WorldWideScience

Sample records for sr2 ru o4

  1. Unconventional superconductivity in Sr{sub 2}RuO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying [Department of Physics and Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China); Mao, Zhi-Qiang [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States)

    2015-07-15

    Highlights: • Constraints on and experimental support to unconventional superconductivity in Sr{sub 2}RuO{sub 4}. • Phase-sensitive determination of the pairing symmetry in Sr{sub 2}RuO{sub 4}. • Response of superconductivity to mechanical perturbations. • Superconductivity in non-bulk Sr{sub 2}RuO{sub 4}. • Unresolved issues and outlook in Sr{sub 2}RuO{sub 4} research. - Abstract: Sr{sub 2}RuO{sub 4}, featuring a layered perovskite crystalline and quasi-two-dimensional electronic structure, was first synthesized in 1959. Unconventional, p-wave pairing was predicted for Sr{sub 2}RuO{sub 4} by Rice and Sigrist and Baskaran shortly after superconductivity in this material was discovered in 1994. Experimental evidence for unconventional superconductivity in Sr{sub 2}RuO{sub 4} has been accumulating in the past two decades and reviewed previously. In this article, we will first discuss constraints on the pairing symmetry of superconductivity in Sr{sub 2}RuO{sub 4} and summarize experimental evidence supporting the unconventional pairing symmetry in this material. We will then present several aspects of the experimental determination of the unconventional superconductivity in Sr{sub 2}RuO{sub 4} in some detail. In particular, we will discuss the phase-sensitive measurements that have played an important role in the determination of the pairing symmetry in Sr{sub 2}RuO{sub 4}. The responses of superconductivity to the mechanical perturbations and their implications on the mechanism of superconductivity will be discussed. A brief survey of various non-bulk Sr{sub 2}RuO{sub 4} will also be included to illustrate the many unusual features resulted from the unconventional nature of superconductivity in this material system. Finally, we will discuss some outstanding unresolved issues on Sr{sub 2}RuO{sub 4} and provide an outlook of the future work on Sr{sub 2}RuO{sub 4}.

  2. Epitaxial YBa2Cu3O7-δ/Sr2RuO4 heterostructures

    International Nuclear Information System (INIS)

    Schlom, D.G.; Merritt, B.A.; Madhavan, S.

    1997-01-01

    The anisotropic oxide superconductors YBa 2 Cu 3 O 7-δ and Sr 2 RuO 4 have been epitaxially combined in various ways (c-axis on c-axis, c-axis on a-axis, and a-axis on a-axis) though the use of appropriate substrates. Phase-pure a-axis oriented or c-axis oriented epitaxial Sr 2 RuO 4 films were grown by pulsed laser deposition. YBa 2 Cu 3 O 7-δ films were then grown on both orientations of Sr 2 RuO 4 films and the resulting epitaxy was characterized

  3. Vertical Line Nodes in the Superconducting Gap Structure of Sr_{2}RuO_{4}

    Directory of Open Access Journals (Sweden)

    E. Hassinger

    2017-03-01

    Full Text Available There is strong experimental evidence that the superconductor Sr_{2}RuO_{4} has a chiral p-wave order parameter. This symmetry does not require that the associated gap has nodes, yet specific heat, ultrasound, and thermal conductivity measurements indicate the presence of nodes in the superconducting gap structure of Sr_{2}RuO_{4}. Theoretical scenarios have been proposed to account for the existence of deep minima or accidental nodes (minima tuned to zero or below by material parameters within a p-wave state. Other scenarios propose chiral d-wave and f-wave states, with horizontal and vertical line nodes, respectively. To elucidate the nodal structure of the gap, it is essential to know whether the lines of nodes (or minima are vertical (parallel to the tetragonal c axis or horizontal (perpendicular to the c axis. Here, we report thermal conductivity measurements on single crystals of Sr_{2}RuO_{4} down to 50 mK for currents parallel and perpendicular to the c axis. We find that there is substantial quasiparticle transport in the T=0 limit for both current directions. A magnetic field H immediately excites quasiparticles with velocities both in the basal plane and in the c direction. Our data down to T_{c}/30 and down to H_{c2}/100 show no evidence that the nodes are in fact deep minima. Relative to the normal state, the thermal conductivity of the superconducting state is found to be very similar for the two current directions, from H=0 to H=H_{c2}. These findings show that the gap structure of Sr_{2}RuO_{4} consists of vertical line nodes. This rules out a chiral d-wave state. Given that the c-axis dispersion (warping of the Fermi surface in Sr_{2}RuO_{4} varies strongly from sheet to sheet, the small a-c anisotropy suggests that the line nodes are present on all three sheets of the Fermi surface. If imposed by symmetry, vertical line nodes would be inconsistent with a p-wave order parameter for Sr_{2}RuO_{4}. To reconcile the gap structure

  4. Heat capacity measurements of Sr{sub 2}RuO{sub 4} under uni-axial strain

    Energy Technology Data Exchange (ETDEWEB)

    Li, You-sheng; Mackenzie, Andrew [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); University of St. Andrews, School of Physics and Astronomy (United Kingdom); Gibbs, Alexandra [Max Planck Institute for Solid State Research, Stuttgart (Germany); Hicks, Clifford [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Nicklas, Michael [University of St. Andrews, School of Physics and Astronomy (United Kingdom)

    2016-07-01

    One of the most-discussed possible pairing symmetries of Sr{sub 2}RuO{sub 4} is p{sub x} ± ip{sub y}. By applying strain along left angle 100 right angle -direction, the degeneracy of the p{sub x} and p{sub y} components is lifted, and thus there should be two critical temperatures (T{sub c}). Hicks et al. have observed an increase of T{sub c} of Sr{sub 2}RuO{sub 4} under both compressive and tensile strains, by measuring the susceptibility, which is sensitive only to the first transition. Their results also indicate, indirectly, that any splitting of T{sub c}s might be small. For a direct test of possible splitting, we measure the heat capacity of Sr{sub 2}RuO{sub 4} under strain. To do so, we are developing an approach to measure heat capacity under non-adiabatic conditions. We have observed an increase of T{sub c} under compressive strain. This is the first thermodynamic evidence of the strain-induced increase in T{sub c} of Sr{sub 2}RuO{sub 4}.

  5. Chern structure in the Bose-insulating phase of Sr2RuO4 nanofilms

    Science.gov (United States)

    Nobukane, Hiroyoshi; Matsuyama, Toyoki; Tanda, Satoshi

    2017-01-01

    The quantum anomaly that breaks the symmetry, for example the parity and the chirality, in the quantization leads to a physical quantity with a topological Chern invariant. We report the observation of a Chern structure in the Bose-insulating phase of Sr2RuO4 nanofilms by employing electric transport. We observed the superconductor-to-insulator transition by reducing the thickness of Sr2RuO4 single crystals. The appearance of a gap structure in the insulating phase implies local superconductivity. Fractional quantized conductance was observed without an external magnetic field. We found an anomalous induced voltage with temperature and thickness dependence, and the induced voltage exhibited switching behavior when we applied a magnetic field. We suggest that there was fractional magnetic-field-induced electric polarization in the interlayer. These anomalous results are related to topological invariance. The fractional axion angle Θ = π/6 was determined by observing the topological magneto-electric effect in the Bose-insulating phase of Sr2RuO4 nanofilms.

  6. Electronic structure of Sr2RuO4 studied by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Iwasawa, H.; Aiura, Y.; Saitoh, T.; Yoshida, Y.; Hase, I.; Ikeda, S.I.; Bando, H.; Kubota, M.; Ono, K.

    2007-01-01

    Electronic structure of the monolayer strontium ruthenate Sr 2 RuO 4 was investigated by high-resolution angle-resolved photoemission spectroscopy. We present photon-energy (hν) dependence of the electronic structure near the Fermi level along the ΓM line. The hν dependence has shown a strong spectral weight modulation of the Ru 4d xy and 4d zx bands

  7. Localized-itinerant dichotomy and unconventional magnetism in SrRu2O6

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Satoshi; Ochi, Masayuki; Arita, Ryotaro; Yan, Jiaqiang; Trivedi, Nandini

    2017-09-13

    Electron correlations tend to generate local magnetic moments that usually order if the lattices are not too frustrated. The hexagonal compound SrRu$_2$O$_6$ has a relatively high N{\\'e}el temperature but small local moments, which seem to be at odds with the nominal valence of Ru$^{5+}$ in the $t_{2g}^3$ configuration. Here, we investigate the electronic and magnetic properties of SrRu$_2$O$_6$ using density functional theory (DFT) combined with dynamical mean field theory (DMFT). We find that the strong hybridization between Ru $d$ and O $p$ states results in a Ru valence that is closer to $+4$, leading to the small ordered moment, consistent with a DFT prediction. While the agreement with DFT might indicate that SrRu$_2$O$_6$ is in the weak coupling regime, our DMFT studies provide evidence from the mass enhancement and local moment formation that indicate correlation effects play a significant role. The local moment per Ru site is about a factor 2 larger than the ordered moment at low temperatures and remains finite in the whole temperature range investigated. Our theoretical N{\\'e}el temperature $\\sim 700$~K is in reasonable agreement with experimental observations. Due to a small lattice distortion, the degenerate $t_{2g}$ manifold is split and the quasiparticle weight is renormalized significantly in the $a_{1g}$ state, while correlation effects in $e_g'$ states are about a factor of 2--3 weaker. SrRu$_2$O$_6$ is a unique system in which localized and itinerant electrons coexist with the proximity to an orbitally-selective Mott transition within the $t_{2g}$ sector.

  8. Effect of Cleaving Temperature on the Surface and Bulk Fermi Surface of Sr2RuO4 Investigated by High Resolution Angle-Resolved Photoemission

    International Nuclear Information System (INIS)

    Liu Shan-Yu; Zhang Wen-Tao; Weng Hong-Ming; Zhao Lin; Liu Hai-Yun; Jia Xiao-Wen; Liu Guo-Dong; Dong Xiao-Li; Zhang Jun; Dai Xi; Fang Zhong; Zhou Xing-Jiang; Mao Zhi-Qiang; Chen Chuang-Tian; Xu Zu-Yan

    2012-01-01

    High resolution angle-resolved photoemission measurements are carried out to systematically investigate the effect of cleaving temperature on the electronic structures and Fermi surfaces of Sr 2 RuO 4 . Unlike previous reports, which found that a high cleaving temperature can suppress the surface Fermi surface, we find that the surface Fermi surface remains obvious and strong in Sr 2 RuO 4 cleaved at high temperature, even at room temperature. This indicates that cleaving temperature is not a key effective factor in suppressing surface bands. On the other hand, the bulk bands can be enhanced in an aged surface of Sr 2 RuO 4 that has been cleaved and held for a long time. We have also carried out laser ARPES measurements on Sr 2 RuO 4 by using a vacuum ultra-violet laser (photon energy at 6.994 eV) and found an obvious enhancement of bulk bands even for samples cleaved at low temperature. This information is important for realizing an effective approach to manipulating and detecting the surface and bulk electronic structure of Sr 2 RuO 4 . In particular, the enhancement of bulk sensitivity, along with the super-high instrumental resolution of VUV laser ARPES, will be advantageous in investigating fine electronic structure and superconducting properties of Sr 2 RuO 4 in the future. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Magnetoelastic coupling in multiferroic GdMnO{sub 3} and metamagnetic Ca{sub 2-x}Sr{sub x}RuO{sub 4}; Magnetoelastische Kopplung in multiferroischem GdMnO{sub 3} und metamagnetischem Ca{sub 2-x}Sr{sub x}RuO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Baier, J.

    2006-05-15

    Subject of the present thesis is the magnetoelastic coupling in multiferroic GdMnO{sub 3} and the metamagnetic Ca{sub 2-x}Sr{sub x}RuO{sub 4} with x between 0.2 and 0.5. GdMnO{sub 3} belongs to a class of new multiferroic materials where ferroelectricity shows up inside a magnetically ordered phase and a strong coupling between the magnetic and the electric properties is present. It possesses two magnetic transitions, one at T{sub N} into the ICAFM phase and one at T{sub c} into the cAFM phase. Furthermore, for H parallel b, a ferroelectric transition occurs at T{sub FE}. Based on thermal-expansion and magnetostriction data, a modified H-T-phase diagram is derived. Due to large hysteresis effects in the low-field and low-temperature region, the pure cAFM phase cannot be reached upon cooling in zero magnetic field. The transition into the cAFM phase is accompanied by a jumplike drop of the orthorhombic splitting, which recovers upon entering the ferroelectric phase. Moreover, the uniaxial pressure dependencies of all three transitions are analysed. For the compound Ca{sub 2-x}Sr{sub x}RuO{sub 4} a change of the relevant magnetic correlation from ferromagnetic to antiferromagnetic is observed as soon as the RuO{sub 6} octahedra start tilting upon decreasing the Sr content below x=0.5. In Ca{sub 1.8}Sr{sub 0.2}RuO{sub 4}, a metamagnetic transition occurs in a magnetic field, which comes along with strong structural changes. However, a complete suppression of the tilt upon the magnetic-field induced crossover from antiferromagnetic to ferromagnetic correlations can be excluded. At low temperatures, strong and anisotropic thermal expansion anomalies are observed. Both, these anomalies and the structural changes at the metamagnetic transition point towards a rearrangement of the orbital occupation induced by temperature as well as by magnetic field. For Ca{sub 1.8}Sr{sub 0.2}RuO{sub 4}, a sign change of the low-temperature anomalies of the thermal expansion and the

  10. Unconventional transport characteristics of p-wave superconducting junctions in Sr2RuO4-Ru eutectic system

    International Nuclear Information System (INIS)

    Kambara, H.; Kashiwaya, S.; Yaguchi, H.; Asano, Y.; Tanaka, Y.; Maeno, Y.

    2010-01-01

    We report on novel local transport characteristics of naturally formed p-wave superconducting junctions of Sr 2 RuO 4 -Ru eutectic system by using microfabrication technique. We observed quite anomalous voltage-current (differential resistance-current) characteristics for both I//ab and I//c directions, which are not seen in conventional Josephson junctions. The anomalous features suggest the internal degrees of freedom of the superconducting state, possibly due to chiral p-wave domain. The dc current acts as a driving force to move chiral p-wave domain walls and form larger critical current path to cause the anomalous hysteresis.

  11. High temperature-induced phase transitions in Sr2GdRuO6 complex perovskite

    International Nuclear Information System (INIS)

    Triana, C.A.; Corredor, L.T.; Landínez Téllez, D.A.; Roa-Rojas, J.

    2011-01-01

    Highlights: ► Crystal structure, thermal expansion and phase transitions at high-temperature of Sr 2 GdRuO 6 perovskite has been investigated. ► X-ray diffraction pattern at 298 K of Sr 2 GdRuO 6 corresponds to monoclinic perovskite-type structure with P2 1 /n space group. ► Evolution of X-ray diffraction patterns at high-temperature shows that the Sr 2 GdRuO 6 perovskite suffers two-phase transitions. ► At 573 K the X-ray diffraction pattern of Sr 2 GdRuO 6 corresponds to monoclinic perovskite-type structure with I2/m space group. ► At 1273 K the Sr 2 GdRuO 6 perovskite suffers a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87). -- Abstract: The crystal structure behavior of the Sr 2 GdRuO 6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K ≤ T ≤ 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P2 1 /n (no. 14) space group and 1:1 ordered arrangement of Ru 5+ and Gd 3+ cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Å, b =5.8234(1) Å, c =8.2193(9) Å, V = 278.11(2) Å 3 and angle β = 90.310(5)°. The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (no. 12) space group with lattice parameters a = 5.8275(6) Å, b = 5.8326(3) Å, c = 8.2449(2) Å, V = 280.31(3) Å 3 and angle β = 90.251(3)°. Close to 1273 K it undergoes a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87), with lattice parameters a = 5.8726(1) Å, c = 8.3051(4) Å, V = 286.39(8) Å 3 and angle β = 90.0°. The high-temperature phase transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87) is characterized

  12. Coupled Electronic and Magnetic Phase Transition in the Infinite-Layer Phase LaSrNiRuO4.

    Science.gov (United States)

    Patino, Midori Amano; Zeng, Dihao; Bower, Ryan; McGrady, John E; Hayward, Michael A

    2016-09-06

    Topochemical reduction of the ordered double perovskite LaSrNiRuO6 with CaH2 yields LaSrNiRuO4, an extended oxide phase containing infinite sheets of apex-linked, square-planar Ni(1+)O4 and Ru(2+)O4 units ordered in a checkerboard arrangement. At room temperature the localized Ni(1+) (d(9), S = (1)/2) and Ru(2+) (d(6), S = 1) centers behave paramagnetically. However, on cooling below 250 K the system undergoes a cooperative phase transition in which the nickel spins align ferromagnetically, while the ruthenium cations appear to undergo a change in spin configuration to a diamagnetic spin state. Features of the low-temperature crystal structure suggest a symmetry lowering Jahn-Teller distortion could be responsible for the observed diamagnetism of the ruthenium centers.

  13. Optical conductivity of the triplet superconductor Sr2RuO4

    International Nuclear Information System (INIS)

    Virosztek, Attila; Dora, Balazs; Maki, Kazumi

    2003-10-01

    Now the spin triplet superconductivity in Sr 2 RuO 4 is well established. As to the nodal structures seen in high quality samples, there are two alternative models at present: a. 2D f-wave model with Δ(k) ∼ (k-circumflex x ± ik-circumflex y ) cos(ck z ) and b. the multigap model with Δ 1 (k) ∼ (k-circumflex x ± ik-circumflex y ) and Δ 2 (k) ∼ (k-circumflex x ± ik-circumflex y ) cos(ck z /2). In this paper we calculate the optical conductivity for T e in the 2D f-wave model and show that it differs significantly from those in the multigap model. (author)

  14. Fermi Surface of Sr_{2}RuO_{4}: Spin-Orbit and Anisotropic Coulomb Interaction Effects.

    Science.gov (United States)

    Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva

    2016-03-11

    The topology of the Fermi surface of Sr_{2}RuO_{4} is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix-responsible for the reshaping of the Fermi surface-sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr_{2}RuO_{4}.

  15. Formation of heavy d-electron quasiparticles in Sr3Ru2O7

    International Nuclear Information System (INIS)

    Allan, M P; Tamai, A; Rozbicki, E; King, P D C; Meevasana, W; Perry, R S; Mercure, J F; Mackenzie, A P; Fischer, M H; Wang, M A; Lee, Jinho; Kim, E-A; Lawler, M J; Shen, K M; Voss, J; Fennie, C J; Thirupathaiah, S; Rienks, E; Fink, J; Tennant, D A

    2013-01-01

    The phase diagram of Sr 3 Ru 2 O 7 shows hallmarks of strong electron correlations despite the modest Coulomb interaction in the Ru 4d shell. We use angle-resolved photoelectron spectroscopy measurements to provide microscopic insight into the formation of the strongly renormalized heavy d-electron liquid that controls the physics of Sr 3 Ru 2 O 7 . Our data reveal itinerant Ru 4d-states confined over large parts of the Brillouin zone to an energy range of <6 meV, nearly three orders of magnitude lower than the bare band width. We show that this energy scale agrees quantitatively with a characteristic thermodynamic energy scale associated with quantum criticality and illustrate how it arises from a combination of back-folding due to a structural distortion and the hybridization of light and strongly renormalized, heavy quasiparticle bands. The resulting heavy Fermi liquid has a marked k-dependence of the renormalization which we relate to orbital mixing along individual Fermi surface sheets. (paper)

  16. Mn induced ferromagnetism spin fluctuation enhancement in Sr{sub 2}Ru{sub 1−x}Mn{sub x}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Long; Cai, Jinzhu; Xie, Qiyun; Lv, Bin [Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Mao, Z.Q. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Wu, X.S., E-mail: xswu@nju.edu.cn [Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2013-09-15

    We establish that Sr{sub 2}RuO{sub 4} is extremely close to incommensurate spin density wave instability. With increasing Mn content, the RuO{sub 6} octahedron in the unit cell varies. The octahedron of RuO{sub 6} contracts along c-axis for x<0.20, Mn element mainly showing the +3 chemical valence (Mn{sup 3+}), and it expands along c-axis with further increasing Mn content (x>0.20), and Mn element shows the +4 chemical valence (Mn{sup 4+}). Spin-glass-related ferromagnetism enhancement is observed for x>0.20, which indicates the critical ferromagnetic spin fluctuation due to Mn doping in Sr{sub 2}Ru{sub 1−x}Mn{sub x}O{sub 4}. - Highlights: • The chemical valence of Mn ions changed from Mn{sup 3+} to Mn{sup 4+} with the increase of Mn content. • Spin-glass-related ferromagnetism enhancement behavior is observed. • The electrical resistivity can be fitted using Mott's variable-range hopping model. • The evolution of octahedron with increase of Mn content is given. • The spin fluctuation effect plays an important role in the magnetic property.

  17. Magnetism and superconductivity in Ru{sub 1-x}Sr{sub 2}RECu{sub 2+x}O{sub 8-d} (RE=Gd, Eu) and RuSr{sub 2}Gd{sub 1-y}Ce{sub y}Cu{sub 2}O{sub 8} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Klamut, P.W. [Dept. of Physics, Northern Illinois Univ., DeKalb, IL (United States)]|[Inst. of Low Temperature and Structure Research of Polish Academy of Sciences, Wroclaw (Poland); Dabrowski, B.; Mini, S.M.; Kolesnik, S.; Maxwell, M.; Mais, J. [Dept. of Physics, Northern Illinois Univ., DeKalb, IL (United States); Shengelaya, A.; Keller, H. [Physik-Inst., Univ. Zuerich, Zuerich (Switzerland); Khazanov, R. [Physik-Inst., Univ. Zuerich, Zuerich (Switzerland)]|[Lab. for Muon-Spin Spectroscopy, Paul Scherrer Inst., Villigen PSI (Switzerland); Savic, I. [Physik-Inst., Univ. Zuerich, Zuerich (Switzerland)]|[Faculty of Physics, Univ. of Belgrade, Belgrade (Yugoslavia); Sulkowski, C.; Wlosewicz, D.; Matusiak, M. [Inst. of Low Temperature and Structure Research of Polish Academy of Sciences, Wroclaw (Poland); Wisniewski, A.; Puzniak, R.; Fita, I. [Inst. of Physics of Polish Academy of Sciences, Warszawa (Poland)

    2002-07-01

    We discuss the properties of new superconducting compositions of ruthenocuprates Ru{sub 1-x}Sr{sub 2}RECu{sub 2+x}O{sub 8-d} (RE=Gd, Eu) that were synthesized at 600 atm. of oxygen at 1080 C. By changing ratio between the Ru and Cu, the temperature of superconducting transition (T{sub C}) raises up to T{sub C}{sup max} = 72 K for x=0.3, 0.4. The hole doping achieved along the series increases with Cu{yields}Ru substitution. For x {ne} 0, T{sub C} can be subsequently tuned between T{sub C}{sup max} and 0 K by changing oxygen content in the compounds. The magnetic characteristics of the RE=Gd and Eu based compounds are interpreted as indicative of constrained dimensionality of the superconducting phase. Muon spin rotation experiments reveal the presence of the magnetic transitions at low temperatures (T{sub m}=14-2 K for x=0.1-0.4) that can originate in the response of Ru/Cu sublattice. RuSr{sub 2}Gd{sub 1-y}Ce{sub 1-y}Cu{sub 2}O{sub 8} (0 {<=} y {<=} 0.1) compounds show the simultaneous increase of T{sub N} and decrease of T{sub C} with y. The effect should be explained by the electron doping that occurs with Ce{yields}Gd substitution. Properties of these two series allow us to propose phase diagram for 1212-type ruthenocuprates that links their properties to the hole doping achieved in the systems. Non-superconducting single-phase RuSr{sub 2}GdCu{sub 2}O{sub 8} and RuSr{sub 2}EuCu{sub 2}O{sub 8} are reported and discussed in the context of the properties of substituted compounds. (orig.)

  18. Electron correlation in CaRuO3 and SrRuO3

    International Nuclear Information System (INIS)

    Singh, Ravi Shankar; Maiti, Kalobaran

    2005-01-01

    We investigate the role of electron correlation in the electronic structure of 4d transition-metal oxides CaRuO 3 and SrRuO 3 . The photoemission spectra collected at different surface sensitivities reveal qualitatively different surface and bulk electronic structures in these systems. Extracted bulk spectra could be simulated using first principle approaches consistently with their thermodynamic parameters within the same model. The estimated electron correlation strength (U/W ∼ 0.2) is significantly weak as expected in 4d systems and resolves the long-standing issue that arose due to the prediction of large U/W similar to 3d systems. (author)

  19. Interface Control of Ferroelectricity in an SrRuO3 /BaTiO3 /SrRuO3 Capacitor and its Critical Thickness.

    Science.gov (United States)

    Shin, Yeong Jae; Kim, Yoonkoo; Kang, Sung-Jin; Nahm, Ho-Hyun; Murugavel, Pattukkannu; Kim, Jeong Rae; Cho, Myung Rae; Wang, Lingfei; Yang, Sang Mo; Yoon, Jong-Gul; Chung, Jin-Seok; Kim, Miyoung; Zhou, Hua; Chang, Seo Hyoung; Noh, Tae Won

    2017-05-01

    The atomic-scale synthesis of artificial oxide heterostructures offers new opportunities to create novel states that do not occur in nature. The main challenge related to synthesizing these structures is obtaining atomically sharp interfaces with designed termination sequences. In this study, it is demonstrated that the oxygen pressure (PO2) during growth plays an important role in controlling the interfacial terminations of SrRuO 3 /BaTiO 3 /SrRuO 3 (SRO/BTO/SRO) ferroelectric (FE) capacitors. The SRO/BTO/SRO heterostructures are grown by a pulsed laser deposition method. The top SRO/BTO interface, grown at high PO2 (around 150 mTorr), usually exhibits a mixture of RuO 2 -BaO and SrO-TiO 2 terminations. By reducing PO2, the authors obtain atomically sharp SRO/BTO top interfaces with uniform SrO-TiO 2 termination. Using capacitor devices with symmetric and uniform interfacial termination, it is demonstrated for the first time that the FE critical thickness can reach the theoretical limit of 3.5 unit cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Competing magnetic fluctuations in Sr3Ru2O7 probed by Ti doping

    DEFF Research Database (Denmark)

    Hooper, J.; Fang, M.H.; Zhou, M.

    2007-01-01

    We report the effect of nonmagnetic Ti4+ impurities on the electronic and magnetic properties of Sr3Ru2O7. Small amounts of Ti suppress the characteristic peak in magnetic susceptibility near 16 K and result in a sharp upturn in specific heat. The metamagnetic quantum phase transition and related...... anomalous features are quickly smeared out by small amounts of Ti. These results provide strong evidence for the existence of competing magnetic fluctuations in the ground state of Sr3Ru2O7. Ti doping suppresses the low-temperature antiferromagnetic interactions that arise from Fermi surface nesting...

  1. The Fermi surface of Sr{sub 2}RuO{sub 4}: spin-orbit and anisotropic Coulomb interaction effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva [Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2016-07-01

    The topology of the Fermi surface of Sr{sub 2}RuO{sub 4} is well described by local density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction worsen or does not correct this discrepancy. In order to reproduce experiments, it is essential to include the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and with the isotropic Coulomb term. This mechanism is likely to be at work in other multi-orbital systems. Finally, we find a strong spin-orbital entanglement. This supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr{sub 2}RuO{sub 4}.

  2. Sr{sub 2}RuO{sub 4} at high uniaxial strain

    Energy Technology Data Exchange (ETDEWEB)

    Steppke, Alexander; Hicks, Clifford [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Zhao, Lishan; Brodsky, Daniel; Barber, Mark; Mackenzie, Andrew [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); University of St. Andrews (United Kingdom); Gibbs, Alexandra [Max Planck Institute for Solid State Research, Stuttgart (Germany); Maeno, Yoshiteru [Kyoto University (Japan)

    2016-07-01

    We applied high anisotropic strains to high-quality single crystals of the superconductor Sr{sub 2}RuO{sub 4}, to gain information on the influence of anisotropic Fermi surface distortions on its superconductivity. Due to proximity to a van Hove singularity, one of the Fermi surfaces distorts particularly strongly in response to anisotropic strain. The superconducting properties also vary strongly: we show susceptibility and resistivity data indicating that T{sub c} more than doubles as strain is applied, and passes through a sharp peak. Similarly, the upper critical field H{sub c2} for fields both parallel and perpendicular to the crystallographic c axis increases substantially. For fields perpendicular to the c axis, there is strongly hysteretic behaviour at low temperatures, that may be due to Pauli limiting.

  3. Synthesis process and structural characterization of the Sr{sub 2}EuRuO{sub 6} complex perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Triana, C.A.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales (GFNM), Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. A.A. 5997 (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales (GFNM), Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. A.A. 5997 (Colombia)

    2012-03-05

    Highlights: Black-Right-Pointing-Pointer Crystal structure, surface morphology and composition of Sr{sub 2}EuRuO{sub 6} have been studied. Black-Right-Pointing-Pointer Sr{sub 2}EuRuO{sub 6} crystallize in a monoclinic perovskite-type structure in P2{sub 1}/n space group. Black-Right-Pointing-Pointer Ru{sup 5+} and Eu{sup 3+} ions are on the six coordinate M sites, Sr{sup 2+} is located in the A-site. Black-Right-Pointing-Pointer Scanning electron microscopy and Scherrer formula shows a particle size of D = 34.2 nm. Black-Right-Pointing-Pointer Activation energy Q through the Arrhenius plot for Sr{sub 2}EuRuO{sub 6} is close to 39.6 kJ/mol. - Abstract: The Sr{sub 2}EuRuO{sub 6} complex perovskite has been synthesized by the solid-state reaction method and the crystal structure, surface morphology and composition have been investigated. Results of powder X-ray diffraction measurements and Rietveld analysis show that this compound crystallizes in a monoclinic distorted perovskite-type structure, which belongs to the monoclinic P2{sub 1}/n (no. 14) space group, that corresponds to the (a{sup +}b{sup -}b{sup -}) tilt system on the Glazer notation. The structure presents an alternating distribution of the Ru{sup 5+} and Eu{sup 3+} ions on the six coordinate M sites, while the Sr{sup 2+} is located in the A-site of the Sr{sub 2}EuRuO{sub 6} complex perovskite, with lattice parameters a = 5.7996(5) Angstrom-Sign , b = 5.8960(7) Angstrom-Sign , c = 8.3234(6) Angstrom-Sign , angle {beta} = 90.234(7) Degree-Sign and V = 284.61(4) Angstrom-Sign {sup 3}. Morphological analysis of this material, performed by scanning electron microscopy (SEM), allows to establish the granular feature of compound with agglomerates from amongst Almost-Equal-To 1 to 3 {mu}m size, and by means of the Scherrer formula was calculated a particle size of D = 34.2 nm. Result suggests that crystal structure of the Sr{sub 2}EuRuO{sub 6} suffers grain size-induced polarization rotation, which produces a

  4. Thermal properties of GdSr{sub 2}RuCu{sub 2}O{sub 8-{delta}} based mixtures in the GdSr{sub 2}RuO{sub 6}-CuO pseudo-binary system

    Energy Technology Data Exchange (ETDEWEB)

    Gombos, Marcello [Laboratorio Regionale Supermat CNR-INFM Via Salvador Allende, I-84081 Baronissi (Italy); Dipartimento di Fisica ' E.R.Caianiello' , Universita di Salerno, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail: gombos@sa.infn.it; Ciancio, Regina; Vecchione, Antonio; Pace, Sandro [Laboratorio Regionale Supermat CNR-INFM Via Salvador Allende, I-84081 Baronissi (Italy); Dipartimento di Fisica ' E.R.Caianiello' , Universita di Salerno, Via Salvador Allende, I-84081 Baronissi (Italy)

    2007-09-01

    GdSr{sub 2}RuCu{sub 2}O{sub 8-{delta}} (Gd1212) rutheno-cuprate compound is widely studied because it shows the coexistence of superconductivity and highly anisotropic magnetic ordering in the same cell. Anyway the nature of the magnetic ordering is still debated and the fabrication of macroscopic samples oriented along a crystallographic axis, that could help to clarify its details, appears to be quite difficult. For this reason, accurate investigation on Gd1212 incongruent melting reaction, producing liquid copper oxide and the solid GdSr{sub 2}RuO{sub 6} (Gd1210), appears to be necessary to improve the fabrication of crystallographically oriented bulk superconducting samples. Thermo-gravimetric and differential thermal measurements were performed to analyse the thermal behaviour up to 1200 deg. C and the melting temperatures of different mixtures of Gd1212 with Gd1210 or CuO, in view to perform a scan of the whole CuO-Gd1212-Gd1210 coexistence line of the Gd-Sr-Ru-Cu-O phase diagram. Dependence on the atmosphere and the formation of different spurious phases was also studied.

  5. Hydrostatic Pressure Study on 3-K Phase Superconductivity in Sr2RuO4-Ru Eutectic Crystals by AC Magnetic Susceptibility Measurements

    International Nuclear Information System (INIS)

    Yaguchi, Hiroshi; Watanabe, Hiromichi; Sakaue, Akira

    2012-01-01

    We have investigated the effect of hydrostatic pressure on 3-K phase superconductivity in Sr 2 RuO 4 -Ru eutectic crystals by means of AC magnetic susceptibility measurements. We have found that the application of hydrostatic pressure suppresses the superconducting transition temperature T c of the 3-K phase with a pressure coefficient of dT c /dP ≈ −0.2 K/GPa, similar to the case of the 1.5-K phase. We have also observed that the effect of hydrostatic pressure on the 3-K phase seems to be elastic whilst that of uniaxial pressure is plastic.

  6. High temperature-induced phase transitions in Sr{sub 2}GdRuO{sub 6} complex perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Triana, C.A.; Corredor, L.T.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. A.A. 14490 (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. A.A. 14490 (Colombia)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Crystal structure, thermal expansion and phase transitions at high-temperature of Sr{sub 2}GdRuO{sub 6} perovskite has been investigated. Black-Right-Pointing-Pointer X-ray diffraction pattern at 298 K of Sr{sub 2}GdRuO{sub 6} corresponds to monoclinic perovskite-type structure with P2{sub 1}/n space group. Black-Right-Pointing-Pointer Evolution of X-ray diffraction patterns at high-temperature shows that the Sr{sub 2}GdRuO{sub 6} perovskite suffers two-phase transitions. Black-Right-Pointing-Pointer At 573 K the X-ray diffraction pattern of Sr{sub 2}GdRuO{sub 6} corresponds to monoclinic perovskite-type structure with I2/m space group. Black-Right-Pointing-Pointer At 1273 K the Sr{sub 2}GdRuO{sub 6} perovskite suffers a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87). -- Abstract: The crystal structure behavior of the Sr{sub 2}GdRuO{sub 6} complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K {<=} T {<=} 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P2{sub 1}/n (no. 14) space group and 1:1 ordered arrangement of Ru{sup 5+} and Gd{sup 3+} cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Angstrom-Sign , b =5.8234(1) Angstrom-Sign , c =8.2193(9) Angstrom-Sign , V = 278.11(2) Angstrom-Sign {sup 3} and angle {beta} = 90.310(5) Degree-Sign . The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (no. 12) space group with lattice parameters a = 5.8275(6) Angstrom-Sign , b = 5.8326(3) Angstrom-Sign , c = 8.2449(2) Angstrom-Sign , V = 280.31(3) Angstrom-Sign {sup 3} and angle {beta} = 90.251(3) Degree-Sign . Close

  7. Anisotropy of the incommensurate fluctuations in Sr2RuO4: a study with polarized neutrons.

    Science.gov (United States)

    Braden, M; Steffens, P; Sidis, Y; Kulda, J; Bourges, P; Hayden, S; Kikugawa, N; Maeno, Y

    2004-03-05

    The anisotropy of the magnetic incommensurate fluctuations in Sr2RuO4 has been studied by inelastic neutron scattering with polarized neutrons. We find a sizable enhancement of the out-of-plane component by a factor of 2 for intermediate energy transfer, which appears to decrease for higher energies. Our results qualitatively confirm calculations of the spin-orbit coupling, but the experimental anisotropy and its energy dependence are weaker than predicted.

  8. Structural and electronic behavior of Sr2GdRuO6 complex perovskite

    International Nuclear Information System (INIS)

    Corredor, L.T.; Velasco Zarate, J.; Landinez Tellez, D.A.; Fajardo, F.; Arbey Rodriguez M, J.; Roa-Rojas, J.

    2009-01-01

    We report experimental and theoretical study of crystallographic lattice and electronic structure of Sr 2 GdRuO 6 complex perovskite, which is used as precursor in the fabrication process of superconducting ruthenocuprate RuSr 2 GdCu 2 O 8 . Samples were produced by the standard solid state reaction. Rietveld refinement of experimental X-ray diffraction patterns shows that material crystallizes in a monoclinic structure, which belongs to the P2 1 /n (no.14) space group, with lattice parameters a=5.8019(6)A, b=5.8296(5)A, c=8.2223(7)A, and tilt angle β=90.258 deg. Calculations of electronic structure were performed by the density functional theory. The exchange and correlation potentials were included through the LDA+U approximation. Density of states (DOS) study was carried out considering the two spin polarizations. Results show Gd are majority responsible for the magnetic character in this material, but Ru contribution is also relevant because d-orbital is closer to Fermi level. Theoretical results evidence that Sr 2 GdRuO 6 material behaves as a magnetic semiconductor, with 20μ B effective magnetic moment.

  9. Galvanomagnetic properties of atomic-disordered Sr2RuO4 single crystals

    International Nuclear Information System (INIS)

    Kar'kin, A.E.; Naumov, S.V.; Goshchitskij, V.N.; Balbashov, A.M.

    2005-01-01

    The effect of neutron-bombardment-induced atomic disorder on the galvanomagnetic properties of Sr 2 RuO 4 single crystals has been experimentally studied in a broad range of temperatures (1.7-380 K) and magnetic fields (up to 13.6 T). The disorder leads to the appearance of negative temperature coefficients for both the in-plane electric resistivity (ρ a ) and that along the c axis (ρ c ), as well as the negative magnetoresistance Δρ, which is strongly anisotropic to the magnetic field orientation (H || a and H || c), with the easy magnetization direction along the c axis and a weak dependence on the probing current direction in the low-temperature region. The experimental ρ a (T) and ρ c (T) curves obtained for the initial and radiation-disordered samples can be described in the framework of a theoretical model with two conductivity channels. The first channel corresponds to the charge carriers with increased effective masses and predominantly electron-electron scattering, the second channel corresponds to the charge carriers with lower effective masses exhibiting magnetic scattering at low temperatures [ru

  10. Microstructure and dielectric parameters of epitaxial SrRuO3/BaTiO3/SrRuO3 heterostructures

    Science.gov (United States)

    Boikov, Yu. A.; Claeson, T.

    2001-05-01

    Epitaxial films of ferroelectric barium titanate are desirable in a number of applications but their properties are inferior to those of bulk material. Relations between microstructure and dielectric properties may give better understanding of limitations. Trilayer heterostructures SrRuO3/BaTiO3/SrRuO3 were grown by laser ablation on (100)LaAlO3 and (100)MgO substrates. The BaTiO3 layer was granular in structure. When grown on (100)SrRuO3/(100)LaAlO3, it was preferentially a-axis oriented due to tensile mechanical stress. Using (100)MgO as a substrate, on the other hand, produced a mixture of about equal value of a-axis and c-axis oriented grains of BaTiO3. The dielectric permittivity, ɛ, of the BaTiO3 layer was almost twice as large, at T>200 K and f=100 kHz, for the LaAlO3 substrate as compared to the MgO one. Its maximum value (ɛ/ɛ0≈6200) depended on temperature of growth, grain size, and electric field and compares well with optimal values commonly used for ceramic material. The maximum in the ɛ(T) shifted from about 370 to 320 K when the grain size in the BaTiO3 film decreased from 100 to 40 nm. At T300 K, hysteresis loops in polarization versus electric field were roughly symmetric. The BaTiO3 films grown on (100)SrRuO3/(100)MgO exhibit the largest remnant polarizations and coercive fields in the temperature range 100-380 K.

  11. Electronic and magnetic properties of triple-layered ruthenate Sr4Ru3O10 single crystals grown by a floating-zone method

    International Nuclear Information System (INIS)

    Zhou, M.; Hooper, J.; Fobes, D.; Mao, Z.Q.; Golub, V.; O'Connor, C.J.

    2005-01-01

    We have grown high-quality single crystals of the triple-layered perovskite ruthenate Sr 4 Ru 3 O 10 using a floating-zone (FZ) method and measured their electronic transport and magnetic properties. Our experiments results are consistent with those previously reported for Sr 4 Ru 3 O 10 flux crystals; the magnetic ground state of Sr 4 Ru 3 O 10 is poised between an itinerant metamagnetic and itinerant ferromagnetic state, and its electronic ground state is a Fermi liquid. In addition, we have investigated the effect of disorder on the metallic state of Sr 4 Ru 3 O 10 . From resistivity measurements of various Sr 4 Ru 3 O 10 crystals with different levels of disorder, we found that disorder enhances both temperature-independent elastic scattering and also temperature-dependent inelastic scattering. The in-plane metamagnetic transition is also found to be sensitive to disorder. Disorder results in an increase in the metamagnetic transition field and different magnetic behavior above the transition. We discuss the implications of this interesting observation

  12. Neutron scattering and μSR investigations of quasi-one-dimensional magnetism in the spin =3/2 compound Li3RuO4

    DEFF Research Database (Denmark)

    Manuel, P.; Adroja, D. T.; Lindgård, Per-Anker

    2011-01-01

    The S = 3/2, quasi-one-dimensional (1D) zig-zag chain Heisenberg antiferromagnet Li3RuO4 has been investigated using heat capacity, inelastic neutron scattering, neutron diffraction, and μSR measurements on a powder sample. Our neutron diffraction and μSR studies confirm a long-range ordering of ...

  13. Rotational and translational distortions of the crystal structure of the Sr2HrRuO6 (Hr = Ho, Dy, Gd, Eu) complex perovskites

    International Nuclear Information System (INIS)

    Triana, C.A.; Landínez Téllez, D.A.; Roa-Rojas, J.

    2013-01-01

    Sr 2 HrRuO 6 (Hr = Ho, Dy, Gd, Eu) complex perovskites were synthesized through the high-temperature solid-state reaction method, and their crystal structures were analyzed in detail as a function of the Hr-cation ionic radius. Results of powder XRD pattern measurement and Rietveld analysis of the experimental profiles show that the Sr 2 HrRuO 6 compounds crystallize in a monoclinic distorted perovskite-like structure, P2 1 /n (#14) space group, where the unit cell parameters are related to the primitive unit cell a p by a≈√(2)a p , b≈√(2)a p and c ≈ 2a p . The structures show an alternate distribution of the Ru 5+ (2d: 0.5, 0, 0) and Hr 3+ (2c: 0, 0.5, 0) making up RuO 6 and HrO 6 octahedra alternatively arranged in two interleaving fcc sublattices, where the O(1), O(2), and O(3) ions are localized at the corner of the octahedral, while the Sr 2+ is located at the A-site, occupying the cavities built by the corner-sharing octahedra with Wyckoff position 4e. Due to the existence of mismatched ionic sizes between the ionic radii of the Sr 2 HrRuO 6 compounds, the HrO 6 and RuO 6 octahedra are constrained to tilting around the [111] c , [001] c , and [110] c cubic directions so as to optimize the Sr–O inter-atomic bond lengths, tending to rotate the structure in order to fix the Ru 5+ and Hr 3+ ions on the M′ and M″ sites of the complex perovskites. The cell parameters a, b, and c, the inter-atomic bond angles, the inter-atomic bond lengths, and the tilting angles increase as the Hr-cation ionic radius increases. The mismatch that exists in the Sr 2 HrRuO 6 ionic radius produces a large distortion from the ideal cubic symmetry. The pure perovskite-like phase of Sr 2 HrRuO 6 is thermodynamically and kinetically stable at high temperatures above 1420 K, where it is entirely governed by the average size of the Hr 3+ and Ru 5+ cations. Highlights: ► Crystal structure of Sr 2 HrRuO 6 (Hr = Ho, Dy, Gd, Eu) as a function of Hr ionic radius. ► XRD

  14. Relaxor behavior in spin glass perovskite Sr2CoRuO6

    International Nuclear Information System (INIS)

    Phatak, Rohan; Sali, S.K.; Mishra, S.K.; Das, A.

    2014-01-01

    Dielectric properties of Sr 2 CoRuO 6 perovskite have been investigated. The compound crystallizes in monoclinic I2/c space group, with random distribution of Co and Ru ion on B site. From our previous study, we showed this compound to be magnetic spin glass with transition at 95K, and was investigated using neutron diffraction and depolarization, ac magnetization and time dependent magnetization

  15. Probing chiral superconductivity in Sr_2RuO_4 underneath the surface by point contact measurements

    International Nuclear Information System (INIS)

    Wang, He; Luo, Jiawei; Lou, Weijian

    2017-01-01

    Sr2RuO4 (SRO) is the prime candidate for a chiral p-wave superconductor with critical temperature T_c(SRO)∼1.5 K. Chiral domains with opposite chiralities p_x±ip_y have been proposed, but are yet to be confirmed. We measure the field dependence of the point contact (PC) resistance between a tungsten tip and an SRO–Ru eutectic crystal, where micrometer-sized Ru inclusions are embedded in SRO with an atomically sharp interface. Ruthenium is an s-wave superconductor with T_c(Ru)∼0.5 K; flux pinned near the Ru inclusions can suppress its superconductivity, as reflected in the PC resistance and spectra. This flux pinning effect originates from SRO underneath the surface and is very strong once flux is introduced. To fully remove flux pinning, one needs to thermally cycle the sample above T_c(SRO) or apply alternating fields with decreasing amplitude. With alternating fields, the observed hysteresis in magnetoresistance can be explained by domain dynamics, providing support for the existence of chiral domains. The origin of the strong pinning could be the chiral domains themselves.

  16. Microstructure of epitaxial SrRuO 3 thin films on MgO substrates

    Science.gov (United States)

    Ai, Wan Yong; Zhu, Jun; Zhang, Ying; Li, Yan Rong; Liu, Xing Zhao; Wei, Xian Hua; Li, Jin Long; Zheng, Liang; Qin, Wen Feng; Liang, Zhu

    2006-09-01

    SrRuO 3 thin films have been grown on singular (1 0 0) MgO substrates using pulsed laser deposition (PLD) in 30 Pa oxygen ambient and at a temperature of 400-700 °C. Ex situ reflection high-energy electron diffraction (RHEED) as well as X-ray diffraction (XRD) θ/2 θ scan indicated that the films deposited above 650 °C were well crystallized though they had a rough surface as shown by atom force microscopy (AFM). XRD Φ scans revealed that these films were composed of all three different types of orientation domains, which was further confirmed by the RHEED patterns. The heteroepitaxial relationship between SrRuO 3 and MgO was found to be [1 1 0] SRO//[1 0 0] MgO and 45°-rotated cube-on-cube [0 0 1] SRO//[1 0 0] MgO. These domain structures and surface morphology are similar to that of ever-reported SrRuO 3 thin films deposited on the (0 0 1) LaAlO 3 substrates, and different from those deposited on (0 0 1) SrTiO 3 substrates that have an atomically flat surface and are composed of only the [1 1 0]-type domains. The reason for this difference was ascribed to the effect of lattice mismatch across the film/substrate interface. The room temperature resistivity of SrRuO 3 films fabricated at 700 °C was 300 μΩ cm. Therefore, epitaxial SrRuO 3 films on MgO substrate could serve as a promising candidate of electrode materials for the fabrication of ferroelectric or dielectric films.

  17. Systems of OsO4-RuO4 and Re2O7-OsO4

    International Nuclear Information System (INIS)

    Nisel'son, L.A.; Sokolova, T.D.; Orlov, A.M.; Shorikov, Yu.S.

    1981-01-01

    The meltability diagrams of the systems OsO 4 -RuO 4 and Re 2 O 7 -OsO 4 are studied using the visual-polythermal method. The OsO 4 -RuO 4 system forms a continuous series of solid solutions with practically rectilinear line of the liquidus. The Re 2 O 7 -OsO 4 system of the eutectic type has the eutectics degenerated from the side of OsO 4 . For the system OsO 4 (basis)-RuO 4 (admixture) the equilibrium coefficient of distribution is determined using the method of directed crystallization [ru

  18. Strain Induced Magnetism in SrRuO3 Epitaxial Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Grutter, A.; Wong, F.; Arenholz, E.; Liberati, M.; Suzuki, Y.

    2010-01-10

    Epitaxial SrRuO{sub 3} thin films were grown on SrTiO{sub 3}, (LaAlO{sub 3}){sub 0.3}(SrAlO{sub 3}){sub 0.7} and LaAlO{sub 3} substrates inducing different biaxial compressive strains. Coherently strained SrRuO{sub 3} films exhibit enhanced magnetization compared to previously reported bulk and thin film values of 1.1-1.6 {micro}{sub B} per formula unit. A comparison of (001) and (110) SrRuO{sub 3} films on each substrate indicates that films on (110) oriented have consistently higher saturated moments than corresponding (001) films. These observations indicate the importance of lattice distortions in controlling the magnetic ground state in this transitional metal oxide.

  19. Engineering of mixed pairing and non-Abelian Majorana states in chiral p-wave superconductor Sr2RuO4 and other materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics

    2015-11-30

    This project deals with odd-parity superconductor Sr2RuO4 and related material systems, aiming at understanding the unconventional nature of superconductivity in this material. An odd-parity superconductor is expected to feature a novel topological object, the half-flux-quantum vortex that hosts a Majorana anyons. Majorana anyons carry non-Abelian statistics that can be used as the building block for constructing a fault-tolerated topological quantum computer. Half-flux-quantum vortices form in an odd-parity superconductor because of the availability of charge neutral spin supercurrent in addition to the normal supercurrent. Half-height magnetization steps were found in a cantilever magnetometry measurement of doubly connected mesoscopic samples of Sr2RuO4 in the presence of an in-plane magnetic field (J. Jang, D. G. Ferguson, V. Vakaryuk, R. Budakian, S. B. Chung, P. M. Goldbart, and Y. Maeno, Science 331, 186 (2011)), which suggests the presence of a half-flux-quantum (Φ0/2 = h/4e) state. Evidence for half flux quantum states, which can be viewed as coreless half vortices, was obtained in mesoscopic samples of Sr2RuO4 in the torque magnetomitry measurements. However, the existence of such an important property has not been confirmed by any other independent measurement.

  20. Nanoscale monoclinic domains in epitaxial SrRuO3 thin films deposited by pulsed laser deposition

    Science.gov (United States)

    Ghica, C.; Negrea, R. F.; Nistor, L. C.; Chirila, C. F.; Pintilie, L.

    2014-07-01

    In this paper, we analyze the structural distortions observed by transmission electron microscopy in thin epitaxial SrRuO3 layers used as bottom electrodes in multiferroic coatings onto SrTiO3 substrates for future multiferroic devices. Regardless of the nature and architecture of the multilayer oxides deposited on the top of the SrRuO3 thin films, selected area electron diffraction patterns systematically revealed the presence of faint diffraction spots appearing in forbidden positions for the SrRuO3 orthorhombic structure. High-resolution transmission electron microscopy (HRTEM) combined with Geometric Phase Analysis (GPA) evidenced the origin of these forbidden diffraction spots in the presence of structurally disordered nanometric domains in the SrRuO3 bottom layers, resulting from a strain-driven phase transformation. The local high compressive strain (-4% ÷ -5%) measured by GPA in the HRTEM images induces a local orthorhombic to monoclinic phase transition by a cooperative rotation of the RuO6 octahedra. A further confirmation of the origin of the forbidden diffraction spots comes from the simulated diffraction patterns obtained from a monoclinic disordered SrRuO3 structure.

  1. Quasi-two-dimensional Fermi-liquid state in Sr2RhO4

    International Nuclear Information System (INIS)

    Nagai, Ichiro; Shirakawa, Naoki; Umeyama, Norio; Ikeda, Shin-ichi

    2010-01-01

    Single crystals of layered perovskite Sr 2 RhO 4-δ (δ=0.0 and 0.1) are successfully grown by the floating-zone method. Stoichiometric single crystals (Sr 2 RhO 4.0 ) are obtained by O 2 -annealing the as-grown crystals (Sr 2 RhO 3.9 ). Sr 2 RhO 4.0 and Sr 2 RhO 3.9 show quasi-two-dimensional Fermi-liquid behavior at low temperatures, whereas there are large differences in the anisotropy of electrical resistivity ρ c (3 K)/ρ ab (3 K) and Wilson ratio R w between Sr 2 RhO 4.0 and Sr 2 RhO 3.9 : ρ c (3 K)/ρ ab (3 K)=2400 (19000) and R w =3.8 (6.4) for Sr 2 RhO 4.0 (Sr 2 RhO 3.9 ). The differences observed between the temperature dependence of the in-plane electrical resistivity (T 2 RhO 4.0 and Sr 2 RhO 3.9 are mainly derived from those between the density of states and band structure near the corresponding Fermi level. This indicates that the changes in these physical properties, which are accompanied by oxygen defects in the Sr 2 RhO 4-δ system, can be explained by the rigid band model. Moreover, these results suggest that t 2g band-filling can be controlled by adjusting the oxygen defect content δ in the Sr 2 RhO 4-δ system. Although many similarities are observed in this study between the physical properties of Sr 2 RhO 4.0 and Sr 2 RuO 4 . Sr 2 RhO 4.0 does not exhibit superconductivity down to 36 mK. (author)

  2. Rotational and translational distortions of the crystal structure of the Sr{sub 2}HrRuO{sub 6} (Hr = Ho, Dy, Gd, Eu) complex perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Triana, C.A., E-mail: ctrianae@unal.edu.co [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá D.C. (Colombia); Landínez Téllez, D.A. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá D.C. (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá D.C. (Colombia)

    2013-05-15

    Sr{sub 2}HrRuO{sub 6} (Hr = Ho, Dy, Gd, Eu) complex perovskites were synthesized through the high-temperature solid-state reaction method, and their crystal structures were analyzed in detail as a function of the Hr-cation ionic radius. Results of powder XRD pattern measurement and Rietveld analysis of the experimental profiles show that the Sr{sub 2}HrRuO{sub 6} compounds crystallize in a monoclinic distorted perovskite-like structure, P2{sub 1}/n (#14) space group, where the unit cell parameters are related to the primitive unit cell a{sub p} by a≈√(2)a{sub p}, b≈√(2)a{sub p} and c ≈ 2a{sub p}. The structures show an alternate distribution of the Ru{sup 5+} (2d: 0.5, 0, 0) and Hr{sup 3+} (2c: 0, 0.5, 0) making up RuO{sub 6} and HrO{sub 6} octahedra alternatively arranged in two interleaving fcc sublattices, where the O(1), O(2), and O(3) ions are localized at the corner of the octahedral, while the Sr{sup 2+} is located at the A-site, occupying the cavities built by the corner-sharing octahedra with Wyckoff position 4e. Due to the existence of mismatched ionic sizes between the ionic radii of the Sr{sub 2}HrRuO{sub 6} compounds, the HrO{sub 6} and RuO{sub 6} octahedra are constrained to tilting around the [111]{sub c}, [001]{sub c}, and [110]{sub c} cubic directions so as to optimize the Sr–O inter-atomic bond lengths, tending to rotate the structure in order to fix the Ru{sup 5+} and Hr{sup 3+} ions on the M′ and M″ sites of the complex perovskites. The cell parameters a, b, and c, the inter-atomic bond angles, the inter-atomic bond lengths, and the tilting angles increase as the Hr-cation ionic radius increases. The mismatch that exists in the Sr{sub 2}HrRuO{sub 6} ionic radius produces a large distortion from the ideal cubic symmetry. The pure perovskite-like phase of Sr{sub 2}HrRuO{sub 6} is thermodynamically and kinetically stable at high temperatures above 1420 K, where it is entirely governed by the average size of the Hr{sup 3+} and Ru

  3. Structural and electrical properties of room temperature pulsed laser deposited and post-annealed thin SrRuO3 films

    International Nuclear Information System (INIS)

    Gautreau, O.; Harnagea, C.; Normandin, F.; Veres, T.; Pignolet, A.

    2007-01-01

    Good quality strontium ruthenate (SrRuO 3 ) thin continuous films (15 to 125 nm thick) have been synthesized on silicon (100) substrates by room temperature pulsed laser deposition under vacuum followed by a post-deposition annealing, a route unexplored and yet not reported for SrRuO 3 film growth. The presence of an interfacial Sr 2 SiO 4 layer has been identified for films annealed at high temperature, and the properties of this interface layer as well as the properties of the SrRuO 3 film have been analyzed and characterized as a function of the annealing temperature. The room temperature resistivity of the SrRuO 3 films deposited by laser ablation at room temperature and post-annealed is 2000 μΩ.cm. A critical thickness of 120 nm has been determined above which the influence of the interface layer on the resistivity becomes negligible

  4. SrRuO3 thin films grown on MgO substrates at different oxygen partial pressures

    KAUST Repository

    Zou, Bin

    2013-01-08

    A comprehensive study of SrRuO3 thin films growth on (001) MgO substrates by pulsed laser deposition in a wide oxygen pressure range from 10 to 300 mTorr was carried out. The experimental results showed a correlation between the lattice constants, resistivity, and oxygen partial pressures used. Ru deficiency detected only in films deposited at lower oxygen pressures (<50 mTorr), resulted in an elongation of the in-plane and out-of-plane lattice constants and an increase in the film resistivity. When deposited with oxygen partial pressure of 50 mTorr, SrRuO3 films had lattice parameters matching those of bulk SrRuO3 material and exhibited room temperature resistivity of 320 μΩ·cm. The resistivity of SrRuO 3/MgO films decreased with increasing oxygen partial pressure. Copyright © 2013 Materials Research Society.

  5. Strain dependence of interfacial antiferromagnetic coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices

    Science.gov (United States)

    Das, Sujit; Herklotz, Andreas; Pippel, Eckhard; Guo, Er-Jia; Rata, Diana; Dörr, Kathrin

    2015-03-01

    We have investigated the magnetic response of La0.7Sr0.3MnO3/SrRuO3 superlattices to biaxial in-plane strain applied in-situ. Superlattices grown on piezoelectric substrates of 0.72PbMg1/3Nb2/3O3-0.28PbTiO3(001) (PMN-PT) show strong antiferromagnetic coupling of the two ferromagnetic components. The coupling field of μ0HAF = 1.8 T is found to change by μ0 ΔHAF / Δɛ ~ -520 mT %-1 under reversible biaxial strain (Δɛ) at 80 K in a [La0.7Sr0.3MnO3(22 Å)/SrRuO3(55 Å)]15 superlattice. This reveals a significant strain effect on interfacial coupling. The applied in-plane compression enhances the ferromagnetic order in the manganite layers which are under as-grown tensile strain. It is thus difficult to disentangle the contributions from strain-dependent antiferromagnetic Mn-O-Ru interface coupling and Mn-O-Mn ferromagnetic double exchange near the interface, since the enhanced magnetic order of Mn spins leads to a larger net coupling of SrRuO3 layers at the interface. We discuss our experimental findings taken into account both the strain-dependent orbital occupation in a single-ion picture and the enhanced Mn order at the interface. This work was supported by the DFG within the Collaborative Research Center SFB 762 ``Functionality of Oxide Interfaces.''

  6. Magnetic properties and structural characterization of Sr2RuHoO6 complex perovskite

    International Nuclear Information System (INIS)

    Corredor, L.T.; Landínez Téllez, D.A.; Martínez Buitrago, D.; Albino Aguiar, J.; Roa-Rojas, J.

    2012-01-01

    We report an experimental study of the crystallographic lattice, morphologic characteristics and magnetic feature of Sr 2 RuHoO 6 complex perovskite, which is used as a precursor in the fabrication process of the superconducting ruthenocuprate RuSr 2 HoCu 2 O 8 . The samples were produced through the standard solid state reaction. A Rietveld refinement of experimental X-ray diffraction patterns shows that the material crystallizes in a monoclinic structure, which belongs to the P21/n (no.14) space group, with lattice parameters a=5.7719(6) Å, b=5.8784(5) Å, c=8.1651(9) Å, and tilt angle β=90.200°. Magnetic susceptibility measurements reveal the occurrence of an antiferromagnetic ordering for a Néel temperature T N =10.1 K. From the Curie-Weiss fitting of the paramagnetic regime we obtain an effective magnetic moment of 11.31 μ B .

  7. In-depth study of the H - T phase diagram of Sr4Ru3O10 by magnetization experiments

    Science.gov (United States)

    Weickert, F.; Civale, L.; Maiorov, B.; Jaime, M.; Salamon, M. B.; Carleschi, E.; Strydom, A. M.; Fittipaldi, R.; Granata, V.; Vecchione, A.

    2018-05-01

    We present magnetization measurements on Sr4Ru3O10 as a function of temperature and magnetic field applied perpendicular to the magnetic easy c-axis inside the ferromagnetic phase. Peculiar metamagnetism evolves in Sr4Ru3O10 below the ferromagnetic transition TC as a double step in the magnetization at two critical fields Hc1 and Hc2. We map the H - T phase diagram with special focus on the temperature range 50 K ≤ T ≤TC . We find that the critical field Hc1 (T) connects the field and temperature axes of the phase diagram, whereas the Hc2 boundary starts at 2.8 T for the lowest temperatures and ends in a critical endpoint at (1 T; 80 K). We conclude from the temperature dependence of the ratio Hc 1/Hc 2 (T) that the double metamagnetic transition is an intrinsic effect of the material and it is not caused by sample stacking faults such as twinning or partial in-plane rotation between layers.

  8. A {mu}SR study of the magnetoresistive ruthenocuprates RuSr{sub 2}Nd{sub 1.8-x}Y {sub 0.2}Ce{sub x}Cu{sub 2}O{sub 10-{delta}} (x = 0.95 and 0.80)

    Energy Technology Data Exchange (ETDEWEB)

    Mclaughlin, A C [Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE (United Kingdom); Attfield, J P [Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King' s Buildings, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Van Duijn, J [Instituto de Investigacion en EnergIas Renovables, Universidad de Castilla la Mancha, Albacete, E02006 (Spain); Hillier, A D, E-mail: a.c.mclaughlin@abdn.ac.uk [ISIS facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2011-09-14

    Zero field muon spin relaxation (ZF-{mu}SR) has been used to study the magnetic properties of the underdoped giant magnetoresistive ruthenocuprates RuSr{sub 2}Nd{sub 1.8-x}Y {sub 0.2}Ce{sub x}Cu{sub 2}O{sub 10-{delta}} (x = 0.95, 0.80). The magnetoresistance (MR) is defined so that MR = (({rho}{sub H}-{rho}{sub 0})/{rho}{sub 0}) and the giant magnetoresistive ruthenocuprates RuSr{sub 2}Nd{sub 1.8-x}Y {sub 0.2}Ce{sub x}Cu{sub 2}O{sub 10-{delta}} exhibit a large reduction in electronic resistivity upon application of a magnetic field. The ZF-{mu}SR results show a gradual loss of initial asymmetry A{sub 0} at the ruthenium spin transition temperature, T{sub Ru}. At the same time the electronic relaxation rate, {lambda}, shows a gradual increase with decreasing temperature below T{sub Ru}. These results have been interpreted as evidence for Cu spin cluster formation below T{sub Ru}. These magnetically ordered clusters grow as the temperature is decreased thus causing the initial asymmetry to decrease slowly. Giant magnetoresistance is observed over a wide temperature range in the materials studied and the magnitude increases as the temperature is reduced from T{sub Ru} to 4 K which suggests a relation between Cu spin cluster size and |-MR|. (paper)

  9. Effect of anisotropic strain on the quantum critical phase of Sr{sub 3}Ru{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Daniel; Barber, Mark; Mackenzie, Andrew [MPI-Chemische Physik fester Stoffe, Dresden (Germany); Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St Andrews, St Andrews (United Kingdom); Hicks, Clifford [MPI-Chemische Physik fester Stoffe, Dresden (Germany); Perry, Robin [SUPA, School of Physics, University of Edinburgh, Edinburgh (United Kingdom)

    2015-07-01

    We have developed a novel piezoelectric-based device for applying both compressive and tensile strains to single crystals. One particularly appealing target for such studies is Sr{sub 3}Ru{sub 2}O{sub 7}. Sr{sub 3}Ru{sub 2}O{sub 7} has a novel quantum critical phase around a metamagnetic transition at 8 T, which shows very strong transport anisotropy in the presence of weak symmetry-breaking fields. We discuss the response of this phase to applied anisotropic lattice strain.

  10. Hall effect and magnetization in the magnetic superconductor RuSr2GdCu2O8

    International Nuclear Information System (INIS)

    Jurelo, A.R.; Pimentel, J.L.; Wolff Fabris, F.; Schaf, J.; Pureur, P.; Vieira, V.N.

    2006-01-01

    We report on Hall effect, longitudinal resistivity and magnetization measurements in the rutheno-cuprate RuSr 2 GdCu 2 O 8 . Combining these results we separate the anomalous contribution to the Hall effect and argue that the occurrence of canting and chirality have to be considered for describing this property

  11. Electronic and Crystalline Structure, Magnetic Response, and Optical Characterization of Rare-Earth Ruthenate Sr2HoRuO6

    Science.gov (United States)

    Velásquez Moya, X. A.; Cardona, R.; Villa Hernández, J. I.; Landínez Téllez, D. A.; Roa-Rojas, J.

    2018-03-01

    Sr2HoRuO6 ceramic has been synthesized and its structural, morphological, magnetic, optical, and electronic properties studied. Rietveld refinement of x-ray diffraction patterns revealed that this oxide material crystallizes in monoclinic perovskite structure in space group P2 1 /n (no. 14). Scanning electron microscopy revealed polycrystalline surface morphology. x-Ray dispersive spectroscopy suggested that Sr2HoRuO6 was obtained with expected stoichiometry. Magnetic susceptibility curves as a function of temperature revealed ferrimagnetic feature of this material below the Néel temperature T N of 14 K. Evidence of magnetic disorder was provided by the irreversibility observed in the zero-field-cooled and field-cooled responses of the susceptibility below T irr = 169 K. Analysis of the diffuse reflectance spectrum suggested that this material behaves as a semiconductor with energy gap E g of 1.38 eV. Results of band structure and density-of-states calculations are in agreement with the interpretation of Sr2HoRuO6 as a semiconductor. The ferrimagnetic behavior is interpreted as due to exchange mechanisms of d-f (Ru-O-Ho) electrons. The effective magnetic moment calculated from density functional theory was 93.5% of the experimental value obtained from Curie-Weiss fitting of the susceptibility curve.

  12. Low-energy optics of Sr{sub 1-x}Ca{sub x}RuO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Diana; Scheffler, Marc; Dressel, Martin [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Schneider, Melanie; Gegenwart, Philipp [I. Physikalisches Institut, Georg-August-Universitaet, Goettingen (Germany)

    2012-07-01

    The pseudo-cubic perovskite ruthenates SrRuO{sub 3} and CaRuO{sub 3} have recently attracted interest due to their unconventional electronic properties. For both materials, non-Fermi liquid behavior has been reported in previous optical studies at infrared frequencies. In addition to these two pure compounds, the doping series Sr{sub 1-x}Ca{sub x}RuO{sub 3} offers a rich phase diagram: going from the itinerant ferromagnet SrRuO{sub 3} to the paramagnet CaRuO{sub 3}, indications for a quantum phase transition at x{approx}0.8 have been found. Using THz spectroscopy at frequencies between 5 cm{sup -1} and 45 cm{sup -1}, we have studied thin-film samples of the Sr{sub 1-x}Ca{sub x}RuO{sub 3} system, which were prepared by metalorganic aerosol deposition. From transmission and phase measurements we have determined the frequency-dependent conductivity for a set of temperatures between 5 K and 300 K, and we discuss it in the framework of the extended Drude model with frequency-dependent relaxation rate and effective mass. While for pure SrRuO{sub 3} as well as for doped systems approaching the quantum phase transition we find conventional metallic Drude behavior, CaRuO{sub 3} exhibits highly unusual optical properties which we compare to results of dc measurements on these thin films, which also revealed temperature ranges with non-Fermi liquid behavior.

  13. Domain structure and magnetic properties of epitaxial SrRuO sub 3 films grown on SrTiO sub 3 (100) substrates by ion beam sputtering

    CERN Document Server

    Oh, S H

    2000-01-01

    The domain structure of epitaxial SrRuO sub 3 thin films grown on SrTiO sub 3 (100) substrates by using ion beam sputtering has been investigated with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The SrRuO sub 3 films grown in the present study revealed a unique cube-on-cube epitaxial relationship, i.e., (100) sub S sub R sub O ll (100) sub S sub T sub O , [010] sub S sub R sub O ll [101] sub S sub T sub O , prevailing with a cubic single-domain structure. The cubic SrRuO sub 3 thin films that were inherently with free from RuO sub 6 octahedron tilting exhibited higher resistivity with suppressed magnetic properties. The Curie temperature of the thin films was suppressed by 60 K from 160 K for the bulk specimen, and the saturation magnetic moment was reduced by a significant amount. The tetragonal distortion of the SrRuO sub 3 thin films due to coherent growth with the substrate seemed to result in a strong magnetic anisotropy.

  14. Spontaneous orientation-tuning driven by the strain variation in self-assembled ZnO-SrRuO3 heteroepitaxy

    International Nuclear Information System (INIS)

    Zhu, Yuanmin; Liu, Ruirui; Zhan, Qian; Chang, Wei Sea; Yu, Rong; Wei, Tzu-Chiao; He, Jr-Hau; Chu, Ying-Hao

    2015-01-01

    Heteroepitaxial ZnO and SrRuO 3 were grown on SrTiO 3 (111) substrates and formed a self-assembled wurtzite-perovskite nanostructure. Spontaneous orientation-tuning of the SrRuO 3 pillars was observed, with the growth direction changing from [111] SRO to [011] SRO as the film thickness increased, which is attributed to a misfit strain transition from the biaxial strain imposed by the SrTiO 3 substrate to the vertical strain provided by the ZnO matrix. The [011]-SrRuO 3 and [0001]-ZnO combination presents a favorable matching in the nanocomposite films, resulting in higher charge carrier mobility. This vertically integrated configuration and regulation on the crystallographic orientations are expected to be employed in designing multi-functional nanocomposite systems for applications in electronic devices

  15. Spontaneous orientation-tuning driven by the strain variation in self-assembled ZnO-SrRuO3 heteroepitaxy

    KAUST Repository

    Zhu, Yuanmin

    2015-11-09

    Heteroepitaxial ZnO and SrRuO3 were grown on SrTiO3 (111) substrates and formed a self-assembled wurtzite-perovskite nanostructure. Spontaneous orientation-tuning of the SrRuO3 pillars was observed, with the growth direction changing from [111]SRO to [011]SRO as the film thickness increased, which is attributed to a misfit strain transition from the biaxial strain imposed by the SrTiO3 substrate to the vertical strain provided by the ZnO matrix. The [011]-SrRuO3 and [0001]-ZnO combination presents a favorable matching in the nanocomposite films, resulting in higher charge carrier mobility. This vertically integrated configuration and regulation on the crystallographic orientations are expected to be employed in designing multi-functional nanocomposite systems for applications in electronic devices.

  16. Spontaneous orientation-tuning driven by the strain variation in self-assembled ZnO-SrRuO3 heteroepitaxy

    KAUST Repository

    Zhu, Yuanmin; Chang, Wei Sea; Yu, Rong; Liu, Ruirui; Wei, Tzu-Chiao; He, Jr-Hau; Chu, Ying-Hao; Zhan, Qian

    2015-01-01

    Heteroepitaxial ZnO and SrRuO3 were grown on SrTiO3 (111) substrates and formed a self-assembled wurtzite-perovskite nanostructure. Spontaneous orientation-tuning of the SrRuO3 pillars was observed, with the growth direction changing from [111]SRO to [011]SRO as the film thickness increased, which is attributed to a misfit strain transition from the biaxial strain imposed by the SrTiO3 substrate to the vertical strain provided by the ZnO matrix. The [011]-SrRuO3 and [0001]-ZnO combination presents a favorable matching in the nanocomposite films, resulting in higher charge carrier mobility. This vertically integrated configuration and regulation on the crystallographic orientations are expected to be employed in designing multi-functional nanocomposite systems for applications in electronic devices.

  17. Correlation effects and spin-orbit interaction in Sr{sub 3}Ru{sub 2}O{sub 7}: LDA+DMFT study

    Energy Technology Data Exchange (ETDEWEB)

    Gorelov, Evgeny; Zhang, Guoren; Pavarini, Eva [IAS-3, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2013-07-01

    The layered ruthenates of the Ruddlesden-Popper family Sr{sub n+1}Ru{sub n}O{sub 3n+1} are interesting examples of strongly correlated transition metal compounds. Due to competing kinetic and Coulomb energies, that are of the same order for Ru 4d electrons, these compounds have very rich phase diagram, including Mott-insulator, ferro- and meta-magnetic phases. Among layered ruthenates the bilayered compound Sr{sub 3}Ru{sub 2}O{sub 7} is particularly interesting. It is known to be a paramagnetic metal close to ferro-magnetism and exhibits a metamagnetic behavior in external magnetic field. By using the LDA+DMFT (local-density approximation + dynamical mean-field theory) approach, we study magnetic properties and electron mass renormalization due to correlation effects. In our LDA+DMFT scheme we use maximally-localized Wannier orbitals obtained from Linearized Augmented Plane Wave (LAPW) calculations to build a low-energy Hubbard model for the Ru d bands; we use the weak-coupling CT-quantum Monte Carlo method to solve the quantum impurity problem. We take into account the full rotationally-invariant Coulomb interaction, as well as full on-site self-energy matrix in orbital space with spin-orbit coupling.

  18. Several novel Ru(II) and Ru(III) complexes formed by reduction of (RuO4bipy) and (RuO3phen)2O with hydroquinone and methanol

    International Nuclear Information System (INIS)

    Ishiyama, Toshio

    1975-01-01

    The geometrical isomers, cis-dichloro-trans-(methanol)(hydroquinone)(2,2'-bipyridine)ruthenium(II) and cis-dichloro-cis-(methanol)(hydroquinone)(2,2'-bipyridine)ruthenium(II), [RuCl 2 (MeOH)(QH 2 )bipy] (complex I and II), were synthesized by reduction and substitution reactions of [RuO 4 bipy] and [RuO 2 (OH) 2 bipy] with hydroquinone in hydrochloric acid solution, and methanol. cis-Chloro(hydroquinonato)bis(2,2'-bipyridine)ruthenium(II), cis-[RuCl(QH)(bipy) 2 ], was obtained from the substitution reaction of complex I or II with 2,2'-bipyridine in methanol, and cis-chloro(hydroquinone)bis(2,2'-bipyridine)ruthenium(II) chloride, cis-[RuCl(QH 2 )(bipy) 2 ]Cl, was also obtained from the substitution of cis-trans-[RuCl 2 (MeOH)(QH 2 )bipy] in methanol containing hydrochloric acid. cis-Dihydroxobis(2,2'-bipyridine)ruthenium(II), cis-[Ru(OH) 2 (bipy) 2 ], was obtained by heating an aqueous solution of cis-[RuCl(QH)(bipy) 2 ]. Trihydroxoaquo(1,10-phenanthroline)ruthenium(III), [Ru(OH) 3 (H 2 O)phen] was also synthesized from [RuO 3 phen] 2 O and [Ru(OH) 3 phen] 2 O by reduction reactions similar to those used for [RuCl 2 (MeOH)(QH 2 )bipy]. These complexes were characterized by the infrared, visible and ultraviolet absorption spectra, and also by polarographic and magnetic measurements. The structures are discussed. (auth.)

  19. Enhanced superconductivity at the interface of W/Sr2RuO4 point contact

    Science.gov (United States)

    Wei, Jian; Wang, He; Lou, Weijian; Luo, Jiawei; Liu, Ying; Ortmann, J. E.; Mao, Z. Q.

    Differential resistance measurements are conducted for point contacts (PCs) between the Sr2RuO4 (SRO) single crystal and the tungsten tip. Since the tungsten tip is hard enough to penetrate through the surface layer, consistent superconducting features are observed. Firstly, with the tip pushed towards the crystal, the zero bias conductance peak (ZBCP) due to Andreev reflection at the normal-superconducting interface increases from 3% to more than 20%, much larger than previously reported, and extends to temperature higher than the bulk transition temperature. Reproducible ZBCP within 0.2 mV may also help determine the gap value of SRO, on which no consensus has been reached. Secondly, the logarithmic background can be fitted with the Altshuler-Aronov theory of electron-electron interaction for tunneling into quasi two dimensional electron system. Feasibility of such fitting confirms that spectroscopic information like density of states is probed, and electronic temperature retrieved from such fitting can be important to analyse the PC spectra. Third, at bias much higher than 0.2 mV there are conductance dips due to the critical current effect and these dips persist up to 6.2 K. For more details see. National Basic Research Program of China (973 Program) through Grant No. 2011CBA00106 and No. 2012CB927400.

  20. Growth and structural characterization of single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) obtained by the partial melting technique

    Science.gov (United States)

    Yamaki, K.; Bamba, Y.; Mochiku, T.; Funahashi, S.; Matsushita, Y.; Irie, A.

    2018-05-01

    In this study, cubic single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) with typical dimensions of 100-150 μm in length were grown by the partial melting technique. Multiple 00l reflections were first observed by XRD measurements of the bulk RuGd-1212 single crystals. The resistivity of the obtained crystals was roughly estimated to be ∼24-80 mΩ cm and no superconducting transition was observed down to 4.2 K. From the XRD measurements and refinement of the crystal structure, it was apparent that the Ru and Sr sites of the single-crystal RuGd-1212 were partially substituted by Cu and Gd, respectively. Oxygen defects were found to be minor (δ ≈ 0.1). The lattice parameters a and c of the single crystals were found to be larger and smaller, respectively, than those of a polycrystalline sample.

  1. Giant photoresponse in quantized SrRuO3 monolayer at oxide interfaces

    KAUST Repository

    Liu, Heng-Jui

    2018-02-01

    The photoelectric effect in semiconductors is the main mechanism for most modern optoelectronic devices, in which the adequate bandgap plays the key role for acquiring high photoresponse. Among numerous material categories applied in this field, the complex oxides exhibit great possibilities because they present a wide distribution of band gaps for absorbing light with any wavelength. Their physical properties and lattice structures are always strongly coupled and sensitive to light illumination. Moreover, the confinement of dimensionality of the complex oxides in the heterostructures can provide more diversities in designing and modulating the band structures. On the basis of this perspective, we have chosen itinerary ferromagnetic SrRuO3 as the model material, and fabricated it in one-unit-cell thickness in order to open a small band gap for effective utilization of visible light. By inserting this SrRuO3 monolayer at the interface of the well-developed two-dimensional electron gas system (LaAlO3/SrTiO3), the resistance of the monolayer can be further revealed. In addition, a giant enhancement (>300%) of photoresponse under illumination of visible light with power density of 500 mW/cm2 is also observed. Such can be ascribed to the further modulation of band structure of the SrRuO3 monolayer under the illumination, confirmed by cross-section scanning tunneling microscopy (XSTM). Therefore, this study demonstrates a simple route to design and explore the potential low dimensional oxide materials for future optoelectronic devices.

  2. Giant photoresponse in quantized SrRuO3 monolayer at oxide interfaces

    KAUST Repository

    Liu, Heng-Jui; Wang, Jing-Ching; Cho, Deok-Yong; Ho, Kang-Ting; Lin, Jheng-Cyuan; Huang, Bo-Chao; Fang, Yue-Wen; Zhu, Yuan-Min; Zhan, Qian; Xie, Lin; Pan, Xiao-Qing; Chiu, Ya-Ping; Duan, Chun-Gang; He, Jr-Hau; Chu, Ying-Hao

    2018-01-01

    The photoelectric effect in semiconductors is the main mechanism for most modern optoelectronic devices, in which the adequate bandgap plays the key role for acquiring high photoresponse. Among numerous material categories applied in this field, the complex oxides exhibit great possibilities because they present a wide distribution of band gaps for absorbing light with any wavelength. Their physical properties and lattice structures are always strongly coupled and sensitive to light illumination. Moreover, the confinement of dimensionality of the complex oxides in the heterostructures can provide more diversities in designing and modulating the band structures. On the basis of this perspective, we have chosen itinerary ferromagnetic SrRuO3 as the model material, and fabricated it in one-unit-cell thickness in order to open a small band gap for effective utilization of visible light. By inserting this SrRuO3 monolayer at the interface of the well-developed two-dimensional electron gas system (LaAlO3/SrTiO3), the resistance of the monolayer can be further revealed. In addition, a giant enhancement (>300%) of photoresponse under illumination of visible light with power density of 500 mW/cm2 is also observed. Such can be ascribed to the further modulation of band structure of the SrRuO3 monolayer under the illumination, confirmed by cross-section scanning tunneling microscopy (XSTM). Therefore, this study demonstrates a simple route to design and explore the potential low dimensional oxide materials for future optoelectronic devices.

  3. Spontaneous orientation-tuning driven by the strain variation in self-assembled ZnO-SrRuO{sub 3} heteroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuanmin; Liu, Ruirui; Zhan, Qian, E-mail: qzhan@mater.ustb.edu.cn [Department of Material Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Chang, Wei Sea [School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor 47500 (Malaysia); Yu, Rong [National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wei, Tzu-Chiao [Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); He, Jr-Hau [Electrical Engineering Program, King Abdullah University of Science & Technology (Saudi Arabia); Chu, Ying-Hao [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 105, Taiwan (China)

    2015-11-09

    Heteroepitaxial ZnO and SrRuO{sub 3} were grown on SrTiO{sub 3} (111) substrates and formed a self-assembled wurtzite-perovskite nanostructure. Spontaneous orientation-tuning of the SrRuO{sub 3} pillars was observed, with the growth direction changing from [111]{sub SRO} to [011]{sub SRO} as the film thickness increased, which is attributed to a misfit strain transition from the biaxial strain imposed by the SrTiO{sub 3} substrate to the vertical strain provided by the ZnO matrix. The [011]-SrRuO{sub 3} and [0001]-ZnO combination presents a favorable matching in the nanocomposite films, resulting in higher charge carrier mobility. This vertically integrated configuration and regulation on the crystallographic orientations are expected to be employed in designing multi-functional nanocomposite systems for applications in electronic devices.

  4. Development of antifouling of electrochemical solid-state dissolved oxygen sensors based on nanostructured Cu0.4Ru3.4O7 + RuO2 sensing electrodes

    International Nuclear Information System (INIS)

    Zhuiykov, Serge; Kalantar-zadeh, Kourosh

    2012-01-01

    Tailoring nanostructured sensing electrode materials to high antifouling resistance has been one of the main priorities of the development of water quality sensors in the 21st century. Nanostructured Cu 0.4 Ru 3.4 O 7 + RuO 2 -SEs have been developed to address the bio-fouling problem. The change in Cu 0.4 Ru 3.4 O 7 + RuO 2 structural development being promoted by advances in nano- and micro-scale pattering. Nanostructured Cu 0.4 Ru 3.4 O 7 + RuO 2 -SEs with different mol% of Cu 2 O were screen-printed on alumina sensor substrates and were consequently subjected to a 3-month field trial at the Water Treatment Plant. Their structural and electrochemical properties before and after the experiment were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical cyclic voltammerty (CV) techniques. The relationship between dissolved oxygen (DO) and the sensor's potential difference was found to be relatively linear, with the maximum sensitivity of −46 mV per decade being achieved at 20 mol% Cu 2 O at 7.27 pH. Moreover, a 3-month field trial in the sewerage environment has shown that Cu 0.4 Ru 3.4 O 7 + RuO 2 -SE with 20 mol% of Cu 2 O possesses much higher defences against bio-fouling than the same SE with only 10 mol% of Cu 2 O. The super-hydrophobic property of the developed Cu 0.4 Ru 3.4 O 7 + RuO 2 complex oxide has been considered as one of the essential pre-requisites for high antifouling resistance. Multiple antifouling defence strategies from biomimetic to bio-inspired must be incorporated in further development of nanostructured oxide SE to solve problems of bio-fouling on the sensor's SE.

  5. Magnetic properties and structural characterization of Sr{sub 2}RuHoO{sub 6} complex perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Corredor, L.T.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 5997, Bogota DC (Colombia); Martinez Buitrago, D. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 5997, Bogota DC (Colombia); Grupo Fisica de Materiales, Escuela de Fisica, Universidad Pedagogica y Tecnologica de Colombia, Tunja (Colombia); Albino Aguiar, J. [Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901, Recife PE (Brazil); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 5997, Bogota DC (Colombia)

    2012-08-15

    We report an experimental study of the crystallographic lattice, morphologic characteristics and magnetic feature of Sr{sub 2}RuHoO{sub 6} complex perovskite, which is used as a precursor in the fabrication process of the superconducting ruthenocuprate RuSr{sub 2}HoCu{sub 2}O{sub 8}. The samples were produced through the standard solid state reaction. A Rietveld refinement of experimental X-ray diffraction patterns shows that the material crystallizes in a monoclinic structure, which belongs to the P21/n (no.14) space group, with lattice parameters a=5.7719(6) A, b=5.8784(5) A, c=8.1651(9) A, and tilt angle {beta}=90.200 Degree-Sign . Magnetic susceptibility measurements reveal the occurrence of an antiferromagnetic ordering for a Neel temperature T{sub N}=10.1 K. From the Curie-Weiss fitting of the paramagnetic regime we obtain an effective magnetic moment of 11.31 {mu}{sub B}.

  6. Self-organization in complex oxide thin films: from 2D to 0D nanostructures of SrRuO3 and CoCr2O4

    Science.gov (United States)

    Sánchez, F.; Lüders, U.; Herranz, G.; Infante, I. C.; Fontcuberta, J.; García-Cuenca, M. V.; Ferrater, C.; Varela, M.

    2005-05-01

    We report here on the controlled fabrication of nanostructures of varied dimensionality by self-organization processes in the heteroepitaxial growth of SrRuO3 (SRO) and CoCr2O4 (CCO) films. The surface of SRO films on SrTiO3(001) substrates can show extremely smooth terraces (2D objects) separated by atomic steps, a structure of faceted islands (0D objects), a cross-hatch morphology (1D objects), an array of finger-like units (1D objects), or an array of giant bunched steps (1D objects). The surface can be tailored to a particular structure by controlling the vicinality of the substrate and the growth rate and nominal thickness of the film. In the case of CCO films, grown on (001)-oriented MgAl2O4 or MgO substrates, high aspect ratio {111}-faceted pyramids and hut clusters (0D objects), highly oriented and having a similar size, appear above a critical thickness. The size and spatial density can be tuned by varying deposition temperature, nominal thickness, and substrate. This dependence allows the fabrication of surfaces being fully faceted (2D objects), or having arrays of dislocated pyramids of up to micrometric size, or small coherently lattice strained pyramids having a nanometric size. We discuss the driving forces that originate the peculiar SRO and CCO nanostructures. The findings illustrate that the growth of complex oxides can promote a variety of novel self-organized morphologies, and suggest original strategies to fabricate templates or hybrid structures of oxides combining varied functionalities.

  7. Switching properties of SrRuO3/Pb(Zr0.4Ti0.6)O3/SrRuO3 capacitor grown on Cu-coated Si substrate measured at various temperatures

    Science.gov (United States)

    Chen, J. H.; Liu, B. T.; Li, C. R.; Li, X. H.; Dai, X. H.; Guo, J. X.; Zhou, Y.; Wang, Y. L.; Zhao, Q. X.; Ma, L. X.

    2014-09-01

    SrRuO3(SRO)/Ni-Al/Cu/Ni-Al/SiO2/Si heterostructures annealed at various temperatures are found to remain intact after 750 \\circ\\text{C} annealing. Moreover, a SRO/Pb(Zr0.4Ti0.6)O3 (PZT)/SRO capacitor is grown on a Ni-Al/Cu/Ni-Al/SiO2/Si heterostructure, which is tested up to 100 \\circ\\text{C} to investigate the reliability of the memory capacitor. It is found that besides the good fatigue resistance and retention characteristic, the capacitor, measured at 5 V and room temperature, possesses a large remnant polarization of 25.0 μ \\text{C/cm}2 and a small coercive voltage of 0.83 V, respectively. Its dominant leakage current behavior satisfies the space-charge-limited conduction at various temperatures. Very clear interfaces can be observed from the cross-sectional images of transmission electron microscopy, indicating that the Ni-Al film can be used as a diffusion barrier layer for copper metallization as well as a conducting barrier layer between copper and oxide layer.

  8. Role of electron correlation and long range magnetic order in the electronic structure of Ca(Sr)RuO3

    International Nuclear Information System (INIS)

    Singh, Ravi Shankar; Medicherla, V.R.R.; Maiti, Kalobaran

    2008-01-01

    The room temperature photoemission spectra collected at different surface sensitivities reveal qualitatively different surface and bulk electronic structures in CaRuO 3 and SrRuO 3 . The extracted bulk spectra are dominated by the coherent feature intensity with a weak correlation induced feature at higher binding energies. The First principle calculations provide a wonderful representation of the bulk spectra for the effective electron correlation strength, U/W∼0.2 as expected for highly extended 4d systems. This resolves a long-standing issue that arose due to the prediction of large U/W similar to 3d systems. Photoemission spectra across the magnetic phase transition reveal unusual evolution exhibiting a large reduction in the coherent feature intensity in the bulk spectrum of SrRuO 3 , while the bulk spectrum in CaRuO 3 remains almost the same down to the lowest temperature studied

  9. Growth of epitaxial (Sr, Ba){sub n+1}Ru{sub n}O{sub 3n}P+{sub 1}films

    Energy Technology Data Exchange (ETDEWEB)

    Schlom, D.G.; Knapp, S.B.; Wozniak, S. [Department of Materials Science and Engineering, Penn State University, University Park, PA (United States); Zou, L.N.; Park, J.; Liu, Y. [Department of Physics, Penn State University, University Park, PA (United States); Hawley, M.E.; Brown, G.W. [Center for Materials Science, Los Alamos National Laboratory, Los Alamos, NM (United States); Dabkowski, A.; Dabkowska, H.A. [Institute of Materials Research, McMaster University, Hamilton, Ontario (Canada); Uecker, R.; Reiche, P. [Institute of Crystal Growth, Berlin (Germany)

    1997-12-01

    We have grown epitaxial (Sr,Ba){sub n+1}Ru{sub n}O{sub 3n+1} films, n = 1, 2 and {infinity}, by pulsed laser deposition (PLD) and controlled their orientation by choosing appropriate substrates. The growth conditions yielding phase-pure films have been mapped out. Resistivity versus temperature measurements show that both a-axis and c-axis films of Sr{sub 2}RuO{sub 4} are metallic, but not superconducting. The latter is probably due to the presence of low-level impurities that are difficult to avoid given the target preparation process involved in growing these films by PLD. (author)

  10. Two component butterfly hysteresis in RuSr2EuCeCu2O1 ruthenocuprate

    International Nuclear Information System (INIS)

    Zivkovic, I.; Drobac, D.; Prester, M.

    2006-01-01

    We report detailed studies of the ac susceptibility butterfly hysteresis on the RuSr 2 EuCeCu 2 O 1 (Ru1222) ruthenocuprate compound. Two separate contributions to these hysteresis have been identified and studied. One contribution is ferromagnetic-like and is characterized by the coercive field maximum. Another contribution, represented by the so called inverted maximum, is related to the unusual inverted loops, unique feature of Ru1222 butterfly hysteresis. The different nature of the two identified magnetic contributions is proved by the different temperature dependences involved. By lowering the temperature the inverted peak gradually disappears while the coercive field slowly raises. If the maximum dc field for the hysteresis is increased, the size of the inverted part of the butterfly hysteresis monotonously grows while the position of the peak saturates. In reaching saturation exponential field dependence has been demonstrated to take place. At T = 78 K the saturation field is 42 Oe

  11. Mechanical properties of polycrystalline RuSr2GdCu2O8 superconductor

    International Nuclear Information System (INIS)

    Brum Leite Gusmao Pinheiro, Lincoln; Serbena, Francisco Carlos; Foerster, Carlos Eugenio; Rodrigues, Pedro Junior; Jurelo, Alcione Roberto; Chinelatto, Adilson Luiz; Junior, Jorge Luiz Pimentel

    2011-01-01

    Research highlights: → Hardness and elastic modulus of Ru-1212 phase measured by instrumented indentation are reported. → Polycrystalline samples were produced by a solid state reaction technique. → Samples were also characterized by SEM, XRD and electrical resistivity measurements. → Hardness and elastic modulus were 8.6 GPa and 145 GPa, respectively. → These values are comparable with those of Y-123. - Abstract: The main objective of this paper is to report the room temperature hardness and elastic modulus of the RuSr 2 GdCu 2 O 8 superconductor phase by instrumented indentation. Polycrystalline samples were produced by a solid state reaction technique. The samples were also characterized by scanning electron microscopy, X-ray diffraction and electrical resistivity measurements. The influence of porosity on the mechanical properties was avoided by considering only those indentations inside the grains. The hardness and elastic modulus were 8.6 GPa and 145 GPa, respectively. These values are comparable with those of Y-123. The indentation fracture toughness evaluated after conventional Vickers indentation was 1.9 MPa m 1/2 .

  12. Resonant Raman scattering in Nd2O3 and the electronic structure of Sr2RuO4 studied by synchrotron radiation excitation

    International Nuclear Information System (INIS)

    Ederer, D. L.

    1998-01-01

    This paper is intended to illustrate two points. The first being the extensive growth of resonant Raman soft x-ray scattering due to the emergence of third-generation x-ray sources. With these sources, the ubiquitous presence of Raman scattering near the 3d and 4d ionization thresholds has been used to elucidate the excitation process in a number of rare earth and transition metal compounds. Such scattering can produce dramatic changes in the emission spectrum, as we show in our example of inelastic scattering at the 3d threshold of Nd 2 O 3 . Photon-in photon-out soft x-ray spectroscopy is adding a new dimension to soft x-ray spectroscopy by providing many opportunities for exciting research, especially at third-generation synchrotrons light sources. Second, it is very effective to use theory and experiment to characterize the electronic properties of materials. In particular we confirmed in-plane oxygen-ruthenium bonding in Sr 2 RuO 4 , this first copperless perovskite superconductor, by analyses using calculations, soft x-ray emission spectroscopy (SXE) and photoelectron spectroscopy (PES). Measurements of this type illustrate the importance of combining SXE and PES measurements with theoretical calculations

  13. Physical properties and characterization of RuSr2GdCu2O8 (Ru-1212) grown by top seeded melt textured technique

    International Nuclear Information System (INIS)

    Uthayakumar, S.; Santhosh, P.; Gombos, M.; Babu, M. Ramesh; Jayavel, R.; Vecchione, A.; Pace, S.

    2009-01-01

    Efforts have been made in optimizing growth conditions for bulk textured growth of RuSr 2 GdCu 2 O 8 (Ru-1212) employing top seeded growth technique (TSG). Thermal stability and peritectic temperature (T p ) have been determined by TG-DTA analysis. The study facilitates appropriate thermal treatments to yield good quality sample. The structural study of the as grown sample has been carried out by X-ray diffraction technique. Morphological study by polarized optical microscope (PLOM) and scanning electron microscope (SEM) reveals the growth mechanism. Subsequently, the stoichiometry has been confirmed by energy dispersive X-ray analysis (EDAX). The observed characterization results show the influence of superconducting property on growth technique and allow one to correlate between the physical properties and experimental technique.

  14. Magnetic, electrical and structural properties of the Re-doped ruthenocuprate Ru{sub 1−x}Re{sub x}Sr{sub 2}GdCu{sub 2}O{sub y}

    Energy Technology Data Exchange (ETDEWEB)

    Corredor, L.T. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Programa de Pós-Graduação em Ciências de Materiais-CCEN, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, Bogotá D.C. (Colombia); Albino Aguiar, J. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Programa de Pós-Graduação em Ciências de Materiais-CCEN, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Landínez Téllez, D.A. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, Bogotá D.C. (Colombia); Pureur, P.; Mesquita, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Roa-Rojas, J. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, Bogotá D.C. (Colombia)

    2015-06-15

    Highlights: • We investigated the effect of the dilution of magnetic Ru sub-lattice of RuSr{sub 2}GdCu{sub 2}O{sub 8}. • We synthesized the doped compound Rui{sub x}Re{sub x}Sr{sub 2}GdCu{sub 2}O{sub y}, for 3%, 6%, 9% and 12% Re. • Re would affect the electron coupling: just 3 and 6% samples were superconductor. • Superconductivity emergence strongly affects magnetic properties of 3 and 6% samples. • A weak ferromagnetic component is consistent with a globally antiferromagnetic system. - Abstract: Despite the discovery of new superconductors classes, high-Tc oxides continue to be a current topic, because of their complex phase diagrams and doping-dependant effects (allowing one to investigate the interaction between orbitals), as well as structural properties such as lattice distortion and charge ordering, among many others. Ruthenocuprates are magnetic superconductors in which the magnetic transition temperature is much higher than the critical superconducting temperature, making them unique compounds. With the aim of investigating the dilution of the magnetic Ru sub-lattice, we proposed the synthesis of the Ru{sub 1−x}Re{sub x}Sr{sub 2}GdCu{sub 2}O{sub y} ruthenocuprate-type family, adapting the known two-step process (double perovskite + CuO) by directly doping the double perovskite, thus obtaining the perovskite compound Sr{sub 2}GdRu{sub 1−x}Re{sub x}O{sub y}, which represents a new synthesis process to the best of our knowledge. Our samples were structurally characterized through X-ray diffraction, and the patterns were analysed via Rietveld refinement. A complete magnetic characterization as a function of temperature and applied field, as well as transport measurements were carried out. We discuss our results in the light of the two-lattice model for ruthenocuprates, and a relation between RuO{sub 2} (magnetic) and CuO{sub 2} (superconductor) sub-lattices can clearly be observed.

  15. Two crystalline modifications of RuO4

    International Nuclear Information System (INIS)

    Pley, Martin; Wickleder, Mathias S.

    2005-01-01

    RuO 4 was prepared by oxidation of elemental ruthenium. Two different modifications were obtained and investigated by X-ray single crystal diffraction. RuO 4 -I has cubic symmetry (P4; - 3n,Z=8,a=8.509(1)A), and two independent tetrahedral molecules are present in the unit cell. Within the standard uncertainties in both molecules the distances Ru-O are 1.695A. The second modification, RuO 4 -II, is monoclinic (C2/c,Z=4,a=9.302(4)A,b=4.3967(10)A,c=8.454(4)A,β=116.82(3) o ) and isotypic with OsO 4 . There is one independent molecule in the unit cell, which shows distances Ru-O of 1.697 and 1.701A, respectively

  16. Magnetic, electrical and structural properties of the Re-doped ruthenocuprate Ru1−xRexSr2GdCu2Oy

    International Nuclear Information System (INIS)

    Corredor, L.T.; Albino Aguiar, J.; Landínez Téllez, D.A.; Pureur, P.; Mesquita, F.; Roa-Rojas, J.

    2015-01-01

    Highlights: • We investigated the effect of the dilution of magnetic Ru sub-lattice of RuSr 2 GdCu 2 O 8 . • We synthesized the doped compound Rui x Re x Sr 2 GdCu 2 O y , for 3%, 6%, 9% and 12% Re. • Re would affect the electron coupling: just 3 and 6% samples were superconductor. • Superconductivity emergence strongly affects magnetic properties of 3 and 6% samples. • A weak ferromagnetic component is consistent with a globally antiferromagnetic system. - Abstract: Despite the discovery of new superconductors classes, high-Tc oxides continue to be a current topic, because of their complex phase diagrams and doping-dependant effects (allowing one to investigate the interaction between orbitals), as well as structural properties such as lattice distortion and charge ordering, among many others. Ruthenocuprates are magnetic superconductors in which the magnetic transition temperature is much higher than the critical superconducting temperature, making them unique compounds. With the aim of investigating the dilution of the magnetic Ru sub-lattice, we proposed the synthesis of the Ru 1−x Re x Sr 2 GdCu 2 O y ruthenocuprate-type family, adapting the known two-step process (double perovskite + CuO) by directly doping the double perovskite, thus obtaining the perovskite compound Sr 2 GdRu 1−x Re x O y , which represents a new synthesis process to the best of our knowledge. Our samples were structurally characterized through X-ray diffraction, and the patterns were analysed via Rietveld refinement. A complete magnetic characterization as a function of temperature and applied field, as well as transport measurements were carried out. We discuss our results in the light of the two-lattice model for ruthenocuprates, and a relation between RuO 2 (magnetic) and CuO 2 (superconductor) sub-lattices can clearly be observed

  17. Pulsed laser deposition of SrRuO3 thin-films: The role of the pulse repetition rate

    Directory of Open Access Journals (Sweden)

    H. Schraknepper

    2016-12-01

    Full Text Available SrRuO3 thin-films were deposited with different pulse repetition rates, fdep, epitaxially on vicinal SrTiO3 substrates by means of pulsed laser deposition. The measurement of several physical properties (e.g., composition by means of X-ray photoelectron spectroscopy, the out-of-plane lattice parameter, the electric conductivity, and the Curie temperature consistently reveals that an increase in laser repetition rate results in an increase in ruthenium deficiency in the films. By the same token, it is shown that when using low repetition rates, approaching a nearly stoichiometric cation ratio in SrRuO3 becomes feasible. Based on these results, we propose a mechanism to explain the widely observed Ru deficiency of SrRuO3 thin-films. Our findings demand these theoretical considerations to be based on kinetic rather than widely employed thermodynamic arguments.

  18. Structural phase transitions at high-temperature in double perovskite Sr{sub 2}GdRuO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Triana, C.A.; Corredor, L.T.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, A.A. 14490, Bogota D.C (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, A.A. 14490, Bogota D.C (Colombia)

    2012-08-15

    The crystal structure evolution of the Sr{sub 2}GdRuO{sub 6} complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K{<=}T{<=}1273 K. Powder X-ray diffraction measurements at room temperature and Rietveld analysis show that this compounds crystallizes in a monoclinic perovskite-type structure with P2{sub 1}/n (no. 14) space group and the 1:1 ordered arrangement of Ru{sup 5+} and Gd{sup 3+} cations over the six-coordinate M sites, with lattice parameters a=5.81032(8) A, b=5.82341(4) A, c=8.21939(7) A, V=278.11(6) A{sup 3} and angle {beta}=90.311(2){sup o}. The high-temperature analysis shows that this material suffers two-phase transitions. At 373 K it adopts a monoclinic perovskite structure with I2/m space group, and lattice parameters a=5.81383(2) A, b=5.82526(4) A, c=8.22486(1) A, V=278.56(2) A{sup 3} and angle {beta}=90.28(2){sup o}. Above of 773 K, it suffers a phase transition from monoclinic I2/m to tetragonal I4/m, with lattice parameters a=5.84779(1) A, c=8.27261(1) A, V=282.89(5) A{sup 3} and angle {beta}=90.02(9){sup o}. The high-temperature phase transition from monoclinic I2/m to tetragonal I4/m is characterized by strongly anisotropic displacements of the anions.

  19. Quantum multicriticality in Sr{sub 3}Ru{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Dan; Brando, Manuel [Max-Planck Institute for Chemical Physics of Solids, Noethnitzerstr. 40, Dresden, 01187 (Germany); Rost, Andreas [Max-Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart, 70569 (Germany); Perry, Robin [University College London, Gower Street, London, WC1E 6BT (United Kingdom); Mackenzie, Andrew [Max-Planck Institute for Chemical Physics of Solids, Noethnitzerstr. 40, Dresden, 01187 (Germany); Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom)

    2016-07-01

    The low temperature phase diagram of the layered perovskite metal Sr{sub 3}Ru{sub 2}O{sub 7} is of considerable interest because of the interplay between phase formation and quantum criticality. We have performed high resolution specific heat and magnetocaloric measurements down to temperatures as low as 65 mK, uncovering evidence that a feature at 7.5 T previously thought to be a crossover is a quantum critical point resulting from the suppression towards T=0 of an extremely low energy scale. Additionally, we report for the first time the observation of thermodynamic signatures associated with the appearance of incommensurate magnetic order recently reported in neutron scattering measurements.

  20. Photoluminescence in Pb{sup 2+} activated SrB{sub 4}O{sub 7} and SrB{sub 2}O{sub 4} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Gawande, A.B., E-mail: gawandeab@gmail.com [Department of Physics, SGB Amravati University, Amravati-444602, Maharashtra (India); Ingle, J.T. [J. D. Institute of Engineering and Technology, Yavatmal, Maharashtra (India); Sonekar, R.P., E-mail: sonekar_rp@yahoo.com [Department of Physics, G.S. College, Khamgaon District, Buldhana, Maharashtra (India); Omanwar, S.K. [Department of Physics, SGB Amravati University, Amravati-444602, Maharashtra (India)

    2014-05-01

    The powder samples of SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} were prepared by solution combustion synthesis method. The synthesis is based on the exothermic reaction between the fuel (Urea) and Oxidizer (Ammonium nitrate). The synthesized materials were characterized using TG–DTA, powder XRD, SEM and the photoluminescence properties were studied using a Hitachi F-7000 spectrophotometer at room temperature. Both the samples SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} show broad emission of Pb{sup 2+} respectively at 307 nm and 360 nm (corresponds to {sup 3}P{sub 1} to {sup 1}S{sub 0} transition). The optimum concentrations of Pb{sup 2+} in both the phosphors SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} were found to be 3 mol% (relative to Sr) and for this concentration the critical transfer distance R{sub 0} were calculated to be 10.21 Å and 12.22 Å respectively. The Stokes shifts were calculated to be respectively 4464 cm{sup −1} and 8454 cm{sup −1}. The emission bands of both the phosphors are in the UV region and the phosphors can be potential candidates for application in UV lamps. - Highlights: • SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} have been synthesized by Novel solution combustion synthesis technique. • The synthesized materials were characterized using TG–DTA, powder XRD and SEM. • Photoluminescence spectra of synthesized materials showed the characteristic transition in Pb{sup 2+}. • Stokes shift, optimum concentration and critical transfer distance R{sub 0} were determined.

  1. Ultrafast Magnetization Dynamics of SrRuO3 Thin Films

    International Nuclear Information System (INIS)

    Langner, Matthew C.

    2009-01-01

    Itinerant ferromagnet SrRuO3 has drawn interest from physicists due to its unusual transport and magnetic properties as well as from engineers due to its low resistivity and good lattice-matching to other oxide materials. The exact electronic structure remains a mystery, as well as details of the interactions between magnetic and electron transport properties. This thesis describes the use of time-resolved magneto-optical Kerr spectroscopy to study the ferromagnetic resonance of SrRuO3 thin films, where the ferromagnetic resonance is initiated by a sudden change in the easy axis direction in response to a pump pulse. The rotation of the easy axis is induced by laser heating, taking advantage of a temperature-dependent easy axis direction in SrRuO3 thin films. By measuring the change in temperature of the magnetic system in response to the laser pulse, we find that the specific heat is dominated by magnons up to unusually high temperature, ∼ 100 K, and thermal diffusion is limited by a boundary resistance between the film and the substrate that is not consistent with standard phonon reflection and scattering models. We observe a high FMR frequency, 250 GHz, and large Gilbert damping parameter, alpha ∼ 1, consistent with strong spin-orbit coupling. We observe a time-dependent change in the easy axis direction on a ps time-scale, and we find that parameters associated with the change in easy axis, as well as the damping parameter, have a non-monotonic temperature dependence similar to that observed in anomalous Hall measurements.

  2. Role of yttria-stabilized zirconia produced by ion-beam-assisted deposition on the properties of RuO2 on SiO2/Si

    International Nuclear Information System (INIS)

    Jia, Q.X.; Arendt, P.; Groves, J.R.; Fan, Y.; Roper, J.M.; Foltyn, S.R.

    1998-01-01

    Highly conductive biaxially textured RuO 2 thin films were deposited on technically important SiO 2 /Si substrates by pulsed laser deposition, where yttria-stabilized zirconia (YSZ) produced by ion-beam-assisted-deposition (IBAD) was used as a template to enhance the biaxial texture of RuO 2 on SiO 2 /Si. The biaxially oriented RuO 2 had a room-temperature resistivity of 37 μΩ-cm and residual resistivity ratio above 2. We then deposited Ba 0.5 Sr 0.5 TiO 3 thin films on RuO 2 /IBAD-YSZ/SiO 2 /Si. The Ba 0.5 Sr 0.5 TiO 3 had a pure (111) orientation normal to the substrate surface and a dielectric constant above 360 at 100 kHz. copyright 1998 Materials Research Society

  3. Magnetoresistance Versus Oxygen Deficiency in Epi-stabilized SrRu1 - x Fe x O3 - δ Thin Films

    Science.gov (United States)

    Dash, Umasankar; Acharya, Susant Kumar; Lee, Bo Wha; Jung, Chang Uk

    2017-03-01

    Oxygen vacancies have a profound effect on the magnetic, electronic, and transport properties of transition metal oxide materials. Here, we studied the influence of oxygen vacancies on the magnetoresistance (MR) properties of SrRu1 - x Fe x O3 - δ epitaxial thin films ( x = 0.10, 0.20, and 0.30). For this purpose, we synthesized highly strained epitaxial SrRu1 - x Fe x O3 - δ thin films with atomically flat surfaces containing different amounts of oxygen vacancies using pulsed laser deposition. Without an applied magnetic field, the films with x = 0.10 and 0.20 showed a metal-insulator transition, while the x = 0.30 thin film showed insulating behavior over the entire temperature range of 2-300 K. Both Fe doping and the concentration of oxygen vacancies had large effects on the negative MR contributions. For the low Fe doping case of x = 0.10, in which both films exhibited metallic behavior, MR was more prominent in the film with fewer oxygen vacancies or equivalently a more metallic film. For semiconducting films, higher MR was observed for more semiconducting films having more oxygen vacancies. A relatively large negative MR ( 36.4%) was observed for the x = 0.30 thin film with a high concentration of oxygen vacancies ( δ = 0.12). The obtained results were compared with MR studies for a polycrystal of (Sr1 - x La x )(Ru1 - x Fe x )O3. These results highlight the crucial role of oxygen stoichiometry in determining the magneto-transport properties in SrRu1 - x Fe x O3 - δ thin films.

  4. Ferromagnetism and antiferromagnetism coexistence in SrRu1-xMnxO3: Density functional calculation

    International Nuclear Information System (INIS)

    Hadipour, H.; Fallahi, S.; Akhavan, M.

    2011-01-01

    We have calculated the electronic structure of SrRu 1-x Mn x O 3 using the full potential linearized augmented plane wave method by LSDA and LSDA+U. The antiparallel alignment between the Mn and Ru ions are consistent with the competition between ferromagnetism and antiferromagnetism in the low Mn-doped polycrystalline samples. This is in contrast to the appearance of quantum critical point and FM and AFM transitions in the single crystal measurement. Our results show that the discrepancy between different experimental phase diagrams is related to the conditions of sample preparation and also the difference between the degree of magnetic interactions between the Mn and Ru moments. The DOS and the calculated Mn magnetic moment is similar to the magnetic moment of a purely ionic compound with d 3 configuration. The AFM state has band gap of 1.2 eV at the Fermi energy predicting an insulating behavior. -- Graphical abstract: The antiparallel alignment between the Mn and Ru ions are consistent with the competition between ferromagnetism and antiferromagnetism with the formation of a spin glass phase. We have calculated the electronic structure of SrRu 1-x Mn x O 3 using the full potential linearized augmented plane wave method by LSDA and LSDA+U in the range of both low and high Mn-doping for parallel and antiparallel alignments of Ru and Mn moments. In the low Mn-doped polycrystalline samples with tetragonal structure, the AFM hybridization between Mn and the Ru host lattice strongly favors alignment of the Ru moments, and provides an explanation for retaining of high Curie temperature of SrRuO 3 with Mn substitution. Display Omitted Research highlights: → For the low Mn-doping the AFM coupling between Mn and Ru becomes stable. → Results are consistent with the QCP between FM and AFM transitions in single crystals. → In high Mn-doping, electron correlation is important in predicting the insulating behavior.

  5. Evidence for Crossed Andreev Reflections in (100)YBa2Cu3O7+δ-SrRuO3 superconductor-ferromagnet bilayers

    International Nuclear Information System (INIS)

    Asulin, I.; Yuli, O.; Millo, O.; Koren, G.

    2005-01-01

    Full Text:Since the ferromagnetic side of a superconductor-ferromagnet junction is spin polarized, Andreev reflections are suppressed. Consequently, the proximity induced superconductor order parameter in the ferromagnet is expected to decay rapidly, on the order of a nm, the typical coherence length in a ferromagnet. Our scanning tunneling spectroscopy measurements on thin epitaxial (100)YBa 2 Cu 3 O 7+ δ-SrRuO 3 (YBaCuO-SrO) bilayers, where SrO is a ferromagnet, indeed show that on most of the junction area the superconductor order parameter vanishes in the SrO layers thicker than 8 nm. However, we find localized regions, arranged along narrow (< 10 nm) stripes, where the order parameter (superconductor-like gap structure) penetrates the ferromagnet over more than 20 nm. This is attributed to 'Crossed Andreev Reflections,' taking place at domain boundaries, where an electron from one magnetic domain is retro reflected as a hole with opposite spin in an adjacent domain. Our observation may account for the (not abundant) cases where a long-range proximity effect was found in superconductor-ferromagnet proximity systems

  6. Characterization of an innovative method for RuO2 deposition using Electron Microscopy

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    Many photocatalysts work better or exclusively when a suitable cocatalyst, such as RuO2, is deposited on their surface. An innovative method of RuO2 deposition has been found to improve the performance of photocatalysts such as (Ga1-xZnx)(N1-xOx), WO3, SrTiO3 and TiO2. Here we use high angle annu...

  7. Strain-Mediated Inverse Photoresistivity in SrRuO3/La0.7Sr0.3MnO3Superlattices

    KAUST Repository

    Liu, Heng-Jui

    2015-12-09

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. In the pursuit of novel functionalities by utilizing the lattice degree of freedom in complex oxide heterostructure, the control mechanism through direct strain manipulation across the interfaces is still under development, especially with various stimuli, such as electric field, magnetic field, light, etc. In this study, the superlattices consisting of colossal-magnetoresistive manganites La0.7Sr0.3MnO3 (LSMO) and photostrictive SrRuO3 (SRO) have been designed to investigate the light-dependent controllability of lattice order in the corresponding functionalities and rich interface physics. Two substrates, SrTiO3 (STO) and LaAlO3 (LAO), have been employed to provide the different strain environments to the superlattice system, in which the LSMO sublayers exhibit different orbital occupations. Subsequently, by introducing light, we can modulate the strain state and orbital preference of LSMO sublayers through light-induced expansion of SRO sublayers, leading to surprisingly opposite changes in photoresistivity. The observed photoresistivity decreases in the superlattice grown on STO substrate while increases in the superlattice grown on LAO substrate under light illumination. This work has presented a model system that demonstrates the manipulation of orbital-lattice coupling and the resultant functionalities in artificial oxide superlattices via light stimulus. A fascinating model system of optic-driven functionalities has been achieved by artificial superlattices consisting of manganite La0.7Sr0.3MnO3 (LSMO) and photostrictive SrRuO3 (SRO). With design of different initial strain and orbital states in superlattices, we can even control the photoresistivity of the superlattices in an opposite trend that cannot be achieved in pure single film.

  8. Dependence of the electronic structure of SrRuO3 and its degree of correlation on cation off-stoichiometry

    NARCIS (Netherlands)

    Siemons, W.; Koster, Gertjan; Vailionis, Arturas; Yamamoto, Hideki; Blank, David H.A.; Beasley, Malcolm R.

    2007-01-01

    We have grown and studied high quality SrRuO3 films grown by molecular beam epitaxy as well as pulsed laser deposition. By changing the oxygen activity during deposition, we were able to make SrRuO3 samples that were stoichiometric (low oxygen activity) or with ruthenium vacancies (high oxygen

  9. Electrical and piezoelectric properties of BiFeO3 thin films grown on SrxCa1−xRuO3-buffered SrTiO3 substrates

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    (001)-oriented BiFeO 3 (BFO) thin films were grown on Sr xCa 1-xRuO 3- (SCRO; x = 1, 0.67, 0.33, 0) buffered SrTiO 3 (001) substrates using pulsed laser deposition. The microstructural, electrical, ferroelectric, and piezoelectric properties of the thin films were considerably affected by the buffer layers. The interface between the BFO films and the SCRO-buffer layer was found to play a dominant role in determining the electrical and piezoelectric behaviors of the films. We found that films grown on SrRuO 3-buffer layers exhibited minimal electrical leakage while films grown on Sr 0.33Ca 0.67RuO 3-buffer layers had the largest piezoelectric response. The origin of this difference is discussed. © 2012 American Institute of Physics.

  10. Electrical and piezoelectric properties of BiFeO3 thin films grown on SrxCa1−xRuO3-buffered SrTiO3 substrates

    KAUST Repository

    Yao, Yingbang; Chen, Long; Wang, Zhihong; Alshareef, Husam N.; Zhang, Xixiang

    2012-01-01

    on SrRuO 3-buffer layers exhibited minimal electrical leakage while films grown on Sr 0.33Ca 0.67RuO 3-buffer layers had the largest piezoelectric response. The origin of this difference is discussed. © 2012 American Institute of Physics.

  11. Highly textured Sr, Nb co-doped BiFeO3 thin films grown on SrRuO3/Si substrates by rf- sputtering

    International Nuclear Information System (INIS)

    Ostos, C.; Raymond, O.; Siqueiros, J. M.; Suarez-Almodovar, N.; Bueno-Baques, D.; Mestres, L.

    2011-01-01

    In this study, (011)-highly oriented Sr, Nb co-doped BiFeO 3 (BFO) thin films were successfully grown on SrRuO 3 /Si substrates by rf-magnetron sputtering. The presence of parasite magnetic phases was ruled out based on the high resolution x-ray diffraction data. BFO films exhibited a columnar-like grain growth with rms surface roughness values of ≅5.3 nm and average grain sizes of ≅65-70 nm for samples with different thicknesses. Remanent polarization values (2P r ) of 54 μC cm -2 at room temperature were found for the BFO films with a ferroelectric behavior characteristic of an asymmetric device structure. Analysis of the leakage mechanisms for this structure in negative bias suggests Schottky injection and a dominant Poole-Frenkel trap-limited conduction at room temperature. Oxygen vacancies and Fe 3+ /Fe 2+ trap centers are consistent with the surface chemical bonding states analysis from x-ray photoelectron spectroscopy data. The (011)-BFO/SrRuO 3 /Si film structure exhibits a strong magnetic interaction at the interface between the multiferroic film and the substrate layer where an enhanced ferromagnetic response at 5 K was observed. Zero-field cooled (ZFC) and field cooled (FC) magnetization curves of this film system revealed a possible spin glass behavior at spin freezing temperatures below 30 K depending on the BFO film thickness.

  12. Acid indium strontium phosphate SrIn2[PO3(OH)]4: synthesis and crystal structure

    International Nuclear Information System (INIS)

    Rusakov, D.A.; Bobylev, A.P.; Komissarova, L.N.; Filaretov, A.A.; Danilov, V.P.

    2007-01-01

    Acid indium-strontium phosphate SrIn 2 [PO 3 (OH)] 4 is synthesized and characterized. Crystal structure and lattice parameters ate determined. In atoms in SrIn 2 [PO 3 (OH)] 4 structure are in distorted InO 6 octahedrons and form with PO 3 (OH) tetrahedrons mixed paraskeleton {In 2 [PO 3 (OH)] 4 } 3∞ 2- with emptinesses occupied by big Sr 2+ cations. The compound is thermally stable up to 400 Deg C [ru

  13. Coherence peak in the spin susceptibility from nesting in spin-triplet superconductors: A probe for line nodes in Sr2RuO4

    International Nuclear Information System (INIS)

    Yakiyama, Mayumi; Hasegawa, Yasumasa

    2003-01-01

    We study the dynamical spin susceptibility χ(q,ω) for spin-triplet superconductivity. We show that a large peak at ω=2Δ appears in Imχ zz (Q,ω), where z is the direction of the d vector for triplet pairing, if Fermi surface has a nested part with the nesting vector Q and the order parameters are +Δ and -Δ in this part of the Fermi surface. If there are line nodes in the nested part of the Fermi surface, a peak appears in either Imχ zz (Q,ω) or Imχ +- (Q,ω), or both, depending on the perpendicular component of the nesting vector. The comparison with inelastic neutron-scattering experiments can determine the position of the line nodes in triplet superconductor Sr 2 RuO 4

  14. Photoluminescent properties of Sr2CeO4: Eu3+ and Sr2CeO4: Eu2+ phosphors suitable for near ultraviolet excitation

    International Nuclear Information System (INIS)

    Suresh, K.; Poornachandra Rao, N.V.; Murthy, K.V.R.

    2014-01-01

    Powder phosphors of 1 mol% Eu 3+ - and Eu 2+ -doped strontium cerium oxide (Sr 2 CeO 4 ) were synthesized by standard solid-state reaction method. Eu 3+ - and Eu 2+ -doped Sr 2 CeO 4 phosphors fired at 1100 ℃ for 2 h were analysed by X-ray diffraction (XRD) and photoluminescence (PL) techniques. The XRD patterns confirm that the obtained phosphors are a single phase of Sr 2 CeO 4 composed of orthorhombic structure. Room temperature PL excitation spectrum of air-heated Sr 2 CeO 4 : Eu phosphor has exhibited bands at 260, 280 and 350 nm. Whereas the excitation spectrum of Sr 2 CeO 4 : Eu phosphor heated under reducing (carbon) atmosphere exhibited single broadband range from 260 to 390 nm. The (PL) emission peaks of both the phosphors at 467 (blue), 537 (green) and 616 nm (red) generate white light under 260, 280 and 350 nm excitation wavelengths. The Commission International de l'Eclairage (CIE) colour coordinates conforms that these phosphors emitting white light. The results reveal that these phosphors are multifunctional phosphors which emit white light under these excitations that they could be used as white components for display and lamp devices and as well as possible good light-conversion phosphor LEDs under near-ultraviolet (nUV) chip. (author)

  15. SrRuO3 thin films grown on MgO substrates at different oxygen partial pressures

    KAUST Repository

    Zou, Bin; Petrov, Peter K.; Alford, Neil McN.

    2013-01-01

    A comprehensive study of SrRuO3 thin films growth on (001) MgO substrates by pulsed laser deposition in a wide oxygen pressure range from 10 to 300 mTorr was carried out. The experimental results showed a correlation between the lattice constants

  16. Reactivity toward alcohols of (Ru/sup IV/ = O/sup 2-/) unit in trans-(RuCl(O)(py)/sub 4/)/sup +/

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi, Kimitake; Nagao, Hirotaka; Yukawa, Yasuhiko; Ogura, Mariko; Kuwayama, Akito; Howell, F S; Mukaida, Masao; Kakihana, Hidetake

    1986-12-01

    The reactivity with alcohol of trans-(RuCl(O)(py)/sub 4/)/sup +/ was investigated. In MeOH, trans-(RuCl(OH)(py)/sub 4/)/sup +/ was confirmed to exist as a precursor in the formation of trans-(RuCl(OMe)(py)/sub 4/)/sup +/. The reaction progress was traced by spectrometrical and /sup 18/O-labelling experiments.

  17. Interface control of electronic transport across the magnetic phase transition in SrRuO3/SrTiO3 heterointerface

    NARCIS (Netherlands)

    Roy, S.; Autieri, C.; Sanyal, B.; Banerjee, T.

    2015-01-01

    The emerging material class of complex-oxides, where manipulation of physical properties lead to new functionalities at their heterointerfaces, is expected to open new frontiers in Spintronics. For example, SrRuO3 is a promising material where external stimuli like strain, temperature and structural

  18. Intermediate surface structure between step bunching and step flow in SrRuO3 thin film growth

    Science.gov (United States)

    Bertino, Giulia; Gura, Anna; Dawber, Matthew

    We performed a systematic study of SrRuO3 thin films grown on TiO2 terminated SrTiO3 substrates using off-axis magnetron sputtering. We investigated the step bunching formation and the evolution of the SRO film morphology by varying the step size of the substrate, the growth temperature and the film thickness. The thin films were characterized using Atomic Force Microscopy and X-Ray Diffraction. We identified single and multiple step bunching and step flow growth regimes as a function of the growth parameters. Also, we clearly observe a stronger influence of the step size of the substrate on the evolution of the SRO film surface with respect to the other growth parameters. Remarkably, we observe the formation of a smooth, regular and uniform ``fish skin'' structure at the transition between one regime and another. We believe that the fish skin structure results from the merging of 2D flat islands predicted by previous models. The direct observation of this transition structure allows us to better understand how and when step bunching develops in the growth of SrRuO3 thin films.

  19. Metabolism and dosimetry of 106Ru inhaled as 106RuO4 by beagle dogs

    International Nuclear Information System (INIS)

    Snipes, M.B.

    1981-01-01

    This report provides metabolism and dosimetry data for inhaled ruthenium developed from studies in Beagle dogs that were exposed by inhalation to 106 RuO 4 . Twenty-six dogs were exposed nose-only to 106 RuO 4 and sacrificed at times from 2 hr to 512 days after inhalation exposure. Ninety-nine percent of the initial body burden was retained with an effective half-time of 1.2 days, 0.7% with a half-time of 14 days and 0.3% with a half-time of 170 days. Initial deposition was primarily in the nasopharyngeal and tracheobronchial regions. Results for deposition and retention of 106 Ru inhaled as 106 RuO 4 in dogs were similar to what has been observed for humans. The data for dogs were used to develop a model to predict potential radiation exposure patterns for humans after inhalation exposure to 106 RuO 4 . The model indicates that for humans the nasopharyngeal region, lower large intestine, and tracheobronchial epithelium would receive approx. 36, 13 and 10 times, respectively, the dose to 500 days after inhalation exposure to 106 RuO 4 that the lung would receive. The nasopharyngeal region should be considered the critical region for inhalation exposures to 106 RuO 4 . (author)

  20. Atomic structures of Ruddlesden-Popper faults in LaCoO3/SrRuO3 multilayer thin films induced by epitaxial strain

    Science.gov (United States)

    Wang, Wei; Zhang, Hui; Shen, Xi; Guan, Xiangxiang; Yao, Yuan; Wang, Yanguo; Sun, Jirong; Yu, Richeng

    2018-05-01

    In this paper, scanning transmission electron microscopy is used to study the microstructures of the defects in LaCoO3/SrRuO3 multilayer films grown on the SrTiO3 substrates, and these films have different thickness of SrRuO3 (SRO) layers. Several types of Ruddlesden-Popper (R.P.) faults at an atomic level are found, and these chemical composition fluctuations in the growth process are induced by strain fields originating from the film-film and film-substrate lattice mismatches. Furthermore, we propose four types of structural models based on the atomic arrangements of the R.P. planar faults, which severely affect the functional properties of the films.

  1. Characterization of RuO sub 2 electrodes for ferroelectric thin films prepared by metal-organic chemical-vapor deposition using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3

    CERN Document Server

    Lee, J M; Shin, J C; Hwang, C S; Kim, H J; Suk, C G

    1999-01-01

    Pure and conducting RuO sub 2 thin films were deposited on Si substrates at 250 approx 450 .deg. C using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 as a precursor by low-pressure metal-organic chemical-vapor deposition (LP-MOCVD). At a lower deposition temperature,smoother and denser RuO sub 2 thin films were deposited. The RuO sub 2 thin films, which were crack free, adhered well onto the substrates and showed very low resistivities around 45 approx 60 mu OMEGA cm. RuO sub 2 thin films on (Ba, Sr)/TiO sub 3 /Pt/SiO sub 2 /Si showed good properties, indicating that MOCVD RuO sub 2 thin films from Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 can be applied as electrodes of high-dielectric thin films for capacitors in ultra-large-scale DRAMs.

  2. Sr2CeO4: Electronic and structural properties

    International Nuclear Information System (INIS)

    Rocha, Leonardo A.; Schiavon, Marco A.; Nascimento, Clebio S.; Guimarães, Luciana; Góes, Márcio S.; Pires, Ana M.; Paiva-Santos, Carlos O.

    2014-01-01

    Highlights: • Sr 2 CeO 4 it was obtained from the heat treatment of Ce 3+ -doped strontium oxalate. • Rietveld analysis made it possible to obtain information about crystalline structure. • Experimental band gap value was compared with theoretical obtained by Sparkle/PM7. • The materials obtained shows intense photoluminescence and scintillator properties. - Abstract: This work presents on the preparation and photoluminescent properties of Sr 2 CeO 4 obtained from the heat treatment of Ce(III)-doped strontium oxalate (10, 25 and 33 mol%). The oxalate precursors were heat treated at 1100 °C for 12 h. The structure of this photoluminescent material was evaluated by the Rietveld method. The route used in this work to prepare the materials showed to be viable when compared to other synthesis reported in the literature. The Sr 2 CeO 4 material showed a broad and intense band emission with a maximum around 485 nm. The quantitative phase analysis showed that the Sr 2 CeO 4 photoluminescent phase is the majority one compared to the impurity phases of SrCeO 3 and SrCO 3 . From all results it was possible to verify a complete elimination of the CeO 2 phase for the sample obtained from the heat treatment of oxalate precursor containing 33 mol% of cerium(III). The material showed excellent properties for possible candidate as scintillator materials, and in the improvement of efficiency of solar cells when excited in the UV–vis region. The CIE chromaticity diagram it is also reported in this work

  3. Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window

    Science.gov (United States)

    Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao

    2018-06-01

    SrAl2O4-Sr3Al2O6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV–vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl2O4-Sr3Al2O6 samples fabricated by the containerless process and SPS between 852 °C–857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl2O4-Sr3Al2O6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.

  4. Soft template synthesis of mesoporous Co3O4/RuO2.xH2O composites for electrochemical capacitors

    International Nuclear Information System (INIS)

    Liu Yang; Zhao Weiwei; Zhang Xiaogang

    2008-01-01

    Co 3 O 4 /RuO 2 .xH 2 O composites with various Ru content (molar content of Ru = 5%, 10%, 20%, 50%) were synthesized by one-step co-precipitation method. The precursors were prepared via adjusting pH of the mixed aqueous solutions of Co(NO 3 ) 2 .6H 2 O and RuCl 3 .0.5H 2 O by using Pluronic123 as a soft template. For the composite with molar ratio of Co:Ru = 1:1 annealed at 200 deg. C, Brunauer-Emmet-Teller (BET) results indicated that the composite showed mesoporous structure, and the specific surface area of the composite was as high as 107 m 2 g -1 . The electrochemical performances of these composites were measured in 1 M KOH electrolyte. Compared with the composite prepared without template, the composite with P123 exhibited a higher specific capacitance. When the molar content of Ru was rising, the specific capacitance of the composites increased significantly. It was also observed that the crystalline structures as well as the electrochemical activities were strongly dependent on the annealing temperature. A capacitance of 642 F/g was obtained for the composite (Co:Ru = 1:1) annealed at 150 deg. C. Meanwhile, the composites also exhibited good cycle stability. Besides, the morphologies and textural characteristic of the samples were also investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM)

  5. Low-Temperature Preparation of (111)-oriented Pb(Zr,Ti)O3 Films Using Lattice-Matched (111)SrRuO3/Pt Bottom Electrode by Metal-Organic Chemical Vapor Deposition

    Science.gov (United States)

    Kuwabara, Hiroki; Sumi, Akihiro; Okamoto, Shoji; Hoko, Hiromasa; Cross, Jeffrey S.; Funakubo, Hiroshi

    2009-04-01

    Pb(Zr0.35Ti0.65)O3 (PZT) films 170 nm thick were prepared at 415 °C by pulsed metal-organic chemical vapor deposition. The (111)-oriented PZT films with local epitaxial growth were obtained on (111)SrRuO3/(111)Pt/TiO2/SiO2/Si substrates and their ferroelectricities were ascertained. Ferroelectricity was improved by postannealing under O2 gas flow up to 550 °C. Larger remanent polarization and better fatigue endurance were obtained using a SrRuO3 top electrode compared to a Pt top electrode for PZT films after annealing at 500 °C.

  6. Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors.

    Science.gov (United States)

    Liu, Ran; Duay, Jonathon; Lane, Timothy; Bok Lee, Sang

    2010-05-07

    We report the synthesis of composite RuO(2)/poly(3,4-ethylenedioxythiophene) (PEDOT) nanotubes with high specific capacitance and fast charging/discharging capability as well as their potential application as electrode materials for a high-energy and high-power supercapacitor. RuO(2)/PEDOT nanotubes were synthesized in a porous alumina membrane by a step-wise electrochemical deposition method, and their structures were characterized using electron microscopy. Cyclic voltammetry was used to qualitatively characterize the capacitive properties of the composite RuO(2)/PEDOT nanotubes. Their specific capacitance, energy density and power density were evaluated by galvanostatic charge/discharge cycles at various current densities. The pseudocapacitance behavior of these composite nanotubes originates from ion diffusion during the simultaneous and parallel redox processes of RuO(2) and PEDOT. We show that the energy density (specific capacitance) of PEDOT nanotubes can be remarkably enhanced by electrodepositing RuO(2) into their porous walls and onto their rough internal surfaces. The flexible PEDOT prevents the RuO(2) from breaking and detaching from the current collector while the rigid RuO(2) keeps the PEDOT nanotubes from collapsing and aggregating. The composite RuO(2)/PEDOT nanotube can reach a high power density of 20 kW kg(-1) while maintaining 80% energy density (28 Wh kg(-1)) of its maximum value. This high power capability is attributed to the fast charge/discharge of nanotubular structures: hollow nanotubes allow counter-ions to readily penetrate into the composite material and access their internal surfaces, while a thin wall provides a short diffusion distance to facilitate ion transport. The high energy density originates from the RuO(2), which can store high electrical/electrochemical energy intrinsically. The high specific capacitance (1217 F g(-1)) which is contributed by the RuO(2) in the composite RuO(2)/PEDOT nanotube is realized because of the high

  7. Enhanced photocatalytic CO2 reduction to CH4 over separated dual co-catalysts Au and RuO2

    Science.gov (United States)

    Dong, Chunyang; Hu, Songchang; Xing, Mingyang; Zhang, Jinlong

    2018-04-01

    A spatially separated, dual co-catalyst photocatalytic system was constructed by the stepwise introduction of RuO2 and Au nanoparticles (NPs) at the internal and external surfaces of a three dimensional, hierarchically ordered TiO2-SiO2 (HTSO) framework (the final photocatalyst was denoted as Au/HRTSO). Characterization by HR-TEM, EDS-mapping, XRD and XPS confirmed the existence and spatially separated locations of Au and RuO2. In CO2 photocatalytic reduction (CO2PR), Au/HRTSO (0.8%) shows the optimal performance in both the activity and selectivity towards CH4; the CH4 yield is almost twice that of the singular Au/HTSO or HRTSO (0.8%, weight percentage of RuO2) counterparts. Generally, Au NPs at the external surface act as electron trapping agents and RuO2 NPs at the inner surface act as hole collectors. This advanced spatial configuration could promote charge separation and transfer efficiency, leading to enhanced CO2PR performance in both the yield and selectivity toward CH4 under simulated solar light irradiation.

  8. Magnetoresistance Versus Oxygen Deficiency in Epi-stabilized SrRu1 - x Fe x O3 - δ Thin Films.

    Science.gov (United States)

    Dash, Umasankar; Acharya, Susant Kumar; Lee, Bo Wha; Jung, Chang Uk

    2017-12-01

    Oxygen vacancies have a profound effect on the magnetic, electronic, and transport properties of transition metal oxide materials. Here, we studied the influence of oxygen vacancies on the magnetoresistance (MR) properties of SrRu 1 - x Fe x O 3 - δ epitaxial thin films (x = 0.10, 0.20, and 0.30). For this purpose, we synthesized highly strained epitaxial SrRu 1 - x Fe x O 3 - δ thin films with atomically flat surfaces containing different amounts of oxygen vacancies using pulsed laser deposition. Without an applied magnetic field, the films with x = 0.10 and 0.20 showed a metal-insulator transition, while the x = 0.30 thin film showed insulating behavior over the entire temperature range of 2-300 K. Both Fe doping and the concentration of oxygen vacancies had large effects on the negative MR contributions. For the low Fe doping case of x = 0.10, in which both films exhibited metallic behavior, MR was more prominent in the film with fewer oxygen vacancies or equivalently a more metallic film. For semiconducting films, higher MR was observed for more semiconducting films having more oxygen vacancies. A relatively large negative MR (~36.4%) was observed for the x = 0.30 thin film with a high concentration of oxygen vacancies (δ = 0.12). The obtained results were compared with MR studies for a polycrystal of (Sr 1 - x La x )(Ru 1 - x Fe x )O 3 . These results highlight the crucial role of oxygen stoichiometry in determining the magneto-transport properties in SrRu 1 - x Fe x O 3 - δ thin films.

  9. Synthesis and Luminescent Properties of Sr{sub 2}SiO{sub 4} Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, H; Watari, T; Eguchi, T; Yada, M, E-mail: watarit@cc.saga-u.ac.jp [Graduate School of Science and Engineering, Saga University, 1 Hojo-Machi, Saga 840-8502 (Japan)

    2011-05-15

    Sr{sub 2}SiO{sub 4}:Eu{sup 2+} phosphors and Sr{sub 2}SiO{sub 4}:Eu{sup 2+}, Dy{sup 3+} persistent phosphors were synthesized by solid-state reaction method at 1300deg. C using SrCO{sub 3}, SiO{sub 2}(silica: 3 {mu} m and fumed silica: 7nm), Eu{sub 2}O{sub 3}(0.01 to 0.06 mol% Eu) and Dy{sub 2}O{sub 3}(0.005 to 0.02 mol% Dy) powders. The amount of the stable {beta}- Sr{sub 2}SiO{sub 4} phase had decreased and the amount of the {alpha}'-Sr{sub 2}SiO{sub 4} increased with the increase of the Eu content. The solid solution of Eu{sup 2+} ion stabilized {alpha}'-Sr{sub 2}SiO{sub 4} at room temperature. The emission color of the Sr{sub 2}SiO{sub 4}:Eu{sup 2+} products changed from the turquoise blue to yellow with the increase of the Eu content. The maximum emission peak position changed to the higher wavelength with the increase of the Eu content. The emission peak at 490nm(green color) was from {beta}- Sr{sub 2}SiO{sub 4} phase and that at 560nm(yellow color) was from {alpha}'-Sr{sub 2}SiO{sub 4} phase. The change of the phase content in the products affects the color and the emission peak. The emission intensity of the products from fumed silica is stronger than the products from silica. Sr{sub 1.98-x}SiO{sub 4}:Eu{sub 0.02}, Dy{sub x} persistent phosphors products showed the persistent emission for a few minutes with the naked eyes. The behavior was observed from all products. The product from fumed silica at x = 0.01 showed the strong emission for tens of seconds.

  10. Electrode contacts on ferroelectric Pb(Zr x Ti1−x )O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties

    OpenAIRE

    Lee, J. J.; Thio, C. L.; Desu, Seshu B.

    1995-01-01

    The degradation (fatigue) of dielectric properties of ferroelectric Pb(ZrxTi1-x)O-3 (PZT) and SrBi2Ta2O9 thin films during cycling was investigated. PZT and SrBi2Ta2O9 thin films were fabricated by metalorganic decomposition and pulsed laser deposition, respectively. Samples with electrodes of platinum (Pt) and ruthenium oxide (RuO2) were studied. The interfacial capacitance (if any) at the Pt/PZT, RuO2/PZT, and Pt/SrBi2Ta2O9 interfaces was determined from the thickness dependence of low-fiel...

  11. Band structure of metallic pyrochlore ruthenates Bi2Ru2O7 and Pb2Ru2O/sub 6.5/

    International Nuclear Information System (INIS)

    Hsu, W.Y.; Kasowski, R.V.; Miller, T.; Chiang, T.

    1988-01-01

    The band structure of Bi 2 Ru 2 O 7 and Pb 2 Ru 2 O/sub 6.5/ has been computed self-consistently from first principles for the first time by the pseudofunction method. We discover that the 6s bands of Bi and Pb are very deep and unlikely to contribute to the metallic behavior as previously believed. The unoccupied 6p bands, however, are only several eV above the Fermi energy and are mixed with the Ru 4d band at the Fermi surface via the framework O atoms, leading to band conduction and delocalized magnetic moments. The predicted location of the 6s bands and the location and width of the O 2p band are confirmed by synchrotron radiation and ultraviolet electron spectroscopy of single crystals

  12. Preparation of Sr7Mn4O13F2 by the topotactic reduction and subsequent fluorination of Sr7Mn4O15.

    Science.gov (United States)

    Saratovsky, Ian; Lockett, Michelle A; Rees, Nicholas H; Hayward, Michael A

    2008-06-16

    The topotactic reduction and subsequent fluorination of Sr7Mn4O15 yields a phase of composition Sr7Mn4O13F2. Characterization of this phase utilizing powder neutron diffraction and 19F NMR shows that the fluoride ions are located on a single anion site, the same crystallographic site that is vacant in the reduced intermediate Sr7Mn4O13.

  13. Energy transfer in Pr3+ and Mn2+ co-doped SrB6O10 and SrB4O7

    International Nuclear Information System (INIS)

    Chen Yonghu; Yan Wuzhao; Shi Chaoshu

    2007-01-01

    The luminescent properties of Pr 3+ and Mn 2+ -doped SrB 6 O 10 and SrB 4 O 7 powder samples were investigated from the point of view of energy transfer between Pr 3+ and Mn 2+ . The emission from the 1 S 0 level of Pr 3+ was found in the SrB 6 O 10 :Pr 3+ sample as well as in the SrB 4 O 7 :Pr 3+ sample, indicating the 1 S 0 level is below the lowest 4f5d energy level in these hosts. The spectral overlaps between the emission spectra of Pr 3+ -doped samples and the excitation spectra of Mn 2+ -doped sample were found in both kinds of strontium borates. These spectral overlaps are in favor of the energy transfer from Pr 3+ to Mn 2+ . However, in the emission spectra of the SrB 6 O 10 :Pr 3+ , Mn 2+ , no indication of energy transfer was observed, though the emission spectra of SrB 4 O 7 :Pr 3+ , Mn 2+ did show evidence of energy transfer from Pr 3+ to Mn 2+ . The possible reasons were discussed

  14. Evolution of structural, magnetic and transport behavior by Pr doping in SrRuO3

    Science.gov (United States)

    Gupta, Renu; Pramanik, A. K.

    2018-05-01

    Here we report the evolution of structural, magnetic and transport behavior in perovskite based ruthenates Sr1-xPrxRuO3 (x=0.0 and 0.1). The substitution of Pr on Sr site retains orthorhombic structure while we find the slight change in structural parameters. The SrRuO3 has itinerant ferromagnet (FM) type nature of ordering temperature ˜160 K and below the transition temperature showing large bifurcation between ZFC and FC magnetization. By Pr doping, the magnetic moment decreases with decreasing bifurcation of ZFC and FC. The ZFC data show three distinct peaks (three transition temperature; TM1,TM2 and TM3). The magnetization study of both the samples, at high temperature fitted with modified CWL showing the decreasing value of ordering temperature by Pr doping matches close to TM2. The low-temperature isothermal magnetization M (H) data show that the high field saturation moment has decreased by Pr doping. The Arrott plot gives spontaneous magnetization (Ms) which is also decreased by Pr substitution. Evolution of Rhodes-Wohlfarth ratio value increases, which suggests that FM in this system evolves toward the more itinerant type by Pr doping. The electrical resistivity ρ(T) of both the samples show metallic behavior, in the all temperature range and ρ(T) increases by Pr doping while around below 45 K, the resistivity decreases by Pr doping and this crossing temperature also matches with ZFC data.

  15. Highly anisotropic magnon dispersion in Ca{sub 2}RuO{sub 4}. Evidence for strong spin orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Kunkemoeller, Stefan; Khomskii, Daniel; Braden, Markus [II. Physikalisches Institut, Universitaet zu Koeln (Germany); Steffens, Paul; Piovano, Andrea [Institut Laue Langevin, Grenoble (France); Nugroho, Augustinus Agung [Institut Teknologi Bandung (Indonesia)

    2016-07-01

    Ca{sub 2}RuO{sub 4} is a key material for the understanding of the impact of spin-orbit coupling in 4d and 5d compounds, which is intensively studied at present. We have studied the magnon dispersion in Ca{sub 2}RuO{sub 4} by inelastic neutron scattering on large single crystals containing 1% of Ti. With this unmagnetic substitution large single crystals could be obtained with the floating zone method. The magnon dispersion can be well described with the simple conventional Heisenberg model. Ca{sub 2}RuO{sub 4} reveals a large anisotropy gap of 13 meV, which shows that spin-orbit coupling and some in-plane orbital ordering are both important parameters for the description of the electronic and magnetic properties of Ca{sub 2}RuO{sub 4}.

  16. Spin-Orbital Excitations in Ca2RuO4 Revealed by Resonant Inelastic X-Ray Scattering

    DEFF Research Database (Denmark)

    Das, L.; Forte, F.; Fittipaldi, R.

    2018-01-01

    The strongly correlated insulator Ca2RuO4 is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K-edge resonant inelastic x-ray scatt......-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by Hund's coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca2RuO4.......The strongly correlated insulator Ca2RuO4 is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K-edge resonant inelastic x......-ray scattering study of the antiferromagnetic Mott insulating state of Ca2RuO4. A set of low-energy (about 80 and 400 meV) and high-energy (about 1.3 and 2.2 eV) excitations are reported, which show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band...

  17. Supercapacitive performance of hydrous ruthenium oxide (RuO2 ...

    Indian Academy of Sciences (India)

    2016-08-26

    SO4 electrolyte. RuO2.H2O film showed maximum specific capacitance of 192 F.g-1 at a scan rate of 20 mV.s-1. The charge–discharge studies of RuO2.H2O carried out at 300 A.cm-2 current density revealed the specific ...

  18. Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration

    KAUST Repository

    Baby, Rakhi Raghavan

    2014-03-26

    Mesoporous cobalt oxide (Co3O4) nanosheet electrode arrays are directly grown over flexible carbon paper substrates using an economical and scalable two-step process for supercapacitor applications. The interconnected nanosheet arrays form a three-dimensional network with exceptional supercapacitor performance in standard two electrode configuration. Dramatic improvement in the rate capacity of the Co3O4 nanosheets is achieved by electrodeposition of nanocrystalline, hydrous RuO 2 nanoparticles dispersed on the Co3O4 nanosheets. An optimum RuO2 electrodeposition time is found to result in the best supercapacitor performance, where the controlled morphology of the electrode provides a balance between good conductivity and efficient electrolyte access to the RuO2 nanoparticles. An excellent specific capacitance of 905 F/g at 1 A/g is obtained, and a nearly constant rate performance of 78% is achieved at current density ranging from 1 to 40 A/g. The sample could retain more than 96% of its maximum capacitance even after 5000 continuous charge-discharge cycles at a constant high current density of 10 A/g. Thicker RuO2 coating, while maintaining good conductivity, results in agglomeration, decreasing electrolyte access to active material and hence the capacitive performance. © 2014 American Chemical Society.

  19. A ferroelectric switchable tunnel junction: KNbO{sub 3}/SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Rahmanizadeh, Kourosh; Bihlmayer, Gustav; Wortmann, Daniel; Bluegel, Stefan [Peter Gruenberg Institut (PGI-1) and Institute for Advanced Simulation (IAS-1), Forschungszentrum Juelich and JARA, 52425 Juelich (Germany)

    2012-07-01

    The properties of thin oxide films and multilayers are strongly influenced by defects and, therefore, can be controllably tuned by the defect concentration at the interface. For example, due to the charge discontinuity at the SrTiO{sub 3}/KO-KNbO{sub 3}-NbO{sub 2}/SrTiO{sub 3} interface only one direction of polarization in KNbO{sub 3} film is stable. A switchable polarization in KNbO{sub 3} can be realized by creating (oxygen) defects at the interfaces. We carried out density functional theory (DFT) calculations based on the full potential linearized augmented planewave (FLAPW) method as implemented in the FLEUR code for studying the polar interface SrTiO{sub 3}/KNbO{sub 3} and a SrRuO{sub 3}/SrTiO{sub 3}/KNbO{sub 3} tunnel junction. The electronic transport properties of the switchable multiferroic SrRuO{sub 3}/SrTiO{sub 3}/KO-KNbO{sub 3}-NbO{sub 3}/SrTiO{sub 3}/SrRuO{sub 3} heterostructure have been investigated using an embedded Green-function approach. A strong dependence of the (magneto electric) transport properties on the polarization is observed.

  20. Phase equilibria in the system As2-O5 - SrO

    International Nuclear Information System (INIS)

    Kasenov, B.K.; Ashlyaeva, I.V.

    1993-01-01

    T-x phase state diagram of As 2 O 5 -SrO system was investigated by the methods of physicochemical analysis. It was established that incongruently melting Sr(AsO 3 ) 2 (t mel 900 deg C), Sr 2 As 2 O 4 (t mel = 1140 deg C), Sr 4 As 2 O 9 (t mel = 1390 deg C) and congruently melting at 1635 deg C Sr 3 (AsO 4 ) 2 formed in the system. Eutectic points were revealed in the system: As 2 O 5 -Sr(AsO 3 ) 2 (15.0 mol % SrO, 700 deg C) and Sr 3 (AsO 4 ) 2 -Sr 4 As 2 O 9 (78 mol % SrO, 1370 deg C)

  1. Electronic structure of (La,Sr)2CuO4 and Ba0.6K0.4BiO3

    International Nuclear Information System (INIS)

    Howell, R.H.; Sterne, P.A.; Fluss, M.J.; Kaiser, J.H.; Kitazawa, K.; Kojima, H.; Mosley, W.D.; Dykes, J.W.; Shelton, R.N.

    1995-01-01

    We have measured and calculated the electron-positron momentum distribution of La 2-x Sr x CuO 4 samples for Sr concentrations of 0, 0.1,0.13, and 0.2 and Ba 0.6 K 0.4 BiO 3 . The momentum distribution of all samples contained features derived from the overlap of the positron distribution with the valence electrons. In addition, discontinuities typical of a Fermi surface are seen in the superconducting samples. The form and position of these features are in general agreement with band theory for both La 2-x Sr x CuO 4 and Ba 0.6 K 0.4 BiO 3 . However the evolution of the Fermi surface with doping in La 2-x Sr x CuO 4 differed significantly from expectations based on single electron band theories. (orig.)

  2. RuO4-mediated oxidation of secondary amines 2. imines as main reaction intermediates

    Directory of Open Access Journals (Sweden)

    Florea Cristina A.

    2017-01-01

    Full Text Available Oxidation by RuO4 (generated in situ from RuO2 and NaIO4 of secondary amines such as Bn–NH–CH2R (1; R=H, Me gave complex reaction mixtures, but mainly amides. In the presence of cyanide, the leading products were α-aminonitriles. Comparison of the oxidation products of 1 with those from the corresponding imines PhCH=N–CH2R and Bn–N=CH–R showed that formation of the indicated imines is the first main step in the oxidation of 1. A detailed mechanism is proposed.

  3. Pulsed laser deposition of epitaxial Sr(RuxSn1-x)O3 thin film electrodes and KNbO3/Sr(RuxSn1-x)O3 bilayers

    International Nuclear Information System (INIS)

    Christen, H.M.; Boatner, L.A.; English, L.Q.; Geea, L.A.; Marrero, P.J.; Norton, D.P.

    1995-01-01

    Sr(Ru x Sn 1-x ) 3 is proposed as a new conducting oxide for use in epitaxial multilayer structures. The Sr(Ru o 48 Sn 0.52 )0 3 composition exhibits an excellent lattice match with (100)-oriented KTaO 3 , and films of this composition grown by pulsed laser deposition on KTaO 3 , SrTiO 3 , and LaAlO 3 substrates have been analyzed by X-ray diffraction, Rutherford backscattering/ion channeling, and resistivity measurements. Epitaxial KNbO 3 /Sr(Ru 0.48 Sn 0.52 )O 3 bilayers have been successfully grown

  4. Characteristics of RuO2-SnO2 nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors

    International Nuclear Information System (INIS)

    Kim, Han-Ki; Choi, Sun-Hee; Yoon, Young Soo; Chang, Sung-Yong; Ok, Young-Woo; Seong, Tae-Yeon

    2005-01-01

    The characteristics of RuO 2 -SnO 2 nanocrystalline-embedded amorphous electrode, grown by DC reactive sputtering, was investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM), and transmission electron diffraction (TED) examination results showed that Sn and Ru metal cosputtered electrode in O 2 /Ar ambient have RuO 2 -SnO 2 nanocrystallines in an amorphous oxide matrix. It is shown that the cyclic voltammorgram (CV) result of the RuO 2 -SnO 2 nanocrystalline-embedded amorphous film in 0.5 M H 2 SO 4 liquid electrolyte is similar to a bulk-type supercapacitor behavior with a specific capacitance of 62.2 mF/cm 2 μm. This suggests that the RuO 2 -SnO 2 nanocrystalline-embedded amorphous film can be employed in hybrid all-solid state energy storage devises as an electrode of supercapacitor

  5. Comparing the physical properties of Pr/Gd and Pr/Ce substitutions in Ru(Gd1.5Ce0.5)Sr2Cu2O10- δ

    Science.gov (United States)

    Khajehnezhad, A.; Nikseresht, N.; Hadipour, H.; Akhavan, M.

    2008-06-01

    We have compared the electrical and magnetic properties of Ru(Gd1.5- x Pr x )Ce0.5Sr2Cu2O10- δ (Pr/Gd samples) with x = 0.0, 0.01, 0.03, 0.033, 0.035, 0.04, 0.05, 0.06, 0.1 and RuGd1.5(Ce0.5- x Pr x ) Sr2 Cu2O10- δ (Pr/Ce samples) with x = 0.0, 0.01, 0.03, 0.05, 0.08, 0.1, 0.15, 0.2 prepared by the standard solid-state reaction technique. We obtained the XRD patterns for different samples with various x. The lattice parameters versus x for different substitutions have been obtained from Rietveld analysis. To determine how the magnetic and superconducting properties of these layered cuprate systems can be affected by Pr substitution, the resistivity, and magnetoresistivity, with H ext varying from 0.0 to 15 kOe, have been measured at various temperatures. Superconducting transition temperature T c and magnetic transition T irr , have been obtained through resistivity and ac susceptibility measurements. The T c suppression due to Pr/Gd and Pr/Ce substitutions show competition between pair breaking by magnetic impurities, hole doping due to different valances of ions, difference in ionic radii, and oxygen stoichiometry. Pr/Gd substitution suppresses superconductivity more rapidly than for Pr/Ce, showing that the effect of hole doping and magnetic impurity pair breaking is stronger than the difference in ionic radii. In Pr/Gd substitution, the small difference between the ionic radii of Pr3+,4+ and Gd3+, and absorption of more oxygen due to the higher valence of Pr with respect to Gd, decreases the mean Ru-Ru distance, and as a result, the magnetic exchange interaction becomes stronger with the increase of x. However, Pr/Ce substitution has the opposite effect. The magnetic parameters such as H c , obtained through magnetization measurements versus applied magnetic field isotherm at 77 K and room temperatures, become stronger with x in Pr/Gd and weaker with x in Pr/Ce substitution.

  6. Phase relations in Ca(Sr)MoO4-Ln2(NoO4)3 systems (Ln = Pr-Lu)

    International Nuclear Information System (INIS)

    Vakalyuk, V.V.; Evdokimov, A.A.; Berezina, T.A.

    1982-01-01

    Using the methods of X-ray phase and differential thermal analyses phase ratios in the systems Ca(Sr)MoO 4 -Ln 2 (MoO 4 ) 3 at Ln=Pr-Lu are studied and phase diagrams of the systems CaMoO 4 -Ln 2 (MoO 4 ) 3 , for Ln=Nd, Gd, Yb and SrMoO 4 -Sm 2 (MoO 4 ) 3 are built. It is shown that phase ratios in the systems are similar for the following groups of rare earths: Pr-Sm, Eu-Tb, Ho-Lu. In the first group of systems ordered phase over all subsolidus region are formed, in the second one - ordered phases with scheelite-like structure and wide regions of homogeneity on the basis of Ca(Sr)MoO 4 are formed above the temperature of polymorphous transformation of rare earth molybdates, for the third group of systems intermediate compounds are not detected

  7. Spin orientations of the spin-half Ir(4+) ions in Sr3NiIrO6, Sr2IrO4, and Na2IrO3: Density functional, perturbation theory, and Madelung potential analyses.

    Science.gov (United States)

    Gordon, Elijah E; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan

    2016-03-21

    The spins of the low-spin Ir(4+) (S = 1/2, d(5)) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir(4+) spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir(4+) ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir(4+) ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir(4+) is not as strong as has been assumed.

  8. Crystal structure of strontium aqua(ethylenediaminetetraacetato)cobaltate(II) tetrahydrate Sr[CoEdta(H2O)] · 4H2O

    International Nuclear Information System (INIS)

    Zasurskaya, L.A.; Polynova, T.N.; Polyakova, I.N.; Sergienko, V.S.; Poznyak, A.L.

    2001-01-01

    The complex Sr[Co II Edta] · 5H 2 O (I) (where Edta 4- is the ethylenediaminetetraacetate ion) has been synthesized. The crystal structure of this compound is determined by X-ray diffraction. Crystals are monoclinic, a = 7.906(2) A, b = 12.768(2) A, c = 18.254(3) A, β = 95.30(3) deg., V 1834.8 A 3 , space group P2 1 /n, Z = 4, and R = 0.036. The structure is built up of the binuclear complex fragments {Sr(H 2 O) 3 [CoEdta(H 2 O)]}, which consist of the anionic [CoEdta(H 2 O)] 2- and cationic [Sr(H 2 O) 3 ] 2+ units linked by the Sr-O bonds into a three-dimensional framework. The coordination polyhedra of the Co and Sr atoms are mono- and bicapped trigonal prisms. The coordination sphere of the Co atom (the coordination number is equal to 6 + 1) involves six donor atoms (2N and 4O) of the Edta 4- ligand and the O w atom of water molecule. One of the Co-O distances (2.718 A) is considerably longer than the other Co-O lig distances (2.092-2.190 A) and the Co-O w (1) distance (2.079 A). The Sr coordination polyhedron (the coordination number is eight) contains three water molecules, three carbonyl O atoms of the three different anionic complexes, and two O atoms of one acetate group of the fourth anionic complex. The Sr-O distances fall in the range 2.535-2.674 A. The structural formula of the compound is {Sr(H 2 O) 3 [CoEdta(H 2 O)]} 3∞ · H 2 O

  9. Development of Al2O3 carrier-Ru composite catalyst for hydrogen generation from alkaline NaBH4 hydrolysis

    International Nuclear Information System (INIS)

    Huang, Yao-Hui; Su, Chia-Chi; Wang, Shu-Ling; Lu, Ming-Chun

    2012-01-01

    A recyclable and reusable Ru/Al 2 O 3 catalyst is prepared for hydrogen generation from the hydrolysis process of alkaline sodium borohydride (NaBH 4 ) solution. The hydrogen generation rate by the hydrolysis and methanolysis of alkaline NaBH 4 was explored as a function of NaOH concentration. Meantime, the byproducts derived from the spent alkaline NaBH 4 solution were characterized by X-ray diffraction (XRD), scanning electro microscope/energy dispersive spectrometer (SEM/EDS) and NMR (Nuclear Magnetic Resonance). The effect of NaOH concentration on the hydrogen generation from the hydrolysis of NaBH 4 significantly depends on the type of catalysts. With increasing NaOH concentration, the hydrogen generation rates decrease when using ruthenium (Ru) composite as a catalyst. The hydrogen generation rate of the methanolysis of NaBH 4 is significantly inhibited in the presence of NaOH as compared with the hydrolysis of NaBH 4 . The durability test of the Ru/Al 2 O 3 catalyst shows that the hydrogen generation rate decreases with recycling and reuse. The XRD and NMR analysis results show that the borate hydrate (NaBO 2 H 2 O) was derived from the hydrolysis of 20 wt% and 30 wt% NaBH 4 . -- Highlights: ► A recyclable Ru/Al 2 O 3 catalyst was synthesized for hydrogen generation. ► Ru/Al 2 O 3 significantly promotes the hydrogen generation rate from alkaline NaBH 4 solution. ► The prepared Ru/Al 2 O 3 catalyst can easily collect from the spent alkaline NaBH 4 solution.

  10. Observation of ferromagnetic resonance in strontium ruthenate (SrRuO3)

    Energy Technology Data Exchange (ETDEWEB)

    Langner, Matthew C.; Kantner, Colleen L.S.; Chu, Y.H.; Martin, Lane M.; Yu, Pu; Ramesh, R.; Orenstein, Joe

    2008-12-03

    We report the observation of ferromagnetic resonance (FMR) in SrRuO3 using the time-resolved magnetooptical Kerr effect. The FMR oscillations in the time-domain appear in response to a sudden, optically induced change in the direction of easy-axis anistropy. The high FMR frequency, 250 GHz, and large Gilbert damping parameter, alpha ~;; 1, are consistent with strong spin-orbit coupling. We find that the parameters associated with the magnetization dynamics, including alpha, have a non-monotonic temperature dependence, suggestive of a link to the anomalous Hall effect.

  11. Quantum criticality and the formation of a putative electronic liquid crystal in Sr3Ru2O7

    International Nuclear Information System (INIS)

    Mackenzie, A.P.; Bruin, J.A.N.; Borzi, R.A.; Rost, A.W.; Grigera, S.A.

    2012-01-01

    We present a brief review of the physical properties of Sr 3 Ru 2 O 7 , in which the approach to a magnetic-field-tuned quantum critical point is cut off by the formation of a novel phase with transport characteristics consistent with those of a nematic electronic liquid crystal. Our goal is to summarise the physics that led to that conclusion being drawn, describing the key experiments and discussing the theoretical approaches that have been adopted. Throughout the review we also attempt to highlight observations that are not yet understood, and to discuss the future challenges that will need to be addressed by both experiment and theory.

  12. Radiation defects in SrB4O7:Eu2+ crystals

    International Nuclear Information System (INIS)

    Yavetskiy, R.P.; Dolzhenkova, E.F.; Tolmachev, A.V.; Parkhomenko, S.V.; Baumer, V.N.; Prosvirnin, A.L.

    2007-01-01

    Radiation-induced defects in SrB 4 O 7 :Eu 2+ (0.033 at.%) single crystal irradiated with γ and X-ray quanta has been studied. The induced optical absorption in the 400-700 nm region has been ascribed to F + centers. The Eu 2+ ions have been shown to act simultaneously as traps and as radiative recombination centers of charge carriers. Basing on the thermally stimulated luminescence (TSL), optical absorption and photoluminescence studies of SrB 4 O 7 :Eu 2+ crystals, a TSL mechanism has been proposed associated with the decay of F + centers being in non-equivalent crystallographic positions followed by radiative recombination of charge carriers on europium ions. Various positions of localization of the radiation-induced defects in the SrB 4 O 7 crystal structure have been discussed

  13. Phase diagrams of systems of Sr2V2O7-M2V2O7 and of Ba2V2O7-M2V2O7 (M=Ca,Cd)

    International Nuclear Information System (INIS)

    Fotiev, A.A.; Zhuravlev, V.D.; Zhukov, V.P.

    1982-01-01

    Using the methods of X-ray phase and differential thermal anlyses phase equilibria in the systems Sr 2 V 2 O 7 -M 2 V 2 O 7 and Ba 2 V 2 O 7 -M 2 V 2 O 7 , where M--Ca, Cd, are studied, their phase diagrams being built. New double pyrovanadates Mosub(0.5)Srsub(1.5)Vsub(2)Osub(7) and MBaV 2 O 7 are found [ru

  14. Effect of In-Doping on Electronic Structure and Optical Properties of Sr2TiO4

    International Nuclear Information System (INIS)

    Jiang-Ni, Yun; Zhi-Yong, Zhang; Jun-Feng, Yan; Fu-Chun, Zhang

    2009-01-01

    The effect of In doping on the electronic structure and optical properties of Sr 2 TiO 4 is investigated by a first-principles calculation of plane wave ultrasoft pseudopotentials based on density functional theory. The calculated results reveal that corner-shared TiO 6 octahedra dominate the main electronic properties of Sr 2 TiO 4 and the covalency of the Ti–O(1) bond in the ab plane is stronger than that of the Ti–O(2) bond along the c-axis. After In doping, there is a little lattice expansion in Sr 2 In 0.125 Ti 0.875 O 4 , and the interaction between the Ti–O bond near the impurity In atom is weakened. The binding energies of Sr 2 TiO 4 and Sr 2 In 0.125 Ti 0.875 O 4 , estimated from the electronic structure calculations indicate that the crystal structure of Sr 2 In 0.125 Ti 0.875 O 4 is still stable after doping, but its stability is lower than that of undoped Sr 2 TiO 4 . Moreover, the valence bands (VBs) of the Sr 2 In 0.125 Ti 0.875 O 4 , system consist of O 2p and In 4d states, and the mixing of O 2p and In 4d states makes the top VBs shift significantly to high energies, resulting in visible light absorption. The adsorption of visible light is of practical importance for the application of Sr 2 TiO 4 as a photocatalyst. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Topotactic Solid-State Metal Hydride Reductions of Sr2MnO4.

    Science.gov (United States)

    Hernden, Bradley C; Lussier, Joey A; Bieringer, Mario

    2015-05-04

    We report novel details regarding the reactivity and mechanism of the solid-state topotactic reduction of Sr2MnO4 using a series of solid-state metal hydrides. Comprehensive details describing the active reducing species are reported and comments on the reductive mechanism are provided, where it is shown that more than one electron is being donated by H(-). Commonly used solid-state hydrides LiH, NaH, and CaH2, were characterized in terms of reducing power. In addition the unexplored solid-state hydrides MgH2, SrH2, and BaH2 are evaluated as potential solid-state reductants and characterized in terms of their reductive reactivities. These 6 group I and II metal hydrides show the following trend in terms of reactivity: MgH2 < SrH2 < LiH ≈ CaH2 ≈ BaH2 < NaH. The order of the reductants are discussed in terms of metal electronegativity and bond strengths. NaH and the novel use of SrH2 allowed for targeted synthesis of reduced Sr2MnO(4-x) (0 ≤ x ≤ 0.37) phases. The enhanced control during synthesis demonstrated by this soft chemistry approach has allowed for a more comprehensive and systematic evaluation of Sr2MnO(4-x) phases than previously reported phases prepared by high temperature methods. Sr2MnO3.63(1) has for the first time been shown to be monoclinic by powder X-ray diffraction and the oxidative monoclinic to tetragonal transition occurs at 450 °C.

  16. Synthesis and Characterization of RuO2/poly (3,4-ethylenedioxythiophene) (PEDOT) Composite Nanotubes for Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran [Univ. of Maryland, College Park, MD (United States); Duay, Jonathon [Univ. of Maryland, College Park, MD (United States); Lane, Timothy [Univ. of Maryland, College Park, MD (United States); Lee, Sang Bok [Univ. of Maryland, College Park, MD (United States); Korea Advance Inst. of Science and Technology, Daejeon (Korea)

    2010-01-18

    We report the synthesis of composite RuO2/poly(3,4-ethylenedioxythiophene) (PEDOT) nanotubes with high specific capacitance and fast charging/discharging capability as well as their potential application as electrode materials for a high-energy and high-power supercapacitor. RuO2/PEDOT nanotubes were synthesized in a porous alumina membrane by a step-wise electrochemical deposition method, and their structures were characterized using electron microscopy. Cyclic voltammetry was used to qualitatively characterize the capacitive properties of the composite RuO2/PEDOT nanotubes. Their specific capacitance, energy density and power density were evaluated by galvanostatic charge/discharge cycles at various current densities. The pseudocapacitance behavior of these composite nanotubes originates from ion diffusion during the simultaneous and parallel redox processes of RuO2 and PEDOT. We show that the energy density (specific capacitance) of PEDOT nanotubes can be remarkably enhanced by electrodepositing RuO2 into their porous walls and onto their rough internal surfaces. The flexible PEDOT prevents the RuO2 from breaking and detaching from the current collector while the rigid RuO2 keeps the PEDOT nanotubes from collapsing and aggregating. The composite RuO2/PEDOT nanotube can reach a high power density of 20 kW kg-1 while maintaining 80% energy density (28 Wh kg-1) of its maximum value. This high power capability is attributed to the fast charge/discharge of nanotubular structures: hollow nanotubes allow counter-ions to readily penetrate into the composite material and access their internal surfaces, while a thin wall provides a short diffusion distance to facilitate ion transport. The high energy density originates from the RuO2, which can store high electrical/electrochemical energy intrinsically. The high specific capacitance (1217 Fg-1

  17. Synthesis, structural and luminescent aspect of Tb3+ doped Sr2SnO4 phosphor

    International Nuclear Information System (INIS)

    Taikar, Deepak R.

    2016-01-01

    A novel green emitting, Tb 3+ doped Sr 2 SnO 4 phosphor was synthesized by the co-precipitation method and its photoluminescence characterization was performed. Sr 2 SnO 4 has an ordered tetragonal K 2 NiF 4 -type structure with space group I4/mmm. The structure of Sr 2 SnO 4 consists of SnO 6 octahedra. From the structure of Sr 2 SnO 4 , it was observed that the sites of Sn 4+ ions have inverse symmetry while the Sr 2+ ions have the low symmetry. X-ray powder diffraction (XRD) analysis confirmed the formation of Sr 2 SnO 4 :Tb 3+ . Photoluminescence measurements showed that the phosphor exhibited bright green emission at about 543 nm attributed to 5 D 4 à 7 F 5 transition of Tb 3+ ion under UV excitation. The emission spectra did not exhibit conventional blue emission peaks of Tb 3+ ions due to 5 D 3 → 7 F J transitions in the spectral region 350-470 nm. The excitation spectra indicate that this compound may be useful as a lamp phosphor. (author)

  18. Anisotropy and Strong-Coupling Effects on the Collective Mode Spectrum of Chiral Superconductors: Application to Sr2RuO4

    Directory of Open Access Journals (Sweden)

    James Avery Sauls

    2015-06-01

    Full Text Available Recent theories of Sr2RuO4 based on the interplay of strong interactions, spin-orbit coupling and multi-band anisotropy predict chiral or helical ground states with strong anisotropy of the pairing states, with deep minima in the excitation gap, as well as strong phase anisotropy for the chiral ground state. We develop time-dependent mean field theory to calculate the Bosonic spectrum for the class of 2D chiral superconductors spanning 3He-A to chiral superconductors with strong anisotropy. Chiral superconductors support a pair of massive Bosonic excitations of the time-reversed pairs labeled by their parity under charge conjugation. These modes are degenerate for 2D 3He-A. Crystal field anisotropy lifts the degeneracy. Strong anisotropy also leads to low-lying Fermions, and thus to channels for the decay of the Bosonic modes. Selection rules and phase space considerations lead to large asymmetries in the lifetimes and hybridization of the Bosonic modes with the continuum of un-bound Fermion pairs. We also highlight results for the excitation of the Bosonic modes by microwave radiation that provide clear signatures of the Bosonic modes of an anisotropic chiral ground state.

  19. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    Science.gov (United States)

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, Ba)Al2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips. PMID:29057839

  20. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, BaAl2O4:Eu2+, Dy3+ Phosphors

    Directory of Open Access Journals (Sweden)

    Qidi Xie

    2017-10-01

    Full Text Available (Sr, Ca, BaAl2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, CaAl2O4:Eu2+,Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, BaAl2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED. Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(InN near UV chips.

  1. Synthesis and thermoelectric properties of RuO2 nanorods

    International Nuclear Information System (INIS)

    Music, Denis; Basse, Felix H.-U.; Schneider, Jochen M.; Hassdorf, Ralf

    2010-01-01

    We have explored the effect of the O/Ru ratio on the morphology and the Seebeck coefficient of RuO 2 nanorods (space group P4 2 /mnm) synthesized by reactive sputtering. At an O/Ru ratio of 1.69, a faceted surface is observed, while nanorod formation occurs at O/Ru ratios of 2.03 and 2.24. Using classical molecular dynamics with the potential parameters derived in this work, we show that volatile species enable nanorod formation. Based on ab initio calculations, two effects of the nanorod formation on the Seebeck coefficient are observed: (i) increase due to additional states in the vicinity of the Fermi level and (ii) decrease due to oxygen point defects (volatile species). These two competing effects give rise to a moderate increase in the Seebeck coefficient upon nanorod formation.

  2. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    OpenAIRE

    Qidi Xie; Bowen Li; Xin He; Mei Zhang; Yan Chen; Qingguang Zeng

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to ...

  3. Effect of uniaxial strain on the quantum critical phase of Sr{sub 3}Ru{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Mark E.; Brodsky, Daniel O.; Mackenzie, Andrew P. [Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Max Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, Dresden 01187 (Germany); Hicks, Clifford W. [Max Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, Dresden 01187 (Germany); Perry, Robin [School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD (United Kingdom)

    2016-07-01

    Sr{sub 3}Ru{sub 2}O{sub 7} has a metamagnetic quantum critical endpoint, which in highly pure samples is masked by a novel phase. This phase is isotropic in the absence of symmetry-breaking fields, but weak in-plane magnetic fields are well-known to induce strong resistive anisotropy, leading to speculation that the phase intrinsically breaks the tetragonal symmetry of the lattice. We have used uniaxial strain to break the symmetry of the lattice and have found a dramatic response: compression by 0.1%, for example, induces a resistive anisotropy of ∝ 2.5. I will discuss these results in the context of the underlying symmetry of the anomalous phase.

  4. Magnetic heat transport in Sr{sub 2}IrO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Steckel, Frank [Leibniz Institute for Solid State and Materials Research, IFW Dresden (Germany); Takagi, Hidenori [Max-Planck-Institute for Solid State Research, Stuttgart (Germany); Buechner, Bernd; Hess, Christian [Leibniz Institute for Solid State and Materials Research, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)

    2015-07-01

    The layered perovskite Sr{sub 2}IrO{sub 4} is a 5d transition metal oxide with an enhanced spin-orbit coupling leading to a Mott insulating ground state with J{sub eff}=(1)/(2). It exhibits canted antiferromagnetism below T{sub N}=240 K with an antiferromagnetic coupling constant of about J=0.1 eV. Thermal conductivity measurements along the ab plane of a Sr{sub 2}IrO{sub 4} single crystal provide evidence for a contribution of magnons (below T{sub N}) to the thermal conductivity, similar to that of the isostructural 2D S=(1)/(2) Heisenberg antiferromagnet La{sub 2}CuO{sub 4}, where a significant magnonic contribution to the heat transport is known.

  5. An open aperture z-scan study of Sr2CeO4 blue phosphor

    International Nuclear Information System (INIS)

    Seema, R.; Sandeep, C.S. Suchand; Philip, Reji; Kalarikkal, Nandakumar

    2011-01-01

    Highlights: → Sr 2 CeO 4 blue phosphor has been prepared by a solid state reaction method. → The XRD study confirms that the structure of the system is orthorhombic. → The TEM reveals that Sr 2 CeO 4 is composed of elongated spherical structures of length ∼0.2-0.6 μm. → The FFT of TEM, XRD peaks and the JCPDS values are compared, from which the Sr 2 CeO 4 phase is reconfirmed. → A z-scan measurement gives the effective two-photon absorption coefficient to be 3.9 x 10 -11 m/W. - Abstract: Sr 2 CeO 4 blue phosphor has been prepared by the solid-state reaction method. The X-ray diffraction (XRD) study confirms the structure of the system to be orthorhombic. High resolution electron transmission microscopy reveals that Sr 2 CeO 4 prepared by the solid state reaction method is composed of elongated spherical structures of length ∼0.2-0.6 μm and width ∼90-150 nm. The excitation spectrum shows a broad band which peaks at 275 nm. The emission spectrum shows a broad band which peaks at 467 nm when excited at 275 nm. The emission band is assigned to the energy transfer between the molecular orbital of the ligand and charge transfer (CT) state of the Ce 4+ ion. The Commission International de l'Eclairage (CIE) co-ordinates are x = 0.15, and y = 0.23. The nonlinear absorption behavior of Sr 2 CeO 4 has been investigated using the open aperture z-scan technique. The calculated effective two-photon absorption coefficient shows that the Sr 2 CeO 4 blue phosphor is a promising optical limiting material.

  6. Interactions of RuO4(g) with different surfaces in nuclear reactor containments

    International Nuclear Information System (INIS)

    Holm, J.; Glaenneskog, H.; Ekberg, C.

    2008-07-01

    During a severe nuclear reactor accident with air ingress, ruthenium in the form of RuO4 can be released from the nuclear fuel. Hence, it is important to investigate how the reactor containment is able to reduce the source term of ruthenium. This work has investigated the distribution of RuO4 between an aqueous and gaseous phase in the temperature interval of 20-50 deg. C by on-line measurements with an experimental set-up made of glass. The experiments showed that RuO4 is almost immediately distributed in the aqueous phase after its introduction in the set-up in the entire temperature interval. However, the deposition of ruthenium on the glass surfaces in the system was significant. The speciation of the ruthenium on the glass surfaces was studied by SEM-EDX and ESCA and was determined to be the expected RuO2. Experiments of interactions between gaseous ruthenium tetroxide and the metals aluminium, copper and zinc have been investigated. The metals were treated by RuO4 (g) at room temperature and analyzed with ESCA, SEM and XRD. The analyses show that the black ruthenium deposits on the metal surfaces were RuO2, i.e. the RuO4 (g) has been transformed on the metal surfaces to RuO2(s). The analyses showed also that there was a significant deposition of ruthenium tetroxide especially on the copper and zinc samples. Aluminium has a lower ability to deposit gaseous ruthenium tetroxide than the other metals. The conclusion that can be made from the results is that surfaces in nuclear reactor containments will likely reduce the source term in the case of a severe accident in a nuclear power plant. (au)

  7. Characteristics of RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Ki [Core Technology Laboratory, Samsung SDI, 575 Shin-dong, Youngtong-Gu, Suwon, Gyeonggi-Do 442-391 (Korea, Republic of)]. E-mail: hanki1031.kim@samsung.com; Choi, Sun-Hee [Nano Materials Research Center, Korea Institute of Science and Technology (KIST), PO Box 131 Choengryang, Seoul 130-650 (Korea, Republic of); Yoon, Young Soo [Department of Advanced Fusion Technology (DAFT), Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Chang, Sung-Yong [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of); Ok, Young-Woo [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of); Seong, Tae-Yeon [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Kwangju 500-712 (Korea, Republic of)

    2005-03-22

    The characteristics of RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous electrode, grown by DC reactive sputtering, was investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM), and transmission electron diffraction (TED) examination results showed that Sn and Ru metal cosputtered electrode in O{sub 2}/Ar ambient have RuO{sub 2}-SnO{sub 2} nanocrystallines in an amorphous oxide matrix. It is shown that the cyclic voltammorgram (CV) result of the RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous film in 0.5 M H{sub 2}SO{sub 4} liquid electrolyte is similar to a bulk-type supercapacitor behavior with a specific capacitance of 62.2 mF/cm{sup 2} {mu}m. This suggests that the RuO{sub 2}-SnO{sub 2} nanocrystalline-embedded amorphous film can be employed in hybrid all-solid state energy storage devises as an electrode of supercapacitor.

  8. Luminescent properties of Eu2+ and Ce3+ ions in strontium litho-silicate Li2SrSiO4

    International Nuclear Information System (INIS)

    Dotsenko, V.P.; Levshov, S.M.; Berezovskaya, I.V.; Stryganyuk, G.B.; Voloshinovskii, A.S.; Efryushina, N.P.

    2011-01-01

    The luminescent properties of Eu 2+ and Ce 3+ ions in Li 2 SrSiO 4 have been studied upon excitation in the 2-20 eV region. Based on the results of luminescent measurements, values of the crystal field splitting and the centroid shift of the Ce 3+ 5d configuration in Li 2 SrSiO 4 were found and compared with those of Ce 3+ ions in some other inorganic compounds. The Eu 2+ ions in Li 2 SrSiO 4 exhibit a broad band emission with a maximum at 576 nm, which is due to the 4f 6 5d→4f 7 transition. It was shown that the long-wavelength position of the Eu 2+ emission in Li 2 SrSiO 4 is caused by the large crystal-field splitting of the Eu 2+ 4f 6 5d configuration and relatively high degree of covalency of the Eu-O bond. The stabilization of Eu 2+ ions in Li 2 SrSiO 4 during the synthesis process requires a strong reducing agent. Two phenomenological approaches to explain the low stability of Eu 2+ in Li 2 SrSiO 4 are also discussed.

  9. Signature of a Crossed Andreev Reflection effect (CARE) in YBaCuO/SrRuO3/YBaCuO junctions

    International Nuclear Information System (INIS)

    Aronov, P.; Gad Koren, G.

    2005-01-01

    Full Text:Magnetic properties of SFS and SF ramp-type junctions with Y Ba 2 Cu 3 O 7 -YBaCuO-δ electrodes (S), and the itinerant ferromagnet SrRuO 3 (SrO - F), were investigated. We looked for a crossed Andreev reflection effect (CARE) in which an electron from one magnetic domain in F is Andreev reflected as a hole into an adjacent, oppositely polarized, domain while a pair is transmitted into S. CARE is possible in SrO since the width of its domain walls is of the order of the YBaCuO coherence length (2-3nm). Our junctions behave as typical magnetic tunneling junctions, as the conductance spectra were always asymmetric, and a few showed bound state peaks at finite bias which shifted with field according to the classical Tedrow and Meservey theory. In many of our SFS junctions with a barrier thickness of 10-20nm, a prominent zero bias conductance peak (ZBCP) has been observed. This peak was found to decrease linearly with magnetic field, as expected for Andreev and CARE scattering. In contrast, in SF junctions, the observed ZBCP was found to decrease versus field almost exponentially, in agreement with the Anderson-Appelbaum theory of scattering by magnetic states in F. Thus, transport in our SFS and SF junctions depends strongly on the size of the F layer. We also found that in both cases, the ZBCP height at zero field decreased with increasing magnetic order of the domains in F, in agreement with the CARE mechanism

  10. The electrocatalytic application of RuO2 in direct borohydride fuel cells

    International Nuclear Information System (INIS)

    Yang, Xiaodong; Wei, Xiaozhu; Liu, Ce; Liu, Yongning

    2014-01-01

    A high electrocatalytic activity of RuO 2 has been found for oxygen reduction reaction (ORR) in the cathode of direct borohydride fuel cells (DBFCs). The electron transfer number n during the ORR changes from 3.58 to 3.86 and the percentage of the intermediate product H 2 O 2 decreases from 20.8% to 7.2% correspondingly when the disk potential scans negatively from −0.39 V to −0.8 V versus Hg/HgO. Peak power densities of 425 mW cm −2 has been obtained at 60 °C, when RuO 2 has been used as a cathodic catalyst in DBFCs. RuO 2 displays low sensitivity to the BH 4 − oxidation in DBFCs. Moreover, RuO 2 , as a cathodic catalyst, demonstrates a superb stability during a 200-h durability test. The identical X-ray diffraction (XRD) patterns of the RuO 2 before and after the durability test also prove its stability. - Highlights: • RuO 2 exhibits oxygen reduction reaction (ORR) activity in an alkaline solution. • RuO 2 provides 3.58–3.86 electron transfer number during the ORR. • Direct borohydride fuel cell (DBFC) with RuO 2 cathode displays a peak power density of 425 mW cm −2 at 60 °C. • DBFC with RuO 2 cathode exhibits a superb stability during a 200-h durability test

  11. Structural study of caesium-based britholites Sr7La2Cs(PO4)5(SiO4)F2

    International Nuclear Information System (INIS)

    Boughzala, K.; Gmati, N.; Bouzouita, K.; Ben Cherifa, A.; Gravereau, P.

    2010-01-01

    Several studies demonstrated the ability of britholites to retain radionuclides such as the caesium and actinides. Therefore, three compounds with formulas Sr 8 LaCs(PO 4 ) 6 F 2 , Sr 7 La 2 Cs(PO 4 ) 5 (SiO 4 )F 2 and Sr 2 La 7 Cs(SiO 4 ) 6 F 2 , were prepared by solid state reaction. However, it seems that only the mono-silicated composition was obtained in a pure state. In this present work, the X-ray diffraction and magnetic nuclear resonance have been used to investigate the structure for this composition. The results showed that in fact this phase was not pure, but it was mixed with a secondary phase, SrLaCs(PO 4 ) 2 . The refinement by the Rietveld method allowed also to precise the distribution of La 3+ and Cs + ions between the two cationic sites of the apatite. (authors)

  12. Microfabrication of SrRuO3 thin films on various oxide substrates using LaAlO3/BaOx sacrificial bilayers

    Science.gov (United States)

    Harada, Takayuki; Tsukazaki, Atsushi

    2018-02-01

    Oxides provide various fascinating physical properties that could find use in future device applications. However, the physical properties of oxides are often affected by formation of oxygen vacancies during device fabrication processes. In this study, to develop a damage-free patterning process for oxides, we focus on a lift-off process using a sacrificial template layer, by which we can pattern oxide thin films without severe chemical treatment or plasma bombardment. As oxides need high thin-film growth temperature, a sacrificial template needs to be made of thermally stable and easily etchable materials. To meet these requirements, we develop a sacrificial template with a carefully designed bilayer structure. Combining a thermally and chemically stable LaAlO3 and a water-soluble BaOx, we fabricated a LaAlO3/BaOx sacrificial bilayer. The patterned LaAlO3/BaOx sacrificial bilayers were prepared on oxide substrates by room-temperature pulsed laser deposition and standard photolithography process. The structure of the sacrificial bilayer can be maintained even in rather tough conditions needed for oxide thin film growth: several hundred degrees Celsius under high oxygen pressure. Indeed, the LaAlO3/BaOx bilayer is easily removable by sonication in water. We applied the lift-off method using the LaAlO3/BaOx sacrificial bilayer to a representative oxide conductor SrRuO3 and fabricated micron-scale Hall-bar devices. The SrRuO3 channels with the narrowest line width of 5 μm exhibit an almost identical transport property to that of the pristine film, evidencing that the developed process is beneficial for patterning oxides. We show that the LaAlO3/BaOx lift-off process is applicable to various oxide substrates: SrTiO3, MgO, and Al2O3. The new versatile patterning process will expand the range of application of oxide thin films in electronic and photonic devices.

  13. Displacement waves in La2CuO(4-delta) and La(1.85)Sr(0.15)CuO(4-delta)

    Science.gov (United States)

    Kajitani, Tsuyoshi; Onozuka, Takashi; Yamaguchi, Yasuo; Hirabayashi, Makoto; Syono, Yasuhiko

    1987-11-01

    Structural investigation of orthorhombic La2CuO(4-delta) and La(1.85)Sr(0.15)CuO(4-delta) was carried out by means of X-ray and neutron diffraction on the basis of the space group Cmmm. The periodic expansion/contraction type distortion of CuO6 octahedra was found in both orthorhombic compounds. The distortion is nearly one-dimensional in La2CuO(4-delta) but is two-dimensional in La(1.85)Sr(0.15)CuO(4-delta). The existence of a charge-density wave is highly possible in the structures.

  14. System of Sr(NO2)2-Sr(OH)2-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Popova, T.B.; Berdyukova, V.A.; Khutsistova, F.M.

    1990-01-01

    Sr(NO 2 ) 2 -Sr(OH) 2 -H 2 O system was investigated by the methods of solubility, density, viscosity, electric conductivity and refractometry. It was established that its compoments form the compound 4Sr(NO 2 ) 2 xSr(OH) 2 x8H 2 O. The compound was separated from solution; its density, decomposition temperature were determined; IR spectra and X-ray patterns of prepared and initial compounds were obtained

  15. Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration

    KAUST Repository

    Baby, Rakhi Raghavan; Ché n, Wěi; Hedhili, Mohamed N.; Cha, Dong Kyu; Alshareef, Husam N.

    2014-01-01

    -dimensional network with exceptional supercapacitor performance in standard two electrode configuration. Dramatic improvement in the rate capacity of the Co3O4 nanosheets is achieved by electrodeposition of nanocrystalline, hydrous RuO 2 nanoparticles dispersed

  16. Control of oxygen octahedral rotation in BiFeO3 films using modulation of SrRuO3 bottom electrode layer

    Science.gov (United States)

    Lee, Sungsu; Jo, Ji Young

    2015-03-01

    Oxygen octahedral rotation of multiferroic BiFeO3 (BFO) has attracted great attention due to changes of electrical and magnetic properties. Coupling of octahedral rotation in BFO-bottom electrode layer interface remains unexplored. Recently, there have been reported the control of octahedral rotation in SrRuO3 (SRO) film on SrTiO3 (001) substrate by coherently controlling the oxygen pressure during growth and interfacial coupling. Here we demonstrate that the octahedral rotation of BFO film is changed using tetragonal a0a0c- tilted-SRO bottom electrodes. In this work, BFO/SRO heterostructure is fabricated to SrTiO3 (001) single crystal substrates by pulsed laser deposition at different oxygen partial pressures. The rotation pattern of FeO6 and the structural symmetry are identified from half-integer reflections using high-resolution X-ray diffraction. The effects depending on octahedral tilting of BFO films on the magnetic and ferroelectric properties will be presented.

  17. Spray pyrolysed Ru:TiO2 thin film electrodes prepared for electrochemical supercapacitor

    Science.gov (United States)

    Fugare, B. Y.; Thakur, A. V.; Kore, R. M.; Lokhande, B. J.

    2018-04-01

    Ru doped TiO2 thin films are prepared by using 0.06 M aqueous solution of potassium titanium oxalate (pto), and 0.005 M aqueous solution of ruthenium tri chloride (RuCl3) precursors. The deposition was carried on stainless steel (SS) by using well known ultrasonic spray pyrolysis technique (USPT) at 723° K by maintaining the spray rate 12 cc/min and compressed air flow rate 10 Lmin-1. Prepared Ru:TiO2 thin films were characterized by structurally, morphologically and electrochemically. Deposited RuO2 shows amorphous structure and TiO2 shows tetragonal crystal structure with rutile as prominent phase at very low decomposition temperature. SEM micrographs of RuO2 exhibits porous, interconnected, spherical grains type morphology and TiO2 shows porous, nanorods and nanoplates like morphology and also Ru doped TiO2 shows porous, spherical, granular and nanorods type morphology. The electrochemical cyclic voltammetery shows mixed capacitive behavior. The achieved highest value of specific capacitance 2692 F/g was Ru doped TiO2 electrode in 0.5 M H2SO4.

  18. Low temperature thermodynamic investigation of the phase diagram of Sr3Ru2O7

    Science.gov (United States)

    Sun, D.; Rost, A. W.; Perry, R. S.; Mackenzie, A. P.; Brando, M.

    2018-03-01

    We studied the phase diagram of Sr3Ru2O7 by means of heat capacity and magnetocaloric effect measurements at temperatures as low as 0.06 K and fields up to 12 T. We confirm the presence of a new quantum critical point at 7.5 T which is characterized by a strong non-Fermi-liquid behavior of the electronic specific heat coefficient Δ C /T ˜-logT over more than a decade in temperature, placing strong constraints on theories of its criticality. In particular logarithmic corrections are found when the dimension d is equal to the dynamic critical exponent z , in contrast to the conclusion of a two-dimensional metamagnetic quantum critical end point, recently proposed. Moreover, we achieved a clear determination of the new second thermodynamic phase adjoining the first one at lower temperatures. Its thermodynamic features differ significantly from those of the dominant phase and characteristics expected of classical equilibrium phase transitions are not observed, indicating fundamental differences in the phase formation.

  19. Spin-Orbital Excitations in Ca_{2}RuO_{4} Revealed by Resonant Inelastic X-Ray Scattering

    Directory of Open Access Journals (Sweden)

    L. Das

    2018-03-01

    Full Text Available The strongly correlated insulator Ca_{2}RuO_{4} is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K-edge resonant inelastic x-ray scattering study of the antiferromagnetic Mott insulating state of Ca_{2}RuO_{4}. A set of low-energy (about 80 and 400 meV and high-energy (about 1.3 and 2.2 eV excitations are reported, which show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band-Mott scenario and explore in detail the nature of its exotic excitations. Guided by theoretical modeling, we interpret the low-energy excitations as a result of composite spin-orbital excitations. Their nature unveils the intricate interplay of crystal-field splitting and spin-orbit coupling in the band-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by Hund’s coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca_{2}RuO_{4}.

  20. Optimized photoluminescence of SrB 2O 4:Eu 3+ red-emitting phosphor by charge compensation

    Science.gov (United States)

    Zhao, Lai-Shi; Liu, Jie; Wu, Zhan-Chao; Kuang, Shao-Ping

    2012-02-01

    A novel red-emitting phosphor, SrB 2O 4:Eu 3+, was synthesized by high temperature solid-state reaction and its photoluminescence properties were studied. The emission spectrum consists of four major emission bands. The emission peaks are located at 593, 612, 650 and 703 nm, corresponding to the 5D0 → 7F1, 5D0 → 7F2, 5D0 → 7F3 and 5D0 → 7F4 typical transitions of Eu 3+, respectively. The effects of Eu 3+ doping content and charge compensators (Li +, Na +, K +) on photoluminescence of SrB 2O 4:Eu 3+ phosphor were studied. The results show that the emission intensity can be affected by above factors and Na + is the optimal charge compensator for SrB 2O 4:Eu 3+. The photoluminescence of NaSrB 2O 4:Eu 3+ was compared with that of Y 2O 2S:Eu 3+. It implies that SrB 2O 4:Eu 3+ is a good candidate as a red-emitting phosphor pumped by near-ultraviolet (NUV) InGaN chip for fabricating white light-emitting diodes (WLEDs).

  1. Effect of B-site cation stoichiometry on electrical fatigue of RuO2//Pb(ZrxTi1-x)O3//RuO2 capacitors

    International Nuclear Information System (INIS)

    Al-Shareef, H.N.; Tuttle, B.A.; Warren, W.L.; Headley, T.J.; Dimos, D.; Voigt, J.A.; Nasby, R.D.

    1996-01-01

    There have been numerous reports that Pb(Zr x Ti 1-x )O 3 (PZT) thin-film capacitors with RuO 2 electrodes and compositions near the morphotropic phase boundary exhibit minimal decrease in switched polarization with electric-field cycling. We show that the fatigue performance of RuO 2 //PZT//RuO 2 capacitors strongly depends on PZT film composition. Specifically, we demonstrate that the rate of polarization fatigue increases with increasing Ti content for PZT thin films of tetragonal crystal symmetry deposited on RuO 2 electrodes. As the Ti content of the PZT films increased, the film gain morphology changed from columnar to granular and the volume percent of a fluorite-type second phase decreased. These microstructural trends and the possibility that the electrode material acts as a sink for oxygen vacancies are discussed to explain the fatigue dependence on B-site cation ratio for PZT films with RuO 2 electrodes. copyright 1996 American Institute of Physics

  2. Li4SrCa(SiO4)2:Ce3+, a highly efficient near-UV and blue emitting orthosilicate phosphor

    International Nuclear Information System (INIS)

    Zhang, Jilin; Zhang, Weilu; Qiu, Zhongxian; Zhou, Wenli; Yu, Liping; Li, Zhiqiang; Lian, Shixun

    2015-01-01

    High quantum efficiency is a vital parameter of phosphors for practical application. An efficient near-UV and blue emitting phosphor Li 4 SrCa(SiO 4 ) 2 :Ce 3+ was synthesized by a traditional solid-state reaction, and luminescent properties were studied in detail. The Ce 3+ -activated phosphor can emit both a near-UV light centred at 345 nm and a blue light peaking at 420 nm when Ce 3+ occupies the Sr and Ca site, respectively. The internal quantum efficiency (IQE) of Li 4 SrCa(SiO 4 ) 2 :0.03Ce 3+ is as high as 97% under the excitation at 288 nm, while the external quantum efficiency (EQE) is 66%. The IQE and EQE values of Li 4 SrCa(SiO 4 ) 2 :0.03Ce 3+ under the excitation at 360 nm are 82% and 31%, respectively. - Highlights: • Phosphor Li 4 SrCa(SiO 4 ) 2 :Ce 3+ emits a near-UV (345 nm) and a blue light (420 nm). • Emission band at 345 nm originates from Ce 3+ on Sr site. • Emission band at 420 nm belongs to Ce 3+ on Ca site. • Internal quantum efficiency is 97% for Li 4 SrCa(SiO 4 ) 2 :0.03Ce 3+ excited at 288 nm

  3. Crystal structure, thermally stability and photoluminescence properties of novel Sr10(PO4)6O:Eu2+ phosphors

    International Nuclear Information System (INIS)

    Guo, Qingfeng; Liao, Libing; Mei, Lefu; Liu, Haikun

    2015-01-01

    A series of novel luminescent phosphors Sr 10 (PO 4 ) 6 O:Eu 2+ with apatite structure were synthesized via a high temperature solid-state reaction. The phase structure, photoluminescence (PL) properties, the PL thermal stability, as well as the fluorescence decay curves of the samples were investigated to characterize the resulting samples, and the selected Sr 9.97 (PO 4 ) 6 O:0.03Eu 2+ phosphor exhibits strong thermal quenching resistance, retaining the luminance of 88.73% at 150 °C. The quenching concentration of Eu 2+ in Sr 10 (PO 4 ) 6 O was about 0.03 attributing to the dipole–quadrupole interaction. The Sr 10 (PO 4 ) 6 O:Eu 2+ phosphor exhibited a broad-band blue emission at 439 nm upon excitation at 346 nm. The results indicate that Sr 10 (PO 4 ) 6 O:Eu 2+ phosphors have potential applications as near UV-convertible phosphors for white-light UV LEDs. - Graphical abstract: Sr 10 (PO 4 ) 6 O:Eu 2+ phosphors have potential applications as near UV-convertible phosphors for white-light UV LEDs. - Highlights: • Sr 9.97 (PO 4 ) 6 O:0.03Eu 2+ phosphor exhibits strong thermal quenching resistance. • Two different Eu 2+ emission centers exists in Sr 10 (PO 4 ) 6 O. • The activation energy was also estimated for the Eu 2+ luminescence center

  4. Angular dependence of the upper critical field in Bi2Sr2CuO6+δ

    International Nuclear Information System (INIS)

    Vedeneev, S.I.; Ovchinnikov, Yu.N.

    2002-01-01

    The angular dependence of the upper critical field has been investigated in a wide range of temperatures in very high-quality Bi 2 Sr 2 CuO 6+δ single crystals with critical temperature ≅ 9 K in magnetic fields up to 28 T. Although the typical value of the normal state resistivity ratio ≅ 10 4 , the anisotropy ratio of the upper critical fields is much smaller. A model is proposed based on a strong anisotropy and a small transparency between superconducting layers [ru

  5. Thermodynamics of phase formation and heavy quasiparticles in Sr{sub 3}Ru{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Rost, Andreas W.; Bruin, Jan A.N.; Tian, Demian; Mackenzie, Andrew P. [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY169SS (United Kingdom); Grigera, Santiago A. [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY169SS (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, UNLP-CONICET, La Plata 1900 (Argentina); Perry, Robin S. [SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH93JZ (United Kingdom); Raghu, Sri [Department of Physics and Astronomy, Rice University, Houston, Texas, 77005 (United States); Kivelson, Steve A. [Department of Physics, Stanford University, Stanford, California, 94305 (United States)

    2012-07-01

    The itinerant metamagnet Sr{sub 3}Ru{sub 2}O{sub 7} has motivated a wide range of experimental and theoretical work in recent years because of the discovery of an unusual low temperature phase which is forming in the vicinity of a proposed quantum critical point. A major challenge is the investigation of the thermodynamic properties of both this unusual phase and the fluctuations associated with the quantum critical point. Here we report on new specific heat measurements extending previous work to the wider phase diagram. Our results shed light on two important aspects of the system. First we discuss the entropic details of the formation of heavy quasiparticles as a function of temperature in this compound relevant for a wide class of materials. Secondly we present thermodynamic evidence for the anomalous low temperature phase forming directly out of the critical high temperature phase.

  6. Li2Sr4B12O23: A new alkali and alkaline-earth metal mixed borate with [B10O18]6− network and isolated [B2O5]4− unit

    International Nuclear Information System (INIS)

    Zhang Min; Pan Shilie; Han Jian; Yang Zhihua; Su Xin; Zhao Wenwu

    2012-01-01

    A novel ternary lithium strontium borate Li 2 Sr 4 B 12 O 23 crystal with size up to 20 mm×10 mm×4 mm has been grown via the top-seeded solution growth method below 730 °C. Single-crystal XRD analyses showed that Li 2 Sr 4 B 12 O 23 crystallizes in the monoclinic space group P2 1 /c with a=6.4664(4) Å, b=8.4878(4) Å, c=15.3337(8) Å, β=102.02(3)°, Z=2. The crystal structure is composed of [B 10 O 18 ] 6− network and isolated [B 2 O 5 ] 4− unit. The IR spectrum further confirmed the presence of both BO 3 and BO 4 groups. TG-DSC and Transmission spectrum were reported. Band structures and density of states were calculated. - Graphical abstract: A new phase, Li 2 Sr 4 B 12 O 23 , has been discovered in the ternary M 2 O–M′O–B 2 O 3 (M=alkali-metal, M′=alkalineearth metal) system. The crystal structure consists of [B 10 O 18 ] 6− network and isolated [B 2 O 5 ] 4− unit. Highlights: ► Li 2 Sr 4 B 12 O 23 is a a novel borate discovered in the M 2 O–M′O–B 2 O 3 (M=alkali-metal, M′=alkaline-earth metal) system. ► Li 2 Sr 4 B 12 O 23 crystal structure has a three-dimensional crystal structure with [B 10 O 18 ] 6− network and isolated [B 2 O 5 ] 4− unit. ► Sr 1 and Sr 2 are located in two different channels constructed by 3 ∞ [B 10 O 18 ] network.

  7. Displacement waves in La/sub 2/CuO(4-delta) and La(1. 85)Sr(0. 15)CuO(4-delta)

    Energy Technology Data Exchange (ETDEWEB)

    Kajitani, T.; Onozuka, T.; Yamaguchi, Y.; Hirabayashi, M.; Syono, Y.

    1987-11-01

    Structural investigation of orthorhombic La/sub 2/CuO(4-delta) and La(1.85)Sr(0.15)CuO(4-delta) was carried out by means of X-ray and neutron diffraction on the basis of the space group Cmmm. The periodic expansion/contraction type distortion of CuO6 octahedra was found in both orthorhombic compounds. The distortion is nearly one-dimensional in La/sub 2/CuO(4-delta) but is two-dimensional in La(1.85)Sr(0.15)CuO(4-delta). The existence of a charge-density wave is highly possible in the structures. 20 references.

  8. Enthalpy increment measurements of Sr3Zr2O7(s) and Sr4Zr3O10(s)

    International Nuclear Information System (INIS)

    Banerjee, A.; Dash, S.; Prasad, R.; Venugopal, V.

    1998-01-01

    Enthalpy increment measurements on Sr 3 Zr 2 O 7 (s) and Sr 4 Zr 3 O 10 (s) were carried out using a Calvet micro-calorimeter. The enthalpy increment values were least squares analyzed with the constraints that H 0 (T)-H 0 (298.15 K) at 298.15 K equals to zero and C p 0 (298.15 K) equals to the estimated value. The dependence of enthalpy increment with temperature is given. (orig.)

  9. Analysis of the direct contamination pathway of 85Sr, 103Ru and 134Cs in soybean

    International Nuclear Information System (INIS)

    Yim, K. M.; Park, D. W.; Park, H. K.; Choi, Y. H.; Choi, S. D.; Lee, C. M.

    2001-01-01

    A solution containing 85 Sr, 103 Cs was sprayed to the aerial part of the soybean plant in a greenhouse at 6 different times before harvest and the direct contamination pathway of the radionuclide analyzed. Plant interception factor showed little difference among radionuclides. The maximum value was 0.93, which was observed at the middle growth stage. Translocation factors 85 Sr, 103 Cs in the soybean seed at harvest were in the range of 4.5x10 -5 ∼2.5x10 -3 , 6.0x10 -5 ∼2.3x10 -4 and 4.5x10 -3 ∼3.0x10 -1 , respectively. They were highest at the 3rd application for 85 Sr and 134 Cs and at the 2nd application for 103 Ru. Translocation factors of 85 Sr and 103 Ru in the soybean shell tended to increase with decreasing time interval between application and harvest but that of 134 Cs was highest at the 2nd application. The fractions of the initial deposition that remained in the soybeam plant at harvest were in the range of 0.14 ∼15.2% for 85 Sr and 103 Ru, 9.9∼41.9% for 134 Cs. These results can be utilized for predicting the radionuclide concentration in mature soybean plant and deciding counter-measures when an accidental deposition of the radionuclides occurs during the growing season of soybean

  10. High Q ceramics in the ACe2(MoO4)4 (A = Ba, Sr and Ca) system for LTCC applications

    International Nuclear Information System (INIS)

    Surjith, A.; Ratheesh, R.

    2013-01-01

    Highlights: ► Solid state synthesis of phase pure ACe 2 (MoO 4 ) 4 (A = Ba, Sr and Ca) ceramics. ► Structural and microstructural evaluation of the synthesized ceramic materials. ► Microwave dielectric property studies of ACe 2 (MoO 4 ) 4 (A = Ba, Sr and Ca) ceramics. ► Structure-property correlation through Laser Raman studies. - Abstract: Novel low temperature sinterable high Q ceramic systems ACe 2 (MoO 4 ) 4 (A = Ba, Sr and Ca) have been prepared through solid state ceramic method. The effect of ionic radii of alkaline earth cations on the structure, microstructure and microwave dielectric properties of these ceramics were studied using powder X-ray diffraction, Laser Raman spectroscopy, scanning electron microscopy and Vector Network Analyzer. A structural change from monoclinic to tetragonal structure was observed while substituting Sr 2+ and Ca 2+ cations in place of Ba 2+ . The Sr and Ca analogues possess better microwave dielectric properties compared to BaCe 2 (MoO 4 ) 4 . All the ceramics were well sintered below 840 °C with dielectric constant in the range 10.2–12.3 together with good quality factor. The SrCe 2 (MoO 4 ) 4 ceramic exhibits an unloaded quality factor of 6762 at 8.080662 GHz with a temperature coefficient of resonant frequency of −46 ppm/°C while the CaCe 2 (MoO 4 ) 4 ceramic shows an unloaded quality factor of 7549 at 6.928868 GHz and a temperature coefficient of resonant frequency of −44 ppm/°C.

  11. Syntheses, structures, and physicochemical properties of diruthenium compounds of tetrachlorocatecholate with metal-metal bonded Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) cores (R = CH(3) and C(2)H(5)).

    Science.gov (United States)

    Miyasaka, H; Chang, H C; Mochizuki, K; Kitagawa, S

    2001-07-02

    Metal-metal bonded Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) (R = CH(3) and CH(3)CH(2)) compounds with tetrachlorocatecholate (Cl(4)Cat) have been synthesized in the corresponding alcohol, MeOH and EtOH, from a nonbridged Ru(2+)-Ru(3+) compound, Na(3)[Ru(2)(Cl(4)Cat)(4)(THF)].3H(2)O.7THF (1). In alcohol solvents, compound 1 is continuously oxidized by oxygen to form Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) species. The presence of a characteristic countercation leads to selective isolation of either Ru(3+)(mu-OR)(2)Ru(3+) or Ru(3.5+)(mu-OR)(2)Ru(3.5+) as a stable adduct species. In methanol, Ph(4)PCl and dibenzo-18-crown-6-ether afford Ru(3+)(mu-OMe)(2)Ru(3+) species, [A](2)[Ru(2)(Cl(4)Cat)(4)(mu-OMe)(2)Na(2)(MeOH)(6)] ([A](+) = Ph(4)P(+) (2), [Na(dibenzo-18-crown-6)(H(2)O)(MeOH)](+) (3)), while benzo-15-crown-5-ether provides a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species, [Na(benzo-15-crown-5)(2)][Ru(2)(Cl(4)Cat)(4)(mu-OMe)(2)Na(2)(MeOH)(6)] (4). The air oxidation of 1 in a MeOH/EtOH mixed solvent (1:1 v/v) containing benzo-15-crown-5-ether provides a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species, [Na(benzo-15-crown-5)(H(2)O)][Ru(2)(Cl(4)Cat)(2)(mu-OMe)(2)Na(2)(EtOH)(2)(H(2)O)(2)(MeOH)(2)].(benzo-15-crown-5) (5). Similarly, the oxidation of 1 in ethanol with Ph(4)PCl provides a Ru(3.5+)(mu-OEt)(2)Ru(3.5+) species, (Ph(4)P)[Ru(2)(Cl(4)Cat)(4)(mu-OEt)(2)Na(2)(EtOH)(6)] (7). A selective formation of a Ru(3+)(mu-OEt)(2)Ru(3+) species, (Ph(4)P)(2)[Ru(2)(Cl(4)Cat)(4)(mu-OEt)(2)Na(2)(EtOH)(2)(H(2)O)(2)] (6), is found in the presence of pyrazine or 2,5-dimethylpyrazine. The crystal structures of these compounds, except 2 and 7, have been determined by X-ray crystallography, and all compounds have been characterized by several spectroscopic and magnetic investigations. The longer Ru-Ru bonds are found in the Ru(3+)(mu-OR)(2)Ru(3+) species (2.606(1) and 2.628(2) A for 3 and 6, respectively) compared with those of Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species (2.5260(6) A and 2.514(2

  12. [Effect of charge compensation on emission spectrum of Sr2SiO4 : Dy3+ phosphor].

    Science.gov (United States)

    Li, Pan-Lai; Wang, Zhi-Jun; Yang, Zhi-Ping; Guo, Qing-Lin

    2009-01-01

    The Sr2SiO4 : Dy3+ phosphor was synthesized by the high temperature solid-state reaction method in air. Dy2O3 (99.9%), SiO2 (99.9%), SrCO3 (99.9%), Li2CO3 (99.9%), Na2CO3 (99.9%) and K2CO3 (99.9%) were used as starting materials, and the Dy3+ doping concentration was 2 mol%. The emission spectrum was measured by a SPEX1404 spectrophotometer, and all the characterization of the phosphors was conducted at room temperature. The emission spectrum of Sr2 SiO4 : Dy3+ phosphor showed several bands centered at 486, 575 and 665 nm under the 365 nm excitation. The effect of Li+, Na+ and K+ on the emission spectra of Sr2SiO4 : Dy3+ phosphor was studied. The results show that the location of the emission spectrum of Sr2SiO4 : Dy3+ phosphor was not influenced by Li+, Na+ and K+. However, the emission spectrum intensity was greatly influenced by Li+, Na+ and K+, and the evolvement trend was monotone with different charge compensation, i. e. the emission spectrum intensity of Sr2SiO4 : Dy3+ phosphor firstly increased with increasing Li+ concentration, then decreased. However the charge compensation concentration corresponding to the maximum emission intensity was different with different charge compensation, and the concentration is 4, 3 and 3 mol% corresponding to Li+, Na+ and K+, respectively. And the theoretical reason for the above results was analyzed.

  13. RuO2-TiO2 mixed oxides prepared from the hydrolysis of the metal alkoxides

    International Nuclear Information System (INIS)

    Osman, Julian R.; Crayston, Joe A.; Pratt, Allin; Richens, David T.

    2008-01-01

    The hydrolysis of ruthenium alkoxide/titanium tetraethoxide mixtures to gels and powders containing 30-40 mol% Ru was investigated. Basic or neutral conditions led to powders consisting of 2-10 nm diameter crystalline RuO 2 nanoparticles embedded in a matrix of crystalline (anatase) and amorphous TiO 2 . Acid hydrolysis conditions gave gels containing smaller, amorphous RuO 2 nanoparticles (1-3 nm). In all samples the RuO 2 nanoparticles tended to clump into aggregates up to 0.5 μm across. Acid or neutral hydrolysis of ruthenium ethoxide gave samples which displayed lower surface Ru:Ti ratios as measured by XPS compared to the bulk (XRF), and also contained more low-valent Ru (as measured by XRF), probably due to incomplete hydrolysis of the precursors. These samples also contained more Ru metal after calcination (XRD). Calcination (450 deg. C) was accompanied by Ru-promoted combustion of organic material and led to crystalline (anatase) TiO 2 and Ti x Ru 1-x O 2 solid solution (rutile phase)

  14. Enhanced photocurrent in RuL2(NCS)2/di-(3-aminopropyl)-viologen/SnO2/ITO system

    International Nuclear Information System (INIS)

    Lee, Wonjoo; Kwak, Chang Gon; Mane, R.S.; Min, Sun Ki; Cai, Gangri; Ganesh, T.; Koo, Gumae; Chang, Jinho; Cho, Byung Won; Kim, Sei-Ki; Han, Sung-Hwan

    2008-01-01

    A Ru(2,2'-bipyridine-4,4'-dicarboxylic acid) 2 (NCS) 2 [RuL 2 (NCS) 2 ]/di-(3-aminopropyl)-viologen (DAPV)/tin oxide (SnO 2 ) system was prepared and applied to extensive photocurrent generation with its maximum surface area. The SnO 2 thin films on tin-doped indium oxide (ITO) were prepared using the chemical bath deposition method. Then, RuL 2 (NCS) 2 /DAPV on SnO 2 /ITO was easily prepared using self-assembled monolayers (SAMs). The photocurrent measurement of the system showed an excellent photocurrent of 20 nA cm -2 under the air mass 1.5 conditions (100 mW cm -2 ), which was increased by a factor of four compared to ones without SnO 2 layers

  15. Luminescent and morphological study of Sr2CeO4 blue phosphor prepared from oxalate precursors

    International Nuclear Information System (INIS)

    Ferrari, Jefferson L.; Pires, Ana M.; Serra, Osvaldo A.; Davolos, Marian R.

    2011-01-01

    Luminescent and morphological studies of Sr 2 CeO 4 blue phosphor prepared from cerium-doped strontium oxalate precursor are reported. Powder samples were prepared from 5 and 25 mol% Ce 3+ -doped strontium oxalate as well as from a mechanical mixture of strontium oxalate and cerium oxalate at a 4:1 ratio, respectively. All the samples were characterized by XRD, IR, PLS, and SEM. The luminescent and structural properties of the Sr 2 CeO 4 material are little affected by the SrCO 3 remaining from precursors. The Sr 2 CeO 4 material consists in one-dimensional chains of edge-sharing CeO 6 octahedra that are linked together by Sr 2+ ions. The carbonate ion might be associated with oxygen ions of the linear chain, and also with the oxygen atoms located in the equatorial position, which consequently affects the charge transfer bands between O 2- and Ce 4+ . As observed by SEM, the morphological changes are related to each kind of precursor and thermal treatment, along with irregular powder particles within the size range 0.5-2 μm.

  16. Reduced cobalt phases of ZrO2 and Ru/ZrO2 promoted cobalt catalysts and product distributions from Fischer–Tropsch synthesis

    International Nuclear Information System (INIS)

    Kangvansura, Praewpilin; Schulz, Hans; Suramitr, Anwaraporn; Poo-arporn, Yingyot; Viravathana, Pinsuda; Worayingyong, Attera

    2014-01-01

    Highlights: • Ru/ZrO 2 , ZrO 2 promoted Co/SiO 2 for FTS were reduced by time resolved XANES. • Reduced catalysts resulted from XANES reduction showed the mixed phases of Co, CoO. • The highest percentages of CoO resulted from the high ZrO 2 promoted Co/SiO 2 . • Product distributions of 1-alkenes, iso-alkanes indicated sites for FTS and the 2° reaction. • Alkene readsorption were high corresponding to the high CoO forming branched alkanes. - Abstract: Co/SiO 2 catalysts were promoted with 4% and 8% ZrO 2 . Small amounts (0.07%) of Ru were impregnated onto 4%ZrO 2 /Co/SiO 2 . Catalysts resulting from time-resolved XANES reduction showed mixed phases of Co and CoO, with the highest percentages of Co resulting from Ru/4%ZrO 2 /Co/SiO 2 and the highest percentages of CoO resulting from 8%ZrO 2 /Co/SiO 2 . Product distributions of n-alkanes, iso-alkanes and alkenes during Fischer–Tropsch Synthesis (FTS) were used to investigate the catalyst performance of 4%ZrO 2 /Co/SiO 2 8%ZrO 2 /Co/SiO 2 and Ru/4%ZrO 2 /Co/SiO 2 . FTS steady state was studied by growth probabilities of n-alkane products. No 1-alkene was produced from Ru/4%ZrO 2 /Co/SiO 2 , indicating high availability of Fischer–Tropsch sites for long chain hydrocarbon growth, despite high methanation. Branched alkanes produced from the secondary reaction were related to the high CoO percentages on 8%ZrO 2 /Co/SiO 2 . Alkene readsorption sites were high, corresponding to the high CoO percentages, causing a high probability of forming branched alkane products

  17. Influence of dopant concentration on spectroscopic properties of Sr2CeO4:Yb nanocrystals

    Science.gov (United States)

    Stefanski, M.; Kędziorski, A.; Hreniak, D.; Strek, W.

    2017-12-01

    Optical properties of Sr2CeO4:Yb nanocrystals synthesized via Pechini's method are reported. The samples were characterized by X-ray diffraction data measurements. The unit cell parameters were determined using Rietveld refinement. It was found that they decreased with increasing amount of Yb ions. The absorption, excitation, emission spectra and luminescence decay profiles of the Sr2CeO4:Yb nanocrystals were investigated. It was observed that optical properties were strongly dependent on Yb concentration. It was found that Yb3+-O2- charge transfer transitions have great influence on the absorption spectra. It can be seen in the emission spectra that in addition to standard bands/lines corresponding to Ce-O metal-to-ligand charge transfer of Sr2CeO4 and f-f transitions of Yb3+, there is emission band centered at 744 nm. Its intensity depends on the concentration of the dopant. Recorded decay times become shorter with increasing dopant concentration due to the Yb3+ concentration quenching. Excitation spectra indicate the energy transfer from Ce-O charge transfer states to Yb3+2F5/2 state. The issue of appearance of down-conversion process in Sr2CeO4:Yb nanocrystals is considered.

  18. Synthesis and characterization of Sr2CeO4: Eu3+ phosphor by different forms

    International Nuclear Information System (INIS)

    Murthy, K.V.R.; Rao, Ch. Atchyutha; Suresh, K.; Ratna Kumar, B.W.; Nageswara Rao, B.; Poornachandra Rao, N.V.; Subba Rao, B.

    2011-01-01

    High temperature solid state reaction method was explored to synthesize undoped Sr 2 CeO 4 and Eu 3+ RE doped Sr 2 CeO 4 phosphor using inorganic materials taking in three different forms like, form (i) Strontium Carbonate (SrCO 3 ), Cerium Oxide (CeO 2 ), (ii) Strontium Nitrate (Sr(NO 3 ) 2 ), Cerium Oxide (CeO 2 ) and (iii) Strontium Nitrate (Sr(NO 3 ) 2 ), Cerium Nitrate (Ce(NO 3 ) 3 .6(NH 2 .CO.NH 2 ) in stoichiometric proportions of Sr:Ce as 2:1 and ground into a fine powder using agate mortar and pestle about an hour. The grounded samples were placed in an alumina crucible and fired at 1200 deg C for 3 hours in a muffle furnace with a heating rate of 5 deg C/min. To investigate the crystal structure, phase, morphology and luminescent properties of the synthesized phosphors XRD, SEM, Photoluminescence (PL) spectra, TL and CIE techniques were used. The Photoluminescence (PL) emission and excitation spectra were measured by Spectrofluorophotometer (SHIMADZU, RF-5301 PC) using Xenon lamp as excitation source. To identify the crystal phase, XRD analysis was carried out with a powder diffractometer (Rigaku-D/max 2500) using CuKα radiation. The microstructures of the samples were studied using a scanning electron microscopy (SEM) (XL 30 CP Philips). All the analysis was recorded at room temperature. We have compared the results of the prepared samples by different forms. From the XRD analysis it was found that the prepared phosphors are mostly in single phase of Sr 2 CeO 4 with an orthorhombic structure. From the XRD data, using Scherrer's formula the calculated average crystallite size is (i) ∼ 28 nm (ii) ∼ 9 nm (iii) ∼ 7 nm using FWHM. This indicates that, the prepared phosphors via high temperature solid state reaction method is in nano size. Sr 2 CeO 4 exhibits photoluminescence due to the charge transfer (CT) mechanism. The sample displays a broad excitation spectrum range from ∼ 220 to 400 nm. Under 350 nm excitation, the undoped Sr 2 CeO 4 shows

  19. Synthesis of Nanocrystalline RuO2(60%)-SnO2(40%)Powders by Amorphous Citrate Route

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nanometer RuO2-SnO2was synthesized by the citrate-gel method using RuCl3, SnCl4 as cation sources, citric acid as complexing agent and anhydrous ethanol as solvent. The structures of the derived powders were characterized by thermogravimetric and differential thermal analysis, X-ray diffraction, transmission electron microscope, and Brunauer-Emmett-Teller surface area measurement. The pure, fine and amorphous powders was obtained at 160℃. The materials calcined at above 400 ℃ were composed of rutile-type oxide phases having particle sizes of fairly narrow distribution and good thermal resistant properties. By adding SnO2 to RUO2, the Ru metallic phase can be effectively controlled under a traditional temperature of preparation for dimensional stable anode.

  20. Multiparticle tunneling in the field electron emission from Bi2CaSr2Cu2O8

    International Nuclear Information System (INIS)

    Maslov, V.I.

    2001-01-01

    The studies results on the statistics of the field electron emission (FEE) from the Bi 2 CaSr 2 Cu 2 O 8 oxide superconductor are considered. The multielectron tunneling by FEE is identified. The analysis of the spectral curves and FEE statistics dependence on the experimental conditions is carried out. The possible mechanism of the multiparticle effect is discussed [ru

  1. SrAl2O4:Eu2+ (1%) luminescence under UV, VUV and electron beam excitation

    Science.gov (United States)

    Nazarov, M.; Mammadova, S.; Spassky, D.; Vielhauer, S.; Abdullayeva, S.; Huseynov, A.; Jabbarov, R.

    2018-01-01

    This paper reports the luminescence properties of nanosized SrAl2O4:Eu2+ (1%) phosphors. The samples were prepared by combustion method at 600 °C, followed by annealing of the resultant combustion ash at 1000 °C in a reductive (Ar + H2) atmosphere. X-ray diffraction (XRD), photo luminescence (PL) and cathodoluminescence (CL) analysis and thermal stimulated luminescence (TSL) method were applied to characterize the phosphor. For the first time a peak at 375 nm was observed in CL spectra of SrAl2O4:Eu2+ (1%) nanophosphors. Luminescence excitation spectra analysis have shown that this peak is related to crystal defects. Also in TSL curve one strong peak was observed in the region above room temperature (T = 325 K), which is attributed to lattice defects, namely oxygen vacancies. A green LED was fabricated by the combination of the SrAl2O4:Eu2+ (1%) nanosized phosphor and a 365 nm UV InGaN chip.

  2. Improved photoluminescence properties of a new green SrB2O4:Tb3+ phosphor by charge compensation

    International Nuclear Information System (INIS)

    Wu, Zhan-Chao; Wang, Ping; Liu, Jie; Li, Chao; Zhou, Wen-Hui; Kuang, Shao-Ping

    2012-01-01

    Highlights: ► New green-emitting SrB 2 O 4 :Tb 3+ phosphor was synthesized by solid-state reaction. ► Li + , Na + , and K + can all increase luminescent intensity of SrB 2 O 4 :Tb 3+ . ► Na + is the optimal charge compensator among Li + , Na + and K + . ► SrB 2 O 4 :Tb 3+ is a promising green phosphor for fabricating WLED. -- Abstract: A new green-emitting SrB 2 O 4 :Tb 3+ phosphor was synthesized by solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed all the samples with orthorhombic formation of SrB 2 O 4 . The excitation spectra indicate the phosphor can be effectively excited by near ultraviolet (NUV) light, making it attractive as conversion phosphor for LED applications. The phosphor exhibits a bright green emission with the highest photoluminescence (PL) intensity at 544 nm excited by 378 nm light. The critical quenching concentration of Tb 3+ in SrB 2 O 4 :Tb 3+ is about 10 mol%. The effects of charge compensators (Li + , Na + , and K + ) on photoluminescence of SrB 2 O 4 :Tb 3+ were also studied. The results show that the emission intensity can be improved by all the three charge compensators and Na + is the optimal one for SrB 2 O 4 :Tb 3+ . All properties show that the phosphor is a promising green phosphor pumped by NUV InGaN chip for fabricating white light-emitting diodes (WLEDs).

  3. Coexistence of ferromagnetism and spin glass freezing in the site-disordered kagome ferrite SrSn2Fe4O11

    Science.gov (United States)

    Shlyk, Larysa; Strobel, S.; Farmer, B.; De Long, L. E.; Niewa, R.

    2018-05-01

    Single-crystal x-ray diffraction refinements indicate SrSn2Fe4O11 crystallizes in the hexagonal R-type ferrite structure with non-centrosymmetric space group P63mc and lattice parameters a = 5.9541(2) Å, c = 13.5761(5) Å, Z = 2 (R(F) = 0.034). Octahedrally coordinated sites are randomly occupied by Sn and Fe; whereas tetrahedrally coordinated sites are exclusively occupied by Fe, whose displacement from ideal trigonal-bipyramidal coordination causes the loss of inversion symmetry. DC magnetization data indicate SrSn2Fe4O11 single crystals undergo ferro- or ferri-magnetic order below a transition temperature TC = 630 K with very low coercive fields Hc ⊥ = 0.27 Oe and Hc// = 1.5 Oe at 300 K, for applied fields perpendicular and parallel to the c-axis, respectively. The value for TC is exceptionally high, and the coercive fields exceptionally low, among the known R-type ferrites. Enhanced coercivity and thermomagnetic hysteresis suggest the onset of short-range, spin glass order occurs below Tf = 35 K. Optical measurements indicate a band gap of 0.8 eV, consistent with wide-gap semiconducting behavior and a previously established empirical correlation between the semiconducting gap and TC for R-type ferrites based upon Ru.

  4. Two-Magnon Raman Scattering and Pseudospin-Lattice Interactions in Sr_{2}IrO_{4} and Sr_{3}Ir_{2}O_{7}.

    Science.gov (United States)

    Gretarsson, H; Sung, N H; Höppner, M; Kim, B J; Keimer, B; Le Tacon, M

    2016-04-01

    We have used Raman scattering to investigate the magnetic excitations and lattice dynamics in the prototypical spin-orbit Mott insulators Sr_{2}IrO_{4} and Sr_{3}Ir_{2}O_{7}. Both compounds exhibit pronounced two-magnon Raman scattering features with different energies, line shapes, and temperature dependencies, which in part reflect the different influence of long-range frustrating exchange interactions. Additionally, we find strong Fano asymmetries in the line shapes of low-energy phonon modes in both compounds, which disappear upon cooling below the antiferromagnetic ordering temperatures. These unusual phonon anomalies indicate that the spin-orbit coupling in Mott-insulating iridates is not sufficiently strong to quench the orbital dynamics in the paramagnetic state.

  5. Testing dependence of anomalous Hall effect on resistivity in SrRuO3 by its increase with electron irradiation

    NARCIS (Netherlands)

    Haham, N.; Konczykowski, M.; Kuiper, Bouwe; Koster, Gertjan; Klein, L.

    2013-01-01

    We measure the anomalous Hall effect (AHE) in several patterns of the itinerant ferromagnet SrRuO 3 before and after the patterns are irradiated with electrons. The irradiation increases the resistivity of the patterns due to the introduction of point defects and we find that the AHE coefficient R s

  6. Local structure distortion induced by Ti dopants boosting the pseudocapacitance of RuO2-based supercapacitors

    Science.gov (United States)

    Chen, I.-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming

    2015-09-01

    Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary

  7. Solid state speciation of uranium and its local structure in Sr2CeO4 using photoluminescence spectroscopy

    Science.gov (United States)

    Sahu, M.; Gupta, Santosh K.; Jain, D.; Saxena, M. K.; Kadam, R. M.

    2018-04-01

    An effort was taken to carry our speciation study of uranium ion in technologically important cerate host Sr2CeO4 using time resolved photoluminescence spectroscopy. Such studies are not relevant only to nuclear industry but can give rich insight into fundamentals of 5f electron chemistry in solid state systems. In this work both undoped and varied amount of uranium doped Sr2CeO4 compound is synthesized using complex polymerization method and is characterized systematically using X-ray diffraction (XRD), Raman spectroscopy, photoluminescence spectroscopy and scanning electron microscopy (SEM). Both XRD and Raman spectroscopy confirmed the formation of pure Sr2CeO4 which has tendency to decompose peritectically to SrCeO3 and SrO at higher temperature. Uranium doping is confirmed by XRD. Uranium exhibits a rich chemistry owing to its variable oxidation state from +3 to +6. Each of them exhibits distinct luminescence properties either due to f-f transitions or ligand to metal charge transfer (LMCT). We have taken Sr2CeO4 as a model host lattice to understand the photophysical characteristics of uranium ion in it. Emission spectroscopy revealed the stabilization of uranium as U (VI) in the form of UO66- (octahedral uranate) in Sr2CeO4. Emission kinetics study reflects that uranate ions are not homogeneously distributed in Sr2CeO4 and it has two different environments due to its stabilization at both Sr2+ as well as Ce4+ site. The lifetime population analysis interestingly pinpointed that majority of uranate ion resided at Ce4+ site. The critical energy-transfer distance between the uranate ion was determined based on which the concentration quenching mechanism was attributed to electric multipolar interaction. These studies are very important in designing Sr2CeO4 based optoelectronic material as well exploring it for actinides studies.

  8. Lorentz transmission electron microscopy on nanometric magnetic bubbles and skyrmions in bilayered manganites La{sub 1.2}Sr{sub 1.8}(Mn{sub 1−y}Ru{sub y}){sub 2}O{sub 7} with controlled magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, D.; Yu, X. Z.; Kaneko, Y. [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Tokunaga, Y.; Arima, T. [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561 (Japan); Nagai, T.; Kimoto, K. [Transmission Electron Microscopy Station and Surface Physics and Structure Unit, National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan); Tokura, Y. [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Department of Applied Physics, University of Tokyo, Tokyo 113-8656 (Japan)

    2015-11-23

    We have investigated nanometric magnetic textures in thin (<150 nm) plates of Ru-doped bilayered manganites La{sub 1.2}Sr{sub 1.8}(Mn{sub 1−y}Ru{sub y}){sub 2}O{sub 7}. Ru substitution for Mn site changes the magnetic anisotropy from in-plane to out-of-plane easy axis type without any significant change of global magnetic and crystal structures. The combination of conventional and Lorentz transmission electron microscopy observations confirms the emergence of magnetic bubbles and skyrmions in the absence of magnetic field. With the changing Ru concentration, systematic changes in the type of magnetic bubbles are observed. A tiny residual magnetic field also affects the generation and the type-change of magnetic bubbles.

  9. Addition of IrO2 to RuO2+TiO2 coated anodes and its effect on electrochemical performance of anodes in acid media

    Directory of Open Access Journals (Sweden)

    Farhad Moradi

    2014-04-01

    Full Text Available Ternary mixed metal oxide coatings with the nominal composition IrxRu(0.6−xTi0.4O2 (x=0, 0.1, 0.2, 0.3 on the titanium substrate were prepared by thermal decomposition of a chloride precursor mixture. Surface morphology and microstructure of the coatings were investigated by Scanning electron microscopy (SEM, Field emission scanning electron microscopy (FE-SEM and X-ray diffraction (XRD analysis. Systematic study of electrochemical properties of these coatings was performed by cyclic voltammetry (CV and polarization measurements. The corrosion behavior of the coatings was evaluated under accelerated conditions (j=2 A cm−2 in acidic electrolyte. The role of iridium oxide admixture in the change of electrocatalytic activity and stability of Ru0.6Ti0.4O2 coating was discussed. Small addition of IrO2 can improve the stability of the RuO2+TiO2 mixed oxide, while the electrocatalytic activity for oxygen evolution reaction (OER is decreased. The shift of redox potentials for Ru0.6Ti0.4O2 electrode that is slightly activated with IrO2 and improvement in the stability can be attributed to the synergetic effect of mixed oxide formation.

  10. High electrochemical performance of RuO_2–Fe_2O_3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material

    International Nuclear Information System (INIS)

    Xiang, Dong; Yin, Longwei; Wang, Chenxiang; Zhang, Luyuan

    2016-01-01

    The electrode materials RuO_2 or RuO_2–Fe_2O_3 nanoparticle embedded OMC (ordered mesoporous carbon) are prepared by the method of impregnation and heating in situ. The mesoporous structure optimized the electron and proton conducting pathways, leading to the enhanced capacitive performances of the composite materials. The average nanoparticle size of RuO_2 and RuO_2–Fe_2O_3 is 2.54 and 1.96 nm, respectively. The fine RuO_2–Fe_2O_3 nanoparticles are dispersed evenly in the pore channel wall of the two-dimensional mesoporous carbon without blocking the mesoporous channel, and they have a higher specific surface area, a larger pore volume, a proper pore size and a small charge transfer impedance value. The special electrochemical capacitance of RuO_2–Fe_2O_3/OMC tested in acid electrolyte (H_2SO_4) is measured to be as high as 1668 F g"−"1, which is higher than that of RuO_2/OMC. Meanwhile, the supercapacitor properties of the RuO_2–Fe_2O_3/OMC composites show a good cycling performance of 93% capacitance retention (3000 cycles), a better reversibility, a higher energy density (134 Wh kg"−"1) and power density (4000 W kg"−"1). The composite electrode of RuO_2–Fe_2O_3/OMC, which combines a double layer capacitance with pseudo-capacitance, is proved to be suitable for ideal high performance electrode material of a hybrid supercapacitor application. - Highlights: • The nanocomposites of RuO_2–Fe_2O_3/OMC are prepared by impregnation and heating in situ. • The fine RuO_2–Fe_2O_3 nanoparticles distribute in the pore channel wall of OMC. • We discuss a reversible redox reaction mechanism of RuO_2–Fe_2O_3/OMC in acid solutions. • RuO_2–Fe_2O_3 nanoparticles embedded OMC shows a higher supercapacitive performance.

  11. The system Ba(H2PO4)2-Sr(H2PO4)2-H3PO4(30%)-H2O at 25, 40 and 60 deg C

    International Nuclear Information System (INIS)

    Taranenko, N.P.; Serebrennikova, G.M.; Stepin, B.D.; Oboznenko, Yu.V.

    1982-01-01

    The system Ba(H 2 PO 4 ) 2 -Sr(H 2 PO 4 ) 2 -H 3 PO 4 (30%)-H 2 O (25 deg C) belongs to eutonic type systems. Solubility isotherms of salt components at 40 and 60 deg C are calculated. Polytherms (25-60 deg C) of solubility of monosubstituted barium and strontium phosphates in 30-60% H 3 PO 4 are obtained. The value of cocrystallization coefficient of Sr 2 + and Ba(H 2 PO 4 ) 2 Dsub(Sr)=0.042+-0.005 remains stable in the temperature range of 25-60 deg C and concentrations 30-60% phosphoric acid at initial content [Sr 2 + ]=1x10 - 2 mass%

  12. Raman Scattering from Higgs Mode Oscillations in the Two-Dimensional Antiferromagnet Ca_{2}RuO_{4}.

    Science.gov (United States)

    Souliou, Sofia-Michaela; Chaloupka, Jiří; Khaliullin, Giniyat; Ryu, Gihun; Jain, Anil; Kim, B J; Le Tacon, Matthieu; Keimer, Bernhard

    2017-08-11

    We present and analyze Raman spectra of the Mott insulator Ca_{2}RuO_{4}, whose quasi-two-dimensional antiferromagnetic order has been described as a condensate of low-lying spin-orbit excitons with angular momentum J_{eff}=1. In the A_{g} polarization geometry, the amplitude (Higgs) mode of the spin-orbit condensate is directly probed in the scalar channel, thus avoiding infrared-singular magnon contributions. In the B_{1g} geometry, we observe a single-magnon peak as well as two-magnon and two-Higgs excitations. Model calculations using exact diagonalization quantitatively agree with the observations. Together with recent neutron scattering data, our study provides strong evidence for excitonic magnetism in Ca_{2}RuO_{4} and points out new perspectives for research on the Higgs mode in two dimensions.

  13. Atomistic growth phenomena of reactively sputtered RuO2 and MnO2 thin films

    International Nuclear Information System (INIS)

    Music, Denis; Bliem, Pascal; Geyer, Richard W.; Schneider, Jochen M.

    2015-01-01

    We have synthesized RuO 2 and MnO 2 thin films under identical growth conditions using reactive DC sputtering. Strikingly different morphologies, namely, the formation of RuO 2 nanorods and faceted, nanocrystalline MnO 2 , are observed. To identify the underlying mechanisms, we have carried out density functional theory based molecular dynamics simulations of the growth of one monolayer. Ru and O 2 molecules are preferentially adsorbed at their respective RuO 2 ideal surface sites. This is consistent with the close to defect free growth observed experimentally. In contrast, Mn penetrates the MnO 2 surface reaching the third subsurface layer and remains at this deep interstitial site 3.10 Å below the pristine surface, resulting in atomic scale decomposition of MnO 2 . Due to this atomic scale decomposition, MnO 2 may have to be renucleated during growth, which is consistent with experiments

  14. Preparation and characterization of RuO2/polypyrrole electrodes for supercapacitors

    Science.gov (United States)

    Li, Xiang; Wu, Yujiao; Zheng, Feng; Ling, Min; Lu, Fanghai

    2014-11-01

    Polypyrrole (PPy) embedded RuO2 electrodes were prepared by the composite method. Precursor solution of RuO2 was coated on tantalum sheet and annealed at 260 °C for 2.5 h to develop a thin film. PPy particles were deposited on RuO2 films and dried at 80 °C for 12 h to form composite electrode. Microstructure and morphology of RuO2/PPy electrode were characterized using Fourier transform infrared spectrometer, X-ray diffraction and scanning electron microscopy, respectively. Our results confirmed that counter ions are incorporated into RuO2 matrix. Structure of the composite with amorphous phase was verified by X-ray diffraction. Analysis by scanning electron microscopy reveals that during grain growth of RuO2/PPy, PPy particle size sharply increases as deposition time is over 20 min. Electrochemical properties of RuO2/PPy electrode were calculated using cyclic voltammetry. As deposition times of PPy are 10, 20, 25 and 30 min, specific capacitances of composite electrodes reach 657, 553, 471 and 396 F g-1, respectively. Cyclic behaviors of RuO2/PPy composite electrodes are stable.

  15. Electronic parameters of Sr2M2O7 (M = V, Nb, Ta) and Sr-O chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, Victor V.; Grivel, Jean-Claude; Zhang, Zhaoming

    2010-01-01

    XPS measurements were carried out on Sr2Nb2O7 and Sr2Ta2O7 powder samples, which were synthesized using standard solid state method. The binding energy differences between the O 1s and cation core level, Δ(O-Sr) = BE(O 1s) - BE(Sr 3d5/2), was used to characterize the valence electron transfer...... on the formation of the Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and Sr2Ta2O7 and the previously published structural and XPS data for other Sr-oxide compounds. A new empirical relationship between Δ(O-Sr) and L(Sr-O) was obtained. Possible applications...

  16. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    Science.gov (United States)

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Study of effect of co-doping on CIE coordinates of strontium cerium oxide phosphor (Sr_2CeO_4)

    International Nuclear Information System (INIS)

    Zambare, Pradip Z.; Ahirrao, P.B.; Chaudhari, D.B.; Zambare, A.P.; Mahajan, O.H.

    2016-01-01

    The phosphors Sr_2CeO_4 doped europium and gadolinium were synthesized by modified solid state diffusion method. From emission spectra, the CIE coordinates (x, y) of x% Eu"3"+ and 0.5 %Gd"3"+ doped Sr_2CeO_4 phosphors was calculated. In present paper, we investigate luminescence properties and colorimetric study of Sr_2CeO_4 doped 0.5% Gd"3"+, x% Eu"3"+. The phosphors Sr_2CeO_4 doped europium and gadolinium were successfully synthesized by modified solid state diffusion method. X-ray diffraction (XRD) profile confirms the orthorhombic nature of Eu"3"+ and 0.5% Gd"3"+ doped Sr_2CeO_4 phosphors. In addition, scanning electron Microscopy (SEM), Fourier-Transformation IR spectroscopy (FTIR), was also used to study the synthesized phosphors

  18. Enhancement of photoluminescence properties and modification of crystal structures of Si3N4 doping Li2Sr0.995SiO4:0.005Eu2+ phosphors

    International Nuclear Information System (INIS)

    Song, Kaixin; Zhang, Fangfang; Chen, Daqin; Wu, Song; Zheng, Peng; Huang, Qingming; Jiang, Jun; Xu, Junming; Qin, Huibin

    2015-01-01

    Highlights: • Si 3 N 4 modified Li 2 Sr 0.995 SiO 4 :0.005Eu 2+ phosphors were prepared. • The luminescence intensity of Li 2 Sr 0.995 SiO 4 :Eu 2+ was enhanced by doping Si 3 N 4 . • The fluorescence decay times and thermal stability were enhanced by doping Si 3 N 4 . - Abstract: Si 3 N 4 modified Li 2 Sr 0.995 SiO 4 :0.005Eu 2+ (Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ ) phosphors were synthesized with the conventional solid-state reaction in the reduced atmosphere. The crystal structure and vibrational modes were analyzed by X-ray diffraction, Raman scattering spectroscopy and Rietveld crystal structure refinement. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra showed that Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ powder exhibited a broad yellow emission band centered at 560 nm under the excitation of 460 nm visible light, due to the 4f 6 5d 1 → 4f 7 transition of Eu 2+ . The partial nitridation of Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ (x = 0.01) phosphors led to a large enhancement in the luminescence intensity, as much as 190%. At the same time, the fluorescence decay behavior curves further showed that the photoluminescence efficiencies of Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ phosphors were enhanced by addition of Si 3 N 4 . The temperature quenching characteristics confirmed that the oxynitride based Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ showed slightly higher stability. It is implied that Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ phosphors had a possible potential application on white LEDs to match blue light chips

  19. Red/blue-shift dual-directional regulation of α-(Ca, Sr)2SiO4:Eu(2+) phosphors resulting from the incorporation content of Eu(2+)/Sr(2+) ions.

    Science.gov (United States)

    Lu, Zhijuan; Mao, Zhiyong; Chen, Jingjing; Wang, Dajian

    2015-09-21

    In this work, tunable emission from green to red and the inverse tuning from red to green in α-(Ca, Sr)2SiO4:Eu(2+) phosphors were demonstrated magically by varying the incorporation content of Eu(2+) and Sr(2+) ions, respectively. The tunable emission properties and the tuning mechanism of red-shift resulting from the Eu(2+) content as well as that of blue-shift induced by the Sr(2+) content were investigated in detail. As a result of fine-controlling the incorporation content of Eu(2+), the emission peak red-shifts from 541 nm to 640 nm. On the other hand, the emission peak inversely blue-shifts from 640 nm to 546 nm through fine-adjusting the incorporation content of Sr(2+). The excellent tuning characteristics for α-(Ca, Sr)2SiO4:Eu(2+) phosphors presented in this work exhibited their various application prospects in solid-state lighting combining with a blue chip or a near-UV chip.

  20. Investigation of thermoluminescence and electron-vibrational interaction parameters in SrAl2O4:Eu2+, Dy3+ phosphors

    International Nuclear Information System (INIS)

    Pardhi, Shilpa A.; Nair, Govind B.; Sharma, Ravi; Dhoble, S.J.

    2017-01-01

    Combustion synthesis method was employed for the synthesis of green-emitting monoclinic SrAl 2 O 4 :Eu 2+ , Dy 3+ phosphors. The phase-purity of the prepared phosphors were examined using X-ray diffraction (XRD). The prepared phosphors exhibited green light emission with the peak centred at 510 nm, under 350 nm UV excitation. The excitation and emission spectra were analysed and the parameters of electron-vibrational interaction (EVI), such as the Huang–Rhys factor, effective phonon energy and zero-phonon line position were estimated using the spectrum fitting method. Thermoluminescence (TL) behaviour of the as-prepared phosphors were analysed for UV and 137 Cs γ-ray source irradiation. TL glow curves for UV-irradiated SrAl 2 O 4 :Eu 2+ , Dy 3+ phosphors were analysed. - Highlights: • Photoluminescence and thermoluminescence properties of SrAl 2 O 4 :Eu 2+ ,Dy 3+ phosphors were analysed. • Electron-vibrational interaction (EVI) parameters of SrAl 2 O 4 :Eu 2+ ,Dy 3+ phosphors were determined. • The phosphors are found to exhibit green light emission.

  1. Influence of doping on the electronic structure of (La, Sr)2CuO4

    International Nuclear Information System (INIS)

    Howell, R.H.; Fluss, M.J.; Sterne, P.A.; Kaiser, J.H.; Kitazawa, K.; Kojima, H.

    1994-01-01

    High-statistics (>4 x 10 8 counts), room-temperature measurements of the electron positron momentum density of La 2-x Sr x CuO 4 have been performed for samples with Sr concentrations of x = 0.0, 0.1, 0.13, and 0.2. These spectra have been analyzed in conjunction with theoretical calculations of the electron positron momentum density. The metallic samples show features consistent with the presence of a Fermi surface, but its evolution with increasing Sr concentration does not follow the predictions of band theory. These results may indicate the effects of electron-electron correlation on the electron momentum distribution in the Cu-O plane. 12 refs., 2 figs

  2. System of Sr(NO sub 2 ) sub 2 -Sr(OH) sub 2 -H sub 2 O at 25 deg C. Sistema Sr(NO sub 2 ) sub 2 -H sub 2 O pri 25 grad C

    Energy Technology Data Exchange (ETDEWEB)

    Popova, T B; Berdyukova, V A; Khutsistova, F M [Kalmytskij Gosudarstvennyj Univ., Ehlista (USSR) Rostovskij-na-Donu Gosudarstvennyj Univ., Rostov-na-Donu (USSR)

    1990-02-01

    Sr(NO{sub 2}){sub 2}-Sr(OH){sub 2}-H{sub 2}O system was investigated by the methods of solubility, density, viscosity, electric conductivity and refractometry. It was established that its compoments form the compound 4Sr(NO{sub 2}){sub 2}xSr(OH){sub 2}x8H{sub 2}O. The compound was separated from solution; its density, decomposition temperature were determined; IR spectra and X-ray patterns of prepared and initial compounds were obtained.

  3. Ambipolar thermoelectric power of chemically-exfoliated RuO2 nanosheets

    Science.gov (United States)

    Kim, Jeongmin; Yoo, Somi; Moon, Hongjae; Kim, Se Yun; Ko, Dong-Su; Roh, Jong Wook; Lee, Wooyoung

    2018-01-01

    The electrical conductivity and Seebeck coefficient of RuO2 nanosheets are enhanced by metal nanoparticle doping using Ag-acetate solutions. In this study, RuO2 monolayer and bilayer nanosheets exfoliated from layered alkali metal ruthenates are transferred to Si substrates for device fabrication, and the temperature dependence of their conductivity and Seebeck coefficients is investigated. For pristine RuO2 nanosheets, the sign of the Seebeck coefficient changes with temperature from 350-450 K. This indicates that the dominant type of charge carrier is dependent on the temperature, and the RuO2 nanosheets show ambipolar carrier transport behavior. By contrast, the sign of the Seebeck coefficient for Ag nanoparticle-doped RuO2 nanosheets does not change with temperature, indicating that the extra charge carriers from metal nanoparticles promote n-type semiconductor behavior.

  4. Persistent luminescence and thermoluminescence of UV/VIS -irradiated SrAl2O4: Eu2+, Dy3+ phosphor

    International Nuclear Information System (INIS)

    Pereyda-Pierre, C.; Meléndrez, R.; García, R.; Pedroza-Montero, M.; Barboza-Flores, M.

    2011-01-01

    The persistent luminescence and thermoluminescence properties of SrAl 2 O 4 : Eu 2+ , Dy 3+ phosphors excited with UV–VIS light in the 200–500 nm region were investigated. The thermoluminescence glow curve was found to be composed of peaks around 70, 125 and 245 °C. The persistent luminescence and thermoluminescence excitation spectra exhibited a broad band around 300–500 nm centered at 400 and 420 nm respectively. A linear behavior of the integrated thermoluminescence intensity and persistent luminescence versus irradiation time was found for the first 60 s. The charge detrapping from the 70 °C trapping levels was the major contributor to the observed persistent luminescence at room temperature. The SrAl 2 O 4 : Eu 2+ , Dy 3+ phosphors have suitable properties to be applied as storage and persistent luminescence UV–VIS irradiation dose phosphor. -- Highlights: ► SrAl 2 O 4 :Eu 2+ , Dy 3+ persistent luminescence and thermoluminescence was measured. ► The phosphor was irradiated with UV–VIS photons in the 200–500 nm wavelength range. ► SrAl 2 O 4 :Eu 2+ , Dy 3+ behaves adequately as persistent and storage UV–VIS dosimeter. ► The persistent luminescence dosimetry does not require heat or light stimulation.

  5. Subsolidus Phase Relations of the SrO-In2O3-CuO System in Air

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Thydén, Karl Tor Sune

    2013-01-01

    The subsolidus phase relations of the SrO-In2O3-CuO system were investigated at 900 °C in air. Under these conditions, five binary oxide phases are stable: Sr2CuO3, SrCuO2, Sr14Cu24O41, In2Cu2O5 and SrIn2O4. The pseudo-ternary section is characterised by six three-phase regions and is dominated...

  6. Removal of nitrogen oxides, 106RuO4 vapors and radioactive aerosols from the gas originating in radioactive wastes solidification

    International Nuclear Information System (INIS)

    Kepak, F.; Pecak, V.; Uher, E.; Kanka, J.; Koutova, S.; Matous, V.

    1985-01-01

    Procedures and equipment for the disposal of nitrogen oxides, RuO 4 vapors and radioactive aerosols of 90 Sr, 137 Cs, 60 Co and 125 Sb contained in the gas generated in the solidification of high- and intermediate-level radioactive wastes were tested on models. Nitrogen oxides were disposed of by absorption and chemical decomposition in various solutions of which the best results gave solutions of ammonium salts. Absorption in solutions, physical and chemical sorption on inorganic sorbents were tested for the disposal of RuO 4 . Aerosols were disposed of by absorption in absorption media with subsequent filtration. Of fibrous filter materials, Czechoslovak AEROS-2 and RA-2 filter papers were proven in the tests. Attention was also devoted to granular filter materials of which silica gel was chosen. On the basis of laboratory tests a multi-step treatment system was designed which consists of a condenser, a nitrogen oxide absorber, a liquid aerosol separator, absorption columns and aerosol filters. The whole system has been manufactured on pilot plant scale and the different parts are being produced. (Z.M.)

  7. Nanocrystalline Sr2CeO4 thin films grown on silicon by laser ablation

    International Nuclear Information System (INIS)

    Perea, Nestor; Hirata, G.A.

    2006-01-01

    Blue-white luminescent Sr 2 CeO 4 thin films were deposited by using pulsed laser ablation (λ = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr 2 CeO 4 grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr 2 CeO 4 however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems

  8. The Importance of Surface IrOx in Stabilizing RuO2 for Oxygen Evolution

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Pedersen, Anders Filsøe; Paoli, Elisa Antares

    2018-01-01

    consisting of RuO2 thin films with sub-monolayer (1, 2 and 4 Å) amounts of IrOx deposited on top. Operando extended X-ray absorption fine structure (EXAFS) on the Ir L-3 edge revealed a rutile type IrO2 structure with some Ir sites occupied by Ru, IrOx being at the surface of the RuO2 thin film. We monitor...... corrosion on IrOx/RuO2 thin films by combining electrochemical quartz crystal microbalance (EQCM) with inductively coupled mass spectrometry (ICP-MS). We elucidate the importance of sub-monolayer surface IrOx in minimizing Ru dissolution. Our work shows that we can tune the surface properties of active OER...

  9. Ag doped (Bi1.6Pb0.4Sr2CaCu2O8+δ textured rods

    Directory of Open Access Journals (Sweden)

    Díez, J. C.

    2008-06-01

    Full Text Available In this work, superconducting samples of (Bi1.6Pb0.4Sr2CaCu2O8+δ with Ag additions have been studied. (Bi1.6Pb0.4Sr2CaCu2O8+δ + x wt.% Ag (with x = 0, 1 and 3 powders were synthesized using a sol-gel method. The obtained powders were used as precursors to fabricate long textured cylindrical bars through a floating zone melting method. A drastic change on the microstructure has been found when comparing with undoped Bi2Sr2CaCu2O8+δ samples. The results showed that electrical resistivity at room temperature, critical current as well as flexural strength are improved when Ag is added to these Pb doped samples, while critical temperature does not change. On the other hand, it has been found that samples with composition (Bi1.6Pb0.4Sr2CaCu2O8+δ + Ag shown E-I curves with very high sharpness values on the zone of the superconducting to normal transition, reaching n-values (E∼In as high as 45 at 65K.Se han preparado polvos cerámicos de composición (Bi1.6Pb0.4Sr2CaCu2O8+δ + x % Ag en peso (con x = 0, 1 y 3 mediante un proceso sol-gel. Estos polvos se han utilizado para fabricar precursores que se texturaron por medio del método de fusión zonal flotante. Se ha encontrado un gran cambio en la microestructura cuando se compara con muestras de composición pura Bi2Sr2CaCu2O8+δ. Tanto la resistividad eléctrica a temperatura ambiente, como la corriente crítica, así como la resistencia a flexión se mejoran cuando la Ag se adiciona a estas muestras dopadas con Pb, mientras que no se observa cambio en la temperatura crítica. Por otra parte, se ha encontrado que las muestras de composición (Bi1.6Pb0.4Sr2CaCu2O8+δ + Ag presentan una gran pendiente de la curva E-I en la zona de transición entre el estado superconductor y el estado normal. Con estas composiciones, se han encontrado valores de n (E∼In de hasta 45 a 65K.

  10. Anisotropic Magnetoresistance in Antiferromagnetic Sr_{2}IrO_{4}

    Directory of Open Access Journals (Sweden)

    C. Wang

    2014-11-01

    Full Text Available We report point-contact measurements of anisotropic magnetoresistance (AMR in a single crystal of antiferromagnetic Mott insulator Sr_{2}IrO_{4}. The point-contact technique is used here as a local probe of magnetotransport properties on the nanoscale. The measurements at liquid nitrogen temperature reveal negative magnetoresistances (up to 28% for modest magnetic fields (250 mT applied within the IrO_{2} a-b plane and electric currents flowing perpendicular to the plane. The angular dependence of magnetoresistance shows a crossover from fourfold to twofold symmetry in response to an increasing magnetic field with angular variations in resistance from 1% to 14%. We tentatively attribute the fourfold symmetry to the crystalline component of AMR and the field-induced transition to the effects of applied field on the canting of antiferromagnetic-coupled moments in Sr_{2}IrO_{4}. The observed AMR is very large compared to the crystalline AMRs in 3d transition metal alloys or oxides (0.1%–0.5% and can be associated with the large spin-orbit interactions in this 5d oxide while the transition provides evidence of correlations between electronic transport, magnetic order, and orbital states. The finding of this work opens an entirely new avenue to not only gain a new insight into physics associated with spin-orbit coupling but also to better harness the power of spintronics in a more technically favorable fashion.

  11. Can one observe by μ SR the transition from uncorrelated to correlated spin fluctuations? Example: Nd1.4Ce0.2Sr0.4CuO4

    International Nuclear Information System (INIS)

    Pinkpank, M.; Amato, A.; Gygax, F.N.; Schenck, A.; Henggeler, W.; Fischer, P.

    1997-01-01

    μSR-measurements in ZF and LF on Nd 1.4 Ce 0.2 Sr 0.4 CuO 4-δ show a sharp increase of the depolarisation rate (λ) below ∼ 2K. This increase can be explained by the transition from uncorrelated to correlated spin fluctuations, which is in agreement with results obtained by neutron scattering

  12. Photoluminescence and scintillation properties of Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) crystals

    Science.gov (United States)

    Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    Apatite crystals with chemical compositions of 0.5% Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) were synthesized by the Floating Zone method, and then we evaluated their photoluminescence (PL) and scintillation properties. All the Ce-doped samples exhibited PL and scintillation with an intense broad emission in 400-550 nm in which the origin was attributed to the 5d-4f transition of Ce3+, and the emission peak became broader with increasing the concentration of Lu3+. Both PL and scintillation decay time profiles were best-approximated by a sum of two exponential decay functions, and the origin of slower component was attributed to the 5d-4f transition of Ce3+. In the X-ray induced afterglow measurements, the Ce-doped Sr2(Gd0.4Lu0.6)8(SiO4)6O2 sample exhibited the lowest afterglow level. Furthermore, the Ce-doped Sr2(Gd0.5Lu0.5)8(SiO4)6O2 and Sr2(Gd0.4Lu0.6)8(SiO4)6O2 samples showed a clear full energy deposited peak under 5.5 MeV 241Am α-ray irradiation, and the estimated absolute scintillation light yields were around 290 and 1300 ph/5.5 MeV-α, respectively.

  13. Thermochemical properties of oxides in Y-Ba-Cu-O, Sr-Bi-O, Cu-Nb-O, Sr-Cu-O, Ca-Cu-O, Cu-O and Hg-Ba-Ca-Cu-O systems

    International Nuclear Information System (INIS)

    Moiseev, G.K.; Vatolin, N.A.; Il'inykh, N.I.

    2000-01-01

    Thermochemical properties (ΔH 0 298 , S 0 298 , H 0 298 -H 0 0 , C p (T), C p at T>T melt ) of complex oxides in Y-Ba-Cu-O, Sr-Bi-O, Cu-Nb-O, Sr-Cu-O, Ca-Cu-O, Cu-O and Hg-Ba-Ca-Cu-O systems obtained with application of calculation methods are presented. Nonexperimental methods of estimation, revision and correction of standard formation enthalpies of inorganic compounds are described [ru

  14. Sr3Fe5/4Mo3/4O6.9, an n = 2 Ruddlesen-Popper Phase: Synthesis and Properties

    International Nuclear Information System (INIS)

    Whaley, L.; Lobanov, M.; Sehptyakov, D.; Croft, M.; Ramanujachary, K.; Lofland, S.; Stephens, P.; Her, J.; Van Tendeloo, G.

    2006-01-01

    In a systematic search for an oxygen-stoichiometric phase, Sr 3 (FeMo)O 7 , in a range of iron-to-molybdenum ratios greater than 1:1 that typically give phase mixtures, we have found an n = 2 Ruddlesden-Popper phase, Sr 3 Fe 5/4 Mo 3/4 O 6.9 , as supported by synchrotron powder X-ray diffraction (SPXD), high-resolution transmission electron microscopy (HREM), and powder neutron diffraction (PND) results. By SPXD, this oxygen-deficient, B-site disordered, two-dimensional analogue of Sr2FeMoO6 adopts tetragonal I4/mmm symmetry (a = b = 3.92449(5) Angstroms; c = 20.3423(3) Angstroms) with vacancies at the O(1) oxygen site and with a composition that refines to a nominal stoichiometry Sr 3 Fe 5/4 Mo 3/4 O 6.9 . The two-phase SPXD refinement includes Sr 3 Fe 5/4 Mo 3/4 O 6.9 (95.7%) and a double-perovskite (DP) intergrowth, Sr 2 FeMoO 6 (4.3%), consistent with HREM studies in which DP intergrowths but no individual DP grains were found. The G-type antiferromagnetically (AFM)-ordered structure of the phase, with the magnetic cell a m = √2a ∼ 5.548 Angstroms, c m = c ∼ 20.35 Angstroms, derived from PND data, displays a saturated moment of 2.17(1) μ B at 9 K and an asynchronous decrease of the in-plane component of the Fe/Mo moment (μ xy ), with respect to the out-of-plane moment (μ z ) upon increasing temperature from 9 K up to the Neel temperature, TN ∼ 150 K. No structural transitions were observed over the entire temperature range studied: from 1.5 to 500 K. The temperature-dependent resistivity is consistent with Efros-Shklovskii variable-range hopping, applicable to two ranges of temperature (189 K RT ∼ 3 μ(Omega)·cm). A small negative magnetoresistance is observed (∼2.5%) at 5 T near the ordering temperature (∼150 K). The temperature-dependent magnetic susceptibility shows an inflection between 125 and 150 K, consistent with the AFM ordering temperature (∼150 K) observed by PND. X-ray near-edge spectroscopy data are consistent with formal

  15. Characteristic features of the magnetoresistance in the ferrimagnetic (Sr2FeMoO6-δ) - dielectric (SrMoO4) nanocomposite

    Science.gov (United States)

    Demyanov, S.; Kalanda, N.; Yarmolich, M.; Petrov, A.; Lee, S.-H.; Yu, S.-C.; Oh, S. K.; Kim, D.-H.

    2018-05-01

    Magnetic metal-oxide compounds with high values of magnetoresistance (MR) have attracted huge interest for spintronic applications, among which Sr2FeMoO6-δ (SFMO) has been relatively less known compared to the cobaltites and manganites, despite 100% electrons spin-polarization degree and a high Curie temperature. Here, stable fabrication and systematic analysis of nanocomposites based on SFMO with SrMoO4 dielectric sheaths are presented. SFMO-SrMoO4 nanocomposites were fabricated as follows: synthesis of the SFMO single-phase nanopowders by the modified citrate-gel technique; compaction under high pressure; thermal treatment for sheaths formation around grains. The nanocomposite is observed to exhibit a transitional behavior of conductivity from metallic, which is characteristic for the SFMO to semiconductor one in the temperature range 4 - 300K under magnetic fields up to 10T. A negative MR is observed due to the spin-polarized charge carriers tunneling through dielectric sheaths. MR value reaches 43% under 8T at 10κ. The dielectric sheaths thickness was determined to be about 10 nm by electric breakdown voltage value at current-voltage characteristics curves. The breakdown is found to be a reversible process determined by collisional ionization of dielectric atoms in strong electric field depending on knocked-out electrons from the SrMoO4. It was found that MR changes sign in electric breakdown region, revealing the giant magnetoresistive properties.

  16. Characterization of Donut-Like SrMoO4 Produced by Microwave-Hydrothermal Process

    Directory of Open Access Journals (Sweden)

    Surangkana Wannapop

    2013-01-01

    Full Text Available SrMoO4 hierarchical nanostructures were successfully produced by a one step of 270 W microwave-hydrothermal process of one of the solutions containing three strontium salts [Sr(NO32, Sr(CH3CO22, and SrCl2·6H2O] and (NH46Mo7O24·4H2O for different lengths of time. The as-produced products were characterized by X-ray diffraction, electron microscopy, and spectroscopy. In this research, they were primitive tetragonal structured donut-like SrMoO4, with the main 881 cm−1  ν1(Ag symmetric stretching vibration mode of [MoO4]2− units and 3.92 eV energy gap.

  17. A Renewable and Ultrasensitive Electrochemiluminescence Immunosenor Based on Magnetic RuL@SiO2-Au~RuL-Ab2 Sandwich-Type Nano-Immunocomplexes

    Directory of Open Access Journals (Sweden)

    Ning Gan

    2011-08-01

    Full Text Available An ultrasensitive and renewable electrochemiluminescence (ECL immunosensor was developed for the detection of tumor markers by combining a newly designed trace tag and streptavidin-coated magnetic particles (SCMPs. The trace tag (RuL@SiO2-Au~RuL-Ab2 was prepared by loading Ru(bpy32+(RuL-conjuged secondary antibodies (RuL-Ab2 on RuL@SiO2 (RuL-doped SiO2 doped Au (RuL@SiO2-Au. To fabricate the immunosensor, SCMPs were mixed with biotinylated AFP primary antibody (Biotin-Ab1, AFP, and RuL@SiO2-Au~RuL-Ab2 complexes, then the resulting SCMP/Biotin-Ab1/AFP/RuL@SiO2-Au~RuL-Ab2 (SBAR sandwich-type immunocomplexes were absorbed on screen printed carbon electrode (SPCE for detection. The immunocomplexes can be easily washed away from the surface of the SPCE when the magnetic field was removed, which made the immunosensor reusable. The present immunosensor showed a wide linear range of 0.05–100 ng mL–1 for detecting AFP, with a low detection limit of 0.02 ng mL–1 (defined as S/N = 3. The method takes advantage of three properties of the immunosensor: firstly, the RuL@SiO2-Au~RuL-Ab2 composite exhibited dual amplification since SiO2 could load large amount of reporter molecules (RuL for signal amplification. Gold particles could provide a large active surface to load more reporter molecules (RuL-Ab2. Accordingly, through the ECL response of RuL and tripropylamine (TPA, a strong ECL signal was obtained and an amplification analysis of protein interaction was achieved. Secondly, the sensor is renewable because the sandwich-type immunocomplexes can be readily absorbed or removed on the SPCE’s surface in a magnetic field. Thirdly, the SCMP modified probes can perform the rapid separation and purification of signal antibodies in a magnetic field. Thus, the present immunosensor can simultaneously realize separation, enrichment and determination. It showed potential application for the detection of AFP in human sera.

  18. Luminescence enhancement of (Sr1-x Mx )2 SiO4 :Eu2+ phosphors with M (Ca2+ /Zn2+ ) partial substitution for white light-emitting diodes.

    Science.gov (United States)

    Wang, Yulong; Zhang, Wentao; Gao, Yang; Long, Jianping; Li, Junfeng

    2017-02-01

    Eu 2 + -doped Sr 2 SiO 4 phosphor with Ca 2 + /Zn 2 + substitution, (Sr 1-x M x ) 2 SiO 4 :Eu 2 + (M = Ca, Zn), was prepared using a high-temperature solid-state reaction method. The structure and luminescence properties of Ca 2 + /Zn 2 + partially substituted Sr 2 SiO 4 :Eu 2 + phosphors were investigated in detail. With Ca 2 + or Zn 2 + added to the silicate host, the crystal phase could be transformed between the α-form and the β-form of the Sr 2 SiO 4 structure. Under UV excitation at 367 nm, all samples exhibit a broad band emission from 420 to 680 nm due to the 4f 6 5d 1  → 4f 7 transition of Eu 2 + ions. The broad emission band consists of two peaks at 482 and 547 nm, which correspond to Eu 2 + ions occupying the ten-fold oxygen-coordinated Sr.(I) site and the nine-fold oxygen-coordinated Sr.(II) site, respectively. The luminescence properties, including the intensity and lifetime of Sr 2 SiO 4 :Eu 2 + phosphors, improved remarkably on Ca 2 + /Zn 2 + addition, and promote its application in white light-emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Synthesis and characterization of Sr2Ir1−xMxO4 (M=Ti, Fe, Co) solid solutions

    International Nuclear Information System (INIS)

    Gatimu, Alvin J.; Berthelot, Romain; Muir, Sean; Sleight, Arthur W.; Subramanian, M.A.

    2012-01-01

    The effects of Ti, Fe and Co substitutions for Ir on the structure and on the physical properties of Sr 2 IrO 4 are investigated. A complete solid solution Sr 2 Ir 1−x Ti x O 4 is obtained while both Fe and Co doping are relatively limited. In each case however, the c-axis cell parameter and the initial IrO 6 octahedra tilting decreases with substitution. Doping with Ti, Fe and Co results in a decrease of the magnetic susceptibility and in an increase in the paramagnetic effective moment for Co and Fe doped samples and a suppression of the weak ferromagnetic ordering observed for Sr 2 IrO 4 . - Graphical abstract: Solid solutions of Sr 2 Ir 1−x M x O 4 (M=Ti, Fe, Co) have been synthesized and characterized by powder X-ray diffraction, magnetism and electrical measurements. Changes in the a parameter and decreases in both the c-axis cell parameters and the initial IrO 6 octahedra tilting are found to be correlated. Highlights: ► Solid Solutions of Sr 2 Ir 1−x M x O 4 (M=Ti, Fe, Co) are synthesized. ► The Sr 2 Ir 1−x Ti x O 4 solid solution is complete while those of Fe and Co are relatively limited. ► The change in a cell parameter with substitution is much less than that of the c parameter. ► Decreased tilting and the smaller size of the M cation contrastingly affect the a parameter. ► Doping results in a suppression of the weak ferromagnetic ordering in Sr 2 IrO 4 .

  20. Structural characterization and optical properties of Eu"2"+ and Dy"2"+ doped Sr_2SiO_4 phosphor by solid state reaction method

    International Nuclear Information System (INIS)

    Verma, Durga; Verma, Mohan L.; Upma; Patel, R.P.

    2016-01-01

    Thermoluminescence, SEM, FTIR Divalent dysprosium and europium doped strontium silicate (Sr_2SiO_4) phosphors were synthesized with the high-temperature solid-state reaction technique. The obtained phosphor was well characterized by powder X-ray diffraction, scanning electron microscopy, FTIR, UV-visible spectroscopy and thermoluminescence. The crystal structure of the prepared phosphor has an orthorhombic structure with space group Pnma. From scanning electron microscopy (SEM), agglomerations of particles were observed due to the high temperature synthesis process. The chemical composition of the sintered Sr_2SiO_4:Dy"2"+ and Sr_2SiO_4: Eu"2"+ phosphor was confirmed by energy dispersive X-ray spectroscopy (EDX). The UV-VIS analysis can be thought as a good quality check for the optical behavior of materials. The Fourier transmission infrared spectroscopy (FTIR) confirms the present elements in phosphor. Thermoluminescence study was carried out for the phosphor with UV irradiation show one glow peak. The trapping parameters associated with the prominent glow peak of Sr_2SiO_4:Dy"2"+ and Sr_2SiO_4:Eu"2"+ are calculated using Chen's glow curve method. The release of holes/electrons from defect centers at the characteristic trap site initiates the luminescence process in this material. (author)

  1. An overview on the research of Sr2IrO4-based system probed by X-ray absorption spectroscopy

    Science.gov (United States)

    Cheng, Jie; Zhu, Chaomin; Ma, Jingyuan; Wang, Yu; Liu, Shengli

    2018-03-01

    Investigations of materials with 5d transition metal ions have opened up new paradigms in condensed-matter physics because of their large spin-orbit coupling (SOC) interactions. The typical compound is Sr2IrO4, which attracted much attention due to its similarities to the parent compound of high-Tc cuprate superconductor La2CuO4. Theoretical calculations predicted that the unconventional superconductivity can occur in carrier doped-Sr2IrO4 system. Until now, hundreds of experimental methods were devoted to investigate the carrier doping effect on Sr2IrO4. Synchrotron radiation-based X-ray absorption spectroscopy (XAS) made great contributions to the local lattice and electronic structure, and also the intimate relationship between the local structure and physical properties induced by carrier doping. The aim of this review is a short introduction to the progress of research on Sr2IrO4-based system probed by the unique technique — XAS, including the strength of the SOC, valence changes upon doping and even local lattice structure with atomic level for this Sr2IrO4-based family.

  2. Superconductivity in La1.56Sr0.44CuO4/La2CuO4 Superlattices

    International Nuclear Information System (INIS)

    Bozovic, I.; Suter, A.; Morenzoni, E.; Prokscha, T.; Luetkens, H.; Wojek, B.M.; Logvenov, G.; Gozar, A.

    2011-01-01

    Superlattices of the repeated structure La 1.56 Sr 0.44 CuO 4 /La 2 CuO 4 (LSCO-LCO), where none of the constituents is superconducting, show a superconducting transition of T(prime) c 25 K. In order to elucidate the nature of the superconducting state we have performed a low-energy μSR study. By applying a magnetic field parallel (Meissner state) and perpendicular (vortex state) to the film planes, we could show that superconductivity is sheet like, resulting in a very anisotropic superconducting state. This result is consistent with a simple charge-transfer model, which takes into account the layered structure and the difference in the chemical potential between LCO and LSCO, as well as Sr interdiffusion. Using a pancake-vortex model we could estimate a strict upper limit of the London penetration depth to 380 nm in these superlattices. The temperature dependence of the muon depolarization rate in field cooling experiments is very similar to what is observed in intercalated BSCCO and suggests that vortex-vortex interaction is dominated by electromagnetic coupling but negligible Josephson interaction.

  3. Thin RuO2 conducting films grown by MOCVD for microelectronic applications

    International Nuclear Information System (INIS)

    Froehlich, K.; Cambel, V.; Machajdik, D.; Pignard, S.; Baumann, P. K.; Lindner, J.; Schumacher, M.

    2002-01-01

    We have prepared thin RuO 2 films by MOCVD using thermal evaporation of Ru(thd) 2 (cod) solid precursor. The films were prepared at deposition temperatures between 250 and 500 grad C on silicon and sapphire substrates. Different structure was observed for the RuO 2 films on these substrates; the films on Si substrate were polycrystalline, while X-ray diffraction analysis revealed epitaxial growth of RuO 2 on sapphire substrates. Polycrystalline RuO 2 films prepared at temperatures below 300 grad C on Si substrate exhibit smooth surface and excellent step coverage. Highly conformal growth of the RuO 2 films at low temperature and low pressure results in nearly 100% step coverage for sub-mm features with 1:1 aspect ratio. Resistivity of the polycrystalline RuO 2 at room temperature ranged between 100 and 200 μ x Ω x cm. These films are suitable for CMOS and RAM applications. (Authors)

  4. Structural features of layered iron pnictide oxides (Fe{sub 2}As{sub 2})(Sr{sub 4}M{sub 2}O{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, H., E-mail: tuogino@mail.ecc.u-tokyo.ac.j [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Sato, S.; Matsumura, Y.; Kawaguchi, N.; Ushiyama, K. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Katsura, Y. [Magnetic Materials Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Horii, S. [JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Kochi University of Technology, Kami, Kochi 782-8502 (Japan); Kishio, K.; Shimoyama, J. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan)

    2010-12-15

    Structural features of newly found perovskite-based iron pnictide oxide system have been studied. Compared to REFePnO system, perovskite-based system tend to have smaller Pn-Fe-Pn angle and higher pnictogen height owing to low electronegativity of alkaline earth metal and small repulsive force between pnictogen and oxigen atoms. As-Fe-As angles of (Fe{sub 2}As{sub 2})(Sr{sub 4}Cr{sub 2}O{sub 6}), (Fe{sub 2}As{sub 2})(Sr{sub 4}V{sub 2}O{sub 6}) and (Fe{sub 2}Pn{sub 2})(Sr{sub 4}MgTiO{sub 6}) are close to ideal tetrahedron and those pnictogen heights of about 1.40 A are close to NdFeAsO with optimized carrier concentration. These structural features of this system may lead to realization of high-T{sub c} superconductivity in this system.

  5. Mixed valent perovskites Ba/sub 3/B/sup 3 +/Ru/sub 2/sup(4. 5+)O/sub 9/. Catalytic activity of perovskite oxides with noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Treiber, U; Kemmler-Sack, S; Ehmann, A; Schaller, H U; Duerrschmidt, E; Thumm, I; Bader, H [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1981-10-01

    The black compounds Ba/sub 3/B/sup 3 +/Ru/sub 2/O/sub 9/ crystallize with B/sup 3 +/ = La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Y in a hexagonal BaTiO/sub 3/ structure (6L, sequence (hcc)/sub 2/) with an ordered distribution (1:2 order) of B/sup 3 +/ and ruthenium (BO/sub 6/ single octahedra; Ru/sub 2/O/sub 9/ double groups). The mean oxidation state of ruthenium is about +4.5. The properties are compared with those of other isotypic stacking polytypes Ba/sub 3/B/sup 3 +/M/sub 2/sup(4.5)O/sub 9/ (M/sub 2/ = IrRu, Ir/sub 2/, PtRu) and Ba/sub 3/B/sup 2 +/M/sub 2//sup 5 +/O/sub 9/ (M = Ru, Ir). The results of activity tests concerning the efficiency of perovskite oxides with noble metals in respect of the oxidation of CO or CHsub(x) and the reduction of NOsub(x) are reported.

  6. Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2-TiO2-CaO-Na2O/SrO bioactive glass.

    Science.gov (United States)

    Li, Y; Placek, L M; Coughlan, A; Laffir, F R; Pradhan, D; Mellott, N P; Wren, A W

    2015-02-01

    This study was conducted to determine the influence that network modifiers, sodium (Na+) and strontium (Sr2+), have on the solubility of a SiO2-TiO2-CaO-Na2O/SrO bioactive glass. Glass characterization determined each composition had a similar structure, i.e. bridging to non-bridging oxygen ratio determined by X-ray photoelectron spectroscopy. Magic angle spinning nuclear magnetic resonance (MAS-NMR) confirmed structural similarities as each glass presented spectral shifts between -84 and -85 ppm. Differential thermal analysis and hardness testing revealed higher glass transition temperatures (Tg 591-760 °C) and hardness values (2.4-6.1 GPa) for the Sr2+ containing glasses. Additionally the Sr2+ (~250 mg/L) containing glasses displayed much lower ion release rates than the Na+ (~1,200 mg/L) containing glass analogues. With the reduction in ion release there was an associated reduction in solution pH. Cytotoxicity and cell adhesion studies were conducted using MC3T3 Osteoblasts. Each glass did not significantly reduce cell numbers and osteoblasts were found to adhere to each glass surface.

  7. RuO 2 nanoparticles supported on MnO 2 nanorods as high efficient bifunctional electrocatalyst of lithium-oxygen battery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yue-Feng; Chen, Yuan; Xu, Gui-Liang; Zhang, Xiao-Ru; Chen, Zonghai; Li, Jun-Tao; Huang, Ling; Amine, Khalil; Sun, Shi-Gang

    2016-10-01

    RuO2 nanoparticles supported on MnO2 nanorods (denoted as np-RuO2/nr-MnO2) were synthesized via a two-step hydrothermal reaction. SEM and TEM images both illustrated that RuO2 nanoparticles are well dispersed on the surface of MnO2 nanorods in the as-prepared np-RuO2/nr-MnO2 material. Electrochemical results demonstrated that the np-RuO2/nr-MnO2 as oxygen cathode of Li-O-2 batteries could maintain a reversible capacity of 500 mA h g(-1) within 75 cycles at a rate of 50 mA g(-1), and a higher capacity of 4000 mA h g(-1) within 20 cycles at a rate as high as 200 mA g(-1). Moreover, the cell with the np-RuO2/nr-MnO2 catalyst presented much lower voltage polarization (about 0.58 V at a rate of 50 mA g(-1)) than that measured with only MnO2 nanorods during charge/discharge processes. The catalytic property of the np-RuO2/nr-MnO2 and MnO2 nanorods were further compared by conducting studies of using rotating disk electrode (RDE), chronoamperommetry and linear sweep voltammetry. The results illustrated that the np-RuO2/nr-MnO2 exhibited excellent bifunctional electrocatalytic activities towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Furthermore, in-situ high-energy X-ray diffraction was employed to trace evolution of species on the np-RuO2/nr-MnO2 cathode during the discharge processes. In-situ XRD patterns demonstrated the formation process of the discharge products that consisted of mainly Li2O2. Ex-situ SEM images were recorded to investigate the morphology and decomposition of the sphere-like Li2O2, which could be observed clearly after discharge process, while are decomposed almost after charge process. The excellent electrochemical performances of the np-RuO2/nr-MnO2 as cathode of Li-O-2 battery could be contributed to the excellent bifunctional electrocatalytic activities for both the ORR and OER, and to the one-dimensional structure which would benefit the diffusion of oxygen and the storage of Li2O2 in the discharge process of

  8. Luminescent properties of Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F oxyfluorides

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangmoon, E-mail: spark@silla.ac.kr [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of)

    2012-04-15

    Effective orange Sm{sup 3+}-doped Sr{sub 2.5}Ba{sub 0.5}AlO{sub 4}F phosphors excited at 254 and 408 nm excitation were prepared by the solid-state method. The excitation and emission spectra of Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F and Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4-{alpha}}F{sub 1-{delta}} (x=0.001{approx}0.1) based on photoluminescence spectroscopy are investigated. The defects in anion-deficient Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4-{alpha}}F{sub 1-{delta}} (x=0.001, 0.01) are monitored by broad-band photoluminescence emission centered near 480 nm along with the orange emission transitions of Sm{sup 3+}. CIE values and relative luminescent intensities of Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F and Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4-{alpha}}F{sub 1-{delta}} by changing the Sm{sup 3+} content (x=0.001{approx}0.1) are discussed. - Highlights: Black-Right-Pointing-Pointer Under the excitation of 408 nm competent orange emitting Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F phosphor is initiated. Black-Right-Pointing-Pointer Sm{sup 3+}-activated oxyfluoride phosphor is quite effective to prepare white-emitting light for near-UV LED applications. Black-Right-Pointing-Pointer Defects could be visibly created in the Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}Al O{sub 4}F host lattices when Sm{sup 3+} ions are doped less than 5 mol %. Black-Right-Pointing-Pointer The gradual substitution of Sm{sup 3+} contents in oxyfluoride hosts is amenable to change CIE values and desired emitting intensity.

  9. The effect of CF4 addition on Ru etching with inductively coupled plasma

    International Nuclear Information System (INIS)

    Lim, Kyu Tae; Kim, Dong Pyo; Kim, Kyoung Tae; Kim, Chang Il

    2003-01-01

    Ru thin films were etched in CF 4 /O 2 plasma using an ICP (inductively coupled plasma etching) system. The etch rate of Ru thin films was examined as a function of gas mixing ratio. The maximum etch rate of Ru thin films was 168 nm/min at a CF 4 /O 2 gas mixing ratio of 10 %. The selectivity of Ru over SiO 2 was 1.3. From the OES (optical emission spectroscopy), the optical emission intensity of the O radical had a maximum value at 10 % of CF 4 gas concentration and decrease with further addition of CF 4 gas. From XPS (x-ray photoelectron spectroscopy) analysis, Ru-F bonds by the chemical reaction of Ru and F appeared in the surface of the etched Ru thin film in CF 4 /O 2 chemistry. RuF 3-4 compounds were suggested as a surface passivation layer that reduces the chemical reactions between Ru and O radicals. In a FE-SEM (field emission scanning electron microscope) micrograph, we had an almost perpendicular taper angle of 89 .deg.

  10. Conductivity study of thermally stabilized RuO2/polythiophene nanocomposites

    Science.gov (United States)

    Hebbar, Vidyashree; Bhajantri, R. F.

    2018-04-01

    The polymer nanocomposites of Ruthenium oxide (RuO2) filled polythiophene (PT) were synthesized by polymerization using chemical method. The purity of the synthesized polymer composite is verified using X-Ray diffraction (XRD). The structural discrepancies of the RuO2 filled PT composites are studied by Fourier transform infrared (FT-IR) spectroscopy. The phase transition and thermal stability of the prepared composite is revised by thermal characterization such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DC conductivity of RuO2 filled PT composite in the form of pellets is calculated using current-voltage (I-V) characterization by two-probe method. The enhancement in conductivity with increased RuO2 content in PT matrix is examined, which is the required property for electrical and electronic applications in supercapacitors.

  11. Atomistic growth phenomena of reactively sputtered RuO{sub 2} and MnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis, E-mail: music@mch.rwth-aachen.de; Bliem, Pascal; Geyer, Richard W.; Schneider, Jochen M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, 52074 Aachen (Germany)

    2015-07-07

    We have synthesized RuO{sub 2} and MnO{sub 2} thin films under identical growth conditions using reactive DC sputtering. Strikingly different morphologies, namely, the formation of RuO{sub 2} nanorods and faceted, nanocrystalline MnO{sub 2}, are observed. To identify the underlying mechanisms, we have carried out density functional theory based molecular dynamics simulations of the growth of one monolayer. Ru and O{sub 2} molecules are preferentially adsorbed at their respective RuO{sub 2} ideal surface sites. This is consistent with the close to defect free growth observed experimentally. In contrast, Mn penetrates the MnO{sub 2} surface reaching the third subsurface layer and remains at this deep interstitial site 3.10 Å below the pristine surface, resulting in atomic scale decomposition of MnO{sub 2}. Due to this atomic scale decomposition, MnO{sub 2} may have to be renucleated during growth, which is consistent with experiments.

  12. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode

    OpenAIRE

    Lonsdale, Wade; Wajrak, Magdalena; Alameh, Kamal

    2017-01-01

    A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to...

  13. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    Science.gov (United States)

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Phase formation in Na2MoO4 - MgMoO4 - Cr2(MoO4)3 system

    International Nuclear Information System (INIS)

    Kotova, I.Yu.; Kozhevnikova, N.M.

    1998-01-01

    Interaction within Na 2 MoO 4 - MgMoO 4 - Cr 2 (MoO 4 ) 3 ternary system is studied by X ray phase and DTA methods. State diagram of NaCr(MoO 4 ) 2 - MgMoO 4 section is plotted. Production of ternary molybdates of Na 1-x Mg 1-x Cr 1+x (MoO 4 ) 3 , where 0 ≤ x ≤ 0.3, and NaMg 3 Cr(MoO 4 ) 5 composition is ascertained [ru

  15. Air Plasma-Sprayed La2Zr2O7-SrZrO3 Composite Thermal Barrier Coating Subjected to CaO-MgO-Al2O3-SiO2 (CMAS)

    Science.gov (United States)

    Cai, Lili; Ma, Wen; Ma, Bole; Guo, Feng; Chen, Weidong; Dong, Hongying; Shuang, Yingchai

    2017-08-01

    La2Zr2O7-SrZrO3 composite thermal barrier coatings (TBCs) were prepared by air plasma spray (APS). The La2Zr2O7-SrZrO3 composite TBCs covered with calcium-magnesium-aluminum-silicate (CMAS) powder, as well as the powder mixture of CMAS and spray-dried La2Zr2O7-SrZrO3 composite powder, were heat-treated at 1250 °C in air for 1, 4, 8, and 12 h. The phase constituents and microstructures of the reaction products were characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Experimental results showed that the La2Zr2O7-SrZrO3 composite TBCs had higher CMAS resistance than 8YSZ coating. A dense new layer developed between CMAS and La2Zr2O7-SrZrO3 composite TBCs during interaction, and this new layer consisted mostly of apatite (Ca2La8(SiO4)6O2) and c-ZrO2. The newly developed layer effectively protected the La2Zr2O7-SrZrO3 composite TBCs from further CMAS attack.

  16. 1.3.3. Synthesis, characterization and crystal structure of a new ruthenium polypyridyl complex [Ru(phen2(4,4'-dicarboxy-2,2'- bipyridine]PF6

    Directory of Open Access Journals (Sweden)

    Jiaxi Chen, Jing Sun*, Jufang Kong, Wenxiu Chen and Hongqing Hao*

    2015-03-01

    Full Text Available Abstract: A new Ru(II polypyridyl complex, [Ru(phen2(4,4'-dicarboxy-2,2'-bipyridine]PF6·1.5H2O, was synthesized andcharacterized by single crystal X-ray diffraction, elementalanalyses, electrospray ionization mass spectrometry, infraredspectra, ultraviolet (UV spectra, and emission spectra. Thestructure of the cation [Ru(phen2(4,4'-(COO-,(COOH-2,2'-bpy]+ consists of a six-coordinated ruthenium atom chelated bytwo phen ligands and one 4,4'-dicarboxy-2,2'-bipyridine ligand.The absorption spectrum of the Ru(II complex is characterizedby two intense ligand-centered transitions in the UV region andone metal to ligand charge transfer in the visible region. Moreover,the complex can display luminescence in water at roomtemperature, with maximum emission at 623 nm.Supporting information: Cif file

  17. Synergistic effects for the TiO2/RuO2/Pt photodissociation of water

    Energy Technology Data Exchange (ETDEWEB)

    Blondel, G; Harriman, A; Williams, D

    1983-07-01

    Compressed discs of naked TiO2 or TiO2 coated with a thin film of a noble metal (e.g. Pt) do not photodissociate water upon illumination with UV light, but small amounts of H2 are generated if the TiO2 has been reduced in a stream of H2 at 600 C. Discs prepared from mixtures of TiO2/RuO2 facilitate the UV photodissociation of water into H2 and O2 although the yields are very low. When a thin (about 9 nm) film of Pt is applied to the TiO2/RuO2 discs, the yields of H2 and O2 observed upon irradiation with UV light are improved drastically. 25 references.

  18. Structural and electronic properties of SrAl{sub 2}O{sub 4}:Eu{sup 2+} from density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, M. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Institute of Applied Physics, Academiei Street 5, Chisinau MD-2028 (Moldova, Republic of); Brik, M.G., E-mail: brik@fi.tartu.ee [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Spassky, D. [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Tsukerblat, B. [Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Nor Nazida, A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Faculty of Art and Design, Universiti Teknologi MARA (Perak), Seri Iskandar, 32610 Bandar Baru Seri Iskandar, Perak (Malaysia); Ahmad-Fauzi, M.N. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2013-10-05

    Highlights: •Persistent phosphor SrAl{sub 2}O{sub 4}:Eu{sup 2+} was synthesized and studied. •Ab initio calculations of its electronic properties were performed. •Lowest position of the Eu 4f states in the band gap was determined. •Position of the Eu 4f states agrees with the charge transfer transition. -- Abstract: A stoichiometric micro-sized powder SrAl{sub 2}O{sub 4}:Eu{sup 2+} was synthesized by traditional solid state reaction at 1250 °C. Low-temperature spectroscopic measurements revealed two luminescence bands at 450 nm and 512 nm; their origin was discussed. Theoretical calculations of the structural and optical properties of SrAl{sub 2}O{sub 4}:Eu{sup 2+} in the framework of the density functional theory (DFT) were carried out; the obtained results were compared with the corresponding experimental data. For the first time, the position of the lowest 4f states of Eu in the host’s band gap was calculated for both available Sr positions to be at about 4.5–5 eV above the top of the valence band. Reliability of this result is confirmed by good agreement with the experimental value of the O(2p)–Eu(4f) charge transfer energy, which is equal to about 4.9 eV.

  19. Unidirectional spin density wave state in metallic (Sr1-xLax)2IrO4

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang; Schmehr, Julian L.; Islam, Zahirul; Porter, Zach; Zoghlin, Eli; Finkelstein, Kenneth; Ruff, Jacob P. C.; Wilson, Stephen D.

    2018-01-09

    Materials that exhibit both strong spin–orbit coupling and electron correlation effects are predicted to host numerous new electronic states. One prominent example is the Jeff = 1/2 Mott state in Sr2IrO4, where introducing carriers is predicted to manifest high temperature superconductivity analogous to the S=1/2 Mott state of La2CuO4. While bulk super- conductivity currently remains elusive, anomalous quasiparticle behaviors paralleling those in the cuprates such as pseudogap formation and the formation of a d-wave gap are observed upon electron-doping Sr2IrO4. Here we establish a magnetic parallel between electron-doped Sr2IrO4 and hole-doped La2CuO4 by unveiling a spin density wave state in electron-doped Sr2IrO4. Our magnetic resonant X-ray scattering data reveal the presence of an incom- mensurate magnetic state reminiscent of the diagonal spin density wave state observed in the monolayer cuprate (La1-xSrx)2CuO4. This link supports the conjecture that the quenched Mott phases in electron-doped Sr2IrO4 and hole-doped La2CuO4 support common competing electronic phases.

  20. Thermodynamic modeling of La2O3-SrO-Mn2O3-Cr2O3 for solid oxide fuel cell applications

    DEFF Research Database (Denmark)

    Povoden-Karadeniz, E.; Chen, Ming; Ivas, Toni

    2012-01-01

    The thermodynamic La–Sr–Mn–Cr–O oxide database is obtained as an extension of thermodynamic descriptions of oxide subsystems using the calculation of phase diagrams approach. Concepts of the thermodynamic modeling of solid oxide phases are discussed. Gibbs energy functions of SrCrO4, Sr2.67Cr2O8......, Sr2CrO4, and SrCr2O4 are presented, and thermodynamic model parameters of La–Sr–Mn–Chromite perovskite are given. Experimental solid solubilities and nonstoichiometries in La1xSrxCrO3d and LaMn1xCrxO3d are reproduced by the model. The presented oxide database can be used for applied computational...... thermodynamics of traditional lanthanum manganite cathode with Cr-impurities. It represents the fundament for extensions to higher orders, aiming on thermodynamic calculations in noble symmetric solid oxide fuel cells...

  1. Specific heat and thermodynamic functions of uranovanadates of the M2+(VUO6)2 · nH2O series (M2+ = Mg, Ca, Sr, Ba, Pb)

    International Nuclear Information System (INIS)

    Karyakin, N.V.; Chernorukov, N.G.; Sulejmanov, E.V.; Trostin, V.L.; Alimzhanov, M.I.; Razuvaeva, E.A.

    1999-01-01

    Isobaric specific heat of crystal uranovanadates Ca(VUO 6 ) 2 · 8H 2 O, Ba(VUO 6 ) 2 · 4H 2 O in the temperature range of 10 - 300 K and of M 1 (VUO 6 ) 2 · 5H 2 O, (M 1 = Mg, Ca, Sr, Pb) at 80 -300 K are measured by the method of adiabatic vacuum calorimetry. The functions H 0 (T) - H 0 (0), S 0 (T), G 0 (T) - H 0 (T) for all the above-mentioned compounds in the range of 0 - 300 K have been calculated, the standard entropies and Gibbs functions of uranovanadates formation at 298.15 K being calculated as well [ru

  2. Mixed valent noble metal perovskites Ba/sub 3/B/sup 3 +/Pt/sub x/Ru/sub 2-x//sup 4. 5+/O/sub 9/

    Energy Technology Data Exchange (ETDEWEB)

    Moessner, B; Kemmler-Sack, S; Ehmann, A [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1982-04-01

    In perovskites of type Ba/sub 3/B/sup 3 +/Pt/sub x/Ru/sub 2-x//sup 4.5+/O/sub 9/ the ruthenium can be substituted by platinum up to x = 1. The compounds crystallize in a 1:2 ordered hexagonal BaTiO/sub 3/ structure (sequence (hcc)/sub 2/) with face connected Pt/sub x/Ru/sub 2-x/O/sub 9/ double octahedra. Intensity calculations on powder data of Ba/sub 3/YPt/sub 1/2/Ru/sub 3/2/O/sub 9/ (space group P6/sub 3//mmc) gave a refined, intensity related R' value of 8.6%. The vibrational spectroscopic and catalytic properties are reported.

  3. Green and microwave synthesis of SrAl2O4 nanoparticles by application of pomegranate juice: study and characterization

    Science.gov (United States)

    Riahi-Madvaar, Ramin; Taher, Mohammad Ali; Fazelirad, Hamid

    2017-11-01

    In the present paper, a green method was applied for the synthesis of SrAl2O4 nanostructures with the aid of microwave irradiation and pomegranate juice. SrAl2O4 nanocrystals were obtained when the raw materials were irradiated with 720-900 W for 6-10 min and then calcinated at 550 °C for 5 h. Using pomegranate juice as a dispersion and stabilizing agent, SrAl2O4 nanoparticles have been made with better properties in view of morphology and particle size. Also, the effect of some parameters affecting synthesis process such as microwave power and reaction time on the morphology and particle size of product was studied and optimized. X-ray diffraction and field emission-scanning electron microscopy were used to study and characterize the manufactured SrAl2O4 nanoparticles.

  4. Crystal structures and thermal decomposition of permanganates AE[MnO_4]_2 . n H_2O with the heavy alkaline earth elements (AE=Ca, Sr and Ba)

    International Nuclear Information System (INIS)

    Henning, Harald; Bauchert, Joerg M.; Conrad, Maurice; Schleid, Thomas

    2017-01-01

    Reexamination of the syntheses and crystal structures as well as studies of the thermal decomposition of the heavy alkaline earth metal permanganates Ca[MnO_4]_2 . 4 H_2O, Sr[MnO_4]_2 . 3 H_2O and Ba[MnO_4]_2 are the focus of this work. As an alternative to the very inelegant Muthmann method, established for the synthesis of Ba[MnO_4]_2 a long time ago, we employed a cation-exchange column loaded with Ba"2"+ cations and passed through an aqueous potassium-permanganate solution. We later used this alternative also with strontium- and calcium-loaded columns and all the compounds synthesized this way were indistinguishable from the products of the established methods. Ca[MnO_4]_2 . 4 H_2O exhibiting [CaO_8] polyhedra crystallizes in the orthorhombic space group Pccn with the lattice parameters a=1397.15(9), b=554.06(4) and c=1338.97(9) pm with Z=4, whereas Sr[MnO_4]_2 . 3 H_2O with [SrO_1_0] polyhedra adopts the cubic space group P2_13 with a=964.19(7) pm and Z=4. So the harder the AE"2"+ cation, the higher its demand for hydration in aqueous solution. Consequently, the crystal structure of Ba[MnO_4]_2 in the orthorhombic space group Fddd with a=742.36(5), b=1191.23(7) and c=1477.14(9) pm with Z=8 lacks any crystal water, but contains [BaO_1_2] polyhedra. During the thermal decomposition of Ca[MnO_4]_2 . 4 H_2O, the compound expels up to two water molecules of hydration, before the crystal structure collapses after the loss of the third H_2O molecule at 157 C. The crystal structure of Sr[MnO_4]_2 . 3 H_2O breaks down after the expulsion of the third water molecule as well, but this already occurs at 148 C. For both the calcium and the strontium permanganate samples, orthobixbyite-type α-Mn_2O_3 and the oxomanganates(III,IV) AEMn_3O_6 (AE=Ca and Sr) remain as final decomposition products at 800 C next to amorphous phases. On the other hand, the already anhydrous Ba[MnO_4]_2 thermally decomposes to hollandite-type BaMn_8O_1_6 and BaMnO_3 at 800 C.

  5. Optical anisotropy of Bi2Sr2CaCu2O8

    Science.gov (United States)

    Kim, J. H.; Bozovic, I.; Mitzi, D. B.; Kapitulnik, A.; Harris, J. S., Jr.

    1990-04-01

    The optical anisotropy of Bi2Sr2CaCu2O8 in the 0.08-0.5-eV region is investigated by polarized reflectance measurements on single crystals. A very large anisotropy is found in this spectral region. The in-plane reflectance exhibits metallic behavior, while the c-axis reflectance exhibits insulatorlike behavior. This result is consistent with the large anisotropy found in the resistivity of Bi2Sr2CaCu2O8. Our spectroscopic data suggest that Bi2Sr2CaCu2O8 is a quasi-two-dimensional metal similar to La2-xSrxCuO4.

  6. Gibbs energy formation of Sr5Nb4O15

    International Nuclear Information System (INIS)

    Samui, Pradeep; Padhi, Anyuna; Agarwal, Renu; Kulkarni, S.G.

    2012-01-01

    Ternary oxides of strontium and niobium may form as fission product compounds in an operating nuclear reactor with oxide fuels under certain oxygen potential. Evaluations of thermodynamic stability of these ternary oxides are therefore important for assessment of fission product interactions. Furthermore, thermodynamic data of these oxides are also of relevance because of computation of phase diagram and phase stability of pseudo-ternary systems BaO-SrO-Nb 2 O 5 , SrO-Nb 2 O 5 -TaO 5 etc. in which some of the compounds are potential candidate materials for microwave ceramics with high dielectric constant, electro-optic, pyroelectric and piezoelectric devices. The system Sr-Nb-O contains many ternary oxides out of which we have investigated the thermodynamic parameters for the compound Sr 5 Nb 4 O 15 in the present study

  7. Multiferroic magnetoelectric coupling effect of bilayer La1.2Sr1.8Mn2O7/PbZr0.3Ti0.7O3 complex thin film

    Science.gov (United States)

    Liang, K.; Zhou, P.; Ma, Z. J.; Qi, Y. J.; Mei, Z. H.; Zhang, T. J.

    2017-05-01

    Magnetoelectric (ME) coupling effect of 2-2-type ferromagnetic/ferroelectric bi-layer multiferroic epitaxial thin film (La1.2Sr1.8Mn2O7/PbZr0.3Ti0.7O3, LSMO/PZT) on SrRuO3 (SRO) substrate is investigated systematically by using Landau-Ginzburg-Devonshire (LGD) thermodynamic theory and modified constitutive equations. The calculating results clarify the detail relationships between ME coupling response and the residual strain, the volume fraction of constituent phases, the interface coupling coefficients, the magnetic field and the temperature. It also shows that improved ME coupling response can be modulated by these parameters. External magnetic fields (H1) induced ME coupling effect could be enhanced around Curie Temperature (Tc) of ferromagnetic phase and ME voltage coefficient (αE31) approaches a maximum at H1 ∼ 4.5 kOe near Tc. The remarkable variations of ME coupling response can be used to provide useful guidelines on the design of multifunctional devices.

  8. Synthesis, single crystal growth and thermodynamic properties of SrNdAlO4-CaNdAlO4 solid solutions

    International Nuclear Information System (INIS)

    Novoselov, A.; Ryumin, M.; Pushkina, G.; Spiridonov, F.; Komissarova, L.; Zimina, G.; Pajaczkowska, A.

    2005-01-01

    Continuous solid solutions in the SrNdAlO 4 -CaNdAlO 4 system are formed. Powder samples of Sr x Ca 1-x NdAlO 4 (0.0≤x≤1.0) were obtained using the carbonate coprecipitation method while single crystals of Sr x Ca 1-x NdAlO 4 (x=0.0,0.162,0.392,0.687,1.0) were grown by the Czochralski method. Structural parameters and thermodynamic properties of the samples were studied by X-ray diffraction and heat flux Calvet calorimetry. Composition dependence of lattice constants was observed to follow Vegard's low. Heat of solution of the Sr x Ca 1-x NdAlO 4 samples in molten 2PbO.B 2 O 3 were measured, and enthalpies of formation and mixing were calculated. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Electrospinning fabrication and luminescent properties of SrMoO4:Sm3+ nanofibers

    International Nuclear Information System (INIS)

    Du Pingfan; Song Lixin; Xiong Jie; Cao Houbao; Xi Zhenqiang; Guo Shaoyi; Wang Naiyan; Chen Jianjun

    2012-01-01

    Highlights: ► SrMoO 4 :Sm 3+ fluorescent nanofibers were fabricated by electrospinning. ► The properties of the SrMoO 4 :Sm 3+ nanofibers were investigated. ► The obtained nanofibers exhibit a fine orange-red fluorescent property. ► The PL intensity of the nanofibers is superior to the nanoparticles counterpart. ► The optimum doping concentration of Sm 3+ in the host lattice is 2 at.%. - Abstract: Samarium ions doped strontium molybdate (SrMoO 4 :Sm 3+ ) nanofibers (NFs) were fabricated by a simple electrospinning process. The obtained SrMoO 4 :Sm 3+ NFs are composed of scheelite-type tetragonal SrMoO 4 phase, and the NFs have an average diameter of ca. 90 nm. Under 275 nm ultraviolet (UV) excitation, the NFs show an orange-red fluorescent property symbolized by a characteristic emission (606 nm) resulting from the 4 G 5/2 → 6 H 7/2 energy level transition of Sm 3+ . And the photoluminescence (PL) emissi on intensity of the SrMoO 4 :Sm 3+ NFs is superior to that of the nanoparticles (NPs) counterpart under the same doping concentrations. The effect of Sm 3+ concentrations on the 4 G 5/2 → 6 H 7/2 emission intensity was also investigated. The result reveals that the concentration quenching will occur when the Sm 3+ content exceeds 2 at.%. In other words, the SrMoO 4 :Sm 3+ NFs have an optimal luminescent performance under such a doping concentration.

  10. Enhanced thermal stability of RuO2/polyimide interface for flexible device applications

    Science.gov (United States)

    Music, Denis; Schmidt, Paul; Chang, Keke

    2017-09-01

    We have studied the thermal stability of RuO2/polyimide (Kapton) interface using experimental and theoretical methods. Based on calorimetric and spectroscopic analyses, this inorganic-organic system does not exhibit any enthalpic peaks as well as all bonds in RuO2 and Kapton are preserved up to 500 °C. In addition, large-scale density functional theory based molecular dynamics, carried out in the same temperature range, validates the electronic structure and points out that numerous Ru-C and a few Ru-O covalent/ionic bonds form across the RuO2/Kapton interface. This indicates strong adhesion, but there is no evidence of Kapton degradation upon thermal excitation. Furthermore, RuO2 does not exhibit any interfacial bonds with N and H in Kapton, providing additional evidence for the thermal stability notion. It is suggested that the RuO2/Kapton interface is stable due to aromatic architecture of Kapton. This enhanced thermal stability renders Kapton an appropriate polymeric substrate for RuO2 containing systems in various applications, especially for flexible microelectronic and energy devices.

  11. Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach.

    Science.gov (United States)

    Ianoş, Robert; Istratie, Roxana; Păcurariu, Cornelia; Lazău, Radu

    2016-01-14

    The solution combustion synthesis of strontium aluminate, SrAl2O4, via the classic single-fuel approach and the modern fuel-mixture approach was investigated in relation to the synthesis conditions, powder properties and thermodynamic aspects. The single-fuel approach (urea or glycine) did not yield SrAl2O4 directly from the combustion reaction. The absence of SrAl2O4 was explained by the low amount of energy released during the combustion process, in spite of the highly negative values of the standard enthalpy of reaction and standard Gibbs free energy. In the case of single-fuel recipes, the maximum combustion temperatures measured by thermal imaging (482 °C - urea, 941 °C - glycine) were much lower than the calculated adiabatic temperatures (1864 °C - urea, 2147 °C - glycine). The fuel-mixture approach (urea and glycine) clearly represented a better option, since (α,β)-SrAl2O4 resulted directly from the combustion reaction. The maximum combustion temperature measured in the case of a urea and glycine fuel mixture was the highest one (1559 °C), which was relatively close to the calculated adiabatic temperature (1930 °C). The addition of a small amount of flux, such as H3BO3, enabled the formation of pure α-SrAl2O4 directly from the combustion reaction.

  12. Assessment for the role of rare earth oxide in the R2O3 - RuO2 - Pt composite electrode

    International Nuclear Information System (INIS)

    Do Ngoc Lien; Nguyen Van Sinh

    2004-01-01

    Our work has showed several results related to assessment for the role of rare earth oxide in the R 2 O 3 - RuO 2 - Pt composite electrode. The precursor method was used for preparing composite electrode in the following forms: a- RuO 2 - Pt electrode b- La 2 O 3 (55%) - RuO 2 (45%) - Pt electrode c- CeO 2 (60%) - RuO 2 (40%) - Pt electrode By measurements of anodic polarization and cyclic potential for the types of a, b, c electrodes we can see that the La 2 O 3 (55%) - 45% RuO 2 - Pt electrode will be the best anodic electrode. It means that the partial replacement of ruthenium oxide by lanthanum oxide in composite oxide electrode will be an effective one. (author)

  13. Sub-Picosecond Injection of Electrons from Excited {Ru (2,2'-bipy-4,4'-dicarboxy)2(SCN)2} into TiO2 Using Transient Mid-Infrared Spectroscopy

    International Nuclear Information System (INIS)

    Nozik, A.J.; Ghosh, H.N.; Asbury, J.B.; Sprague, J.R.; Ellingson, R.J.; Ferrere, S.; Lian, T.

    1999-01-01

    We have used femtosecond pump-probe spectroscopy to time resolve the injection of electrons into nanocrystalline TiO2 film electrodes under ambient conditions following photoexcitation of the adsorbed dye, [Ru(4,4'-dicarboxy-2,2'-bipyridine)2(NCS)2] (N3). Pumping at one of the metal-to-ligand charge transfer adsorption peaks and probing the absorption of electrons injected into the TiO2 conduction band at 1.52 m and in the range of 4.1 to 7.0 m, we have directly observed the arrival of the injected electrons. Our measurements indicate an instrument-limited 50-fs upper limit on the electron injection time under ambient conditions in air. We have compared the infrared transient absorption for non-injecting (blank) systems consisting of N3 in ethanol and N3 adsorbed to films of nanocrystalline Al2O3 and ZrO2, and found no indication of electron injection at probe wavelengths in the mid-IR (4.1 to 7.0 m). At 1.52 m interferences exist in the observed transient adsorption signal for the blanks

  14. Core level photoemission spectroscopy and chemical bonding in Sr2Ta2O7

    DEFF Research Database (Denmark)

    Atuchin, V. V.; Grivel, Jean-Claude; Zhang, Z. M.

    2009-01-01

    Electronic parameters of constituent element core levels of strontium pyrotantalate (Sr2Ta2O7) were measured with X-ray photoelectron spectroscopy (XPS). The Sr2Ta2O7 powder sample was synthesized using standard solid state method. The valence electron transfer on the formation of the Sr-O and Ta......-O bonds was characterized by the binding energy differences between the O 1s and cation core levels, Delta(O-Sr) = BE(O 1s) - BE(Sr 3d(5/2)) and Delta(O-Ta) = BE(O 1s) - BE(Ta 4f(7/2)). The chemical bonding effects were considered on the basis of our XPS results for Sr2Ta2O7 and earlier published...

  15. Modulation of transport properties of RuO2 with 3d transition metals

    International Nuclear Information System (INIS)

    Music, Denis; Chen, Yen-Ting; Geyer, Richard W; Bliem, Pascal; Schneider, Jochen M

    2014-01-01

    Using density functional theory, we have demonstrated that alloying of RuO 2 (P4 2 /mnm) with 3d transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) gives rise to a substantial increase in the Seebeck coefficient probably due to quantum confinement. As Fe yields the largest enhancement, it was selected for experimental verification. We synthesized combinatorial Ru–Fe–O thin films and subsequently measured their transport properties at elevated temperatures. The Fe-alloyed samples increase the Seebeck coefficient threefold with respect to the unalloyed RuO 2 specimen thereby verifying the theoretical prediction. The here obtained power factor of 274 μW K −2 m −1 is not only the largest reported value for RuO 2 based compounds but it also occurs at ∼600 °C thus increasing the Carnot efficiency significantly. (paper)

  16. On-line measurements of RuO{sub 4} during a PWR severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Reymond-Laruinaz, S.; Doizi, D. [CEA, DEN, Departement de Physico-chimie, CEA/Saclay, 91191 Gif sur Yvette Cedex, (France); Manceron, L. [Societe Civile Synchrotron SOLEIL, L' Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex, (France); MONARIS, UMR 8233, Universite Pierre et Marie Curie, 4 Place Jussieu, case 49, F-75252 Paris Cedex 05, (France); Boudon, V. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, F-21078 Dijon Cedex, (France); Ducros, G. [CEA, DEN, Departement d' Etudes des Combustibles, CEA/Cadarache, 13108 Saint-Paul-lez-Durance cedex, (France)

    2015-07-01

    After the Fukushima accident, it became essential to have a way to monitor in real time the evolution of a nuclear reactor during a severe accident, in order to react efficiently and minimize the industrial, ecological and health consequences of the accident. Among gaseous fission products, the tetroxide of ruthenium RuO{sub 4} is of prime importance since it has a significant radiological impact. Ruthenium is a low volatile fission product but in case of the rupture of the vessel lower head by the molten corium, the air entering into the vessel oxidizes Ru into gaseous RuO{sub 4}, which is not trapped by the Filtered Containment Venting Systems. To monitor the presence of RuO{sub 4} allows making a diagnosis of the core degradation and quantifying the release into the atmosphere. To determine the presence of RuO{sub 4}, FTIR spectrometry was selected. To study the feasibility of the monitoring, high-resolution IR measurements were realized at the French synchrotron facility SOLEIL on the infrared beam line AILES. Thereafter, theoretical calculations were done to simulate the FTIR spectrum to describe the specific IR fingerprint of the molecule for each isotope and based on its partial pressure in the air. (authors)

  17. Processing of La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films by dual-ion-beam sputtering

    Science.gov (United States)

    Madakson, P.; Cuomo, J. J.; Yee, D. S.; Roy, R. A.; Scilla, G.

    1988-03-01

    High-quality La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films, with zero resistance at 88 K, have been made by dual-ion-beam sputtering of metal and oxide targets at elevated temperatures. The films are about 1.0 micron thick and are single phase after annealing. The substrates investigated are Nd-YAP, MgO, SrF2, Si, CaF2, ZrO2-(9 pct)Y2O3, BaF2, Al2O3, and SrTiO3. Characterization of the films was carried out using Rutherford backscattering spectroscopy, resistivity measurements, TEM, X-ray diffraction, and SIMS. Substrate/film interaction was observed in every case. This generally involves diffusion of the substrate into the film, which is accompanied by, for example, the replacement of Ba by Sr in the YBa2Cu2O7 structure, in the case of SrTiO3 substrate. The best substrates were those that did not significantly diffuse into the film and which did not react chemically with the film.

  18. La{sub 2-x}Sr{sub x}NiO{sub 4+{delta}} ceramic powders prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Colomer, M.T.; Chinarro, E.; Jurado, J.R. [Consejo Nacional de Investigaciones Cientificas, Madrid (Spain). Ist. de Ceramica y Vidrio

    2002-07-01

    Combustion synthesis provides an attractive method of producing ceramic powders because of its low cost, process simplicity and fastness. Materials based on La{sub 2}NiO{sub 4+{delta}} can be successfully prepared by combustion synthesis. La{sub 2-x}Sr{sub x}NiO{sub 4+{delta}} (x = 0, 0.1) accommodates oxygen excess by oxygen interstitials rather than by the more usual cation vacancies. A high concentration of oxygen interstitials offers the possibility of rapid oxygen transport through the ceramic material and thus provide a new type of mixed ionic-electronic conductor. The fast oxide ion diffusion combined with its thermal stability indicate that these materials would be good candidates for use in ceramic oxygen generators (COGs) and intermediate temperature solid oxide fuel cells (IT-SOFCs). The present work discusses a combustion synthesis technique to prepare La{sub 2-x}Sr{sub x}NiO{sub 4+{delta}} (x = 0, 0.1) powders using the corresponding metal nitrates-urea mixtures, at low temperature and short reaction times. The as-prepared combustion powders were characterized by XRD, DTA-TG, SEM/TEM-EDX and BET. La{sub 2-x}Sr{sub x}NiO{sub 4} (x = 0, 0.1) powders with a good compositional control and homogeneity are attained. The as-prepared powders obtained at 300 C (ignition temperature) showed much higher specific surface area than powders obtained via alternative routes and contained La{sub 2-x}Sr{sub x}NiO{sub 4+{delta}}, as the major phase present, together with La{sub 2}O{sub 3} and a small amount of NiO. La{sub 2-x}Sr{sub x}NiO{sub 4+{delta}} single phase is achieved, respectively at 950 C for x =0.1 and at 975 C for x = 0. (orig.)

  19. Electronic structure and optical properties of Sr{sub 2}SnO{sub 4} studied with FP-LAPW method in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Prijamboedi, B., E-mail: boedi@chem.itb.ac.id; Umar, S.; Failamani, F. [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2015-04-16

    Oxide material of Sr{sub 2}SnO{sub 4}, when it is doped with Ti becomes a phosphor material that can emit intense blue light at room temperature. It is important to study the electronic structure of this material in order to determine the optical processes that occur in Ti-doped Sr{sub 2}SnO{sub 4}. Electronic structure and optical properties of Sr{sub 2}SnO{sub 4} is studied using density functional theory framework with full potential linearized augmented plane waves plus local orbitals (FP-LAPW+lo) method. We use modified Becke-Johnson (mBJ) exchange-correlation potential to calculate the energy gap. Our calculation showed that Sr{sub 2}SnO{sub 4} has indirect band gap with band gap energy of around 4.2 eV. The experimental absorption spectra of Sr{sub 2}SnO{sub 4} indicated that this oxide has band gap of around 4.6 eV and it is closer to the results given by mBJ exchange-correlation potential. We also studied other optical properties of Sr{sub 2}SnO{sub 4} and it is found in agreement with the experimental results.

  20. Luminescence properties of LiSr2Y1-xLnxO4 (Ln=Eu,Tb,Tm) (0≤x≤1)

    International Nuclear Information System (INIS)

    Kubota, S.; Suzuyama, Y.; Yamane, H.; Shimada, M.

    1998-01-01

    Investigations of the luminescence properties of LiSr 2 Y 1-x Eu x O 4 , LiSr 2 Y 1-x Tb x O 4 and LiSr 2 Y 1-x Tm x O 4 (0≤x≤1) at room temperature are reported. These samples were synthesized by a solid state reaction. The excitation spectra of Tb 3+ emission in LiSr 2 Y 1-x Tb x O 4 (0≤x≤1) consist of broad bands corresponding to a transition between the 4f 8 and 4f 7 5d 1 states of Tb 3+ . The maximum intensity is situated at about 318 nm. This is at a much longer wavelength than those of other Tb 3+ doped phosphors. This is explained by a large offset of the adiabatic potential curve of the 4f 7 5d 1 state. (orig.)

  1. Incommensurate antiferromagnetic order in the manifoldly-frustrated SrTb2O4 with transition temperature up to 4.28 K

    Directory of Open Access Journals (Sweden)

    Haifeng eLi

    2014-07-01

    Full Text Available The Neel temperature of the new frustrated family of SrRE2O4 (RE = rare earth compounds is yet limited to 0.9 K, which more or less hampers a complete understanding of the magnetic frustrations and spin interactions. Here we report on a new frustrated member to the family, SrTb2O4 with a record TN = 4.28(2 K, and an experimental study of the magnetic interacting and frustrating mechanisms by polarized and unpolarized neutron scattering. The compound of SrTb2O4 displays an incommensurate antiferromagnetic (AFM order with a transverse wave vector Q = (0.5924(1, 0.0059(1, 0 albeit with partially-ordered moments, 1.92(6 uB at 0.5 K, stemming from only one of the two inequivalent Tb sites by virtue of their different octahedral distortions. The localized moments are confined to the bc plane, 11.9(66 degree away from the b axis by single-ion anisotropy. We reveal that this AFM order is dominated mainly by dipole-dipole interactions and disclose that the octahedral distortion, nearest-neighbour (NN ferromagnetic (FM arrangement, different next NN FM and AFM configurations, and in-plane anisotropic spin correlations are vital to the magnetic structure and associated multiple frustrations. The discovery of the thus far highest AFM transition temperature renders SrTb2O4 a new friendly frustrated platform in the family for exploring the nature of magnetic interactions and frustrations.

  2. Nanocrystalline Sr{sub 2}CeO{sub 4} thin films grown on silicon by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Perea, Nestor [Posgrado en Fisica de Materiales, CICESE-UNAM, Km. 107 Carretera Tijuana-Ensenada, Ensenada, B.C., 22860 (Mexico); Hirata, G.A. [Centro de Ciencias de la Materia Condensada-UNAM, Km. 107 Carretera Tijuana Ensenada, Ensenada, B.C. 22860 (Mexico)]. E-mail: hirata@ccmc.unam.mx

    2006-02-21

    Blue-white luminescent Sr{sub 2}CeO{sub 4} thin films were deposited by using pulsed laser ablation ({lambda} = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr{sub 2}CeO{sub 4} grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr{sub 2}CeO{sub 4} however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems.

  3. Contrasting pressure effects in Sr2VFeAsO3 and Sr2ScFePO3

    International Nuclear Information System (INIS)

    Kotegawa, Hisashi; Kawazoe, Takayuki; Tou, Hideki; Murata, Keizo; Ogino, Hiraku; Kishio, Kohji; Shimoyama, Jun-ichi

    2009-01-01

    We report the resistivity measurements under pressure of two Fe-based superconductors with a thick perovskite oxide layer, Sr 2 VFeAsO 3 and Sr 2 ScFePO 3 . The superconducting transition temperature T c of Sr 2 VFeAsO 3 markedly increases with increasing pressure. Its onset value, which was T c onset =36.4 K at ambient pressure, increases to T c onset =46.0 K at ∼4 GPa, ensuring the potential of the '21113' system as a high-T c material. However, the superconductivity of Sr 2 ScFePO 3 is strongly suppressed under pressure. The T c onset of ∼16 K decreases to ∼5 K at ∼4 GPa, and the zero-resistance state is almost lost. We discuss the factor that induces this contrasting pressure effect. (author)

  4. High-pressure synthesis and crystal structures of the strontium oxogallates Sr2Ga2O5 and Sr5Ga6O14

    International Nuclear Information System (INIS)

    Kahlenberg, Volker; Goettgens, Valerie; Mair, Philipp; Schmidmair, Daniela

    2015-01-01

    High-pressure synthesis experiments in a piston–cylinder apparatus at 1.5 GPa/3.0 GPa and 1000 °C resulted in the formation of single-crystals of Sr 2 Ga 2 O 5 and Sr 5 Ga 6 O 14 , respectively. The structures of both compounds have been solved from single-crystal diffraction data sets using direct methods. The first compound is orthorhombic with space group type Pbca (a=10.0021(4) Å, b=9.601(4) Å, c=10.6700(4) Å, V=1024.6(4) Å 3 , M r =394.68 u, Z=8, D x =5.12 g/cm 3 ) and belongs to the group of single layer gallates. Individual sheets are parallel to (0 0 1) and can be built from the condensation of unbranched vierer single chains running along [0 1 0]. The layers are characterized by the presence of four- and strongly elliptical eight-membered rings of corner connected tetrahedra in UUDD and UUUUDDDD conformation. Strontium atoms are sandwiched between the tetrahedral layers for charge compensation and are coordinated by six and seven oxygen ligands, respectively. Sr 2 Ga 2 O 5 is isotypic with several other double sulfides and selenides. To the best of our knowledge, it is the first example of an oxide with this structure type. From a structural point of view, Sr 5 Ga 6 O 14 is a phyllogallate as well. The crystal structure adopts the monoclinic space group P2 1 /c (a=8.1426(3) Å, b=8.1803(3) Å, c=10.8755(4) Å, β=91.970(4)° V=723.98(5) Å 3 , M r =1080.42 u, Z=2, D x =4.96 g/cm 3 ). Individual sheets extend along (0 0 1). Basic building units are unbranched dreier single chains parallel to [1 0 0]. The layers contain tertiary (Q 3 ) und quaternary (Q 4 ) connected [GaO 4 ]-tetrahedra in the ratio 2:1 resulting in a Ga:O ratio of 3:7 and the formation of exclusively five-membered rings. Linkage between adjacent tetrahedral sheets is provided by three symmetrically independent strontium ions which are surrounded by six to eight oxygen atoms. The layers in Sr 5 Ga 6 O 14 are similar to those observed in the melilite structure-type. Crystallochemical

  5. Improved capacity and rate capability of Ru-doped and carbon-coated Li4Ti5O12 anode material

    International Nuclear Information System (INIS)

    Lin, Chih-Yuan; Jhan, Yi-Ruei; Duh, Jenq-Gong

    2011-01-01

    Highlights: → By using a simple one-step solid-state reactions method synthesizes Li 4 Ru 0.01 Ti 4.99 O 12 /C anode material. → Combining the Ru-doped and carbon-coated techniques to fabricate Li 4 Ru 0.01 Ti 4.99 O 12 /C effectively enhance the diffusion rate of Li + and significantly reduce surface electronic resistance of Li 4 Ti 5 O 12 . → Li 4 Ru 0.01 Ti 4.99 O 12 /C delivers 120 and 110 mAh g -1 at 5 and 10 C charge/discharge rate, respectively, after 100 charge/discharge cycles. - Abstract: Pure Li 4 Ti 5 O 12 , modified Li 4 Ti 5 O 12 /C, Li 4 Ru 0.01 Ti 4.99 O 12 and Li 4 Ru 0.01 Ti 4.99 O 12 /C were successfully prepared by a modified solid-state method and its electrochemical properties were investigated. From the XRD patterns, the added sugar or doped Ru did not affect the spinel structure. The results of electrochemical properties revealed that Li 4 Ru 0.01 Ti 4.99 O 12 /C showed 120 and 110 mAh/g at 5 and 10 C rate after 100 charge/discharge cycles. Li 4 Ru 0.01 Ti 4.99 O 12 /C exhibited the best rate capability and the highest capacity at 5 and 10 C charge/discharge rate owing to the increase of electronic conductivity and the reduction of interface resistance between particles of Li 4 Ti 5 O 12 .It is expected that the Li 4 Ru 0.01 Ti 4.99 O 12 /C will be a promising anode material to be used in high-rate lithium ion battery.

  6. Red-emitting SrIn2O4 : Eu3+ phosphor powders for applications in solid state white lamps

    International Nuclear Information System (INIS)

    Rodriguez-Garcia, C E; Perea-Lopez, N; Hirata, G A; Baars, S P den

    2008-01-01

    Red-emitting phosphor powders of SrIn 2 O 4 activated with Eu 3+ ions were fabricated by high pressure assisted combustion synthesis. X-ray diffraction analysis of these oxide phosphors revealed the formation of single-phase orthorhombic SrIn 2 O 4 for concentrations up to 4 at% Eu. A detailed photoluminescence (PL) and cathodoluminescence study showed bright red emission originated within the 5 D 0 → 7 F J intra-shell transitions of Eu 3+ . Furthermore, PL excitation spectroscopy revealed that an efficient energy transfer from the SrIn 2 O 4 host lattice onto the Eu ions is accomplished in addition to the excitation band peaked at 396 nm that directly excites the Eu ions, making this material an excellent candidate for applications in solid state white lamps. (fast track communication)

  7. On the solubility of yttrium in RuO2

    International Nuclear Information System (INIS)

    Music, Denis; Zumdick, Naemi A.; Hallstedt, Bengt; Schneider, Jochen M.

    2011-01-01

    We have investigated the solubility of Y in rutile RuO 2 using experimental and theoretical methods. Nanostructured Ru-Y-O thin films were synthesized via combinatorial reactive sputtering with an O/metal ratio of 2.6 and a Y content of 0.3 to 12.6 at. %. A solubility limit of 1.7 at. % was identified using x-ray photoelectron spectroscopy and x-ray diffraction. Based on ab initio and thermodynamic modeling, the solubility of Y can be understood. Smaller Y amounts are incorporated into the lattice, forming a metastable film, with local structural deformations due to size effects. As the Y content is increased, extensive local structural deformations are observed, but phase separation does not occur due to kinetic limitations. Nanostructured RuO 2 alloyed with Y might lead to enhanced phonon scattering and quantum confinement effects, which in turn improve the thermoelectric efficiency.

  8. Luminescent Properties of Sr4Si3O8Cl4:Eu2+, Bi3+ Phosphors for Near UV InGaN-Based Light-Emitting-Diodes

    Directory of Open Access Journals (Sweden)

    Wangqing Shen

    2015-12-01

    Full Text Available Sr4Si3O8Cl4 co-doped with Eu2+, Bi3+ were prepared by the high temperature reaction. The structure and luminescent properties of Sr4Si3O8Cl4:Eu2+, Bi3+ were investigated. With the introduction of Bi3+, luminescent properties of these phosphors have been optimized. Compared with Sr3.90Si3O8Cl4:0.10Eu2+, the blue-green phosphor Sr3.50Si3O8Cl4:0.10Eu2+, 0.40Bi3+ shows stronger blue-green emission with broader excitation in near-UV range. Bright blue-green light from the LED means this phosphor can be observed by the naked eye. Hence, it may have an application in near UV LED chips.

  9. Luminescent properties of red-emitting LiSr4B3O(9−3x/2)Nx:Eu2+ phosphor for white-LEDs

    International Nuclear Information System (INIS)

    Yu Hua; Deng Degang; Xu Shiqing; Yu Cuiping; Yin Haoyong; Nie Qiulin

    2012-01-01

    An Eu 2+ -activated oxynitride LiSr (4−y) B 3 O (9−3x/2) N x :yEu 2+ red-emitting phosphor was synthesized by solid-state reactions. The synthesized phosphor crystallized in a cubic system with space group Ia–3d. The LiSr 4 B 3 O (9−3x/2) N x :Eu 2+ phosphors exhibited a broad red emission band with a peak at 610 nm and a full width at half maximum of 106 nm under 410 nm excitation, which is ascribed to the 4f 6 5d 1 →4f 7 transition of Eu 2+ . The optimal doped nitrogen concentration was observed to be x=0.75. The average decay times of two different emission centers were estimated to be 568 and 489 ns in the LiSr 3.99 B 3 O 8.25 N 0.5 :0.01Eu 2+ phosphors, respectively. Concentration quenching of Eu 2+ ions occurred at y=0.07, and the critical distance was determined as 17.86 Å. The non-radiative transitions via dipole–dipole interactions resulted in the concentration quenching of Eu 2+ -site emission centers in the LiSr 4 B 3 O 9 host. These results indicate LiSr 4 B 3 O (9−3x/2) N x :Eu 2+ phosphor is promising for application in white near-UV LEDs. - Highlights: ► An oxynitride LiSr 4 B 3 O 9 N:Eu 2+ red-emitting phosphor was prepared at low synthesis temperature. ► The introduced nitrogen improved the excitation and emission intensity of the phosphor. ► The wide excitation band matches well with near-UV LED chips. ► The emission spectrum of the phosphor showed a broad full width at half maximum of about 106 nm.

  10. Phosphorescent and thermoluminescent properties of SrAl2O4:Eu2+, Dy3+ phosphors prepared by solid state reaction method

    International Nuclear Information System (INIS)

    Mothudi, B.M.; Ntwaeaborwa, O.M.; Kumar, A.; Sohn, K.; Swart, H.C.

    2012-01-01

    Long persistent SrAl 2 O 4 :Eu 2+ phosphors co-doped with Dy 3+ were prepared by the solid state reaction method. The main diffraction peaks of the monoclinic structure of SrAl 2 O 4 were observed in all the samples. The broad band emission spectra at 497 nm for SrAl 2 O 4 :Eu 2+ , Dy 3+ were observed and the emission is attributed to the 4f 6 5d 1 to 4f 7 transition of Eu 2+ ions. The samples annealed at 1100–1200 °C showed similar broad TL glow curves centered at 120 °C. The similar TL glow curves suggest that the traps responsible for them are similar. The long afterglow displayed by the phosphors annealed at different temperatures, may be attributed to the Dy 3+ ions acting as the hole trap levels, which play an important role in prolonging the duration of luminescence.

  11. A novel ferrimagnetic irido-cuprate: IrSr2GdCu2O8

    International Nuclear Information System (INIS)

    Dos Santos-Garcia, A.J.; Aguirre, Myriam H.; Moran, E.; Saez Puche, R.; Alario-Franco, M.A.

    2006-01-01

    We have performed an investigation of the structural, microstructural and magnetic properties of the new compound IrSr 2 GdCu 2 O 8 . The sample was prepared under high temperature (∼1393K) and high-pressure conditions (∼60Kbars) in a Belt type apparatus. X-ray diffraction (XRD) analysis shows that this irido-cuprate is isostructural with the corresponding Ru-1212 phase. Structurally, this material shows an interesting hierarchy of ordering phenomena, whose observation actually depends on the technique used to analyze the material: from a 'simple' cell a p xa p x3a p which is supported by XRD, through a 'diagonal' one, ∼2a p x2a p x3a p as seen by SAED, to a microdomain texture of this last one cell supported by HREM. A ferrimagnetic Ir IV -Gd III spin ordering is observed below 15K. The iridium oxidation state seems to be +4

  12. O2-enhanced methanol oxidation reaction at novel Pt-Ru-C co-sputtered electrodes

    International Nuclear Information System (INIS)

    Umeda, Minoru; Matsumoto, Yosuke; Inoue, Mitsuhiro; Shironita, Sayoko

    2013-01-01

    Highlights: ► Novel Pt-Ru-C electrodes were prepared by a co-sputtering technique. ► Co-sputtered electrodes with C result in highly efficient O 2 -enhanced methanol oxidation. ► Pt–Ru-alloy-based co-sputtered electrode induces a negative onset potential of methanol oxidation. ► The Pt-Ru-C electrodes allow a negative onset potential of O 2 -enhanced methanol oxidation. ► The optimum atomic ratios of Pt-Ru-C are Pt: 0.24–0.80, Ru: 0.14–0.61, C: 0.06–0.37. -- Abstract: A Pt-Ru-C electrode has been developed using a co-sputtering technique for use as the anode catalyst of a mixed-reactant fuel cell. The physical and electrochemical characteristics of the electrodes demonstrate that co-sputtered Pt and Ru form a Pt–Ru alloy. The crystallite sizes of the catalysts investigated in this study are reduced by the addition of C to the Pt–Ru alloy. Cu stripping voltammograms suggest that the sputtering of C and the formation of the Pt–Ru alloy synergically increase the electrochemical surface area of the electrodes. The methanol oxidation performances of the prepared electrodes were evaluated in N 2 and O 2 atmospheres; the Pt-Ru-C electrodes achieve an O 2 -induced negative shift in the onset potential of the methanol oxidation (E onset ) and enhance the methanol oxidation current density in the O 2 atmosphere. The mechanism of O 2 -enhanced methanol oxidation with a negative E onset at the Pt-Ru-C electrodes is attributed to a change in the electronic structure of Pt due to the formation of Pt–Ru alloy and the generation of O-based adsorption species by the reduction of O 2 . Finally, the composition of the Pt-Ru-C electrode for the O 2 -enhanced methanol oxidation with a negative E onset was found to be optimal at an atomic ratio of Pt: 0.24–0.80, Ru: 0.14–0.61, and C: 0.06–0.37

  13. Phase stability, oxygen nonstoichiometry, and superconductivity properties of Bi2Sr2CaCu2O8+δ and Bi1.8Pb0.4Sr2Ca2Cu3O10+δ

    International Nuclear Information System (INIS)

    Mozhaev, A.P.; Chernyaev, S.V.; Badun, Y.V.

    1995-01-01

    Phase stability of Bi 2 Sr 2 CaCu 2 O 8+δ (2212) and Bi 1.8 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ (2223) was studied by means of thermogravimetry, dilatometry, high-temperature resistivity, and the powder X-ray methods in the temperature range 700-1000 degrees and at P O2 = 1-10 -4.3 atm. The existence of a high-temperature (peritectic melting) boundary of phase stability was found. The temperatures of low-temperature phase decomposition were determined in air and under an oxygen atmosphere. The change in oxygen content was determined for the 2212 phase in the temperature range 700-860 degrees C and at P O2 = 0.21-10 -3.7 atm by iodometric analysis of quenched samples. It was found that in the single-phase region, the change in oxygen nonstoichiometry had an insignificant influence on T c . It was also shown that the slow cooling of samples led to a significant decrease in T c and transport j c due to partial phase decomposition

  14. Effect of TiO_2 Loading on Pt-Ru Catalysts During Alcohol Electrooxidation

    International Nuclear Information System (INIS)

    Hasa, Bjorn; Kalamaras, Evangelos; Papaioannou, Evangelos I.; Vakros, John; Sygellou, Labrini; Katsaounis, Alexandros

    2015-01-01

    Highlights: • TiO_2 can be used to modify Pt-Ru based electrodes for alcohol oxidation. • TiO_2 modified electrodes with lower amount of metals had higher active surface area than pure Pt-Ru electrodes. • TiO_2 modified electrodes showed comparable performance with pure Pt-Ru electrode both in a single cell and in a PEM fuel cell under alcohol fuelling. - Abstract: In this study, Pt-Ru based electrodes modified by TiO_2 were prepared by means of thermal decomposition of chloride and isopropoxide precursors on Ti substrates, characterised by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), electrochemical techniques and CO stripping and used as anodes for alcohol oxidation. The minimization of the metal loading without electrocatalytic activity losses was also explored. TiO_2 was chosen due to its chemical stability, low cost and excellent properties as substrate for metal dispersion. It was found that TiO_2 loading up to 50% results in a 3-fold increase of the Electrochemically Active Surface (EAS). This conclusion has been confirmed by CO stripping experiments. All samples have been evaluated during the electrochemical oxidation of methanol, ethanol and glycerol. In all cases, the Pt_2_5-Ru_2_5-(TiO_2)_5_0 electrode had better electrocatalytic activity than the pure Pt_5_0-Ru_5_0 anode. The best modified electrode, (Pt_2_5-Ru_2_5-(TiO_2)_5_0), was also evaluated as anode in a PEM fuel cell under methanol fuelling conditions. The observed higher performance of the TiO_2 modified electrodes was attributed to the enhanced Pt-Ru dispersion as well as the formation of smaller Pt and Ru particles.

  15. Use of MnO2 and MnO2 SiO2 for sorbing of Sr-90 from liquid rad waste

    International Nuclear Information System (INIS)

    Subiarto; Las, Thamzil; Aan BH, Martin; Utomo, Cahyo Hari

    1998-01-01

    The synthesis of MnO 2 adsorbent and MnO 2 -SiO 2 composite has been done. MnO 2 synthesis is done by the reaction of KMnO 4 , Mn(NO 3 ) 2 .4H 2 O and Na 2 S 2 O 4 ( MnO 2 -A, MnO 2 -B, and MnO 2 -T ). MnO 2 . SiO 2 is made from KMnO 4 , Na 2 SiO 3 , and H 2 O 2 . The result obtained show the best Sr-90 sorption by MnO 2 -A with Kd = 2085.63 ml/g, by MnO 2 -L with Kd = 755.09 ml/g, and by MnO 2 - SiO 2 composite with Kd = 1466.51 ml/g. From this result, we can conclude that MnO 2 -SiO 2 can be expanded for Sr-90 sorption from liquid radioactive waste. (author)

  16. Luminescent properties of stabled hexagonal phase Sr1-xBaxAl2O4:Eu2+ (x=0.37-0.70)

    International Nuclear Information System (INIS)

    Wu Qiaoli; Liu Zhen; Jiao Huan

    2009-01-01

    Stabled hexagonal phase Sr 1-x Ba x Al 2 O 4 :Eu 2+ (x=0.37-0.70) was prepared by solid-state method. Result revealed that the structure behavior of the SrAl 2 O 4 :Eu 2+ calcined at 1350 deg. C in a reducing atmosphere for 5 h strongly depended on the Ba 2+ concentration. With increasing Ba 2+ concentration, a characteristic hexagonal phase can be observed. When 37-70% of the strontium is replaced by barium, the structure of the prepared sample is pure hexagonal. Photoluminescence and excitation spectra of the samples with different x and doped with 2% Eu 2+ were investigated. Changes in the emission spectra were observed in the two different phases. The green emission at 505 nm from Eu 2+ was found to be quite strong in the hexagonal phase. The intensity and peak position of the green luminescence from Eu 2+ changed with increasing content of Ba 2+ . The strongest green emission was obtained from Sr 0.61 Ba 0.37 Al 2 O 4 :Eu 2+ . The decay characteristics of Sr 1-x Ba x Al 2 O 4 :Eu 2+ (x=0.37-0.70) showed that the life times also varied with the value of x. Furthermore, the emission colors and decay times varying with x could be ascribed to the variation of crystal lattice.

  17. Preparation of MAl 2 O 4 : Eu 2+ , Sm 3+ (M = Ca, Sr, Ba) Phosphors ...

    African Journals Online (AJOL)

    A series of MAl2O4: Eu2+, Sm3+ (M = Ca, Sr, Ba) phosphors was prepared by the combustion method, and the influence of these alkaline earth metals on the structure and luminescent performances for these phosphors was investigated. A relationship was established between their composition, crystallization capacity and ...

  18. Crystal structure and optical property of complex perovskite oxynitrides ALi0.2Nb0.8O2.8N0.2, ANa0.2Nb0.8O2.8N0.2, and AMg0.2Nb0.8O2.6N0.4 (A = Sr, Ba)

    Science.gov (United States)

    Moon, Keon Ho; Avdeev, Maxim; Kim, Young-Il

    2017-10-01

    Oxynitride type complex perovskites AM0.2Nb0.8O3-xNx (A = Sr, Ba; M = Li, Na, Mg) were newly synthesized by the solid state diffusion of Li+, Na+, or Mg2+ into the layered oxide, A5Nb4O15, with concurrent O/N substitution. Neutron and synchrotron X-ray Rietveld refinement showed that SrLi0.2Nb0.8O2.8N0.2, SrNa0.2Nb0.8O2.8N0.2, and SrMg0.2Nb0.8O2.6N0.4 had body-centered tetragonal symmetry (I4/mcm), while those with A = Ba had simple cubic symmetry (Pm 3 ̅ m). In the tetragonal Sr-compounds, the nitrogen atoms were localized on the c-axial 4a site. However, the octahedral cations, M/Nb (M = Li, Na, Mg) were distributed randomly in all six compounds. The lattice volume of AM0.2Nb0.8O3-xNx was dependent on various factors including the type of A and the electronegativity of M. Compared to the simple perovskites, ANbO2N (A = Sr, Ba), AM0.2Nb0.8O3-xNx had wider band gaps (1.76-2.15 eV for A = Sr and 1.65-2.10 eV for A = Ba), but significantly lower sub-gap absorption.

  19. Anomalous Interface and Surface Strontium Segregation in (La 1– y Sr y ) 2 CoO 4±δ /La 1– x Sr x CoO 3−δ Heterostructured Thin Films

    KAUST Repository

    Feng, Zhenxing

    2014-03-20

    Heterostructured oxides have shown unusual electrochemical properties including enhanced catalytic activity, ion transport, and stability. In particular, it has been shown recently that the activity of oxygen electrocatalysis on the Ruddlesden-Popper/perovskite (La1-ySr y)2CoO4±δ/La1-xSr xCoO3-δ heterostructure is remarkably enhanced relative to the Ruddlesden-Popper and perovskite constituents. Here we report the first atomic-scale structure and composition of (La1-ySr y)2CoO4±δ/La1-xSr xCoO3-δ grown on SrTiO3. We observe anomalous strontium segregation from the perovskite to the interface and the Ruddlesden-Popper phase using direct X-ray methods as well as with ab initio calculations. Such Sr segregation occurred during the film growth, and no significant changes were found upon subsequent annealing in O2. Our findings provide insights into the design of highly active catalysts for oxygen electrocatalysis. © 2014 American Chemical Society.

  20. Anomalous Interface and Surface Strontium Segregation in (La 1– y Sr y ) 2 CoO 4±δ /La 1– x Sr x CoO 3−δ Heterostructured Thin Films

    KAUST Repository

    Feng, Zhenxing; Yacoby, Yizhak; Gadre, Milind J.; Lee, Yueh-Lin; Hong, Wesley T.; Zhou, Hua; Biegalski, Michael D.; Christen, Hans M.; Adler, Stuart B.; Morgan, Dane; Shao-Horn, Yang

    2014-01-01

    Heterostructured oxides have shown unusual electrochemical properties including enhanced catalytic activity, ion transport, and stability. In particular, it has been shown recently that the activity of oxygen electrocatalysis on the Ruddlesden-Popper/perovskite (La1-ySr y)2CoO4±δ/La1-xSr xCoO3-δ heterostructure is remarkably enhanced relative to the Ruddlesden-Popper and perovskite constituents. Here we report the first atomic-scale structure and composition of (La1-ySr y)2CoO4±δ/La1-xSr xCoO3-δ grown on SrTiO3. We observe anomalous strontium segregation from the perovskite to the interface and the Ruddlesden-Popper phase using direct X-ray methods as well as with ab initio calculations. Such Sr segregation occurred during the film growth, and no significant changes were found upon subsequent annealing in O2. Our findings provide insights into the design of highly active catalysts for oxygen electrocatalysis. © 2014 American Chemical Society.

  1. Ferromagnetic interactions in Ru(III)-nitronyl nitroxide radical complex: a potential 2p4d building block for molecular magnets.

    Science.gov (United States)

    Pointillart, Fabrice; Bernot, Kevin; Sorace, Lorenzo; Sessoli, Roberta; Gatteschi, Dante

    2007-07-07

    The reaction between [Ru(salen)(PPh3)Cl] and the 4-pyridyl-substituted nitronyl nitroxide radical (NITpPy) leads to the [Ru(salen)(PPh3)(NITpPy)](ClO4)(H2O)2 complex while the reaction with the azido anion (N3-) leads to the [Ru(salen)(PPh3)(N3)] complex 2 (where salen2- = N,N'-ethan-1,2-diylbis(salicylidenamine) and PPh3 = triphenylphosphine). Both compounds have been characterized by single crystal X-ray diffraction. The two crystal structures are composed by a [Ru(III)(salen)(PPh3)]+ unit where the Ru(III) ion is coordinated to a salen2- ligand and one PPh3 ligand in axial position. In 1 the Ru(III) ion is coordinated to the 4-pyridyl-substituted nitronyl nitroxide radical whereas in 2 the second axial position is occupied by the azido ligand. In both complexes the Ru(III) ions are in the same environment RuO2N3P, in a tetragonally elongated octhaedral geometry. The crystal packing of 1 reveals pi-stacking in pairs. While antiferromagnetic intermolecular interaction (J2 = 5.0 cm(-1)) dominates at low temperatures, ferromagnetic intramolecular interaction (J1 = -9.0 cm(-1)) have been found between the Ru(III) ion and the coordinated NITpPy.

  2. μSR investigations of the high temperature superconductors La1.85Sr0.15CuO4 and YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Birrer, P.; Gygax, F.N.; Hitti, B.

    1987-01-01

    μSR studies of La 1.85 Sr 0.15 CuO 4 and YBa 2 Cu 3 O 7-δ high temperature superconductors are carried out. The interval magnetic properties of these systems are studied on a microscopic level in the 4 kOe magnetic field and in the temperature range 10 K - 120 K. The magnetic penetration depth λ in this system did not show any significant differences from the two temperature scans (10 K and 120 K) and it destroys a field independence above 1 kOe. For T=OK the authers obtain λ(OK)≅2650 A

  3. Synthesis, characterisation and antibacterial activity of [(p-cym)RuX(L)](+/2+) (X = Cl, H2O; L = bpmo, bpms) complexes.

    Science.gov (United States)

    Tripathy, Suman Kumar; Taviti, Ashoka Chary; Dehury, Niranjan; Sahoo, Anupam; Pal, Satyanaryan; Beuria, Tushar Kant; Patra, Srikanta

    2015-03-21

    Mononuclear half-sandwiched complexes [(p-cym)RuCl(bpmo)](ClO4) {[1](ClO4)} and [(p-cym)RuCl(bpms)](PF6) {[2](PF6)} have been prepared by reacting heteroscorpionate ligands bpmo = 2-methoxyphenyl-bis(3,5-dimethylpyrazol-1-yl)methane and bpms = 2-methylthiophenyl-bis(3,5-dimethylpyrazol-1-yl)methane, respectively, with a dimeric precursor complex [(p-cym)RuCl(μ-Cl)]2 (p-cym = 1-isopropyl-4-methylbenzene) in methanol. The corresponding aqua derivatives [(p-cym)Ru(H2O)(bpmo)](ClO4)2 {[3](ClO4)2} and [(p-cym)Ru(H2O)(bpms)](PF6)2 {[4](PF6)2} are obtained from {[1](ClO4)} and {[2](PF6)}, respectively, via Cl(-)/H2O exchange process in the presence of appropriate equivalents of AgClO4/AgNO3 + KPF6 in a methanol-water mixture. The molecular structures of the complexes {[1]Cl, [3](ClO4)2 and [4](PF6)(NO3)} are authenticated by their single crystal X-ray structures. The complexes show the expected piano-stool geometry with p-cym in the η(6) binding mode. The aqua complexes [3](ClO4)2 and [4](PF6)2 show significantly good antibacterial activity towards E. coli (gram negative) and B. subtilis (gram positive) strains, while chloro derivatives ({[1](ClO4)} and {[2](PF6)} are found to be virtually inactive. The order of antibacterial activity of the complexes according to their MIC values is [1](ClO4) (both 1000 μg mL(-1)) < [2](PF6) (580 μg mL(-1) and 750 μg mL(-1)) < [3](ClO4)2 (both 100 μg mL(-1)) < [4](PF6)2 (30 μg mL(-1) and 60 μg mL(-1)) for E. coli and B. subtilis strains, respectively. Further, the aqua complexes [3](ClO4)2 and [4](PF6)2 show clear zones of inhibition against kanamycin, ampicillin and chloramphenicol resistant E. coli strains. The detailed mechanistic aspects of the aforesaid active aqua complexes [3](ClO4)2 and [4](PF6)2 have been explored, and it reveals that both the complexes inhibit the number of nucleoids per cell in vivo and bind to DNA in vitro. The results indeed demonstrate that both [3](ClO4)2 and [4](PF6)2 facilitate the inhibition of

  4. Effect of UV irradiation on different types of luminescence of SrAl2 O4 :Eu,Dy phosphors.

    Science.gov (United States)

    Jha, Piyush

    2016-11-01

    This paper reports the luminescence behavior of Sr 0.097 Al 2 O 4 :Eu 0.01 ,Dy 0.02 phosphors under UV-irradiation. The effect of UV-irradiation on afterglow (AG), thermoluminescence (TL) and mechanoluminescence (ML) of Sr 0.097 Al 2 O 4 :Eu 0.01 ,Dy 0.02 phosphors is investigated. The space group of Sr 0.097 Al 2 O 4 :Eu 0.01 ,Dy 0.02 phosphors is monoclinic P2 1 . The prepared phosphors exhibit a long AG, intense TL and ML. It is found that the AG, ML intensity and TL increase with increasing duration of irradiation time. The ML intensity decreases with successive impact of the load onto the phosphors, whereby the diminished ML intensity can be recovered by UV-irradiation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Thermoluminescence of SrAl_2O_4:Eu"2"+, Dy"3"+: dosimetric characteristics and evidence of glow-peak collocation

    International Nuclear Information System (INIS)

    Chithambo, M.L.

    2016-01-01

    The thermoluminescence of SrAl_2O_4:Eu"2"+, Dy"3"+ consists of collocated peaks whereby a dominant component subsumes subsidiary ones to such an extent that they appear as one; Qualitative and quantitative analysis of such cases will be described with suitable illustrative examples. The general features and qualitative kinetics properties of thermoluminescence from SrAl_2O_4:Eu"2"+, Dy"3"+ is reported. Measurements using X-ray excited optical luminescence show that stimulated luminescence from SrAl_2O_4:Eu"2"+, Dy"3"+ has two prominent emission bands, one at 475 nm and a more intense one near 575 nm, studied in this work. There are also weaker intensity emissions at 405, 510, 600 and 660 nm. The natural thermoluminescence measured at 1°C s"-"1 shows three peaks at 74, 170 and 340°C whereas 20 Gy beta-irradiation produces TL dominated by a single peak at 34°C. Analysis of this peak for its order of kinetics produces somewhat inconclusive results. The results of the partial heating procedure T_m - T_s_t_o_p are consistent with both first and second-order kinetics. On the other hand, the position of the peak is independent of dose for several ranges of doses implying that the apparently single peak consists of multiple first-order peaks. Complementary investigations using the fractional glow technique, resolution by isothermal heating and the effect of fading on the peak show that the glow-curve of SrAl_2O_4:Eu"2"+, Dy"3"+ comprises closely collocated thermoluminescence peaks. The implication of such complexity on kinetic analysis on this material and others that share this feature will be discussed. (author)

  6. Orientation-Dependent Oxygen Evolution on RuO 2 without Lattice Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Stoerzinger, Kelsey A.; Diaz-Morales, Oscar; Kolb, Manuel; Rao, Reshma R.; Frydendal, Rasmus; Qiao, Liang; Wang, Xiao Renshaw; Halck, Niels Bendtsen; Rossmeisl, Jan; Hansen, Heine A.; Vegge, Tejs; Stephens, Ifan E. L.; Koper, Marc T. M.; Shao-Horn, Yang

    2017-03-15

    RuO2 catalysts exhibit record activities towards the oxygen evolution reaction (OER), which is crucial to enable efficient and sustainable energy storage. Here we examine the RuO2 OER kinetics on rutile (110), (100), (101), and (111) orientations, finding (100) the most active. We assess the potential involvement of lattice oxygen in the OER mechanism with online 3 electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous work, suggesting lattice oxygen is not exchanged in catalyzing OER on crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by DFT, where more active facets bind oxygen more weakly. This new understanding of the active sites provides a design strategy to enhance the OER activity of RuO2 nanoparticles by facet engineering.

  7. Possible superconductivity in Sr2IrO4 probed by quasiparticle interference

    Science.gov (United States)

    Gao, Yi; Zhou, Tao; Huang, Huaixiang; Wang, Qiang-Hua

    2015-01-01

    Based on the possible superconducting (SC) pairing symmetries recently proposed, the quasiparticle interference (QPI) patterns in electron- and hole-doped Sr2IrO4 are theoretically investigated. In the electron-doped case, the QPI spectra can be explained based on a model similar to the octet model of the cuprates while in the hole-doped case, both the Fermi surface topology and the sign of the SC order parameter resemble those of the iron pnictides and there exists a QPI vector resulting from the interpocket scattering between the electron and hole pockets. In both cases, the evolution of the QPI vectors with energy and their behaviors in the nonmagnetic and magnetic impurity scattering cases can well be explained based on the evolution of the constant-energy contours and the sign structure of the SC order parameter. The QPI spectra presented in this paper can be compared with future scanning tunneling microscopy experiments to test whether there are SC phases in electron- and hole-doped Sr2IrO4 and what the pairing symmetry is. PMID:25783417

  8. Influence of Binders and Solvents on Stability of Ru/RuOx Nanoparticles on ITO Nanocrystals as Li-O2 Battery Cathodes.

    Science.gov (United States)

    Vankova, Svetoslava; Francia, Carlotta; Amici, Julia; Zeng, Juqin; Bodoardo, Silvia; Penazzi, Nerino; Collins, Gillian; Geaney, Hugh; O'Dwyer, Colm

    2017-02-08

    Fundamental research on Li-O 2 batteries remains critical, and the nature of the reactions and stability are paramount for realising the promise of the Li-O 2 system. We report that indium tin oxide (ITO) nanocrystals with supported 1-2 nm oxygen evolution reaction (OER) catalyst Ru/RuO x nanoparticles (NPs) demonstrate efficient OER processes, reduce the recharge overpotential of the cell significantly and maintain catalytic activity to promote a consistent cycling discharge potential in Li-O 2 cells even when the ITO support nanocrystals deteriorate from the very first cycle. The Ru/RuO x nanoparticles lower the charge overpotential compared with those for ITO and carbon-only cathodes and have the greatest effect in DMSO electrolytes with a solution-processable F-free carboxymethyl cellulose (CMC) binder (ITO nanocrystalline materials in DMSO provide efficient Li 2 O 2 decomposition from within the cathode during cycling. We demonstrate that the ITO is actually unstable from the first cycle and is modified by chemical etching, but the Ru/RuO x NPs remain effective OER catalysts for Li 2 O 2 during cycling. The CMC binders avoid PVDF-based side-reactions and improve the cyclability. The deterioration of the ITO nanocrystals is mitigated significantly in cathodes with a CMC binder, and the cells show good cycle life. In mixed DMSO-EMITFSI [EMITFSI=1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide] ionic liquid electrolytes, the Ru/RuO x /ITO materials in Li-O 2 cells cycle very well and maintain a consistently very low charge overpotential of 0.5-0.8 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Magnetic and conductivity study on Mn0.5Ru0.5Co2O4 spinel

    International Nuclear Information System (INIS)

    Bhowmik, R.N.; Ranganathan, R.

    2003-01-01

    The magnetic measurements suggest that Mn 0.5 Ru 0.5 Co 2 O 4 is a ferrimagnet with T c ≅ 140 K followed by irreversibility between zero field cooled and field cooled magnetization and peak in zero field cooled maximum at T m ≅ 100 K on decreasing the temperature. The scaling analysis of the conductivity (G) as a function of frequency (f) with functional form G p (f)/G o ∼ (f/f c ) n suggests two activated regimes at above and below of 210 K, respectively. The G o vs T shows semi-conducting behaviour of the sample. (author)

  10. The dehydration of SrTeO3(H2O)--a topotactic reaction for preparation of the new metastable strontium oxotellurate(IV) phase ε-SrTeO3.

    Science.gov (United States)

    Stöger, Berthold; Weil, Matthias; Baran, Enrique J; González-Baró, Ana C; Malo, Sylvie; Rueff, Jean Michel; Petit, Sebastien; Lepetit, Marie Bernadette; Raveau, Bernard; Barrier, Nicolas

    2011-05-28

    Microcrystalline single-phase strontium oxotellurate(IV) monohydrate, SrTeO(3)(H(2)O), was obtained by microwave-assisted hydrothermal synthesis under alkaline conditions at 180 °C for 30 min. A temperature of 220 °C and longer reaction times led to single crystal growth of this material. The crystal structure of SrTeO(3)(H(2)O) was determined from single crystal X-ray diffraction data: P2(1)/c, Z = 4, a = 7.7669(5), b = 7.1739(4), c = 8.3311(5) Å, β = 107.210(1)°, V = 443.42(5) Å(3), 1403 structure factors, 63 parameters, R[F(2)>2σ(F(2))] = 0.0208, wR(F(2) all) = 0.0516, S = 1.031. SrTeO(3)(H(2)O) is isotypic with the homologous BaTeO(3)(H(2)O) and is characterised by a layered assembly parallel to (100) of edge-sharing [SrO(6)(H(2)O)] polyhedra capped on each side of the layer by trigonal-prismatic [TeO(3)] units. The cohesion of the structure is accomplished by moderate O-H···O hydrogen bonding interactions between donor water molecules and acceptor O atoms of adjacent layers. In a topochemical reaction, SrTeO(3)(H(2)O) condensates above 150 °C to the metastable phase ε-SrTeO(3) and transforms upon further heating to δ-SrTeO(3). The crystal structure of ε-SrTeO(3), the fifth known polymorph of this composition, was determined from combined electron microscopy and laboratory X-ray powder diffraction studies: P2(1)/c, Z = 4, a = 6.7759(1), b = 7.2188(1), c = 8.6773(2) Å, β = 126.4980(7)°, V = 341.20(18) Å(3), R(Fobs) = 0.0166, R(Bobs) = 0.0318, Rwp = 0.0733, Goof = 1.38. The structure of ε-SrTeO(3) shows the same basic set-up as SrTeO(3)(H(2)O), but the layered arrangement of the hydrous phase transforms into a framework structure after elimination of water. The structural studies of SrTeO(3)(H(2)O) and ε-SrTeO(3) are complemented by thermal analysis and vibrational spectroscopic measurements.

  11. Synthesis and Structure of A New Perovskite, SrCuO 2.5

    Science.gov (United States)

    Chen, Bai-Hao; Walker, Dave; Scott, Bruce A.; Mitzi, David B.

    1996-02-01

    A new oxygen-deficient perovskite, SrCuO2.5, was prepared at 950°C and 100 kbar pressure in a multianvil apparatus. Rietveld profile analysis, using X-ray powder diffraction data, was employed for the structural determination. SrCuO2.5is orthorhombic,Pbam(No. 55),Z= 4,a= 5.424(2) Â,b= 10.837(4) Â, andc= 3.731(1) Â, which is related to the perovskite subcell by root{2}ap× 2root{2}ap×ap, whereapis the simple cubic perovskite lattice parameter. It consists of corner-shared CuO5square pyramids with oxygen vacancy ordering in the CuO2layers. The ordered oxygen vacancies create parallel pseudo-hexagonal tunnels where the Sr atoms reside, forming SrO10polyhedra. Structural features with respect to oxygen vacancies, superstructures, and distortions are analogous to the type of ordering observed in Sr2CuO3+δ. Superconductivity was not observed in SrCuO2.5down to 5 K.

  12. Observation of spin reorientation in layered manganites La1.2Sr1.8(Mn1-yRuy)2O7 (0.0=2) by Lorentz transmission electron microscopy

    International Nuclear Information System (INIS)

    Yu, X.Z.; Uchida, M.; Onose, Y.; He, J.P.; Kaneko, Y.; Asaka, T.; Kimoto, K.; Matsui, Y.; Arima, T.; Tokura, Y.

    2006-01-01

    The effect of Ru substitution for Mn in bilayered oxides La 1.2 Sr 1.8 (Mn 1-y Ru y ) 2 O 7 (0= for the y=0 crystal to the c-axis for y=0.2, and it rotates away from the c-axis for the y=0.05 and y=0.07 crystals with decreasing temperature. Furthermore, maze-shaped magnetic domain structures were observed in the (001) thin crystals with 0.05=< y=<0.2. Changes in domain size and structure indicate that the uniaxial magnetic anisotropy becomes stronger as Ru content y increases

  13. Properties and Crystallization Phenomena in Li2Si2O5–Ca5(PO4)3F and Li2Si2O5–Sr5(PO4)3F Glass–Ceramics Via Twofold Internal Crystallization

    Science.gov (United States)

    Rampf, Markus; Dittmer, Marc; Ritzberger, Christian; Schweiger, Marcel; Höland, Wolfram

    2015-01-01

    The combination of specific mechanical, esthetic, and chemical properties is decisive for the application of materials in prosthodontics. Controlled twofold crystallization provides a powerful tool to produce special property combinations for glass–ceramic materials. The present study outlines the potential of precipitating Ca5(PO4)3F as well as Sr5(PO4)3F as minor crystal phases in Li2Si2O5 glass–ceramics. Base glasses with different contents of CaO/SrO, P2O5, and F− were prepared within the glasses of the SiO2–Li2O–K2O–CaO/SrO–Al2O3–P2O5–F system. Preliminary studies of nucleation by means of XRD and scanning electron microscopy (SEM) of the nucleated base glasses revealed X-ray amorphous phase separation phenomena. Qualitative and quantitative crystal phase analyses after crystallization were conducted using XRD in combination with Rietveld refinement. As a main result, a direct proportional relationship between the content of apatite-forming components in the base glasses and the content of apatite in the glass–ceramics was established. The microstructures of the glass–ceramics were investigated using SEM. Microstructural and mechanical properties were found to be dominated by Li2Si2O5 crystals and quite independent of the content of the apatite present in the glass–ceramics. Biaxial strengths of up to 540 MPa were detected. Ca5(PO4)3F and Sr5(PO4)3F influence the translucency of the glass–ceramics and, hence, help to precisely tailor the properties of Li2Si2O5 glass–ceramics. The authors conclude that the twofold crystallization of Li2Si2O5–Ca5(PO4)3F or Li2Si2O5–Sr5(PO4)3F glass–ceramics involves independent solid-state reactions, which can be controlled via the chemical composition of the base glasses. The influence of the minor apatite phase on the optical properties helps to achieve new combinations of features of the glass–ceramics and, hence, displays new potential for dental applications. PMID:26389112

  14. Non-destructive reversible resistive switching in Cr doped Mott insulator Ca2RuO4: Interface vs bulk effects

    KAUST Repository

    Shen, Shida; Williamson, Morgan; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim

    2017-01-01

    A non-destructive reversible resistive switching is demonstrated in single crystals of Cr-doped Mott insulator Ca2RuO4. An applied electrical bias was shown to reduce the DC resistance of the crystal by as much as 75%. The original resistance

  15. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode

    Directory of Open Access Journals (Sweden)

    Wade Lonsdale

    2017-09-01

    Full Text Available A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices.

  16. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode

    Science.gov (United States)

    Wajrak, Magdalena; Alameh, Kamal

    2017-01-01

    A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices. PMID:28878182

  17. Luminescent processes in SrAl2O4: Eu2+, Dy3+ phosphors exposed to ultraviolet radiation

    International Nuclear Information System (INIS)

    Arellano T, O.; Castaneda, B.; Pedroza M, M.; Melendrez, R.; Chernov, V.; Barboza F, M.; Yen, W.M.

    2006-01-01

    The long persistent response of the SrAl 2 O 4 : Eu 2+ , Dy 3+ phosphors has been utilized in the development of new luminescent devices with low voltage requirements, incorporated in luminous paints and emergency light illumination. We have studied the experimental characteristics of thermoluminescence (TL) and afterglow (AG) processes in UV irradiated long persistent phosphors SrAl 2 O 4 : Eu 2+ , Dy 3+ . The TL signal is achieved by thermal stimulation of material and it involves the release of trapped charge carriers in the form of electrons and/or electrons and holes generated by irradiation exposure of the dosimetric materials, while the AG signal is obtained at RT without thermal stimulation. In both cases, the intensity of the response is proportional to the radiation dose. For our UV irradiated SrAl 2 O 4 : Eu 2+ , Dy 3+ samples, the TL glow curve depicted at least five peaks around 318, 424, 457, 488 and 515 K with activation energy values of 0.28, 0.67, 1.00, 1.35 and 1.62 eV, respectively. In this respect, the initial rise method was used to estimate experimentally the peak positions. Then, these experimental data were used as initial values to determine the kinetics parameters through a computer deconvolution and fitting process. Besides, the AG response was analyzed and we found it has at least three exponential processes with different lifetimes around 56, 180 and 1230 s, respectively. In addition, the afterglow dosimetry performance of this SrAl 2 O 4 : Eu 2+ , Dy 3+ phosphor exhibited a linear behavior for the first fifty seconds of ultraviolet irradiation. For higher ultraviolet time exposure the behavior is sub linear with no apparent saturation during ten minutes. The afterglow dosimetry response was performed with a source of 400 nm that corresponds to the main band component of the afterglow excitation spectrum in the 250-500 nm range. The TL glow intensity peaked at 460 K and AG intensity responses are strongly dependents on the excitation

  18. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth.

    Science.gov (United States)

    Xu, Jing; Wang, Qiufan; Wang, Xiaowei; Xiang, Qingyi; Liang, Bo; Chen, Di; Shen, Guozhen

    2013-06-25

    We have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on acicular Co9S8 nanorod arrays as positive materials and Co3O4@RuO2 nanosheet arrays as negative materials on woven carbon fabrics. Co9S8 nanorod arrays were synthesized by a hydrothermal sulfuration treatment of acicular Co3O4 nanorod arrays, while the RuO2 was directly deposited on the Co3O4 nanorod arrays. Carbon cloth was selected as both the substrate and the current collector for its good conductivity, high flexibility, good physical strength, and lightweight architecture. Both aqueous KOH solutions and polyvinyl alcohol (PVA)/KOH were employed as electrolyte for electrochemical measurements. The as-fabricated ASCs can be cycled reversibly in the range of 0-1.6 V and exhibit superior electrochemical performance with an energy density of 1.21 mWh/cm(3) at a power density of 13.29 W/cm(3) in aqueous electrolyte and an energy density of 1.44 mWh/cm(3) at the power density of 0.89 W/cm(3) in solid-state electrolyte, which are almost 10-fold higher than those reported in early ASC work. Moreover, they present excellent cycling performance at multirate currents and large currents after thousands of cycles. The high-performance nanostructured ASCs have significant potential applications in portable electronics and electrical vehicles.

  19. Ferroelectric properties of NaNbO3-BaTiO3 thin films deposited on SrRuO3/(001)SrTiO3 substrate by pulsed laser deposition

    International Nuclear Information System (INIS)

    Yamazoe, Seiji; Oda, Shinya; Sakurai, Hiroyuki; Wada, Takahiro; Adachi, Hideaki

    2009-01-01

    (NaNbO 3 ) 1-x (BaTiO 3 ) x (NN-xBT) thin films with low BaTiO 3 (BT) concentrations x (x=0.05 and 0.10) were fabricated on SrRuO 3 /(001)SrTiO 3 (SRO)/(001)STO) substrate by pulsed laser deposition (PLD). X-ray diffraction pattern (XRD) and transmission electron diffraction pattern (TED) showed that NN-0.10BT thin film was epitaxially grown on SRO/(001)STO substrate with a crystallographic relationship of [001] NN-xBT parallel [001] STO . From reciprocal space maps, the lattice parameters of the out-of-plane direction of NN-xBT thin films became larger with an increase in BT concentration, although the lattice parameter of the in-plane was hardly changed by the BT concentration. The value of relative dielectric constant ε r of the NN-xBT thin films were increased with BT concentration. The ε r and the dielectric loss tanδ of NN-0.10BT were 1220 and 0.02 at 1 kHz, respectively. The P-E hysteresis loops of the NN-xBT thin films showed clear ferroelectricity. Although the value of remanent polarization P r decreased with the BT concentration, the behaviors of ε r , P r , and coercive electric field E c of the NN-xBT thin films against the BT concentration accorded with those of NN-xBT ceramics, in which NN-0.10BT ceramics exhibited the largest piezoelectric property. Therefore, the NN-0.10BT thin film is expected to show high piezoelectricity. (author)

  20. AuRu/meso-Mn2O3: A Highly Active and Stable Catalyst for Methane Combustion

    Science.gov (United States)

    Han, Z.; Fang, J. Y.; Xie, S. H.; Deng, J. G.; Liu, Y. X.; Dai, H. X.

    2018-05-01

    Three-dimensionally ordered mesoporous Mn2O3 (meso-Mn2O3) and its supported Au, Ru, and AuRu alloy (0.49 wt% Au/meso-Mn2O3, 0.48 wt% Ru/meso-Mn2O3, and 0.97 wt% AuRu/meso-Mn2O3 (Au/Ru molar ratio = 0.98)) nanocatalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected reduction methods, respectively. Physicochemical properties of the samples were characterized by means of numerous techniques, and their catalytic activities were evaluated for the combustion of methane. It is found that among all of the samples, 0.48 wt% Ru/meso-Mn 2O3 and 0.97 wt% AuRu/meso-Mn2O3 performed the best (the reaction temperature (T90% ) at 90% methane conversion was 530-540°C), but the latter showed a better thermal stability than the former. The partial deactivation of 0.97 wt% AuRu/meso-Mn2O3 due to H2O or CO2 introduction was reversible. It is concluded that the good catalytic activity and thermal stability of 0.97 wt% AuRu/meso-Mn2O3 was associated with the high dispersion of AuRu alloy NPs (2-5 nm) on the surface of meso-Mn2O3 and good low-temperature reducibility.

  1. Microstructural and dielectric properties of Ba0.6Sr0.4Ti1-xZrxO3 based combinatorial thin film capacitors library

    International Nuclear Information System (INIS)

    Liu Guozhen; Wolfman, Jerome; Autret-Lambert, Cecile; Sakai, Joe; Roger, Sylvain; Gervais, Monique; Gervais, Francois

    2010-01-01

    Epitaxial growth of Ba 0.6 Sr 0.4 Ti 1-x Zr x O 3 (0≤x≤0.3) composition spread thin film library on SrRuO 3 /SrTiO 3 layer by combinatorial pulsed laser deposition (PLD) is reported. X-ray diffraction and energy dispersive x-ray spectroscopy studies showed an accurate control of the film phase and composition by combinatorial PLD. A complex evolution of the microstructure and morphology with composition of the library is described, resulting from the interplay between epitaxial stress, increased chemical pressure, and reduced elastic energy upon Zr doping. Statistical and temperature-related capacitive measurements across the library showed unexpected variations in the dielectric properties. Doping windows with enhanced permittivity and tunability are identified, and correlated to microstructural properties.

  2. Phase relations in the M2MoO4 - Ag2MoO4 - Hf(MoO4)2 (M=Li, Na) systems

    International Nuclear Information System (INIS)

    Bazarova, Zh.G.; Bazarov, B.G.; Balsanova, L.V.

    2002-01-01

    The M 2 MoO 4 - Ag 2 MoO 4 - Hf(MoO 4 ) 2 (M=Li, Na) systems were studied by X-ray diffraction and differential thermal analyses in the subsolidus area (450 - 500 Deg C) for the first time. The formation of the binary compound with the variable composition Li 4-x Hf 1+0.2x (MoO 4 ) 4 (0 ≤ x ≤ 0.6) in the Li 2 MoO 4 - Hf(MoO 4 ) 2 system and the ternary molybdates Li 4 Ag 2 Hf(MoO 4 ) 5 (S 1 ) and Na 2 Ag 2 Hf(MoO 4 ) 4 (S 2 ) was established and the thermal characteristics of the prepared compounds were examined. The new binary molybdate Ag 2 Hf(MoO 4 ) 3 was prepared by the reaction between Ag 2 MoO 4 and Hf(MoO 4 ) 2 [ru

  3. Eu and Sr2CeO4 : Eu phosphors suitable for near ultraviolet excitation

    Indian Academy of Sciences (India)

    Administrator

    The study on white light phosphors suitable for near- ultraviolet (nUV) ... Rare earth ion-doped phosphors have been used in varied fields ... practical applications. .... by naked eyes. ... induced by Sr2CeO4 host matrix (Arunachalam Laxmanan.

  4. Insulating phase in Sr{sub 2}IrO{sub 4}: An investigation using critical analysis and magnetocaloric effect

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, Imtiaz Noor; Pramanik, A.K., E-mail: akpramanik@mail.jnu.ac.in

    2017-01-15

    The nature of insulating phase in 5d based Sr{sub 2}IrO{sub 4} is quite debated as the theoretical as well as experimental investigations have put forward evidences in favor of both magnetically driven Slater-type and interaction driven Mott-type insulator. To understand this insulating behavior, we have investigated the nature of magnetic state in Sr{sub 2}IrO{sub 4} through studying critical exponents, low temperature thermal demagnetization and magnetocaloric effect. The estimated critical exponents do not exactly match with any universality class, however, the values obey the scaling behavior. The exponent values suggest that spin interaction in present material is close to mean-field model. The analysis of low temperature thermal demagnetization data, however, shows dual presence of localized- and itinerant-type of magnetic interaction. Moreover, field dependent change in magnetic entropy indicates magnetic interaction is close to mean-field type. While this material shows an insulating behavior across the magnetic transition, yet a distinct change in slope in resistivity is observed around T{sub c}. We infer that though the insulating phase in Sr{sub 2}IrO{sub 4} is more close to be Slater-type but the simultaneous presence of both Slater- and Mott-type is the likely scenario for this material. - Highlights: • Critical analysis shows Sr{sub 2}IrO{sub 4} has ferromagnetic ordering temperature T{sub c}~225 K. • Obtained critical exponents imply spin interaction is close to mean-field model. • Analysis of magneto-entropy data also supports mean-field type interaction. • However, the presence of both itinerant and localized spin interaction is evident. • Sr{sub 2}IrO{sub 4} has simultaneous presence of both Slater- and Mott-type insulating phase.

  5. On the solubility of yttrium in RuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis; Zumdick, Naemi A.; Hallstedt, Bengt; Schneider, Jochen M. [Materials Chemistry, RWTH Aachen University, D-52056 Aachen (Germany)

    2011-09-01

    We have investigated the solubility of Y in rutile RuO{sub 2} using experimental and theoretical methods. Nanostructured Ru-Y-O thin films were synthesized via combinatorial reactive sputtering with an O/metal ratio of 2.6 and a Y content of 0.3 to 12.6 at. %. A solubility limit of 1.7 at. % was identified using x-ray photoelectron spectroscopy and x-ray diffraction. Based on ab initio and thermodynamic modeling, the solubility of Y can be understood. Smaller Y amounts are incorporated into the lattice, forming a metastable film, with local structural deformations due to size effects. As the Y content is increased, extensive local structural deformations are observed, but phase separation does not occur due to kinetic limitations. Nanostructured RuO{sub 2} alloyed with Y might lead to enhanced phonon scattering and quantum confinement effects, which in turn improve the thermoelectric efficiency.

  6. Toward selective electrochemical 'E-tongue': Potentiometric DO sensor based on sub-micron ZnO-RuO{sub 2} sensing electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhuiykov, Serge, E-mail: serge.zhuiykov@csiro.au [CSIRO, Materials Science and Engineering Division, 37 Graham Road, Highett, VIC 3190 (Australia); Kats, Eugene [CSIRO, Materials Science and Engineering Division, 37 Graham Road, Highett, VIC 3190 (Australia); Plashnitsa, Vladimir [Research and Education Centre of Carbon Resources, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan); Miura, Norio [KASTEC, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2011-06-01

    Highlights: > We examine ZnO-doped RuO{sub 2} sensing electrode of DO sensor. > Study of ZnO-RuO{sub 2} confirmed the development of high surface-to-volume ratio. > Developed sensing electrode is insensitive to the presence of various dissolved salts. > 20 mol% ZnO-doped RuO{sub 2} sensing electrode enables maximum DO sensitivity. > We conclude that DO sensor based on ZnO-RuO{sub 2} electrode can work at 11-30 deg. C. - Abstract: Planar dissolved oxygen (DO) sensors based on thick-film ZnO-RuO{sub 2} sensing electrodes (SEs) with different mol% of ZnO were prepared on the alumina substrates using a screen-printing method and their structural and electrochemical properties were closely studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), electrochemical impedance spectroscopy (EIS) and energy-dispersive spectroscopy (EDS) techniques. Structural and electrochemical properties of ZnO-RuO{sub 2}-SEs have been investigated. Interference testing ascertained that the DO sensor based on sub-micron ZnO-RuO{sub 2}-SE is insensitive to the presence of various dissolved ions including Cl{sup -}, Li{sup +}, SO{sub 4}{sup 2-}, NO{sup 3-}, Ca{sup 2+}, PO{sub 4}{sup 3-}, Mg{sup 2+}, Na{sup +} and K{sup +} within a concentration range of 10{sup -7} to 10{sup -1} mol/L for DO measurement from 0.5 to 8.0 ppm in the test solution at a temperature range of 11-30 deg. C. These dissolved salts had practically no effect on the sensor's output potential difference response, whereas Br{sup -} ions had some effects at concentration more than 10{sup -3} mol/L. The relationship between DO and the sensor's potential difference was found to be relatively linear with the maximum sensitivity of -50.6 mV per decade was achieved at 20 mol% ZnO at 7.35 pH. The response and recovery time to pH changes for the planar device based on 20 mol% ZnO-RuO{sub 2}-SE was found to be 10 and 25 s

  7. Aspects of 'low field' magnetotransport in epitaxial thin films of the ferromagnetic metallic oxide SrRuO3

    International Nuclear Information System (INIS)

    Moran, O.; Saldarriaga, W.; Baca, E.

    2007-01-01

    Epitaxial thin films of the conductive ferromagnetic oxide SrRuO 3 were grown on an (001) SrTiO 3 (STO) substrate by using DC sputtering technique. The magnetic and magnetoresistive properties of the films were measured by applying the magnetic field both perpendicular (out-of-plane) and parallel (in-plane) to the film plane and ever maintaining the direction of the applied field perpendicular to that of the transport current. The films grown on an (001) STO substrate showed identical magnetization properties in two orthogonal crystallographic directions of the substrate, [100] S and [001] S (in-plane and out-of-plane geometry), which suggests the presence of a multi domain structure within the plane of the film. For such samples, no anisotropic field (hard axis) along de [001]s direction, i.e., perpendicular to the film-plane could be detected. Nevertheless, a distinguishable temperature dependent out-of-plane anisotropic magnetoresistance (MR) along with strong temperature dependent low field hysteretic MR(H) behavior was detected for the studied films. A negative MR ratio MR(T)=[ρ(μ 0 H=9T; T)-ρ( μ 0 H=0T; T)]/ρ( μ 0 H=0T; T) on the order of a few percent, with maximums of ∼6% and ∼4% (right at the Curie temperature, T C ∼160K) was calculated for an in-plane and out-of plane measuring geometry, respectively. In addition there is an equally strong MR effect at low temperatures, which might be related to the temperature dependence of the magnetocrystalline anisotropy together with a magnetization rotation. Both the MR(T) behavior and the achieved values (except for T 3 films grown on 2 o miscut (001) STO substrates with the current parallel to the field and parallel to the [1-bar11] direction, which was identified as the easier axis for magnetization

  8. Study of formation of deep trapping mechanism by UV, beta and gamma irradiated Eu(3+) activated SrY2O4 and Y4Al2O9 phosphors.

    Science.gov (United States)

    Dubey, Vikas; Kaur, Jagjeet; Parganiha, Yogita; Suryanarayana, N S; Murthy, K V R

    2016-04-01

    This paper reports the thermoluminescence properties of Eu(3+) doped different host matrix phosphors (SrY2O4 and Y4Al2O9). The phosphor is prepared by high temperature solid state reaction method. The method is suitable for large scale production and fixed concentration of boric acid using as a flux. The prepared samples were characterized by X-ray diffraction technique and the crystallite size calculated by Scherer's formula. The prepared phosphor characterized by Scanning Electron Microscopic (SEM), Fourier Transform Infrared (FTIR), Energy Dispersive X-ray analysis (EDX), thermoluminescence (TL) and Transmission Electron Microscopic (TEM) techniques. The prepared phosphors for different concentration of Eu(3+) ions were examined by TL glow curve for UV, beta and gamma irradiation. The UV 254nm source used for UV irradiation, Sr(90) source was used for beta irradiation and Co(60) source used for gamma irradiation. SrY2O4:Eu(3+)and Y4Al2O9:Eu(3+) phosphors which shows both higher temperature peaks and lower temperature peaks for UV, beta and gamma irradiation. Here UV irradiated sample shows the formation of shallow trap (surface trapping) and the gamma irradiated sample shows the formation of deep trapping. The estimation of trap formation was evaluated by knowledge of trapping parameters. The trapping parameters such as activation energy, order of kinetics and frequency factor were calculated by peak shape method. Here most of the peak shows second order of kinetics. The effect of gamma, beta and UV exposure on TL studies was also examined and it shows linear response with dose which indicate that the samples may be useful for TL dosimetry. Formation of deep trapping mechanism by UV, beta and gamma irradiated Eu(3+) activated SrY2O4 and Y4Al2O9 phosphors is discussed in this paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Direct evidence for double-exchange coupling in Ru- substituted La0.7Pb0.3Mn 1 - x Ru x O3, 0.0 <= x <= 0.4

    Science.gov (United States)

    Sundar Manoharan, S.; Sahu, R. K.; Rao, M. L.; Elefant, D.; Schneider, C. M.

    2002-08-01

    The La0.7Pb0.3Mn 1 - x Ru x O3 (0.0 innate relationship between Mn and Ru ions by a unique double-exchange mediated transport behavior. This is exonerated by the coexistence of Tp and Tc (range 330 K 245 K for 0.0 30%, the hole carrier mass influences the transport property. X-ray absorption spectra suggest that the Tc-Tp match is due to the transport mediated by the Mn3+/Mn4+ leftrightarrow Ru4+/Ru5+ redox pair and also due to the broad low-spin Ru:4d conduction band. For x > 0.2, T < 0.5Tc obeys a modified variable-range hopping model, where kT0 propto (M/Ms)2, suggesting a random magnetic potential which localizes the charge carriers.

  10. Red Emission of SrAl2O4:Mn4+ Phosphor for Warm White Light-Emitting Diodes

    Science.gov (United States)

    Chi, N. T. K.; Tuan, N. T.; Lien, N. T. K.; Nguyen, D. H.

    2018-05-01

    In this work, SrAl2O4:Mn4+ phosphor is prepared by co-precipitation. The phase structure, morphology, composition and luminescent performance of the phosphor are investigated in detail with x-ray diffraction, field emission scanning electron microscopy, steady-state photoluminescence (PL) spectra, and temperature-dependent PL measurements. The phosphor shows a strong red emission peak at ˜ 690 nm, which is due to the transition between electronic levels and the electric dipole transition 2Eg to 4A2g of Mn4+ ions located at the sites with D3d local symmetry. The sample doped with 0.04 mol.% Mn4+ exhibits intense red emission with high thermal stability and appropriate International Commission on Illumination (CIE) coordinates (x = 0.6959, y = 0.2737). It is also found that the phosphor absorption in an extended band from 250 nm to 500 nm has three peaks at 320 nm, 405 nm, and 470 nm, which match well with the emission band of ultraviolet (UV) lighting emission diode (LED) or blue LED chips. These results demonstrate that SrAl2O4:Mn4+ phosphor can play the role of activator in narrow red-emitting phosphor, which is potentially useful in UV (˜ 320 nm) or blue (˜ 460 nm) LED.

  11. Excitation energy transfer to luminescence centers in M{sup II}MoO{sub 4} (M{sup II}=Ca, Sr, Zn, Pb) and Li{sub 2}MoO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Spassky, D.A., E-mail: deris2002@mail.ru [Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld.2, 119991 Moscow (Russian Federation); National University of Science and Technology (MISiS), Leninsky Prospekt 4, 119049 Moscow (Russian Federation); Kozlova, N.S. [National University of Science and Technology (MISiS), Leninsky Prospekt 4, 119049 Moscow (Russian Federation); Nagirnyi, V. [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu (Estonia); Savon, A.E. [Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld.2, 119991 Moscow (Russian Federation); Hizhnyi, Yu.A.; Nedilko, S.G. [Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv (Ukraine)

    2017-06-15

    Based on the results of spectroscopy studies and electronic band structure calculations, the analysis of excitation energy transformation into luminescence is performed for a set of molybdates M{sup II}MoO{sub 4} (M{sup II}=Ca, Sr, Zn, Pb) and Li{sub 2}MoO{sub 4}. The bandgap energies were determined from comparison of experimental and calculated reflectivity spectra as 3.3 eV for PbMoO{sub 4}, 4.3 eV for ZnMoO{sub 4}, 4.4 eV for CaMoO{sub 4}, 4.7 eV for SrMoO{sub 4}, and 4.9 eV for Li{sub 2}MoO{sub 4}. It is shown that photoluminescence excitation spectra of these materials reveal the specific features of their conduction bands. The threshold of separated charge carriers’ creation is shown to be by 1.3–1.9 eV higher than the bandgap energy in CaMoO{sub 4}, SrMoO{sub 4} and ZnMoO{sub 4}. The effect is explained by the peculiarities of conduction band structure, namely to the presence of gap between the subbands of the conduction band and to the low mobility of electrons in the lower sub-band of the conduction band.

  12. Strongly suppressed proximity effect and ferromagnetism in topological insulator/ferromagnet/superconductor thin film trilayers of Bi2Se3/SrRuO3/underdoped YBa2Cu3O x : a possible new platform for Majorana nano-electronics

    Science.gov (United States)

    Koren, Gad

    2018-07-01

    We report properties of a topological insulator–ferromagnet–superconductor trilayers comprised of thin films of 20 nm thick {Bi}}2{Se}}3 on 10 nm SrRuO3 on 30 nm {YBa}}2{Cu}}3{{{O}}}x. As deposited trilayers are underdoped and have a superconductive transition with {{T}}{{c}} onset at 75 K, zero resistance at 65 K, {{T}}Cueri} at 150 K and {{T}}* of about 200 K. Further reannealing under vacuum yields the 60 K phase of {YBa}}2{Cu}}3{{{O}}}x which still has zero resistance below about 40 K. Only when 10 × 100 microbridges were patterned in the trilayer, some of the bridges showed resistive behavior all the way down to low temperatures. Magnetoresistance versus temperature of the superconductive ones showed the typical peak due to flux flow against pinning below {{T}}{{c}}, while the resistive ones showed only the broad leading edge of such a peak. All this indicates clearly weak-link superconductivity in the resistive bridges between superconductive {YBa}}2{Cu}}3{{{O}}}x grains via the topological and ferromagnetic cap layers. Comparing our results to those of a reference trilayer (RTL) with the topological {Bi}}2{Se}}3 layer substituted by a non-superconducting highly overdoped {La}}1.65{Sr}}0.35{CuO}}4, indicates that the superconductive proximity effect as well as ferromagnetism in the topological trilayer are actually strongly suppressed compared to the non-topological RTL. This strong suppression could originate in lattice and Fermi levels mismatch as well as in short coherence length and unfavorable effects of strong spin–orbit coupling in {Bi}}2{Se}}3 on the d-wave pairing of {YBa}}2{Cu}}3{{{O}}}x. Proximity induced edge currents in the SRO/YBCO layer could lead to Majorana bound states, a possible signature of which is observed in the present study as zero bias conductance peaks.

  13. Enhancement of photoluminescence properties and modification of crystal structures of Si{sub 3}N{sub 4} doping Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kaixin, E-mail: kxsong@hdu.edu.cn [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhang, Fangfang [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Chen, Daqin [College of Materials Sciences and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Song; Zheng, Peng [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Qingming [Instrument Analysis and Testing Center, Fuzhou University, Fuzhou 350002 (China); Jiang, Jun [Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Junming; Qin, Huibin [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-10-15

    Highlights: • Si{sub 3}N{sub 4} modified Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} phosphors were prepared. • The luminescence intensity of Li{sub 2}Sr{sub 0.995}SiO{sub 4}:Eu{sup 2+} was enhanced by doping Si{sub 3}N{sub 4}. • The fluorescence decay times and thermal stability were enhanced by doping Si{sub 3}N{sub 4}. - Abstract: Si{sub 3}N{sub 4} modified Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} (Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+}) phosphors were synthesized with the conventional solid-state reaction in the reduced atmosphere. The crystal structure and vibrational modes were analyzed by X-ray diffraction, Raman scattering spectroscopy and Rietveld crystal structure refinement. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra showed that Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} powder exhibited a broad yellow emission band centered at 560 nm under the excitation of 460 nm visible light, due to the 4f{sup 6}5d{sup 1} → 4f{sup 7} transition of Eu{sup 2+}. The partial nitridation of Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} (x = 0.01) phosphors led to a large enhancement in the luminescence intensity, as much as 190%. At the same time, the fluorescence decay behavior curves further showed that the photoluminescence efficiencies of Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} phosphors were enhanced by addition of Si{sub 3}N{sub 4}. The temperature quenching characteristics confirmed that the oxynitride based Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} showed slightly higher stability. It is implied that Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} phosphors had a possible potential application on white LEDs to match blue light chips.

  14. Formation of nitrogen complexes when [Ru(NH3)5H2O]2+ ion reaction with diazo-acetic ester and aromatic salts of diazonium

    International Nuclear Information System (INIS)

    Shur, V.B.; Tikhonova, I.A.; Vol'pin, M.E.

    1978-01-01

    A possibility of formation of nitrogen complexes during transition metal compound interaction with aliphatic and aromatic diazo compounds is studied. It is shown that at the interaction of [Ru(NH 3 ) 5 H 2 O] 2+ with diazo-acetic ester in water (pH7) at 20 deg, quick splitting of the CN-bond in the ester molecule takes place with the formation of [Ru(NH 3 ) 5 N 2 ] 2+ and [(NH 3 ) 5 RuN 2 Ru(NH 3 ) 5 ] 4+ (NRRN) nitrogen complexes. The sum yield of complexes comprises 86% taking into acount diazo-acetic ester. Aromatic salts of diazonium, n-O 3 SC 6 H 4 N 2 and p-quinone diazide react with the [Ru(NH 3 ) 5 H 2 O] 2+ excess forming NRRN (the yield equals 40-53%). The reaction mechanism is discussed

  15. Light Makes a Surface Banana-Bond Split: Photodesorption of Molecular Hydrogen from RuO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Michael A.; Mu, Rentao; Dahal, Arjun; Lyubinetsky, Igor; Dohnálek, Zdenek; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2016-07-20

    The coordination of H2 to a metal center via polarization of its bond electron density, known as a Kubas complex, is the means by which H2 chemisorbs at Ru4+ sites on the rutile RuO2(110) surface. This distortion of electron density off an interatomic axis is often described as a ‘banana-bond.’ We show that the Ru-H2 banana-bond can be destabilized, and split, using visible light. Photodesorption of H2 (or D2) is evident by mass spectrometry and scanning tunneling microscopy. From time-dependent density functional theory, the key optical excitation splitting the Ru-H2 banana-bond involves an interband transition in RuO2 which effectively diminishes its Lewis acidity, and thereby weakening the Kubas complex. Such excitations are not expected to affect adsorbates on RuO2 given its metallic properties. Therefore, this common thermal co-catalyst employed in promoting water splitting is, itself, photo-active in the visible.

  16. Electrooxidation as the anaerobic pre-treatment of fats: oleate conversion using RuO2 and IrO2 based anodes.

    Science.gov (United States)

    Gonçalves, M; Alves, M M; Correia, J P; Marques, I P

    2008-11-01

    Electrochemical treatment of oleate using RuO2 and IrO2 type dimensionally stable anodes in alkaline medium was performed to develop a feasible anaerobic pre-treatment of fatty effluents. The results showed that the pre-treated solutions over RuO2 were faster degraded by anaerobic consortium than the raw oleate solutions or the electrolysed solutions using IrO2. In batch experiments carried out with pre-treated solutions over RuO2 (100-500mg/L), no lag phases were observed before the methane production onset. On the other hand, raw oleate and pre-treated oleate over IrO2 had originated lag phases of 0-140 and 0-210h, respectively. This study demonstrated that it is advantageous to apply the electrochemical treatment carried out on the RuO2 type DSA in order to achieve a faster biodegradation of lipid-containing effluent and consequently to obtain a faster methane production.

  17. A novel bilayered Sr{sub 0.6}La{sub 0.4}TiO{sub 3}/La{sub 0.8}Sr{sub 0.2}MnO{sub 3} interconnector for anode-supported tubular solid oxide fuel cell via slurry-brushing and co-sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanjie; Wang, Shaorong; Liu, Renzhu; Wen, Tinglian; Wen, Zhaoyin [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2011-02-01

    Considering that conventional lanthanum chromate (LaCrO{sub 3}) interconnector is hard to be co-sintered with green anode, we have fabricated a novel bilayered interconnector which consists of La-doped SrTiO{sub 3} (Sr{sub 0.6}La{sub 0.4}TiO{sub 3}) and Sr-doped lanthanum manganite (La{sub 0.8}Sr{sub 0.2}MnO{sub 3}). Sr{sub 0.6}La{sub 0.4}TiO{sub 3} is conductive and stable in reducing atmosphere, locating on the anode side; while La{sub 0.8}Sr{sub 0.2}MnO{sub 3} is on the cathode side. A slurry-brushing and co-sintering method is applied: the Sr{sub 0.6}La{sub 0.4}TiO{sub 3} and La{sub 0.8}Sr{sub 0.2}MnO{sub 3} slurries are successively brushed onto green anode specimen, followed by co-firing course to form a dense bilayered Sr{sub 0.6}La{sub 0.4}TiO{sub 3}/La{sub 0.8}Sr{sub 0.2}MnO{sub 3} interconnector. For operating with humidified hydrogen and oxygen at 900 C, the ohmic resistances between anode and cathode/interconnector are 0.33 {omega} cm{sup 2} and 0.186 {omega} cm{sup 2}, respectively. The maximum power density is 290 mW cm{sup -2} for a cell with interconnector, and 420 mW cm{sup -2} for a cell without it, which demonstrates that nearly 70% of the power output can be achieved using this bilayered Sr{sub 0.6}La{sub 0.4}TiO{sub 3}/La{sub 0.8}Sr{sub 0.2}MnO{sub 3} interconnector. (author)

  18. Preparation and electrochemical characterization of size controlled SnO2-RuO2 composite powder for monolithic hybrid battery

    International Nuclear Information System (INIS)

    Jeon, Young-Ah; No, Kwang-Soo; Choi, Sun Hee; Ahn, Jae pyong; Yoon, Young Soo

    2004-01-01

    Tin oxide (SnO 2 ) powders with a particle size of ∼20 nm were synthesized by a gas condensation method. Ruthenium oxide was loaded by an incipient-wetness method, in which an aqueous solution of RuCl 3 was added to the manufactured SnO 2 powder in an amount that was just sufficient to wet completely the powder. And then, the resulting solution was obtained after freeze-drying to synthesis the smallest particle. The as-synthesized SnO 2 powder with 1.5 wt.% ruthenium oxide (RuO 2 ) exhibited well-developed facets and had a very uniform particle size. The first discharge capacity was lower than comparing to commercial powder because of forming the second phase, but showed good cyclability. A maximum specific electrode capacitance of ∼20 F/g and a maximum specific power of ∼80 W/kg were achieved by manufactured SnO 2 with 1.5 wt.% RuO 2 . This result indicated that the synthesized SnO 2 -RuO 2 composite powder of nano-size scale is candidate for use in fabricating monolithic hybrid batteries using suitable electrolyte as well

  19. Rapid and efficient visible light photocatalytic dye degradation using AFe2O4 (A = Ba, Ca and Sr) complex oxides

    International Nuclear Information System (INIS)

    Vijayaraghavan, T.; Suriyaraj, S.P.; Selvakumar, R.; Venkateswaran, R.; Ashok, Anuradha

    2016-01-01

    Highlights: • Alkaline earth ferrites AFe 2 O 4 (A = Ba, Ca and Sr) were synthesized by sol–gel method. • Visible light photocatalytic activity of these ferrites were studied using congo red dye degradation. • BaFe 2 O 4 exhibited the best photocatalytic activity under visible light (xenon lamp) irradiation; CaFe 2 O 4 was the best photocatalyst under natural sun light irradiation. - Abstract: Photocatalytic activity of spinel type complex oxides has been investigated in this study. Alkaline earth ferrites AFe 2 O 4 (A = Ba, Ca, Sr) were synthesized by sol–gel method. Structural characterizations reveal that the synthesized ferrites have orthorhombic crystal structures with different space groups and cell dimensions when they have different alkaline earth metals in their A site. All the synthesized ferrites exhibited their bandgap in the range 2.14–2.19 eV. Their photocatalytic activities were studied using congo red dye under sunlight and xenon lamp radiation. The substitution of Ba, Ca and Sr at A site of these ferrites had varying impact on dye degradation process. Under xenon lamp irradiation, BaFe 2 O 4 exhibited the highest percentage of dye degradation (92% after 75 min). However, CaFe 2 O 4 showed the fastest degradation of the dye (70% within 15 min). In the absence of irradiation, SrFe 2 O 4 showed the highest dye adsorption (44% after 75 min).

  20. Synthesis and characterization of Ru(II) complexes with polyfunctional quinazoline-(3H)-4-ones

    International Nuclear Information System (INIS)

    Prabhakar, B.; Lingaiah, P.; Laxma Reddy, K.

    1991-01-01

    Few Ru(II) complexes of the type Ru(O-N-O) 2 with tridentate O-N-O donors and of the type RuCl 2 (O-N) 2 with bidentate O-O and O-N donors have been synthesized and characterized on the basis of analytical, conductivity, thermal, magnetic, IR, electronic and PMR spectral data. The IR and PMR spectral data of the metal complexes indicate that the lignads like 2-methyl/phenyl-3-(2'-hydroxybenzalamino) quinazoline-(3H)-4-one(MHBQ/PHBQ) act as uninegative tridentate, 2-methyl/phenyl-3-(carboxymethyl) quinazoline(3H)-4-one (MCMQ/PCMQ) as uninegative bidentate and 2-methyl/phenyl-3-(furfuralamino) quinazoline-(3H)-4-one (MFQ/PFQ), 2-methyl/phenyl-3-(acetamino) quinazoline-(3H)-4-one (MAQ/PAQ), 2-methyl/phenyl3-(uramino)quinazoline-(3H)-4-one (MUQ/PUQ) and 2-methyl/phenyl-3-thiouramino)quinazoline-(3H)-4-one-(MTUQ/PTUQ) as neutral bidentate ligands. The electronic spectral data of the complexes indicate that the arrangement around Ru(II) is octahedral. (author). 25 refs., 2 tabs

  1. Oxygen perovskites with pentavalent ruthenium A/sub 2/sup(II)Bsup(III)Rusup(V)O/sub 6/ with Asup(II) = Ba, Sr

    Energy Technology Data Exchange (ETDEWEB)

    Bader, H; Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1980-07-01

    The perovskites Ba/sub 2/Bsup(III)Rusup(V)O/sub 6/ with Bsup(III) = La, Nd, Sm, Eu, Gd, Dy, Y are cubic (Bsup(III) = La: a = 8.54 A; Y: a = 8.33 A) with a partial order for Bsup(III) and Rusup(V). The Sc compound, Ba/sub 2/ScRuO/sub 6/, has a hexagonal 6L structure (a = 5.79 A; c = 14.22 A; sequence (hcc)/sub 2/). The lattice of the Sr perovskites, Sr/sub 2/Bsup(III)Rusup(V)O/sub 6/, with Bsup(III) = Eu, Gd, Dy, Y is rhombic distorted. The IR and FIR spectra are discussed.

  2. Concentration Dependence of Luminescent Properties for Sr2TiO4:Eu3+ Red Phosphor and Its Charge Compensation

    Directory of Open Access Journals (Sweden)

    Zhou Lu

    2012-01-01

    Full Text Available Sr2TiO4:Eu3+ phosphors using M+ (M = Li+, Na+, and K+ as charge compensators were prepared by the solid-state reaction. The powders were investigated by powder X-ray diffraction (XRD and photoluminescence spectra (PL to study the phase composition, structure, and luminescent properties. The results showed that Li+ ion was the best charge compensator. The phase was Sr2TiO4 when the doping concentration was small (x≤10.0%. When x reached 15.0%, the phase turned into Sr3Ti3O7 because of the structure damage. The phosphor could be effectively excited by ultraviolet (365, 395 nm and blue light (465 nm, and thenitemitted intense red light that peaked at around 620 nm (5D0→7F2. In addition, the emission of 700 nm (5D0→7F4 enhanced the red light color purity. The CIE chromaticity coordinates of samples with the higher red emission were between (0.650, 0.344 and (0.635, 0.352. Doped layered titanate Sr2TiO4:Eu3+ is a promising candidate red phosphor for white LEDs which can be suited for both near-UV LED chip and blue LED chip.

  3. Synthesis and characterization of Sr{sub 2}Ir{sub 1-x}M{sub x}O{sub 4} (M=Ti, Fe, Co) solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gatimu, Alvin J.; Berthelot, Romain; Muir, Sean; Sleight, Arthur W. [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States); Subramanian, M.A., E-mail: mas.subramanian@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States)

    2012-06-15

    The effects of Ti, Fe and Co substitutions for Ir on the structure and on the physical properties of Sr{sub 2}IrO{sub 4} are investigated. A complete solid solution Sr{sub 2}Ir{sub 1-x}Ti{sub x}O{sub 4} is obtained while both Fe and Co doping are relatively limited. In each case however, the c-axis cell parameter and the initial IrO{sub 6} octahedra tilting decreases with substitution. Doping with Ti, Fe and Co results in a decrease of the magnetic susceptibility and in an increase in the paramagnetic effective moment for Co and Fe doped samples and a suppression of the weak ferromagnetic ordering observed for Sr{sub 2}IrO{sub 4}. - Graphical abstract: Solid solutions of Sr{sub 2}Ir{sub 1-x}M{sub x}O{sub 4} (M=Ti, Fe, Co) have been synthesized and characterized by powder X-ray diffraction, magnetism and electrical measurements. Changes in the a parameter and decreases in both the c-axis cell parameters and the initial IrO{sub 6} octahedra tilting are found to be correlated. Highlights: Black-Right-Pointing-Pointer Solid Solutions of Sr{sub 2}Ir{sub 1-x}M{sub x}O{sub 4} (M=Ti, Fe, Co) are synthesized. Black-Right-Pointing-Pointer The Sr{sub 2}Ir{sub 1-x}Ti{sub x}O{sub 4} solid solution is complete while those of Fe and Co are relatively limited. Black-Right-Pointing-Pointer The change in a cell parameter with substitution is much less than that of the c parameter. Black-Right-Pointing-Pointer Decreased tilting and the smaller size of the M cation contrastingly affect the a parameter. Black-Right-Pointing-Pointer Doping results in a suppression of the weak ferromagnetic ordering in Sr{sub 2}IrO{sub 4}.

  4. Complex titanates Sr_1_-_xPb_xLi_2Ti_6O_1_4 (0≤x≤1) as anode materials for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Qian, Shangshu; Yu, Haoxiang; Yan, Lei; Li, Peng; Lin, Xiaoting; Wu, Yaoyao; Long, Nengbing; Shui, Miao; Shu, Jie

    2016-01-01

    Highlights: • Sr_1_-_xPb_xLi_2Ti_6O_1_4 (0≤x≤1) is prepared by a simple solid state reaction. • Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 exhibits enhanced lithium storage capability. • Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 can deliver a capacity of 141.8 mAh g"−"1 at 700 mA g"−"1. • In-situ XRD is performed to study the reversibility of Sr_1_-_xPb_xLi_2Ti_6O_1_4. - Abstract: With the Pb doping content at Sr-site increasing, a series of Sr_1_-_xPb_xLi_2Ti_6O_1_4 (x = 0, 0.25, 0.50, 0.75, 1.0) are synthesized by a simple solid-state reaction. It is found that the reversible capacity and rate capability experience a parabolic course from SrLi_2Ti_6O_1_4 to PbLi_2Ti_6O_1_4. Among all the as-prepared samples, Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 shows the best cycling and rate properties. It delivers an initial charge capacity of 163.2 mAh g"−"1 at 100 mA g"−"1 with the capacity retention of 96.08% after 100 cycles. In addition, it can also deliver a reversible capacity of 141.8 mAh g"−"1 at 700 mA g"−"1. The superior electrochemical properties of Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 are attributed to the reduced charge transfer resistance and increased lithium-ion diffusion coefficient after doping. Besides, in-situ X-ray diffraction is also performed to investigate the lithium-ion insertion/extraction behaviors of SrLi_2Ti_6O_1_4, Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 and PbLi_2Ti_6O_1_4. The observed results confirm that Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 has good structural stability and reversibility for repeated lithium storage.

  5. Photocrystallographic structure determination of a new geometric isomer of [Ru(NH3)4(H2O)(eta1-OSO)][MeC6H4SO3]2.

    Science.gov (United States)

    Bowes, Katharine F; Cole, Jacqueline M; Husheer, Shamus L G; Raithby, Paul R; Savarese, Teresa L; Sparkes, Hazel A; Teat, Simon J; Warren, John E

    2006-06-21

    The structure of a new metastable geometric isomer of [Ru(NH3)4(H2O)(SO2)][MeC6H4SO3]2 in which the SO2 group is coordinated through a single oxygen in an eta1-OSO bonding mode has been determined at 13 K; the new isomer was obtained as a 36% component of the structure within a single crystal upon irradiation using a tungsten lamp.

  6. Phase formation in the Rb2MoO4-Li2MoO4-Hf(MoO4)2 system and the crystal structure of Rb5(Li1/3Hf5/3)(MoO4)6

    International Nuclear Information System (INIS)

    Solodovnikov, S.F.; Zolotova, E.S.; Balsanova, L.V.; Bazarov, B.G.; Bazarova, Zh.G.

    2003-01-01

    Phase formation in the Rb 2 MoO 4 -Li 2 MoO 4 -Hf(MoO 4 ) 2 system is studied in subsolidus region in air by the method of crossing sections. Three ternary molybdates are detected in the system. Compositions of two of them are corroborated by selection of isostructural analogues [ru

  7. Studies on the Ln/sub 2/O/sub 3/ (Ln: rare-earth elements)-SrO-V/sub 2/O/sub 3/ system, 1. Phase diagrams at 1400/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Shin-ike, T [Osaka Dental Coll., Hirakata (Japan); Adachi, G; Shiokawa, J

    1980-11-01

    Rare-earth oxides Ln/sub 2/O/sub 3/ (Ln : Nd, Eu or Er), strontium oxide SrO and vanadium oxide V/sub 2/O/sub 3/ were mixed in a given molecular ratio, heated at 1400/sup 0/C in vacuum. The products were examined by an x-ray diffraction method to study the phase relations of the ternary systems. On heating, part of the trivalent vanadium was oxidized to the tetravalent state by atmospheric oxygen. In this experimental condition, the following ternary-phase solid solutions were identified: perovskite type Nd sub(1-x)Sr sub(x)VO sub(3-0.1x) (x > 0.3. cubic, x < 0.3: orthorhombic) and Eu sub(1-x)Sr sub(x)VO sub(3-0.1x) (x > 0.4: cubic, x < 0.4: orthorhombic), K/sub 2/NiF/sub 4/ type SrO.Nd sub(1-x)Sr sub(x)VO sub(3-0.1x) (x > 0.3) and SrO.Eu sub(1-x)Sr sub(x)VO sub(3-0.1x) (x > 0.4) and Eu/sub 3/Ti/sub 2/O/sub 7/ type SrO.2Nd sub(1-x)Sr sub(x)VO sub(3-0.1x) (x > 0.3) and SrO.2Eu sub(1-x)Sr sub(x)VO sub(3-0.1x) (x > 0.4). For the Er/sub 2/O/sub 3/-SrO-V/sub 2/O/sub 3/ system, only a mixture of Er/sub 2/O/sub 3/, SrVO sub(2.9), ErVO/sub 3/, SrO and V/sub 2/O/sub 3/ was obtained.

  8. Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties.

    Science.gov (United States)

    Wu, Chengtie; Fan, Wei; Gelinsky, Michael; Xiao, Yin; Simon, Paul; Schulze, Renate; Doert, Thomas; Luo, Yongxiang; Cuniberti, Gianaurelio

    2011-04-01

    For a biomaterial to be considered suitable for bone repair it should ideally be both bioactive and have a capacity for controllable drug delivery; as such, mesoporous SiO(2) glass has been proposed as a new class of bone regeneration material by virtue of its high drug-loading ability and generally good biocompatibility. It does, however, have less than optimum bioactivity and controllable drug delivery properties. In this study, we incorporated strontium (Sr) into mesoporous SiO(2) in an effort to develop a bioactive mesoporous SrO-SiO(2) (Sr-Si) glass with the capacity to deliver Sr(2+) ions, as well as a drug, at a controlled rate, thereby producing a material better suited for bone repair. The effects of Sr(2+) on the structure, physiochemistry, drug delivery and biological properties of mesoporous Sr-Si glass were investigated. The prepared mesoporous Sr-Si glass was found to have an excellent release profile of bioactive Sr(2+) ions and dexamethasone, and the incorporation of Sr(2+) improved structural properties, such as mesopore size, pore volume and specific surface area, as well as rate of dissolution and protein adsorption. The mesoporous Sr-Si glass had no cytotoxic effects and its release of Sr(2+) and SiO(4)(4-) ions enhanced alkaline phosphatase activity - a marker of osteogenic cell differentiation - in human bone mesenchymal stem cells. Mesoporous Sr-Si glasses can be prepared to porous scaffolds which show a more sustained drug release. This study suggests that incorporating Sr(2+) into mesoporous SiO(2) glass produces a material with a more optimal drug delivery profile coupled with improved bioactivity, making it an excellent material for bone repair applications. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. High-pressure synthesis and crystal structures of the strontium oxogallates Sr2Ga2O5 and Sr5Ga6O14

    Science.gov (United States)

    Kahlenberg, Volker; Goettgens, Valerie; Mair, Philipp; Schmidmair, Daniela

    2015-08-01

    High-pressure synthesis experiments in a piston-cylinder apparatus at 1.5 GPa/3.0 GPa and 1000 °C resulted in the formation of single-crystals of Sr2Ga2O5 and Sr5Ga6O14, respectively. The structures of both compounds have been solved from single-crystal diffraction data sets using direct methods. The first compound is orthorhombic with space group type Pbca (a=10.0021(4) Å, b=9.601(4) Å, c=10.6700(4) Å, V=1024.6(4) Å3, Mr=394.68 u, Z=8, Dx=5.12 g/cm3) and belongs to the group of single layer gallates. Individual sheets are parallel to (0 0 1) and can be built from the condensation of unbranched vierer single chains running along [0 1 0]. The layers are characterized by the presence of four- and strongly elliptical eight-membered rings of corner connected tetrahedra in UUDD and UUUUDDDD conformation. Strontium atoms are sandwiched between the tetrahedral layers for charge compensation and are coordinated by six and seven oxygen ligands, respectively. Sr2Ga2O5 is isotypic with several other double sulfides and selenides. To the best of our knowledge, it is the first example of an oxide with this structure type. From a structural point of view, Sr5Ga6O14 is a phyllogallate as well. The crystal structure adopts the monoclinic space group P21/c (a=8.1426(3) Å, b=8.1803(3) Å, c=10.8755(4) Å, β=91.970(4)° V=723.98(5) Å3, Mr=1080.42 u, Z=2, Dx=4.96 g/cm3). Individual sheets extend along (0 0 1). Basic building units are unbranched dreier single chains parallel to [1 0 0]. The layers contain tertiary (Q3) und quaternary (Q4) connected [GaO4]-tetrahedra in the ratio 2:1 resulting in a Ga:O ratio of 3:7 and the formation of exclusively five-membered rings. Linkage between adjacent tetrahedral sheets is provided by three symmetrically independent strontium ions which are surrounded by six to eight oxygen atoms. The layers in Sr5Ga6O14 are similar to those observed in the melilite structure-type. Crystallochemical relationships between the present phases and other

  10. Crystal structures and thermal decomposition of permanganates AE[MnO{sub 4}]{sub 2} . n H{sub 2}O with the heavy alkaline earth elements (AE=Ca, Sr and Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Harald; Bauchert, Joerg M.; Conrad, Maurice; Schleid, Thomas [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2017-10-01

    Reexamination of the syntheses and crystal structures as well as studies of the thermal decomposition of the heavy alkaline earth metal permanganates Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O, Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O and Ba[MnO{sub 4}]{sub 2} are the focus of this work. As an alternative to the very inelegant Muthmann method, established for the synthesis of Ba[MnO{sub 4}]{sub 2} a long time ago, we employed a cation-exchange column loaded with Ba{sup 2+} cations and passed through an aqueous potassium-permanganate solution. We later used this alternative also with strontium- and calcium-loaded columns and all the compounds synthesized this way were indistinguishable from the products of the established methods. Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O exhibiting [CaO{sub 8}] polyhedra crystallizes in the orthorhombic space group Pccn with the lattice parameters a=1397.15(9), b=554.06(4) and c=1338.97(9) pm with Z=4, whereas Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O with [SrO{sub 10}] polyhedra adopts the cubic space group P2{sub 1}3 with a=964.19(7) pm and Z=4. So the harder the AE{sup 2+} cation, the higher its demand for hydration in aqueous solution. Consequently, the crystal structure of Ba[MnO{sub 4}]{sub 2} in the orthorhombic space group Fddd with a=742.36(5), b=1191.23(7) and c=1477.14(9) pm with Z=8 lacks any crystal water, but contains [BaO{sub 12}] polyhedra. During the thermal decomposition of Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O, the compound expels up to two water molecules of hydration, before the crystal structure collapses after the loss of the third H{sub 2}O molecule at 157 C. The crystal structure of Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O breaks down after the expulsion of the third water molecule as well, but this already occurs at 148 C. For both the calcium and the strontium permanganate samples, orthobixbyite-type α-Mn{sub 2}O{sub 3} and the oxomanganates(III,IV) AEMn{sub 3}O{sub 6} (AE=Ca and Sr) remain as final decomposition products at 800 C

  11. Electronic parameters of Sr2Nb2O7 and chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, V.V.; Grivel, Jean-Claude; Korotkov, A.S.

    2008-01-01

    /2)) and Delta(O-Sr) = BE(O 1s)-BE(Sr 3d(5/2)), were used to characterize the valence electron transfer on the formation of the Nb-O and Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and earlier published structural and XPS data for other Sr- or Nb...

  12. Thermal response of Ru electrodes in contact with SiO2 and Hf-based high-k gate dielectrics

    International Nuclear Information System (INIS)

    Wen, H.-C.; Lysaght, P.; Alshareef, H.N.; Huffman, C.; Harris, H.R.; Choi, K.; Senzaki, Y.; Luan, H.; Majhi, P.; Lee, B.H.; Campin, M. J.; Foran, B.; Lian, G.D.; Kwong, D.-L.

    2005-01-01

    A systematic experimental evaluation of the thermal stability of Ru metal gate electrodes in direct contact with SiO 2 and Hf-based dielectric layers was performed and correlated with electrical device measurements. The distinctly different interfacial reactions in the Ru/SiO 2 , Ru/HfO 2 , and Ru/HfSiO x film systems were observed through cross-sectional high-resolution transmission electron microscopy, high angle annular dark field scanning transmission electron microscopy with electron-energy-loss spectra, and energy dispersive x-ray spectra analysis. Ru interacted with SiO 2 , but remained stable on HfO 2 at 1000 deg. C. The onset of Ru/SiO 2 interfacial interactions is identified via silicon substrate pitting possibly from Ru diffusion into the dielectric in samples exposed to a 900 deg. C/10-s anneal. The dependence of capacitor device degradation with decreasing SiO 2 thickness suggests Ru diffuses through SiO 2 , followed by an abrupt, rapid, nonuniform interaction of ruthenium silicide as Ru contacts the Si substrate. Local interdiffusion detected on Ru/HfSiO x samples may be due to phase separation of HfSiO x into HfO 2 grains within a SiO 2 matrix, suggesting that SiO 2 provides a diffusion pathway for Ru. Detailed evidence consistent with a dual reaction mechanism for the Ru/SiO 2 system at 1000 deg. C is presented

  13. Hydrothermal synthesis and tunable luminescent properties of Sr{sub 2-x}Dy {sub x}CeO{sub 4} rod-like phosphors derived from co-precipitation precursors

    Energy Technology Data Exchange (ETDEWEB)

    He Xianghong [School of Chemistry and Chemical Engineering, Jiangsu Teachers' University of Technology, Changzhou, Jiangsu 213001 (China) and Jiangsu Province Key Laboratory of Precious Metal Chemistry and Technology, Changzhou, Jiangsu 213001 (China)]. E-mail: hexh@jstu.edu.cn; Li Weihua [School of Chemistry and Chemical Engineering, Jiangsu Teachers' University of Technology, Changzhou, Jiangsu 213001 (China); Jiangsu Province Key Laboratory of Precious Metal Chemistry and Technology, Changzhou, Jiangsu 213001 (China); Zhou Quanfa [School of Chemistry and Chemical Engineering, Jiangsu Teachers' University of Technology, Changzhou, Jiangsu 213001 (China); Jiangsu Province Key Laboratory of Precious Metal Chemistry and Technology, Changzhou, Jiangsu 213001 (China)

    2006-09-25

    Uniform rod-like Sr{sub 2-x}Dy {sub x}CeO{sub 4} nano-phosphors with orthorhombic structure were prepared via a hydrothermal method, in the absence of any surfactant or template. The structure, morphology, particle size, and tunable luminescence properties of the samples were investigated by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis absorption and photoluminescence spectrum, respectively. The as-prepared phase-pure Sr{sub 2-x}Dy {sub x}CeO{sub 4} nanorods had the length of 50-150 nm and width of 80 nm. The Dy{sup 3+} ions emission in Sr{sub 2-x}Dy {sub x}CeO{sub 4} could be effectively excited through the energy absorbed by Sr{sub 2}CeO{sub 4} host. The tunable photoluminescence has been observed from Sr{sub 2}CeO{sub 4} doped with Dy{sup 3+} ions. Emission color of Sr{sub 2-x}Dy {sub x}CeO{sub 4} phosphor could be regulated from blue-white to white to yellow by adjusting the Dy{sup 3+} doping content in Sr{sub 2}CeO{sub 4} host, which originated from energy transfer between two different emission centers.

  14. Adsorption of gaseous RuO4 by various sorbents. II

    International Nuclear Information System (INIS)

    Vujisic, L.; Nikolic, R.

    1983-01-01

    Sorption of gaseous RuO 4 on impregnated Alcoa Alumina H-151, impregnated charcoal, silica gel and HEPA filter was investigated. The results obtained on various sorbents are compared and discussed in connection with possibilities to use the chosen material in air cleaning systems

  15. Enhanced luminescence in SrMgAl(x)O(17±δ):yMn4+ composite phosphors.

    Science.gov (United States)

    Cao, Renping; Sharafudeen, Kaniyarakkal N; Qiu, Jianrong

    2014-01-03

    Red-emitting SrMgAlxO17±δ:yMn(4+) composite phosphors (x=10-100; y=0.05-4.0 mol%) are synthesized by solid-state reaction method in air. Addition of Al2O3 leads to the formation of two concomitant phases, i.e., SrMgAl10O17 and Al2O3 phases in the composite phosphor. Red emission from Mn(4+) ions in the composite phosphors is greatly enhanced due to multiple scattering and absorption of excitation light between SrMgAl10O17 and Al2O3 phases. SrMgAlxO17±δ:yMn(4+) composite phosphors would be a promising candidate as red phosphor in the application of a 397 nm near UV-based W-LED. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Sr{sub 2}CoMoO{sub 6} anode for solid oxide fuel cell running on H{sub 2} and CH{sub 4} fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Engineering Research Center of Nano-GEO Materials of Education Ministry, China University of Geosciences, Wuhan 430074 (China); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Cheng, Jin-Guang; Goodenough, John B. [Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Mao, Zong-Qiang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2011-02-15

    The double perovskite Sr{sub 2}CoMoO{sub 6-{delta}} was investigated as a candidate anode for a solid oxide fuel cell (SOFC). Thermogravimetric analysis (TGA) and powder X-ray diffraction (XRD) showed that the cation array is retained to 800 C in H{sub 2} atmosphere with the introduction of a limited concentration of oxide-ion vacancies. Stoichiometric Sr{sub 2}CoMoO{sub 6} has an antiferromagnetic Neel temperature T{sub N} {approx} 37 K, but after reduction in H{sub 2} at 800 C for 10 h, long-range magnetic order appears to set in above 300 K. In H{sub 2}, the electronic conductivity increases sharply with temperature in the interval 400 C < T < 500 C due to the onset of a loss of oxygen to make Sr{sub 2}CoMoO{sub 6-{delta}} a good mixed oxide-ion/electronic conductor (MIEC). With a 300-{mu}m-thick La{sub 0.8}Sr{sub 0.12}Ga{sub 0.83}Mg{sub 0.17}O{sub 2.815} (LSGM) as oxide-ion electrolyte and SrCo{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as the cathode, the Sr{sub 2}CoMoO{sub 6-{delta}} anode gave a maximum power density of 1017 mW cm{sup -2} in H{sub 2} and 634 mW cm{sup -2} in wet CH{sub 4}. A degradation of power in CH{sub 4} was observed, which could be attributed to coke build up observed by energy dispersive spectroscopy (EDS). (author)

  17. Annealing effect on the performance of RuO{sub 2}-Ta{sub 2}O{sub 5}/Ti electrodes for use in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ho-Rei; Lai, Huen-Hua [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, 80782 Taiwan (China); Jow, Jiin-Jiang, E-mail: jjjow@cc.kuas.edu.tw [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, 80782 Taiwan (China)

    2011-02-15

    The preparation of RuO{sub 2}-Ta{sub 2}O{sub 5}/Ti electrodes, by dip-coating, for use in supercapacitors was investigated. The stability and specific capacitance of the electrodes annealed at various temperatures was examined. The results show that highly stable electrodes with a specific capacitance of 170 F g RuO{sub 2}{sup -1} were obtained at approximately 250 deg. C, while electrodes with a lower capacitance (130 F g RuO{sub 2}{sup -1}) were obtained at 300 deg. C. The annealing time needed to obtain a stable RuO{sub 2}-Ta{sub 2}O{sub 5}/Ti electrode at various temperatures correlates well with the Arrhenius' law: with the activation energy (E) of the annealing reactions for the electrodes being estimated as 73.5 kJ mol{sup -1}. SEM images of the electrodes show the coating films to have rough surface morphology with cracks 2-6 {mu}m in width. XRD data indicate that the coating films obtained are composed of crystalline RuO{sub 2} and amorphous tantalum oxide.

  18. Ionic conductivity of sodium–strontium germanate Na{sub 4}SrGe{sub 6}O{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, N. I., E-mail: nsorokin1@yandex.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    The electrical conductivity of sodium–strontium germanate Na{sub 4}SrGe{sub 6}O{sub 15} (sp. gr. P6{sub 3}/m) has been studied by impedance spectroscopy in the frequency range of 10{sup 2}–4 × 10{sup 4} Hz and a temperature range of 450–600 K. Na4SrGe6O15 crystals were obtained by hydrothermal technique in the Na{sub 2}O–SrO–GeO{sub 2}–H{sub 2}O system (temperature t = 300–600°C and pressure p = 1.4 × 10{sup 8} Pа in the dissolution zone). The ionic conductivity of ceramic Na{sub 4}SrGe{sub 6}O{sub 15} samples is σ = 2.2 × 10{sup –6} S/cm (at 573 K), the activation energy of Na{sup +} ion transfer is E{sub a} = 0.70 ± 0.03 eV.

  19. Electronic structure of α-SrB4O7: experiment and theory

    International Nuclear Information System (INIS)

    Atuchin, V V; Kesler, V G; Zaitsev, A I; Molokeev, M S; Aleksandrovsky, A S; Kuzubov, A A; Ignatova, N Y

    2013-01-01

    The investigation of valence band structure and electronic parameters of constituent element core levels of α-SrB 4 O 7 has been carried out with x-ray photoemission spectroscopy. Optical-quality crystal α-SrB 4 O 7 has been grown by the Czochralski method. Detailed photoemission spectra of the element core levels have been recorded from the powder sample under excitation by nonmonochromatic Al Kα radiation (1486.6 eV). The band structure of α-SrB 4 O 7 has been calculated by ab initio methods and compared to XPS measurements. It has been found that the band structure of α-SrB 4 O 7 is weakly dependent on the Sr-related states. (paper)

  20. Modulation-free bismuth-lead cuprate superconductors: BiPbSr1+xL1-xCuO6 and BiPbSr2Y1-xCaxCu2O8

    International Nuclear Information System (INIS)

    Manivannan, V.; Gopalakrishnan, J.; Rao, C.N.R.

    1991-01-01

    Modulation-free BiPbSrLCuO 6 (L=La, Pr, Nd) and BiPbSr 2 YCu 2 O 8 , which are isotypic with the n=1 and 2 members of the Bi 2 Sr 2 Ca n-1 Cu n O 2n+4 family, have been prepared and characterized. These parent compounds are nonsuperconducting, but when doped with holes by substitution chemistry give modulation-free superconducting cuprates of the general formulas BiPbSr 1+xL1-x CuO 6 and BiPbSr 2 Y 1-x Ca x Cu 2 O 8 , exhibiting maximum T c 's of 24 and 85 K, respectively. Significantly, the hole concentration at the maximum T c is 0.12 in the cuprate family with a single Cu-O layer and 0.22 in that with two Cu-O layers

  1. RuO2/MnO2 composite materials for high-performance supercapacitor electrodes

    Science.gov (United States)

    Jianming, Lei; Xiaomei, Chen

    2015-08-01

    Ruthenium oxide and manganese oxide nanomaterials were respectively prepared by a sol-gel process and hydrothermal synthesis method. The morphologies and microstructures of the composite nanomaterials were characterized by SEM and XRD. Based on the cyclic voltammetry, electrochemical impedance spectroscopy and constant current charge-discharge techniques, the performances of the electrodes were investigated. The results show that the composite of manganese oxide and ruthenium oxide is beneficial to improve the impedance characteristic. The electrode with 60% (mass ratio) manganese oxide has a high specific capacitance of 438 F/g and a lower inner resistance of 0.304 Ω using 38% (mass ratio) H2SO4 solution. The capacitance retention of RuO2/MnO2 composite electrode was 92.5% after 300 cycles.

  2. RuO2/MnO2 composite materials for high-performance supercapacitor electrodes

    International Nuclear Information System (INIS)

    Lei Jianming; Chen Xiaomei

    2015-01-01

    Ruthenium oxide and manganese oxide nanomaterials were respectively prepared by a sol–gel process and hydrothermal synthesis method. The morphologies and microstructures of the composite nanomaterials were characterized by SEM and XRD. Based on the cyclic voltammetry, electrochemical impedance spectroscopy and constant current charge–discharge techniques, the performances of the electrodes were investigated. The results show that the composite of manganese oxide and ruthenium oxide is beneficial to improve the impedance characteristic. The electrode with 60% (mass ratio) manganese oxide has a high specific capacitance of 438 F/g and a lower inner resistance of 0.304 Ω using 38% (mass ratio) H 2 SO 4 solution. The capacitance retention of RuO 2 /MnO 2 composite electrode was 92.5% after 300 cycles. (paper)

  3. Processing of La/sub 1.8/Sr/sub 0.2/CuO4 and YBa2Cu3O7 superconducting thin films by dual-ion-beam sputtering

    International Nuclear Information System (INIS)

    Madakson, P.; Cuomo, J.J.; Yee, D.S.; Roy, R.A.; Scilla, G.

    1988-01-01

    High quality La/sub 1.8/Sr/sub 0.2/CuO 4 and YBa 2 Cu 3 O 7 superconducting thin films, with zero resistance at 88 K, have been made by dual-ion-beam sputtering of metal and oxide targets at elevated temperatures. The films are about 1.0 μm thick and are single phase after annealing. The substrates investigated are Nd-YAP, MgO, SrF 2 , Si, CaF 2 , ZrO 2 -9% Y 2 O 3 , BaF 2 , Al 2 O 3 , and SrTiO 3 . Characterization of the films was carried out using Rutherford backscattering spectroscopy, resistivity measurements, transmission electron microscopy, x-ray diffraction, and secondary ion mass spectroscopy. Substrate/film interaction was observed in every case. This generally involves diffusion of the substrate into the film, which is accompanied by, for example, the replacement of Ba by Sr in the YBa 2 Cu 2 O 7 structure, in the case of SrTiO 3 substrate. The best substrates were those that did not significantly diffuse into the film and which did not react chemically with the film. In general, the superconducting transition temperature is found to depend on substrate temperature and ion beam energy, film composition, annealing conditions, and the nature and the magnitude of the substrate/film interaction

  4. Phase relations in the systems M2MoO4-Cr2(MoO4)3-Zr(MoO4)2 (M=Li, Na, or Rb)

    International Nuclear Information System (INIS)

    Bazarov, B.G.; Chimitova, O.D.; Bazarova, Ts.T.; Arkhincheeva, S.I.; Bazarova, Zh.G.

    2008-01-01

    Phase equilibria in the systems M 2 MoO 4 -Cr 2 (MoO 4 ) 3 -Zr(MoO 4 ) 2 (M=Li, Na, or Rb) were investigated by X-ray powder diffraction analysis, DTA, and IR spectroscopy. The subsolidus structure of the phase diagrams of the systems under study was established. Two phases are formed in the Rb 2 MoO 4 -Cr 2 (MoO 4 ) 3 -Zr(MoO 4 ) 2 system with the molar ratios of the starting components equal to 5:1:1 (S 2 ) and 1:1:1 (S 1 ). Proceeding from isostructural character of Rb 5 FeHf(MoO 4 ) 6 and S 2 , the unit cell parameters are determined for S 2 [ru

  5. Electrical properties of thick-layer piezo resistors based on Bi2Ru2O7

    International Nuclear Information System (INIS)

    Golonka, L.; Tankiewicz, S.

    1997-01-01

    Piezoelectric effect and electrical properties of thick-layer resistors based on Bi 2 Ru 2 O 7 (on ceramic substrate) have been studied. The influence of selected technological parameters (sintering temperature, chemical composition, heat treatment) on system properties has been estimated. 4 refs, 7 figs

  6. Substitution effect of Sr2+ by Ca2+ on structure and superconducting properties of Bi2Sr1.6La0.4CuO6+δ (Bi-2201) ceramics

    Science.gov (United States)

    Boudjaoui, S.; Amira, A.; Mahamdioua, N.; Altintas, S.; varilci, A.; Terzioglu, C.

    2018-02-01

    In this work, the effect of Ca2+ iso-valence substitution for Sr2+ on properties of Bi2Sr1.6La0.4CuO6+δ superconductors is presented. Samples series with nominal composition of Bi2Sr1.6-xCaxLa0.4CuO6+δ (x= 0, 0.2, 0.4, 0.6 and 0.8) are prepared by a solid-state reaction method. When Ca content is increased, the X-ray diffraction technique shows that the cell parameters a and c decrease, while b one is almost constant. The scanning electron microscopy analysis reveals that the substitution has no significant effect on the porosity and the grain size of the samples. The physical properties of the samples are studied by the analysis of the magneto-resistivity curves measured under magnetic fields in the range 0-1 T. As Ca is added, the results show that the high temperature transition appears and is pushed up to 94.87 K for x=0.8. The substitution also improves the bulk onset critical transition temperature, the transition width, the residual resistivity, the activation energy of vortices and the irreversibility field. The best results are seen for x=0.4 of Ca content.

  7. Atomic layer epitaxy of Ruddlesden-Popper SrO(SrTiO3)n films by means of metalorganic aerosol deposition

    International Nuclear Information System (INIS)

    Jungbauer, M.; Hühn, S.; Moshnyaga, V.; Egoavil, R.; Tan, H.; Verbeeck, J.; Van Tendeloo, G.

    2014-01-01

    We report an atomic layer epitaxial growth of Ruddlesden-Popper (RP) thin films of SrO(SrTiO 3 ) n (n = ∞, 2, 3, 4) by means of metalorganic aerosol deposition (MAD). The films are grown on SrTiO 3 (001) substrates by means of a sequential deposition of Sr-O/Ti-O 2 atomic monolayers, monitored in-situ by optical ellipsometry. X-ray diffraction and transmission electron microscopy (TEM) reveal the RP structure with n = 24 in accordance with the growth recipe. RP defects, observed by TEM in a good correlation with the in-situ ellipsometry, mainly result from the excess of SrO. Being maximal at the film/substrate interface, the SrO excess rapidly decreases and saturates after 5–6 repetitions of the SrO(SrTiO 3 ) 4 block at the level of 2.4%. This identifies the SrTiO 3 substrate surface as a source of RP defects under oxidizing conditions within MAD. Advantages and limitations of MAD as a solution-based and vacuum-free chemical deposition route were discussed in comparison with molecular beam epitaxy

  8. Structures and self-activating photoluminescent properties of Sr3−xAxGaO4F (A=Ba, Ca) materials

    International Nuclear Information System (INIS)

    Green, Robert; Vogt, Thomas

    2012-01-01

    The synthesis, structures and photoluminescent properties of mixed oxyfluorides of the type Sr 3−x A x GaO 4 F are compared to Sr 3−x A x AlO 4 F (A=Ca, Ba) materials. In these compounds the F − and O 2− ions are ordered and located on two distinct crystallographic sites. When substituting Sr 2+ by Ba 2+ and Ca 2+ , we find in Sr 3−x A x GaO 4 F materials an ordering of the alkaline earth cations over the two crystallographic sites. The amount of Ba 2+ ions that can be substituted into Sr 3−x A x GaO 4 F is x≤1.2, which is slightly more than can be incorporated into the previously reported Al-analog Sr 3−x A x AlO 4 F (x=1.0). Conversely, the amount of Ca 2+ ions that can be substituted into Sr 3−x Ca x GaO 4 F (x=0.3) is significantly less than in Sr 3−x Ca x AlO 4 F (x=1.0). A post-synthesis reduction step causes these materials to exhibit self-activating broad band photoluminescence where the emitted colors vary with the amount of ions substituted into the host lattice. - Graphical abstract: TOC Statement The structures of the self-activating phosphors Sr 3−x A x MO 4 F (A=Ba, Ca and M=Al, Ga) can be rationalized as alternating layers of bond compression and elongation, which impact the photoluminescence. Highlights: ► Comparison of the structural changes in Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca) and its influence on the photoluminescence of these self-activating phosphors. ► Analysis of the Global Instability Index of the Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca). ► Comparison of the photoluminescence between the self-activating phosphors Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca).

  9. Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution  

    DEFF Research Database (Denmark)

    Rao, Reshma R.; Kolb, Manuel J.; Halck, Niels Bendtsen

    2017-01-01

    While the surface atomic structure of RuO2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determ......While the surface atomic structure of RuO2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used...... on the coordinatively unsaturated Ru sites (CUS) and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential...

  10. FeRu/TiO2 and Fe/TiO2 catalysts after reduction and Fischer-Tropsch synthesis studied by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Nonnekens, R.C.H.; Niemantsverdriet, J.W.

    1986-01-01

    A series of TiO 2 -supported bimetallic FeRu catalysts with different Fe:Ru ratios (infinity; 10:1; 3:1; 1:1; 1:3) has been studied by means of in situ Moessbauer spectroscopy. The influence of reduction and Fischer-Tropsch synthesis on the state of iron in the FeRu/TiO 2 catalysts is derived. (Auth.)

  11. Preparation of Sr{sub 2}(MgMo){sub 1-x}Ru{sub x}O{sub 6} ceramics for use in a solid oxide fuel cell anode

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Matheus Eiji Ohno; Florio, Daniel Zanetti de [Universidade Federal do ABC (UFABC), SP (Brazil); Fonseca, Fabio Coral, E-mail: matheus.eiji@aluno.ufabc.edu.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: Solid Oxide Fuel Cells are the most efficient devices known for the direct conversion of fuels into electric energy. Such devices have advanced steadily and are already available for specific applications such as portable power and residential stationary generation. The main objective of this work is the development of anodes for SOFC operating directly with renewable fuels, without the addition of water and using strategic fuels such as ethanol and natural gas. Specifically, a family of mixed ionic-electronic compounds has been investigated: the double perovskites with compositions Sr{sub 2}(MgMo){sub 1-x}Ru{sub x}O{sub 6} with x = 0; 1; 2; 5; 10 e 20 at.%. This material has been synthesized by polymeric precursor method. The resins were prepared by combining stoichiometric amounts of the starting solutions. The resulting solution was heated treated under magnetic stirring. The thermal decomposition of the polymeric resin was studied by means of simultaneous thermogravimetric and differential scanning calorimetry up to 1500 °C with heating and cooling rates of 10 °/min in Ar. The thermal decomposition result shows mass loss up to, approximately, 900 °C. However X-ray diffraction analyses of the powder heat treated at 900 °C and 1200 °C presents a considerable content of an undesiderate phase (SrMoO{sub 4}). According to the literature for similar compounds a thermal treatment under reduction conditions could be necessary to obtain the double perovskites single phase. After this treatment the material will be characterized regarding its electrical properties. The expected results will contribute to advance both the understanding of the mixed ionic electronic ceramics and the SOFC technology using renewable fuels. (author)

  12. Application of Ti/RuO{sub 2}-Ta{sub 2}O{sub 5} electrodes in the electrooxidation of ethanol and derivants: Reactivity versus electrocatalytic efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J.; De Andrade, A.R. [Departamento de Quimica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, 14040-9010 Ribeirao Preto, SP (Brazil); Purgato, F.L.S. [Departamento de Quimica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, 14040-9010 Ribeirao Preto, SP (Brazil); Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 Avenue du Recteur Pineau 86022 Poitiers Cedex (France); Kokoh, K.B.; Leger, J.-M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 Avenue du Recteur Pineau 86022 Poitiers Cedex (France)

    2008-11-15

    The influence of the preparation method on the performance of RuO{sub 2}-Ta{sub 2}O{sub 5} electrodes was evaluated toward the ethanol oxidation reaction (EOR). Freshly prepared RuO{sub 2}-Ta{sub 2}O{sub 5} thin films containing between 30 and 80 at.% Ru were prepared by two different methods: the modified Pechini-Adams method (DPP) and standard thermal decomposition (STD). Electrochemical investigation of the electrode containing RuO{sub 2}-Ta{sub 2}O{sub 5} thin films was conducted as a function of electrode composition in a 0.5-mol dm{sup -3} H{sub 2}SO{sub 4} solution, in the presence and absence of ethanol and its derivants (acetaldehyde and acetic acid). At a low ethanol concentration (5 mmol dm{sup -3}), ethanol oxidation leads to high yields of acetic acid and CO{sub 2}. On the other hand, an increase in ethanol concentration (15-1000 mmol dm{sup -3}) favors acetaldehyde formation, so acetic acid and CO{sub 2} production is hindered, in this case. Electrodes prepared by DPP provide higher current efficiency than STD electrodes for all the investigated ethanol concentrations. This may be explained by the increase in electrode area obtained with the DPP preparation method compared with STD. (author)

  13. Steam and CO2 reforming of methane over a Ru/ZrO2 catalyst

    DEFF Research Database (Denmark)

    Jakobsen, Jon Geest; Jørgensen, T.L.; Chorkendorff, Ib

    2010-01-01

    The kinetics of methane steam reforming over a Ru/ZrO2 catalyst was studied at 1.3 bar total pressure and in the temperature range 425-575 degrees C. These data were fitted by combining a reactor model with a series of kinetic models. The best fit was obtained by a model with methane dissociative...... adsorption as the rate limiting step and with CO and H adspecies partly blocking the active sites. The Ru/ZrO2 catalyst was characterized by TEM and H-2 chemisorption. By comparison of ex situ and in situ TEM, it is evident that Ru particles with diameters of...

  14. Crystal structure of poly[[hexaqua-1κ4O,2κ2O-bis(μ3-pyridine-2,4-dicarboxylato-1κO2:2κ2N,O2′;1′κO4cobalt(IIstrontium(II] dihydrate

    Directory of Open Access Journals (Sweden)

    Zhaojun Yu

    2015-09-01

    Full Text Available In the title polymeric complex, {[CoSr(C7H3NO42(H2O6]·2H2O}n, the CoII ion, which is situated on a crystallographic centre of inversion, is six-coordinated by two O atoms and two N atoms from two pyridine-2,4-dicarboxylate (pydc2− ligands and two terminal water molecules in a slightly distorted octahedral geometry, to form a trans-[Co(pydc2(H2O2]2− unit. The SrII ion, situated on a C2 axis, is coordinated by four O atoms from four pydc2− ligands and four water molecules. The coordination geometry of the SrII atom can be best described as a distorted dodecahedron. Each SrII ion bridges four [Co(pydc2(H2O2]2− units by four COO− groups of four pydc2− ligands to form a three-dimensional network structure. Two additional solvent water molecules are observed in the crystal structure and are connected to the three-dimensional coordination polymer by O—H...O hydrogen bonds. Further intra- and intermolecular O—H...O hydrogen bonds consolidate the overall structure.

  15. RuO4-mediated oxidation of secondary amines: Part 1. Are hydroxylamines main intermediates?

    Directory of Open Access Journals (Sweden)

    Florea Cristina A.

    2016-01-01

    Full Text Available The RuO4-catalyzed oxidation of secondary amines Bn-NH-CH2R (1a-b; R=H, Me gave mainly amides, but minute amounts of nitrones PhCH=N(O-CH2R (9a-b and traces of Bn-N(OH-CH2R (R=H, 4a were also detected. In the presence of cyanide, up to 22 reaction products were identified, but mainly α-aminonitriles. Comparison of the oxidation products of 1a-b with those of 4a-b, 9a-b, and Bn-N(O=CHR (10a-b showed that 4a-b cannot be main reaction intermediates formed from 1a-b.

  16. Crystal structure and energy band and optical properties of phosphate Sr3P4O13

    International Nuclear Information System (INIS)

    Zhang, Y.-C.; Cheng, W.-D.; Wu, D.-S.; Zhang, H.; Chen, D.-G.; Gong, Y.-J.; Kan, Z.-G.

    2004-01-01

    A single crystal of the compound Sr 3 P 4 O 13 has been found and the crystal structure has been characterized by means of single crystal X-ray diffraction analysis. The compound crystallizes in triclinic system and belongs to space group P1-bar. It builds up from SrO 7 polyhedra and P 4 O 13 -6 anions and has a layered structure, and the Sr atoms are located in the interlayer space. The absorption and luminescence spectrum of Sr 3 P 4 O 13 microcrystals have been measured. The calculated results of crystal energy band structure by the DFT show that the solid state of Sr 3 P 4 O 13 is an isolator with direct band gap. The calculated total and partial density of states indicate that the top valence bands are contributions from P 3p and O 2p states and low conduction bands mostly originate from Sr atomic states. The calculated optical response functions expect that the Sr 3 P 4 O 13 is a low refractive index, and it is possible that the Sr 3 P 4 O 13 is used to make transparent material between the UV and FR light zone

  17. Effect of Sr substituted La 2−x Sr x NiO 4+δ (x = 0, 0.2, 0.4, 0.6, and 0.8) on oxygen stoichiometry and oxygen transport properties

    KAUST Repository

    Inprasit, T.; Wongkasemjit, S.; Skinner, S. J.; Burriel, M.; Limthongkul, P.

    2015-01-01

    © The Royal Society of Chemistry 2015. Stoichiometry and oxygen diffusion properties of La2-xSrxNiO4±δ with x = 0.2, 0.4, 0.6, and 0.8 prepared via a sol-gel method were investigated in this study. Iodometric titration and thermogravimetric analysis were used to determine the oxygen non-stoichiometry. Over the entire compositional range, the samples exhibit oxygen hyperstoichiometry with the minimum value δ = 0.14 at x = 0.4. Mixed effects of reduction of oxygen excess and increasing valence of Ni were found to serve as charge compensation mechanisms; the former dominated at a low level of substitution, x < 0.4, while the latter dominated at higher levels of Sr (0.4 < x < 0.8). The highest oxygen diffusion coefficient was found for the minimum amount of Sr substitution, x = 0.2, continuously decreasing with x until x = 0.6. An unusual increase in D∗ was observed when the Sr content increased up to x = 0.8.

  18. The topotactic reduction of Sr3Fe2O5Cl2-square planar Fe(II) in an extended oxyhalide.

    Science.gov (United States)

    Dixon, Edward; Hayward, Michael A

    2010-10-18

    The topotactic reduction of the oxychloride Sr(3)Fe(2)O(5)Cl(2) with LiH results in the formation of Sr(3)Fe(2)O(4)Cl(2). Neutron powder diffraction data show that Sr(3)Fe(2)O(4)Cl(2) adopts a body-centered tetragonal crystal structure (I4/mmm, a = 4.008(1) Å, c = 22.653(1) Å at 388 K) with anion vacancies located within the SrO layer of the phase. This leads to a structure consisting of infinite sheets of corner-sharing Fe(II)O(4) square planes. Variable-temperature neutron diffraction data show that Sr(3)Fe(2)O(4)Cl(2) adopts G-type antiferromagnetic order below T(N) ∼ 378(10) K with an ordered moment of 2.81(9) μ(B) per iron center at 5 K consistent with the presence of high-spin Fe(II). The observed structural and chemical selectivity of the reduction reaction is discussed. The contrast between the structure of Sr(3)Fe(2)O(4)Cl(2) and the isoelectronic all-oxide analogue (Sr(3)Fe(2)O(5)) suggests that by careful selection of substrate phases, the topotactic reduction of complex transition metal oxychlorides can lead to the preparation of novel anion-deficient phases with unique transition metal-oxygen sublattices which cannot be prepared via the reduction of all-oxide substrates.

  19. The Ruthenostannylene Complex [Cp*(IXy)H2 Ru-Sn-Trip]: Providing Access to Unusual Ru-Sn Bonded Stanna-imine, Stannene, and Ketenylstannyl Complexes.

    Science.gov (United States)

    Liu, Hsueh-Ju; Ziegler, Micah S; Tilley, T Don

    2015-05-26

    Reactivity studies of the thermally stable ruthenostannylene complex [Cp*(IXy)(H)2 Ru-Sn-Trip] (1; IXy=1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene; Cp*=η(5) -C5 Me5 ; Trip=2,4,6-iPr3 C6 H2 ) with a variety of organic substrates are described. Complex 1 reacts with benzoin and an α,β-unsaturated ketone to undergo [1+4] cycloaddition reactions and afford [Cp*(IXy)(H)2 RuSn(κ(2) -O,O-OCPhCPhO)Trip] (2) and [Cp*(IXy)(H)2 RuSn(κ(2) -O,C-OCPhCHCHPh)Trip] (3), respectively. The reaction of 1 with ethyl diazoacetate resulted in a tin-substituted ketene complex [Cp*(IXy)(H)2 RuSn(OC2 H5 )(CHCO)Trip] (4), which is most likely a decomposition product from the putative ruthenium-substituted stannene complex. The isolation of a ruthenium-substituted stannene [Cp*(IXy)(H)2 RuSn(=Flu)Trip] (5) and stanna-imine [Cp*(IXy)(H)2 RuSn(κ(2) -N,O-NSO2 C6 H4 Me)Trip] (6) complexes was achieved by treatment of 1 with 9-diazofluorene and tosyl azide, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electronic and elastic properties of new semiconducting oP12-type RuB2 and OsB2

    International Nuclear Information System (INIS)

    Hao Xianfeng; Xu Yuanhui; Gao Faming

    2011-01-01

    Using first-principles total energy calculations we investigate the structural, elastic and electronic properties of new hypothetical oP 12 -type phase RuB 2 and OsB 2 . The calculations indicate that the oP 12 -type phase RuB 2 and OsB 2 are thermodynamically and mechanically stable. Remarkably, the new phases RuB 2 and OsB 2 are predicted to be semiconductors, and the appearance of band gaps is ascribed to the enhanced B-B covalent hybridization. Compared to metallic oP 6 -type RuB 2 and OsB 2 phases, the new phases possess similar mechanical properties and hardness. The combination of the probability of tunable electronic properties, strong stiffness and high hardness make RuB 2 and OsB 2 attractive and interesting for advanced applications.

  1. Synthesis, structural characteristics and dielectric properties of a new K{sub 2}NiF{sub 4}-type phase Sr{sub 2}Mn{sub 0.5}Ti{sub 0.5}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Chupakhina, T.I., E-mail: chupakhina@ihim.uran.ru [Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences, 91, Pervomaiskaya Str., Ekaterinburg (Russian Federation); Melnikova, N.V. [Ural Federal University, 19, Mira Str., Ekaterinburg (Russian Federation); Gyrdasova, O.I. [Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences, 91, Pervomaiskaya Str., Ekaterinburg (Russian Federation)

    2016-06-15

    A new K{sub 2}NiF{sub 4}-type phase Sr{sub 2}Mn{sub 0,5}Ti{sub 0,5}O{sub 4} have been synthesized by a sol–gel procedure and characterized by X-ray powder diffraction, thermogravimetric analysis and scanning electron microscopy. There are no oxide ion vacancies in these materials; oxidation states of manganese and titanium were estimated as +4. Rietveld profile analysis shows that the phase crystallizes with tetragonal unit cell in the space group I4/mmm. Substitution of Ti{sup 4+} for Mn{sup 4+} does not affect the distortion of coordination polyhedra (Mn,Ti)O{sub 6} and SrO{sub 9}. The dielectric properties of the ceramic samples are caused by structural and charge characteristics, regular coordination polyhedra SrO{sub 9} and lack of charge ordering, which can lead to significant permittivity. Increase of the dielectric constant at temperatures above 453 K is caused mainly by the grain boundary processes explained in terms of the Maxwell–Wagner polarization model. - Highlights: • The new complex oxide Sr{sub 2}Mn{sub 0,5}Ti{sub 0,5}O{sub 4} was prepared. • The structures of the compound were analyzed by Rietveld refinement. • Distortions of SrO{sub 9} and (Mn,Ti)O{sub 6} polyhedra are not strong. • Dielectric properties are determined by regular structure and lack of charge ordering. • Permittivity increase under heat is associated with processes at the grain boundaries.

  2. Luminescence in Eu2+ and Ce3+ doped SrCaP2O7 phosphors

    Directory of Open Access Journals (Sweden)

    K.N. Shinde

    Full Text Available Eu2+ and Ce3+ doped SrCaP2O7 has been achieved by modified solid state diffusion in reducing atmosphere. The prepared phosphor powders have been identified by their characteristic X-ray diffraction patterns. The mixed phases of α-Sr2P2O7 type with orthorhombic and α-Ca2P2O7 type with monoclinic form were investigated. Its excitation wavelength ranging from 250 to 430 nm fits well with the characteristic emission of UV light-emitting diode (LED. The excitation and emission spectra indicate that these phosphors can be effectively excited by the near-UV light, and emits blue (visible range due to 4f7 → 4f65d1 transition of Eu2+ particularly, SrCaP2O7: Eu2+ whereas, photoluminescence excitation spectrum measurements of Ce3+ activated SrCaP2O7 shows that the phosphor can be efficiently excited by UV–Vis light from 280 to 310 nm to realize emission in the near visible range due to the 5d–4f transition of Ce3+ ions which is applicable for scintillation purpose. The impacts of doping of divalent europium and trivalent cerium on photoluminescence properties on SrCaP2O7 pyrophosphate phosphors were investigated and I propose a feasible interpretation. Keywords: Phosphor, Luminescence, XRD, LED, FTIR

  3. Normal state and superconductivity of La sub 2-x Sr sub x CuO sub 4-y : various doping effects in Sr-rich samples

    Energy Technology Data Exchange (ETDEWEB)

    Narasimha Rao, C.V.; Weller, M.T. (Dept. of Chemistry, Univ. of Southampton (United Kingdom)); Lanchester, P.C. (Dept. of Physics, Univ. of Southampton (United Kingdom))

    1991-12-01

    Doping effects studied in the La{sub 2-x}Sr{sub x}CuO{sub 4} system have mostly been confined to lower concentrations of strontium x<0.25. In this paper we present some of the salient features of various substitional effects in La{sub 2-x}Sr{sub x}CuO{sub 4-y} with particular emphasis given to Sr-rich samples x{>=}0.25. We have studied the effects of niobium and titanium dopings for Cu and compare the results with that of Zn substitution. The effects of titanium and niobium substitutions are quite different and the former is even more deleterious in terms of reducing Tc than is found for zinc. X-ray diffraction showed an increase in 'a' and decrease in 'c' parameters for all dopings. The results are interpreted in terms of the hole concentration and impurity disorder effects. (orig.).

  4. Structural and optical properties of (Sr,Ba)2SiO4:Eu2+ thin films grown by magnetron sputtering

    International Nuclear Information System (INIS)

    Li, Leliang; Zheng, Jun; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2014-01-01

    (Sr,Ba) 2 SiO 4 :Eu 2+ thin films were deposited on Si at different substrate temperatures by magnetron sputtering. The morphology and crystalline phases of the films were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements, respectively. The silicate crystal phase was presented when films were annealed above 900 °C and the annealing temperature had great impact on the film morphology. The samples annealed at 1000 °C in a non-reducing atmosphere for 30 s show intense room temperature Eu 2+ emission. These findings may open a promising way to prepare efficient phosphor thin films for on-chip light emitting diodes application. - Highlights: • The (Sr, Ba) 2 SiO 4 :Eu 2+ films are fabricated by magnetron sputtering. • A very strong RT PL emission at 540 nm is achieved. • The morphology and optical properties dependent on temperature are studied

  5. Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1- x Ru x O2 by the microemulsion method

    Science.gov (United States)

    Saraswathy, Ramanathan

    2017-12-01

    Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electrocycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

  6. Selective deintercalation of apex over face-shared oxide ions in the topotactic reduction of Sr7Mn4O15 to Sr7Mn4O12.

    Science.gov (United States)

    Hayward, M A

    2004-01-21

    Sodium hydride selectively deintercalates the apex rather than face-shared oxide ions within the structure of Sr(7)Mn(4)O(15) leading to the formation of the structurally related reduced phase Sr(7)Mn(4)O(12).

  7. Composition Screening in Blue-Emitting Li4Sr1+xCa0.97-x(SiO4)2:Ce3+ Phosphors for High Quantum Efficiency and Thermally Stable Photoluminescence.

    Science.gov (United States)

    Zhang, Jingchen; Zhang, Jilin; Zhou, Wenli; Ji, Xiaoyu; Ma, Wentao; Qiu, Zhongxian; Yu, Liping; Li, Chengzhi; Xia, Zhiguo; Wang, Zhengliang; Lian, Shixun

    2017-09-13

    Photoluminescence quantum efficiency (QE) and thermal stability are important for phosphors used in phosphor-converted light-emitting diodes (pc-LEDs). Li 4 Sr 1+x Ca 0.97-x (SiO 4 ) 2 :0.03Ce 3+ (-0.7 ≤ x ≤ 1.0) phosphors were designed from the initial model of Li 4 SrCa(SiO 4 ) 2 :Ce 3+ , and their single-phased crystal structures were found to be located in the composition range of -0.4 ≤ x ≤ 0.7. Depending on the substitution of Sr 2+ for Ca 2+ ions, the absolute QE value of blue-emitting composition-optimized Li 4 Sr 1.4 Ca 0.57 (SiO 4 ) 2 :0.03Ce 3+ reaches ∼94%, and the emission intensity at 200 °C remains 95% of that at room temperature. Rietveld refinements and Raman spectral analyses suggest the increase of crystal rigidity, increase of force constant in CeO 6 , and decrease of vibrational frequency by increasing Sr 2+ content, which are responsible for the enhanced quantum efficiency and thermal stability. The present study points to a new strategy for future development of the pc-LEDs phosphors based on local structures correlation via composition screening.

  8. Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO2 photocatalyst

    International Nuclear Information System (INIS)

    Dhere, Neelkanth G.; Jahagirdar, Anant H.

    2005-01-01

    This paper presents the development of photoelectrochemical (PEC) cell for water splitting setup using multiple band gap combination of CuIn 1-x Ga x S 2 (CIGS2) thin-film photovoltaic (PV) cell and ruthenium oxide (RuO 2 ) photocatalyst. FSEC PV Materials Lab has developed a PEC setup consisting of two illuminated CIGS2 cells, a ruthenium oxide (RuO 2 ) anode deposited on titanium sheet for oxygen evolution and a platinum foil cathode for hydrogen evolution. With this combination, a PEC efficiency of 4.29% has been achieved. This paper also presents the research aimed at further improvements in the PEC efficiency by employing highly efficient photoanode that can be illuminated by photons not absorbed at the PV cell and by increasing the concentration of electrolyte solution (pH 10). The former will be achieved by employing a p-type transparent and conducting layer at the back of PV cell to transmit the unabsorbed photons, and the latter will reduce the resistance offered by the electrolyte. Concentration of the electrolyte was increased by five times, and the I-V characteristics of both RuO 2 and RuS 2 were measured with and without illumination. The results indicate that PEC efficiencies of over 9% can be achieved using RuS 2 with illumination and five times concentrated pH 10 solution instead of pH 10 with normal concentration

  9. SrAl2O4:Eu2+(,Dy3+ Nanosized Particles: Synthesis and Interpretation of Temperature-Dependent Optical Properties

    Directory of Open Access Journals (Sweden)

    Huayna Terraschke

    2015-01-01

    Full Text Available SrAl2O4 nanosized particles (NPs undoped as well as doped with Eu2+ and Dy3+ were prepared by combustion synthesis for the discussion of their intensively debated spectroscopic properties. Emission spectra of SrAl2O4:Eu2+(,Dy3+ NPs are composed by a green band at 19 230 cm−1 (520 nm at room temperature, assigned to anomalous luminescence originated by Eu2+ in this host lattice. At low temperatures, a blue emission band at 22 520 cm−1 (444 nm is observed. Contrary to most of the interpretations provided in the literature, we assign this blue emission band very reliably to a normal 4f6(7FJ5d(t2g→4f7(8S7/2 transition of Eu2+ substituting the Sr2+ sites. This can be justified by the presence of a fine structure in the excitation spectra due to the different 7FJ levels (J=0⋯6 of the 4f6 core. Moreover, Fano antiresonances with the 6IJ (J=9/2,7/2 levels could be observed. In addition, the Stokes shifts (ΔES=1 980 cm−1 and 5 270 cm−1 for the blue and green emission, resp., the Huang-Rhys parameters of S=2.5 and 6, and the average phonon energies of ħω=480 cm-1 and 470 cm−1 coupled with the electronic states could be reliably determined.

  10. Partitioning of rhodium and ruthenium between Pd–Rh–Ru and (Ru,Rh)O{sub 2} solid solutions in high-level radioactive waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Toru, E-mail: toru@gipc.akita-u.ac.jp [Center for Engineering Science, Akita University, 1-1, Tegatagakuenmachi, Akita City, Akita 010-8502 (Japan); Ohira, Toshiaki [Center for Engineering Science, Akita University, 1-1, Tegatagakuenmachi, Akita City, Akita 010-8502 (Japan); Komamine, Satoshi; Ochi, Eiji [Research and Development Department, Reprocessing Business Division, Japan Nuclear Fuel Limited, 4-108, Okitsuke, Obuchi, Rokkasho-mura, Aomori 039-3212 (Japan)

    2015-10-15

    The partitioning of rhodium and ruthenium between Pd–Rh–Ru alloy with a face-centered cubic (FCC) structure and (Ru,Rh)O{sub 2} solid solution has been investigated between 1273 and 1573 K at atmospheric oxygen fugacity. The rhodium and ruthenium contents in FCC increase, while the RhO{sub 2} content in (Ru,Rh)O{sub 2} decreases with increasing temperature due to progressive reduction of the system. Based on the experimental results and previously reported thermodynamic data, the thermodynamic mixing properties of FCC phase and (Ru,Rh)O{sub 2} have been calibrated in an internally consistent manner. Phase equilibrium of platinum grope metals in an HLW glass was calculated by using the obtained thermodynamic parameters.

  11. The influence of fluorine on the structures and properties of Pr sub 2 sub - sub x Sr sub x CuO sub 4 sub - sub y (x = 0.0, 0.4, 1.0)

    CERN Document Server

    Yang Jin Ling; Tang Wei Hua; Rao Guang Hui; Liang Jing Kui; Jin Duo

    1997-01-01

    Introducing F into the lattices of the copper oxides Pr sub 2 CuO sub 4 , Pr sub 1 sub . sub 6 Sr sub 0 sub . sub 4 CuO sub 4 and PrSrCuO sub 4 sub - sub y is accomplished via a low-temperature fluorination reaction using CuF sub 2 as the fluorinating reagent. The oxyfluorides retain the structures of their precursors, but striking lattice expansions are observed. No trace of SrF sub 2 was detected in the fluorinated products. F doping was successfully used to induce superconductivity in the oxyfluoride PrSrCu(O, F) sub 4 sub - subdelta (T sub c = 15 K) with a reduced CuO sub 2 plane and in the presence of apical anions, but failed to optimize the carrier density and induce superconductivity in Pr sub 2 CuO sub 4 sub - sub x F sub x and Pr sub 1 sub . sub 6 Sr sub 0 sub . sub 4 CuO sub 4 sub - sub x F sub x. (author)

  12. Electronic and elastic properties of new semiconducting oP(12)-type RuB(2) and OsB(2).

    Science.gov (United States)

    Hao, Xianfeng; Xu, Yuanhui; Gao, Faming

    2011-03-30

    Using first-principles total energy calculations we investigate the structural, elastic and electronic properties of new hypothetical oP(12)-type phase RuB(2) and OsB(2). The calculations indicate that the oP(12)-type phase RuB(2) and OsB(2) are thermodynamically and mechanically stable. Remarkably, the new phases RuB(2) and OsB(2) are predicted to be semiconductors, and the appearance of band gaps is ascribed to the enhanced B-B covalent hybridization. Compared to metallic oP(6)-type RuB(2) and OsB(2) phases, the new phases possess similar mechanical properties and hardness. The combination of the probability of tunable electronic properties, strong stiffness and high hardness make RuB(2) and OsB(2) attractive and interesting for advanced applications. © 2011 IOP Publishing Ltd

  13. Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties.

    Science.gov (United States)

    Li, Haifeng; Zhao, Ran; Jia, Yonglei; Sun, Wenzhi; Fu, Jipeng; Jiang, Lihong; Zhang, Su; Pang, Ran; Li, Chengyu

    2014-03-12

    A series of novel red-emitting Sr1.7Zn0.3CeO4:Eu(3+) phosphors were synthesized through conventional solid-state reactions. The powder X-ray diffraction patterns and Rietveld refinement verified the similar phase of Sr1.7Zn0.3CeO4:Eu(3+) to that of Sr2CeO4. The photoluminescence spectrum exhibits that peak located at 614 nm ((5)D0-(7)F2) dominates the emission of Sr1.7Zn0.3CeO4:Eu(3+) phosphors. Because there are two regions in the excitation spectrum originating from the overlap of the Ce(4+)-O(2-) and Eu(3+)-O(2-) charge-transfer state band from 200 to 440 nm, and from the intra-4f transitions at 395 and 467 nm, the Sr1.7Zn0.3CeO4:Eu(3+) phosphors can be well excited by the near-UV light. The investigation of the concentration quenching behavior, luminescence decay curves, and lifetime implies that the dominant mechanism type leading to concentration quenching is the energy transfer among the nearest neighbor or next nearest neighbor activators. The discussion about the dependence of photoluminescence spectra on temperature shows the better thermal quenching properties of Sr1.7Zn0.3CeO4:0.3Eu(3+) than that of Sr2CeO4:Eu(3+). The experimental data indicates that Sr1.7Zn0.3CeO4:Eu(3+) phosphors have the potential as red phosphors for white light-emitting diodes.

  14. Chemical bond properties and Mossbauer spectroscopy in (La1-xMx)2CuO4 (M=Ba, Sr)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By using the average band-gap model, the chemical bond properties of (La1-x Mx)2CuO4(M=Ba, Sr) were calculated . The calculated covalencies for Cu(O and La(O bond in the compounds are 0.3 and 0.03 respectively. M?ssbauer isomer shifts of 57Fe doped in La2CuO4 and 119Sn doped in La2CuO4 were calculated by using the chemical surrounding factor defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified in 57Fe and 119Sn doped La2CuO4.

  15. Influence of Ti4+ on the magnetic state of CaRu1-xTixO3

    International Nuclear Information System (INIS)

    Zorkovska, A.; Baran, A.; Bradaric, I.; Savic, I.; Sebek, J.; Santava, E.; Svoboda, P.; Marincev, D.; Kohout, S.; Keller, H.; Feher, A.

    2007-01-01

    In order to shed more light on the character of magnetic correlations at low temperatures in CaRuO 3 , the delicate effect of substituting nonmagnetic Ti 4+ for Ru 4+ in low concentrations (0.5-15%) has been investigated by magnetization, AC-susceptibility and specific heat measurements. Despite the clear features in magnetic measurement data at 34K no specific heat anomaly has been observed, nevertheless, two temperature regions with different magnetic characters have been identified. In pure CaRuO 3 significant low-temperature upturn of C/T is visible below 15K. This feature is suppressed by Ti substitution

  16. Metal-metal bonding and aromaticity in [M2(NHCHNH)3]2 (μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh).

    Science.gov (United States)

    Yan, Xiuli; Meng, Lingpeng; Sun, Zheng; Li, Xiaoyan

    2016-02-01

    The nature of M-M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh), the Nb-Nb, Ru-Ru, and Rh-Rh bonds belong to "metallic" bonds, whereas Mo-Mo and Tc-Tc drifted toward the "dative" side; all these bonds are partially covalent in character. The Nb-Nb, Mo-Mo, and Tc-Tc bonds are stronger than Ru-Ru and Rh-Rh bonds. The M-M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M = Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds. Graphical Abstract Left Molecular graph, and right electron localization function (ELF) isosurface of [M2(NHCHNH)3]2(μ-E)2(E = O, S; M = Nb, Mo, Tc, Ru, Rh).

  17. Pt-Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells.

    Science.gov (United States)

    Sun, Zhenyu; Wang, Xiang; Liu, Zhimin; Zhang, Hongye; Yu, Ping; Mao, Lanqun

    2010-07-20

    Pt-Ru/CeO(2)/multiwalled carbon nanotube (MWNT) electrocatalysts were prepared using a rapid sonication-facilitated deposition method and were characterized by X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and voltammetry. Morphological characterization by TEM revealed that CeO(2) nanoparticles (NPs) were in intimate contact with Pt-Ru NPs, and both were highly dispersed on the exteriors of nanotubes with a small size and a very narrow size distribution. Compared with the Pt-Ru/MWNT and Pt/MWNT electrocatalysts, the as-prepared Pt-Ru/CeO(2)/MWNT exhibited a significantly improved electrochemically active surface area (ECSA) and a remarkably enhanced activity toward methanol oxidation. The effects of the Pt-Ru loading and the Pt-to-Ru molar ratio on the electrocatalytic activity of Pt-Ru/CeO(2)/MWNT for methanol oxidation were investigated. We found that a maximum activity toward methanol oxidation reached at the 10 wt % of Pt-Ru loading and 1:1 of Pt-to-Ru ratio. Moreover, the role of CeO(2) in the catalysts for the enhancement of methanol oxidation was discussed in terms of both bifunctional mechanism and electronic effects.

  18. Functional properties of electrospun NiO/RuO{sub 2} composite carbon nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yongzhi [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore 117576 (Singapore); Physics Department, National University of Singapore, Singapore 117542 (Singapore); NUS Graduate School for Integrated Science and Engineering, 10 Kent Ridge Crescent, National University of Singapore, Singapore 119260 (Singapore); Balakrishna, Rajiv [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore 117576 (Singapore); Physics Department, National University of Singapore, Singapore 117542 (Singapore); Reddy, M.V., E-mail: phymvv@nus.edu.sg [Physics Department, National University of Singapore, Singapore 117542 (Singapore); Nair, A. Sreekumaran, E-mail: nniansn@nus.edu.sg [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore 117576 (Singapore); Chowdari, B.V.R. [Physics Department, National University of Singapore, Singapore 117542 (Singapore); Ramakrishna, S. [Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore 117576 (Singapore); Kind Saud University, Riyadh 11451 (Saudi Arabia)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Fabrication of carbon nanofibers with nickel-ruthenium composites by electrospinning. Black-Right-Pointing-Pointer An interesting observation of increase in capacitance with increase in the number of cycles for supercapacitor applications. Black-Right-Pointing-Pointer Li ion battery testing showed a stable capacity ranging from 350 mAh g{sup -1} to 400 mAh g{sup -1}. Black-Right-Pointing-Pointer Lower impedance with the incorporation of 15 wt% Ru precursor than those without Ru. - Abstract: One-dimensional (1D) nickel oxide/ruthenium oxide (NiO/RuO{sub 2})-carbon composite nanofibers (NiRu-C-NFs) were fabricated via electrospinning of a homogenous mixture of polyacrylonitrile (PAN) and Ni/Ru salt precursors at different ratios followed by heat treatments. The 1D nanostructures of the composite material were characterized by field-emission scanning electron microscopy (FE-SEM), powder X-ray diffraction (XRD), Rietveld refinement and Brunauer-Emmett-Teller (BET) surface area measurements. Li-cycling properties were evaluated using cyclic voltammetry and galvanostatic properties. The asymmetric hybrid supercapacitor studies were carried out with activated carbon as a cathode and NiRu-C-NFs composites as anodes in the cycling range, 0.005-3.0 V using 1 M LiPF{sub 6} (EC;DMC) electrolyte. NiRu-C-NFs fabricated from 5 wt% nickel (II) and 15 wt% ruthenium (III) precursors showed a capacitance up to {approx}60 F g{sup -1} after 30 cycles. Anodic Li-cycling studies of NiRu-C-NF-0 and NiRu-C-NF-2 composite samples showed a reversible capacity of 230 and 350 m Ahg{sup -1} at current rate of 72 mA g{sup -1} at the end of 40th cycle in the voltage range of 0.005-3.0 V. Electrochemical impedance studies (EIS) on NiRu-C-NFs showed lower impedance value for 15 wt% Ru than the bare sample.

  19. Nd(BrO3)3-Yb(BrO3)3-H2O and Nd2(SeO4)3-Yb2(SeO4)3-H2O systems at 25 deg C

    International Nuclear Information System (INIS)

    Serebrennikov, V.V.; Batyreva, V.A.; Tsybukova, T.N.

    1981-01-01

    Using the methods of isothermal solubility the Nd(BrO 3 ) 3 - Yb(BrO 3 ) 3 -H 2 O and Nd 2 (SeO 4 ) 3 -Yb 2 (SeO 4 ) 3 -H 2 O systems are studied at 25 deg C. The compositions of the solid phases are determined by the method of ''residues''. The formation of two series of solid solutions in both systems is established. Besides, there is a crystallization region of Nd 2 (SeO 4 ) 3 in the system of selenates. The solubility diagrams of the systems are presented [ru

  20. Hydrogen-promoted chlorination of RuO2(110)

    NARCIS (Netherlands)

    Hofmann, J.P.; Zweidinger, S.; Knapp, M.; Seitsonen, A.P.; Schulte, K.; Andersen, J.N.; Lundgren, E.; Over, H.

    2010-01-01

    High-resolution core-level photoemission spectroscopy and temperature-programmed reaction experiments together with density functional theory calculations were used to elucidate on the atomic scale the chlorination mechanism of ruthenium dioxide RuO2(110) by hydrogen chloride exposure. The

  1. Red-emitting SrIn{sub 2}O{sub 4} : Eu{sup 3+} phosphor powders for applications in solid state white lamps

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Garcia, C E [Physics of Materials Graduate Program, CICESE-UNAM, Km 107 Carretera Tijuana-Ensenada, Ensenada, B. C., 22860 (Mexico); Perea-Lopez, N; Hirata, G A [Center for Nanoscience and Nanotechnology-UNAM, Km 107 Carretera Tijuana-Ensenada, Ensenada, B. C., 22860 (Mexico); Baars, S P den [Solid State Lighting and Energy Center, University of California at Santa Barbara, Santa Barbara, CA 93106 (United States)], E-mail: ghirata@engineering.ucsb.edu

    2008-05-07

    Red-emitting phosphor powders of SrIn{sub 2}O{sub 4} activated with Eu{sup 3+} ions were fabricated by high pressure assisted combustion synthesis. X-ray diffraction analysis of these oxide phosphors revealed the formation of single-phase orthorhombic SrIn{sub 2}O{sub 4} for concentrations up to 4 at% Eu. A detailed photoluminescence (PL) and cathodoluminescence study showed bright red emission originated within the {sup 5} D{sub 0} {yields} {sup 7}F{sub J} intra-shell transitions of Eu{sup 3+}. Furthermore, PL excitation spectroscopy revealed that an efficient energy transfer from the SrIn{sub 2}O{sub 4} host lattice onto the Eu ions is accomplished in addition to the excitation band peaked at 396 nm that directly excites the Eu ions, making this material an excellent candidate for applications in solid state white lamps. (fast track communication)

  2. The growth and characterization of well aligned RuO2 nanorods on sapphire substrates

    International Nuclear Information System (INIS)

    Chen, C C; Chen, R S; Tsai, T Y; Huang, Y S; Tsai, D S; Tiong, K K

    2004-01-01

    Self-assembled and well aligned RuO 2 nanorods (NRs) have been grown on sapphire (SA) substrates via metal-organic chemical vapour deposition (MOCVD), using bis(ethylcyclopentadienyl)ruthenium as the source reagent. The surface morphology, structural, and spectroscopic properties of the as-deposited NRs were characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffractometry (SAD), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and micro-Raman spectroscopy. FESEM micrographs reveal that vertically aligned nanorods (NRs) were grown on SA(100), while the NRs on the SA(012) were grown with a tilt angle of ∼ 35 degrees from the normal to the substrates. TEM and SAD measurements showed that the RuO 2 NRs with square cross-section have the long axis directed along the [001] direction. The XRD results indicate that the RuO 2 NRs are (002) oriented on SA(100) and (101) oriented on SA(012) substrates. A strong substrate effect on the alignment of the RuO 2 NRs growth has been demonstrated and the probable mechanism for the formation of these NRs has been discussed. XP spectra show the coexistence of higher oxidation state of ruthenium in the as-grown RuO 2 NRs. Micro-Raman spectra show the red-shift and peak broadening of the RuO 2 signatures with respect to that of the bulk counterpart which may be indicative of a phonon confinement effect for these NRs

  3. The role of Sr2+ on the structure and reactivity of SrO-CaO-ZnO-SiO2 ionomer glasses.

    Science.gov (United States)

    Boyd, Daniel; Towler, Mark R; Watts, Sally; Hill, Robert G; Wren, Anthony W; Clarkin, Owen M

    2008-02-01

    The suitability of Glass Polyalkenoate Cements (GPCs) for use in orthopaedics is retarded by the presence in the glass phase of aluminium, a neurotoxin. Unfortunately, the aluminium ion plays an integral role in the setting process of GPCs and its absence is likely to hinder cement formation. However, the authors have previously shown that aluminium free GPCs may be formulated based on calcium zinc silicate glasses and these novel materials exhibit significant potential as hard tissue biomaterials. To further improve their potential, and given that Strontium (Sr) based drugs have had success in the treatment of osteoporosis, the authors have substituted Calcium (Ca) with Sr in the glass phase of a series of aluminium free GPCs. However to date little data exists on the effect SrO has on the structure and reactivity of SrO-CaO-ZnO-SiO(2) glasses. The objective of this work was to characterise the effect of the Ca/Sr substitution on the structure of such glasses, and evaluate the subsequent reactivity of these glasses with an aqueous solution of Polyacrylic acid (PAA). To this end (29)Si MAS-NMR, differential scanning calorimetry (DSC), X-ray diffraction, and network connectivity calculations, were used to characterize the structure of four strontium calcium zinc silicate glasses. Following glass characterization, GPCs were produced from each glass using a 40 wt% solution of PAA (powder:liquid = 2:1.5). The working times and setting times of the GPCs were recorded as per International standard ISO9917. The results acquired as part of this research indicate that the substitution of Ca for Sr in the glasses examined did not appear to significantly affect the structure of the glasses investigated. However it was noted that increasing the amount of Ca substituted for Sr did result in a concomitant increase in setting times, a feature that may be attributable to the higher basicity of SrO over CaO.

  4. Photoemission study of absorption mechanisms in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4

    International Nuclear Information System (INIS)

    Lindberg, P.A.P.; Shen, Z.; Wells, B.O.; Dessau, D.S.; Ellis, W.P.; Borg, A.; Kang, J.; Mitzi, D.B.; Lindau, I.

    1989-01-01

    Photoemission measurements in the constant-final-state (absorption) mode were performed on three different classes of high-temperature superconductors Bi 2.0 Sr 1.8 Ca 0.8 La 0.3 Cu 2.1 O 8+δ , BaBiO 3 , and Nd 1.85 Ce 0.15 CuO 4 using synchrotron radiation from 20 to 200 eV. Absorption signals from all elements but Ce are identified. The results firmly show that the Bi 6s electrons are more delocalized in BaBiO 3 than in Bi 2.0 Sr 1.8 Ca 0.8 La 0.3 Cu 2.1 O 8+δ , in agreement with the results of band-structure calculations. Differences in the absorption signals due to O and Bi excitations between BaBiO 3 and Bi 2.0 Sr 1.8 Ca 0.8 La 0.3 Cu 2.1 O 8+δ are discussed. Delayed absorption onsets attributed to giant resonances (Ba 4d→4f, La 4d→4f, and Nd 4d→4f transitions) are also reported

  5. Chlorine Evolution Reaction on RuO2(110): Ab initio Atomistic Thermodynamics Study - Pourbaix Diagrams

    International Nuclear Information System (INIS)

    Exner, Kai S.; Anton, Josef; Jacob, Timo; Over, Herbert

    2014-01-01

    Graphical abstract: - Highlights: • Using the method Pourbaix diagram we identified the oxygen covered RuO 2 (110) surface as the catalytically active phase under chlorine evolution reaction (CER) conditions. This active phase is compared with the active phase in the Deacon process, the heterogeneous gas phase counterpart of the CER. - Abstract: Constrained ab initio thermodynamics in the form of a Pourbaix diagram can greatly assist kinetic modeling of a particular electrochemical reaction such as the chlorine evolution reaction (CER) over RuO 2 (110). Pourbaix diagrams reveal stable surface structures, as a function of pH and the potential. The present DFT study indicates that the Pourbaix diagram in the CER potential region above 1.36 V and pH values around zero is dominated by a stable surface structure in which all coordinatively undercoordinated Ru sites (Ru cus ) are capped by on-top oxygen (O ot ). This oxygen saturated RuO 2 (110) surface is considered to serve as the catalytically active phase in the CER, quite in contrast to the heterogeneously catalyzed HCl oxidation (Deacon process), for which the active RuO 2 (110) surface is mainly covered by on-top chlorine. The active sites in the CER are suggested to be Ru cus O ot surface complexes, while in the Deacon process both undercoordinated surface Ru and oxygen sites must be available for the activation of HCl molecules

  6. Anodic composite deposition of RuO2/reduced graphene oxide/carbon nanotube for advanced supercapacitors

    Science.gov (United States)

    Hu, Chi-Chang; Wang, Chia-Wei; Chang, Kuo-Hsin; Chen, Ming-Guan

    2015-07-01

    Anodic composite deposition is demonstrated to be a unique method for fabricating a ternary ruthenium dioxide/reduced graphene oxide/carbon nanotube (RuO2 · xH2O/rGO/CNT, denoted as RGC) nanocomposite onto Ti as an advanced electrode material for supercapacitors. The rGO/CNT composite in RGCs acts as a conductive backbone to facilitate the electron transport between current collector and RuO2 · xH2O nanoparticles (NPs), revealed by the high total specific capacitance (CS,T = 808 F g-1) of RGC without annealing. The contact resistance among RuO2 · xH2O NPs is improved by low-temperature annealing at 150 °C (RGC-150), which renders slight sintering and enhances the specific capacitance of RuO2 · xH2O to achieve 1200 F g-1. The desirable nanocomposite microstructure of RGC-150 builds up the smooth pathways of both protons and electrons to access the active oxy-ruthenium species. This nanocomposite exhibits an extremely high CS,T of 973 F g-1 at 25 mV s-1 (much higher than 435 F g-1 of an annealed RuO2 · xH2O deposit) and good capacitance retention (60.5% with scan rate varying from 5 to 500 mV s-1), revealing an advanced electrode material for high-performance supercapacitors.

  7. Atomic layer epitaxy of Ruddlesden-Popper SrO(SrTiO{sub 3}){sub n} films by means of metalorganic aerosol deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jungbauer, M.; Hühn, S.; Moshnyaga, V. [Erstes Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Egoavil, R.; Tan, H.; Verbeeck, J.; Van Tendeloo, G. [EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2014-12-22

    We report an atomic layer epitaxial growth of Ruddlesden-Popper (RP) thin films of SrO(SrTiO{sub 3}){sub n} (n = ∞, 2, 3, 4) by means of metalorganic aerosol deposition (MAD). The films are grown on SrTiO{sub 3}(001) substrates by means of a sequential deposition of Sr-O/Ti-O{sub 2} atomic monolayers, monitored in-situ by optical ellipsometry. X-ray diffraction and transmission electron microscopy (TEM) reveal the RP structure with n = 24 in accordance with the growth recipe. RP defects, observed by TEM in a good correlation with the in-situ ellipsometry, mainly result from the excess of SrO. Being maximal at the film/substrate interface, the SrO excess rapidly decreases and saturates after 5–6 repetitions of the SrO(SrTiO{sub 3}){sub 4} block at the level of 2.4%. This identifies the SrTiO{sub 3} substrate surface as a source of RP defects under oxidizing conditions within MAD. Advantages and limitations of MAD as a solution-based and vacuum-free chemical deposition route were discussed in comparison with molecular beam epitaxy.

  8. Ordered perovskites with cationic vacancies. 9. Compounds of the type Sr/sub 2/Srsub(1/4)Bsub(1/2)sup(III)vacantsub(1/4)WO/sub 6/ equivalent to Sr/sub 8/SrB/sub 2/sup(III)vacantW/sub 4/O/sub 24/ (Bsup(III) = La, Pr, Nd, Sm - Tm, Y)

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Ehmann, A [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1981-08-01

    The compounds Sr/sub 2/Srsub(1/4)Bsub(1/2)sup(III)vacantsub(1/4)WO/sub 6/ equivalent to Sr/sub 8/SrB/sub 2/sup(III)vacantW/sub 4/O/sub 24/ belong to the group of perovskites with octahedral cationic vacancies (cation/vacancy ratio (CN 6) = 7:1). For the larger Bsup(III) ions (La, Pr, Nd, Sm-Dy) different ordering effects are observed. The perovskites with Bsup(III) = Sm, Eu, Gd are polymorphic too (HT modification: higher ordered cubic perovskite (Bsup(III) = Gd: a = 2 x 8.23/sub 4/ A); LT modification: hexagonal perovskite stacking polytype (Bsup(III) = Gd: a = 9.95/sub 4/ A; c = 19.0/sub 4/ A)). With the smaller Bsup(III) ions (Ho, Er, Tm and Y) a cubic, 1:1 ordered perovskite type is observed.

  9. Highly Selective Hydrogenation of Levulinic Acid to γ-Valerolactone Over Ru/ZrO2 Catalysts

    NARCIS (Netherlands)

    Filiz, B.C.; Gnanakumar, E.S.; Martinez-Arias, A.; Gengler, R.; Rudolf, P.; Rothenberg, G.; Shiju, N.R.

    We studied the catalytic hydrogenation of levulinic acid over zirconia supported ruthenium catalysts. Four different Ru/ZrO2 catalysts were prepared by different pre-treatments and using different zirconium supports (ZrOx(OH)42x and ZrO2). Although the final compositions of the catalysts are the

  10. Highly Selective Hydrogenation of Levulinic Acid to gamma-Valerolactone Over Ru/ZrO2 Catalysts

    NARCIS (Netherlands)

    Filiz, Bilge Coskuner; Gnanakumar, Edwin S.; Martinez-Arias, Arturo; Gengler, Regis; Rudolf, Petra; Rothenberg, Gadi; Shiju, N. Raveendran

    We studied the catalytic hydrogenation of levulinic acid over zirconia supported ruthenium catalysts. Four different Ru/ZrO2 catalysts were prepared by different pre-treatments and using different zirconium supports (ZrOx(OH)(4-2x) and ZrO2). Although the final compositions of the catalysts are the

  11. High-pressure synthesis and crystal structures of the strontium oxogallates Sr{sub 2}Ga{sub 2}O{sub 5} and Sr{sub 5}Ga{sub 6}O{sub 14}

    Energy Technology Data Exchange (ETDEWEB)

    Kahlenberg, Volker, E-mail: volker.kahlenberg@uibk.ac.at [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck A-6020 (Austria); Goettgens, Valerie; Mair, Philipp; Schmidmair, Daniela [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck A-6020 (Austria)

    2015-08-15

    High-pressure synthesis experiments in a piston–cylinder apparatus at 1.5 GPa/3.0 GPa and 1000 °C resulted in the formation of single-crystals of Sr{sub 2}Ga{sub 2}O{sub 5} and Sr{sub 5}Ga{sub 6}O{sub 14}, respectively. The structures of both compounds have been solved from single-crystal diffraction data sets using direct methods. The first compound is orthorhombic with space group type Pbca (a=10.0021(4) Å, b=9.601(4) Å, c=10.6700(4) Å, V=1024.6(4) Å{sup 3}, M{sub r}=394.68 u, Z=8, D{sub x}=5.12 g/cm{sup 3}) and belongs to the group of single layer gallates. Individual sheets are parallel to (0 0 1) and can be built from the condensation of unbranched vierer single chains running along [0 1 0]. The layers are characterized by the presence of four- and strongly elliptical eight-membered rings of corner connected tetrahedra in UUDD and UUUUDDDD conformation. Strontium atoms are sandwiched between the tetrahedral layers for charge compensation and are coordinated by six and seven oxygen ligands, respectively. Sr{sub 2}Ga{sub 2}O{sub 5} is isotypic with several other double sulfides and selenides. To the best of our knowledge, it is the first example of an oxide with this structure type. From a structural point of view, Sr{sub 5}Ga{sub 6}O{sub 14} is a phyllogallate as well. The crystal structure adopts the monoclinic space group P2{sub 1}/c (a=8.1426(3) Å, b=8.1803(3) Å, c=10.8755(4) Å, β=91.970(4)° V=723.98(5) Å{sup 3}, M{sub r}=1080.42 u, Z=2, D{sub x}=4.96 g/cm{sup 3}). Individual sheets extend along (0 0 1). Basic building units are unbranched dreier single chains parallel to [1 0 0]. The layers contain tertiary (Q{sup 3}) und quaternary (Q{sup 4}) connected [GaO{sub 4}]-tetrahedra in the ratio 2:1 resulting in a Ga:O ratio of 3:7 and the formation of exclusively five-membered rings. Linkage between adjacent tetrahedral sheets is provided by three symmetrically independent strontium ions which are surrounded by six to eight oxygen atoms. The layers

  12. Photovoltaic Performance and Characteristics of Dye-Sensitized Solar Cells Prepared with the N719 Thermal Degradation Products Ru(LH)(2)(NCS)(4-tert-butylpyridine) N(Bu)(4) and Ru(LH)(2)(NCS)(1-methylbenzimidazole) N(Bu)(4)

    DEFF Research Database (Denmark)

    Nguyen, P. T.; Binh, X. T. L.; Andersen, A. R.

    2011-01-01

    The dye-sensitized solar cell N719 thermal degradation products [Ru(LH)(2)(NCS)(4-tert-butylpyridine)][N(Bu)(4)] (1) and [Ru(LH)(2)(NCS)(1-methylbenzimidazole)][N(Bu)(4)] (2) were synthesized from [Ru(LH)(2)(NCS)(2)][N(Bu)(4)](2) (N719), (L = 2,2'-bipyridyl-4,4'-dicarboxylic acid) and characterized...

  13. Luminescence properties of Eu2+-doped MAl2-xSixO4-xNx (M = Ca, Sr, Ba) conversion phosphor for white LED applications

    NARCIS (Netherlands)

    Li, Y.Q.; With, de G.; Hintzen, H.T.J.M.

    2006-01-01

    Undoped and Eu-doped MAl2-xSixO4-2Nx (M = Ca, Sr, Ba) were synthesized by a solid-state reaction method at 1300 - 1400 ¿C under nitrogen-hydrogen atmosphere. The solubility of (SiN)+, in MAl2O4 was determined. Nitrogen can be incorporated into MAl2O4 by replacement of (AlO)+ by (SiN)+, whose amount

  14. Rapid and efficient visible light photocatalytic dye degradation using AFe{sub 2}O{sub 4} (A = Ba, Ca and Sr) complex oxides

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, T. [PSG Institute of Advanced Studies, Coimbatore 641004 (India); Suriyaraj, S.P.; Selvakumar, R. [Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Venkateswaran, R. [PSG Institute of Advanced Studies, Coimbatore 641004 (India); Ashok, Anuradha, E-mail: anu@psgias.ac.in [PSG Institute of Advanced Studies, Coimbatore 641004 (India)

    2016-08-15

    Highlights: • Alkaline earth ferrites AFe{sub 2}O{sub 4} (A = Ba, Ca and Sr) were synthesized by sol–gel method. • Visible light photocatalytic activity of these ferrites were studied using congo red dye degradation. • BaFe{sub 2}O{sub 4} exhibited the best photocatalytic activity under visible light (xenon lamp) irradiation; CaFe{sub 2}O{sub 4} was the best photocatalyst under natural sun light irradiation. - Abstract: Photocatalytic activity of spinel type complex oxides has been investigated in this study. Alkaline earth ferrites AFe{sub 2}O{sub 4} (A = Ba, Ca, Sr) were synthesized by sol–gel method. Structural characterizations reveal that the synthesized ferrites have orthorhombic crystal structures with different space groups and cell dimensions when they have different alkaline earth metals in their A site. All the synthesized ferrites exhibited their bandgap in the range 2.14–2.19 eV. Their photocatalytic activities were studied using congo red dye under sunlight and xenon lamp radiation. The substitution of Ba, Ca and Sr at A site of these ferrites had varying impact on dye degradation process. Under xenon lamp irradiation, BaFe{sub 2}O{sub 4} exhibited the highest percentage of dye degradation (92% after 75 min). However, CaFe{sub 2}O{sub 4} showed the fastest degradation of the dye (70% within 15 min). In the absence of irradiation, SrFe{sub 2}O{sub 4} showed the highest dye adsorption (44% after 75 min).

  15. New methods for the preparation and dielectric properties of La{sub 2−x}Sr{sub x}NiO{sub 4} (x = 1/8) ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Chupakhina, T.I., E-mail: chupakhina@ihim.uran.ru [Institute of Solid State Chemistry, UB RAS, 91, Pervomaiskaya str., Ekaterinburg 620990 (Russian Federation); Kadyrova, N.I. [Institute of Solid State Chemistry, UB RAS, 91, Pervomaiskaya str., Ekaterinburg 620990 (Russian Federation); Melnikova, N.V. [Ural Federal University, 19, Mira str., Ekaterinburg (Russian Federation); Gyrdasova, O.I. [Institute of Solid State Chemistry, UB RAS, 91, Pervomaiskaya str., Ekaterinburg 620990 (Russian Federation); Yakovleva, E.A. [Ural Federal University, 19, Mira str., Ekaterinburg (Russian Federation); Zainulin, Yu.G. [Institute of Solid State Chemistry, UB RAS, 91, Pervomaiskaya str., Ekaterinburg 620990 (Russian Federation)

    2016-05-15

    Highlights: • A new fuel in solution combustion synthesis of fine powder La{sub 15/8}Sr{sub 1/8}NiO{sub 4}. • Changes in the morphology of the ceramic La{sub 15/8}Sr{sub 1/8}NiO{sub 4} after thermobaric treatment. • Changes in structural parameters of the La{sub 15/8}Sr{sub 1/8}NiO{sub 4} after thermobaric treatment. • Increase of the dielectric constant of the thermobaric treated ceramic La{sub 15/8}Sr{sub 1/8}NiO{sub 4}. • Using of dielectric modulus and impedance formalisms, of equivalent circuits method. - Abstract: The perovskite-type oxide La{sub 2−x}Sr{sub x}NiO{sub 4} (x = 1/8) was prepared by a new precursor route. The reaction proceeds in the self-ignition mode. Single-phase powder and gas-tight ceramic samples can be produced by single annealing of decomposition products. It was shown that as a result of thermobaric treatment of La{sub 2−x}Sr{sub x}NiO{sub 4} (x = 1/8) the solid solution La{sub 2−x}Sr{sub x}NiO{sub 4} with a higher concentration of strontium and the second phase La{sub 3}Ni{sub 2}O{sub 7} are formed. Short-term (5 min) thermobaric treatment (P = 2.5 GPa) at t° = 900 °C changes the unit cell parameters, but is not accompanied by structural transitions. At the same time, morphological restructuring of the sample occurs—the agglomerates delaminate into thin plates crystals. It was established that the permittivity of the material exposed to thermobaric treatment is much higher compared to that of the sample annealed at atmospheric pressure and virtually does not depend on frequency in a wide temperature range.

  16. The formation and structure of mechano-synthesized nanocrystalline Sr{sub 3}Fe{sub 2}O{sub 6.4}: XRD Rietveld, Mössabuer and XPS analyses

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rawas, A.D., E-mail: arawas@squ.edu.om [Department of Physics, Sultan Qaboos University, P.O. Box 36, 123 Al-Khoud, Muscat (Oman); Widatallah, H.M.; Al-Harthi, S.H. [Department of Physics, Sultan Qaboos University, P.O. Box 36, 123 Al-Khoud, Muscat (Oman); Johnson, C. [Chemistry Department, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Gismelseed, A.M.; Elzain, M.E.; Yousif, A.A. [Department of Physics, Sultan Qaboos University, P.O. Box 36, 123 Al-Khoud, Muscat (Oman)

    2015-05-15

    Highlights: • The formation of mechano-synthesized nanocrystalline Sr{sub 3}Fe{sub 2}O{sub 7−δ} is investigated. • Pre-milling the reactants substantially lowers the formation temperature. • The core and surface structures were studied. • XRD and {sup 57}Fe Mössbauer spectroscopic analyses indicate the δ-value to be 0.60. • XPS shows a complex surface structure for the mechanosynthesized Sr{sub 3}Fe{sub 2}O{sub 7−δ} nanoparticles. - Abstract: The influence of ball milling and subsequent sintering of a 3:1 molar mixture of SrCO{sub 3} and α-Fe{sub 2}O{sub 3} on the formation of Sr{sub 3}Fe{sub 2}O{sub 7−δ} double perovskite is investigated with different analytical techniques. Milling the mixture for 110 h leads to the formation of SrCO{sub 3}-α-Fe{sub 2}O{sub 3} nanocomposites and the structural deformation of α-Fe{sub 2}O{sub 3} via the incorporation of Sr{sup 2+} ions. Subsequent sintering of the pre-milled reactants’ mixture has led to the partial formation of an SrFeO{sub 3} perovskite-related phase in the temperature range 400–600 °C. This was followed by the progressive development of an Sr{sub 3}Fe{sub 2}O{sub 7−δ} phase that continued to increase with increasing sintering temperature until a single-phased nanocrystalline Sr{sub 3}Fe{sub 2}O{sub 7−δ} phase was attained at 950 °C (12 h). This temperature is ∼350 °C lower than the temperature at which the material is prepared conventionally using the ceramic method. The evolution of different structural phases during the reaction process is discussed. Rietveld refinement of the X-ray diffraction data shows a value of 0.60 for the oxygen deficiency δ, in consistency with the Fe{sup 3+}/Fe{sup 4+} ratio derived from the {sup 57}Fe Mössbauer data recorded at both 300 K and 78 K. The Mössbauer data suggests that the Sr{sub 3}Fe{sub 2}O{sub 6.4} nanoparticles are superparamagnetic with blocking temperatures below 78 K. The surfaces of the Sr{sub 3}Fe{sub 2}O{sub 6.4

  17. Interaction of cis-[Ru(DMSO)4Cl2] with acetate-ion in solutions

    International Nuclear Information System (INIS)

    Buslaeva, T.M.; Rudnitskaya, O.V.; Kabanova, A.G.; Fedorova, G.A.

    2000-01-01

    Solutions of cis-[Ru(DMSO) 4 Cl 2 ] in water and alcohols in the presence of CH 3 COONa in dependence on concentration and relation of reagents are studied. It is shown that introduction of acetate-ion in solution of cis-[Ru(DMSO) 4 Cl 2 ] in methanol directs to formation of fac-[Ru(DMSO) 3 Cl 3 ] - which can be separated as sodium salt insoluble in methanol. It is necessary to mention that spectrum of solution of cis-[Ru(DMSO) 4 Cl 2 ] in methanol varies in time but these changes are insignificant in comparison with changes taking place in the presence of CH 3 COONa. Compound Na[Ru(DMSO) 3 (CH 3 COO) 2 Cl] is prepared and characterized spectrally for the first time [ru

  18. Superconductivity and photoacoustic properties of sintered La/sub 1.8/Sr/sub 0.2/CuO/sub 4/

    International Nuclear Information System (INIS)

    Sawan, Y.; Abu-Zeid, M.; Yousef, Y.A.

    1987-01-01

    In this paper the superconductivity transition properties of La/sub 1.8/Sr/sub 0.2/CuO/sub 4/ are investigated by resistivity and photo-acoustic measurements on samples prepared at different thermal prehistories. Samples with onset transition temperature of 40K and zero resistance at 35 K is detected at ambient pressure. The recent discovery of high T/sub c/ superconductivity up to 35 K in the La-Ba-Cu-O system was followed by rapid enthusiasm and intensive investigations in this field. The effect of thermal prehistory on the superconducting properties of La/sub 1.8/Sr/sub 0.2/CuO/sub 4/ and the photoacoustic characteristics of both the prepared superconducting materials as well as that of the initial starting oxides are presented

  19. Quenched Magnon excitations by oxygen sublattice reconstruction in (SrCuO 2) n /(SrTiO 3) 2 superlattices

    NARCIS (Netherlands)

    Dantz, M.; Pelliciari, J.; Samal, D.; Bisogni, V.; Huang, Y.; Olalde-Velasco, P.; Strocov, V. N.; Koster, G.; Schmitt, T.

    2016-01-01

    The recently discovered structural reconstruction in the cuprate superlattice (SrCuO 2) n /(SrTiO 3) 2 has been investigated across the critical value of n = 5 using resonant inelastic x-ray scattering (RIXS). We find that at the critical value of n, the cuprate layer remains largely in the

  20. EFFECT OF ALKALINE IONS ON THE PHASE EVOLUTION, PHOTOLUMINESCENCE, AND AFTERGLOW PROPERTIES OF SrAl2O4: Eu2+, Dy3+ PHOSPHOR

    Directory of Open Access Journals (Sweden)

    HYUNHO SHIN

    2012-12-01

    Full Text Available A series of SrAl2O4: Eu2+, Dy3+ long-afterglow (LAG phosphors with varying concentration of Li+, Na+ and K+, has been synthesized. The increased concentration of the three types of alkaline ions does not decrease the quantity of the total luminescent phases (SrAl2O4 plus Sr4Al14O25, but a different set of secondary phases has been evoluted for the K+-added series due to the failure of the incorporation of relatively large K+ (1.38 Å to the Sr2+ (1.18 Å site in the hosts, unlike the cases of smaller Li+ (0.76 Å and Na+ (1.02 Å ions. PL excitation, PL emission, and LAG luminescence, are decreased by all investigated alkaline ions, which would be due to the diminished incorporation of Eu2+ and Dy3+ activators into the luminescent hosts by the alkaline ions. For the cases of the Li+ and Na+-added series, the incorporated Li+ or Na+ to the luminescent hosts would also limit the activation of Eu2+ and charge trapping/detrapping of Dy3+ to yield the diminished PL properties and LAG luminescence. The type of defect complex formed by the addition of Li+ and Na+ ions has been deduced and compared with that formed when no alkaline ion is added.

  1. Phosphorescent and thermoluminescent properties of SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} phosphors prepared by solid state reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Mothudi, B.M., E-mail: mothubm@unisa.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, University of South Africa, P.O. Box 392, Pretoria, ZA 6031 (South Africa); Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Kumar, A.; Sohn, K. [Department of Material Science and Metallurgical Engineering, Sunchon National University, Sunchon, Chonam 540-742 (Korea, Republic of); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2012-05-15

    Long persistent SrAl{sub 2}O{sub 4}:Eu{sup 2+} phosphors co-doped with Dy{sup 3+} were prepared by the solid state reaction method. The main diffraction peaks of the monoclinic structure of SrAl{sub 2}O{sub 4} were observed in all the samples. The broad band emission spectra at 497 nm for SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} were observed and the emission is attributed to the 4f{sup 6}5d{sup 1} to 4f{sup 7} transition of Eu{sup 2+} ions. The samples annealed at 1100-1200 Degree-Sign C showed similar broad TL glow curves centered at 120 Degree-Sign C. The similar TL glow curves suggest that the traps responsible for them are similar. The long afterglow displayed by the phosphors annealed at different temperatures, may be attributed to the Dy{sup 3+} ions acting as the hole trap levels, which play an important role in prolonging the duration of luminescence.

  2. Temperature dependence of scintillation properties of SrMoO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailik, V.B., E-mail: vmikhai@hotmail.com [Diamond Light Source, Harwell Science Campus, Didcot OX11 0DE (United Kingdom); Elyashevskyi, Yu. [Department of Physics, University of Oxford, Keble Rd., Oxford OX1 3RH (United Kingdom); Scientific-technical and Educational Centre of Low Temperature Studies, I. Franko National University of Lviv, 50 Dragomanova Str., 79005 Lviv (Ukraine); Kraus, H. [Department of Physics, University of Oxford, Keble Rd., Oxford OX1 3RH (United Kingdom); Kim, H.J. [Department of Physics of Kyungpook National University, 1370 Sangyeok-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Kapustianyk, V.; Panasyuk, M. [Scientific-technical and Educational Centre of Low Temperature Studies, I. Franko National University of Lviv, 50 Dragomanova Str., 79005 Lviv (Ukraine)

    2015-08-21

    Studies of the X-ray luminescence and scintillation properties of a SrMoO{sub 4} crystal as function of temperature down to T=10 K have been carried out. The luminescence in SrMoO{sub 4} is quenched at room temperature, but below T<200 K the crystal exhibits a broad emission band with a maximum at a wavelength of 520 nm. The emission is attributed to the radiative decay of self-trapped excitons and defects acting as traps for the exactions at low temperatures. Such complex character of radiative decay is reflected in the kinetics which contains several components plus a contribution from delayed recombination at low temperatures. The temperature dependence of scintillation light output of SrMoO{sub 4} was studied. Comparing with a reference ZnWO{sub 4} crystal measured under the same experimental conditions it was found that the light output of SrMoO{sub 4} is 15±5%. It is suggested, therefore, that there is scope for optimisation of strontium molybdate for application as scintillator in cryogenic rare event searches.

  3. Locking of iridium magnetic moments to the correlated rotation of oxygen octahedra in Sr2IrO4 revealed by x-ray resonant scattering

    DEFF Research Database (Denmark)

    Boseggia, S.; Walker, H. C.; Vale, J.

    2013-01-01

    Sr2IrO4 is a prototype of the class of Mott insulators in the strong spin–orbit interaction (SOI) limit described by a Jeff = 1/2 ground state. In Sr2IrO4, the strong SOI is predicted to manifest itself in the locking of the canting of the magnetic moments to the correlated rotation by 11.8(1)° o...

  4. Impedance spectroscopy of SrBi2Ta2O9 and SrBi2Nb2O9 ceramics correlation with fatigue behavior

    International Nuclear Information System (INIS)

    Chen, T.; Thio, C.; Desu, S.B.

    1997-01-01

    In this research, a fatigue model for ferroelectric materials is proposed. The reasons for the electrical fatigue resistance of SrBi 2 Ta 2 O 9 (SBT), SrBi 2 Nb 2 O 9 (SBN), and PbZr 1-x Ti x O 3 (PZT) are discussed in terms of the bulk ionic conductivities of the compounds. To obtain the bulk ionic conductivity of SBT and SBN, we have used impedance spectroscopy which provides an effective method that allows us to separate the individual contributions of bulk, grain boundaries, and electrode-ferroelectric interfaces from the total capacitor impedance. The bulk ionic conductivities of SBT and SBN (∼10 -7 S/cm) are much higher than those of the perovskite ferroelectrics, e.g., PZT (∼10 -11 -10 -10 S/cm). The high ionic conductivities led us to conclude that the good fatigue resistance of SrBi 2 Ta 2 O 9 and SrBi 2 Nb 2 O 9 is due to easy recovery of defects. Specifically, oxygen vacancies entrapped within the capacitors are easily released, resulting in limited space charge buildup and domain wall pinning during the polarization reversal process. However, the oxygen vacancies in PZT are trapped at trap sites to become space charges, resulting in capacitor fatigue. copyright 1997 Materials Research Society

  5. Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M = Ni, Co, Zn and Sr) modified TiO2 nanorod arrays

    Science.gov (United States)

    Gao, Xin; Liu, Xiangxuan; Zhu, Zuoming; Wang, Xuanjun; Xie, Zheng

    2016-07-01

    Modified TiO2 nanomaterials are considered to be promising in energy conversion and ferrites modification may be one of the most efficient modifications. In this research, various ferrites, incorporated with various cations (MFe2O4, M = Ni, Co, Zn, and Sr), are utilized to modify the well aligned TiO2 nanorod arrays (NRAs), which is synthesized by hydrothermal method. It is found that all MFe2O4/TiO2 NRAs show obvious red shift into the visible light region compared with the TiO2 NRAs. In particular, NiFe2O4 modification is demonstrated to be the best way to enhance the photoelectrochemical and photocatalytic activity of TiO2 NRAs. Furthermore, the separation and transfer of charge carriers after MFe2O4 modification are clarified by electrochemical impedance spectroscopy measurements. Finally, the underlying mechanism accounting for the enhanced photocatalytic activity of MFe2O4/TiO2 NRAs is proposed. Through comparison among different transition metals modified TiO2 with the same synthesis process and under the same evaluating condition, this work may provide new insight in designing modified TiO2 nanomaterials as visible light active photocatalysts.

  6. Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO{sub 2} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, Neelkanth G. [University of Central Florida, Florida Solar Energy Center, 1679 Clearlake Road Cocoa, FL 32922-5703 (United States)]. E-mail: dhere@fsec.ucf.edu; Jahagirdar, Anant H. [University of Central Florida, Florida Solar Energy Center, 1679 Clearlake Road Cocoa, FL 32922-5703 (United States)

    2005-06-01

    This paper presents the development of photoelectrochemical (PEC) cell for water splitting setup using multiple band gap combination of CuIn{sub 1-x}Ga {sub x}S{sub 2} (CIGS2) thin-film photovoltaic (PV) cell and ruthenium oxide (RuO{sub 2}) photocatalyst. FSEC PV Materials Lab has developed a PEC setup consisting of two illuminated CIGS2 cells, a ruthenium oxide (RuO{sub 2}) anode deposited on titanium sheet for oxygen evolution and a platinum foil cathode for hydrogen evolution. With this combination, a PEC efficiency of 4.29% has been achieved. This paper also presents the research aimed at further improvements in the PEC efficiency by employing highly efficient photoanode that can be illuminated by photons not absorbed at the PV cell and by increasing the concentration of electrolyte solution (pH 10). The former will be achieved by employing a p-type transparent and conducting layer at the back of PV cell to transmit the unabsorbed photons, and the latter will reduce the resistance offered by the electrolyte. Concentration of the electrolyte was increased by five times, and the I-V characteristics of both RuO{sub 2} and RuS{sub 2} were measured with and without illumination. The results indicate that PEC efficiencies of over 9% can be achieved using RuS{sub 2} with illumination and five times concentrated pH 10 solution instead of pH 10 with normal concentration.

  7. New representatives of the Raddlesden-Popper homologous series: anion-deficient oxides Sr3Co2-xZnxO6+δ (x=0.5, 0.7)

    International Nuclear Information System (INIS)

    Chupakhina, T.I.; Zajtseva, N.A.; Melkozerova, M.A.; Bazuev, G.V.

    2006-01-01

    New complex oxides Sr 3 Co 2-x Zn x O 6+δ (x=0.5, 0.7) of the Raddlesden-Popper homologous series are synthesized; structural characteristics and magnetic properties are investigated. Lattice parameters are determined. It is established that Sr 3 Co 1.5 Zn 0.5 O 6.25 magnetic susceptibility dependence on temperature follows Curie-Weiss law only within 250-300 K temperature range. In low temperature range the compound has spin glass properties with characteristic phenomena of magnetic and temperature hysteresis [ru

  8. Electronic properties and surface reactivity of SrO-terminated SrTiO3 and SrO-terminated iron-doped SrTiO3.

    Science.gov (United States)

    Staykov, Aleksandar; Tellez, Helena; Druce, John; Wu, Ji; Ishihara, Tatsumi; Kilner, John

    2018-01-01

    Surface reactivity and near-surface electronic properties of SrO-terminated SrTiO 3 and iron doped SrTiO 3 were studied with first principle methods. We have investigated the density of states (DOS) of bulk SrTiO 3 and compared it to DOS of iron-doped SrTiO 3 with different oxidation states of iron corresponding to varying oxygen vacancy content within the bulk material. The obtained bulk DOS was compared to near-surface DOS, i.e. surface states, for both SrO-terminated surface of SrTiO 3 and iron-doped SrTiO 3 . Electron density plots and electron density distribution through the entire slab models were investigated in order to understand the origin of surface electrons that can participate in oxygen reduction reaction. Furthermore, we have compared oxygen reduction reactions at elevated temperatures for SrO surfaces with and without oxygen vacancies. Our calculations demonstrate that the conduction band, which is formed mainly by the d-states of Ti, and Fe-induced states within the band gap of SrTiO 3 , are accessible only on TiO 2 terminated SrTiO 3 surface while the SrO-terminated surface introduces a tunneling barrier for the electrons populating the conductance band. First principle molecular dynamics demonstrated that at elevated temperatures the surface oxygen vacancies are essential for the oxygen reduction reaction.

  9. Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange

    DEFF Research Database (Denmark)

    Stoerzinger, Kelsey A.; Diaz-Morales, Oscar; Kolb, Manuel

    2017-01-01

    the potential involvement of lattice oxygen in the OER mechanism with online electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous...... work, suggesting lattice oxygen is not exchanged in catalyzing OER on crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by density functional theory, where more active facets bind oxygen more weakly. This new...

  10. Thermodynamic properties of crystalline Sr0.5Zr2(PO4)3 phosphate from T → 0 to 665 K

    International Nuclear Information System (INIS)

    Pet'kov, V.I.; Markin, A.V.; Bykova, T.A.; Sukhanov, M.V.; Smirnova, N.N.; Loshkarev, V.N.

    2007-01-01

    The temperature dependence of the heat capacity of crystalline Sr 0.5 Zr 2 (PO 4 ) 3 phosphate was studied by precision adiabatic vacuum and dynamic scanning calorimetry over the temperature range 7-665 K. The low-temperature dependence of the heat capacity was analyzed using the Debye theory of the heat capacity of solids and its multifractal generalization, which allowed conclusions to be drawn about the heterodynamic characteristics of the structure. The experimental data obtained were used to calculate the standard thermodynamic functions of Sr 0.5 Zr 2 (PO 4 ) 3 from T → 0 to 665 K. The standard absolute entropy of Sr 0.5 Zr 2 (PO 4 ) 3 was in turn used to calculate the standard entropy of its formation from simple substances at 298.15 K [ru

  11. Low Thermal Conductivity of RE-Doped SrO(SrTiO3)1 Ruddlesden Popper Phase Bulk Materials Prepared by Molten Salt Method

    Science.gov (United States)

    Putri, Yulia Eka; Said, Suhana Mohd; Refinel, Refinel; Ohtaki, Michitaka; Syukri, Syukri

    2018-04-01

    The SrO(SrTiO3)1 (Sr2TiO4) Ruddlesden Popper (RP) phase is a natural superlattice comprising of alternately stacking perovskite-type SrTiO3 layers and rock salt SrO layers along the crystallographic c direction. This paper discusses the properties of the Sr2TiO4 and (La, Sm)-doped Sr2TiO4 RP phase synthesized via molten salt method, within the context of thermoelectric applications. A good thermoelectric material requires high electrical conductivity, high Seebeck coefficient and low thermal conductivity. All three conditions have the potential to be fulfilled by the Sr2TiO4 RP phase, in particular, the superlattice structure allows a higher degree of phonon scattering hence resulting in lowered thermal conductivity. In this work, the Sr2TiO4 RP phase is doped with Sm and La respectively, which allows injection of charge carriers, modification of its electronic structure for improvement of the Seebeck coefficient, and most significantly, reduction of thermal conductivity. The particles with submicron size allows excessive phonon scattering along the boundaries, thus reduces the thermal conductivity by fourfold. In particular, the Sm-doped sample exhibited even lower lattice thermal conductivity, which is believed to be due to the mismatch in the ionic radius of Sr and Sm. This finding is useful as a strategy to reduce thermal conductivity of Sr2TiO4 RP phase materials as thermoelectric candidates, by employing dopants of differing ionic radius.

  12. Luminescence properties of Eu{sup 2+} doped SrB{sub 4}O{sub 7} phosphor for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Palan, C.B., E-mail: chetanpalan27@yahoo.in; Bajaj, N.S.; Omanwar, S.K.

    2016-04-15

    Highlights: • Report TL/OSL properties of SrB{sub 4}O{sub 7}:Eu{sup 2+} under beta irradiations. • OSL Sensitivity was about 33% than that of commercially available α-Al{sub 2}O{sub 3.} • TL glow peaks was appear at 305° C and TL sensitivity about 200 times higher than TLD-500. • OSL decay pattern was faster than α- Al{sub 2}O{sub 3}:C and dose response was linear nature. - Abstract: In this report, we presented the TL/OSL properties of Eu doped SrB{sub 4}O{sub 7} phosphor under β-irradiation. This phosphor was synthesized by using solid state method. The phosphor shows OSL sensitivity about 33% than that of commercially available α-Al{sub 2}O{sub 3}: C phosphor. CW-OSL curve possess two components having photoionization cross-sections 0.707 × 10{sup −17} and 18.58 × 10{sup −17} cm{sup 2} respectively and TL sensitivity about 200 times higher than TLD-500. The kinetic parameters such as activation energy, frequency factor and order of kinetics of TL curve were calculated by using peak shape method. In TL/OSL mode dose-response was almost linear in the range of measurements. The MDD was found to be 1.26 mGy with 3σ of background. Also reusability studies showed the phosphor can be reused for 10 cycles with 1% change in the OSL output. The PL spectra of SrB{sub 4}O{sub 7} showed emission in NUV region when excited with 318 nm under UV source.

  13. MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Zhou, Chunmei; Wang, Hongjuan; Peng, Feng; Liang, Jiahua; Yu, Hao; Yang, Jian

    2009-07-07

    Pt/MnO2/carbon nanotube (CNT) and PtRu/MnO2/CNT nanocomposites were synthesized by successively loading hydrous MnO2 and Pt (or PtRu alloy) nanoparticles on CNTs and were used as anodic catalysts for direct methanol fuel cells (DMFCs). The existence of MnO2 on the surface of CNTs effectively increases the proton conductivity of the catalyst, which then could remarkably improve the performance of the catalyst in methanol electro-oxidation. As a result, Pt/MnO2/CNTs show higher electrochemical active surface area and better methanol electro-oxidation activity, compared with Pt/CNTs. As PtRu alloy nanoparticles were deposited on the surface of MnO2/CNTs instead of Pt, the PtRu/MnO2/CNT catalyst shows not only excellent electro-oxidation activity to methanol with forward anodic peak current density of 901 A/gPt but also good CO oxidation ability with lower preadsorbed CO oxidation onset potential (0.33 V vs Ag/AgCl) and peak potential (0.49 V vs Ag/AgCl) at room temperature.

  14. Annealing-temperature-dependent voltage-sign reversal in all-oxide spin Seebeck devices using RuO2

    Science.gov (United States)

    Kirihara, Akihiro; Ishida, Masahiko; Yuge, Ryota; Ihara, Kazuki; Iwasaki, Yuma; Sawada, Ryohto; Someya, Hiroko; Iguchi, Ryo; Uchida, Ken-ichi; Saitoh, Eiji; Yorozu, Shinichi

    2018-04-01

    Thermoelectric converters based on the spin Seebeck effect (SSE) have attracted great attention due to their potential to offer novel applications such as energy harvesting and heat-flow sensing. For converting a SSE-induced spin current into an electric current, a transition metal film such as Pt, which exhibits large inverse spin-Hall effect (ISHE), has been typically used. In this work, we show an all-oxide SSE device using ruthenium oxide (RuO2) as a conductive film. We found that both the sign and magnitude of the SSE-induced ISHE voltage V appearing in the RuO2 film changes depending on the post annealing temperature, and that the magnitude can become larger than that of a standard SSE device using Pt. The similar sign change was also observed in Hall-resistance measurements of the RuO2 films. X-ray absorption fine structure (XAFS) spectra of as-deposited and annealed RuO2 revealed that the annealing process substantially improved the long-range crystalline order in RuO2. This suggests that change in the crystalline order may modify the dominant ISHE mechanism or electronic states in RuO2, leading to the sign reversal of V as well as the Hall coefficient. Our result demonstrates that RuO2 is an interesting material not only as a practical ISHE film but also as a testbed to study physics of spin-to-charge converters that depend on their crystalline order.

  15. Conventional proximity effect in bilayers of superconducting underdoped $La_{1.88}Sr_{0.12}CuO_4$ islands coated with non superconducting overdoped $La_{1.65}Sr_{0.35}CuO_4$

    OpenAIRE

    Koren, G.; Millo, O.

    2009-01-01

    Following a recent study by our group in which a large $T_c$ enhancement was reported in bilayers of the non-superconducting $La_{1.65}Sr_{0.35}CuO_4$ and superconducting $La_{1.88}Sr_{0.12}CuO_4$ films [Phys. Rev. Lett. \\textbf{101}, 057005 (2008)], we checked if a similar effect occurs when superconducting $La_{1.88}Sr_{0.12}CuO_4$ islands are coated with a continuous layer of the non superconducting $La_{1.65}Sr_{0.35}CuO_4$. We found that no such phenomenon is observed. The bare supercond...

  16. (15)N NMR spectroscopy unambiguously establishes the coordination mode of the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) in Ru(ii) complexes.

    Science.gov (United States)

    Battistin, Federica; Balducci, Gabriele; Demitri, Nicola; Iengo, Elisabetta; Milani, Barbara; Alessio, Enzo

    2015-09-21

    We investigated the reactivity of three Ru(ii) precursors -trans,cis,cis-[RuCl2(CO)2(dmso-O)2], cis,fac-[RuCl2(dmso-O)(dmso-S)3], and trans-[RuCl2(dmso-S)4] - towards the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) or its parent compound 4-methyl-2-(2'-pyridyl)pyrimidine ligand (mpp), in which a methyl group replaces the carboxylic group on the pyrimidine ring. In principle, both cppH and mpp can originate linkage isomers, depending on how the pyrimidine ring binds to ruthenium through the nitrogen atom ortho (N(o)) or para (N(p)) to the group in position 4. The principal aim of this work was to establish a spectroscopic fingerprint for distinguishing the coordination mode of cppH/mpp also in the absence of an X-ray structural characterization. By virtue of the new complexes described here, together with the others previously reported by us, we successfully recorded {(1)H,(15)N}-HMBC NMR spectra at natural abundance of the (15)N isotope on a consistent number of fully characterized Ru(ii)-cppH/mpp compounds, most of them being stereoisomers and/or linkage isomers. Thus, we found that (15)N NMR chemical shifts unambiguously establish the binding mode of cppH and mpp - either through N(o) or N(p)- and can be conveniently applied also in the absence of the X-ray structure. In fact, coordination of cppH to Ru(ii) induces a marked upfield shift for the resonance of the N atoms directly bound to the metal, with coordination induced shifts (CIS) ranging from ca.-45 to -75 ppm, depending on the complex, whereas the unbound N atom resonates at a frequency similar to that of the free ligand. Similar results were found for the complexes of mpp. This work confirmed our previous finding that cppH has no binding preference, whereas mpp binds exclusively through N(p). Interestingly, the two cppH linkage isomers trans,cis-[RuCl2(CO)2(cppH-κN(p))] (5) and trans,cis-[RuCl2(CO)2(cppH-κN(o))] (6) were easily obtained in pure form by exploiting their different

  17. Electrocatalytical activity of Pt, SnO2 and RuO2 mixed electrodes for the electrooxidation of formic acid and formaldehyde

    International Nuclear Information System (INIS)

    Profeti, L.P.R.; Profeti, D.; Olivi, P.

    2005-01-01

    The electrocatalytical activity of binary electrodes of Pt and SnO 2 and ternary electrodes of Pt and SnO 2 and RuO 2 for the electrooxidation of formic acid and formaldehyde was investigated by cyclic voltammetry and chronoamperometry techniques. The electrode materials were prepared by the thermal decomposition of polymeric precursors at 400 deg C. The cyclic voltammetry results showed that the methanol electrooxidation process presents peak potentials for those electrodes approximately 100 mV lower than the values obtained for metallic platinum electrodes. The Pt 0.6 Ru 0.2 Sn 0.2 O y electrodes presented the highest current density values for potentials lower than the peak potential values. The chronoamperometric experiments also showed that the addition of SnO 2 and RuO 2 contributed for the enhancement of the electrode activity in low potential values. The preparation method was found to be useful to obtain high active materials. (author)

  18. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    Science.gov (United States)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-08-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  19. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.

    Science.gov (United States)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J

    2015-08-12

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  20. Processing and characterization of Sr2−xVMoO6−δ double perovskites

    International Nuclear Information System (INIS)

    Weisentein, A.J.; Childs, N.; Amendola, R.; Driscoll, D.; Sofie, S.W.; Gannon, P.; Smith, R.

    2013-01-01

    In this study, the analysis and characterization of the processing and sintering of Sr 2−x VMoO 6−δ perovskites, where x = 0.0, 0.1 and 0.2, was investigated with application potential in high temperature fuel cell electrodes and electro-catalysts. Sr 2−x VMoO 6−δ substrates were sintered in a reducing (5%H 2 95%N 2 ) atmosphere at 1100 °C, 1200 °C, and 1300 °C. The X-ray diffraction patterns indicate that the double perovskite is the primary phase for Sr 2−x VMoO 6−δ pellets sintered at 1200 °C and 1300 °C for 20 h; however, these pellets show a secondary phase of SrMoO 4−δ . X-ray photoelectron spectroscopy revealed a deficiency of vanadium on the pellet surfaces, in which samples yielded surface vanadium concentrations of less than 5%. The vanadium inhomogeneity can be explained by the formation of the SrMoO 4−δ scheelite phase (ABO 4 ) due to oxygen exposure on the surface of the pellets, which indicates inward vanadium migration to the bulk, and was exhibited in redox cycling. Sr 2−x VMoO 6−δ pellets sintered at 1300 °C showed the lowest resistivity at both SOFC operating temperature (800 °C) and room temperature. The resistivity tests also show a semiconductor to metallic transition for all double perovskites, from heating up to 800 °C to cooling down to room temperature in a reducing atmosphere, related to the reduction of Mo 6+ to Mo 4+ . - Highlights: ► Primary Sr 2−x VMoO 6−δ phase only shown to form in excess of 1300 °C in reducing. ► Surface formation of secondary phase SrMoO 4−δ (Mo 6+ ) observed at RT in air. ► Surface vanadium deficiency induced by inward atomic diffusion. ► Semiconductor to metallic transition is related to the reduction of Mo 6+ to Mo 4+

  1. Electrochemical Reduction of CO2 on IrxRu(1–x)O2(110) Surfaces 

    DEFF Research Database (Denmark)

    Bhowmik, Arghya; Hansen, Heine Anton; Vegge, Tejs

    2017-01-01

    with oxygen-coordinated intermediates that can circumvent the limitations imposed by the scaling relations on metal catalysts. Here, we introduce an innovative concept of ligand effects in oxide catalysts. Both IrO2 and RuO2 binds OH* and other intermediates from the electrochemical reduction of CO2 (CO2RR......High overpotentials and low faradic efficiencies plague metal catalysts for direct conversion of CO2 to methanol and other liquid fuels. RuO2-based electrocatalysts have been observed to evolve methanol at low overpotentials, which has been attributed to an alternative reaction mechanism......) strongly, but the stable and miscible system IrxRu(1-x)O2 exhibits anomalous weaker binding energy in the presence of CO* spectators, because of Ru–Ir ligand effects. The weakened adsorbate binding leads to a very low CO2RR onset potential (methanol evolution at −0.2 V RHE). An Ir atom at the bridge site...

  2. Positron lifetime studies in undoped and Sr doped La2CuO4

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.; Hariharan, Y.; Vasumathi, D.

    1992-01-01

    The results of positron lifetime measurements as a function of temperature, in undoped and Sr doped La 2 CuO 4 are presented. A second component of lifetime with a value of 225 ps is seen to develop after 100degC, whose intensity grows sharply in the range of 100degC to 250degC. The mean lifetime increases from 170 ps to 207 ps as the temperature is increased from room temperature to 300degC. Using the results of the theoretical calculations of positron lifetimes at vacancies in La 2 CuO 4 , it is argued that the increase in lifetime with temperature is due to positron trapping at the thermally generated La vacancies. From a two state trapping model analysis, the formation energy is estimated to be 0.39±0.04 eV

  3. Bi4Sr3Ca3Cu4O16 galss and superconducting glass ceramics

    International Nuclear Information System (INIS)

    Zheng, H.; Mackenzie, J.D.

    1988-01-01

    Bi 4 Sr 3 Ca 3 Cu 4 O 16 glass has been successfully fabricated by the melting process. Glass transition temperature, crystallization temperature, and liquid temperature of the glass are 434, 478, and 833 0 C, respectively. After the glass is heat treated at 800 0 C, a glass ceramic is formed. A comparison of the x-ray-diffraction pattern of the superconducting Bi 4 Sr 3 Ca 3 Cu 4 O/sub 16+//sub x/ ceramic to the Bi 4 Sr 3 Ca 3 Cu 4 O 16 glass ceramic revealed preferred orientation in the glass ceramic crystals. The superconducting transition temperatures T/sub c//sub (onset)/ and T/sub c//sub (zero)/ of the glass ceramics are 100 and 45 K, respectively

  4. Perovskite oxides La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4 as an effective electrocatalyst for lithium—air batteries

    Directory of Open Access Journals (Sweden)

    Yajun Zhao

    2018-01-01

    Full Text Available Co-doped perovskite oxide La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4 composites are prepared by sol–gel method utilizing citric acid as chelating agent. These composites show good catalytic activities when tested as catalysts rechargeable lithium—air batteries. In particular, the La0.4Sr0.6Co0.4Mn0.6O3 shows a lower potential gap. When these samples are tested as catalysts for Li—air batteries at a current density of 100 mA g−1, the discharge capacities with different La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4 catalysts are 5819, 6420, and 7227 mA h g−1, respectively. In addition, under a capacity limitation of 1000 mA h g−1, the cell using La0.4Sr0.6Co0.4Mn0.6O3 as catalyst shows good cycling stability up to 46 cycles. The good electrochemical performance suggests that suitable doping of Co in Mn site of La0.4Sr0.6MnO3 could be a promising route to improve the catalytic activity.

  5. Anodic composite deposition of RuO_2/reduced graphene oxide/carbon nanotube for advanced supercapacitors

    International Nuclear Information System (INIS)

    Hu, Chi-Chang; Wang, Chia-Wei; Chang, Kuo-Hsin; Chen, Ming-Guan

    2015-01-01

    Anodic composite deposition is demonstrated to be a unique method for fabricating a ternary ruthenium dioxide/reduced graphene oxide/carbon nanotube (RuO_2 · xH_2O/rGO/CNT, denoted as RGC) nanocomposite onto Ti as an advanced electrode material for supercapacitors. The rGO/CNT composite in RGCs acts as a conductive backbone to facilitate the electron transport between current collector and RuO_2 · xH_2O nanoparticles (NPs), revealed by the high total specific capacitance (C_S_,_T = 808 F g"−"1) of RGC without annealing. The contact resistance among RuO_2 · xH_2O NPs is improved by low-temperature annealing at 150 °C (RGC-150), which renders slight sintering and enhances the specific capacitance of RuO_2 · xH_2O to achieve 1200 F g"−"1. The desirable nanocomposite microstructure of RGC-150 builds up the smooth pathways of both protons and electrons to access the active oxy-ruthenium species. This nanocomposite exhibits an extremely high C_S_,_T of 973 F g"−"1 at 25 mV s"−"1 (much higher than 435 F g"−"1 of an annealed RuO_2 · xH_2O deposit) and good capacitance retention (60.5% with scan rate varying from 5 to 500 mV s"−"1), revealing an advanced electrode material for high-performance supercapacitors. (paper)

  6. Selective CO Methanation on Ru/TiO2 Catalysts: Role and Influence of Metal-Support Interactions

    DEFF Research Database (Denmark)

    Abdel-Mageed, Ali M.; Widmann, D.; Olesen, Sine Ellemann

    2015-01-01

    Aiming at a detailed understanding of the role of metal-support interactions in the selective methanation of CO in CO2-rich reformate gases, we have investigated the catalytic performance of a set of Ru/TiO2 catalysts with comparable Ru loading, Ru particle size, and TiO2 phase composition but very...... different surface areas (ranging from 20 to 235 m2 g-1) in this reaction. The activity for CO methanation, under steady-state conditions, was found to strongly depend on the TiO2 support surface area, increasing first with increasing surface area up to a maximum activity for the Ru/TiO2 catalyst...... with a surface area of 121 m2 g-1 and then decreasing for an even higher surface area; however, the selectivity is mainly determined by the Ru particle size, which slightly decreases with increasing support surface area. This goes along with an increase in selectivity for CO methanation, in agreement...

  7. Decoupling of magnetism and electric transport in single-crystal (Sr1‑x A x )2IrO4 (A  =  Ca or Ba)

    Science.gov (United States)

    Zhao, H. D.; Terzic, J.; Zheng, H.; Ni, Y. F.; Zhang, Y.; Ye, Feng; Schlottmann, P.; Cao, G.

    2018-06-01

    We report a systematical structural, transport and magnetic study of Ca or Ba doped Sr2IrO4 single crystals. Isoelectronically substituting Ca2+ (up to 15%) or Ba2+ (up to 4%) ion for the Sr2+ ion provides no additional charge carriers but effectively changes the lattice parameters in Sr2IrO4. In particular, 15% Ca doping considerably reduces the c-axis and the unit cell by nearly 0.45% and 1.00%, respectively. These significant, anisotropic compressions in the lattice parameters conspicuously cause no change in the Néel temperature which remains at 240 K, but drastically reduces the electrical resistivity by up to five orders of magnitude or even precipitates a sharp insulator-to-metal transition at lower temperatures, i.e. the vanishing insulating state accompanies an unchanged Néel temperature in (Sr1‑x A x )2IrO4. This observation brings to light an intriguing difference between chemical pressure and applied pressure, the latter of which does suppress the long-range magnetic order in Sr2IrO4. This difference reveals the importance of the Ir1–O2–Ir1 bond angle and homogenous volume compression in determining the magnetic ground state. All results, along with a comparison drawn with results of Tb and La doped Sr2IrO4, underscore that the magnetic transition plays a nonessential role in the formation of the charge gap in the spin–orbit-tuned iridate.

  8. Synthesis of 4‧-substituted-2,2‧;6‧,2″-terpyridine Ru(II) complexes electrochemical, fluorescence quenching and antibacterial studies

    Science.gov (United States)

    Ezhilarasu, Tamilarasu; Sathiyaseelan, Anbazhagan; Kalaichelvan, Pudupalayam Thangavelu; Balasubramanian, Sengottuvelan

    2017-04-01

    Three new Ru(II) terpyridine complexes viz. [Ru(BBtpy)2](PF6)2 [Ru(L1)] (BBtpy = 4‧-(4-benzyloxybenzaldehyde)-2,2‧:6‧,2″-terpyridine), [Ru(BMBtpy)2](PF6)2 [Ru(L2)] (BMBtpy = 4‧-(4-benzyloxy-3-methoxybenzaldehyde)-2,2‧:6‧,2″-terpyridine) and [Ru(BEBtpy)2](PF6)2 [Ru(L3)] (BEBtpy = 4‧-(4-benzyloxy-3-ethoxybenzaldehyde)-2,2‧:6‧,2″-terpyridine) have been synthesized and characterized. The MALDI-TOF/MS fragmentation pattern of [Ru(BMBtpy)2](PF6)2 complex exhibits a molecular ion peak at m/z = 987.09 [M-2PF6]2+ fragment. These Ru(II) complexes are redox active, show both metal centered oxidation and ligand centered reduction processes. The peak potential and peak current Ipa and Ipc also undergo definite shift and increase with increase in the scan rate (20-120 mV/s). The fluorescence of Ru(II) complexes [Ru(L1)], [Ru(L2)] and [Ru(L3)] are effectively quenched by 1,4-benzoquinone and 1,4-naphthoquinone in acetonitrile. The antibacterial activity of ruthenium(II) complexes were screened against four human pathogens both gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus) and gram negative bacteria (Escherichia coli, Klebsiella pneumonia) by the well diffusion method. The antibacterial activity of Ru(II) complexes is comparable to that of standard antibiotics like tetracycline.

  9. Synthesis and crystal structure of new uranyl selenite(IV)-selenate(VI) [C5H14N][(UO2)3(SeO4)4(HSeO3)(H2O)](H2SeO3)(HSeO4)

    International Nuclear Information System (INIS)

    Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F.; Kalenberg, V.

    2006-01-01

    Crystals of new uranyl selenite(IV)-selenate(VI) [C 5 H 14 N][(UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)](H 2 SeO 3 )(HSeO 4 ) are obtained by the method of evaporation from aqueous solutions. Compound has triclinic lattice, space group P1-bar, a=11.7068(9), b=14.8165(12), c=16.9766(15), α=73.899(6), β=76.221(7), γ=89.361(6) Deg, V=2743.0(4) A 3 , Z=2. Laminated complexes (UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)] 3- are the basis of the structure. [HSe(VI)O 4 ] - , [H 2 Se(IV)O 3 ] complexes and protonated methylbutylamine cations are disposed between layers [ru

  10. Reactivity, structure and physical properties of SrCo{sub 2.5+{delta}} and La{sub 2}CoO{sub 4.0+{delta}}. In situ X-ray diffraction and neutrons study; Reactivite, structure et proprietes physiques de SrCoO{sub 2.5+{delta}} et La{sub 2}CoO{sub 4.0+{delta}}. Etude par diffraction des rayons X et des neutrons in situ

    Energy Technology Data Exchange (ETDEWEB)

    Le Toquin, R.

    2003-11-15

    This work was devoted to the study of the reactivity and more specifically the influence of the intercalated oxygen amount {delta} on the structure and physical properties of SrCoO{sub 2.5+{delta}} et La{sub 2}CoO{sub 4.0+{delta}} We controlled the oxidation level by means of reversible electrochemical red ox reaction at room temperature. Structural modifications, especially disorder, and electronic properties were studied for the first time on large orientated single crystal. In the SrCoO{sub 2.5+{delta}} system, after structural and electronic characterisation of the end phases, we studied the real structure of the brownmillerite SrCoO{sub 2.5} phase using single crystal. Moreover, we investigated structural and magnetic evolution upon red ox cycle using X-ray diffraction on 6 times twinned single crystal and in situ neutron powder diffraction. Two intermediate SrCoO{sub 2.75} and SrCoO{sub 2.82} phases have been observed. The reaction on single crystal has evidenced the evolution of domain structure. For the La{sub 2}CoO{sub 4+{delta}} system, we synthesised a large variety of single crystal with stoichiometry {delta} 0.0, 0.09, 0.12, 0.16, 0.20 and 0.25. Using single crystal X-ray and neutron diffraction, we showed a disorder-order transition of the apical and interstitial oxygen for the higher {delta} values. (author)

  11. Nanoscale decomposition of Nb-Ru-O

    Science.gov (United States)

    Music, Denis; Geyer, Richard W.; Chen, Yen-Ting

    2016-11-01

    A correlative theoretical and experimental methodology has been employed to explore the decomposition of amorphous Nb-Ru-O at elevated temperatures. Density functional theory based molecular dynamics simulations reveal that amorphous Nb-Ru-O is structurally modified within 10 ps at 800 K giving rise to an increase in the planar metal - oxygen and metal - metal population and hence formation of large clusters, which signifies atomic segregation. The driving force for this atomic segregation process is 0.5 eV/atom. This is validated by diffraction experiments and transmission electron microscopy of sputter-synthesized Nb-Ru-O thin films. Room temperature samples are amorphous, while at 800 K nanoscale rutile RuO2 grains, self-organized in an amorphous Nb-O matrix, are observed, which is consistent with our theoretical predictions. This amorphous/crystalline interplay may be of importance for next generation of thermoelectric devices.

  12. On the “alpha-phase” of Ca2−xSrxMnO4 and extending the chemistry of Sr7−yCayMn4O15 to y>1

    International Nuclear Information System (INIS)

    Craddock, Sarah; Senn, Mark S.

    2017-01-01

    There has been renewed interest in the Ruddlesden-Popper phase (n=2) of composition Ca n+1 Mn n O 3 n+1 in the light of recent research that has highlighted the nature of the improper ferroelectric ground state, which arises due to the couplings between specific combinations of MnO 6 octahedral rotations and tilts. A fruitful route to control these octahedral degrees of freedom, and hence such desired physical properties, is through chemical substitution on the A–site cation i.e. Ca 2−x Sr x MnO 4 for n =1, and in light of this, we have reinvestigated the chemistry of this solid solution. Here we focus on a common impurity phase observed during this synthesis which has been termed the “alpha-phase” in the literature. We show that this impurity phase is actually comprised mainly of a structure related to Sr 7 Mn 4 O 15 but is found here with significantly higher Ca substitution than previously believed possible. Sr 7 Mn 4 O 15 is an interesting structural type in its own right, but has been mainly overlooked to date, exhibiting interesting physics related to low dimensional magnetic ordering and dimer interactions, and we show here that the structural type is a likely candidate for exhibiting a multiferroic ground state. The prospect of being able to tune the lattice and the exchange interactions through further chemical substitution is likely to lead to a renewed interest in this material. - Graphical abstract: Extending the chemistry of Sr 7−y Ca y Mn 4 O 15 beyond y>1, revealing highly anisotropic cation ordering and tunable magnetic properties. - Highlights: • Chemistry of the unique structural type Sr 7 Mn 4 O 15 is extended to high Ca concentrations. • Cation occupancy model is determined, showing highly anisotropic solubility of Ca on the 7 unique Sr crystallographic sites. • Anomalies in the magnetic susceptibility data are discussed with reference to symmetry arguments pointing towards a possible novel multiferroic mechanism in this material.

  13. Positron lifetimes and distributions in the infinite-layer compound SrCuO2 and related materials

    International Nuclear Information System (INIS)

    Ishibashi, Shoji; Terada, Norio; Hirabayashi, Masayuki; Ihara, Hideo

    1994-01-01

    We have calculated distributions and lifetimes of positrons in the infinite-layer compound SrCuO 2 and those trapped at possible point defects therein. In the delocalized state, positrons show their density maxima at interstitial sites in the Sr planes and have a significant overlap also with Cu and O atoms. The corresponding positron lifetime is 149 ps. It has been revealed that the Sr vacancy strongly localizes positrons with the binding energy of 2.8 eV and the lifetime of 238 ps, while the O vacancy does not trap positrons. Calculations are also performed on related materials Sr 2 Cu 4 O 6 and Sr 4 Cu 6 O 10 , which are characterized by one-dimensional networks of edge-sharing CuO 4 squares. Positrons are predominantly distributed between these networks in these materials and their corresponding lifetimes are 170-171 ps. (orig.)

  14. Highly Anisotropic Magnon Dispersion in Ca_{2}RuO_{4}: Evidence for Strong Spin Orbit Coupling.

    Science.gov (United States)

    Kunkemöller, S; Khomskii, D; Steffens, P; Piovano, A; Nugroho, A A; Braden, M

    2015-12-11

    The magnon dispersion in Ca_{2}RuO_{4} has been determined by inelastic neutron scattering on single crytals containing 1% of Ti. The dispersion is well described by a conventional Heisenberg model suggesting a local moment model with nearest neighbor interaction of J=8  meV. Nearest and next-nearest neighbor interaction as well as interlayer coupling parameters are required to properly describe the entire dispersion. Spin-orbit coupling induces a very large anisotropy gap in the magnetic excitations in apparent contrast with a simple planar magnetic model. Orbital ordering breaking tetragonal symmetry, and strong spin-orbit coupling can thus be identified as important factors in this system.

  15. Ferroelectric and dielectric properties of Sr2-x(Na, K)xBi4Ti5O18 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Chen Qian; Xu Zhijun; Chu Ruiqing; Hao Jigong; Zhang Yanjie; Li Guorong; Yin Qingrui

    2010-01-01

    (Na, K)-doped Sr 2 Bi 4 Ti 5 O 18 (SBTi) bismuth layer structure ferroelectric ceramics were prepared by the solid-state reaction method. Pure bismuth-layered structural Sr 2-x (Na, K) x Bi 4 Ti 5 O 18 (x=0.1, 0.2, 0.3, and 0.4) ceramics with uniform grain size were obtained in this work. The effects of (Na, K)-doping on the dielectric, ferroelectric and piezoelectric properties of SBTi ceramics were investigated. Results showed that (Na, K)-doping caused the Curie temperature of SBTi ceramics to shift to higher temperature and enhanced the ferroelectric and piezoelectric properties. At x=0.2, the ceramics exhibited optimum properties with d 33 =20 pC/N, P r =10.3 μC/cm 2 , and T c =324 o C.

  16. Ni2Sr(PO42·2H2O

    Directory of Open Access Journals (Sweden)

    Lahcen El Ammari

    2010-12-01

    Full Text Available The title compound, dinickel(II strontium bis[orthophosphate(V] dihydrate, was obtained under hydrothermal conditions. The crystal structure consists of linear chains ∞1[NiO2/2(OH22/2O2/1] of edge-sharing NiO6 octahedra (overline{1} symmetry running parallel to [010]. Adjacent chains are linked to each other through PO4 tetrahedra (m symmetry and arranged in such a way to build layers parallel to (001. The three-dimensional framework is accomplished by stacking of adjacent layers that are held together by SrO8 polyhedra (2/m symmetry. Two types of O—H...O hydrogen bonds involving the water molecule are present, viz. one very strong hydrogen bond perpendicular to the layers and weak trifurcated hydrogen bonds parallel to the layers.

  17. Tuning the luminescence color and enhancement of afterglow properties of Sr(4−x−y)CaxBayAl14O25:Eu2+,Dy3+ phosphor by adjusting the composition

    International Nuclear Information System (INIS)

    Luitel, Hom Nath; Watari, Takanori; Chand, Rumi; Torikai, Toshio; Yada, Mitsunori; Mizukami, Hiroshi

    2013-01-01

    Graphical abstract: Excitation and fluorescence emission spectra of three extreme compositions of Ca, Sr and Ba in Sr 4 Al 14 O 25 phosphor (viz. 4CaO·7Al 2 O 3 , 4SrO·7Al 2 O 3 and 4BaO·7Al 2 O 3 ) doped with 4 at% Eu 2+ and 8 at% Dy 3+ (inset shows the digital micrograph of corresponding phosphors). -- Highlights: • Bright phosphor, Sr (4−x−y) Ca x Ba y Al 14 O 25 :Eu 2+ ,Dy 3+ , was synthesized by adjusting the composition. • The solid solubility of Ca and Ba in the Sr 4 Al 14 O 25 host was determined to be 20 and 10 mol%, respectively. • Substituting part of Sr by Ca, the emission color can be well tuned from blue to green. • A white afterglow was observed when 3.2 mol of Sr was substituted by Ca. • The afterglow luminescence was enhanced by 1.5 times by 0.2 mol Ca substitution. -- Abstract: Color point tuning is an important challenge for improving the practical applications of various displays, especially there are very limited white color single hosts that emits in the white spectrum. In this paper, the possibility of color tuning by substituting part of host lattice cation (Sr 2+ ions) by Ca 2+ or Ba 2+ ions in an efficient strontium aluminate phosphor, Sr 4 Al 14 O 25 :Eu 2+ ,Dy 3+ , is reported and found to be very promising for displays. A detail study by replacing part of Sr 2+ with Ca 2+ or Ba 2+ has been investigated. X-ray diffraction study showed that crystal structure of Sr 4 Al 14 O 25 is preserved up to 20 mol of Ca 2+ ion exchange while it is limited to 10 mol of Ba 2+ ions exchange. Substantial shift in the emission band and color were observed by substitution of Sr 2+ by Ca 2+ or Ba 2+ ions. A bluish-white emission and afterglow was observed at higher Ca 2+ ions substitution. Further, partial Ca 2+ substitutions (up to 0.8 mol) resulted in enhanced afterglow of Sr 4 Al 14 O 25 :Eu 2+ ,Dy 3+ phosphor. However, Ba 2+ substitution decreased the fluorescence as well afterglow of the Sr 4 Al 14 O 25 :Eu 2+ ,Dy 3+ phosphor

  18. Surface modification of RuO2 electrodes by laser irradiation and ion ...

    Indian Academy of Sciences (India)

    RuO2 thin layers were deposited on Ti supports by thermal decomposition of RuCl3 at 400°C. Some of the samples were subjected to laser irradiation between 0.5 and 1.5 J cm-2. Some others to Kr bombardment with doses between 1015 and 1016 cm-2. Modifications introduced by the surface treatments were monitored ...

  19. On the “alpha-phase” of Ca{sub 2−x}Sr{sub x}MnO{sub 4} and extending the chemistry of Sr{sub 7−y}Ca{sub y}Mn{sub 4}O{sub 15} to y>1

    Energy Technology Data Exchange (ETDEWEB)

    Craddock, Sarah; Senn, Mark S.

    2017-04-15

    There has been renewed interest in the Ruddlesden-Popper phase (n=2) of composition Ca{sub n+1}Mn{sub n}O{sub 3} {sub n+1} in the light of recent research that has highlighted the nature of the improper ferroelectric ground state, which arises due to the couplings between specific combinations of MnO{sub 6} octahedral rotations and tilts. A fruitful route to control these octahedral degrees of freedom, and hence such desired physical properties, is through chemical substitution on the A–site cation i.e. Ca{sub 2−x}Sr{sub x}MnO{sub 4} for n =1, and in light of this, we have reinvestigated the chemistry of this solid solution. Here we focus on a common impurity phase observed during this synthesis which has been termed the “alpha-phase” in the literature. We show that this impurity phase is actually comprised mainly of a structure related to Sr{sub 7}Mn{sub 4}O{sub 15} but is found here with significantly higher Ca substitution than previously believed possible. Sr{sub 7}Mn{sub 4}O{sub 15} is an interesting structural type in its own right, but has been mainly overlooked to date, exhibiting interesting physics related to low dimensional magnetic ordering and dimer interactions, and we show here that the structural type is a likely candidate for exhibiting a multiferroic ground state. The prospect of being able to tune the lattice and the exchange interactions through further chemical substitution is likely to lead to a renewed interest in this material. - Graphical abstract: Extending the chemistry of Sr{sub 7−y}Ca{sub y}Mn{sub 4}O{sub 15} beyond y>1, revealing highly anisotropic cation ordering and tunable magnetic properties. - Highlights: • Chemistry of the unique structural type Sr{sub 7}Mn{sub 4}O{sub 15} is extended to high Ca concentrations. • Cation occupancy model is determined, showing highly anisotropic solubility of Ca on the 7 unique Sr crystallographic sites. • Anomalies in the magnetic susceptibility data are discussed with reference to

  20. STM and x-ray diffraction temperature-dependent growth study of SrRuO{sub 3} PLD thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M.E.; Jia, Q.X.; Brown, G.W.

    1996-12-31

    SrRuO{sub 3} (SRO) has recently found a number of applications in different fields, e.g. as a buffer layer for the growth of high temperature superconductor (HTS) YBa{sub 2}Cu{sub 3}O{sub 7-x} films and as a bottom electrode for ferroelectric or high dielectric constant thin film capacitors and nonvolatile data storage. The growth of high crystallinity SRO films with good structural and electrical properties is the prerequisite for each of these applications. In this paper we describe the affect of one growth parameters temperature (T), on the crystalline quality, epitaxial substrate relationship and resulting electrical properties. SRO films were deposited on LaAlO{sub 3} single crystal substrates by pulsed laser deposition at substrate temperatures (T{sub s}) ranging from room temperature (RT) up to 800{degrees}C with a nominal film thickness of 150 nm range. The resulting films were characterized by x-ray diffraction, 4-point transport, and STM. The films` microstructures, as revealed by STM, evolved from polygranular at RT to a layered plate-like structure at higher deposition temperatures, T{sub s}, Increasing T{sub s} was marked first by increasing grain size, then a stronger orientational relationship between film and substrate, finally followed by the development of increased connectivity between grains to an extended island or condensed layered state. The transition from polygranular to layered structure occurred at T{sub s} > 650{degrees}C. Increased conductivity paralleled the changes in microstructure. The surfaces of all of the films were relatively smooth; the oriented films are suitable for use as conductive templates in multilayer structures.

  1. Adsorption of water on O(2x2)/Ru(0001): thermal stability and inhibition of dissociation by H2O-O bonding

    Energy Technology Data Exchange (ETDEWEB)

    Mugarza, Aitor; Shimizu, Tomoko; Cabrera-Sanfelix, Pepa; Sanchez-Portal, Daniel; Arnau, Andres; Salmeron, Miquel

    2008-08-01

    The effect of preadsorbed oxygen on the subsequent adsorption and reactions of water on Ru(0001) has been studied using low temperature scanning tunneling microscopy and DFT calculations. Experiments were carried out for O coverages close to 0.25 ML. It was found that no dissociation of water takes place up to the desorption temperature of {approx}180-230 K. DFT calculations show that intact water on O(2x2)/Ru(0001) is {approx} 0.49 eV more stable than the dissociation products, H and OH, at their preferred fcc and top adsorption sites.

  2. Coordination polymers of scandium sulfate. Crystal structures of (H2Bipy)[Sc(H2O)(SO4)2]2·2H2O and (H2Bipy)[HSO4]2

    International Nuclear Information System (INIS)

    Petrosyants, S.P.; Ilyukhin, A.B.

    2005-01-01

    Compounds with general formula Cat x [Sc(H 2 O) z (SO 4 ) y ]·nH 2 O (Cat=NH 4 , H 2 Bipy (Bipy - 4,4'-bipyridine), HEdp (Edp - ethylene dipyridine)) identified on element analysis data and IR spectra are synthesized. X-ray diffraction analysis of (H 2 Bipy)[Sc(H 2 O)(SO 4 ) 2 ] 2 ·2H 2 O shows that in structure of the compound chains of ScO 6 octahedron and SO 4 tetrahedrons are joined in bands by tridentate coordination of sulfate ions. Bands form skeleton in endless emptiness of which there are H 2 Bipy 2+ cations [ru

  3. Synthesis and characterisation of dual-phase Y-TZP and RuO2 nanopowders: dense electrode precursors.

    NARCIS (Netherlands)

    van Zyl, W.E.; Winnubst, Aloysius J.A.; Raming, T.P.; Schmuhl, R.; Verweij, H.

    2002-01-01

    The synthesis and characterisation of nanopowders in the dual-phase system tetragonal-Y2O3-doped ZrO2 (Y-TZP) and RuO2 are described. Five powders were prepared from a co-precipitation (CP) method with stoichiometric variation in the RuO2 content (5–46 mol%) and two powders were prepared from

  4. Estudio cinético de la descomposición térmica del carbonato de Estroncio en el sistema SrCO3-Al2O3-SrSO4

    Directory of Open Access Journals (Sweden)

    Torres T, J.

    2008-10-01

    Full Text Available The thermal decomposition of strontium carbonate in the SrCO3-Al2O3-SrSO4 system was studied by thermal analysis under isothermal experiments. Powder of reactive grade of SrCO3, Al2O3 y SrSO4 in molar ratio 3:3:1 were prepared. The powders were heat treated from 750 to 1000 °C for 4 h. Loss weight for each temperature was registered and the kinetics parameter were determine using the classical fit method. The effect of mechanical activation of SrCO3 was studied as well. The reaction mechanism for 750 to 900 °C temperature range corresponded to a geometric shrinkage in the grain boundary (R1.1 with an activation energy of 106. 21 Kjmol-1. The reaction mechanism for 900 to 1100 °C temperature range corresponded to a nucleation and growing (P1.1 with an activation energy of 44.87 Kjmol-1. The activation energy was reduced in 35% for the samples that contained SrCO3 mechanically activated.La cinética de descomposición térmica del carbonato de Estroncio (SrCO3 en el sistema SrCO3-Al2O3-SrSO4 se estudió por medio de análisis térmico gravimétrico (ATG, utilizando el método isotérmico. Se prepararon mezclas de polvos 3:3:1 molar de SrCO3, Al2O3 y SrSO4 grado reactivo, las cuales fueron homogenizadas y tratadas a temperaturas entre 750 hasta 1100°C, por periodo de 4 horas. Adicionalmente se estudio el efecto del tiempo de activación mecánica del SrCO3 sobre la cinética de descomposición. Se obtuvieron curvas representativas de la pérdida de peso de las muestras al incrementar la temperatura, a partir de ellas se realizó el estudio cinético. Para el rango de temperatura de 750 a 900°C, el mecanismo de reacción que rige el proceso de descomposición corresponde a una contracción geométrica mediante la frontera de grano (R1.1 con una energía de activación (Ea de 106.21KJmol-1. En el rango de temperatura de 950 a 1100°C, el mecanismo de reacción que rige la descomposición corresponde a un proceso de nucleación y crecimiento (P1

  5. Oxygen nonstoichiometry and thermo-chemical stability of La0.6Sr0.4CoO3−δ

    International Nuclear Information System (INIS)

    Kuhn, M.; Hashimoto, S.; Sato, K.; Yashiro, K.; Mizusaki, J.

    2013-01-01

    The oxygen nonstoichiometry of La 0.6 Sr 0.4 CoO 3−δ has been the topic of various reports in the literature, but has been exclusively measured at high oxygen partial pressures, pO 2 , and/or elevated temperatures. For applications of La 0.6 Sr 0.4 CoO 3−δ , such as solid oxide fuel cell cathodes or oxygen permeation membranes, knowledge of the oxygen nonstoichiometry and thermo-chemical stability over a wide range of pO 2 is crucial, as localized low pO 2 could trigger failure of the material and device. By employing coulometric titration combined with thermogravimetry, the oxygen nonstoichiometry of La 0.6 Sr 0.4 CoO 3−δ was measured at high and intermediate pO 2 until the material decomposed (at log(pO 2 /bar)≈−4.5 at 1073 K). For a gradually reduced sample, an offset in oxygen content suggests that La 0.6 Sr 0.4 CoO 3−δ forms a “super-reduced” solid solution before decomposing. When the sample underwent alternate reduction–oxidation, a hysteresis-like pO 2 dependence of the oxygen content in the decomposition pO 2 range was attributed to the reversible formation of ABO 3 and A 2 BO 4 phases. Reduction enthalpy and entropy were determined for the single-phase region and confirmed interpolated values from the literature. - Graphical abstract: Oxygen nonstoichiometry (shown as 3−δ) of La 0.6 Sr 0.4 CoO 3−δ as a function of pO 2 at 773–1173 K. The experimental data were obtained by thermogravimetric analysis (TG) and coulometric titration (measured either by a simple reduction (CT1) or a “two-step-forward one-step-back” reduction–oxidation (CT2) procedure). D1 and D2 denote the decomposition pO 2 . The solid lines are the fit to the thermogravimetry and CT1 data. The dashed lines represent the non-equilibrium region where the sample shows a super-reduced state. Highlights: ► Oxygen nonstoichiometry of La 0.6 Sr 0.4 CoO 3−δ at intermediate temperatures and p(O2). ► Experimental confirmation of previously interpolated

  6. Solubility of uranovanadates of the series A2+(VUO6)2 · nH2O (A2+ = Mg, Ca, Sr, Ba, Co, Ni, Cu, Pb) in water or aqueous solutions

    International Nuclear Information System (INIS)

    Chernorukov, N.G.; Sulejmanov, E.V.; Nipruk, O.V.; Lizunova, G.M.

    2001-01-01

    Solubility of uranovanadates of the series A 2+ (VUO 6 ) 2 · nH 2 O (A 2+ - Mg, Ca, Sr, Ba, Co, Ni, Cu, Pb) in water and aqueous solutions of inorganic acids at 25 deg C and different pH values was determined experimentally. The data obtained permitted calculation the Gibbs standard functions of formation and consideration of their state under conditions that were not studied experimentally, in the presence of carbon dioxide, in particular [ru

  7. SiO{sub 2} effect on spectral and colorimetric properties of europium doped SrO{sub 2}-MgO-xSiO{sub 2} (0.8 {<=} x {<=} 1.6) phosphor for white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B J; Jang, K W; Lee, H S; Jayasimhadri, M; Cho, E J [Department of Physics, Changwon National University, Changwon, 641-773 (Korea, Republic of); Yi, S S [Department of Photonics, Silla University, Pusan 617-736 (Korea, Republic of); Jeong, J H [Department of Physics, Pukyong National University, Pusan 608-737 (Korea, Republic of)], E-mail: kwjang@changwon.ac.kr

    2009-05-21

    Silicate phosphors with compositions 1.99 SrO{sub 2}-1.0 MgO-xSiO{sub 2}-0.01 Eu{sub 2}O{sub 3} (x = 0.8, 1.0, 1.2, 1.4 and 1.6) were prepared in a reducing atmosphere via a solid state reaction. The resultant phosphors were examined by using x-ray diffraction and confirmed to be a mixture of monoclinic Sr{sub 2}SiO{sub 4} and orthorhombic Mg{sub 2}(Si{sub 2}O{sub 4}). The scanning electron microscope images revealed that SiO{sub 2} content does not influence the morphology of the resultant phosphors. It was also observed that the excitation spectra are dependent on the monitored emission wavelength, and the emission spectra are dependent on the excitation wavelength and the SiO{sub 2} content. The energy transfer between Eu{sup 2+} ions occupying different Sr{sup 2+} sites was discussed. The colour coordinates for these phosphors are tunable based on both the excitation wavelength and the SiO{sub 2} content.

  8. Synthesis, crystal structure, and ionic conductivity of a new layered metal phosphate, Li2Sr2Al(PO4)3

    International Nuclear Information System (INIS)

    Kim, Sung-Chul; Kwak, Hyun-Jung; Yoo, Chung-Yul; Yun, Hoseop; Kim, Seung-Joo

    2016-01-01

    A new layered metal phosphate, Li 2 Sr 2 Al(PO 4 ) 3 , was synthesized in the form of either a single-crystal or polycrystalline powder using the molten hydroxide flux method or a solid-state reaction, respectively. Li 2 Sr 2 Al(PO 4 ) 3 crystallizes to the P2 1 /n (Z=4) monoclinic space group with lattice parameters a≈4.95 Å, b≈22.06 Å, c≈8.63 Å, and β≈91.5°. The structure is composed of stacked [LiSrAl(PO 4 ) 2 ] layers alternating regularly with [LiSrPO 4 ] layers. In the [LiSrAl(PO 4 ) 2 ] sublattice, the AlO 6 octahedra and PO 4 tetrahedra are tilted cooperatively to form an anionic, corrugated, two-dimensional [Al(PO 4 ) 2 ] 3− framework that can be regarded as a “distorted-glaserite” structure. The [LiSrPO 4 ] sublattice is that of a layered block containing a six-membered ring formed from alternating linkages of LiO 4 and PO 4 tetrahedra. The six-membered rings show a boat-type arrangement with the up(U) or down(D) pointing sequence, UUDUUD. The interspace between the two sublattices generates a two-dimensional pathway for Li + ion conduction. The impedance measurement indicated that Li 2 Sr 2 Al(PO 4 ) 3 had a moderate ion conductivity (σ≈1.30×10 −4 S cm −1 at 667 K), with an activation energy E a ≈1.02 eV. - Graphical abstract: Polyhedral view of Li 2 Sr 2 Al(PO 4 ) 3 . Li + ions are represented by green spheres, Sr atoms by white spheres, AlO 6 groups by octahedra, and PO 4 groups by tetrahedra. - Highlights: • New compound Li 2 Sr 2 Al(PO 4 ) 3 is reported. • The crystal structure is investigated by single-crystal XRD analysis. • The structure is formed by the alternate stacking of two different sublattices. • Correlation between the crystal structure and ionic conductivity is discussed.

  9. Structural, optical and magnetic characterization of Ru doped ZnO nanorods

    International Nuclear Information System (INIS)

    Kumar, Sanjeev; Kaur, Palvinder; Chen, C.L.; Thangavel, R.; Dong, C.L.; Ho, Y.K.; Lee, J.F.; Chan, T.S.; Chen, T.K.; Mok, B.H.; Rao, S.M.; Wu, M.K.

    2014-01-01

    Graphical abstract: Ruthenium (Ru = 0%, 1% and 2%) doped nano-crystalline zinc oxide (ZnO) nanorods were synthesized by using well-known sol–gel technique. X-ray diffraction (XRD) results show that Ru (0%, 1% and 2%) doped ZnO nanorods crystallized in the wurtzite structure having space group C 3v (P6 3 mc). Williamson and Hall plot reveal that in the nanoscale dimensions, incorporation of Ru induced the tensile strain in ZnO host matrix. Photoluminescence (PL) and Raman studies of Ru doped ZnO nanorods show the formation of singly ionized oxygen vacancies which may account for the observed room temperature ferromagnetism (RTFM) in 2% Ru doped ZnO. X-ray absorption spectroscopy (XAS) reveals that Ru replace the Zn atoms in the host lattice and maintain the crystal symmetry with slightly lattice distortion. Highlights: • Ru doped ZnO nanorods crystallized in the wurtzite structure having space group C 3v (P6 3 mc). • PL and Raman studies show the formation of singly ionized oxygen vacancies in 2% Ru doped ZnO. • XAS reveals that Ru replace the Zn atoms in the host lattice with slightly lattice distortion. • Doping of Ru in ZnO nanostructures gives rise to RTFM ordering. -- Abstract: Ruthenium (Ru = 0%, 1% and 2%) doped nano-crystalline zinc oxide (ZnO) nanorods were synthesized by using well-known sol–gel technique. X-ray diffraction (XRD) results show that Ru (0%, 1% and 2%) doped ZnO nanorods crystallized in the wurtzite structure having space group C 3v (P6 3 mc). Williamson and Hall plot reveal that in the nanoscale dimensions, incorporation of Ru induced the tensile strain in ZnO host matrix. Photoluminescence (PL) and Raman studies of Ru doped ZnO nanorods show the formation of singly ionized oxygen vacancies which may account for the observed room temperature ferromagnetism (RTFM) in 2% Ru doped ZnO. X-ray absorption spectroscopy (XAS) reveals that Ru replace the Zn atoms in the host lattice and maintain the crystal symmetry with slightly lattice

  10. SiO2 decoration dramatically enhanced the stability of PtRu electrocatalysts with undetectable deterioration in fuel cell performance

    Science.gov (United States)

    Yu, Xinxin; Xu, Zejun; Yang, Zehui; Xu, Sen; Zhang, Quan; Ling, Ying; Zhang, Yunfeng; Cai, Weiwei

    2018-06-01

    Prevention of Ru dissolution is essential for steady CO tolerance of anodic electrocatalysts in direct methanol fuel cells. Here, we demonstrate a facile way to stabilize Ru atoms by decorating commercial CB/PtRu with SiO2, which shows a six-fold higher stability and similar activity toward a methanol oxidation reaction leading to no discernible degradation in fuel cell performance compared to commercial CB/PtRu electrocatalysts. The higher stability and stable CO tolerance of SiO2-decorated electrocatalysts originate from the SiO2 coating, since Ru atoms are partially ionized during SiO2 decorating, resulting in difficulties in dissolution; while, in the case of commercial CB/PtRu, the dissolved Ru offers active sites for Pt coalescences and CO species resulting in the rapid decay of the electrochemical surface area and fuel cell performance. To the best of our knowledge, this is the first study about the stabilization of Ru atoms by SiO2. The highest stability is obtained for a PtRu electrocatalyst with negligible effect on the electrochemical properties.

  11. Atomic resolution observation of conversion-type anode RuO 2 during the first electrochemical lithiation

    KAUST Repository

    Mao, Minmin; Nie, Anmin; Liu, Jiabin; Wang, Hongtao; Mao, Scott X; Wang, Qingxiao; Li, Kun; Zhang, Xixiang

    2015-01-01

    . In situ transmission electron microscopy reveals a two-step process during the initial lithiation of the RuO2 nanowire anode at atomic resolution. The first step is characterized by the formation of the intermediate phase LixRuO2 due to the Li

  12. The key role of hydrogen by reaction behaviour on oxidic catalyst surface to RuO{sub 2}(110); Die Schluesselrolle des Wasserstoffs im Reaktionsverhalten einer oxidischen Katalysatoroberflaeche am Beispiel von RuO{sub 2}(110)

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, M.

    2006-05-15

    In this work it is demonstrated that there are different ways to deactivate the RuO{sub 2}(110)- surface. All experiments were performed on Ru single-crystals under UHV-conditions by applying the surface science techniques including Low Energy Electron Diffraction (LEED), Thermal Desorption Spectroscopy (TDS), Scanning Tunnelling Microscopy (STM) and X-ray Photoelectron Spectroscopy (XPS). An active RuO{sub 2}(110) film was produced by exposing a well-prepared single crystal Ru(0001) surface to high doses of oxygen at elevated temperatures of 600-650 K. An alternative way to deactivate the RuO{sub 2}(110) surface was studied by adsorbing hydrogen. On the bare (stoichiometric) surface hydrogen adsorbs at room temperature dissociatively on the O{sub br} atoms forming hydroxyl groups. The hydroxyl groups are not active in the oxidation of CO. On the other hand the adsorption and desorption process of the CO molecule is not affected by the hydroxyl groups. Therefore it is possible to passivate only one kind of active sites on the RuO{sub 2}(110) surface. The hydroxyl groups are stable up to a temperature around 550 K. Above this temperature water is formed by the recombination of two neighboring OH groups and desorbs into the gas phase, leaving O-vacancies on the surface. To remove the hydrogen from the O{sub br} atoms at lower temperatures one needs to dose oxygen at 300 K. Water molecules are immediately formed on the 1f-cus-Ru atoms and desorb at about 400 K into the gas phase. After this oxidation step the surface is restored. The reason for this behaviour is a hydrogen transfer reaction on the surface: The hydrogen is initially located on the O{sub br} sites whereas the subsequently dosed oxygen adsorbs atomically on the 1f-cus-Ru forming on-topoxygen (O{sub ot}). This O{sub ot} picks up the hydrogen from the O{sub br} and forms water molecules. The hydrogen transfer reaction plays a key role in the interaction of hydrogen with the RuO{sub 2}(110) surface. By

  13. Synthesis and Crystal Structure of a New Ruthenium Silicophosphate: RuP 3SiO 11

    Science.gov (United States)

    Fukuoka, Hiroshi; Imoto, Hideo; Saito, Taro

    1996-01-01

    A new ruthenium silicophosphate RuP3SiO11was obtained and the structure was determined by single-crystal X-ray diffraction. It crystallizes in the trigonal space groupR3cwitha= 8.253(3)Å,c= 39.317(4)Å,V= 2319(2)Å3,Z= 12,R= 0.029, andRW= 0.026. The structure is composed of RuO6, Si2O7, and P2O7units. The Si2O7unit shares the six oxygen atoms with six P2O7units, while the P2O7unit shares the six oxygen atoms with two Si2O7units and four RuO6octahedra. The anionic part forms an infinite three-dimensional network of silicophosphate. RuP3SiO11is isotypic with MoP3SiO11.

  14. Synthetic, spectroscopic and structural studies on 4-aminobenzoate complexes of divalent alkaline earth metals: x-ray crystal structures of [[Mg(H2O)6] (4-aba)2].2H2O and [Ca(H2O)2(4-aba)2] (4-aba=4-aminobenzoate)

    International Nuclear Information System (INIS)

    Murugavel, Ramaswamy; Karambelkar, Vivek V.; Anantharaman, Ganapathi

    2000-01-01

    Reactions between MCl 2 .nH 2 O (M = Mg, Ca, Sr, and Ba) and 4-aminobenzoic acid (4-abaH) result in the formation of complexes [(Mg(H 2 O) 6 )(4-aba) 2 ) .2H 2 O (I), [Ca(4-aba) 2 (H2 O ) 2 ] (2), [Sr(4-aba) 2 (H2 O ) 2 ] (3), and [Ba(4-aba) 2 Cl] (4), respectively. The new compounds 1 and 2, as well as the previously reported 3 and 4 form an extended intra- and intermolecular hydrogen bonded network in the solid-state. The compounds have been characterized by elemental analysis, pH measurements, thermogravimetric studies, and IR, NMR, and UV-Vis spectroscopy. The solid state structures of the molecules 1 and 2 have been determined by single crystal x-ray diffraction studies. In the case of magnesium complex 1, the dipositively charged Mg cation is surrounded by six water molecules and the two 4-aminobenzoate ligands show no direct bonding to the metal ion. The calcium ion in 2 is octa-coordinated with direct coordination of the 4-aminobenzoate ligands to the metal ion. The Ca-Ca separation in the polymeric chain of 2 is 3.9047(5) A. (author)

  15. Structural study of Sr{sub 2}CuO{sub 3+delta} by neutron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shimakawa, Y. [NEC Corp., Tsukuba (Japan). Fundamental Research Labs.; Jorgensen, J.D.; Mitchell, J.F.; Hunter, B.A. [Argonne National Lab., IL (United States); Shaked, S. [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev][Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics; Hinks, D.G.; Hitterman, R.L. [Argonne National Lab., IL (United States); Hiroi, Z.; Takano, M. [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1996-11-01

    Average crystal structures of superconducting Sr{sub 2}CuO{sub 3+{delta}} synthesized at ambient pressure from a hydroxometallate precursor were refined from neutron powder diffraction data. A simplified model was used to fit the modulated superstructures. Both compounds have an oxygen deficient La{sub 2}CuO{sub 4}-type tetragonal T structure with O vacancies located in the CuO{sub 2} planes, not in the Sr{sub 2}O{sub 2} layers. This raises important questions about the superconductivity in Sr{sub 2}CuO{sub 3+{delta}} reported to be a 70 K superconductor.

  16. Endosomes: guardians against [Ru(Phen)3]2+ photo-action in endothelial cells during in vivo pO2 detection?

    Science.gov (United States)

    Huntosova, Veronika; Stroffekova, Katarina; Wagnieres, Georges; Novotova, Marta; Nichtova, Zuzana; Miskovsky, Pavol

    2014-12-01

    Phototoxicity is a side-effect of in vitro and in vivo oxygen partial pressure (pO2) detection by luminescence lifetime measurement methods. Dichlorotris(1,10-phenanthroline)-ruthenium(ii) hydrate ([Ru(Phen)3]2+) is a water soluble pO2 probe associated with low phototoxicity, which we investigated in vivo in the chick's chorioallantoic membrane (CAM) after intravenous or topical administration and in vitro in normal human coronary artery endothelial cells (HCAEC). In vivo, the level of intravenously injected [Ru(Phen)3]2+ decreases within several minutes, whereas the maximum of its biodistribution is observed during the first 2 h after topical application. Both routes are followed by convergence to almost identical "intra/extra-vascular" levels of [Ru(Phen)3]2+. In vitro, we observed that [Ru(Phen)3]2+ enters cells via endocytosis and is then redistributed. None of the studied conditions induced modification of lysosomal or mitochondrial membranes without illumination. No nuclear accumulation was observed. Without illumination [Ru(Phen)3]2+ induces changes in endoplasmic reticulum (ER)-to-Golgi transport. The phototoxic effect of [Ru(Phen)3]2+ leads to more marked ultrastructural changes than administration of [Ru(Phen)3]2+ only (in the dark). These could lead to disruption of Ca2+ homeostasis accompanied by mitochondrial changes or to changes in secretory pathways. In conclusion, we have demonstrated that the intravenous injection of [Ru(Phen)3]2+ into the CAM model mostly leads to extracellular localization of [Ru(Phen)3]2+, while its topical application induces intracellular localization. We have shown in vivo that [Ru(Phen)3]2+ induces minimal photo-damage after illumination with light doses larger by two orders of magnitude than those used for pO2 measurements. This low phototoxicity is due to the fact that [Ru(Phen)3]2+ enters endothelial cells via endocytosis and is then redistributed towards peroxisomes and other endosomal and secretory vesicles before it

  17. Ir-Ru/Al2O3 catalysts used in satellite propulsion

    Directory of Open Access Journals (Sweden)

    T.G. Soares Neto

    2003-09-01

    Full Text Available Ir/Al2O3, Ir-Ru/Al2O3 and Ru/Al2O3, catalysts with total metal contents of 30% were prepared using the methods of incipient wetness and incipient coimpregnation wetness and were tested in a 2N microthruster. Their performances were then compared with that of the Shell 405 commercial catalyst (30% Ir/Al2O3. Tests were performed in continuous and pulsed regimes, where there are steep temperature and pressure gradients, from ambient values up to 650 ºC and 14 bar. Performance stability, thrust produced, temperature and stagnation pressure in the chamber and losses of mass were analyzed and compared to the corresponding parameters in Shell 405 tests. It was observed that the performance of all the above-mentioned catalysts was comparable to that of the commercial one, except for in loss of mass, where the values was higher, which was attributed to the lower mechanical resistance of the support.

  18. Microstructure development in RuO2-glass thick-film resistors and its effect on the electrical resistivity

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Iizuka, K.

    1990-01-01

    Microstructure development in RuO 2 -glass thick-film resistors has been studied by optical microscopy with special emphasis on the effect of glass particle size and mixing and firing conditions. The microstructure development has been characterized by the coalescence of glass grains, infiltration of glass into RuO 2 particle aggregates, and agglomeration of RuO 2 particles. The resistivity-firing temperature relationship has been correlated with the microstructure development

  19. Density functional theory study of the mechanism of Li diffusion in rutile RuO2

    International Nuclear Information System (INIS)

    Jung, Jongboo; Cho, Maenghyo; Zhou, Min

    2014-01-01

    First-principle calculations are carried out to study the diffusion of Li ions in rutile structure RuO 2 , a material for positive electrodes in rechargeable Li ion batteries. The calculations focus on migration pathways and energy barriers for diffusion in Li-poor and Li-rich phases using the Nudged Elastic Band Method. Diffusion coefficients estimated based on calculated energy barriers are in good agreement with experimental values reported in the literature. The results confirm the anisotropic nature of diffusion of Li ions in one-dimensional c channels along the [001] crystalline direction of rutile RuO 2 and show that Li diffusion in the Li-poor phase is faster than in the Li-rich phase. The findings of fast Li diffusion and feasible Li insertion at low temperatures in the host rutile RuO 2 suggest this material is a good ionic conductor for Li transport. The finding also suggests possible means for enhancing the performance of RuO 2 -based electrode materials

  20. Microscopic evidence for magnetic ordering in NdCu3Ru4O12 : 63,65Cu nuclear quadrupole resonance study

    Science.gov (United States)

    Yogi, M.; Niki, H.; Hedo, M.; Komesu, S.; Nakama, T.

    2018-05-01

    We have conducted 63,65Cu nuclear quadrupole resonance (NQR) measurements on A-site ordered perovskite compounds LaCu3Ru4O12 and NdCu3Ru4O12 to investigate their ground state and spin fluctuations. While there is only one Cu site in the crystal structure, multiple NQR resonance lines were observed. This is presumed to be due to the presence of slight distortion and lattice defects in the samples. The nuclear spin-lattice relaxation rate divided by temperature, 1 /T1 T , for LaCu3Ru4O12 showed almost constant value indicating the Fermi-liquid state. A remarkable increase in 1 /T1 T due to spin fluctuations was observed in NdCu3Ru4O12 . Furthermore, an evident magnetic phase transition at TM = 0.6 K was revealed from the distinct peak of 1 /T1 T and the broadening of the NQR spectrum.

  1. Determination of standard molar enthalpies of formation of SrMoO4 micro/nano structures

    International Nuclear Information System (INIS)

    Guo, Yunxiao; Fan, Gaochao; Huang, Zaiyin; Sun, Jilong; Wang, Lude; Wang, Tenghui; Chen, Jie

    2012-01-01

    Graphical abstract: Schematic illustration of thermochemical cycle between the nano and bulk reaction systems. Highlights: ► A thermochemical cycle was designed. ► Relationship of standard molar enthalpies of formation between micro/nano and bulk SrMoO 4 was gained. ► Microcalorimetry was used as a supplementary technology. ► Standard molar enthalpies of formation of the synthesized micro/nano SrMoO 4 were obtained. ► This novel approach can be used to other micro/nano materials. - Abstract: SrMoO 4 micro/nano structures were prepared by a simple reverse microemulsion method and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscope (SEM). In order to associate standard molar enthalpies of formation of nano SrMoO 4 with bulk SrMoO 4 , the relationship of them was obtained through designing a thermochemical cycle according to thermodynamic potential function method. Combined with microcalorimetry, the standard molar enthalpies of formation of the synthesized micro/nano SrMoO 4 at 298.15 K were gained in this paper. And the variation of standard molar enthalpies of formation of micro/nano SrMoO 4 with different morphologies and sizes was discussed.

  2. Synthesis and characterization of La1+xSr2-xCoMnO7-δ (x=0,0.2; δ=0,1)

    International Nuclear Information System (INIS)

    El Shinawi, H.; Bertha, A.; Hadermann, J.; Herranz, T.; Santos, B.; Marco, J.F.; Berry, F.J.; Greaves, C.

    2010-01-01

    The n=2 Ruddlesden-Popper phases LaSr 2 CoMnO 7 and La 1.2 Sr 1.8 CoMnO 7 have been synthesized by a sol-gel method. The O6-type phases LaSr 2 CoMnO 6 and La 1.2 Sr 1.8 CoMnO 6 were produced by reduction of the O7 phases under a hydrogen atmosphere. The materials crystallize in the tetragonal I4/mmm space group with no evidence of long-range cation order in the neutron and electron diffraction data. Oxygen vacancies in the reduced materials are located primarily at the common apex of the double perovskite layers giving rise to square pyramidal coordination around cobalt and manganese ions. The oxidation states Co 3+ /Mn 4+ and Co 2+ /Mn 3+ predominate in the as-prepared and reduced materials, respectively. The materials are spin glasses at low temperature and the dominant magnetic interactions change from ferro- to antiferromagnetic following reduction. - Graphical abstract: The n=2 Ruddlesden-Popper phases LaSr 2 CoMnO 7 , La 1.2 Sr 1.8 CoMnO 7 , LaSr 2 CoMnO 6 and La 1.2 Sr 1.8 CoMnO 6 are synthesized and characterized.

  3. Synthesis of a new compound - Sr2CuO2CO3

    International Nuclear Information System (INIS)

    Fomichev, D.V.; Khardanov, A.L.; Antipov, E.V.; Kovba, L.M.

    1990-01-01

    A new compound of Sr 2 CuO 2 CO 3 composition, being an intermediate product of solid phase synthesis in air in SrCo 3 -CuO system at T 2 CuO 2 CO 3 have low resistance at room temperature and semiconductor type conductivity

  4. Liquidus Temperature of SrO-Al2O3-SiO2 Glass-Forming Compositions

    DEFF Research Database (Denmark)

    Abel, Brett M.; Morgan, James M.; Mauro, John C.

    2013-01-01

    . In the composition range of interest for industrial glasses, Tliq tends to decrease with increasing strontium-to-alumina ratio. We find that cristobalite, mullite, and slawsonite are the dominant devitrification phases for the compositions with high SiO2, SiO2+Al2O3, and SrO contents, respectively. By comparison...... with the phase diagrams for CaO-Al2O3-SiO2 and MgO-Al2O3-SiO2 systems, we have found that for the highest [RO]/[Al2O3] ratios, Tliq exhibits a minimum value for R = Ca. Based on the phase diagram established here, the composition of glass materials, for example, for liquid crystal display substrates, belonging...... to the SrO-Al2O3-SiO2 family may be designed with a more exact control of the glass-forming ability by avoiding the regions of high liquidus temperature....

  5. Synthesis, crystal structure, and ionic conductivity of novel Ruddlesden-Popper related phases, Li4Sr3Nb5.77Fe0.23O19.77 and Li4Sr3Nb6O20

    International Nuclear Information System (INIS)

    Bhuvanesh, N.S.P.; Crosnier-Lopez, M.P.; Bohnke, O.; Emery, J.; Fourquet, J.L.

    1999-01-01

    The authors have synthesized two new lithium-containing oxides which are related to Ruddlesden-Popper phases, Li 4 Sr 3 Nb 5.77 Fe 0.23 O 19.77 and Li 4 Sr 3 Nb 6 O 20 , with partial occupancy of the 12-coordinated sites by Sr, for the first time by direct solid-state reaction. While the single crystal and powder X-ray diffraction data indicate that these oxides crystallize in tetragonal cells (space group I4/mmm; a = 3.9585(2) angstrom, c = 25.915(3) angstrom and a = 3.953(2) angstrom, c = 26.041(5) angstrom for the respective oxides), the electron diffraction of some of the crystallites shows supercell reflections with a ∼ √2a p , c ∼ 25.9 angstrom, probably indicating a twisting of the NbO 6 octahedra in the ab-plane. Although, these oxides show no significant lithium ionic conduction at room temperature, they show distinct conductivity values at elevated temperatures

  6. Oxygen vibrations in the series Bi2Sr2Ca{_{n-1}}Cu{n}O{_{4+2 n+y}}

    Science.gov (United States)

    Faulques, E.; Dupouy, P.; Lefrant, S.

    1991-06-01

    We present a discussion of the oxygen vibrations in the Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} high T_c superconductors with the aim of interpreting Raman spectra in the case of the non-symmorphic Amaa structure. Group theory shows that the oxygen atoms belonging to the central CuO{2} plane generate a Raman activity for the n=1,3 phases. Consequently, we propose a novel assignment for the lines of weak intensity at 297, 316 and 333 cm^{-1}. It is shown that the two components of the 460 cm^{-1} band may be consistent with the Amma structure. Spectra recorded in crossed polarization exhibit weak lines which could be assigned to B {1g} modes expected for the three phases. Nous présentons une discussion sur les vibrations des atomes d'oxygène dans la série des supraconducteurs Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} dans le but d'interpréter les spectres Raman. L'analyse des modes normaux de vibration de la structure Amaa pour les phases n=1 ou 3 montre que les atomes d'oxygène du plan CuO{2} contenant les centres d'inversion donnent lieu à une activité Raman. En conséquence, nous proposons une nouvelle attribution pour les raies de faible intensité à 297, 316 et 333 cm^{-1}. Nous montrons que le dédoublement de la bande à 460 cm^{-1} pourrait être dû à la structure Amaa. Les spectres enregistrés en polarization croisée montrent de faibles bandes qui peuvent être attribuées aux modes B {1g} attendus pour les trois phases.

  7. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.

    Science.gov (United States)

    Muratsugu, Satoshi; Kityakarn, Sutasinee; Wang, Fei; Ishiguro, Nozomu; Kamachi, Takashi; Yoshizawa, Kazunari; Sekizawa, Oki; Uruga, Tomoya; Tada, Mizuki

    2015-10-14

    Decarbonylation-promoted Ru nanoparticle formation from Ru3(CO)12 on a basic K-doped Al2O3 surface was investigated by in situ FT-IR and in situ XAFS. Supported Ru3(CO)12 clusters on K-doped Al2O3 were converted stepwise to Ru nanoparticles, which catalyzed the selective hydrogenation of nitriles to the corresponding primary amines via initial decarbonylation, the nucleation of the Ru cluster core, and the growth of metallic Ru nanoparticles on the surface. As a result, small Ru nanoparticles, with an average diameter of less than 2 nm, were formed on the support and acted as efficient catalysts for nitrile hydrogenation at 343 K under hydrogen at atmospheric pressure. The structure and catalytic performance of Ru catalysts depended strongly on the type of oxide support, and the K-doped Al2O3 support acted as a good oxide for the selective nitrile hydrogenation without basic additives like ammonia. The activation of nitriles on the modelled Ru catalyst was also investigated by DFT calculations, and the adsorption structure of a nitrene-like intermediate, which was favourable for high primary amine selectivity, was the most stable structure on Ru compared with other intermediate structures.

  8. Structure and Dielectric Properties of (Sr0.2Ca0.488Nd0.208) TiO3-Li3NbO4 Ceramic Composites

    Science.gov (United States)

    Xia, C. C.; Chen, G. H.

    2017-12-01

    The new ceramic composites of (1-x) Li3NbO4-x (Sr0.2Ca0.488Nd0.208)TiO3 were prepared by the conventional solid state reaction method. The sintering behavior, phase composition, microstructure and microwave dielectric properties of the ceramics were investigated specially. The SEM and XRD results show that (1-x) Li3NbO4-x (Sr0.2Ca0.488Nd0.208) TiO3 (0.35≤x≤0.5) composites were composed of two phase, i.e. perovskite and Li3NbO4. With the increase of x, the ɛr increases from 27.1 to 38.7, Q×f decreases from 55000 GHz to 16770 GHz, and the τ f increases from -49 ppm/°C to 226.7 ppm/°C. The optimized dielectric properties with ɛr∼31.4, Q×f~16770GHz and τf~-8.1ppm/°C could be obtained as x=0.4 sintered at 1100°C for 4h. The as-prepared ceramic is expected to be used in resonators, filters, and other microwave devices.

  9. Atomic resolution observation of conversion-type anode RuO 2 during the first electrochemical lithiation

    KAUST Repository

    Mao, Minmin

    2015-03-05

    Transition metal oxides have attracted great interest as alternative anode materials for rechargeable lithium-ion batteries. Among them, ruthenium dioxide is considered to be a prototype material that reacts with the Li ions in the conversion type. In situ transmission electron microscopy reveals a two-step process during the initial lithiation of the RuO2 nanowire anode at atomic resolution. The first step is characterized by the formation of the intermediate phase LixRuO2 due to the Li-ion intercalation. The following step is manifested by the solid-state amorphization reaction driven by advancing the reaction front. The crystalline/amorphous interface is consisted of {011} atomic terraces, revealing the orientation-dependent mobility. In the crystalline matrix, lattice disturbance and dislocation are identified to be two major stress-induced distortions. The latter can be effective diffusion channels, facilitating transportation of the Li ions inside the bulk RuO2 crystal and further resulting in non-uniform Li-ion distribution. It is expected that the local enrichment of the Li ions may account for the homogeneous nucleation of dislocations in the bulk RuO2 crystal and the special island-like structures. These results elucidate the structural evolution and the phase transformation during electrochemical cycling, which sheds light on engineering RuO2 anode materials.

  10. Lattice mismatch and energy transfer of Eu- and Dy-codoped MO–Al2O3–SrO (M=Mg, Ca, Ba) ternary compounds affecting luminescence behavior

    International Nuclear Information System (INIS)

    Liang, Chen-Jui; Huang, Kuan-Yu

    2017-01-01

    A systematic investigation of energy transfers and luminescence behaviors for M x Sr 0.94−x Al 2 O 4 :Eu 0.02 , Dy 0.04 (M=Mg, Ca, Ba; x=0, 0.235, 0.47, 0.705, 0.94) ternary compounds was accomplished. The results demonstrated that six phenomena must be fitted into the energy-transfer mechanisms of the ternary compounds: (1) the optical band-gap energy of Mg 0.94 Al 2 O 4 :Eu 0.02 Dy 0.04 is extremely low and does not allow photoemission; (2) Ca 2+ and Ba 2+ ions are the main hosts when x≥0.47 in Ca x Sr 1−x Al 2 O 4 :Eu 0.02 Dy 0.04 and Ba x Sr 1−x Al 2 O 4 :Eu 0.02 Dy 0.04 , respectively; (3) Eu 3+ ions are the main activator ions in Ca x Sr 1−x Al 2 O 4 :Eu 0.02 Dy 0.04 with x=0.47 and in Ba x Sr 1−x Al 2 O 4 :Eu 0.02 Dy 0.04 with x=0.353−0.705; (4) Sr 2+ and Eu 2+ ions are the main host and activator ions, respectively, when x<0.353 in each ternary compound; (5) energy transfers from the MO phases to the SrO phase because the conduction band energy of SrO is the lowest; and (6) mutual substitution between alkaline-earth ions does not alter the resultant structures’ crystal field and nephelauxetic effects, as determined by measuring their luminescence. Two energy transfer paths were discovered to be possible in CaO–Al 2 O 3 –SrO and BaO–Al 2 O 3 –SrO ternary compounds, and the boundaries determining which path was chosen were the atomic ratios Ca:Sr and Ba:Sr, both approximately 1.6:1 (x=0.353). Because second path increased the energy transferred from the MO band gap to the SrO band gap, the corresponding structure's spectrum emission intensity was approximately 4.3 times higher than that of the SrO−Al 2 O 3 binary compound, and their photoluminescence was thus substantially higher.

  11. Crystallization behavior of ZrO{sub 2}−3Y{sub 2}O{sub 3}−xSrO precursor powders synthesized by a coprecipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Hsueh-Liang [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta- Hsueh Road, Tainan 70101, Taiwan (China); Hwang, Weng-Sing [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta- Hsueh Road, Tainan 70101, Taiwan (China); Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 1 Ta- Hsueh Road, Tainan 70101, Taiwan (China); Du, Je-Kang [Department of Dentistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Department of Dentistry, Kaohsiung Medical University, Chung Ho Memorial Hospital, 100 Tzyou 1st Road, Kaohsiung 80708, Taiwan (China); Chen, Ker-Kong, E-mail: enamel@kmu.edu.tw [Department of Dentistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Department of Dentistry, Kaohsiung Medical University, Chung Ho Memorial Hospital, 100 Tzyou 1st Road, Kaohsiung 80708, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China)

    2016-09-05

    Crystallization behaviors of ZrO{sub 2}−3Y{sub 2}O{sub 3}−xSrO precursor powders were studied with zirconium nitrate (Zr(NO{sub 3}){sub 4}·xH{sub 2}O), yttrium nitrate (Y(NO{sub 3}){sub 3}·6H{sub 2}O) and strontium nitrate (Sr(NO{sub 3}){sub 2}) constituting the initial materials. Differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), nano beam electron diffraction (NBED) and high-resolution TEM (HRTEM) were utilized to characterize the crystallization behavior of ZrO{sub 2}−3Y{sub 2}O{sub 3}−xSrO precursor powders. The activation energies of tetragonal ZrO{sub 2} (t-ZrO{sub 2}) crystallization were 389.1, 327.6, and 315.1 kJ/mol with SrO content for 1, 2, and 3 mol%, respectively, obtained with a non-isothermal method. The growth morphology parameter and growth mechanism index were close to 2.0 and 1.0, respectively, showing that t-ZrO{sub 2} had a plate-like morphology. - Highlights: • The single phase of tetragonal ZrO{sub 2} formed when calcined at 923 K for 2 h. • ZrO{sub 2}−3Y{sub 2}O{sub 3}−2SrO precursor powders crystallization is at 765.6 K. • The activation energy of t-ZrO{sub 2} crystallization was 389.1 kJ/mol with 1 mol% SrO. • The growth morphology and index of crystallization were close to 2.0 and 1.0.

  12. Spectroscopy of peaks at microwave range for nanostructure SrFe{sub 12}O{sub 19} and NiFe{sub 2}O{sub 4} ferrite particles

    Energy Technology Data Exchange (ETDEWEB)

    Ariaee, Sina, E-mail: sina.ariaee@tabrizu.ac.ir; Mehdipour, Mostafa, E-mail: Mostafa_mehdipour67@yahoo.com; Moradnia, Mina, E-mail: mina.moradnia86@gmail.com

    2017-05-01

    In this paper, (SrFe{sub 12}O{sub 19} and NiFe{sub 2}O{sub 4}) nanostructure ferrite particles were synthesized via the co-precipitation of chloride salts utilizing the sodium hydroxide solution. The resulting precursors were heat-treated at 1100 °C for 4 h. After cooling in the furnace, the ferrite powders were pressed at 0.1 MPa and then sintered at 1200 °C for 4 h. The spectroscopy and characterization of peaks at the microwave range (X-band) for the nanostructure ferrite particles were investigated by the ferromagnetic resonance/transmit-line theories and Reflection Loss (RL) plots. The extracted data from these theoretical and experimental results showed that the natural ferromagnetic resonance can be lead to the narrow peaks and the width of the peaks can be related to the periodic effects. Two kinds of peaks were seen for NiFe{sub 2}O{sub 4} at X-band (8–12 GHz); the narrow peak at (9.8 GHz) was remaining unchanged and consistent while the wide one was shifted from 11 GHz to 8.5 GHz by decreasing the thickness of the samples. These phenomena were also happened for SrFe{sub 12}O{sub 19} samples. The natural resonance was not happened due to the hard magnetic properties of these nano structure particles. - Highlights: • SrFe{sub 12}O{sub 19} and NiFe{sub 2}O{sub 4} nanostructure ferrite particles were synthesized via the co-precipitation of chloride salts. • Two kinds of peaks were seen for NiFe{sub 2}O{sub 4} at X-band (8–12 GHz); these phenomena were also happened for SrFe{sub 12}O{sub 19} samples. • The narrow peaks were remained unchanged and consistent while the wide ones were shifted by decreasing the thickness of the samples. • Characterization procedure was conducted utilizing the ferromagnetic resonance/transmit-line theories and Reflection Loss (RL) plots. • It was concluded that the natural ferromagnetic resonance can be lead to the narrow peaks while the wide ones can be related to the periodic effects.

  13. Study of SrBi4Ti4O15 (SBTi) dielectric properties of doped PbO

    International Nuclear Information System (INIS)

    Rodrigues Junior, C.A.; Silva Filho, J.M.; Freitas, D.B.; Oliveira, R.G.M.; Sombra, B.; Sales, J.C.

    2012-01-01

    The ceramic SrBi 4 Ti 4 O 15 (SBTI), cation-deficient perovskite A 5 B 4 O 15 , was prepared by the method of solid state reaction and then doped with PbO (in the range 2-10% by weight). The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance spectroscopy at room temperature. The X-ray analysis was performed by the Rietveld refinement. The micrographs of the samples show globular-shaped grains (doped PbO). The dielectric properties: dielectric constant (Κ' or έ) and dielectric loss tangent (tan δ), were measured at room temperature in the frequency range 100 Hz - 1 MHz dielectric properties of these 1 MHz sample doped with 10 % PbO showed the dielectric constant Κ'= 168.34 and dielectric loss tangent tanδ, = 7,1.10 -2 . These results show a good possibility of miniaturization of electronic devices such as capacitors. (author)

  14. An unprecedented up-field shift in the 13C NMR spectrum of the carboxyl carbons of the lantern-type dinuclear complex TBA[Ru2(O2CCH3)4Cl2] (TBA+ = tetra(n-butyl)ammonium cation).

    Science.gov (United States)

    Hiraoka, Yuya; Ikeue, Takahisa; Sakiyama, Hiroshi; Guégan, Frédéric; Luneau, Dominique; Gillon, Béatrice; Hiromitsu, Ichiro; Yoshioka, Daisuke; Mikuriya, Masahiro; Kataoka, Yusuke; Handa, Makoto

    2015-08-14

    A large up-field shift (-763 ppm) has been observed for the carboxyl carbons of the dichlorido complex TBA[Ru(2)(O(2)CCH(3))(4)Cl(2)] (TBA(+) = tetra(n-butyl)ammonium cation) in the (13)C NMR spectrum (CD(2)Cl(2) at 25 °C). The DFT calculations showed spin delocalization from the paramagnetic Ru(2)(5+) core to the ligands, in agreement with the large up-field shift.

  15. Physicochemical compatibility of SrCeO3 with potential SOFC cathodes

    International Nuclear Information System (INIS)

    Tolchard, J.; Grande, T.

    2007-01-01

    The chemical and physical compatibility of SrCeO 3 is investigated with respect to LaMO 3 (M=Mn, Fe, Co) and La 2-x Sr x NiO 4 (x=0, 0.8), via the reaction of fine-grained powder compacts and solid-state diffusion couples. Compositions were chosen so as to give predictive insight into possible candidate materials for all-oxide electrochemical devices. Results show the primary reaction in these systems to be the dissolution of SrO from SrCeO 3 into the LaMO 3 /La 2-x Sr x NiO 4 , and corresponding formation of La-doped CeO 2 . Reaction kinetics are observed to be relatively fast, with element profiles suggesting the diffusion of Sr 2+ in ceria to be surprisingly rapid. It is demonstrated that perovskite starting materials represent poor candidates for use with SrCeO 3 , reacting completely to form Ruddlesden-Popper/K 2 NiF 4 type oxides. Reaction with La 2 NiO 4 is less pronounced, and formation of secondary phases suppressed for the composition La 1.2 Sr 0.8 NiO 4 . It is thus concluded that Ruddlesden-Popper type oxides represent good candidate materials for use with a SrCeO 3 -based electrolytes when doped with appropriate levels of Sr. - Graphical abstract: Assessment of the SrCeO 3 proton conductor shows this material to have poor chemical compatibility with LaMO 3 perovskite systems, but predicts coexistence with Ruddlesden-Popper type oxides

  16. Theory of Josephson effect in Sr2RuO4/diffusive normal metal/Sr2RuO4 junctions

    NARCIS (Netherlands)

    Sawa, Y.; Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We derive a generalized Nazarov’s boundary condition for diffusive normal metal (DN)/chiral p-wave superconductor (CP) interface including the macroscopic phase of the superconductor. The Josephson effect is studied in CP/DN/CP junctions solving the Usadel equations under the above boundary

  17. Low temperature synthesis of non-crystaline solids of the system SrO-SiO2

    International Nuclear Information System (INIS)

    Yamane, M.; Kojima, T.

    1981-01-01

    Non-crystalline solids within the liquid-liquid immiscibility region in the system SrO-SiO 2 have been prepared from a gel obtained by the hydrolysis of silicon tetramethoxide with an aqueous solution of strontium nitrate. The gel which was porous and translucent at room temperature increased in transparency with heating due to the collapse of micropores until it became completely clear. The gel became opaque again due to the precipitation of α-quartz at higher temperatures. The critical temperatures below which clear solids were obtained fell on a line connecting the glass transition temperatures of vitreous silica and those of SrO-SiO 2 glass prepared by melting. The density and refractive index of the pore-free, clear glassy solid, changed continuously with the SrO content along lines connecting those of vitreous silica and SrO-SiO 2 glasses of high SrO content prepared by melting. The maximum amount of Sr 2+ which could be introduced using an aqueous solution as the starting material corresponded to a composition of 10 SrO x 90 SiO 2 by weight. (orig.)

  18. Mechanosynthesis and mechanical activation processes to the preparation of the Sr2[Srn-1TinO3n+1] Ruddlesden-Popper family

    International Nuclear Information System (INIS)

    Hungria, Teresa; Hungria, A.-B.; Castro, Alicia

    2004-01-01

    A novel mechanochemical activation route has been applied in order to obtain the n=1-4 and ∞ members of the Sr 2 [Sr n-1 Ti n O 3n+1 ] Ruddlesden-Popper series. The evolution of the (n+1)SrO:nTiO 2 powder mixtures during mechanical treatment was followed by X-ray powder diffraction in all cases. Except for the 2SrO:TiO 2 composition, SrTiO 3 was always mechanosynthesized. High-energy milling of 2SrO:TiO 2 sample resulted in the formation of nanosized Sr 2 TiO 4 , which is the only K 2 NiF 4 -type oxide prepared by mechanical treatment until now. The mechanical treatment was followed by annealing at different temperatures to establish the optimized protocol for synthesis of each member of the series. SrTiO 3 , Sr 2 TiO 4 and Sr 3 Ti 2 O 7 were obtained with very important decreases in the formation temperatures and reaction times as compared with the traditional ceramic method. Final and milled products were studied by X-ray powder diffraction at room and increasing temperatures, and by thermal analysis and scanning and high resolution transmission electron microscopy

  19. Growth of high T/sub c/ superconducting Bi4(Ca,Sr)6Cu4O/sub 16+//sub x/ crystals

    International Nuclear Information System (INIS)

    Morris, P.A.; Bonner, W.A.; Bagley, B.G.; Hull, G.W.; Stoffel, N.G.; Greene, L.H.; Meagher, B.; Giroud, M.

    1988-01-01

    To determine intrinsic properties of the newly discovered Bi-Ca-Sr-Cu-O high T/sub c/ superconductors, single crystals are necessary. Compositions in this system have been heat treated to survey the melting temperatures and phase field in which superconductivity is detected. The nucleation and growth of the 85 K phase from the melted composition Bi 4 Ca 3 Sr 3 Cu 4 O/sub 16+//sub x/ is observed to be a kinetically slow process which can be precluded by a sufficiently rapid quench, but post-anneals produce the 85 and 110 K phases in the quenched material. The melted composition (23% Bi 2 O 3 -46% CaO,SrO-31% CuO), after subsequent slow cooling, results in large discrete crystals of the 85 K superconducting phase and a residual flux

  20. Structure of Sr3V10O28.22H2O

    International Nuclear Information System (INIS)

    Nieto, J.M.; Salagre, P.; Medina, F.; Sueiras, J.E.; Solans, X.

    1993-01-01

    The crystal structure of hydrated strontium decavanadate, Sr 3 V 10 O 28 .22H 2 O, has been determined. It contains two types of strontium ions: the first is coordinated to seven water molecules which define a pentagonal bipyramid; the second bonds to five molecules of water and three O atoms of different decavanadate ions, thereby bridging between decavanadate ions to produce layers of formula [Sr 2 V 10 O 38 H 20 ] n on the crystallographic plane (100). The heptacoordinated Sr and the five molecules of water associated with it are located between the different layers. (orig.)

  1. Dynamic shock compaction of a ZrO2-RuO2 electronic nanocomposite: toward functionally graded materials

    NARCIS (Netherlands)

    van Zyl, W.E.; Carton, Erik P.; Raming, T.P.; ten Elshof, Johan E.; Verweij, H.

    2005-01-01

    An electronic ZrO2-RuO2 nanocomposite was fabricated by dynamic compaction (DC) at 1.5 GPa resulting in a maximum relative density of 88% in the material. The DC process formed pristine elongated conical-shaped compacts 3 cm in length. The compacts retained their original nanometer-sized grains (~20

  2. Luminescence studies of SrAl_2O_4:Dy"3"+ nanophosphors

    International Nuclear Information System (INIS)

    Sharma, Ravi

    2016-01-01

    Nanosized strontium aluminate phosphors activated by Dy"3"+ were prepared by combustion as well as by solid state reaction method. Nanophosphor was prepared by these methods at reaction temperatures 600°C and 1200°C respectively. Powder X-ray diffraction (XRD), scanning electron microscope analysis was used to characterize the prepared product. Themonoclinic phase was observed in the XRD pattern. The particle size of the samples was calculated around 35 nm. The SEM images show irregular shape of the prepared nanophosphor. Two peaks were found in the Mechanoluminescence (ML) response curve plotted between time and ML intensity. The H_3BO_3 added strontium aluminate phosphors activated with Dy show more bright ML peak as compared to the powders of SrAl_2O_4:Dy"3"+ without H_3BO_3. It was found that the PL and ML intensity increases with increasing concentration of Dy. The intensity becomes maximum for 3% of Dy. The photoluminescence emission shows two intense fluorescence transitions peaks at 498 nm and 583 nm, "4F_9_/_2 → "6H_1_5_/_2 in the blue and "4F_9_/_2 → "6H_1_3_/_2 in the yellow-orange wavelength region. (author)

  3. Electronic and elastic properties of new semiconducting oP{sub 12}-type RuB{sub 2} and OsB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xianfeng; Xu Yuanhui; Gao Faming, E-mail: xfhao1980@yahoo.com.cn [Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China)

    2011-03-30

    Using first-principles total energy calculations we investigate the structural, elastic and electronic properties of new hypothetical oP{sub 12}-type phase RuB{sub 2} and OsB{sub 2}. The calculations indicate that the oP{sub 12}-type phase RuB{sub 2} and OsB{sub 2} are thermodynamically and mechanically stable. Remarkably, the new phases RuB{sub 2} and OsB{sub 2} are predicted to be semiconductors, and the appearance of band gaps is ascribed to the enhanced B-B covalent hybridization. Compared to metallic oP{sub 6}-type RuB{sub 2} and OsB{sub 2} phases, the new phases possess similar mechanical properties and hardness. The combination of the probability of tunable electronic properties, strong stiffness and high hardness make RuB{sub 2} and OsB{sub 2} attractive and interesting for advanced applications.

  4. Structure and hindered vibration of Bi2+ in the red-orange phosphor SrB4O7:Bi

    NARCIS (Netherlands)

    De Jong, Mathijs; Meijerink, A; Barandiarán, Zoila; Seijo, Luis

    2014-01-01

    The emission band profile of bismuth-doped SrB4O7 is measured with high resolution, and distinct vibronic features are observed at 4.2 K. The energy intervals show an irregular distribution. It is interpreted in the light of ab initio calculations as due to two off-center totally symmetric normal

  5. Synthesis and characterisation of the n = 2 Ruddlesden–Popper phases Ln2Sr(Ba)Fe2O7 (Ln = La, Nd, Eu)

    International Nuclear Information System (INIS)

    Gurusinghe, Nicola N.M.; Figuera, Juand de la; Marco, José F.; Thomas, Michael F.; Berry, Frank J.; Greaves, Colin

    2013-01-01

    Graphical abstract: - Highlights: • Some Ruddlesden–Popper phases have been characterised. • Substitution on the A site influences cationic order. • The magnetic moment redirects with temperature - Abstract: A series of n = 2 Ruddlesden–Popper phases A 2 B 2 O 7 of composition Ln 2 Sr(Ba)Fe 2 O 7 (Ln = La, Nd, Eu) have been prepared. La 2 SrFe 2 O 7 and La 2 BaFe 2 O 7 crystallise in the tetragonal space group I4/mmm. The structures of Eu 2 SrFe 2 O 7 and Nd 2 SrFe 2 O 7 are best described in space group P4 2 /mnm. Substitution on the A site with smaller lanthanide- and larger alkaline metal- ions leads to enhanced cationic order in these phases and reflects increasing differences in cationic radii. All the compounds are antiferromagnetically ordered between 298 and 2 K. In La 2 SrFe 2 O 7 the magnetic moment lies along [1 1 0] at all temperatures between 298 and 2 K whereas in La 2 BaFe 2 O 7 the magnetic moment at 298 K lies along the crystallographic x-axis but redirects from the [1 0 0] to the [1 1 0] direction between 210 and 190 K and is retained in this direction until 2 K. In Nd 2 SrFe 2 O 7 the magnetic moment at 298 K lies along [1 1 0] but rotates from [1 1 0] to [0 0 1] between 17 and 9 K. A series of 57 Fe Mössbauer spectra recorded from La 2 SrFe 2 O 7 between 290 and 600 K indicate a magnetic ordering temperature of T N ≥ 535 K

  6. Color-tunable and highly thermal stable Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors

    International Nuclear Information System (INIS)

    Zhang, Haiming; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu; Deng, Jiankun; Liu, Wei-Ren; Zeng, Yuan; Zheng, Lingling; Zhao, Minyi

    2017-01-01

    Tb"3"+ activated Sr_2MgAl_2_2O_3_6 phosphor was prepared by a high-temperature solid-state reaction route. The X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy were used to characterize the as-prepared samples. The Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors show intense green light emission under UV excitation. The phosphor exhibit two groups of emission lines from about 370 to 700 nm, which originating from the characteristic "5D_3-"7F_J and "5D_4-"7F_J transitions of the Tb"3"+ ion, respectively. The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed. The emission colors of these phosphors can be tuned from bluish-green to green by adjusting the Tb"3"+ doping concentration. Furthermore, the thermal quenching temperature (T_1_/_2) is higher than 500 K. The excellent thermal stability and color-tunable luminescent properties suggest that the developed material is a promising green-emitting phosphor candidate for optical devices. - Highlights: • A Color-tunable emitting phosphor Sr_2MgAl_2_2O_3_6:Tb"3"+ was prepared successfully via high-temperature solid-state reaction. • The photoluminescence of Sr_2MgAl_2_2O_3_6:Tb"3"+ shows highly thermal stable. • The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed.

  7. Magnetism of Ba4Ru3O10 revealed by density functional calculations: Structural trimers behaving as coupled magnetic dimers

    Science.gov (United States)

    Saul, Andres; Radtke, Guillaume; Klein, Yannick; Rousse, Gwenaelle

    2013-03-01

    From a simple ionic picture, the only magnetically active ions in this compound are the three Ru4+ atoms which form trimers of faced shared RuO6 octahedral. The Ru atom in the middle of the trimer (named Ru(1)) is cristallographically inequivalent to the ones at the corners (named Ru(2)). A naïve analysis of the magnetic properties of this compound compatible with the expected low spin magnetic configuration of the Ru ions would predict a complicate magnetic order at low temperature involving the Ru(1) and Ru(2) ions and a high temperature susceptibility corresponding to three S=1 ions per unit cell. In spite of that, we demonstrate in this work, from density functional calculations, that under the influence of Ru-Ru covalent bonding, the structural trimers behave in an extended range of temperature from 0 to 600K, as strong (S = 1) antiferromagnetic dimers. Our calculations of the effective exchange interactions show a strong intra-dimer interaction and a weaker inter-dimer one which explains the antiferromagnetic order observed below TN = 105 K and the magnetic susceptibility in the intermediate and high temperature range (from TN=105K up to 612 K).

  8. Topotactic phase transformation of the brownmillerite SrCoO2.5 to the perovskite SrCoO3- δ.

    Science.gov (United States)

    Jeen, H; Choi, W S; Freeland, J W; Ohta, H; Jung, C U; Lee, H N

    2013-07-19

    Pulsed laser epitaxy of brownmillerite SrCoO2.5 thin films and their phase transformation to the perovskite SrCoO3-δ are investigated. While the direct growth of the fully oxidized perovskite films is found to be an arduous task, filling some of oxygen vacancies into SrCoO2.5 by topotactic oxidation accompanies systematic evolution of electronic, magnetic, and thermoelectric properties, useful for many information and energy technologies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Water quality assessment by an integrated multi-sensor based on semiconductor RuO2 nanostructures

    International Nuclear Information System (INIS)

    Zhuiykov, Serge; O'Brien, David; Best, Michael

    2009-01-01

    A multi-sensor based on a nanostructured semiconductor ruthenium oxide (RuO 2 ) sensing electrode (RuO 2 -SE) deposited on an alumina substrate and capable of being coupled with a simple turbidity sensor has been evaluated for long-term pH stability during a 12-month non-stop trial. The multi-sensor is designed to detect the main parameters of water quality: pH, dissolved oxygen (DO), temperature, conductivity and turbidity over a temperature range of 9–30 °C. The morphology of the film SE used in the sensor structure was investigated by scanning electron microscopy and energy dispersive x-ray-analysis at the beginning of the trial and after 12 months of service. It was found that both morphology and surface compositions of nanostructured RuO 2 -SEs did not change significantly. They keep their high sensitivity to adsorption of superoxide ions (O 2 − ) despite heavy depositions of bio-fouling. The sensors with a RuO 2 -SE have demonstrated a stable Nernstian response to pH from 2.0 to 13.0 and were also capable of measuring DO in the range of 0.6–8.0 ppm. The measurement results show very good linearity, and excellent reproducibility was obtained during the trial. The Nernstian slope was approximately 58 mV pH −1 at a temperature of 23 °C. Although RuO 2 -SEs have been shown to exhibit very good response time for pH changes, within a few seconds at a temperature of 23 °C, as the water temperature cooled down, the sensor response time increased significantly and was about 8–10 min or longer at a temperature of 9 °C. The influence of hydrogen ion (H + ) diffusion in nanostructured RuO 2 films on the output emf drift during pH measurements was also investigated. Additional turbidity and conductivity measurements revealed that the multi-sensor is capable of measuring both high and low ranges at different temperatures, exhibiting a high linearity of characteristics

  10. "Job-Sharing" Storage of Hydrogen in Ru/Li₂O Nanocomposites.

    Science.gov (United States)

    Fu, Lijun; Tang, Kun; Oh, Hyunchul; Manickam, Kandavel; Bräuniger, Thomas; Chandran, C Vinod; Menzel, Alexander; Hirscher, Michael; Samuelis, Dominik; Maier, Joachim

    2015-06-10

    A "job-sharing" hydrogen storage mechanism is proposed and experimentally investigated in Ru/Li2O nanocomposites in which H(+) is accommodated on the Li2O side, while H(-) or e(-) is stored on the side of Ru. Thermal desorption-mass spectroscopy results show that after loading with D2, Ru/Li2O exhibits an extra desorption peak, which is in contrast to Ru nanoparticles or ball-milled Li2O alone, indicating a synergistic hydrogen storage effect due to the presence of both phases. By varying the ratio of the two phases, it is shown that the effect increases monotonically with the area of the heterojunctions, indicating interface related hydrogen storage. X-ray diffraction, Fourier transform infrared spectroscopy, and nuclear magnetic resonance results show that a weak LiO···D bond is formed after loading in Ru/Li2O nanocomposites with D2. The storage-pressure curve seems to favor H(+)/H(-) over H(+)/e(-) mechanism.

  11. Structural studies of five layer Aurivillius oxides: A2Bi4Ti5O18 (A=Ca, Sr, Ba and Pb)

    International Nuclear Information System (INIS)

    Ismunandar; Kamiyama, T.; Hoshikawa, A.; Zhou, Q.; Kennedy, B.J.; Kubota, Y.; Kato, K.

    2004-01-01

    The room temperature structures of the five layer Aurivillius phases A 2 Bi 4 Ti 5 O 18 , (A=Ca, Sr, Ba and Pb) have been refined from powder neutron diffraction data using the Rietveld method. The structures consist of [Bi 2 O 2 ] 2+ layers interleaved with perovskite-like [A 2 Bi 2 Ti 5 O 16 ] 2- blocks. The structures were refined in the orthorhombic space group B2eb (SG. No. 41), Z=4, and the unit cell parameters of the oxides are a=5.4251(2), b=5.4034(1), c=48.486(1); a=5.4650(2), b=5.4625(3), c=48.852(1); a=5.4988(3), b=5.4980(4), c=50.352(1); a=5.4701(2), b=5.4577(2), c=49.643(1) for A=Ca, Sr, Ba and Pb, respectively. The structural features of the compounds were found similar to n=2-4 layers bismuth oxides. The strain caused by mismatch of cell parameter requirements for the [Bi 2 O 2 ] 2+ layers and perovskite-like [A 2 Bi 2 Ti 5 O 16 ] 2- blocks were relieved by tilting of the TiO 6 octahedra. Variable temperature synchrotron X-ray studies for Ca and Pb compounds showed that the orthorhombic structure persisted up to 675 and 475K, respectively. Raman spectra of the compounds are also presented

  12. Microwave dielectric properties of (Ca0.8Sr0.2)(SnxTi1−x)O3 ceramics

    International Nuclear Information System (INIS)

    Hsu, Cheng-Hsing; Chang, Chia-Hao

    2013-01-01

    Highlights: ► New microwave dielectric properties of (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 ceramics were investigated. ► A single-phase solid solution containing orthorhombic Pbnm with different Sn contents was formed. ► A significant improvement of Q × f value and τ f were achieved by (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 system. ► Second phases were formed and affected the dielectric properties of (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 system. ► Low cost and suitable τ f value of (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 demonstrate a good potential for use in microwave device. -- Abstract: In this paper, we study the behavior of the B-site behavior with the incorporation of Sn 4+ ion in (Ca 0.8 Sr 0.2 )TiO 3 ceramics. An excess of Sn 4+ resulted in the formation of a secondary phase of CaSnO 3 and SrSnO 3 affecting the microwave dielectric properties of the (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 ceramics. The dielectric properties of the (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 ceramics were improved because of the solid solution of Sn 4+ substitution in the B-site. The temperature coefficient of resonant frequency (τ f ) of the (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 ceramics also improved with increasing Sn content

  13. Phase equilibria, crystal structure and properties of complex oxides in the Nd{sub 2}O{sub 3}–SrO–CoO system

    Energy Technology Data Exchange (ETDEWEB)

    Aksenova, T.V.; Efimova, T.G. [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation); Lebedev, O.I. [Laboratoire CRISMAT, ENSICAEN UMR6508, 6 Bd Maréchal Juin, Cedex 4, Caen 14050 (France); Elkalashy, Sh.I.; Urusova, A.S. [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation); Cherepanov, V.A., E-mail: v.a.cherepanov@urfu.ru [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation)

    2017-04-15

    The phase equilibria in the ½Nd{sub 2}O{sub 3}–SrO–CoO system were systematically studied at 1373 K in air. The intermediate phases formed in the ½Nd{sub 2}O{sub 3}–SrO–CoO system at 1373 K in air are: Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} (0.0≤x≤0.5 with orthorhombic structure, sp. gr. Pbnm and 0.6≤x≤0.95 whose structure was detected as cubic according to XRD sp. gr. Pm3m, but shown to be tetragonal by TEM due to the oxygen vacancy ordering), Nd{sub 2-y}Sr{sub y}CoO{sub 4-δ} (0.6≤y≤1.1 with tetragonal K{sub 2}NiF{sub 4}-type structure, sp. gr. I4/mmm) and Nd{sub 2-z}Sr{sub z}O{sub 3} (0.0≤z≤0.15 with hexagonal structure, sp. gr. P-3m1). The unit cell parameters for the single phase samples were refined by the Rietveld analysis. The changes of oxygen content in Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} (0.6≤x≤0.95) and Ruddlesden-Popper oxide Nd{sub 2-y}Sr{sub y}CoO{sub 4-δ} were examined by TGA. All were found to be oxygen deficient phases. High-temperature dilatometry allows calculating the thermal expansion coefficient and evaluating the chemical expansion coefficient at high temperature. The projection of isothermal-isobaric phase diagram for the Nd–Sr–Co–O system at 1373 K in air to the compositional triangle of metallic components has been constructed. The phase equilibria in the studied Nd–Sr–Co–O system were compared to La–Sr–Co–O and Nd–M–Co–O (M=Ca and Ba). - Graphical abstract: Crystal structure of vacancy ordered supercell for Nd{sub 0.2}Sr{sub 0.8}CoO{sub 3-δ} and projection of phase diagram for the Nd–Sr–Co–O system onto the triangle edge of metallic components at 1373 K in air. - Highlights: • The diagram for the Nd–Sr–Co–O system at 1373 K in air has been constructed. • The crystal structure of Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} and Nd{sub 2-y}Sr{sub y}CoO{sub 4±δ} was refined. • The formation of superstructure due to the oxygen vacancy ordering was proved. • The changes of oxygen

  14. Ethanol electrooxidation using Ti/(RuO2)(x) Pt(1-x) electrodes prepared by the polymeric precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, R.G.; Marchesi, L.F.Q.P.; Forim, M.R.; Pereira, E.C. [Departamento de Quimica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Bulhoes, L.O.S [CENIP, Centro Universitario Central Paulista, Sao Carlos, SP (Brazil); Santos, M.C. [LEMN, Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo Andre, SP (Brazil); Oliveira, R.T.S., E-mail: robson@icbn.uftm.edu.br [Instituto de Ciencias Biologicas e Naturais, Universidade Federal do Triangulo Mineiro, Uberaba, MG (Brazil)

    2011-09-15

    This work describes a detailed study of the ethanol electrooxidation on Ti/(RuO{sub 2}){sub (x)}Pt{sub (1-x)} electrodes using several compositions prepared by the polymeric precursor method. The results obtained using cyclic voltammetry and chronoamperometry showed that the best composition of Ti/(RuO{sub 2}){sub (x)}Pt{sub (1-x)} electrodes for CO and ethanol oxidation processes is Ti/(RuO{sub 2}){sub 0.50}Pt{sub 0.50}. On this electrode composition the onset of CO and the ethanol oxidation occurred at 380 mV and 220 mV more negative than on Ti/Pt, respectively. Besides, there was an increase of 2.5-fold in the current density for ethanol electrooxidation under constant potential polarization. The Ti/(RuO{sub 2}){sub 0.50}Pt{sub 0.50}. electrodes produced lower amount of acetic acid compared to Ti/Pt and polycrystalline Pt electrodes using in situ HPLC spectrometric analysis. Also, a non common product from ethanol oxidation could be observed on higher RuO{sub 2} loads: ethyl acetate. Finally, the impedance data showed that Ti/(RuO{sub 2}){sub 0.50}Pt{sub 0.50}. electrode composition had the smallest charge transfer resistance for ethanol oxidation among those compositions investigated. (author)

  15. Electron excitations in BeAl2O4, Be2SiO4 and Be3Al2Si6O18 crystals

    International Nuclear Information System (INIS)

    Ivanov, V.Yu.; Pustovarov, V.A.; Shlygin, E.S.; Korotaev, A.V.; Kruzhalov, A.V.

    2005-01-01

    Low-temperature (T = 7 K) time-resolved selectively photoexcited luminescence spectra (2-6 eV) and luminescence excitation spectra (8-35 eV) of wide-bandgap chrysoberyl BeAl 2 O 4 , phenacite Be 2 SiO 4 , and beryl Be 3 Al 2 Si 6 O 18 crystals have been studied using time-resolved VUV spectroscopy. Both the intrinsic luminescence of the crystals and the luminescence associated with structural defects were assigned. Energy transfer to impurity luminescence centers in alexandrite and emerald was investigated. Luminescence characteristics of stable crystal lattice defects were probed by 3.6-MeV accelerated helium ion beams [ru

  16. Synthesis, structure, and electrical behavior of Sr{sub 4}Bi{sub 4}Ti{sub 7}O{sub 24}.

    Energy Technology Data Exchange (ETDEWEB)

    Zurbuchen, M. A.; Sherman, V. O.; Tagantsev, A. K.; Schubert, J.; Hawley, M. E.; Fong, D. D.; Streiffer, S. K.; Jia, Y.; Tian, W.; Schlom, D. G.; The Aerospace Corp.; Ecole Polytechnique Federale de Lausanne; IBNI-IT and JARA-Fundamentals fo Future Information Technologies; LANL; Cornell Univ.

    2010-01-25

    An n = 7 Aurivillius phase, Sr{sub 4}Bi{sub 4}Ti{sub 7}O{sub 24}, with c = 6.44 nm, was synthesized as an epitaxial (001)-oriented film. This phase and its purity were confirmed by x-ray diffraction and transmission electron microscopy. The material is ferroelectric, with a P{sub r} = 5.3 {micro}C/cm{sup 2} oriented in the (001) plane and a paraelectric-to-ferroelectric transition temperature of T{sub C} = 324 K. Some indications of relaxorlike behavior are observed. Such behavior is out of character for Sr{sub n-1}Bi{sub 2}Ti{sub n}O{sub 3n+3} Aurivillius phases and is closer to the bulk behavior of doped SrTiO{sub 3}, implying a spatial limit to the elastic interlayer interactions in these layered oxides. A finite-element solution to the interpretation of data from interdigitated capacitors on thin films is also described.

  17. Electrical conductivity of oxides from molten state to glassy. Effect on the incorporation of RuO{sub 2} particles; Conductivite electrique des verres et fontes d'oxides. Effets de l'incorporation de particules RuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Simonnet, C

    2004-07-01

    This study concerns the electrical conductivity of oxides from molten state to glassy state and, in particular, the effect of the incorporation of RuO{sub 2} particles in the context of vitrification of radioactive waste. The material of interest in the nuclear field is basically a viscous or vitreous borosilicate containing a dispersion of RuO{sub 2} microcrystals. A very simple model of this heterogeneous material has been studied in particular (SiO{sub 2}, B{sub 2}O{sub 3}, Na{sub 2}O, RuO{sub 2}). An original method of impedance measurement in the liquid at high temperature yields reliable electrical conductivity values over a temperature range covering the liquid and vitreous phases of the borosilicates studied. In the borosilicate matrix, alkaline transport is mainly responsible for the ionic conduction. The temperature dependence of the conductivity may thus be represented by an equation combining a VFT law and an Arrhenius law to represent the electrical conductivity above and below T{sub g}. Beyond a critical volume fraction V{sub c} {approx} 0.01 of RuO{sub 2}, an electronic contribution is added to the ionic contribution of the matrix and the electrical conductivity increases significantly with the RuO{sub 2} content. This effect is described in terms of electrical percolation of the particle network. An electronic mechanism by tunnel transfer between particles is demonstrated. A mathematical model is developed to describe this mechanism in the solid composite. Beyond T{sub g}, conduction by the tunnel effect persists and the partial solubilization of RuO{sub 2} appears to be mainly responsible for the significant increase in electronic conductivity with the temperature. (author)

  18. Strontium influence on the oxygen electrocatalysis of La2−xSrxNiO4±δ (0.0 ≤ xSr ≤ 1.0) thin films

    KAUST Repository

    Lee, Dongkyu; Lee, Yueh-Lin; Grimaud, Alexis; Hong, Wesley T.; Biegalski, Michael D.; Morgan, Dane; Shao-Horn, Yang

    2014-01-01

    Substitution of lanthanum by strontium (Sr) in the A-site of cobalt-containing perovskites can greatly promote oxygen surface exchange kinetics at elevated temperatures. Little is known about the effect of A-site substitution on the oxygen electrocatalysis of Ruddlesden-Popper (RP) oxides. In this study, we report, for the first time, the growth and oxygen surface exchange kinetics of La2-xSrxNiO 4±δ (LSNO, 0.0 ≤ xSr ≤ 1.0) thin films grown on (001)cubic-Y2O3-stabilized ZrO 2 (YSZ) by pulsed laser deposition. High-resolution X-ray diffraction analysis revealed that the LSNO film orientation was changed gradually from the (100)tetra. (in-plane) to the (001)tetra. (out-of-plane) orientation in the RP structure with increasing Sr from La2NiO 4+δ (xSr = 0) to LaSrNiO4±δ (xSr = 1.0). Such a change in the LSNO film orientation was accompanied by reduction in the oxygen surface exchange kinetics by two orders of magnitude as shown from electrochemical impedance spectroscopy results. Density functional theory (DFT) calculations showed that Sr substitution could stabilize the (001)tetra. surface relative to the (100) tetra. surface and both Sr substitution and increasing (001) tetra. surface could greatly weaken adsorption of molecular oxygen in the La-La bridge sites in the RP structure, which can reduce oxygen surface exchange kinetics. This journal is © the Partner Organisations 2014.

  19. New Ru(II) complexes for dual photoreactivity: ligand exchange and (1)O2 generation.

    Science.gov (United States)

    Knoll, Jessica D; Albani, Bryan A; Turro, Claudia

    2015-08-18

    Uncovering the factors that govern the electronic structure of Ru(II)-polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and (1)O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field ((3)LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer ((3)MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2](2+) (bpy = 2,2'-bipyridine; L = CH3CN or py). This suggests that population of the (3)LF state proceeds from the vibrationally excited (3)MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the (3)LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)](2+) complexes (tpy = 2,2':6',2″-terpyridine; NN = bpy, 6,6'-dimethyl-2,2'-bipyridine (Me2bpy), 2,2'-biquinoline (biq)) increases by 2-3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the (3)LF state within 3-7 ps when NN is bulky, and density functional theory calculations support stabilized (3)LF states. Dual activity via ligand dissociation and (1)O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2](2+) (dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) and [Ru(tpy)(Me2dppn)(py)](2+) (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine) introduces

  20. New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation

    Science.gov (United States)

    Knoll, Jessica D.; Albani, Bryan A.; Turro, Claudia

    2016-01-01

    CONSPECTUS Uncovering the factors that govern the electronic structure of Ru(II)–polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and 1O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field (3LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer (3MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2]2+ (bpy = 2,2′-bipyridine; L = CH3CN or py). This suggests that population of the 3LF state proceeds from the vibrationally excited 3MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the 3LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)]2+ complexes (tpy = 2,2′:6′,2″-terpyridine; NN = bpy, 6,6′-dimethyl-2,2′-bipyridine (Me2bpy), 2,2′-biquinoline (biq)) increases by 2–3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the 3LF state within 3–7 ps when NN is bulky, and density functional theory calculations support stabilized 3LF states. Dual activity via ligand dissociation and 1O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2]2+ (dppn = benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine) and [Ru(tpy)(Me2dppn)(py)]2+ (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2′,3