low CCT of 5231 K, which are essential for indoor illumination and FPDs, is achieved.

  11. An experimental and theoretical study of new phosphors for full color field emission displays

    Science.gov (United States)

    Zhang, Fu-Li

    An in depth study is reported of the cathodoluminescent (CL) properties of three new highly efficiency blue phosphors for field emission display (FED) applications doped with fast activators. The superior performance of a new Eu-doped green SrGa2S4 will also be reported. This work addresses four main topics: (1) a detailed study of the dependence of the luminescent intensity on activator concentration, as a function of electron beam voltage and current density; (2) the optical properties of thew phosphors and the development of a CL efficiency characterization technique using a critical screen weight method, which can obtain maximum light output and improve measurement accuracy; (3) understanding the low voltage CL mechanism associated with nanocrystal size by developing a thin film and disk model based on transportation theory and experimental results; (4) Development of a comprehensive evaluation method of red, green, and blue (RGB) phosphors for full color displays by calculation of luminance ratios, required luminance, and measurements of spectra, efficiency and saturation behavior. For FEDs which combine the best properties of CRT and flat panel displays, the development of efficient phosphors at low voltages and high current densities is shown to be critical to meet the luminance and power requirement demands for portable displays. Of particular importance is the need for a good blue phosphor, and to understand the dependence of the CL efficiency on nanocrystal size, penetration depth, diffusion length and surface recombination rate. This has been obtained from the thin film and disk models and fits to experiment. Comparisons between full color phosphor sets show that the performance of a display can vary by over a factor of three depending on the choice of the RGB set. Other factors that are important for optimizing the performance of FED phosphors are reviewed.

  12. Structures and self-activating photoluminescent properties of Sr3−xAxGaO4F (A=Ba, Ca) materials

    International Nuclear Information System (INIS)

    Green, Robert; Vogt, Thomas

    2012-01-01

    The synthesis, structures and photoluminescent properties of mixed oxyfluorides of the type Sr 3−x A x GaO 4 F are compared to Sr 3−x A x AlO 4 F (A=Ca, Ba) materials. In these compounds the F − and O 2− ions are ordered and located on two distinct crystallographic sites. When substituting Sr 2+ by Ba 2+ and Ca 2+ , we find in Sr 3−x A x GaO 4 F materials an ordering of the alkaline earth cations over the two crystallographic sites. The amount of Ba 2+ ions that can be substituted into Sr 3−x A x GaO 4 F is x≤1.2, which is slightly more than can be incorporated into the previously reported Al-analog Sr 3−x A x AlO 4 F (x=1.0). Conversely, the amount of Ca 2+ ions that can be substituted into Sr 3−x Ca x GaO 4 F (x=0.3) is significantly less than in Sr 3−x Ca x AlO 4 F (x=1.0). A post-synthesis reduction step causes these materials to exhibit self-activating broad band photoluminescence where the emitted colors vary with the amount of ions substituted into the host lattice. - Graphical abstract: TOC Statement The structures of the self-activating phosphors Sr 3−x A x MO 4 F (A=Ba, Ca and M=Al, Ga) can be rationalized as alternating layers of bond compression and elongation, which impact the photoluminescence. Highlights: ► Comparison of the structural changes in Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca) and its influence on the photoluminescence of these self-activating phosphors. ► Analysis of the Global Instability Index of the Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca). ► Comparison of the photoluminescence between the self-activating phosphors Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca).

  13. Enhanced luminescent properties of long-persistent Sr{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 2+}, Dy{sup 3+} phosphor prepared by the co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Pan Wen [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Zhongshan Road 158-43, Dalian Liaoning 116012 (China); Ning Guiling [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Zhongshan Road 158-43, Dalian Liaoning 116012 (China)], E-mail: ninggl@dlut.edu.cn; Zhang Xu; Wang Jing; Lin Yuan; Ye Junwei [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Zhongshan Road 158-43, Dalian Liaoning 116012 (China)

    2008-12-15

    Sr{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 2+}, Dy{sup 3+} phosphors were prepared by the (aminopropyl)-triethoxysilane (APTES) co-precipitation method. Effects of synthesis temperature on the crystal characteristics, luminescent properties and afterglow performance of Sr{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 2+}, Dy{sup 3+} phosphors have been discussed in detail and compared with the corresponding commercial product. The experimental results indicated that the sample could be synthesized at a relatively lower temperature and had better performance on the above-mentioned properties using the co-precipitation method.

  14. Novel tunable green-red-emitting oxynitride phosphors co-activated with Ce3+, Tb3+, and Eu3+: photoluminescence and energy transfer.

    Science.gov (United States)

    Huo, Jiansheng; Dong, Langping; Lü, Wei; Shao, Baiqi; You, Hongpeng

    2017-07-14

    A series of novel Ce 3+ , Tb 3+ and Eu 3+ ion doped Y 4 SiAlO 8 N-based oxynitride phosphors were synthesized by the solid-state method and characterized by X-ray powder diffraction, scanning electron microscopy, photoluminescence, lifetimes and thermo-luminescence. The excitation of the Ce 3+ /Tb 3+ co-doped and Ce 3+ /Tb 3+ /Eu 3+ tri-doped phosphor with near-UV radiation results in strong linear Tb 3+ green and Eu 3+ red emission. The occurrence of Ce 3+ -Tb 3+ and Ce 3+ -Tb 3+ -Eu 3+ energy transfer processes is responsible for the bright green or red luminescence. The Tb 3+ ion acting as an energy transfer bridge can alleviate MMCT quenching between the Ce 3+ -Eu 3+ ion pairs. The lifetime measurements demonstrated that the energy-transfer mechanisms of Ce 3+ → Tb 3+ and Tb 3+ → Eu 3+ are dipole-quadrupole and quadrupole-quadrupole interactions, respectively. The temperature dependent luminescence measurements showed that as-prepared green/red phosphors have good thermal stability against temperature quenching. The obtained results indicate that these phosphors might serve as promising candidates for n-UV LEDs.

  15. Structural and electrical characterisation of SrCe1-xYxOxi

    DEFF Research Database (Denmark)

    Phillips, R.J.; Bonanos, N.; Poulsen, F.W.

    1999-01-01

    The acceptor-doped perovskite proton conductor SrCe1-xYxOxi (x = 0.025 to 0.20, xi = 3 - x/2) has been prepared and characterised using X-ray diffraction and AC impedance spectroscopy, and the effect of the yttrium dopant concentration on structure and electrical properties has been investigated. X......-ray diffraction studies show a decrease in lattice volume with increasing yttrium content. Electrical conductivity studies have been made as a function of oxygen partial pressure, and at a partial pressure of water vapour of 0.007 atm. The total conductivity has been separated into different components by fitting...

  16. Biological reduction-deposition and luminescent properties of nanostructured CePO{sub 4}@NaCe(SO{sub 4}){sub 2}(H{sub 2}O) and CePO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaoniu [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Research Institute of Green Construction Materials, Southeast University, Nanjing 211189 (China); Qian, Chunxiang, E-mail: cxqian@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Research Institute of Green Construction Materials, Southeast University, Nanjing 211189 (China)

    2016-03-01

    Nano-sized CePO{sub 4}@NaCe(SO{sub 4}){sub 2}(H{sub 2}O) and CePO{sub 4} with hexagonal phase have been prepared by simply varying the reactant P/Ce molar ratio in bacterial liquid. The phase composition of two samples was checked via Fourier transform infrared spectroscopy (FTIR), energy dispersive analysis of X-rays (EDS) and X-ray diffraction (XRD) analyses, displaying the presence of CePO{sub 4}@NaCe(SO{sub 4}){sub 2}(H{sub 2}O) and CePO{sub 4} with average crystallite size are 32.34 and 15.61 nm, respectively. The scanning electron microscopy (SEM) images show that nano-clusters and sphere-like in shape with a narrow diameter distribution were observed in two samples. The transmission electron microscopy (TEM) photographs further indicate obtained CePO{sub 4}@NaCe(SO{sub 4}){sub 2}(H{sub 2}O) and CePO{sub 4} nanoparticles correspond to nanosheets and nanorods, respectively. The emission spectra of CePO{sub 4}@NaCe(SO{sub 4}){sub 2}(H{sub 2}O) and CePO{sub 4} display a broad band of 300–380 nm range with the strongest emission at 342 nm in the violet region. - Highlights: • A new method was found to synthesize CePO{sub 4}@NaCe(SO{sub 4}){sub 2}(H{sub 2}O) and CePO{sub 4} nanoparticles. • CePO{sub 4}@NaCe(SO{sub 4}){sub 2}(H{sub 2}O) nanoparticles have good luminescent properties. • Size and luminescent properties of two samples have been studied and compared.

  17. Photoluminescence of Eu2+-doped CaMgSi2xO6+2x (1.00≤x≤1.20) phosphors in UV-VUV region

    International Nuclear Information System (INIS)

    Zhang Zhiya; Wang Yuhua

    2008-01-01

    Alkaline-earth silicate phosphors CaMgSi 2x O 6+2x :Eu 2+ (1.00≤x≤1.20) were prepared by traditional solid-state reaction. The phosphors showed an intense blue emission centered around 453 nm, with both 254 and 147 nm excitations. The host absorption below 200 nm in the excitation spectra consisted of two bands around 160 and 190 nm. The band around 160 nm was ascertained to be associated with the SiO 4 -tetrahedra and MgO 6 -polyhedra, and that around 190 nm was due to the CaO 8 -polyhedra or some impurities. The incorporation of excess Si of less than 15% would not lead to formation of impurities and the results indicated that an appropriate Si excess could improve the Photoluminescence (PL) intensity in both ultraviolet (UV) and vacuum ultraviolet (VUV) regions

  18. Rare earths (Ce, Eu, Tb) doped Y2Si2O7 phosphors for white LED

    International Nuclear Information System (INIS)

    Sokolnicki, Jerzy

    2013-01-01

    Nanocrystalline yttrium pyrosilicate Y 2 Si 2 O 7 (YPS) singly, doubly or triply doped with Ce 3+ , Eu 3+ , Tb 3+ was obtained by the reaction of nanostructured Y 2 O 3 :Ln 3+ and colloidal SiO 2 at high temperatures. X-ray diffraction analysis confirmed the formation of a single phase of α-YPS at 1200 °C. Two series of YPS samples doped with Eu 3+ or Eu 3+ /Tb 3+ were obtained by applying the reducing atmosphere (75%N 2 +25%H 2 ) at different temperatures. The luminescence and excitation spectra are reported. The singly Eu 3+ doped YPS emit from both Eu 3+ and Eu 2+ ions, with the spectral position and width of the Eu 2+ emission different in both series. The presence of Eu 2+ in the samples was confirmed by electron paramagnetic resonance (EPR) spectra. A broadband emission of Eu 2+ (380–650 nm), combined with the red emission of Eu 3+ is perceived by the naked eye as white light. Co-doping of YPS:Eu 3+ with Tb 3+ results in enhancement of the green component of the emission, and well-balanced white luminescence. The colour of this emission is tunable, and it is possible to get Commission International de I'Eclairage (CIE) chromaticity coordinates of (0.327, 0.327), colour-rendering index (CRI) of 85, and quantum efficiency (QE) of 71%. These phosphors are efficiently excited in the wavelength range of 300–420 nm, which perfectly matches a near UV-emitting InGaN chip. It was shown that for triply (Ce 3+ , Eu 3+ and Tb 3+ ) doped samples the three emissions from the particular activators can be generated using one excitation wavelength. The white light resulting from the superposition of the blue (Ce 3+ ), green (Tb 3+ ) and red (Eu 3+ ) emissions can be obtained by varying the concentration of the active ions and the treating atmosphere, i.e. reducing or oxidising. Eu 2+ was not detected in the triply doped samples, and hence line emissions mostly exhibit CRI values equal to or below 30. - Highlights: ► Nanocrystalline Y 2 Si 2 O 7 was obtained by the

  19. EPR and optical properties of Eu{sup 2+} and Mn{sup 2+} co-doped MgSrAl{sub 10}O{sub 17} blue–green light emitting powder phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Singh, Vijay, E-mail: vijayjiin2006@yahoo.com [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Sivaramaiah, G. [Department of Physics, Government College (M), Kadapa 516 004 (India); Rao, J.L. [Department of Physics, Sri Venkateswara University, Tirupati 517 502 (India); Singh, Pramod K. [Materials Research Laboratory, Sharda University, Greater Noida 201 310 (India); Pathak, M.S. [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Dhoble, S.J. [Department of Physics, RTM Nagpur University, Nagpur 440 033 (India); Mohapatra, M. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2016-10-15

    Strong blue–green light emitting MgSrAl{sub 10}O{sub 17}:Eu{sup 2+},Mn{sup 2+} phosphor was synthesized by a low-temperature initiated, self-propagating and gas producing combustion process in a very short time (<5 min). Structural characterization of the luminescent material was studied with X-ray diffraction analysis and energy-dispersive X-ray analysis. The absorption spectrum exhibits bands due to Eu{sup 2+} and Mn{sup 3+} ions. The excitation spectrum shows a peak at 337 nm. Upon excitation at 337 nm, the emission spectrum exhibits an intense band centered at 462 nm due to transitions from the 4f{sup 6}5d{sup 1} to the 4f{sup 7} configuration of the Eu{sup 2+} ions, whereas sharp peak at 513 nm attributed to {sup 4}T{sub 1}→{sup 6}A{sub 1} transition of Mn{sup 2+} ions. The X-band EPR spectra of MgSrAl{sub 10}O{sub 17}:Eu{sup 2+},Mn{sup 2+} showed the presence of Eu{sup 2+} and Mn{sup 2+} ions.

  20. Origin of thermal degradation of Sr 2-xSi 5N 8 : Eu x phosphors in air for light-emitting diodes

    NARCIS (Netherlands)

    Yeh, C.W.; Chen, W.T.; Liu, R.S.; Hu, S.F.; Sheu, H.S.; Chen, J.M.; Hintzen, H.T.

    2012-01-01

    The orange-red emitting phosphors based on M 2Si 5N 8:Eu (M = Sr, Ba) are widely utilized in white light-emitting diodes (WLEDs) because of their improvement of the color rendering index (CRI), which is brilliant for warm white light emission. Nitride-based phosphors are adopted in high-performance

  1. New Ce{sup 3+} doped Ca{sub 2}YMgScSi{sub 3}O{sub 12} garnet ceramic phosphor for white LED converters

    Energy Technology Data Exchange (ETDEWEB)

    Khaidukov, N. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Zorenko, Yu.; Zorenko, T.; Iskaliyeva, A.; Paprocki, K. [Institute of Physics, Kazimierz Wielki University Bydgoszcz (Poland); Zhydachevskii, Y.; Suchocki, A. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Deun, R. van [L3 - Luminescent Lanthanide Lab, Department of Inorganic and Physical Chemistry, Ghent University (Belgium); Batentschuk, M. [Department of Materials Science and Engineering VI, Institute of Materials for Energy and Electronic Technology (i-IMEET), University of Erlangen-Nuremberg, Erlangen (Germany)

    2017-05-15

    The results on crystallization and investigation of the luminescent properties of a new prospective ceramic phosphor based on the Ce{sup 3+} doped Ca{sub 2}YMgScSi{sub 3}O{sub 12} silicate garnet are presented for the first time in this work. The luminescent properties of Ca{sub 2}YMgScSi{sub 3}O{sub 12}:Ce were compared with the properties of the reference Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Ce ceramic sample. Without any doubt, the results of this research can be suitable for the development of a new generation of white converters based on the Ca{sup 2+}-Si{sup 4+} garnet compounds. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Ce3+-Doped garnet phosphors : Composition modification, luminescence properties and applications

    NARCIS (Netherlands)

    Xia, Zhiguo; Meijerink, Andries

    2017-01-01

    Garnets have the general formula of A3B2C3O12 and form a wide range of inorganic compounds, occurring both naturally (gemstones) and synthetically. Their physical and chemical properties are closely related to the structure and composition. In particular, Ce3+-doped garnet phosphors have a long

  3. Towards the development of new phosphors with reduced content of rare earth elements: Structural and optical characterization of Ce:Tb: Al{sub 2}SiO{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Chiriu, D.; Stagi, L.; Carbonaro, C.M.; Corpino, R. [Dipartimento di Fisica, Università degli Studi di Cagliari, S.P.n°8 Km 0, 700, I-09042 Monserrato (Italy); Casula, M.F. [Dipartimento di Scienze Chimiche e Geologiche and INSTM, Università di Cagliari, S.P.n°8 Km 0, 700, I-09042 Monserrato (Italy); Ricci, P.C., E-mail: carlo.ricci@dsf.unica.it [Dipartimento di Fisica, Università degli Studi di Cagliari, S.P.n°8 Km 0, 700, I-09042 Monserrato (Italy)

    2016-05-15

    Highlights: • A new promising inert matrix as host of luminescent ions is proposed. • Al2SiO5 matrix is free from Rare earths (critical raw materials). • Doping the matrix with Ce and Tb we obtain an efficient green emitter. • Cerium acts as sensitizer for Terbium emission. - Abstract: A new promising inert matrix as host of luminescent ions is proposed. Al2SiO5 samples, doped with rare earths (Ce, Tb single doped and co-doped) are proposed as good prospect for the development of new UV–vis converter with reduced content of rare earths elements. Structural characterization by Raman, XRD spectroscopy and TEM imaging reveals the sillimanite phase and nano sized dimension of the investigated powders. Optical characterization by steady time and time resolved emission spectroscopy for the single doped and co-doped samples allows to identify an efficient energy transfer from Ce to Tb ions under near UV excitation wavelength. The intense green emission observed in the Ce:Tb co-doped Al2SiO5 system suggests its potential application as efficient blue pumped green emitter phosphor to be exploited for white LED: to this purpose we tested the compound in combination with a red emitting doping ion recording for Ce:Tb:Cr:ASO system a correlated color temperature of 6720 K.

  4. Investigation of the mechanism responsible for the photoluminescence enhancement with Li+ co-doping in highly thermally stable white-emitting Sr8ZnSc(PO4)7:Dy3+ phosphor

    International Nuclear Information System (INIS)

    Gou, Jing; Fan, Jingyan; Luo, Meng; Zuo, Shengnan

    2017-01-01

    The strategy of co-doping Li + was used with the aim of enhancing the emission intensities of Sr 8 ZnSc(PO 4 ) 7 under near ultraviolet excitation. The luminescence enhancement was related to the deep defects V O ¨ which were produced by the introduction of Li + ion. Furthermore, much deep V O ¨ were produced with the incorporation amount of Li + ion increasing. As the sensitizer, the produced deep V O ¨ can effectively tunnelling transfer energy to the nearby activator Dy 3+ resulting in the photoluminescence enhancement in SZSPO:1.5%Dy 3+ ,5%Li + . In addition, its yellow/blue emitting ratio and photoluminescent quantum yields both were improved under longer wavelength excitation. Furthermore, the excellent thermal stability of optimal SZSPO:1.5%Dy 3+ ,5%Li + excelled over commercial phosphor DS-200 below 225 °C. The electroluminescence properties of fabricated ABPD-WLED reach the optimum with V=10 V and I=800 mA (λ ex =365 nm) or 700 mA (λ ex =388 nm), then the bright white luminescence can be obviously observed. These photoluminescence, electroluminescence and thermal properties testified the potential application of Sr 8 ZnSc(PO 4 ) 7 :1.5%Dy 3+ ,5%Li + as a new-style warm-white emitting LEDs phosphor. - Graphical abstract: The mechanism of the luminescence enhancement is consider as that a little amount introduction of Li + ion can produce defects Li Zn ′ and oxygen vacancies V O ¨, and with the incorporation amount of Li + increasing, the more deep V O ¨ are produced. As sensitizer, the productive deeper V O ¨ can effectively tunneling transfer energy to nearby activator Dy 3+ inducing its photoluminescence enhancement.

  5. Photoemission properties of Eu-doped Zr1- x Ce x O2 (x = 0-0.2) nanoparticles prepared by hydrothermal method

    Science.gov (United States)

    Ozawa, Masakuni; Matsumoto, Masashi; Hattori, Masatomo

    2018-01-01

    Photoluminescent Eu-doped ZrO2 and Zr1- x Ce x O2 (x = 0-0.2) nanoparticles were prepared by a hydrothermal method. X-ray diffraction and Raman spectra indicated the formation of tetragonal crystals of ZrO2 and its solid solutions with a grain size of less than 10 nm diameter after heat treatment at 400 °C. The photoemission spectra of Zr1- x Ce x O2:Eu3+ nanocrystalline samples showed the typical emission of Eu3+ ions assigned to 5D0 → 7F1 (590 nm) and 5D0 → 7F2 (610 nm) transitions and additional emissions of 5D0 → 7F J with higher J of 3-5. Increasing the CeO2 concentration reduced the emission intensity, and the emission peak shift was affected by a local lattice distortion, i.e., CeO2 concentration. The present study provided fundamental knowledge that is expected to enable the fabrication of ZrO2-based nanocrystal phosphor materials and a measure for controlling the emission peak shift and intensity in oxide fluorite-based phosphor.

  6. Infrared emissions in MgSrAl10O17:Er3+ phosphor co-doped with Yb3+/Ba2+/Ca2+ obtained by solution combustion route

    International Nuclear Information System (INIS)

    Singh, Vijay; Kumar Rai, Vineet; Venkatramu, V.; Chakradhar, R.P.S.; Hwan Kim, Sang

    2013-01-01

    An intense infrared emitting MgSrAl 10 O 17 :Er 3+ phosphor co-doped with Yb 3+ , Ba 2+ and Ca 2+ ions have been prepared by a solution combustion method. Phase purity of the derived compounds was confirmed by X-ray diffraction technique. The vibrational properties of MgSrAl 10 O 17 phosphor was studied by Fourier transform infrared spectroscopy. The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed upon excitation at 980 nm. Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ ions and the mechanism responsible for the variation in the infrared intensity have been discussed. The results indicate that these materials may be suitable for the optical telecommunication window and wavelength division multiplexing applications. - Highlights: ► The hexagonal phase of MgSrAl 10 O 17 could be obtained by the low temperature combustion method. ► The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed. ► Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ were reported.

  7. Ce activated potassium bromide phosphor for lyoluminescence dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Bhujbal, P.M.; Dhoble, S.J.

    2013-01-01

    The lyoluminescence (LL) properties of gamma irradiated KBr:Ce phosphor are reported in this paper. The samples were prepared by wet chemical route. The prepared material was characterized by lyoluminescence technique. LL in KBr:Ce have been recorded for different gamma doses. The nature of variation of peak LL intensity is found to be sublinear with gamma irradiation dose, and the peak LL intensity is found to be dependent on concentrations of added Ce in the samples. Negligible fading in the prepared KBr:Ce (0.5 mol%) sample is observed. -- Highlights: • The LL intensities are found to be dependent on concentrations of Ce ion. • The LL intensities are found to be dependent on gamma rays radiation dose. • Dose response of KBr:Ce (0.5 mol%) is observed linear between 0.08 and 1.00 kGy. • The prepared material may be useful for ionizing radiation dosimetry

  8. Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu3+ phosphors and ceramics

    OpenAIRE

    Janulevičius, Matas; Marmokas, Paulius; Misevičius, Martynas; Grigorjevaitė, Julija; Mikoliūnaitė, Lina; Šakirzanovas, Simas; Katelnikovas, Artūras

    2016-01-01

    A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu3+ phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu3+ showed quantum yields up to 85%, what is suitable for commercial application. Temperature depend...

  9. Compact fluorescent lamp phosphors in accidental radiation monitoring

    International Nuclear Information System (INIS)

    Murthy, K. V. R.; Pallavi, S. P.; Ghildiyal, R.; Parmar, M. C.; Patel, Y. S.; Ravi Kumar, V.; Sai Prasad, A. S.; Natarajan, V.; Page, A. G.

    2006-01-01

    The application of lamp phosphors for accidental dosimetry is a new concept. Since the materials used in fluorescent lamps are good photo luminescent materials, if one can either use the inherent defects present in the phosphor or add suitable modifiers to induce thermoluminescence (TL) in these phosphors, then the device (fluorescent lamp) can be used as an accidental dosemeter. In continuation of our search for a suitable phosphor material, which can serve both as an efficient lamp phosphor and as a good radiation monitoring device, detailed examination has been carried out on cerium and terbium-doped lanthanum phosphate material. A 90 Sr beta source with 50 mCi strength (1.85 GBq) was used as the irradiation source for TL studies. The TL response as a function of dose received was examined for all phosphors used and it was observed that the intensity of the TL peak vs. dose received was a linear function in the dose range 0.1-200 Gy in each case. Incidentally LaPO 4 :Ce,Tb is a component of the compact fluorescent lamp marketed recently as an energy bright light source. Besides having very good luminescence efficiency, good dosimetric properties of these phosphors render them useful for their use in accidental dosimetry also. (authors)

  10. Electron beam induced green luminescence and degradation study of CaS:Ce nanocrystalline phosphors for FED applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinay, E-mail: vinaykdhiman@yahoo.com [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Mishra, Varun [Department of Physics, Lovely Professional University, Phagwara 144 402, Punjab (India); Biggs, M.M.; Nagpure, I.M.; Ntwaeaborwa, O.M.; Terblans, J.J. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Swart, H.C., E-mail: swarthc.sci@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2010-01-01

    Green luminescence and degradation of Ce{sup 3+} doped CaS nanocrystalline phosphors were studied with a 2 keV, 10 {mu}A electron beam in an O{sub 2} environment. The nanophosphors were synthesized by the co-precipitation method. The samples were characterized using X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy/electron dispersive X-ray spectroscopy and Photoluminescence (PL) spectroscopy. Cubic CaS with an average particle size of 42 {+-} 2 nm was obtained. PL emission was observed at 507 nm and a shoulder at 560 nm with an excitation wavelength of 460 nm. Auger electron spectroscopy and Cathodoluminescence (CL) were used to monitor the changes in the surface composition of the CaS:Ce{sup 3+} nanocrystalline phosphors during electron bombardment in an O{sub 2} environment. The effect of different oxygen pressures ranging from 1 x 10{sup -8} to 1 x 10{sup -6} Torr on the CL intensity was also investigated. A CaSO{sub 4} layer was observed on the surface after the electron beam degradation. The CL intensity was found to decrease up to 30% of its original intensity at 1 x 10{sup -6} Torr oxygen pressure after an electron dose of 50 C/cm{sup 2}. The formation of oxygen defects during electron bombardment may also be responsible for the decrease in CL intensity.

  11. Electron beam induced green luminescence and degradation study of CaS:Ce nanocrystalline phosphors for FED applications

    International Nuclear Information System (INIS)

    Kumar, Vinay; Mishra, Varun; Biggs, M.M.; Nagpure, I.M.; Ntwaeaborwa, O.M.; Terblans, J.J.; Swart, H.C.

    2010-01-01

    Green luminescence and degradation of Ce 3+ doped CaS nanocrystalline phosphors were studied with a 2 keV, 10 μA electron beam in an O 2 environment. The nanophosphors were synthesized by the co-precipitation method. The samples were characterized using X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy/electron dispersive X-ray spectroscopy and Photoluminescence (PL) spectroscopy. Cubic CaS with an average particle size of 42 ± 2 nm was obtained. PL emission was observed at 507 nm and a shoulder at 560 nm with an excitation wavelength of 460 nm. Auger electron spectroscopy and Cathodoluminescence (CL) were used to monitor the changes in the surface composition of the CaS:Ce 3+ nanocrystalline phosphors during electron bombardment in an O 2 environment. The effect of different oxygen pressures ranging from 1 x 10 -8 to 1 x 10 -6 Torr on the CL intensity was also investigated. A CaSO 4 layer was observed on the surface after the electron beam degradation. The CL intensity was found to decrease up to 30% of its original intensity at 1 x 10 -6 Torr oxygen pressure after an electron dose of 50 C/cm 2 . The formation of oxygen defects during electron bombardment may also be responsible for the decrease in CL intensity.

  12. Preparation and thermoluminescent dosimetry features of high sensitivity LiF:Mg,Ce phosphor

    Science.gov (United States)

    Shoushtari, M. K.; Zahedifar, M.; Sadeghi, E.

    2018-04-01

    Thermoluminescence (TL) kinetics and dosimetry features of newly produced LiF doped with Mg and Ce were investigated. Different contents of Mg (0-1 mol%) and Ce (0-2 mol%) were introduced in host material by melting method. The most TL sensitivity of the fabricated phosphor was obtained at 0.7 and 0.05 mol% concentrations of Mg and Ce impurities, respectively. The optimum pre-irradiation annealing regime of the synthesized LiF-based material was found at 350 °C for 10 min. Kinetic parameters of LiF:Mg,Ce dosimeter were obtained using different methods of computerized glow curve deconvolution (CGCD), initial rise (IR) and isothermal decay (ID). A good conformity are observed between the results obtained from different kinetic analysis methods. Other TL features such as fading, dose response and reusability were also examined.

  13. (La, Pr)0.8Sr0.2FeO3-δ-Sm 0.2Ce0.8O2-δ composite cathode for proton-conducting solid oxide fuel cells

    KAUST Repository

    Chen, Yonghong

    2014-08-01

    Mixed rare-earth (La, Pr)0.8Sr0.2FeO 3-δ-Sm0.2Ce0.8O2-δ (LPSF-SDC) composite cathode was investigated for proton-conducting solid oxide fuel cells based on protonic BaZr0.1Ce0.7Y 0.2O3-δ (BZCY) electrolyte. The powders of La 0.8-xPrxSr0.2FeO3-δ (x = 0, 0.2, 0.4, 0.6), Sm0.2Ce0.8O2-δ (SDC) and BaZr0.1Ce0.7Y0.2O3-δ (BZCY) were synthesized by a citric acid-nitrates self-propagating combustion method. The XRD results indicate that La0.8-xPrxSr 0.2FeO3-δ samples calcined at 950 °C exhibit perovskite structure and there are no interactions between LPSF0.2 and SDC at 1100 °C. The average thermal expansion coefficient (TEC) of LPSF0.2-SDC, BZCY and NiO-BZCY is 12.50 × 10-6 K-1, 13.51 × 10-6 K-1 and 13.47 × 10-6 K -1, respectively, which can provide good thermal compatibility between electrodes and electrolyte. An anode-supported single cell of NiO-BZCY|BZCY|LPSF0.2-SDC was successfully fabricated and operated from 700 °C to 550 °C with humidified hydrogen (∼3% H2O) as fuel and the static air as oxidant. A high maximum power density of 488 mW cm -2, an open-circuit potential of 0.95 V, and a low electrode polarization resistance of 0.071 Ω cm2 were achieved at 700 °C. Preliminary results demonstrate that LPSF0.2-SDC composite is a promising cathode material for proton-conducting solid oxide fuel cells. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  14. Effects of Tb{sup 3+} concentration on the La{sub 2}Sr{sub 3}(BO{sub 3}){sub 4}: X% Tb{sup 3+} polycrystalline nanophosphor

    Energy Technology Data Exchange (ETDEWEB)

    Mlotswa, D.V. [Physics Department, University of the Free State, Private Bag x13, Phuthaditjhaba 9866 (South Africa); Madihlaba, R.M. [Chemistry Department, University of the Western Cape, Private Bag x17, Bellville 7535 (South Africa); Koao, L.F. [Physics Department, University of the Free State, Private Bag x13, Phuthaditjhaba 9866 (South Africa); Onani, M.O., E-mail: monani@uwc.ac.za [Chemistry Department, University of the Western Cape, Private Bag x17, Bellville 7535 (South Africa); Dejene, F.B. [Physics Department, University of the Free State, Private Bag x13, Phuthaditjhaba 9866 (South Africa)

    2016-01-01

    A new green phosphor, La{sub 2}Sr{sub 3}(BO{sub 3}){sub 4}): x% Tb{sup 3+} was fabricated by solution-combustion method using urea as a fuel and ammonium nitrate as an oxidizer. The phosphor was characterised using Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), Energy dispersive spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL. The results exhibit that La{sub 2}Sr{sub 3}(BO{sub 3}){sub 4}): x% Tb{sup 3+} phosphor has the strongest excitation at 209 nm with a full-width at half-maximum (FWHM) of 20 nm, and can emit bright green light at 545 nm under 209 nm excitation. The optimum concentration for Tb{sup 3+} in La{sub 2}Sr{sub 3}(BO{sub 3}){sub 4}): x% Tb{sup 3+} is 0.033 mol%. The prominent green luminescence was due to the {sup 5}D{sub 4}–{sup 7}F{sub 5} transition of Tb{sup 3+} ion. Herein, the green phosphors are promising good candidates employed in tri-color lamps.

  15. Magnetic ordered mesoporous Fe3O4/CeO2 composites with synergy of adsorption and Fenton catalysis

    Science.gov (United States)

    Li, Keyan; Zhao, Yongqin; Song, Chunshan; Guo, Xinwen

    2017-12-01

    Magnetic Fe3O4/CeO2 composites with highly ordered mesoporous structure and large surface area were synthesized by impregnation-calcination method, and the mesoporous CeO2 as support was synthesized via the hard template approach. The composition, morphology and physicochemical properties of the materials were characterized by XRD, SEM, TEM, XPS, Raman spectra and N2 adsorption/desorption analysis. The mesoporous Fe3O4/CeO2 composite played a dual-function role as both adsorbent and Fenton-like catalyst for removal of organic dye. The methylene blue (MB) removal efficiency of mesoporous Fe3O4/CeO2 was much higher than that of irregular porous Fe3O4/CeO2. The superior adsorption ability of mesoporous materials was attributed to the abundant oxygen vacancies on the surface of CeO2, high surface area and ordered mesoporous channels. The good oxidative degradation resulted from high Ce3+ content and the synergistic effect between Fe and Ce. The mesoporous Fe3O4/CeO2 composite presented low metal leaching (iron 0.22 mg L-1 and cerium 0.63 mg L-1), which could be ascribed to the strong metal-support interactions for dispersion and stabilization of Fe species. In addition, the composite can be easily separated from reaction solution with an external magnetic field due to its magnetic property, which is important to its practical applications.

  16. Crystal structure and luminescence properties of Bi{sup 3+}activated Ca{sub 2}Y{sub 8}(SiO{sub 4}){sub 6}O{sub 2} phosphors under near UV excitation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhihua [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xian Jiaotong University, Xian 710049, ShannXi (China); International Center for Dielectric Research, Xian Jiaotong University, Xian 710049, ShannXi (China); School of Materials Science and Engineer, Chang’an University, Xi’an 710061, ShannXi (China); Wang, Minqiang, E-mail: mqwang@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xian Jiaotong University, Xian 710049, ShannXi (China); International Center for Dielectric Research, Xian Jiaotong University, Xian 710049, ShannXi (China); Yang, Zhi [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xian Jiaotong University, Xian 710049, ShannXi (China); International Center for Dielectric Research, Xian Jiaotong University, Xian 710049, ShannXi (China); Liu, Kaiping; Zhu, Feiyan [School of Materials Science and Engineer, Chang’an University, Xi’an 710061, ShannXi (China)

    2016-07-15

    Oxyapatite Ca{sub 2}Y{sub 8−x}(SiO{sub 4}){sub 6}O{sub 2}:xBi{sup 3+}phosphor has been prepared via high temperature solid-state reaction. Its crystal structure and PL properties were investigated by X-ray diffraction, photoluminescence excitation and emission spectra. The results indicated that the Ca{sub 2}Y{sub 8}(SiO{sub 4}){sub 6}O{sub 2} crystallizes as a hexagonal structure with a space group of P6{sub 3}/m and lattice constants of a=b=9.3507 Å, c=6.7899 Å, α=β=90.00°, γ=120.00°, V=514.14 Å{sup 3}; The phosphor has two prominent emission bands: when excited under 320–360 nm, the phosphors emit a broad band centered at 495 nm due to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of Bi{sup 3+} in 4f (C{sub 3}) sites; when excited under 380 nm, the phosphors emit a broad band centered at 411 nm due to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of Bi{sup 3+} in 6h (C{sub s}) sites. The emission color varies from the greenish blue to blue as the excitation wavelength increases from 335 to 380 nm. The optimal intensity of emission band was observed when x=0.015 in the Ca{sub 2}Y{sub 8−x}(SiO{sub 4}){sub 6}O{sub 2}:xBi{sup 3+} series. The average critical distance Rc among Bi{sup 3+} ions is determined to be 20.15 Å.

  17. Luminescence of Ce3+ doped LaPO4 nanophosphors upon Ce3+ 4f-5d and band-to-band excitation

    International Nuclear Information System (INIS)

    Stryganyuk, G.; Trots, D.M.; Voloshinovskii, A.; Shalapska, T.; Zakordonskiy, V.; Vistovskyy, V.; Pidzyrailo, M.; Zimmerer, G.

    2008-01-01

    Luminescence spectral-kinetic studies have been performed for pure and Ce-doped LaPO 4 micro- and nanosized phosphates using synchrotron radiation for the excitation within 5-20 eV energy range at T=8-300 K. Mechanisms for the excitation of Ce 3+ 5d-4f emission as well as the quenching processes are discussed. The influence of surface defects has been considered to modify considerably the luminescent properties of nanosized phosphors upon the excitation in the energy range of Ce 3+ 4f-5d transitions and LaPO 4 host absorption

  18. Blue and green emitting Ce3+ and Tb3+ codoped Gd2O3 nanophosphors

    International Nuclear Information System (INIS)

    Loitongbam, Romeo Singh; Singh, W. Rameshwor

    2013-01-01

    Tb 3+ doped Gd 2 O 3 nanoparticles of 4-10 nm in size were synthesized from nitrate precursors by urea hydrolysis method in ethylene glycol medium at low temperature of 140 ℃. Characteristic Tb 3+ ion green emission corresponding to 5 D 4 ’! 7 F J was observed to be very strong, which further increases with heat treatment temperature. Characteristic blue color emission of Ce 3+ ion transitions for 5 d’! 2 F 7/2 and 2 F 5/2 (at 422 nm and 485 nm respectively) was found to be very strong in as-synthesized Ce 0.06 Tb 0.14 Gd 0.8 O 3 nanoparticles. However, its luminescence intensity decreases with increase in heating temperature or increase in the particle size/crystallinity, whereas there was a weak emission peak of Tb 3+ ion at 545 nm. The polycrystalline nature of as-prepared sample change to highly crystalline state when heated at elevated temperature (900 ℃). (author)

  19. Photoluminescence properties of Eu(3+)/ Sm(3+) activated CaZr4(PO4)6 phosphors.

    Science.gov (United States)

    Nair, Govind B; Dhoble, S J

    2016-09-01

    Solid state reaction method was employed for the synthesis of a series of CaZr4(PO4)6: Eu(3+)/Sm(3+) phosphors. The red-emitting CaZr4(PO4)6:Eu(3+) phosphors can be efficiently excited at 396 nm and thereby, exhibit a strong red luminescence predominantly corresponding to the electric dipole transition at 615 nm. Under 405 nm excitation, CaZr4(PO4)6:Sm(3+) phosphors display orange emission with color temperatures approximately around 2200 K. The acquired results reveal that CaZr4(PO4)6: RE(3+) (RE = Eu, Sm) phosphors could be potential candidates for red and orange emitting phosphor, respectively, for UV/blue-pump LEDs.

  20. Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu(3+) phosphors and ceramics.

    Science.gov (United States)

    Janulevicius, Matas; Marmokas, Paulius; Misevicius, Martynas; Grigorjevaite, Julija; Mikoliunaite, Lina; Sakirzanovas, Simas; Katelnikovas, Arturas

    2016-05-16

    A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu(3+) phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu(3+) showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu(3+) doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu(3+) phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour.

  1. Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu3+ phosphors and ceramics

    Science.gov (United States)

    Janulevicius, Matas; Marmokas, Paulius; Misevicius, Martynas; Grigorjevaite, Julija; Mikoliunaite, Lina; Sakirzanovas, Simas; Katelnikovas, Arturas

    2016-01-01

    A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu3+ phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu3+ showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu3+ doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu3+ phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour. PMID:27180941

  2. Insight into the structure and functional application of the Sr0.95Ce0.05CoO3-δ cathode for solid oxide fuel cells.

    Science.gov (United States)

    Yang, Wei; Zhang, Huairuo; Sun, Chunwen; Liu, Lilu; Alonso, J A; Fernández-Díaz, M T; Chen, Liquan

    2015-04-06

    A new perovskite cathode, Sr0.95Ce0.05CoO3-δ, performs well for oxygen-reduction reactions in solid oxide fuel cells (SOFCs). We gain insight into the crystal structure of Sr1-xCexCoO3-δ (x = 0.05, 0.1) and temperature-dependent structural evolution of Sr0.95Ce0.05CoO3-δ by X-ray diffraction, neutron powder diffraction, and scanning transmission electron microscopy experiments. Sr0.9Ce0.1CoO3-δ shows a perfectly cubic structure (a = a0), with a large oxygen deficiency in a single oxygen site; however, Sr0.95Ce0.05CoO3-δ exhibits a tetragonal perovskite superstructure with a double c axis, defined in the P4/mmm space group, that contains two crystallographically different cobalt positions, with distinct oxygen environments. The structural evolution of Sr0.95Ce0.05CoO3-δ at high temperatures was further studied by in situ temperature-dependent NPD experiments. At 1100 K, the oxygen atoms in Sr0.95Ce0.05CoO3-δ show large and highly anisotropic displacement factors, suggesting a significant ionic mobility. The test cell with a La0.8Sr0.2Ga0.83Mg0.17O3-δ-electrolyte-supported (∼300 μm thickness) configuration yields peak power densities of 0.25 and 0.48 W cm(-2) at temperatures of 1023 and 1073 K, respectively, with pure H2 as the fuel and ambient air as the oxidant. The electrochemical impedance spectra evolution with time of the symmetric cathode fuel cell measured at 1073 K shows that the Sr0.95Ce0.05CoO3-δ cathode possesses superior ORR catalytic activity and long-term stability. Mixed ionic-electronic conduction properties of Sr0.95Ce0.05CoO3-δ account for its good performance as an oxygen-reduction catalyst.

  3. Investigation of saturation effects in ceramic phosphors for laser lighting

    DEFF Research Database (Denmark)

    Krasnoshchoka, Anastasiia; Thorseth, Anders; Dam-Hansen, Carsten

    2017-01-01

    We report observation of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion....... It is shown, that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on incident power and spot size diameter...... of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser based lighting systems....

  4. Development of Dy3+ activated K2MgP2O7 pyrophosphate phosphor for energy saving lamp

    International Nuclear Information System (INIS)

    Kohale, R.L.; Dhoble, S.J.

    2013-01-01

    Present work reports, synthesis of Dy 3+ activated K 2 MgP 2 O 7 pyrophosphate phosphor by using modified solid state diffusion that has been studied for its X-ray diffraction pattern (XRD). Furthermore, the chromaticity coordinate values were estimated from emission spectra of K 2 MgP 2 O 7 . The photoluminescence emission spectra of the phosphors having an excitation at around 351 nm (mercury free) showed two distinguishing bands centered at around 485 nm (blue) and 575 nm (yellow) corresponding to 4 F 9/2 → 6 H 15/2 and 4 F9 /2 → 6 H 13/2 transitions of Dy 3+ , respectively. These phosphors have strong absorption in the near UV region. K 2 MgP 2 O 7 pyrophosphate phosphor is suitable for color converter using UV light as the primary light source, which can be used as a blue/yellow phosphor excited by n-UV LED chip and mixed with other color emission phosphors to obtain white light. The 300–400 nm is Hg-free excitation (mercury excitation is 85% 254 nm wavelength of light and 15% other wavelengths), which is characteristic of solid-state lighting phosphors. Hence PL emission in trivalent dysprosium may be efficient photoluminescent materials for solid-state lighting phosphors. The intact study reveals that the present phosphor have promising applications in the lamp industry especially for solid state lighting (mercury-free excited lamp phosphor) and white light LED. -- Highlights: ► Dy 3+ activated pyrophosphate based phosphor prepared by modified solid state diffusion. ► PL emission spectrum of Dy 3+ ion under 351 nm excitation (Hg-free). ► PL emission at 485 nm (blue), 575 nm (yellow) emission. ► K 2 MgP 2 O 7 : Dy 3+ is expected to be a potential candidate for application in n-UV white LEDs and solid state lighting

  5. Ortho-vanadates K3RE(VO4)2 (RE = La, Pr, Eu, Gd, Dy, Y) for near UV-converted phosphors

    International Nuclear Information System (INIS)

    Qin, Lin; Wei, Dong-Lei; Huang, Yanlin; Qin, Chuanxiang; Cai, Peiqing; Kim, Sun-Il; Seo, Hyo-Jin

    2014-01-01

    The orthovanadate poly-crystals K 3 RE(VO 4 ) 2 (RE = La, Pr, Eu, Gd, Dy, Y) were synthesized via the solid-state reaction route. The crystal phase formation was verified through X-ray diffraction (XRD) studies and was performed by structural refinements. The optical properties were also investigated in detail. K 3 RE(VO 4 ) 2 (RE = Eu, Dy, Gd, Pr, La, Y) phosphors present different luminescence behaviors: the profiles of excitation and emission spectra, the spectra shift, the luminescence decay lifetimes, the absolute quantum efficiency (QE), and the CIE color coordinates are very different. The luminescence of K 3 RE(VO 4 ) 2 (RE = La, Gd, Y, Pr) presents yellow or yellowish green color, while, K 3 Dy(VO 4 ) 2 and K 3 Eu(VO 4 ) 2 show white and red luminescence, respectively. This was discussed on the base of the different micro-structure, activator centers, and the charge transfer transitions from [VO 4 ] 3− groups in the lattices. K 3 Y(VO 4 ) 2 and K 3 Eu(VO 4 ) 2 show higher QE values of 47.0% and 45.0% at room temperature, respectively. All the phosphors have efficient absorption in the region of near-UV wavelengths or blue wavelength region. This can well match with the light from UV-LED (360–400 nm) or blue LED chips (450–480 nm) based on GaN semiconductor. K 3 RE(VO 4 ) 2 could be suggested to be a potential candidate to give further investigations for the application on near-UV excited white LEDs. - Graphical abstract: A series of orthovanadates K 3 RE(VO 4 ) 2 (RE = Eu, Dy, Gd, Pr, La, Y) have been developed to be new phosphors with rich luminescence colors; there are efficiency excitation in the near UV wavelength region. Compared with the reported vanadate phosphors K 3 R(VO 4 ) 2 has rich luminescence color, rich color, no concentration quenching, and comparable luminescence QE. - Highlights: • A new phosphor of non-doped of K 3 R(VO 4 ) 2 (R = Eu, Dy, Gd, Pr, La, Y) were developed by solid-state reaction route. • The phosphor

  6. A high performance BaZr0.1Ce0.7Y0.2O3-δ-based solid oxide fuel cell with a cobalt-free Ba0.5Sr0.5FeO3-δ–Ce0.8Sm0.2O2-δ composite cathode

    NARCIS (Netherlands)

    Sun, Wenping; Shi, Zhen; Fang, S.; Yan, Litao; Zhu, Zhiwen; Liu, Wei

    2010-01-01

    A cobalt-free Ba0.5Sr0.5FeO3-δ–Ce0.8Sm0.2O2-δ (BSF–SDC) composite is employed as a cathode for an anode-supported proton-conducting solid oxide fuel cells (H-SOFCs) using BaZr0.1Ce0.7Y0.2O3-δ (BZCY) as the electrolyte. The chemical compatibility between BSF and SDC is evaluated. The XRD results show

  7. Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials

    NARCIS (Netherlands)

    Li, Y.Q.; With, de G.; Hintzen, H.T.J.M.

    2006-01-01

    The luminescence properties of Ce3+, Li+ or Na+ co-doped alkaline-earth silicon nitride M2Si5N8 (M=Ca, Sr, Ba) are reported. The solubility of Ce3+ and optical properties of M2-2xCexLixSi5N8 (x0.1) materials have been investigated as function of the cerium concentration by X-ray powder diffraction

  8. A potential green emitting citrate gel synthesized NaSrBO3:Tb3+ phosphor for display application

    Science.gov (United States)

    Bedyal, A. K.; Kumar, Vinay; Swart, H. C.

    2018-04-01

    A potential green emitting NaSrBO3:Tb3+ (1-9 mol%) phosphor was synthesized by a citrate gel combustion method. X-ray diffraction patterns confirmed the monoclinic phase of the phosphor. The phosphor emitted intense green emission under near-UV and electron excitation due to the characteristic transitions 5D4→7F6(488 nm),5D4→7F5(544 nm),5D4→7F4(586 nm) and 5D4→7F3(622 nm) of Tb3+ ions. The optimal molar concentration of Tb3+ ions was found to be 6 mol%, after that concentration quenching occurred. The dipole-dipole interaction was found to be accountable for energy transfer between the Tb3+ ions. X-ray photoelectron spectroscopy was carried out to analyze the chemical states of the elements and suggest that terbium was mostly presented in the (+3) valance state in the phosphor. The approximated Commission Internationale de l‧Eclairage coordinates for the PL (0.31, 0.61) and CL (0.33, 0.57) were found to be very close to the well-known green emitting phosphor. The obtained results suggest that the studied phosphor could be an ultimate choice for green emission in display applications.

  9. Efficient UV-emitting X-ray phosphors: octahedral Zr(PO4)6 luminescence centers in potassium hafnium-zirconium phosphates K2Hf1-xZrx(PO4)2 and KHf2(1-x)Zr2x(PO4)3

    International Nuclear Information System (INIS)

    Torardi, C.C.; Miao, C.R.; Li, J.

    2003-01-01

    Potassium hafnium-zirconium phosphates, K 2 Hf 1-x Zr x (PO 4 ) 2 and KHf 2(1-x) Zr 2x (PO 4 ) 3 , are broad-band UV-emitting phosphors. At room temperature, they have emission peak maxima at approximately 322 and 305 nm, respectively, under 30 kV peak molybdenum X-ray excitation. Both phosphors demonstrate luminescence efficiencies that make them up to ∼60% as bright as commercially available CaWO 4 Hi-Plus. The solid-state and flux synthesis conditions, and X-ray excited UV luminescence of these two phosphors are discussed. Even though the two compounds have different atomic structures, they contain zirconium in the same active luminescence environment as that found in highly efficient UV-emitting BaHf 1-x Zr x (PO 4 ) 2 . All the three materials have hafnium and zirconium in octahedral coordination via oxygen-atom corner sharing with six separate PO 4 tetrahedra. This octahedral Zr(PO 4 ) 6 moiety appears to be an important structural element for efficient X-ray excited luminescence, as are the edge-sharing octahedral TaO 6 chains for tantalate emission

  10. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution

    International Nuclear Information System (INIS)

    Liu, Hu; Zhang, Shengen; Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin; Volinsky, Alex A.

    2014-01-01

    Highlights: • The article provides a new method for recycling rare earth (RE) from waste phosphor. • When compared with the traditional methods, leach rate was much higher. • Y–Eu concentrate and Tb–Ce concentrate were obtained successively. • It would reduce the burden of later extraction, separation and purification. - Abstract: This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y 0.95 Eu 0.05 ) 2 O 3 in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce 0.67 Tb 0.33 MgAl 11 O 19 ) and the Blue phosphor (Ba 0.9 Eu 0.1 MgAl 10 O 17 ) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO 2 are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications

  11. Surface chemical reactions during electron beam irradiation of nanocrystalline CaS:Ce3+ phosphor

    International Nuclear Information System (INIS)

    Kumar, Vinay; Pitale, Shreyas S.; Nagpure, I. M.; Coetsee, E.; Ntwaeaborwa, O. M.; Terblans, J. J.; Swart, H. C.; Mishra, Varun

    2010-01-01

    The effects of accelerating voltage (0.5-5 keV) on the green cathodoluminescence (CL) of CaS:Ce 3+ nanocrystalline powder phosphors is reported. An increase in the CL intensity was observed from the powders when the accelerating voltage was varied from 0.5 to 5 keV, which is a relevant property for a phosphor to be used in field emission displays (FEDs). The CL degradation induced by prolonged electron beam irradiation was analyzed using CL spectroscopy, x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The AES data showed the decrease in the S peak intensity and an increase in the O peak intensity during electron bombardment. The CL intensity was found to decrease to 30% of its original intensity after about 50 C/cm 2 . XPS was used to study the chemical composition of the CaS:Ce 3+ nanophosphor before and after degradation. The XPS data confirms that a nonluminescent CaSO 4 layer has formed on the surface during the degradation process, which may partially be responsible for the CL degradation. The electron stimulated surface chemical reaction mechanism was used to explain the effects of S desorption and the formation of the nonluminescent CaSO 4 layer on the surface.

  12. High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters

    Science.gov (United States)

    Yoon, Hee Chang; Oh, Ji Hye; Do, Young Rag

    2014-09-01

    This paper introduces high color rendering index (CRI) white light-emitting diodes (W-LEDs) coated with red emitting (Sr,Ca)AlSiN3:Eu phosphors and yellowish-green emitting AgIn5S8/ZnS (AIS/ZS) quantum dots (QDs) on glass or a short-wavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions. The red emitting (Sr,Ca)AlSiN3:Eu phosphor film is coated on glass and a SPDF using a screen printing method, and then the yellowish-green emitting AIS/ZS QDs are coated on the red phosphor (Sr,Ca)AlSiN3:Eu film-coated glass and SPDF using the electrospray (e-spray) method.To fabricate the red phosphor film, the optimum amount of phosphor is dispersed in a silicon binder to form a red phosphor paste. The AIS/ZS QDs are mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for the e-spray coating. The substrates are spin-coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to fabricate a conductive surface. The CRI of the white LEDs is improved through inserting the red phosphor film between the QD layer and the glass substrate. Furthermore, the light intensities of the multi-layered phosphor films are enhanced through changing the glass substrate to the SPDF. The correlated color temperatures (CCTs) vary as a function of the phosphor concentration in the phosphor paste. The optical properties of the yellowish-green AIS/ZS QDs and red (Sr,Ca)AlSiN3:Eu phosphors are characterized using photoluminescence (PL), and the multi-layered QD-phosphor films are measured using electroluminescence (EL) with an InGaN blue LED (λmax = 450 nm) at 60 mA.

  13. The Cs2SO4-Ce2(SO4)3-H2SO4-H2O system at 150 and 200 deg C

    International Nuclear Information System (INIS)

    Bondar', S.A.; Belokoskov, V.I.; Trofimov, G.V.

    1982-01-01

    Solubility in the system Cs 2 SO 4 -Ce 2 (SO 4 ) 3 -H 2 SO 4 -H 2 O using the isothermal method at 150 and 200 deg C at molar ratios Cs 2 SO 4 :Ce 2 (SO 4 ) 3 =1:5 and conditions of sulfate crystallization Cs 2 SO 4 xCe 2 (SO 4 ) 3 , Ce 2 (SO 4 ) 3 x0.5H 2 SO 4 xnH 2 O (n=2-3) and Ce 2 (SO 4 ) 3 x3H 2 SO 4 are determined. Double sulfate Cs 2 SO 4 xCe 2 (SO 4 ) 3 is studied using the methods of crystallooptical, thermal, X-ray phase analyses and IR spectroscopy

  14. Photoluminescence of Eu{sup 2+}-doped CaMgSi{sub 2x}O{sub 6+2x} (1.00{<=}x{<=}1.20) phosphors in UV-VUV region

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiya [Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang Yuhua [Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)], E-mail: wyh@lzu.edu.cn

    2008-03-15

    Alkaline-earth silicate phosphors CaMgSi{sub 2x}O{sub 6+2x}:Eu{sup 2+} (1.00{<=}x{<=}1.20) were prepared by traditional solid-state reaction. The phosphors showed an intense blue emission centered around 453 nm, with both 254 and 147 nm excitations. The host absorption below 200 nm in the excitation spectra consisted of two bands around 160 and 190 nm. The band around 160 nm was ascertained to be associated with the SiO{sub 4}-tetrahedra and MgO{sub 6}-polyhedra, and that around 190 nm was due to the CaO{sub 8}-polyhedra or some impurities. The incorporation of excess Si of less than 15% would not lead to formation of impurities and the results indicated that an appropriate Si excess could improve the Photoluminescence (PL) intensity in both ultraviolet (UV) and vacuum ultraviolet (VUV) regions.

  15. Synthesis of the novel β-cyclodextrin supported CeO{sub 2} nanoparticles for the catalytic degradation of methylene blue in aqueous suspension

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, Aniruddha, E-mail: aniruddha.gogoi@gmail.com; Sarma, Kanak Chandra

    2017-06-15

    Nanoceria (CeO{sub 2}) and a new β-cyclodextrin coated CeO{sub 2} nanocomposite (β-CD-CeO{sub 2}) materials were prepared by using a combination of precipitation and sol-gel method for efficient degradation of organic dyes from aqueous solutions at room temperature. The prepared catalysts were characterized by using various analytical techniques such as XRD, FT-IR, Pyridine adsorbed FT-IR, Raman spectroscopy, FESEM, TEM and HRTEM. The XRD study suggests the formation of nanocrystalline materials which is further confirmed from the TEM photographs. The presence of oxygen vacancies and lattice defects of the samples were confirmed by Raman analysis. The thermal stability of the prepared catalysts was tested by TGA measurements. UV–Vis analyses were performed to find out the band gap energy and absorbance in the solid state. The β-CD-CeO{sub 2} has the particle diameter of 14 ± 2 nm with band gap of 4.93 eV. The degradation of the methylene blue (MB) was performed by using the prepared catalysts at room temperature in the presence of H{sub 2}O{sub 2} without light irradiation. The process of degradation produces LMB sulfone with m/z = 317 amu, which further lost one or both of its dimethylamine groups to produce substances with m/z = 273 amu and m/z = 229 amu. It was observed that β-CD-CeO{sub 2} efficiently degrades the MB solution completely within 1 h whereas CeO{sub 2} degrades the solution partially giving a higher rate constant value for the former. - Highlights: • β-CD-CeO{sub 2} nanocomposite was prepared by precipitation and sol-gel method. • β-CD is a good support to modify catalytic properties of CeO{sub 2}. • β-CD-CeO{sub 2} with H{sub 2}O{sub 2} acted as a Fenton like heterogeneous catalyst. • It degrades methylene blue efficiently without light irradiation at room temperature.

  16. Oxygen Exchange and Transport in (La0.6Sr0.4)0.98FeO3-d – Ce0.9Gd0.1O1.95 Dual-Phase Composites

    DEFF Research Database (Denmark)

    Ovtar, Simona; Søgaard, Martin; Norrman, Kion

    2018-01-01

    The chemical diffusion coefficient and the effective surface exchange coefficient (kex) of dual-phase (La0.6Sr0.4)0.98FeO3-d (LSF) − Ce0.9Gd0.1O1.95 (CGO) composites containing between 30 and 70 vol.% of CGO were determined by electrical conductivity relaxation (ECR) at high oxygen partial...... pressures (10−3 .../s for a 70 vol.% of CGO in the composite at 750°C for a pO2 change from 0.2 to 1.0 atm. The experiments demonstrate that the kex is enhanced due to a synergistic effect between the two phases, and suggest a direct involvement of CGO phase in the oxygen surface exchange reaction. Possible mechanisms...

  17. Nanomaterial Host Bands Effect on the Photoluminescence Properties of Ce-Doped YAG Nanophosphor Synthesized by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    L. Guerbous

    2015-01-01

    Full Text Available Cerium trivalent (Ce3+ doped YAG nano-sized phosphors have been successfully synthesized by sol-gel method using different annealing temperatures. The samples have been characterized by X-ray diffraction (XRD, thermogravimetry (TG, differential scanning calorimetry (DSC analysis, Fourier transform infrared (FTIR spectroscopy, and steady photoluminescence (PL spectroscopy. X-ray diffraction analysis indicates that the pure cubic phase YAG was formed and strongly depends on the cerium content and the annealing temperature. It was found that the grain size ranges from 30 to 58 nm depending on the calcination temperature. The YAG: Ce nanophosphors showed intense, green-yellow emission, corresponding to Ce3+ 5d12F5/2, 2F7/2 transitions and its photoluminescence excitation spectrum contains the two Ce3+ 4f1→5d1, 5d2 bands. The crystal filed splitting energy levels positions 5d1 and 5d2 and the emission transitions blue shift with annealing temperatures have been discussed. It was found that the Ce3+ 4f1 ground state position relative to valence band maximum of YAG host nanomaterial decreases with increasing the temperature.

  18. Luminescent characteristics of UV excited Sr_0_._5Ca_0_._5TiO_3: Pr"3"+ reddish-orange phosphor

    International Nuclear Information System (INIS)

    Vidyadharan, Viji; Mohan P, Remya; Joseph, Cyriac; Unnikrishnan, N.V.; Biju, P.R.

    2016-01-01

    Pr"3"+ doped Sr_0_._5Ca_0_._5TiO_3 phosphors were synthesised by solid state reaction process. The structure, surface morphology and photoluminescence of the prepared phosphors were analysed using XRD, SEM and photoluminescence spectroscopy respectively. The XRD pattern confirmed orthorhombic perovskite structure of the Sr_0_._5Ca_0_._5TiO_3: x Pr"3"+ phosphor. Agglomeration of particles with irregular shapes is observed from the SEM images. The emission spectra of Sr_0_._5Ca_0_._5TiO_3: x Pr"3"+ phosphor shows the samples can be effectively excited with UV light at 336 nm and exhibit a strong reddish-orange emission at 611 nm. Concentration dependence of emission intensity shows concentration quenching effect on increasing Pr"3"+ concentration after x = 0.1 because of dipole–dipole interaction. Using Blasse's formula, critical distance for energy transfer was calculated. The CIE co-ordinates, CCT, colour purity and luminescence decay of the prepared phosphors were also calculated. These results offer the prepared phosphor as a suitable candidate for various photonic applications. - Highlights: • Sr_0_._5Ca_0_._5TiO_3: x Pr"3"+ perovskite structured phosphors were synthesized. • Under UV excitation, the PL spectra show strong reddish-orange emission. • The emission from "3P_J levels of Pr"3"+ were absent due to the presence of IVCT band. • Concentration quenching due to dipole–dipole interaction was observed. • For x = 0.1, sample shows a maximum emission intensity with 91.7% colour purity.

  19. Ordered perovskites with cationic vacancies. 9. Compounds of the type Sr/sub 2/Srsub(1/4)Bsub(1/2)sup(III)vacantsub(1/4)WO/sub 6/ equivalent to Sr/sub 8/SrB/sub 2/sup(III)vacantW/sub 4/O/sub 24/ (Bsup(III) = La, Pr, Nd, Sm - Tm, Y)

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Ehmann, A [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1981-08-01

    The compounds Sr/sub 2/Srsub(1/4)Bsub(1/2)sup(III)vacantsub(1/4)WO/sub 6/ equivalent to Sr/sub 8/SrB/sub 2/sup(III)vacantW/sub 4/O/sub 24/ belong to the group of perovskites with octahedral cationic vacancies (cation/vacancy ratio (CN 6) = 7:1). For the larger Bsup(III) ions (La, Pr, Nd, Sm-Dy) different ordering effects are observed. The perovskites with Bsup(III) = Sm, Eu, Gd are polymorphic too (HT modification: higher ordered cubic perovskite (Bsup(III) = Gd: a = 2 x 8.23/sub 4/ A); LT modification: hexagonal perovskite stacking polytype (Bsup(III) = Gd: a = 9.95/sub 4/ A; c = 19.0/sub 4/ A)). With the smaller Bsup(III) ions (Ho, Er, Tm and Y) a cubic, 1:1 ordered perovskite type is observed.

  20. The synthesis and luminescence properties of a novel red-emitting phosphor: Eu3+-doped Ca9La(PO4)7

    Science.gov (United States)

    Liang, Zehui; Mu, Zhongfei; Wang, Qiang; Zhu, Daoyun; Wu, Fugen

    2017-10-01

    A series of novel red-emitting phosphors Ca9La1- x (PO4)7: xEu3+ were synthesized by high-temperature solid state reactions. The photoluminescence excitation and photoluminescence spectra of these phosphors were investigated in detail. O2--Eu3+ charge transfer band peaking at about 261 nm is dominant in the PLE spectra of Eu3+-doped Ca9La(PO4)7, indicating that the phosphors are suitable for tricolor fluorescent lamps. The phosphors also show a good absorption in near ultraviolet (around 395 nm) and blue (around 465 nm) spectral region, which indicates that it can be pumped with NUV and blue chips for white light-emitting diodes. The transition of 5D0 → 7F2 of Eu3+ in this lattice can emit bright red light. Ca9La(PO4)7 could accommodate a large amount of Eu3+ with an optimal concentration of 60 mol%. The dipole-dipole interaction between Eu3+ is the dominant mechanism for concentration quenching of Eu3+. The calculated color coordinates lie in red region ( x = 0.64, y = 0.36), which is close to Y2O3: 0.05Eu3+ ( x = 0.65, y = 0.34). The integral emission intensity of Ca9La0.4(PO4)7: 0.6Eu3+ is 1.9 times stronger than that of widely used commercial red phosphor Y2O3: 0.05Eu3+. All these results indicate that Eu3+-doped Ca9La(PO4)7 is a promising red-emitting phosphor which can be used in tricolor fluorescent lamps and white light-emitting diodes.

  1. Synthesis and photoluminescence control of Ca{sub 10.5–1.5x}La{sub x}(PO{sub 4}){sub 7}:Eu{sup 2+} phosphors by aliovalent cation substitution

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yanting; Tang, Miao; Qiu, Zhongxian; Zhang, Jilin; Yu, Liping; Li, Chengzhi; Lian, Shixun; Zhou, Wenli, E-mail: chemwlzhou@hunnu.edu.cn

    2017-02-15

    A range of Ca{sub 10.5-1.5x}La{sub x}(PO{sub 4}){sub 7}:Eu{sup 2+}phosphors were synthesized by high temperature solid state method. Subsequently we studied the crystal structures and luminescent properties through X-ray diffraction, photoluminescence and photoluminescence excitation, diffuse reflection spectra, Raman spectra and decay curves systematically. Based on the special crystal structure ofβ-Ca{sub 3}(PO{sub 4}){sub 2}:Eu{sup 2+}, its emission undergoes a variation from violet–blue to cyan through introducing La{sup 3+}. The substitution of La{sup 3+} for Ca{sup 2+} could form some cation vacancies in Ca(4) sites according to the scheme 3Ca{sup 2+}= 2La{sup 3+}+ □ due to the different ion valence, which compels Eu{sup 2+} to migrate from Ca(4) site to other sites. Additionally, the formation of the cation vacancies can further reduce the thermal stability of phosphors. - Highlights: • Realizing photoluminescence control of Eu{sup 2+} by introducing relatively larger La{sup 3+} ion to replace the Ca{sup 2+} in β-Ca{sub 3}(PO{sub 4}){sub 2}:Eu{sup 2+} phosphor. • The mechanism of spectral control is proposed to be due to emptying of Ca{sup 2+} and migration of Eu{sup 2+}. • The thermal stability reduction is related to the formation of vacancies.

  2. Investigating the Effect of Glass Ion Release on the Cytocompatibility, Antibacterial Eflcacy and Antioxidant Activity of Y2O3 / CeO2 doped SiO2-SrO-Na2O glasses

    Directory of Open Access Journals (Sweden)

    Placek L. M.

    2018-02-01

    Full Text Available The effect on ion release and cytocompatibility of Yttrium (Y and Cerium (Ce are investigated when substituted for Sodium (Na in a 0.52SiO2-0.24SrO-0.24-Na2OMOglass series (where MO= Y2O3 or CeO2. Glass leaching was evaluated through pH measurements and Inductive Coupled Plasma-Optical Emission Spectrometry (ICP-OES analysiswhere the extract pH increased during incubation (11.2 - 12.5. Ion release of Silicon (Si, Na and Strontium (Sr from the Con glass was at higher than that of glasses containing Y or Ce, and reached a limit after 1 day. Ion release from Y and Ce containing glasses reached a maximum of 1800 μg/mL, 1800 μg/mL, and 10 μg/mL for Si, Na, and Sr, respectively. Release of Y and Cewas below the ICP- OES detection limit 75% of bacteria at a 9% extract concentration. Antioxidant capacity (mechanism for neuroprotection was evaluated using the ABTS assay. All glasses had inherent radical oxygen species (ROS scavenging capability with Con reaching 9.5 mMTE.

  3. Sr{sub 1.98}Eu{sub 0.02}SiO{sub 4} luminescence whisker based on vapor-phase deposition: Facile synthesis, uniform morphology and enhanced luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian, E-mail: xujian@stu.xmu.edu.cn [Department of Materials Science and Engineering, Xiamen University, Xiamen 361005 (China); Hassan, Dhia A. [Department of Materials Science and Engineering, Xiamen University, Xiamen 361005 (China); Department of Chemistry, College of Education for Pure Science, University of Basrah, 61004 (Iraq); Zeng, Renjie; Peng, Dongliang [Department of Materials Science and Engineering, Xiamen University, Xiamen 361005 (China); Fujian Key Lab of Advanced Special Material, Xiamen University, Xiamen 361005 (China); Key Laboratory of High Performance Ceramic Fibers, Ministry of Education, Xiamen 361005 (China)

    2015-11-15

    Highlights: • For the first time, it is possible to obtain Sr{sub 1.98}Eu{sub 0.02}SiO{sub 4} whisker. • The whiskers are smooth and uniform with L/D ratio over 50. • Durability and thermal stability of the whisker are enhanced. - Abstract: A high performance strontium silicate phosphor has been successfully synthesized though a facile vapor-phase deposition method. The product consists of single crystal whiskers which are smooth and uniform, and with a sectional equivalent diameter of around 5 μm; the aspect ratio is over 50 and no agglomeration can be observed. X-ray diffraction result confirmed that the crystal structure of the whisker was α’-Sr{sub 2}SiO{sub 4}. The exact chemical composition was Sr{sub 1.98}Eu{sub 0.02}SiO{sub 4} which was analyzed by energy dispersive spectrometer and inductively coupled plasma-mass spectrometer. The whisker shows broad green emission with peak at 523 nm ranging from 470 to 600 nm (excited at 370 nm). Compared with traditional Sr{sub 2}SiO{sub 4}:Eu phosphor, durability (at 85% humidity and 85 °C) and thermal stability of the whisker are obviously improved. Moreover, growth mechanism of the Sr{sub 1.98}Eu{sub 0.02}SiO{sub 4} whiskers is Vapor–Liquid–Solid. On a macro-scale, the product is still powder which makes it suitable for the current packaging process of WLEDs.

  4. Synthesis and luminescence properties of Eu"2"+ doped CaSO_4 phosphor

    International Nuclear Information System (INIS)

    Aghalte, G.A.; Dhoble, S.J.; Pawar, N.R.

    2016-01-01

    Eu"2"+ doped CaSO_4 Phosphor were synthesized by precipitation method. PL analysis of Eu"2"+ activated CaSO_4 phosphor exhibited characteristic emission properties; CaSO_4:Eu Phosphor has received considerable attention because of its high sensitivity to X-ray and λ ray irradiation. CaSO_4:Eu phosphor powder was successfully synthesized by the wet chemical co-precipitation method. The structure morphology and luminescent properties of the phosphor were characterized by X-ray diffraction, scanning electron microscopy and photoluminescence spectroscopy

  5. Oxygen transport properties of tubular Ce0.9Gd0.1O1.95-La0.6Sr0.4FeO3−d composite asymmetric oxygen permeation membranes supported on magnesium oxide

    DEFF Research Database (Denmark)

    Ovtar, Simona; Gurauskis, Jonas; Bjørnetun Haugen, Astri

    2017-01-01

    The oxygen permeation through dense Ce0.9Gd0.1O1.95-La0.6Sr0.4FeO3−d  dual-phase composite asymmetric membranes supported on a porous MgO tube was studied. The membranes were prepared by thermoplastic extrusion, dip coating, co-sintering and infiltration of a catalyst. Oxygen permeation measureme...

  6. The CeO{sub 2}/Ag{sub 3}PO{sub 4} photocatalyst with stability and high photocatalytic activity under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yanhua [School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003 (China); Zhao, Haozhu; Chen, Zhigang; Huang, Liying; Xu, Hui; Li, Huaming [School of the Environment, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 (China); Wang, Weiren [Department of Chemistry, Rice University, Houston, Texas, 77005 (United States)

    2016-09-15

    The CeO{sub 2}/Ag{sub 3}PO{sub 4} composite photocatalysts are synthesized by an in situ precipitation method. The XRD, FT-IR, XPS, TEM, EDS, and DRS are used to characterize the structure of the samples. The photocatalytic performance of the prepared samples is evaluated by the photocatalytic degradation of methylene blue (MB), rhodamine B (RhB), and ciprofloxacin (CIP). The results show that CeO{sub 2}/Ag{sub 3}PO{sub 4} hybrid materials exhibit much higher photocatalytic activity than the Ag{sub 3}PO{sub 4} alone. The optimal CeO{sub 2} content in CeO{sub 2}/Ag{sub 3}PO{sub 4} composites is found to be molar ratio 1 wt%. Photocurrent response of CeO{sub 2}/Ag{sub 3}PO{sub 4} (1 wt%) is about 1.5 times as high as that of the pure Ag{sub 3}PO{sub 4}. The increase of photocatalytic activity of CeO{sub 2}/Ag{sub 3}PO{sub 4} composites could be mainly attributed to the heterojunction between CeO{sub 2} and Ag{sub 3}PO{sub 4}. The trapping experiment has demonstrated that holes serve as the main active species for the degradation of MB under visible light irradiation. A photocatalytic mechanism is also proposed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. The concentration effect of upconversion luminescence properties in Er3+/Yb3+-codoped Y2(MoO4)3 phosphors

    International Nuclear Information System (INIS)

    Lu Weili; Cheng Lihong; Sun Jiashi; Zhong Haiyang; Li Xiangping; Tian Yue; Wan Jing; Zheng Yanfeng; Huang Libo; Yu Tingting; Yu Hongquan; Chen Baojiu

    2010-01-01

    Y 2 (MoO 4 ) 3 :Er 3+ /Yb 3+ phosphors with fixed (varied) Er 3+ and varied (fixed) Yb 3+ concentrations were synthesized by a conventional solid-state reaction. The crystal structure of the phosphors was characterized by means of X-ray diffraction (XRD). Upon 980 nm excitation, very weak blue emission, and strong green and red upconversion emissions centered at 485, 525, 545 and 656 nm were observed. The two-photon process was confirmed to be responsible for both the green and red upconversion emissions. The effects of green upconversion emission intensity ratio ( 2 H 11/24 I 15/2 versus 4 S 3/24 I 15/2 ) and the integrated upconversion emission intensity on the Yb 3+ and Er 3+ concentrations were studied.

  8. Generation of White Light from Dysprosium-Doped Strontium Aluminate Phosphor by a Solid-State Reaction Method

    Science.gov (United States)

    Sahu, Ishwar Prasad; Bisen, D. P.; Brahme, N.; Tamrakar, Raunak Kumar

    2016-04-01

    A single-host lattice, white light-emitting SrAl2O4:Dy3+ phosphor was synthesized by a solid-state reaction method. The crystal structure of prepared SrAl2O4:Dy3+ phosphor was in a monoclinic phase with space group P21. The chemical composition of the sintered SrAl2O4:Dy3+ phosphor was confirmed by the energy dispersive x-ray spectroscopy technique. Under ultra-violet excitation, the characteristic emissions of Dy3+ are peaking at 475 nm, 573 nm and 660 nm, originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 →&!nbsp; 6H13/2 and 4F9/2 → 6H11/2 in the 4f9 configuration of Dy3+ ions. Commission International de I'Eclairage color coordinates of SrAl2O4:Dy3+ are suitable for white light-emitting phosphor. In order to investigate the suitability of the samples as white color light sources for industrial uses, correlated color temperature (CCT) and color rendering index (CRI) values were calculated. Values of CCT and CRI were found well within the defined acceptable range. Mechanoluminescence (ML) intensity of SrAl2O4:Dy3+ phosphor increased linearly with increasing impact velocity of the moving piston. Thus, the present investigation indicates piezo-electricity was responsible for producing ML in sintered SrAl2O4:Dy3+ phosphor. Decay rates of the exponential decaying period of the ML curves do not change significantly with impact velocity. The photoluminescence and ML results suggest that the synthesized SrAl2O4:Dy3+ phosphor was useful for the white light-emitting diodes and stress sensor respectively.

  9. Chemiluminescence of the Ce{sup 3+}* ions, and the {sup 1}ГђЕѕ{sub 2} and ({sup 1}ГђЕѕ{sub 2}){sub 2} molecular species of oxygen induced by active surface of the (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6} crystals at reduction of Ce{sup 4+} to Ce{sup 3+} by water in heterogeneous system «(NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6}-C{sub 6}H{sub 6}-H{sub 2}O»

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, Ramil G., E-mail: profbulgakov@yandex.ru [Laboratory of Negative Ions Mass Spectrometry, Institute of Molecule and Crystal Physics, Ufa Research Centre of the Russian Academy of Sciences, 71, Oktyabrya Prosp., 450054 Ufa (Russian Federation); Gazeeva, Dilara R., E-mail: galimovdi@mail.ru [Laboratory of High Energy Chemistry and Catalysis, Institute of Petrochemistry and Catalysis Russian Academy of Sciences, 141 Prosp. Oktyabrya, 450075 Ufa (Russian Federation); Galimov, Dim I. [Laboratory of High Energy Chemistry and Catalysis, Institute of Petrochemistry and Catalysis Russian Academy of Sciences, 141 Prosp. Oktyabrya, 450075 Ufa (Russian Federation)

    2017-03-15

    We have discovered an unusual new chemiluminescence (CL) in the title system, which is different from other known CL by unusual combination of various in nature emitters, namely, electronically excited state of the Ce{sup 3+}* ion (λ{sub max}=335 nm), singlet oxygen {sup 1}ГђЕѕ{sub 2} (emission near 1270 nm) and its dimer ({sup 1}ГђЕѕ{sub 2}){sub 2} (λ{sub max}=490, 645, 715 nm). The Ce{sup 3+}* ions and oxygen emitters {sup 1}O{sub 2} and ({sup 1}O{sub 2}){sub 2} are generated in the reaction of Ce{sup 4+} with water and hydrogen peroxide, respectively. CL is generated only in a heterogeneous system «(NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6}-C{sub 6}H{sub 6}-H{sub 2}O» and completely absent in a homogeneous solution (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6} in water containing benzene. This is due to the fact that the redox processes and CL in the «(NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6}-C{sub 6}H{sub 6}-H{sub 2}O» system are induced by active surface of the (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6} crystals. It is through the action of the active surface of the (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6} crystals is carried out population of such a high energy level of 5d{sup 1} excited state of Ce{sup 3+}* ion (λ{sub max}=353 nm, 3.7 eV). Discovered CL is the first example of an experimental registration of the Ce{sup 3+}* ion emission in a chemical reaction, because formation of Ce{sup 3+}* ion previously assumed to be in a great many works on the study of CL in reactions of Ce{sup 4+} compounds with various reducing agents, including the reaction with water, initiated by light or catalysts. Possible mechanism generation of new CL in the system under study has been proposed in the paper. - Highlights: • A new chemiluminescence (CL) in the (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 2}-C{sub 6}H{sub 6}-H{sub 2}O system was discovered. • The emission of the Ce{sup 3+}* ion as a CL emitter has been registered for the first time. • Other emitters of this CL are

  10. Cyclometalated Iridium(III) Carbene Phosphors for Highly Efficient Blue Organic Light-Emitting Diodes.

    Science.gov (United States)

    Chen, Zhao; Wang, Liqi; Su, Sikai; Zheng, Xingyu; Zhu, Nianyong; Ho, Cheuk-Lam; Chen, Shuming; Wong, Wai-Yeung

    2017-11-22

    Five deep blue carbene-based iridium(III) phosphors were synthesized and characterized. Interestingly, one of them can be fabricated into deep blue, sky blue and white organic light-emitting diodes (OLEDs) through changing the host materials and exciton blocking layers. These deep and sky blue devices exhibit Commission Internationale de l'Éclairage (CIE) coordinates of (0.145, 0.186) and (0.152, 0.277) with external quantum efficiency (EQE) of 15.2% and 9.6%, respectively. The EQE of the deep blue device can be further improved up to 19.0% by choosing a host with suitable energy level of its lowest unoccupied molecular orbital (LUMO).

  11. Spectroscopic study and enhanced thermostability of combustion-derived BaMgAl10O17:Eu2+ blue phosphors for solid-state lighting

    Science.gov (United States)

    Pradal, Nathalie; Potdevin, Audrey; Chadeyron, Geneviève; Bonville, Pierre; Caillier, Bruno; Mahiou, Rachid

    2017-02-01

    Blue-emitting BaMgAl10O17:Eu2+ (BAM:Eu), suitable for applications in a next generation of Hg-free lamps based on UV LEDs, was prepared by a microwave induced solution combustion synthesis, using urea as combustion fuel and nitrates as oxidizers. Purity control of the as-synthesized blue phosphor was undertaken by a washing step followed by a reduction one. Structural and morphological properties of the outcoming phosphors have been considered. Synthesis process allows producing a well-crystallized and nanostructured BAM phase within only few minutes. The influence of reduction treatment on the relative amounts of Eu2+/Eu3+ in our samples has been investigated through an original study by magnetization and Mössbauer spectroscopy. Furthermore, a complete optical study has been carried out and allowed us to determine the europium localization in the three possible sites in BAM matrix. The percentage of Eu2+ increased twofold after the reduction treatment, entailing an increase in the luminescence efficiency upon UV excitation. Finally, temperature-dependent luminescence of combustion-derived powders has been studied till 170 °C and compared to that of commercial BAM:Eu. MISCS-derived phosphors present a higher thermal stability than commercial one: whereas the emission efficiency of this last was reduced by 64%, the one of combustion-derived BAM:Eu experienced an only 12% decline. Furthermore, while commercial BAM suffered from a severe blue-shift with increasing temperature, our phosphors keep its color quality with a good stability of the photometric parameters.

  12. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hu [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Shengen, E-mail: zhangshengen@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Volinsky, Alex A. [Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620 (United States)

    2014-05-01

    Highlights: • The article provides a new method for recycling rare earth (RE) from waste phosphor. • When compared with the traditional methods, leach rate was much higher. • Y–Eu concentrate and Tb–Ce concentrate were obtained successively. • It would reduce the burden of later extraction, separation and purification. - Abstract: This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y{sub 0.95}Eu{sub 0.05}){sub 2}O{sub 3} in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce{sub 0.67}Tb{sub 0.33}MgAl{sub 11}O{sub 19}) and the Blue phosphor (Ba{sub 0.9}Eu{sub 0.1}MgAl{sub 10}O{sub 17}) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO{sub 2} are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications.

  13. Structural, Morphological, Vibrational, and Photoluminescence Study of Sol-Gel-Synthesized Tm3+:NaGd(WO4)2 Blue Phosphors

    Science.gov (United States)

    Durairajan, A.; Thangaraju, D.; Valente, M.; Moorthy Babu, S.

    2015-11-01

    The photoluminescence properties of sol-gel-derived NaGd1- x Tm x (WO4)2 sub-micron powders were studied. Formation of a crystalline material with a tetragonal structure and the I41/a space group was confirmed by powder x-ray diffraction measurements. The surface morphology and size distribution of the powders were investigated by scanning electron microscopy. Double tungstate formation was confirmed by Fourier-transform infrared and Raman spectroscopy and the corresponding vibrations were also assigned. A broad charge-transfer band (CTB) and intra-configurational 4f-4f transitions in the excitation spectra are discussed. Strong blue emission was observed at 455 nm (1D2 → 3F4) for both CTB and intra-configurational 4f-4f excitation bands, and strong emission as a result of intra-configurational 4f-4f excitation only was also observed. The concentration dependence of emission was studied, and emission was found to be maximum for x = 0.05. The corresponding critical distance was also determined and a mechanism is proposed for energy transfer by Tm3+ ions in the NaGd(WO4)2 matrix. The Commission International de l'Eclairage (CIE) coordinates were calculated and fell in the blue region of the CIE diagram. The coordinates of the blue intensity maximum were also matched with European Broadcasting Union standard values.

  14. Near-infrared spectral downshifting in Sr$_{(3−x)}$(VO$_4$)

    Indian Academy of Sciences (India)

    infrared (NIR) radiation in Sr 3 (VO 4 ) 2 :Nd 3 + phosphor is reported. The prepared materials were characterized by X-ray powder diffraction(XRD) and photoluminescence (PL) properties along with steady state luminescence time decay curves ...

  15. Influence of rare earth Ce3+ on structural, electrical and magnetic properties of Sr2+ based W-type hexagonal ferrites

    International Nuclear Information System (INIS)

    Sadiq, Imran; Khan, Imran; Aen, Faiza; Islam, M.U.; Rana, M.U.

    2012-01-01

    A series of single phase W-type Sr 3-x Ce x Fe 16 O 27 (x=0, 0.02, 0.04, 0.06, 0.08, 0.10) hexagonal ferrites prepared by the Sol-Gel method was sintered at 1050 °C for 5 h. The X-ray diffraction analysis reveals that all the samples belong to the family of W-type hexagonal ferrites. The c/a ratio falls in the range of W-type hexagonal ferrites. The grain size was measured by SEM varies from 0.7684 to 0.4366 μm which shows that the Ce 3+ substituted samples have smaller grain size than pure ferrite Sr 3 Fe 16 O 27 which results from the difference in ionic radii of Ce 3+ (1.034 Å) and Sr 2+ (1.12 Å). The room temperature resistivity of the present samples varies from 6.5×10 8 to 272×10 8 Ω-cm. The coercivity increases from 1370 to 1993 Oe which is consistent with the decrease in grain size. The coercivity values indicate that the present samples fall in the range of hard ferrites. The large value of H c may be due to domain wall pinning at the grain boundaries.

  16. Photoluminescence, afterglow and thermoluminescence in SrAl2O4:Eu2+,Dy3+ irradiated with blue and UV light

    International Nuclear Information System (INIS)

    Chernov, V.; Piters, T.M.; Melendrez, R.; Yen, W.M.; Cruz-Zaragoza, E.; Barboza-Flores, M.

    2007-01-01

    The luminescence in SrAl 2 O 4 :Eu 2+ ,Dy 3+ under continuous excitation is quite different from the 'standard' intra-ion photoluminescence (PL) and gradually grows during hundreds of seconds before reaching the saturation (photo-charging effect). In this work, we report the behavior of photo-charging effect under the blue and UV light irradiation at temperatures between 20 and 370 K, as well as afterglow (AG) and thermoluminescence (TL) observed after the irradiation termination. At 20 K the photo-charging effect is absent. With increasing temperature the photo-charging effect appears as a result of PL decreasing due to competitive trapping process with activation energy of 0.17 eV. The AG decay curves are described well by the Becquerel's law with the exponent close to 1. The AG decay time is about 10-50 s and practically does not depend on temperature. The TL glow curve exhibits at least seven partially overlapped peaks with maxima at 50, 65, 80, 155, 200, 250 and 290 K. The emission spectra of Eu 2+ consist of two bands at 450 and 520 nm. Both the bands are the same for the PL, AG and TL spectra, but their ratio depends on temperature and the luminescence type

  17. Synthesis and photoluminescence study of rare earth activated phosphor Na2La2B2O7

    International Nuclear Information System (INIS)

    Nagpure, P.A.; Omanwar, S.K.

    2012-01-01

    The photoluminescence properties in UV and N-UV excitable range for the phosphors of Na 2 La 2 B 2 O 7 : RE (RE=Eu, Tb, Ce, Sm, Gd) are investigated. The solution combustion synthesis technique was employed for the synthesis of the phosphors Na 2 La 2 B 2 O 7 : RE. The photoluminescence measurements of the phosphors were carried out on a HITACHI F7000 Fluorescence Spectrophotometer. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Na 2 La 2 B 2 O 7 : Eu are 591 and 615 nm, Na 2 La 2 B 2 O 7 : Ce shows dominating emission peak at 387 nm and Na 2 La 2 B 2 O 7 : Tb displays green emission at 493, 544, 593 and 620 nm at 254 nm excitation, while Na 2 La 2 B 2 O 7 : Sm shows the main emission peak wavelengths 566 and 604 nm at 405 nm excitation and Na 2 La 2 B 2 O 7 : Gd shows dominating emission peak at 312 nm at 274 nm excitation. These phosphors may provide a new kind of luminescent materials under ultraviolet and near ultraviolet excitation for various applications. - Highlights: ► We use the combustion technique for synthesis of Na 2 La 2 B 2 O 7 : RE phosphor. ► Phosphor Na 2 La 2 B 2 O 7 : Eu 3+ shows intense red emission under UV excitation. ► Phosphor Na 2 La 2 B 2 O 7 : Tb 3+ shows intense green emission under UV excitation. ► Phosphor Na 2 La 2 B 2 O 7 : Sm 3+ shows orange red emission under near UV excitation. ► Phosphors Na 2 La 2 B 2 O 7 : Ce 3+ and Na 2 La 2 B 2 O 7 : Gd 3+ show near UV and UVB emissions under UV excitation.

  18. Broadband sensitized white light emission of g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphor under near ultraviolet excitation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bing, E-mail: hanbing@zzuli.edu.cn [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Xue, Yongfei; Li, Pengju [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Zhang, Jingtao [School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Zhang, Jie [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Shi, Hengzhen, E-mail: shihz@zzuli.edu.cn [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China)

    2015-12-15

    The g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphors were synthesized and characterized by X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet visible diffuse reflection spectra, photoluminescence spectra and luminescence decay curves. Under the excitation of 360 nm near ultraviolet light, these composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained in term of appropriate quality proportion of Y{sub 2}MoO{sub 6}:Eu{sup 3+} relative to g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+}. In addition, the emission color can be also dependent on the excitation wavelength in g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphor. - Graphical abstract: Under the excitation of 360 nm near ultraviolet light, the g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained. - Highlights: • The g-C3N4/Y2MoO6:Eu{sup 3+} composite phosphors were synthesized and characterized. • White light emission was realized in the g-C3N4/Y2MoO6:Eu{sup 3+} composites under UV excitation. • A novel idea to realize the broadband sensitized white light emission in phosphors was provided.

  19. BaFCl:Eu2+, a new phosphor for X-ray-intensifying screens

    International Nuclear Information System (INIS)

    Stevels, A.L.N.; Pingault, F.

    1975-01-01

    A number of phosphors for X-ray-intensifying screens have been evaluated by calculating figures of merit. On use in combination with standard (''blue''-sensitive) X-ray film, BaFCl:Eu 2+ and BaFBr:Eu 2+ give better performance than the traditional CaWO 4 and more recently developed UV or blue-emitting materials (e.g., sulphates and y-oxysulphides). The calculated figures of merit of BaFCl:Eu 2+ or BaFBr:Eu 2+ /standard-film combinations are comparable to those of Gd 2 O 2 S:Tb/green-sensitive X-ray film systems. The preparation of optimal fluorohalide:Eu 2+ phosphors involves proper formation of the host lattice, complete reduction of Eu 3+ ions as well as elimination of afterglow. Measurements on powders and experimental screens indicate that by using BaFCl:Eu 2+ screens in radiography, important dose reductions can be achieved without the necessity of using other than standard (''blue''-sensitive) X-ray films

  20. Structural and electronic properties of SrAl{sub 2}O{sub 4}:Eu{sup 2+} from density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, M. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Institute of Applied Physics, Academiei Street 5, Chisinau MD-2028 (Moldova, Republic of); Brik, M.G., E-mail: brik@fi.tartu.ee [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Spassky, D. [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Tsukerblat, B. [Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Nor Nazida, A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Faculty of Art and Design, Universiti Teknologi MARA (Perak), Seri Iskandar, 32610 Bandar Baru Seri Iskandar, Perak (Malaysia); Ahmad-Fauzi, M.N. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2013-10-05

    Highlights: •Persistent phosphor SrAl{sub 2}O{sub 4}:Eu{sup 2+} was synthesized and studied. •Ab initio calculations of its electronic properties were performed. •Lowest position of the Eu 4f states in the band gap was determined. •Position of the Eu 4f states agrees with the charge transfer transition. -- Abstract: A stoichiometric micro-sized powder SrAl{sub 2}O{sub 4}:Eu{sup 2+} was synthesized by traditional solid state reaction at 1250 °C. Low-temperature spectroscopic measurements revealed two luminescence bands at 450 nm and 512 nm; their origin was discussed. Theoretical calculations of the structural and optical properties of SrAl{sub 2}O{sub 4}:Eu{sup 2+} in the framework of the density functional theory (DFT) were carried out; the obtained results were compared with the corresponding experimental data. For the first time, the position of the lowest 4f states of Eu in the host’s band gap was calculated for both available Sr positions to be at about 4.5–5 eV above the top of the valence band. Reliability of this result is confirmed by good agreement with the experimental value of the O(2p)–Eu(4f) charge transfer energy, which is equal to about 4.9 eV.

  1. Structural and luminescence effects of Ga co-doping on Ce-doped yttrium aluminate based phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Ayvacikli, M. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Canimoglu, A. [Nigde University, Faculty of Arts and Sciences, Physics Department, Nigde (Turkey); Muresan, L.E., E-mail: laura_muresan2003@yahoo.com [Babes Bolyai University, Raluca Ripan Institute for Research in Chemistry, Fantanele 30, 400294 Cluj-Napoca (Romania); Barbu Tudoran, L. [Babes Bolyai University, Electronic Microscopy Centre, Clinicilor 37, 400006 Cluj Napoca (Romania); Garcia Guinea, J. [Museo Nacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Karabulut, Y. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Jorge, A. [Museo Nacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Karali, T. [Ege University, Institute of Nuclear Sciences, 35100 Bornova, İzmir (Turkey); Can, N., E-mail: cannurdogan@yahoo.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Jazan University, Physics Department, P.O. Box 114, 45142 Jazan (Saudi Arabia)

    2016-05-05

    Herein, we primarily focus on luminescence spectrum measurements of various types of green emitting yttrium aluminate phosphors modified with gallium (Y{sub 3}Al{sub 5-x}Ga{sub x}O{sub 12}) synthesised by solid state reaction. The luminescent emission of samples depends on sample temperature and excitation radiation such as incident X-ray, electron and laser beam. Here, we measured radioluminescence (RL), cathodoluminescence (CL), photoluminescence (PL) along with XRD in order to clarify relationship between lattice defects and the spectral luminescence emissions. The RL and CL spectra of YAG:Ce exhibit an emission band ranging from 300 to 450 nm related to Y{sub Al} antisite defects. The broad emission band of garnet phosphors is shifted from 526 nm to 498 nm with increasing of Ga{sup 3+} content, while full width at half maximum (FWHM) of the band tends to be greater than the width of unmodified YAG:Ce garnet. Deconvolution of the spectrum reveals that three emission bands centred at 139, 234 and 294 °C occur in aluminate host garnets. - Highlights: • We present preparation of YAG:Ce{sup 3+}, Ga{sup 3+} phosphors by a solid state reaction method. • The shape and size of phosphor particles were investigated. • The luminescence properties were studied by different excitation sources.

  2. Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield

    Science.gov (United States)

    Gordienko, E.; Fedorov, A.; Radiuk, E.; Mechinsky, V.; Dosovitskiy, G.; Vashchenkova, E.; Kuznetsova, D.; Retivov, V.; Dosovitskiy, A.; Korjik, M.; Sandu, R.

    2018-04-01

    This work reports on a process of preparation of garnet phosphor powders and a technique for light yield evaluation of strongly light scattering samples. Powders of scintillation compounds could be used as individual materials or as samples for express tests of scintillation properties. However, estimation of their light yield (LY) is complicated by strong light scattering of this kind of materials. Ce3+-activated yttrium-aluminum and gallium-gadolinium-aluminum garnet phosphor powders, Y3Al5O12 (YAG:Ce) and Gd3Ga3Al2O12 (GGAG:Ce), were obtained using a modified coprecipitation technique. Ga tends to residue in mother liquor in ammonia media, but the modification allows to avoid the loss of components. We propose an approach for sample preparation and LY measurement setup with alpha particles excitation, allowing to decrease light scattering influence and to estimate a light yield of powder samples. This approach is used to evaluate the obtained powders.

  3. Stability of La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 cathodes during sintering and solid oxide fuel cell operation

    DEFF Research Database (Denmark)

    Kiebach, Ragnar; Zhang, Weiwei; Zhang, Wei

    2015-01-01

    Degradation phenomena of La0.58Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathodes were investigated via post-mortem analyses of an experimental solid oxide fuel cell (SOFC) stack tested at 700 °C for 2000 h using advanced electron microscopy (SEM-EDS, HR-TEM-EDS) and time-of-flight secondary ion...... mass spectrometry (TOF-SIMS). Similar studies were carried out on non-tested reference cells for comparison. The analysis focused on the LSCF/CGO cathode and the CGO barrier layer, as the cathode degradation can be a major contributor to the overall degradation in this type of SOFC. SEM-EDS and TOF......-SIMS were used to investigate inter-diffusion across the barrier layer - electrolyte interface and the barrier layer - cathode interface. In addition, TOF-SIMS data were employed to investigate impurity distribution before and after testing. HR-TEM-EDS was used to investigate possible phase segregation...

  4. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Chiao-Wen Yeh

    2010-03-01

    Full Text Available White light-emitting diodes (WLEDs have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV LEDs and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED or polymer light-emitting diode (PLED, have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450-480 nm and nUV (380-400 nm LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+ is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  5. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Science.gov (United States)

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  6. Pulsed laser deposition of {CeO_2} and {Ce_{1-x}M_xO_2} (M = La, Zr): Application to insulating barrier in cuprate heterostructures

    Science.gov (United States)

    Berger, S.; Contour, J.-P.; Drouet, M.; Durand, O.; Khodan, A.; Michel, D.; Régi, F.-X.

    1998-03-01

    SrTiO_3 had been often tentatively used as an insulating barrier for HT superconductor/insulator heterostructures. Unfortunately, the deposition of SrTiO_3 on the YBa_2Cu_3O_7 inverse interface results in a poor epitaxial regrowth producing a high roughness dislocated titanate layer. Taking into account the good matching with YBa_2Cu_3O_7 and LaAlO_3, CeO_2 and Ce_{1-x}M_xO_2 (M = La, Zr), epitaxial layers were grown by pulsed laser deposition on LaAlO_3 substrates and introduced into YBa_2Cu_3O_7 based heterostructures as insulating barrier. After adjusting the growth parameters from RHEED oscillations, epitaxial growth is achieved, the oxide crystal axes being rotated by 45^circ from those of the substrate. The surface roughness of 250 nm thick films is very low with a rms value lower than 0.5 nm over 1;μ m^2. The YBa_2Cu_3O_7 layers of a YBa_2Cu_3O_7/CeO_2 /YBa_2Cu_3O_7 heterostructures grown using these optimized parameters show an independent resistive transition, when the thickness is larger than 25 nm, respectively at T_c_1 = 89.6;K and T_c_2 = 91.4;{K}. SrTiO3 est souvent utilisé comme barrière isolante dans des hétérostructures SIS de cuprates supraconducteurs, cependant les défauts générés lors de la croissance de ce titanate sur l'interface inverse de YBa2Cu3O7 conduisent à un matériau dont la qualité cristalline et les propriétés physiques sont médiocres. L'oxyde de cérium CeO2 est également une barrière isolante potentielle intéressante pour ces structures SIS basées sur YBa2Cu3O7 car cet oxyde cubique (a = 0,5411 nm, asqrt{2}/2 = 0,3825 nm) qui est peu désaccordé par rapport au plan ab du cuprate (Δ a/a = - 0,18 %, Δ b/a = 1,6 %) présente de plus un coefficient de dilatation thermique (10,6 × 10^{-6 circ}C^{-1}) très voisin de celui de YBa2Cu3O7 (13 × 10^{-6 circ}C^{-1}). Nous avons donc étudié l'épitaxie de CeO2 et des oxydes de type Ce{1-x}MxO2 (M = La, Zr) en ablation laser pulsée afin de définir des conditions de

  7. Reversible operation of microtubular solid oxide cells using La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.9Gd0.1O2-δ oxygen electrodes

    Science.gov (United States)

    López-Robledo, M. J.; Laguna-Bercero, M. A.; Larrea, A.; Orera, V. M.

    2018-02-01

    Yttria stabilized zirconia (YSZ) based microtubular solid oxide fuel cells (mT-SOFCs) using La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Ce0.9Gd0.1O2-δ (GDC) as the oxygen electrode, along with a porous GDC electrolyte-electrode barrier layer, were fabricated and characterized in both fuel cell (SOFC) and electrolysis (SOEC) operation modes. The cells were anode-supported, the NiO-YSZ microtubular supports being made by Powder Extrusion Moulding (PEM). The cells showed power densities of 695 mW cm-2 at 800 °C and 0.7 V in SOFC mode, and of 845 mA cm-2 at 800 °C and 1.3 V in SOEC mode. AC impedance experiments performed under different potential loads demonstrated the reversibility of the cells. These results showed that these cells, prepared with a method suitable for using on an industrial scale, are highly reproducible and reliable, as well as very competitive as reversible SOFC-SOEC devices operating at intermediate temperatures.

  8. Piezoelectric properties enhanced of Sr0.6(BiNa)0.2Bi2Nb2O9 ceramic by (LiCe) modification with charge neutrality

    International Nuclear Information System (INIS)

    Fang, Pinyang; Xi, Zengzhe; Long, Wei; Li, Xiaojuan; Li, Jin

    2013-01-01

    Graphical abstract: The oxygen vacancies were confirmed by the left figure. The role of oxygen vacancy on piezoelectric activities was obtained by comparing to the varieties of oxygen vacancy concentration and piezoelectric coefficient with (LiCe) modification. -- Highlights: • The Sr 0.6 (BiNa) 0.2 Bi 2 Nb 2 O 9 ceramic by (LiCe) modification with the charge neutrality was synthesized by the solid state reaction method. • The Curie temperature and piezoelectric coefficient were found to be T c ∼590 °C and d 33 ∼32 pC/N, respectively. • The mechanism of piezoelectric activities improved by (LiCe) modification was discussed. -- Abstract: Aurivillius-type ceramics, Sr 0.6−x (LiCe) x/2.5 (BiNa) 0.2 Bi 2 Nb 2 O 9 (SLCBNBNO) with the charge neutrality, were synthesized by using conventional solid-state processing. Phase analysis was performed by X-ray diffraction analyses (XRD) and Raman spectroscopy. Microstructural morphology was assessed by the scanning electron microscopy (SEM). Structural, dielectric, piezoelectric, ferroelectric, and electromechanical properties of the SLCBNBNO ceramics were investigated. Piezoelectric properties were significantly enhanced compared to Sr 0.6 (BiNa) 0.2 Bi 2 Nb 2 O 9 (SBNBN) ceramic and the maximum of piezoelectric coefficient d 33 of the SBNBN-LC6 ceramic was 32 pC/N with higher Curie temperature (T c ∼590 °C). In addition, mechanisms for the piezoelectric properties enhanced of the SBNBN-based ceramics were discussed

  9. Sol-gel syntheses, luminescence, and energy transfer properties of α-GdB5O9:Ce(3+)/Tb(3+) phosphors.

    Science.gov (United States)

    Sun, Xiaorui; Gao, Wenliang; Yang, Tao; Cong, Rihong

    2015-02-07

    Sol-gel method was applied to prepare homogenous and highly crystalline phosphors with the formulas α-GdB5O9:xTb(3+) (0 ≤ x ≤ 1), α-Gd1-xCexB5O9 (0 ≤ x ≤ 0.40), α-GdB5O9:xCe(3+), 0.30Tb(3+) (0 ≤ x ≤ 0.15) and α-GdB5O9:0.20Ce(3+), xTb(3+) (0 ≤ x ≤ 0.10). The success of the syntheses was proved by the linear shrinkage or expansion of the cell volumes against the substitution contents. In α-GdB5O9:xTb(3+), an efficient energy transfer from Gd(3+) to Tb(3+) was observed and there was no luminescence quenching. The exceptionally high efficiency of the f-f excitations of Tb(3+) implies that these phosphors may be good green-emitting UV-LED phosphors. For α-Gd1-xCexB5O9, Ce(3+) absorbs the majority of the energy and transfers it to Gd(3+). Therefore, the co-doping of Ce(3+) and Tb(3+) leads to a significant enhancement in the green emission of Tb(3+). Our current results together with the study on α-GdB5O9:xEu(3+) in the literature indicate that α-GdB5O9 is a good phosphor host with advantages including controllable preparation, diverse cationic doping, the absence of concentration quenching, and effective energy transfer.

  10. Distribution of stable traps for thermoluminescent processes in the phosphor SrAl{sub 2}O{sub 4}: Eu{sup 2+}, Dy{sup 3+}; Distribucion de trampas continuas para procesos termoluminiscentes en el fosforo SrAl{sub 2}O{sub 4}: Eu{sup 2+}, Dy{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Pedroza M, M.; Castaneda, B.; Arellano T, O.; Melendrez, R.; Barboza F, M. [Universidad de Sonora, A.P. 5-088 Mexico D.F. (Mexico)

    2007-07-01

    Full text: The phosphor of persistent luminescence (PLUM) SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} exhibits one thermoluminescence curve after exposing it to UV radiation. The curve is made up of a wide band with a maximum around 455 K. Starting from the experimental deconvolution method proposed by McKeever, it was solved the number of peaks in the TL curve and it was analyzed the position of each TL peak regarding to the cut temperature (T{sub stop}). In this analysis five maximum TL peaks were observed (at the diagram T{sub stop} vs T{sub max}) around the 319, 425, 457, 488 and 515 K. Also, its were also found two regions that correspond to an overlap of stable traps, the first one in the region of the 380 K at 415 K and the second of the 430 to 455 K. The existence of a distribution of stable traps can be evaluated from the curve T{sub stop} vs T{sub max} where this distribution of stable traps is presented as a monotonous lineal increase with the temperature, because the TL independent processes appear like horizontal lines exactly in the specific temperatures (319, 425, 457, 488 and 515 K) where its are liberated most of the trapped charges. Using the preheating method and initial increase for the peak in 455 K the trap depths are determined, being obtained the following values of the activation energy 0.28, 0.67, 1, 1.5 and 1.62 eV. An arrangement of stable traps plays a decisive role in the emission of the persistent luminescence. Likewise, it was determined that all the thermoluminescent processes were characterized by a re trapping of the charge, reason by which these processes followed a second order kinetics. The TL peak of low temperature 319 K is related with those electronic traps that the PLUM takes place in SrAl{sub 2}O{sub 4}: Eu{sup 2+} and with the same recombination centers. The PLUM emissions and the TL are centered around 510 nm attributed to the electronic transition 4f{sup 6}5d{sup 1} {yields}4f{sup 7} corresponding to the Eu{sup 2+} ion

  11. White- and blue-light-emitting dysprosium(III) and terbium(III)-doped gadolinium titanate phosphors.

    Science.gov (United States)

    Antić, Ž; Kuzman, S; Đorđević, V; Dramićanin, M D; Thundat, T

    2017-06-01

    Here we report the synthesis and structural, morphological, and photoluminescence analysis of white- and blue-light-emitting Dy 3 + - and Tm 3 + -doped Gd 2 Ti 2 O 7 nanophosphors. Single-phase cubic Gd 2 Ti 2 O 7 nanopowders consist of compact, dense aggregates of nanoparticles with an average size of ~25 nm for Dy 3 + -doped and ~50 nm for Tm 3 + -doped samples. The photoluminescence results indicated that ultraviolet (UV) light excitation of the Dy 3 + -doped sample resulted in direct generation of white light, while a dominant yellow emission was obtained under blue-light excitation. Intense blue light was obtained for Tm 3 + -doped Gd 2 Ti 2 O 7 under UV excitation suggesting that this material could be used as a blue phosphor. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Preparation and luminescence properties of Ca3(VO4)2: Eu3+, Sm3+ phosphor for light-emitting diodes

    International Nuclear Information System (INIS)

    Huang Jiaping; Li Qiuxia; Chen Donghua

    2010-01-01

    Rare-earth ions co-activated red phosphors Ca 3 (VO 4 ) 2 : Eu 3+ , Sm 3+ were synthesized by modified solid-state reactions. The samples were characterized by X-ray powder diffractometer (XRD), energy-dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and luminescence spectrometer (LS). The results showed that the Eu-Sm system exhibits higher emission intensity than those of the Eu single-doped system and Sm separate-doped system under blue light. Samarium (III) ions are effective in broadening and strengthening absorptions around 467 nm. Furthermore, they exhibit enhanced luminescence emission. Luminescent measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a red light with a peak wavelength of 616 nm. The material has potential application as a phosphor for light-emitting diodes (LEDs).

  13. Luminescent properties of near UV excitable Ba2ZnS3 : Mn red emitting phosphor blend for white LED and display applications

    International Nuclear Information System (INIS)

    Thiyagarajan, P; Kottaisamy, M; Rao, M S Ramachandra

    2006-01-01

    A bright red colour emitting Mn doped Ba 2 ZnS 3 phosphor was prepared by an ecologically acceptable carbothermal reduction method without an inert gas or hazardous gas (H 2 S) environment. The phosphor can be excited with UV wavelength radiation to realize emission in the visible range. X-ray diffraction studies confirm an orthorhombic structure with phase group, pnam. The photoluminescence (PL) emission spectrum shows a broad band with emission maximum at 625 nm under the host excitation of 358 nm, which lies in the near UV region. The concentration of Mn was varied from 0.0025 to 0.20 mole with respect to Zn and the optimum PL emission intensity was obtained at the concentration of 0.01 mole of Mn. The CIE (Commission Internationale de l'Eclairage) colour coordinates measurement (x = 0.654 and y = 0.321) shows that the primary emission is in the red region. The triband phosphors blend containing Sr 5 (PO 4 ) 3 Cl : Eu 2+ (blue), ZnS : Cu,Al (green) and Ba 2 ZnS 3 : Mn (red) shows white light emission under 365 nm excitation having CIE chromaticity (x = 0.292 and y = 0.251). Since phosphor excitation lies in the near UV excitable region, giving a bright red emission, it can be used for applications in near UV phosphor converted white LED lighting and display devices

  14. Enhanced conductivity in pulsed laser deposited Ce0.9Gd0.1O2−δ/SrTiO3 heterostructures

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Esposito, Vincenzo; Pryds, Nini

    2010-01-01

    Significant enhancement in the electrical conductivity of Ce0.9Gd0.1O2−δ (CGO) thin films (250 and 500 nm) deposited on MgO(001) substrate is observed by introducing ∼ 50 nm thin SrTiO3 buffer layer film. Introduction of the buffer layer is found to form epitaxial films, leading to minimal grain...... boundary network that results in a free conduction path with near-zero blocking effects perpendicular to current flow. The in-plane conductivity measurements confirm increase in conductivity with increase in compressive strain on CGO films. © 2010 American Institute of Physics...

  15. Layered Crystal Structure, Color-Tunable Photoluminescence, and Excellent Thermal Stability of MgIn2P4O14 Phosphate-Based Phosphors.

    Science.gov (United States)

    Zhang, Jing; Cai, Ge-Mei; Yang, Lv-Wei; Ma, Zhi-Yuan; Jin, Zhan-Peng

    2017-11-06

    Single-component white phosphors stand a good chance to serve in the next-generation high-power white light-emitting diodes. Because of low thermal stability and containing lanthanide ions with reduced valence state, most of reported phosphors usually suffer unstable color of lighting for practical packaging and comparably complex synthetic processes. In this work, we present a type of novel color-tunable blue-white-yellow-emitting MgIn 2 P 4 O 14 :Tm 3+ /Dy 3+ phosphor with high thermal stability, which can be easily fabricated in air. Under UV excitation, the MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 white phosphor exhibits negligible thermal-quenching behavior, with a 99.5% intensity retention at 150 °C, relative to its initial value at room temperature. The phosphor host MgIn 2 P 4 O 14 was synthesized and reported for the first time. MgIn 2 P 4 O 14 crystallizes in the space group of C2/c (No. 15) with a novel layered structure built of alternate anionic and cationic layers. Its disordering structure, with Mg and In atoms co-occupying the same site, is believed to facilitate the energy transfer between rare-earth ions and benefit by sustaining the luminescence with increasing temperature. The measured absolute quantum yields of MgIn 2 P 4 O 14 :Dy 0.04 , MgIn 2 P 4 O 14 :Tm 0.01 Dy 0.04 , and MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 phosphors under the excitation of 351 nm ultraviolet radiation are 70.50%, 53.24%, and 52.31%, respectively. Present work indicates that the novel layered MgIn 2 P 4 O 14 is a promising candidate as a single-component white phosphor host with an excellent thermal stability for near-UV-excited white-light-emitting diodes (wLEDs).

  16. Photocatalytic effects for the TiO2-coated phosphor materials

    International Nuclear Information System (INIS)

    Yoon, Jin-Ho; Jung, Sang-Chul; Kim, Jung-Sik

    2011-01-01

    Research highlights: → The photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. → The photobleaching of an MB aqueous solution under visible light irradiation. → The ALD TiO 2 -coated phosphor composite showed much higher photocatalytic reactivity. → The light emitted from the phosphors contributed to the photo-generation. - Abstract: This study investigated the photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. A TiO 2 thin film was deposited on CaAl 2 O 4 :Eu 2+ ,Nd 3+ phosphor particles by using atomic layer deposition (ALD), and its photocatalytic reaction was investigated by the photobleaching of an aqueous solution of methylene-blue (MB) under visible light irradiation. To clarify the mechanism of the TiO 2 -phosphorescent materials, two different samples of TiO 2 -coated phosphor and TiO 2 -Al 2 O 3 -coated phosphor particles were prepared. The photocatalytic mechanisms of the ALD TiO 2 -coated phosphor powders were different from those of the pure TiO 2 and TiO 2 -Al 2 O 3 -coated phosphor. The absorbance in a solution of the ALD TiO 2 -coated phosphor decreased much faster than that of pure TiO 2 under visible irradiation. In addition, the ALD TiO 2 -coated phosphor showed moderately higher photocatalytic degradation of MB solution than the TiO 2 -Al 2 O 3 -coated phosphor did. The TiO 2 -coated phosphorescent materials were characterized by transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and X-ray photon spectroscopy (XPS).

  17. Photoluminescence and cathodoluminescence properties of green emitting SrGa2{S}4 : Eu2+ thin film

    Science.gov (United States)

    Chartier, Céline; Benalloul, Paul; Barthou, Charles; Frigerio, Jean-Marc; Mueller, Gerd O.; Mueller-Mach, Regina; Trottier, Troy

    2002-02-01

    Photoluminescence and cathodoluminescence properties of SrGa2S4 : Eu2+ thin films prepared by reactive RF magnetron sputtering are investigated. Luminescence performances of the phosphor in the thin film form are compared to those of powder samples: the brightness efficiency of thin films is found to be about 30% of the efficiency of powder at low current density. A ratio higher than 40% is expected at higher current density. Thin film screens for FEDs will become a positive alternative to powder screens provided that film quality and light extraction could be improved by optimization of thickness and deposition parameters.

  18. Effect of Co3O4 and Co3O4/CeO2 infiltration on the catalytic and electro-catalytic activity of LSM15/CGO10 porous cells stacks for oxidation of propene

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    The objective of this work was to study the effect of Co3O4 and Co3O4/CeO2 infiltration on the propene oxidation catalytic activity of a La0.85Sr0.15MnO3/Ce0.9Gd0.1O1.95 electrochemical porous cell stack (11 layers, 5 single cells in series). The effect of the infiltration of Co3O4 and Co3O4/CeO2...... on the electrochemical properties of the porous cell stack was also investigated by electrochemical impedance spectroscopy (EIS). Co3O4 and Co3O4/CeO2 exhibited high catalytic activity for propene oxidation. The increase of propene oxidation rate with +4 V (0.8 V/cell) polarization reached 10% for the Co3O4 infiltrated...... reactor and 48% of efficiency at 300 °C. The Co3O4/CeO2 co-infiltration decreased the reactor polarization resistance, while Co3O4 infiltration had negligible effect on reactor electrochemical performance. The beneficial effect of CeO2 on the electrode activity was attributed to the increased...

  19. White LED based on CaAl2Si2O8:Eu2+ Mn2+ phosphor and CdS/ZnS quantum dots

    Science.gov (United States)

    Shen, Changyu; Zhong, Chuan; Hou, Qianglong; Li, Ke

    2011-02-01

    Core/shell CdS/ZnS quantum dots (QDs) with the emission wavelength of 610nm, was synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. CaAl2Si2O8:Eu2+ Mn2+ phosphor was synthesized by high-temperature solid state reaction at 1290 °C for 2 hours under the H2 reducing atmosphere, and X-ray powder diffraction analysis confirmed the formation of it. It has two emission bands peaking at 420 nm and 580nm originated from the transition 5d to 4f of Eu2+ and 4T1-6A1 of Mn2+, respectively. Blends of CaAl2Si2O8:Eu2+,Mn2+ phosphor and CdS/ZnS QDs exhibited the prominent spectral evolution with an increasing content of QDs. A hybrid white LED, which combines a blue LED with the blend of CaAl2Si2O8:Eu2+ Mn2+ phosphor and QDs with a weight ratio of 2:1, with the CIE coordinate of (0.3183, 0.3036) and CRI of 85 was obtained.

  20. Preparation and luminescence properties of Eu2+-doped CaSi2O2-dN2+2/3d phosphors

    International Nuclear Information System (INIS)

    Gu Yunxin; Zhang Qinghong; Wang Hongzhi; Li Yaogang

    2009-01-01

    Eu 2+ -doped CaSi 2 O 2-d N 2+2/3d phosphors for white LED lamps were prepared by solid-state reaction, and the effects of heat-treatment conditions and the overall composition of host lattice on the optical properties have been discussed. Eu 2+ -doped CaSi 2 O 2-d N 2+2/3d displayed a single broad emission band peak at 540 nm, which could be assigned to the allowed transition of Eu 2+ from the lowest crystal field component of 4f 6 5d to 4f 7 ground-state level. The excitation band of samples, extending from UV to blue, is extremely wide, so the phosphors are suitable for white LED lamps in combination with a UV or blue LED dies. The highest PL intensity is found for the sample sintered at 1400 0 C. Moreover, the emission intensity decreases when N partially replaces O. A red shift of emission wavelength did not occur with increasing of the N content.

  1. Structural and optical properties of (Sr,Ba)2SiO4:Eu2+ thin films grown by magnetron sputtering

    International Nuclear Information System (INIS)

    Li, Leliang; Zheng, Jun; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2014-01-01

    (Sr,Ba) 2 SiO 4 :Eu 2+ thin films were deposited on Si at different substrate temperatures by magnetron sputtering. The morphology and crystalline phases of the films were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements, respectively. The silicate crystal phase was presented when films were annealed above 900 °C and the annealing temperature had great impact on the film morphology. The samples annealed at 1000 °C in a non-reducing atmosphere for 30 s show intense room temperature Eu 2+ emission. These findings may open a promising way to prepare efficient phosphor thin films for on-chip light emitting diodes application. - Highlights: • The (Sr, Ba) 2 SiO 4 :Eu 2+ films are fabricated by magnetron sputtering. • A very strong RT PL emission at 540 nm is achieved. • The morphology and optical properties dependent on temperature are studied

  2. A Strategy for Synthesizing CaZnOS:Eu{sup 2+} Phosphor and Comparison of Optical Properties with CaS:Eu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Zhongxian; Rong, Chunying; Zhou, Wenli; Zhang, Jilin; Li, Chengzhi; Yu, Liping; Liu, Shubin; Lian, Shixun, E-mail: shixunlian@gmail.com

    2014-01-15

    Graphical abstract: Pure-phase CaZnOS:Eu{sup 2+},Ce{sup 3+}phosphor with good chemical and thermal stability can be synthesized by co-doping with Ce{sup 3+} as deoxidizer rather than reduction atmosphere. The broad bluish-green excitation and broad red emission show it is a better phosphor than CaS:Eu{sup 2+} for white LED and for sunlight harvesting of plants. -- Highlights: • Pure-phase phosphor CaZnOS:Eu{sup 2+} was synthesized by co-doping with Ce{sup 3+} as deoxidizer. • Energy transfer mechanism from Ce{sup 3+} to Eu{sup 2+} in CaZnOS host is proposed. • CaZnOS:Eu{sup 2+}, Ce{sup 3+} phosphor has good chemical and thermal stability performance. • The similarities and differences between CaZnOS:Eu{sup 2+} and CaS:Eu{sup 2+} were analyzed. • The green excitation and red emission show superior solar harvesting for plants. -- Abstract: The red-emitting phosphor CaZnOS:Eu{sup 2+} was synthesized from CaCO{sub 3}, ZnS, Eu{sub 2}O{sub 3} and CeCl{sub 3} by controlling the sintering condition. It was found that Ce{sup 3+} ions can play a role of reductant to contribute to the formation of Eu{sup 2+} in CaZnOS matrix under inert protective atmosphere. While the gas flow changed to H{sub 2}/N{sub 2}, the product turned to CaS easily. XRD, photoluminescence spectra, UV–vis and IR absorption spectra were evaluated to investigate the origin of the distinctions of the optical properties and stabilities between the two divalent europium ions doped phosphors CaZnOS:Eu{sup 2+} and CaS:Eu{sup 2+}. The similarities and differences between them were analyzed.

  3. Host sensitized novel red phosphor CaZrSi{sub 2}O{sub 7} : Eu{sup 3+} for near UV and blue LED-based white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Bandi, Vengala Rao; Jeong, Junho; Jang, Kiwan; Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jayasimhadri, M [Department of Applied Physics, Delhi Technological University, Delhi (India); Yi, Soung-Soo [Department of Photonics, Silla University, Busan (Korea, Republic of); Jeong, Jung-Hyun, E-mail: kwjang@changwon.ac.k [Department of Physics, Pukyong National University, Busan (Korea, Republic of)

    2010-10-06

    A series of red phosphors Ca{sub 1-x}ZrSi{sub 2}O{sub 7} : Eu{sub x} (x = 0.5,1,5,10,12 mol%) were prepared by a solid-state reaction technique at various temperatures and their structural and optical properties were investigated. The x-ray diffraction profiles showed that all peaks could be attributed to the monoclinic phase CaZrSi{sub 2}O{sub 7} doped with Eu{sup 3+}. SEM, FTIR, TG and DTA profiles have also been characterized to explore their structural properties. The luminescence properties of these resulting phosphors have been characterized by photoluminescence spectra. The host matrix itself has shown a strong blue emission which has its maximum intensity at 470 nm. The excitation spectra of CaZrSi{sub 2}O{sub 7} : Eu{sup 3+} revealed two excitation bands at 395 and 464 nm which correspond to the sharp {sup 7}F{sub 0}-{sup 5}L{sub 6} and {sup 7}F{sub 0}-{sup 5}D{sub 2} transitions of Eu{sup 3+} and matches well with the two popular emissions from n-UV/blue GaN-based LEDs. The prominent red emission was obtained at 615 nm by the excitation transitions {sup 5}L{sub 6}, {sup 5}D{sub 2} of Eu{sup 3+} through the non-radiative energy transfer process from the host to the Eu{sup 3+} ion. The effects of charge compensation by monovalent ions on the luminescence behaviour of a red emitting phosphor CaZrSi{sub 2}O{sub 7} : Eu{sup 3+} were investigated. The high colour saturation and the low thermal quenching effect of these phosphors make it a potential red component for white light emitting diodes (w-LEDs).

  4. Luminescence behaviors of Eu- and Dy-codoped alkaline earth metal aluminate phosphors through potassium carbonate coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chen-Jui, E-mail: cjliang@fcu.edu.tw; Siao, Hao-Yi

    2016-07-01

    An electronic energy mechanism of activator and sensitizer was established to describe the luminescence behaviors of Eu- and Dy-codoped M(II)Al{sub 2}O{sub 4} (M(II) = Ba, Sr, Ca, Mg) phosphors through potassium carbonate coprecipitation. Experimental results demonstrated that the prepared phosphors exhibited superior crystallinity at a temperature lower than 950 °C. The phosphors are ordered according to emission intensity as follows Ca- > Ba- > Sr- > Mg-containing phosphors. The energy level for Eu{sup 2+} 4f{sup 6}5d{sup 1} → 4f{sup 7}, Eu{sup 3+4}D{sub 0} → {sup 7}F, and Dy{sup 3+4}F{sub 9/2} → {sup 6}H transitions and the effects of nephelauxetic and crystal field in Ba-, Sr-, and Ca-containing phosphors were discussed. The energy gap, (hv){sub em}, between 5d and 4f of Eu{sup 2+} ion is strongly affected by host composition, crystal field strength, and nephelauxetic effect. The infrared emission of 4f{sub 9/2} → 6h for Dy{sup 3+} is merely depend on the transfer of energy from Eu{sup 2+} upon excited. Ca-containing phosphor with maximum (hv){sub em} is attributed to the lowest bond length of Ca−O and highest ionization potential of Ca{sup 2+} ion, which leads to the effects of crystal field and nephelauxetic greater than that in the other phosphors. - Highlights: • The list of the collected figure captions: • Develop a new coprecipitation method to prepare high efficiency phosphors. • Obtain superior crystallinity with lower calcination temperature. • Luminescence behavior of Eu- and Dy-codoped on aluminate phosphors is discussed. • Investigate the effects of alkaline earth metal containing on crystal field and nephelauxetic.

  5. Color stable phosphors for LED lamps and methods for preparing them

    Science.gov (United States)

    Murphy, James Edward; Setlur, Anant Achyut; Camardello, Samuel Joseph

    2013-11-26

    An LED lamp includes a light source configured to emit radiation with a peak intensity at a wavelength between about 250 nm and about 550 nm; and a phosphor composition configured to be radiationally coupled to the light source. The phosphor composition includes particles of a phosphor of formula I, said particles having a coating composition disposed on surfaces thereof; ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.sub.y-)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) I wherein the coating composition comprises a material selected from aluminum oxide, magnesium oxide, calcium oxide, barium oxide, strontium oxide, zinc oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, and combinations thereof; and A is Li, NA, K, or Rb, or a combination thereof; M is Ca, Ba, Mg, Zn, or a combination thereof; and 01.10, 0.ltoreq.y.ltoreq.0.5, 0.ltoreq.z.ltoreq.0.5, 0.ltoreq.x.ltoreq.x.

  6. Potential of Sm3+ doped LiSrVO4 nanophosphor to fill amber gap in LEDs

    Science.gov (United States)

    Biswas, P.; Kumar, Vinay; Sharma, Vishal; Bedyal, A. K.; Padha, Naresh; Swart, H. C.

    2018-04-01

    The LiSrVO4:Sm3+ phosphor powders were synthesized by the combustion method by varying the concentration of the Sm3+ ions from 0.25 mol% to 2.5 mol%. The powder X-ray diffraction (XRD) studies confirmed that the phosphors were crystallized as monoclinic structure belonging to space group P2/m and the transmission electron microscopy (TEM) revealed nanosized grains of the powders. The Fourier transform infrared studies (FTIR) established the formation of non-hygroscopic vanadate powders. The photoluminescence (PL) and diffused reflectance studies (DRS) were also carried out and discussed. Under 401 nm excitation, the optimized phosphor exhibited the characteristic 568, 600, 646 and 704 nm emissions of Sm3+ which corresponded to the orange-red (amber) color with (0.59, 0.41) Commission Internationale de' Eclairage (CIE) chromaticity coordinates. Concentration quenching of phosphor intensity on account of non-radiative energy transfer was ascribed to dipole-dipole interaction between activators. DRS study reveals that the host of the phosphor is a wide bandgap material which accommodates the dopant successfully. The present results signify that the LiSrVO4:Sm3+ phosphor can suitably be excited by the GaN family of UV-LEDs chips for efficient amber LEDs applications.

  7. Photoluminescence characteristics of reddish-orange Eu{sup 3+} or Sm{sup 3+} singly-doped and Eu{sup 3+} and Sm{sup 3+} co-doped KZnGd(PO{sub 4}){sub 2} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jun Ho; Bandi, Vengala Rao; Grandhe, Bhaskar Kumar; Jang, Ki Wan; Lee, Ho Sueb [Changwon National University, Changwon (Korea, Republic of); Yi, Soung Soo [Silla University, Busan (Korea, Republic of); Jeong, Jung Hyun [Pukyong National University, Busan (Korea, Republic of)

    2011-02-15

    Eu{sup 3+} or Sm{sup 3+} singly-doped and Eu{sup 3+} and Sm{sup 3+} co-doped KZnGd(PO{sub 4}){sub 2} phosphors were synthesized by using a conventional solid state reaction method at 750 .deg. C. The emission spectra of KZnGd{sub 1-x}(PO{sub 4}){sub 2}:Eu{sup 3+}{sub x} with {lambda}{sub ex} = 395 nm and KZnGd{sub 1-y}(PO{sub 4}){sub 2}:Sm{sup 3+}{sub y} with {lambda}{sub ex} = 403 nm phosphors showed intense {sup 5}D{sub 0} {yields} {sup 7}F{sub 1}, {sup 4}G{sub 5/2} {yields} {sup 6}H{sub 7/2} emission transitions at 595 nm and 599 nm, respectively. The optimum relative intensity of the KZnGd{sub 1-x-y}(PO{sub 4}){sub 2}:Eu{sup 3+}{sub x} , Sm{sup 3+}{sub y} phosphor was obtained for the doping concentrations of (x = 0.09, y = 0.01). In addition, the temperature dependent luminescence intensity of the synthesized phosphors was investigated and the thermal stability of the KZnGd(PO{sub 4}){sub 2}:Eu{sup 3+} phosphor was found to be higher than that of standard YAG:Ce{sup 3+} and KZnGd{sub 1-x-y}(PO{sub 4}){sub 2}:Eu{sup 3+}{sub x} Sm{sup 3+}{sub y} under near ultra-violet (NUV) light emitting diode excitation (LED). Therefore, we suggest that Eu{sup 3+} or Sm{sup 3+} singly-doped and Eu{sup 3+} and Sm{sup 3+} co-doped KZnGd(PO{sub 4}){sub 2} phosphors should be efficient for different red-color-emitting display device applications and NUV-LED-based white-light-emitting diodes.

  8. Ag doped (Bi1.6Pb0.4Sr2CaCu2O8+δ textured rods

    Directory of Open Access Journals (Sweden)

    Díez, J. C.

    2008-06-01

    Full Text Available In this work, superconducting samples of (Bi1.6Pb0.4Sr2CaCu2O8+δ with Ag additions have been studied. (Bi1.6Pb0.4Sr2CaCu2O8+δ + x wt.% Ag (with x = 0, 1 and 3 powders were synthesized using a sol-gel method. The obtained powders were used as precursors to fabricate long textured cylindrical bars through a floating zone melting method. A drastic change on the microstructure has been found when comparing with undoped Bi2Sr2CaCu2O8+δ samples. The results showed that electrical resistivity at room temperature, critical current as well as flexural strength are improved when Ag is added to these Pb doped samples, while critical temperature does not change. On the other hand, it has been found that samples with composition (Bi1.6Pb0.4Sr2CaCu2O8+δ + Ag shown E-I curves with very high sharpness values on the zone of the superconducting to normal transition, reaching n-values (E∼In as high as 45 at 65K.Se han preparado polvos cerámicos de composición (Bi1.6Pb0.4Sr2CaCu2O8+δ + x % Ag en peso (con x = 0, 1 y 3 mediante un proceso sol-gel. Estos polvos se han utilizado para fabricar precursores que se texturaron por medio del método de fusión zonal flotante. Se ha encontrado un gran cambio en la microestructura cuando se compara con muestras de composición pura Bi2Sr2CaCu2O8+δ. Tanto la resistividad eléctrica a temperatura ambiente, como la corriente crítica, así como la resistencia a flexión se mejoran cuando la Ag se adiciona a estas muestras dopadas con Pb, mientras que no se observa cambio en la temperatura crítica. Por otra parte, se ha encontrado que las muestras de composición (Bi1.6Pb0.4Sr2CaCu2O8+δ + Ag presentan una gran pendiente de la curva E-I en la zona de transición entre el estado superconductor y el estado normal. Con estas composiciones, se han encontrado valores de n (E∼In de hasta 45 a 65K.

  9. Self-reduction process and enhanced blue emission in SrAl{sub 2}Si{sub 2}O{sub 8}: Eu, Tb via electron transfer from Tb{sup 3+} to Eu{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwei; Wang, Lili; Li, Minhong; Ran, Weiguang; Deng, Zhihan; Houzong, Ruizhi; Shi, Jinsheng [Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, Shandong, (China)

    2017-06-15

    Eu, Tb co-doped SrAl{sub 2}Si{sub 2}O{sub 8} luminescent materials were synthesized via a high-temperature solid-state reaction. Excitation spectra of SrAl{sub 2}Si{sub 2}O{sub 8}: Eu{sup 2+} gives two broad excitation bands maximizing at 270 and 330 nm, resulting from splitting Eu{sup 2+} energy levels in octahedral crystal field. Eu single doped SrAl{sub 2}Si{sub 2}O{sub 8} luminescent material exhibits two emission bands at about 406 and 616 nm. Intensity of the blue emission from Eu{sup 2+} is always strong, compared with that of the red emission band of Eu{sup 3+}. Reduction from Eu{sup 3+} to Eu{sup 2+} can be explained with the model of charge compensation. Blue emission in SrAl{sub 2}Si{sub 2}O{sub 8}: xEu was strengthened after incorporation of Tb, which can be explained by electron transfer from Tb{sup 3+} to Eu{sup 3+} (Tb{sup 3+} + Eu{sup 3+} → Tb{sup 4+} + Eu{sup 2+}). Under 230 nm excitation, intensity of Tb{sup 3+} emission was nearly unchanged and that of Eu{sup 2+} was increased, obviously due to the delivery of more electrons to Eu{sup 3+}. The strongest emission of Eu{sup 2+} in 0.09Eu/0.06Tb co-doped SrAl{sub 2}Si{sub 2}O{sub 8} and excited at 270 and 330 nm was remarkably enhanced by about four times compared to that of 0.15Eu Single doped SrAl{sub 2}Si{sub 2}O{sub 8}. All of the results indicate that SrAl{sub 2}Si{sub 2}O{sub 8}:xEu, yTb are potential blue emitting luminescent materials for UV-LEDs. More importantly, this research may provide a new perspective in designing broad band blue luminescent materials. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Complex titanates Sr_1_-_xPb_xLi_2Ti_6O_1_4 (0≤x≤1) as anode materials for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Qian, Shangshu; Yu, Haoxiang; Yan, Lei; Li, Peng; Lin, Xiaoting; Wu, Yaoyao; Long, Nengbing; Shui, Miao; Shu, Jie

    2016-01-01

    Highlights: • Sr_1_-_xPb_xLi_2Ti_6O_1_4 (0≤x≤1) is prepared by a simple solid state reaction. • Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 exhibits enhanced lithium storage capability. • Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 can deliver a capacity of 141.8 mAh g"−"1 at 700 mA g"−"1. • In-situ XRD is performed to study the reversibility of Sr_1_-_xPb_xLi_2Ti_6O_1_4. - Abstract: With the Pb doping content at Sr-site increasing, a series of Sr_1_-_xPb_xLi_2Ti_6O_1_4 (x = 0, 0.25, 0.50, 0.75, 1.0) are synthesized by a simple solid-state reaction. It is found that the reversible capacity and rate capability experience a parabolic course from SrLi_2Ti_6O_1_4 to PbLi_2Ti_6O_1_4. Among all the as-prepared samples, Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 shows the best cycling and rate properties. It delivers an initial charge capacity of 163.2 mAh g"−"1 at 100 mA g"−"1 with the capacity retention of 96.08% after 100 cycles. In addition, it can also deliver a reversible capacity of 141.8 mAh g"−"1 at 700 mA g"−"1. The superior electrochemical properties of Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 are attributed to the reduced charge transfer resistance and increased lithium-ion diffusion coefficient after doping. Besides, in-situ X-ray diffraction is also performed to investigate the lithium-ion insertion/extraction behaviors of SrLi_2Ti_6O_1_4, Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 and PbLi_2Ti_6O_1_4. The observed results confirm that Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 has good structural stability and reversibility for repeated lithium storage.

  11. Crystal structure of RbCe(SeO4)2 · 5H2O

    International Nuclear Information System (INIS)

    Ovanesyan, S.M.; Iskhakova, L.D.; Trunov, V.K.

    1987-01-01

    RbTR(SeO 4 ) 2 x5H 2 O TR=La-Pr are synthesized. Crystal structure of RbCe(SeO 4 ) 2 x5H 2 O is studied. Monoclinic unit parameters are: a=7,200(2), b=8,723(1), c=19,258(6) A, Β=90,88(2), ρ (calc) =3,304 sp.gr. P2 1 /c. Within the structure the Ce nine vertex cages are united by Se(1)- and Se(2)-tetrahedrons in (Ce(SeO 4 ) 2 (H 2 O) 5 ) 2 ∞ n- layers. Some crystal structure regularities of the laminated MTR(EO 4 ) 2 xnH 2 O (M=NH 4 ,K,Rb,Cs; TR=La-Ln, E=S,Se) are considered

  12. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    KAUST Repository

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He, Jr-Hau; Ooi, Boon S.; DenBaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-01-01

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC

  13. First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material

    Science.gov (United States)

    Duan, H.; Dong, Y. Z.; Huang, Y.; Hu, Y. H.; Chen, X. S.

    2016-01-01

    Electronic structures of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material are investigated using first-principles calculations. Si vacancies are too high in energy to play any role in the persistent luminescence of Sr2MgSi2O7 phosphor. Mg vacancies form easier than Sr vacancies as a result of strain relief. Among all the vacancies, O1 vacancies stand out as a likely candidate because they are the most favorable in energy and introduce an empty triply degenerate state just below the CBM and a fully-occupied singlet state at ~1 eV above the VBM, constituting in this case effective hole trap level and electron trap levels, respectively. Mg vacancies are unlikely to explain the persistent luminescence because of its too shallow electron trap level but they may compensate the hole trap associated with O1 vacancies. We yield consistent evidence for the defect physics of these vacancy defects on the basis of the equilibrium properties of Sr2MgSi2O7, total-energy calculations, and electronic structures. The persistent luminescence mechanism of Sr2MgSi2O7:Eu2+, Dy3+ phosphor is also discussed based on our results for O1 vacancies trap center. Our results provide a guide to more refined experiments to control intrinsic traps, whereby probing synthetic strategies toward new improved phosphors.

  14. NIR emission and Ce{sup 3+}–Nd{sup 3+} energy transfer in LaCaAl{sub 3}O{sub 7} phosphor prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, A.A. [National Power Training Institute, South Ambazari Road, Nagpur 440022 (India); Talewar, R.A., E-mail: talewarrupesh@gmail.com [Physics Department, Shri Ramdeobaba College of Engineering and Management, Katol Road, Nagpur 440013 (India); Joshi, C.P. [Physics Department, Shri Ramdeobaba College of Engineering and Management, Katol Road, Nagpur 440013 (India); Moharil, S.V. [Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440010 (India)

    2016-11-15

    Near infrared (NIR) emitting phosphor, LaCaAl{sub 3}O{sub 7}:Ce{sup 3+},Nd{sup 3+} was synthesized by one step combustion synthesis and characterized with scanning electron microscope, photoluminescence emission, photoluminescence excitation spectra and fluorescence decay measurements. When excited with UV, the phosphor gives broadband emission at 410 nm, which corresponds to the allowed 5d→4f transition of Ce{sup 3+} ions and an intense NIR emissions in the range 800–1400 nm, which are assigned to the characteristic transitions from {sup 4}I{sub 9/2,11/2,13/2} states of Nd{sup 3+} ions. The dependences of visible and NIR emissions, decay lifetime and the energy transfer efficiency (η{sub ETE}) on dopant concentrations were investigated in detail. The luminescence spectra, both in visible (VIS) and NIR regions, and decay curves of Ce{sup 3+} have been measured to prove energy transfer (ET) from Ce{sup 3+} to Nd{sup 3+}. These results demonstrate the possibility for enhancing the photovoltaic conversion efficiency of c-Si solar cell by modifying the absorption and utilizing the UV part of the solar spectrum where the efficiency of c-Si solar cell is low.

  15. Rare earth activated yttrium aluminate phosphors with modulated luminescence.

    Science.gov (United States)

    Muresan, L E; Popovici, E J; Perhaita, I; Indrea, E; Oro, J; Casan Pastor, N

    2016-06-01

    Yttrium aluminate (Y3 A5 O12 ) was doped with different rare earth ions (i.e. Gd(3+) , Ce(3+) , Eu(3+) and/or Tb(3+) ) in order to obtain phosphors (YAG:RE) with general formula,Y3-x-a Gdx REa Al5 O12 (x = 0; 1.485; 2.97 and a = 0.03). The synthesis of the phosphor samples was done using the simultaneous addition of reagents technique. This study reveals new aspects regarding the influence of different activator ions on the morpho-structural and luminescent characteristics of garnet type phosphor. All YAG:RE phosphors are well crystallized powders containing a cubic-Y3 Al5 O12 phase as major component along with monoclinic-Y4 Al2 O9 and orthorhombic-YAlO3 phases as the impurity. The crystallites dimensions of YAG:RE phosphors vary between 38 nm and 88 nm, while the unit cell slowly increase as the ionic radius of the activator increases. Under UV excitation, YAG:Ce exhibits yellow emission due to electron transition in Ce(3+) from the 5d level to the ground state levels ((2) F5/2 , (2) F7/2 ). The emission intensity of Ce(3+) is enhanced in the presence of the Tb(3+) ions and is decreased in the presence of Eu(3+) ions due to some radiative or non-radiative processes that take place between activator ions. By varying the rare earth ions, the emission colour can be modulated from green to white and red. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Synthesis and characterization of CeO_2 - TiO_2 system for use in heterogeneous photocatalysis in photodegradation of methylene blue dye

    International Nuclear Information System (INIS)

    Bragatto, Julia

    2016-01-01

    This study has as its goal the synthesis of a mixed oxide system type CeO_2 - TiO_2, through the polymeric precursor method, to be used in heterogeneous photocatalysis. The synthesized materials were characterized by Thermogravimetry (TG), Derivative Thermogravimetry (DTG), Differential Thermal Analysis (DTA) and X-Ray Diffraction (XRD). The results of the thermal analysis showed in what temperature ranges certain events occur such as the formation of cerium oxide between 600 and 800 ° C, which refers to the crystallization of the material. Regarding the formation of titanium oxide, events between 600 and 800 ° C are perceived, which suggests the transformation of anatase to rutile phase. The XRD analysis showed no occurrence of the same phase for all materials, meaning that there is a variation in the formation of phases according to concentration of precursor for each sample. Noteworthy are the formation of CeO_2 for Ce75-Ti25 and Ce50-Ti50 concentrations, with cubic crystal structure of the fluorite type. In Ce75-Ti25 and Ce25-Ti75 it is present the TiO_2 in the anatase and rutile phase, with crystal structure of the tetragonal and tetrahedron type, respectively, as well as the formation of CeTi_2O_6 in Ce50-Ti50 and Ce25-Ti75, with structure monoclinic. From these analyses, it is possible to see which samples, and in which temperatures of calcination the material has increased crystallinity, making the choice for their application in heterogeneous photocatalysis, aiming the degradation of methylene blue dye. Among the tested materials for methylene blue, the sample that stood out was the Ce50-Ti50, with calcination temperature of 800 °C, with values close to 50% degradation, because it was the sample that showed higher dye adsorption capacity, which is the step that precedes photodegradation. (author)

  17. Luminescent Afterglow Behavior in the M2Si5N8: Eu Family (M = Ca, Sr, Ba

    Directory of Open Access Journals (Sweden)

    Koen Van den Eeckhout

    2011-05-01

    Full Text Available Persistent luminescent materials are able to emit light for hours after being excited. The majority of persistent phosphors emit in the blue or green region of the visible spectrum. Orange- or red-emitting phosphors, strongly desired for emergency signage and medical imaging, are scarce. We prepared the nitrido-silicates Ca2Si5N8:Eu (orange, Sr2Si5N8:Eu (reddish, Ba2Si5N8:Eu (yellowish orange, and their rare-earth codoped variants (R = Nd, Dy, Sm, Tm through a solid state reaction, and investigated their luminescence and afterglow properties. In this paper, we describe how the persistent luminescence is affected by the type of codopant and the choice and ratio of the starting products. All the materials exhibit some form of persistent luminescence, but for Sr2Si5N8:Eu,R this is very weak. In Ba2Si5N8:Eu the afterglow remains visible for about 400 s, and Ca2Si5N8:Eu,Tm shows the brightest and longest afterglow, lasting about 2,500 s. For optimal persistent luminescence, the dopant and codopant should be added in their fluoride form, in concentrations below 1 mol%. A Ca3N2 deficiency of about 5% triples the afterglow intensity. Our results show that Ba2Si5N8:Eu(,R and Ca2Si5N8:Eu(,R are promising persistent phosphors for applications requiring orange or red light.

  18. Energy transfer between Pr3+ and Mn2+ in K2YZr(PO4)3: Pr, Mn phosphor

    International Nuclear Information System (INIS)

    Liang Wei; Wang Yuhua

    2011-01-01

    Research highlights: → Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 phosphor is a novel type of practical visible quantum cutting phosphor in promising application. → The optimal quantum efficiency (QE) of this co-doped system K 2 YZr(PO 4 ) 3 : Pr 3+ , Mn 2+ reached to 126.3%. → The Mn 2+6 A 1g → 4 E g - 4 A 1g transition was found to coincide well with the 1 S 0 → 1 I 6 transition of Pr 3+ . → The energy transfer from Pr 3+ to Mn 2+ was also observed, converting the first photon from the PCE of Pr 3+ into the red emission of Mn 2+ , and the QC process occurred in this Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 phosphor. - Abstract: Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 samples were prepared by solid-state reaction method and their photoluminescence (PL) properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The results indicated that in Pr 3+ singly doped K 2 YZr(PO 4 ) 3 sample, the first-step transition ( 1 S 0 → 1 I 6 , 3 P J around 405 nm) of Pr 3+ is near the ultraviolet (UV) range, not useful for practical application. When Mn 2+ was doped as a co-activator ion, the energy of 1 S 0 → 1 I 6 , 3 P J transition can be transferred synchronously from Pr 3+ to Mn 2+ and then emit a visible photon. The optimal quantum efficiency (QE) of this co-doped system K 2 YZr(PO 4 ) 3 : Pr 3+ , Mn 2+ reached to 126.3%, suggesting a novel type of practical visible quantum cutting phosphor in promising application.

  19. Mechano-luminescence studies of nano ZnMgAl10O17:Eu phosphor under UV irradiation

    Science.gov (United States)

    Verma, Akshkumar; Verma, Ashish; Panda, Maheswar

    2018-05-01

    ZnMgAl10O17:Eu nano phosphors were prepared successfully, using the combustion route by employing urea as a fuel. The structural, and Morphological, properties were measured using x-ray diffraction (XRD) Scanning electron microscopy (SEM) transition electron microscopy. The BET surface area of sample were found to be of ˜13.92 m2/g. The ML (Mechano-luminescence) were measured to the home made instrument. The phosphor showed more strong and high ML intensity to the without UV irradiated material. Therefore ZnMgAl10O17:Eu2+ phosphor may use as a damage sensor and dosimetry material. The ML emission spectra of the Zn0.99MgAl10O17:Eu0.01 phosphor showed the characteristic Eu2+ emission peaks ˜453nm (blue) originating from the transitions 4f65d14f7, Therefore ZnMgAl10O17:Eu2+ phosphor may use as a blue phosphor material.

  20. Study on Dy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ-Ce0.85Gd0.15O1.95 composite cathode material for intermediate temperature solid oxide fuel cell

    Science.gov (United States)

    Kautkar, Pranay R.; Acharya, Smita A.

    2018-05-01

    xDy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ - xCe0.85Gd0.15O1.95 (x = 50 %) composite cathode supported on Ce0.85Gd0.15O1.95 (GDC15) electrolyte are studied for applications in IT-SOFCs. Results attribute that Dy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ material is chemically compatible with Ce0.85Gd0.15O1.95 (GDC15). Rietveld refined X-ray diffraction patterns notify orthorhombic (space group:Pbnm) symmetry for Dy0.45 Ba0.05Sr0.5Co0.8Fe0.2O3-δ and fluorite type structure (space group: Fm-3m) symmetry for GDC15. The polarization resistance (Rp) of composite cathode reduces to the minimum value of 1.35 Ω cm2 at 650 °C in air. Area specific resistance (ASR) of composite cathode has found 0.67 Ω.cm2 at 650°C respectively. Result shows that the surface diffusion of the dissociative adsorbed oxygen at electrode/electrolyte interface on the composite cathode.