WorldWideScience

Sample records for sputter deposited boron

  1. Insertion of nanocrystalline diamond film and the addition of hydrogen gas during deposition for adhesion improvement of cubic boron nitride thin film deposited by unbalanced magnetron sputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J.-S. [Electronic Materials Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Park, J.-K.; Lee, W.-S. [Electronic Materials Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Huh, J.-Y. [Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Baik, Y.-J., E-mail: yjbaik@kist.re.kr [Electronic Materials Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2013-05-01

    Cubic boron nitride (c-BN) thick film growth was attempted by the addition of hydrogen for residual stress reduction and by using a nanocrystalline diamond (NCD) buffer layer for stabilizing the turbostratic boron nitride interfacial layer. The c-BN films were deposited by the unbalanced magnetron sputtering method. Thin (100 μm) Si strips (3 × 40 mm{sup 2}) were used as substrates. A boron nitride target was used, which was connected to a radio frequency power supply at 400 W. High frequency power connected to a substrate holder was used for self-biasing of − 40 V. The deposition pressure was 0.27 Pa with a flow of Ar (18 sccm)–N{sub 2} (2 sccm) mixed gas. Hydrogen gas of 2 sccm was added to the Ar–N{sub 2} mixed gas. The effect of the addition time of the hydrogen to the Ar–N{sub 2} gas during deposition was investigated and found to be critical to the occurrence of the delamination of the c-BN film on the NCD buffer layer. As the addition of the hydrogen was delayed, the delamination started later. C-BN film of 3 μm thickness adherent to the substrate was obtained. - Highlights: • A nanocrystalline diamond (NCD) buffer layer was applied to enhance the adhesion. • Hydrogen in the reaction gas caused delamination of the film at c-BN/NCD interface. • A delayed hydrogen addition was effective in inhibiting such delamination. • About 3 μm thick c-BN film could be grown.

  2. Growth and Physical Structure of Amorphous Boron Carbide Deposited by Magnetron Sputtering on a Silicon Substrate with a Titanium Interlayer

    Directory of Open Access Journals (Sweden)

    Roberto Caniello

    2013-01-01

    Full Text Available Multilayer amorphous boron carbide coatings were produced by radiofrequency magnetron sputtering on silicon substrates. To improve the adhesion, titanium interlayers with different thickness were interposed between the substrate and the coating. Above three hundreds nanometer, the enhanced roughness of the titanium led to the growth of an amorphous boron carbide with a dense and continuing columnar structure, and no delamination effect was observed. Correspondingly, the adhesion of the coating became three time stronger than in the case of a bare silicon substrate. Physical structure and microstructural proprieties of the coatings were investigated by means of a scan electron microscopy, atomic force microscopy and X-ray diffraction. The adhesion of the films was measured by a scratch tester.

  3. Cubic and hexagonal boron-nitride (c-BN/h-BN) thin films deposited in situ by r.f. magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J.M.; Zambrano, G.; Baca, E.; Moran, O.; Prieto, P. [Departamento de Fisica, Universidad del Valle, A.A. 25360 Cali (Colombia); Bejarano, G. [Laboratorio de Recubrimientos Duros, CDT-ASTIN SENA, Cali (Colombia)

    2005-07-01

    Cubic boron-nitride (c-BN)/hexagonal boron nitride (h-BN) thin films were grown in situ on (100) oriented silicon substrates by r.f. (13.56 MHz) magnetron sputtering technique. In order to obtain the highest fraction of the c-BN phase, a negative d.c bias voltage, varying from 0 to -200 V was applied to the substrate during deposition. Another set of boron nitride thin films was deposited in situ on (100) oriented silicon substrates under r.f. bias voltage. The substrate holder was biased from 0 to -350 V by connecting such to an auxiliary r.f. generator (operated at 13.56 MHz). Films were characterized by Fourier Transformed Infrared Spectroscopy (FTIR) and Atomic Force Microscope (AFM). Well-defined peaks at 787 cm{sup -1}, 1100 cm{sup -1} and 1387 cm{sup -1}, corresponding to the 2{sub Au} (out-plane bending of B-N-B bond) h-BN vibration mode, the F2 (stretching) c-BN Transversal Optical (TO) mode and the E{sub 1u} (in-plane stretching of B-N bond) vibration mode of the h-BN, respectively, were observed in the FTIR spectra. A maximal fraction of the c-BN phase close to 85% was obtained under a bias voltage of -150 V at substrate temperature of 300 C and a total pressure of 4 x 10{sup -2} mbar. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Reactive sputter deposition

    CERN Document Server

    Mahieu, Stijn

    2008-01-01

    In this valuable work, all aspects of the reactive magnetron sputtering process, from the discharge up to the resulting thin film growth, are described in detail, allowing the reader to understand the complete process. Hence, this book gives necessary information for those who want to start with reactive magnetron sputtering, understand and investigate the technique, control their sputtering process and tune their existing process, obtaining the desired thin films.

  5. Sputtering. [as deposition technique in mechanical engineering

    Science.gov (United States)

    Spalvins, T.

    1976-01-01

    This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.

  6. Metal bonding during sputter film deposition

    NARCIS (Netherlands)

    Shimatsu, T.; Shimatsu, T.; Mollema, R.H.; Monsma, D.J.; Keim, Enrico G.; Lodder, J.C.

    1998-01-01

    We studied the bonding between two flat Si substrates with thin metal films. The bonding was accomplished during thin film sputter deposition on contamination free surfaces of metal films. In this work we used Ti and Pt. Successful bonding of these metal films (each having a thickness of 10–20 nm)

  7. Sputtered boron indium oxide thin-film transistors

    Science.gov (United States)

    Stewart, Kevin A.; Gouliouk, Vasily; Keszler, Douglas A.; Wager, John F.

    2017-11-01

    Boron indium oxide (BIO) is studied for thin-film transistor (TFT) channel layer applications. Sputtered BIO thin films exhibit an amorphous phase over a wide range of B2O3/In2O3 ratios and remain amorphous up to 500 °C. The band gap decreases linearly with decreasing boron content, whereas device performance generally improves with decreasing boron content. The best amorphous BIO TFT exhibits a field-effect mobility of 10 cm2 V-1 s-1, turn-on voltage of 2.5 V, and sub-threshold swing of 0.72 V/dec. Decreasing the boron content to 12.5% leads to a polycrystalline phase, but further increases the mobility up to 20-40 cm2 V-1 s-1. TCAD simulation results suggest that the reason for higher performance after increasing the anneal temperature from 200 to 400 °C is due to a lower defect density in the sub-bandgap region of the BIO channel layer.

  8. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  9. Sputter-deposited fuel cell membranes and electrodes

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.

  10. Sputtering: A vacuum deposition method for coating material

    Science.gov (United States)

    Spalvins, T.

    1972-01-01

    The sputtering process is described in terms of its features: versatility, momentum transfer, configuration of target, precise controls and the relatively slow deposition rate. Sputtered films are evaluated in terms of adherence, coherence, and internal stresses. The strong adherence is attributed to the high kinetic energies of the sputtered material, sputter etched (cleaned) surface, and the submicroscopic particle size. An illustration is a sputtered solid film lubricant such as MoS2. Friction tests were conducted on a thin, 2000 A deg thick MoS2 film. These films are very dense and without observable pinholes, and the particle to particle cohesion is strong. Tolerances (film thickness) can be controlled to a millionth of a centimeter. Very adherent films of sputtered Teflon can be deposited in a single operation on any type of material (metal, glass, paper) and on any geometrical configuration with a dense adherent film.

  11. Characterization of reactive magnetron sputtering plasma during thin film deposition

    Science.gov (United States)

    Gordon, Rylan; Mahabaduge, Hasitha

    Reactive magnetron sputtering is used extensively as a thin film deposition technique. During sputtering, a plasma is generated. The evolution of the plasma dictates the thin film composition and structure. The residence time of a reactive gas molecule, the mean time it remains in the process chamber before being pumped away also plays an important role in reactive sputtering. We simulated the residence time and partial pressure of the respective reactive gasses in magnetron sputtering environment using Matlab. Using Optical Emission Spectroscopy we confirmed the trend in mean residence time of the reactive gasses. The thin film properties of reactively sputtered aluminum-doped zinc oxide will be presented along with the correlation to the plasma properties during the deposition.

  12. Sputter deposition for multi-component thin films

    Science.gov (United States)

    Krauss, A.R.; Auciello, O.

    1990-05-08

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

  13. Collimated Magnetron Sputter Deposition for Mirror Coatings

    DEFF Research Database (Denmark)

    Vickery, A.; Cooper-Jensen, Carsten P.; Christensen, Finn Erland

    2008-01-01

    At the Danish National Space Center (DNSC), a planar magnetron sputtering chamber has been established as a research and production coating facility for curved X-ray mirrors for hard X-ray optics for astronomical X-ray telescopes. In the following, we present experimental evidence that a collimat......At the Danish National Space Center (DNSC), a planar magnetron sputtering chamber has been established as a research and production coating facility for curved X-ray mirrors for hard X-ray optics for astronomical X-ray telescopes. In the following, we present experimental evidence...

  14. Synthesis and characterization of c-BN films prepared by ion beam assisted deposition and triode sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ben el Mekki, M.; Djouadi, M.A.; Mortet, V.; Guiot, E. [ENSAM, Cluny (France). Lab. Bourguignon des Mater. et Procedes; Nouet, G. [LERMAT, ISMRA, Caen (France); Mestres, N. [Institut de Ciencia de Materials de Barcelona, (CSIC), E-08193, Bellaterra (Spain)

    1999-11-01

    Boron nitride films deposited on unheated c-Si substrates by ion beam assisted deposition (IBAD) and triode sputtering (TS) techniques are studied. The composition, microstructure and crystallinity of the films obtained by the two techniques are compared The methods of characterization used in this study are: X-ray photo-electron, infrared, and Raman spectroscopies. High-resolution cross sectional TEM is used to confirm the optical results. In the case of films prepared by IBAD, the ion energy was 350-500 eV. The films were prepared from different gas mixtures of nitrogen and argon, boron was supplied by evaporation of elemental boron. TS films were prepared with 100% of nitrogen, the boron was supplied by sputtering a pure boron target. This study shows that, in comparison with TS samples, IBAD samples have higher chemical and physical stability. The particle-size dependence of frequencies and damping of optical phonons is studied for all samples from the analysis of Raman scattering and infrared spectra. A very important difference between the particle-sizes of IBAD and TS samples is observed. A progressive chemical etching by nitric acid at 80 C combined with infrared characterization was successfully performed on IBAD samples deposited at low ion flux and announces a mixture of sp{sup 2} and sp{sup 3} phases with high content of sp{sup 3} structure. All results are in full agreements with TEM results. (orig.)

  15. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  16. The crystallization and properties of sputter deposited lithium niobite

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Joshua C.; Brooks Tellekamp, M.; Alan Doolittle, W., E-mail: alan.doolittle@ece.gatech.edu

    2016-06-30

    Sputter deposition of the thin film memristor material, lithium niobite (LiNbO{sub 2}) is performed by co-deposition from a lithium oxide (Li{sub 2}O) and a niobium target. Crystalline films that are textured about the (101) orientation are produced under room temperature conditions. This material displays memristive hysteresis and exhibits XPS spectra similar to MBE and bulk grown LiNbO{sub 2}. Various deposition parameters were investigated resulting in variations in the deposition rate, film crystallinity, oxygen to niobium ratio, and mean niobium oxidation state. The results of this study allow for the routine production of large area LiNbO{sub 2} films at low substrate temperature useful in hybrid-integration of memristor, optical, and energy storage applications. - Highlights: • Room temperature sputter deposition of crystalline lithium niobite (LiNbO{sub 2}) • Contrast with previous high temperature corrosive growth methods • Analysis of sputter deposition parameters on the chemical and physical properties of the deposited material.

  17. RF Reactive Magnetron Sputter Deposition of Silicon Sub-Oxides

    NARCIS (Netherlands)

    Hattum, E.D. van

    2007-01-01

    RF reactive magnetron plasma sputter deposition of silicon sub oxide E.D. van Hattum Department of Physics and Astronomy, Faculty of Sciences, Utrecht University The work described in the thesis has been inspired and stimulated by the use of SiOx layers in the direct inductive printing technology,

  18. Elastic properties of B-C-N films grown by N{sub 2}-reactive sputtering from boron carbide targets

    Energy Technology Data Exchange (ETDEWEB)

    Salas, E.; Jiménez Riobóo, R. J.; Jiménez-Villacorta, F.; Prieto, C. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid (Spain); Sánchez-Marcos, J. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid (Spain); Dept. Química-Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Muñoz-Martín, A.; Prieto, J. E.; Joco, V. [Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2013-12-07

    Boron-carbon-nitrogen films were grown by RF reactive sputtering from a B{sub 4}C target and N{sub 2} as reactive gas. The films present phase segregation and are mechanically softer than boron carbide films (a factor of more than 2 in Young's modulus). This fact can turn out as an advantage in order to select buffer layers to better anchor boron carbide films on substrates eliminating thermally induced mechanical tensions.

  19. Optical characterization of BCN films deposited at various N{sub 2}/Ar gas flow ratios by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Todi, Vinit O., E-mail: vinittodi@gmail.com [Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816 (United States); Shantheyanda, Bojanna P.; Todi, Ravi M.; Sundaram, Kalpathy B. [Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816 (United States); Coffey, Kevin [Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL 32816 (United States)

    2011-07-25

    Highlights: > We present the deposition and optical characterization of amorphous BCN thin films prepared by reactive magnetron sputtering from a B4C target. > Films of different compositions were deposited by varying the ratio of argon and nitrogen gas in the sputtering ambient. > The optical band gap of the films ranged from 2.0 eV to 3.1 eV and increased with N2/Ar gas flow ratio except at the highest ratio. - Abstract: We present the deposition and optical characterization of amorphous thin films of boron carbonitride (BCN). The BCN thin films were deposited in a radio frequency magnetron sputtering system using a B{sub 4}C target. Films of different compositions were deposited by varying the ratio of argon and nitrogen gas in the sputtering ambient. X-ray photoelectron spectroscopy was used to perform surface characterization of the deposited films and a change in composition with nitrogen flow ratio was observed. The effect of gas flow ratios on the optical properties of the films was also investigated. It was found that the transmittance of the films increases with nitrogen incorporation. The optical band gap of the films ranged from 2.0 eV to 3.1 eV and increased with N{sub 2}/Ar gas flow ratio except at the highest ratio.

  20. Composition and structure of sputter deposited erbium hydride thin films

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS,DAVID P.; ROMERO,JUAN A.; RODRIGUEZ,MARK A.; FLORO,JERROLD A.; BANKS,JAMES C.

    2000-05-10

    Erbium hydride thin films are grown onto polished, a-axis {alpha} Al{sub 2}O{sub 3} (sapphire) substrates by reactive ion beam sputtering and analyzed to determine composition, phase and microstructure. Erbium is sputtered while maintaining a H{sub 2} partial pressure of 1.4 x 10{sup {minus}4} Torr. Growth is conducted at several substrate temperatures between 30 and 500 C. Rutherford backscattering spectrometry (RBS) and elastic recoil detection analyses after deposition show that the H/Er areal density ratio is approximately 3:1 for growth temperatures of 30, 150 and 275 C, while for growth above {approximately}430 C, the ratio of hydrogen to metal is closer to 2:1. However, x-ray diffraction shows that all films have a cubic metal sublattice structure corresponding to that of ErH{sub 2}. RBS and Auger electron that sputtered erbium hydride thin films are relatively free of impurities.

  1. Sputter deposition of aluminum and other alloys at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D.L.; Wan, C.T.; Susi, G.T.; Taylor, K.A.

    1989-05-01

    Structures of thin films deposited at ambient temperatures are similar to those of the bulk material whereas at lower temperatures films have significantly reduced grain size and may become amorphouslike. A two-stage cryorefrigerator was installed in a sputtering system to allow thin films of aluminum and aluminum--copper alloy to be deposited onto substrates cooled to cryogenic temperatures less than 30 K. Gases used for sputtering were argon, neon, and helium at pressures ranging from 0.40 to 2.0 Pa. A standard planar magnetron cathode was used. Vapor pressure--temperature data for gases show that argon will not cryocondense on substrate surfaces at temperatures greater than 40 K and neon will not cryocondense at temperatures above 11 K. Helium is considered for sputtering at substrate temperatures below 11 K. The purpose of this work is to determine the deposition rates using argon, neon, and helium and microstructure changes occurring when thin films are deposited onto cryogenically cooled substrates. Deposition rates are determined using surface profilometry and microstructure was determined by transmission electron microscopy.

  2. Sputter deposited Terfenol-D thin films for multiferroic applications

    Directory of Open Access Journals (Sweden)

    K. P. Mohanchandra

    2015-09-01

    Full Text Available In this paper, we study the sputter deposition and crystallization process to produce high quality Terfenol-D thin film (100 nm with surface roughness below 1.5 nm. The Terfenol-D thin film was produced using DC magnetron sputtering technique with various sputtering parameters and two different crystallization methods, i.e. substrate heating and post-annealing. Several characterization techniques including WDS, XRD, TEM, AFM, SQUID and MOKE were used to determine the physical and magnetic properties of the Terfenol-D films. TEM studies reveal that the film deposited on the heated substrate has large grains grown along the film thickness producing undesirable surface roughness while the film crystallized by post-annealing method shows uniformly distributed small grains producing a smooth surface. The Terfenol-D film was also deposited onto (011 cut PMN-PT single crystal substrate. With the application of an electric field the film exhibited a 1553 Oe change in coercivity with an estimated saturation magnetostriction of λs = 910 x 10−6.

  3. Reactive sputtering deposition of SiO2 thin films

    Directory of Open Access Journals (Sweden)

    IVAN RADOVIC

    2008-01-01

    Full Text Available SiO2 layers were deposited in a UHV chamber by 1 keV Ar+ ion sputtering from a high purity silicon target, using different values of the oxygen partial pressure (5×10-6–2×10-4 mbar and of the ion beam current on the target (1.67–6.85 mA. The argon partial pressure during operation of the ion gun was 1×10-3 mbar. The substrate temperature was held at 550 °C and the films were deposited to a thickness of 12.5–150 nm, at a rate from 0.0018–0.035 nm s-1. Structural characterization of the deposited thin films was performed by Rutherford backscattering spectrometry (RBS analysis. Reactive sputtering was proved to be efficient for the deposition of silica at 550 °C, an oxygen partial pressure of 2×10-4 mbar (ion beam current on the target of 5 mA or, at a lower deposition rate, ion beam current of 1.67 mA and an oxygen partial pressure of 6×10-5 mbar. One aspect of these investigations was to study the consumption of oxygen from the gas cylinder, which was found to be lower for higher deposition rates.

  4. Sputter deposition system for controlled fabrication of multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Di Nardo, R.P.; Takacs, P.Z.; Majkrzak, C.F.; Stefan, P.M.

    1985-06-01

    A detailed description of a sputter deposition system constructed specifically for the fabrication of x-ray and neutron multilayer monochromators and supermirrors is given. One of the principal design criteria is to maintain precise control of film thickness and uniformity over large substrate areas. Regulation of critical system parameters is fully automated so that response to feedback control information is rapid and complicated layer thickness sequences can be deposited accurately and efficiently. The use of either dc or rf magnetron sources makes it possible to satisfy the diverse material requirements of both x-ray and neutron optics.

  5. Highly-enhanced reflow characteristics of sputter deposited Cu interconnections of large scale integrated devices by optimizing sputtering conditions

    Science.gov (United States)

    Onishi, Takashi; Mizuno, Masao; Yoshikawa, Tetsuya; Munemasa, Jun; Mizuno, Masataka; Kihara, Teruo; Araki, Hideki; Shirai, Yasuharu

    2013-07-01

    Improving the reflow characteristics of sputtered Cu films was attempted by optimizing the sputtering conditions. The reflow characteristics of films deposited under various sputtering conditions were evaluated by measuring their filling level in via holes. It was found that the reflow characteristics of the Cu films are strongly influenced by the deposition parameters. Deposition at low temperatures and the addition of H2 or N2 to the Ar sputtering gas had a significant influence on the reflow characteristics. Imperfections in the Cu films before and after the high-temperature, high-pressure treatments were investigated by positron annihilation spectroscopy. The results showed that low temperature and the addition of H2 or N2 led to films containing a large number of mono-vacancies, which accelerate atomic diffusion creep and dislocation core diffusion creep, improving the reflow characteristics of the Cu films.

  6. Small grain size zirconium-based coatings deposited by magnetron sputtering at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, O., E-mail: omar.jimenez.udg@gmail.com [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Audronis, M.; Leyland, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Flores, M.; Rodriguez, E. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Kanakis, K.; Matthews, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-09-30

    Hard, partly amorphous, ZrTiB(N) coatings were deposited by Physical Vapour Deposition (PVD) onto (111) silicon wafers at low substrate temperatures of 85 and 110 °C using Closed Field Unbalanced Magnetron Sputtering. A segmented rectangular sputter target composed of three pieces (Zr/TiB{sub 2}/Zr) was used as the source of evaporation of coating components. Two different substrate biases (i.e. floating potential and − 50 V) and N{sub 2} reactive-gas flow rates of 2, 4 and 6 sccm were employed as the main deposition parameter variables. The chemical composition, structure, morphology and mechanical properties were investigated using a variety of analytical techniques such as Glow-Discharge Optical Emission Spectroscopy, cross-sectional Scanning Electron Microscopy (SEM), Glancing Angle X-ray Diffraction (GAXRD) and nanoindentation. With other parameters fixed, coating properties were found to be dependent on the substrate negative bias and nitrogen flow rate. Linear scan profiles and SEM imaging revealed that all coatings were smooth, dense and featureless (in fracture cross section) with no apparent columnar morphology or macro-defects. GAXRD structural analysis revealed that mostly metallic phases were formed for coatings containing no nitrogen, whereas a solid solution (Zr,Ti)N single phase nitride was found in most of the reactively deposited coatings — exhibiting a very small grain size due to nitrogen and boron grain refinement effects. Hardness values from as low as 8.6 GPa up to a maximum of 25.9 GPa are related mainly to solid solution strengthening effects. The measured elastic moduli correlated with the trends in hardness behaviour; values in the range of 120–200 GPa were observed depending on the selected deposition parameters. Also, high H/E values (> 0.1) were achieved with several of the coatings.

  7. Molecular dynamics simulation of gold cluster growth during sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J. W., E-mail: abraham@theo-physik.uni-kiel.de; Bonitz, M., E-mail: bonitz@theo-physik.uni-kiel.de [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel (Germany); Strunskus, T.; Faupel, F. [Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-05-14

    We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.

  8. Structure and magnetic properties of nanocrystalline CaB{sub 6} films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guoqing; Zhang, Lin, E-mail: zhanglin2007@sdu.edu.cn; Hu, Lijie; Yu, Hui; Min, Guanghui, E-mail: ghmin@sdu.edu.cn; Yu, Huashun

    2014-06-25

    Highlights: • Nanocrystalline CaB{sub 6} films were deposited by dc magnetron sputtering. • CaB{sub 6} films showed weak ferromagnetism. • The relationship between the structure and the magnetic properties was explored. • The ferromagnetism was caused by structure defects rather than alien iron. - Abstract: The nanocrystalline CaB{sub 6} films with different thickness were fabricated using DC-magnetron sputtering. The structure and the magnetic properties of the films were characterized by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectrometer (SEM–EDS) and alternating gradient magnetometer (AGM). All films shows the lattice expansion and the (1 0 0) texture. With increasing of film thickness, the degree of lattice expansion decreased due to the intercalated argon atoms and the excess boron atoms. However, the grain size changed in the opposite tendency. The thinnest film (t = 500 nm) exhibited the greatest moment 3.76 × 10{sup −8} A m{sup 2}, resulting in a magnetization of 11.36 × 10{sup 3} A/m. Defects aroused mainly by the lattice expansion and the grain boundaries were likely origin of the magnetism.

  9. Correlation between Optical Properties and Chemical Composition of Sputter-Deposited Germanium Oxide (GEOX) Films (Postprint)

    Science.gov (United States)

    2014-03-18

    previously, including Radio Frequency (RF) magnetron sputtering [1,3,7,8,11,13,20–22], laser ablation [14], sol–gel deposition [2,9,10], reactive thermal...be a direct result of the decreased sputter yield associated with the covalently bonded compound. The agreement between the deposition rates using the

  10. Aggregation and deposition behavior of boron nanoparticles in porous media.

    Science.gov (United States)

    Liu, Xuyang; Wazne, Mahmoud; Christodoulatos, Christos; Jasinkiewicz, Kristin L

    2009-02-01

    New kinds of solid fuels and propellants comprised of nanomaterials are making their way into civilian and military applications yet the impact of their release on the environment remains largely unknown. One such material is nano boron, a promising solid fuel and propellant. The fate and transport of nano boron under various aquatic systems was investigated in aggregation and deposition experiments. Column experiments were performed to examine the effects of electrolyte concentration and flow velocity on the transport of boron nanoparticles under saturated conditions, whereas aggregation tests were conducted to assess the effects of electrolytes on the aggregation of the boron nanoparticles. Aggregation tests indicated the presence of different reaction-controlled and diffusion-controlled regimes and yielded critical coagulation concentrations (CCC) of 200 mM, 0.7 mM and 1.5 mM for NaCl, CaCl(2), and MgCl(2), respectively. Aggregation and deposition experimental data corresponded with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) model and the constant attachment efficiency filtration model, respectively. Theoretical calculations indicated that both the primary and secondary energy minima play important roles in the deposition of nano boron in sand columns.

  11. Hydroxyapatite formation on biomedical Ti–Ta–Zr alloys by magnetron sputtering and electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Prosthodontics and Restorative Science, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    The purpose of this study was to investigate hydroxyapatite formation on Ti-25Ta-xZr titanium alloys resulting from radio-frequency magnetron sputtering and electrochemical deposition. Electrochemical deposition of hydroxyapatite (HA) was first carried out using a cyclic voltammetry (CV) method at 80 °C in 5 mM Ca (NO{sub 3}){sub 2} + 3 mM NH{sub 4}H{sub 2}PO{sub 4}. Then a physical vapor deposition (PVD) coating was obtained by a radio-frequency (RF) magnetron sputtering technique. The microstructures, phase transformations, and morphologies of the hydroxyapatite films deposited on the titanium alloys were analyzed by optical microscopy (OM), X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). The morphologies of electrochemically deposited HA showed plate-like shapes on the titanium alloys, and the morphologies of the RF-sputtered HA coating had the appearance droplet particles on the plate-like precipitates that had formed by electrochemical deposition. For the RF-sputtered HA coatings, the Ca/P ratio was increased, compared to that for the electrochemically deposited HA surface. Moreover, the RF-sputtered HA coating, consisting of agglomerated droplet particles on the electrochemically deposited HA surface, had better wettability compared to the bulk titanium alloy surface. - Highlights: • Hydroxyapatite (HA) was deposited on Ti–Ta–Zr alloys by radio-frequency (RF) magnetron sputtering and a cyclic voltammetry. • The morphologies of the RF-sputtered HA coating on electrochemical deposits presented plate-like shapes with a droplet particle. • The Ca/P ratio for RF-sputtered HA coatings was greater than that for electrochemical deposited HA coatings. • The RF-sputtered and electrochemical HA coatings had superior wettability compared to the electrochemically deposited coatings.

  12. Superconducting niobium nitride films deposited by unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Olaya, J.J. [Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera 30 Numero 45-03, Bogota (Colombia); Huerta, L. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico)], E-mail: ser42@iim.unam.mx; Escamilla, R. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico)

    2008-10-01

    Niobium nitride (NbN) thin films were deposited under different configurations of the magnetic field using a magnetron sputtering system. The magnetic field configuration varied from balanced to unbalanced leading to different growth conditions and film properties. The aim of the paper was to identify correlations between deposition conditions, film properties and the electrical properties, specially the superconductive critical temperature (T{sub C}). The results suggested that there is a critical deposition condition, having an optimum ion-atom arrival ratio that promotes a well ordered and textured nanocrystalline structure (cubic phase) with the minimum residual stress and only under this condition a high critical temperature (16K) was obtained. Lower T{sub C} values around 12K were obtained for the NbN samples having a lower degree of structural perfection and texture, and a larger fraction of intergranular voids. On the other hand, analysis of valence-band spectra showed that the contribution of the Nb 4d states remained essentially constant while the higher T{sub C} was correlated to a higher contribution of the N 2p states.

  13. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)

    2015-05-01

    Cadmium sulphide (CdS) thin films were deposited by two different processes, chemical bath deposition (CBD), and pulsed DC magnetron sputtering (PDCMS) on fluorine doped-tin oxide coated glass to assess the potential advantages of the pulsed DC magnetron sputtering process. The structural, optical and morphological properties of films obtained by CBD and PDCMS were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, spectroscopic ellipsometry and UV-Vis spectrophotometry. The as-grown films were studied and comparisons were drawn between their morphology, uniformity, crystallinity, and the deposition rate of the process. The highest crystallinity is observed for sputtered CdS thin films. The absorption in the visible wavelength increased for PDCMS CdS thin films, due to the higher density of the films. The band gap measured for the as-grown CBD-CdS is 2.38 eV compared to 2.34 eV for PDCMS-CdS, confirming the higher density of the sputtered thin film. The higher deposition rate for PDCMS is a significant advantage of this technique which has potential use for high rate and low cost manufacturing. - Highlights: • Pulsed DC magnetron sputtering (PDCMS) of CdS films • Chemical bath deposition of CdS films • Comparison between CdS thin films deposited by chemical bath and PDCMS techniques • High deposition rate deposition for PDCMS deposition • Uniform, pinhole free CdS thin films.

  14. Effect of sputtering pressure on some properties of chromium thin films obliquely deposited

    Energy Technology Data Exchange (ETDEWEB)

    Besnard, A; Martin, N; Millot, C; Gavoille, J; Salut, R, E-mail: aurelien.besnard@ens2m.fr [Institut FEMTO-ST, UMR 6174 CNRS, Universite de Franche-Comte, ENSMM, UTBM, 32 avenue de l' observatoire, 25044 Besancon (France)

    2010-06-15

    Oriented columnar thin films provide a wide range of new properties linked to the large panel of available microstructures. The efficiency of the technique and thus the resulting structure, based on an incident flux of particles impinging on the substrate, depends on the distribution of the vapour source. The deposition pressure, which acts on the sputtered particles mean free path, is an important parameter, especially for sputtering processes. This study reports on the effect of different deposition pressures combined to a systematic change of the incidence angle of the sputtered particles, on the structural properties and electrical behaviours of obliquely sputtered chromium thin films. The results revealed higher performances and an enhanced control of the process at low sputtering pressure.

  15. [Spectrum diagnostics for optimization of experimental parameters in thin films deposited by magnetron sputtering].

    Science.gov (United States)

    Guo, Qing-Lin; Cui, Yong-Liang; Chen, Jian-Hui; Zhang, Jin-Ping; Huai, Su-Fang; Liu, Bao-Ting; Chen, Jin-Zhong

    2010-12-01

    The plasma emission spectra generated during the deposition process of Si-based thin films by radio frequency (RF) magnetron sputtering using Cu and Al targets in an argon atmosphere were acquired by the plasma analysis system, which consists of a magnetron sputtering apparatus, an Omni-lambda300 series grating spectrometer, a CCD data acquisition system and an optical fiber transmission system. The variation in Cu and Al plasma emission spectra intensity depending on sputtering conditions, such as sputtering time, sputtering power, the target-to-substrate distance and deposition pressure, was studied by using the analysis lines Cu I 324. 754 nm, Cu I 327. 396 nm, Cu I 333. 784 nm, Cu I 353. 039 nm, Al I 394. 403 nm and Al I 396. 153 nm. Compared with the option of experimental parameters of thin films deposited by RF magnetron sputtering, it was shown that emission spectra analysis methods play a guiding role in optimizing the deposition conditions of thin films in RF magnetron sputtering.

  16. View factor modeling of sputter-deposition on micron-scale-architectured surfaces exposed to plasma

    Energy Technology Data Exchange (ETDEWEB)

    Huerta, C. E., E-mail: cesar@seas.ucla.edu; Matlock, T. S.; Wirz, R. E. [University of California, Los Angeles, California 90095 (United States)

    2016-03-21

    The sputter-deposition on surfaces exposed to plasma plays an important role in the erosion behavior and overall performance of a wide range of plasma devices. Plasma models in the low density, low energy plasma regime typically neglect micron-scale surface feature effects on the net sputter yield and erosion rate. The model discussed in this paper captures such surface architecture effects via a computationally efficient view factor model. The model compares well with experimental measurements of argon ion sputter yield from a nickel surface with a triangle wave geometry with peak heights in the hundreds of microns range. Further analysis with the model shows that increasing the surface pitch angle beyond about 45° can lead to significant decreases in the normalized net sputter yield for all simulated ion incident energies (i.e., 75, 100, 200, and 400 eV) for both smooth and roughened surfaces. At higher incident energies, smooth triangular surfaces exhibit a nonmonotonic trend in the normalized net sputter yield with surface pitch angle with a maximum yield above unity over a range of intermediate angles. The resulting increased erosion rate occurs because increased sputter yield due to the local ion incidence angle outweighs increased deposition due to the sputterant angular distribution. The model also compares well with experimentally observed radial expansion of protuberances (measuring tens of microns) in a nano-rod field exposed to an argon beam. The model captures the coalescence of sputterants at the protuberance sites and accurately illustrates the structure's expansion due to deposition from surrounding sputtering surfaces; these capabilities will be used for future studies into more complex surface architectures.

  17. Preparation of Bismuth Titanate Films by Electron Cyclotron Resonance Plasma Sputtering-Chemical Vapor Deposition

    OpenAIRE

    Masumoto, H.; Hirai, T.

    1995-01-01

    Bismuth titanate (Bi4Ti3O12 : BIT) thin films were prepared on the Pt courted MgO(100) substrate by electron cyclotron resonance plasma sputtering-chemical vapor deposition (ECR plasma sputtering-CVD). Bi2O3 was used as a sputtering target and tetra-isopropoxy-titanium [Ti(i-C3H7O)4] as a CVD source. The composition of films was controlled by changing RF power (PRF) of Bi2O3 target and Ti source temperature (TTi). The stoichiometric BIT film was prepared under the condition of PRF=500W, TTi=6...

  18. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Doehrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Risch, Johannes F. H.; Mannweiler, Roman; Roth, Stephan V. [DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Bommel, Sebastian [DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Brunner, Simon; Metwalli, Ezzeldin; Mueller-Buschbaum, Peter [Lehrstuhl fuer Funktionelle Materialien, Physik-Department, Technische Universitaet Muenchen, James-Franck-Str. 1, D-85748 Garching (Germany)

    2013-04-15

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  19. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    Science.gov (United States)

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F. H.; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V.

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  20. Study of magnetic iron nitride thin films deposited by high power impulse magnetron sputtering

    OpenAIRE

    Tayal, Akhil; Gupta, Mukul; Gupta, Ajay; Ganesan, V.; Behera, Layanta; Singh, Surendra; Basu, Saibal

    2014-01-01

    In this work, we studied phase formation, structural and magnetic properties of iron-nitride (Fe-N) thin films deposited using high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (dc-MS). The nitrogen partial pressure during deposition was systematically varied both in HiPIMS and dc-MS. Resulting Fe-N films were characterized for their microstructure, magnetic properties and nitrogen concentration. We found that HiPIMS deposited Fe-N films show a globular ...

  1. A novel remote plasma sputtering technique for depositing high-performance optical thin films

    Science.gov (United States)

    Bu, Y. K.; Liu, Z.; Dutson, J. D.; Thwaites, M. J.; Chen, N.; Cai, Z. P.

    2011-02-01

    This paper describes a novel remote plasma sputtering technique for depositing optical thin films. This technology is based on generating intensive plasma remotely from the target and then magnetically steering the plasma to the target to realize the sputter deposition. It overcomes several of inherent limitations in conventional sputtering techniques and realizes the fully uniform erosion over the surface of the target and less target poison. This allows a uniform reaction in the plasma phase when performing reactive sputtering, leading to the formation and deposition of material with a uniform stoichiometry and gives pseudo-independence of target current and voltage. This pseudo-independence offers a great deal of flexibility with regard to the control of growth conditions and film properties, the benefits include control of stress, very low deposition rates for ultra thin films. By remote reactive sputtering, dense metal-oxide optical thin films (SiO2, Ta2O5, Nb2O5) with a high deposition rate, excellent optical properties are achieved. High process stability shows an excellent time terminating accuracy for multilayer coating thickness control. Typically, thin film thickness control to coating, including anti-reflection, dichroic mirror and 2μm laser mirrors are presented.

  2. A review of basic phenomena and techniques for sputter-deposition of high temperature superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Auciello, O. (Microelectronics Center of North Carolina, Research Triangle Park, NC (USA) North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Ameen, M.S.; Kingon, A.I.; Lichtenwalner, D.J. (North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Krauss, A.R. (Argonne National Lab., IL (USA))

    1990-01-01

    The processes involved in plasma and ion beam sputter-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Control of film composition is a major issue in sputter-deposition of multicomponent materials. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. It has been understood for some time that for Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} deposition, the most intensely studied high-{Tc} compound, incorporation of sufficient oxygen into the film during deposition is necessary to produce as-deposited superconducting films at relatively substrate temperatures. Recent results have shown that with the use of suitable buffer layers, high quality Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} sputtered films can be obtained on Si substrates without the need for post-deposition anneal processing. This review is mainly focussed on issues related to sputter-deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin films, although representative results concerning the bismuth and thallium based compounds are included. 143 refs., 11 figs.

  3. Thin Film Formation of Gallium Nitride Using Plasma-Sputter Deposition Technique

    Directory of Open Access Journals (Sweden)

    R. Flauta

    2003-06-01

    Full Text Available The formation of gallium nitride (GaN thin film using plasma-sputter deposition technique has beenconfirmed. The GaN film deposited on a glass substrate at an optimum plasma condition has shown x-raydiffraction (XRD peaks at angles corresponding to that of (002 and (101 reflections of GaN. The remainingmaterial on the sputtering target exhibited XRD reflections corresponding to that of bulk GaN powder. Toimprove the system’s base pressure, a new UHV compatible system is being developed to minimize theimpurities in residual gases during deposition. The sputtering target configuration was altered to allow themonitoring of target temperature using a molybdenum (Mo holder, which is more stable against Gaamalgam formation than stainless steel.

  4. Properties of electrochromic nickel-vanadium oxide films sputter-deposited from nonmagnetic alloy target

    Science.gov (United States)

    Avendano, Esteban; Azens, Andris; Niklasson, Gunnar A.

    2001-11-01

    In this study we investigate the structure, composition, diffusion coefficient, and electrochromic properties of nickel-vanadium oxide films as a function of deposition conditions. Polycrystalline films have been deposited by DC magnetron sputtering from a nonmagnetic target of Ni0.93V0.07 in an atmosphere of O2/Ar and Ar/O2/H2, with the gas flow ratios varied systematically to cover the range from nearly-metallic to overoxidized films. The results contradict the usual view that films deposited in O2/Ar are dark brown in their as-deposited state. While such films can easily be deposited, the optimum electrochromic properties have been observed at O2/Ar ratios giving nearly transparent films. Addition of hydrogen to the sputtering atmosphere improved cycling stability of the films. The diffusion coefficient has been determined by the Galvanostatic Intermittent Titration Technique (GITT).

  5. High-rate deposition of optical coatings by closed-field magnetron sputtering

    Science.gov (United States)

    Gibson, D. R.; Brinkley, I.; Waddell, E. M.; Walls, J. M.

    2005-09-01

    "Closed field" magnetron (CFM) sputtering offers a flexible and high throughput deposition process for optical coatings and thin films required in a wide range of optical applications. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. Moreover, CFM provides a room temperature deposition process with high ion current density, low bias voltage and reactive oxidation in the entire volume around the rotating substrate drum carrier, thereby producing films over a large surface area at high deposition rate with excellent and reproducible optical properties. Machines based on the Closed Field are scaleable to meet a range of batch and in-line size requirements. Typically, thin film thickness control to <+/-1% is accomplished simply using time. Fine layer thickness control and deposition of graded index layers is also assisted with a specially designed rotating shutter mechanism. The CFM configuration also allows plasma treatment of surfaces prior to deposition, allowing optimisation of coating adhesion to substrates such as plastics. This paper presents data on optical, durability and environmental properties for CFM deposited optical coatings, including anti-reflection, IR blocker and colour control and thermal control filters, graded coatings, as well as conductive transparent oxides such as indium tin oxide. Benefits of the CFM sputter process for a range of optical applications are described.

  6. Structure of anodized Al–Zr sputter deposited coatings and effect on optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Shabadi, Rajashekhara

    2014-01-01

    The mechanism of interaction of light with the microstructure of anodized layer giving specific optical appearance is investigated using Al–Zr sputter deposited coating as a model system on an AA6060 substrate. Differences in the oxidative nature of various microstructural components result in th...

  7. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering

    National Research Council Canada - National Science Library

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-01-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of −50 V. X-ray diffraction (XRD...

  8. Investigation of Boron Thermal Diffusion from Atmospheric Pressure Chemical Vapor Deposited Boron Silicate Glass for N-Type Solar Cell Process Application

    OpenAIRE

    Ikuo Kurachi; Kentaro Yoshioka

    2016-01-01

    An atmospheric pressure chemical vapor deposition (AP-CVD) system has been newly developed for boron silicate glass (BSG) film deposition dedicating to solar cell manufacturing. Using the system, thermal boron diffusion from the BSG film is investigated and confirmed in terms of process stability for surface property before BSG deposition and BSG thickness. No degradation in carrier lifetime is also confirmed. A boron diffusion simulator has been newly developed and demonstrated for optimizat...

  9. Control of the optical properties of silicon and chromium mixed oxides deposited by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Vergara, L., E-mail: vergara@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Galindo, R. Escobar [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Martinez, R. [AIN, Centro de Ingenieria Avanzada de Superficies, 31191 Cordovilla, Pamplona (Spain); Sanchez, O. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Palacio, C. [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Albella, J.M. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain)

    2011-03-31

    The development of mixed-oxide thin films allows obtaining materials with better properties than those of the different binary oxides, which makes them suitable for a great number of applications in different fields, such as tribology, optics or microelectronics. In this paper we investigate the deposition of mixed chromium and silicon oxides deposited by reactive magnetron sputtering with a view to use them as optical coatings with an adjustable refractive index. These films have been characterized by means of Rutherford backscattering spectrometry, Auger electron spectroscopy, X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy and spectroscopic ellipsometry so as to determine how the deposition conditions influence the characteristics of the material. We have found that the deposition parameter whose influence determines the properties of the films to a greater extent is the amount of oxygen in the reactive sputtering gas.

  10. Aluminium nitride films deposition by reactive triode sputtering for surface acoustic wave device applications

    OpenAIRE

    MORTET, Vincent; Vasin, A; Jouan, PY; Elmazria, O; Djouadi, MA

    2003-01-01

    AlN thin films have been deposited by reactive triode sputtering. The effect of the nitrogen contents in the discharge on films stoichiometry and crystal orientation has been investigated. AlN films have been studied by means of Fourier-transform infrared spectroscopy, X-ray diffraction and Raman spectroscopy. Dense AlN layers with very high electrical resistivity, high index of refraction and large optical band gap were obtained at high deposition rates. Finally, the optimized films were app...

  11. Deposition of multilayer optical coatings using closed-field magnetron sputtering

    Science.gov (United States)

    Gibson, D. R.; Brinkley, I.; Hall, G. W.; Waddell, E. M.; Walls, J. M.

    2006-08-01

    "Closed field" magnetron (CFM) sputtering offers a flexible and high throughput deposition process for optical coatings and thin films required in display technologies. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. Moreover, CFM provides a room temperature deposition process with high ion current density, low bias voltage and reactive oxidation in the entire volume around the rotating substrate drum carrier, thereby producing films over a large surface area at high deposition rate with excellent and reproducible optical properties. Machines based on the Closed Field are scaleable to meet a range of batch and in-line size requirements. Typically, thin film thickness control to < +/-1% is accomplished simply using time, although optical monitoring can be used for more demanding applications. Fine layer thickness control and deposition of graded index layers is also assisted with a specially designed rotating shutter mechanism. This paper presents data on optical properties for CFM deposited optical coatings, including anti-reflection, IR blocker and colour control and thermal control filters, graded coatings, narrowband filters as well as conductive transparent oxides such as indium tin oxide. Benefits of the CFM sputter process are described.

  12. Pattern Dependency and Loading Effect of Pure-Boron-Layer Chemical-Vapor Deposition

    NARCIS (Netherlands)

    Mohammadi, V.; De Boer, W.B.; Scholtes, T.L.M.; Nanver, L.K.

    2012-01-01

    The pattern dependency of pure-boron (PureB) layer chemical-vapor Deposition (CVD) is studied with respect to the correlation between the deposition rate and features like loading effects, deposition parameters and deposition window sizes. It is shown experimentally that the oxide coverage ratio and

  13. Development of AlInN photoconductors deposited by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Cascajero, Arantzazu; Jimenez-Rodriguez, Marco; Gonzalez-Herraez, Miguel; Naranjo, Fernando B. [Grupo de Ingenieria Fotonica, Departamento de Electronica, Universidad de Alcala, Madrid (Spain); Monroy, Eva [Universite Grenoble-Alpes, Grenoble (France); CEA-Grenoble, INAC-PHELIQS, Grenoble (France)

    2017-09-15

    In this work, we have developed photoconductor devices based on Al{sub 0.39}In{sub 0.61}N layers grown on sapphire by reactive radio-frequency magnetron sputtering. The fabricated devices show a sublinear dependence of the photocurrent as a function of the incident optical power. The above-the-band-gap responsivity reaches 7 W/A for an irradiance of 10 W/m{sup 2} (405 nm wavelength). The response decreases smoothly for below-the-bandgap excitation, dropping by more than an order of magnitude at 633 nm. The devices present persistent photoconductivity effects associated to carrier trapping at grain boundaries. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    Krawczak Ewelina

    2017-01-01

    Full Text Available The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.

  15. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications

    Science.gov (United States)

    Krawczak, Ewelina; Gułkowski, Sławomir

    2017-10-01

    The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS) devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC) magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.

  16. Microstructure and Electrical Properties of Antimony Telluride Thin Films Deposited by RF Magnetron Sputtering on Flexible Substrate Using Different Sputtering Pressures

    Science.gov (United States)

    Khumtong, T.; Sukwisute, P.; Sakulkalavek, A.; Sakdanuphab, R.

    2017-05-01

    The microstructural, electrical, and thermoelectric properties of antimony telluride (Sb2Te3) thin films have been investigated for thermoelectric applications. Sb2Te3 thin films were deposited on flexible substrate (polyimide) by radiofrequency (RF) magnetron sputtering from a Sb2Te3 target using different sputtering pressures in the range from 4 × 10-3 mbar to 1.2 × 10-2 mbar. The crystal structure, [Sb]:[Te] ratio, and electrical and thermoelectric properties of the films were analyzed by grazing-incidence x-ray diffraction (XRD) analysis, energy-dispersive x-ray spectroscopy (EDS), and Hall effect and Seebeck measurements, respectively. The XRD spectra of the films demonstrated polycrystalline structure with preferred orientation of (015), (110), and (1010). A high-intensity spectrum was found for the film deposited at lower sputtering pressure. EDS analysis of the films revealed the effects of the sputtering pressure on the [Sb]:[Te] atomic ratio, with nearly stoichiometric films being obtained at higher sputtering pressure. The stoichiometric Sb2Te3 films showed p-type characteristics with electrical conductivity, carrier concentration, and mobility of 35.7 S cm-1, 6.38 × 1019 cm-3, and 3.67 cm2 V-1 s-1, respectively. The maximum power factor of 1.07 × 10-4 W m-1 K-2 was achieved for the film deposited at sputtering pressure of 1.0 × 10-2 mbar.

  17. Microstructural evaluation of NiTi-based films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Crăciunescu, Corneliu M., E-mail: corneliu.craciunescu@upt.ro; Mitelea, Ion, E-mail: corneliu.craciunescu@upt.ro; Budău, Victor, E-mail: corneliu.craciunescu@upt.ro [Department of Materials and Manufacturing Engineering, Politehnica University of Timisoara (Romania); Ercuţa, Aurel [Department of Materials and Manufacturing Engineering, Politehnica University of Timisoara and Department of Physics, West University Timisoara (Romania)

    2014-11-24

    Shape memory alloy films belonging to the NiTi-based systems were deposited on heated and unheated substrates, by magnetron sputtering in a custom made system, and their structure and composition was analyzed using electron microscopy. Several substrates were used for the depositions: glass, Cu-Zn-Al, Cu-Al-Ni and Ti-NiCu shape memory alloy ribbons and kapton. The composition of the Ti-Ni-Cu films showed limited differences, compared to the one of the target and the microstructure for the DC magnetron sputtering revealed crystallized structure with features determined on peel off samples from a Si wafer. Both inter and transcrystalline fractures were observed and related to the interfacial stress developed on cooling from deposition temperature.

  18. The Effects of Sputtering Target Preparation and Deposition Temperature on ZnTe:Cu Film Properties

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, Brooke R.; Ohno, T. R.; Burst, James M.; Duenow, Joel N.; Perkins, Craig L.; To, Bobby; Gessert, Timothy A.

    2015-06-14

    A back contact containing a sputtered ZnTe:Cu interface layer can produce high-performing thin-film CdS/CdTe photovoltaic devices. We have found that varying the ZnTe:Cu sputtering target fabrication processes and deposition temperature can affect material properties of the ZnTe:Cu films and the resulting device performance. Two different target 'recipes' with various copper contents were used to study changes in the compositional, structural, optical, and electrical properties of ZnTe:Cu films. Substrate temperature during deposition was also varied to investigate the temperature dependence of the films. It was found that the target recipe, Cu concentration in the target, and deposition temperature affect the composition of the ZnTe:Cu films, which impacts their structural, optical, and electrical properties.

  19. Properties of AlN thin films deposited by means of magnetron sputtering for ISFET applications

    Directory of Open Access Journals (Sweden)

    Firek Piotr

    2015-12-01

    Full Text Available This work presents the investigations of AlN thin films deposited on Si substrates by means of magnetron sputtering. Nine different sputtering processes were performed. Based on obtained results, the tenth process was prepared and performed (for future ISFET structures manufacturing. Round aluminum (Al electrodes were evaporated on the top of deposited layers. The MIS capacitor structures enabled a subsequent electrical characterization of the AlN films by means of current-voltage (I-V and capacitance-voltage (C-V measurements. Based on these results, the main parameters of investigated layers were obtained. Moreover, the paper describes the technology of fabrication and electrical characterization of ISFET transistors and possibility of their application as ion sensors.

  20. Growing LaAlO3/SrTiO3 interfaces by sputter deposition

    Directory of Open Access Journals (Sweden)

    I. M. Dildar

    2015-06-01

    Full Text Available Sputter deposition of oxide materials in a high-pressure oxygen atmosphere is a well-known technique to produce thin films of perovskite oxides in particular. Also interfaces can be fabricated, which we demonstrated recently by growing LaAlO3 on SrTiO3 substrates and showing that the interface showed the same high degree of epitaxy and atomic order as is made by pulsed laser deposition. However, the high pressure sputtering of oxides is not trivial and number of parameters are needed to be optimized for epitaxial growth. Here we elaborate on the earlier work to show that only a relatively small parameter window exists with respect to oxygen pressure, growth temperature, radiofrequency power supply and target to substrate distance. In particular the sensitivity to oxygen pressure makes it more difficult to vary the oxygen stoichiometry at the interface, yielding it insulating rather than conducting.

  1. Fabrication of black-gold coatings by glancing angle deposition with sputtering

    Directory of Open Access Journals (Sweden)

    Alan Vitrey

    2017-02-01

    Full Text Available The fabrication of black-gold coatings using sputtering is reported here. Glancing angle deposition with a rotating substrate is needed to obtain vertical nanostructures. Enhanced light absorption is obtained in the samples prepared in the ballistic regime with high tilt angles. Under these conditions the diameter distribution of the nanostructures is centered at about 60 nm and the standard deviation is large enough to obtain black-metal behavior in the visible range.

  2. Low resistivity of Ni–Al co-doped ZnO thin films deposited by DC magnetron sputtering at low sputtering power

    Energy Technology Data Exchange (ETDEWEB)

    Lee, JongWoo [Department of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Hui, K.N. [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Hui, K.S., E-mail: kshui@hanyang.ac.kr [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Cho, Y.R., E-mail: yescho@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Chun, Ho-Hwan [Global Core Research Center for Ships and Offshore Plants (GCRC-SOP), Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2014-02-28

    Ni–Al co-doped ZnO (NiAl:ZnO) thin films were deposited on glass substrates by DC magnetron sputtering in Ar using a single ceramic, spark-plasma-sintered target with 2 wt% Al and 5 wt% Ni. The effects of the sputtering power and gas pressure on the NiAl:ZnO films were studied. The structural, electrical, and optical properties of the films were characterized by X-ray diffraction, field emission scanning electron microscopy, Hall effect measurements and UV–vis transmission spectroscopy. As the sputtering power and gas pressure increased, the crystallinity, electrical properties and optical band gap of the films were improved. The NiAl:ZnO film deposited at 40 W at 6.0 mTorr had the strongest (0 0 2) XRD peak and the lowest resistivity of approximately 2.19 × 10{sup −3} Ω cm with an optical transmittance of 90%.

  3. Rapid thermal annealing of sputter-deposited ZnO:Al films for microcrystalline Si thin-film solar cells

    Directory of Open Access Journals (Sweden)

    Hanajiri T.

    2012-06-01

    Full Text Available Rapid thermal annealing of sputter-deposited ZnO and Al-doped ZnO (AZO films with and without an amorphous silicon (a-Si capping layer was investigated using a radio-frequency (rf argon thermal plasma jet of argon at atmospheric pressure. The resistivity of bare ZnO films on glass decreased from 108 to 104–105 Ω cm at maximum surface temperatures Tmaxs above 650 °C, whereas the resistivity increased from 10-4 to 10-3–10-2Ω cm for bare AZO films. On the other hand, the resistivity of AZO films with a 30-nm-thick a-Si capping layer remained below 10-4Ω cm, even after TPJ annealing at a Tmax of 825 °C. The film crystallization of both AZO and a-Si layers was promoted without the formation of an intermixing layer. Additionally, the crystallization of phosphorous- and boron-doped a-Si layers at the sample surface was promoted, compared to that of intrinsic a-Si under the identical plasma annealing conditions. The TPJ annealing of n+-a-Si/textured AZO was applied for single junction n-i-p microcrystalline Si thin-film solar cells.

  4. Methods of optimization of reactive sputtering conditions of Al target during AlN films deposition

    Directory of Open Access Journals (Sweden)

    Chodun Rafal

    2015-12-01

    Full Text Available Encouraged by recent studies and considering the well-documented problems occurring during AlN synthesis, we have chosen two diagnostic methods which would enable us to fully control the process of synthesis and characterize the synthesized aluminum nitride films. In our experiment we have compared the results coming from OES measurements of plasma and circulating power characteristics of the power supply with basic features of the deposited layers. The dual magnetron system operating in AC mode was used in our studies. Processes of aluminum target sputtering were carried out in an atmosphere of a mixture of argon and nitrogen. The plasma emission spectra were measured with the use of a monochromator device. Analyses were made by comparing the positions and intensities of spectral lines of the plasma components. The results obtained allowed us to characterize the sputtering process under various conditions of gas mixture compositions as well as power distribution more precisely, which is reported in this work. The measured spectra were related to the deposition rate, the structure morphology of the films and chemical composition. Our work proved that the use of plasma OES and circulating power measurements make possible to control the process of sputtering and synthesis of deposited films in situ.

  5. Large-area few-layer MoS 2 deposited by sputtering

    KAUST Repository

    Huang, Jyun-Hong

    2016-06-06

    Direct magnetron sputtering of transition metal dichalcogenide targets is proposed as a new approach for depositing large-area two-dimensional layered materials. Bilayer to few-layer MoS2 deposited by magnetron sputtering followed by post-deposition annealing shows superior area scalability over 20 cm(2) and layer-by-layer controllability. High crystallinity of layered MoS2 was confirmed by Raman, photo-luminescence, and transmission electron microscopy analysis. The sputtering temperature and annealing ambience were found to play an important role in the film quality. The top-gate field-effect transistor by using the layered MoS2 channel shows typical n-type characteristics with a current on/off ratio of approximately 10(4). The relatively low mobility is attributed to the small grain size of 0.1-1 mu m with a trap charge density in grain boundaries of the order of 10(13) cm(-2).

  6. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, K L; Rodriguez, C A [Grupo Plasma Laser y Aplicaciones, Ingenieria Fisica, Universidad Tecnologica de Pereira (Colombia); Perez, F A [WNANO, West Virginia University (United States); Riascos, H [Grupo Plasma Laser y Aplicaciones, Departamento de Fisica, Universidad Tecnologica de Pereira (Colombia)

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al{sub 2}O{sub 3}) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  7. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    Science.gov (United States)

    Salcedo, K. L.; Rodríguez, C. A.; Perez, F. A.; Riascos, H.

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al2O3) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  8. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Chater, Richard J. [Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cañamares, Maria Vega [Instituto de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid (Spain); Marco, José F. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Castillejo, Marta, E-mail: marta.castllejo@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2015-02-15

    Highlights: • Micrometric rods obtained by ns pulsed laser deposition of boron carbide at 1064 and 266 nm. • At 1064 nm microrods display crystalline polyhedral shape with sharp edges and flat sides. • Microrods consist of a mixture of boron, boron oxide, boron carbide and aliphatic hydrocarbons. - Abstract: Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  9. Films deposited from reactive sputtering of aluminum acetylacetonate under low energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Battaglin, Felipe Augusto Darriba; Prado, Eduardo Silva; Cruz, Nilson Cristino da; Rangel, Elidiane Cipriano, E-mail: elidiane@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Caseli, Luciano [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil). Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas; Silva, Tiago Fiorini da; Tabacniks, Manfredo Harri [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Films were deposited from aluminum acetylacetonate (Al(acac)3 ) using a methodology involving reactive sputtering and low energy ion bombardment. The plasma was generated by the application of radiofrequency power to the powder containing electrode and simultaneously, negative pulses were supplied to the electrode where the substrates were attached. It was investigated the effect of the duty cycle of the pulses (Δ) on the properties of the coatings. Association of ion bombardment to the deposition process increased film thickness, structure reticulation and organic content. Ions from the deposition environment were implanted at the film-air interface or underneath it. Morphology and topography were altered depending on Δ. Considering the enhancement of Δ, it affected the flux of ions reaching the depositing interface and then the deposition rate, H content, crosslinking degree and surface microstructure. Alumina groups were detected in the infrared spectra, whereas the precipitation of amorphous alumina was confirmed by X-ray diffraction. (author)

  10. Boron

    Science.gov (United States)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  11. Growth, Properties and Applications of Mo Ox Thin-Films Deposited by Reactive Sputtering

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis

    Transition metal-oxide (TMOs) thin-films are commonly used in optoelectronic devices such as in photovoltaics and light emitting diodes, using both organic, inorganic and hybrid technologies. In such devices, TMOs typically act as an interfacial layer, where its functionality is to facilitate hole...... sputtering. The composition of the films was controlled mainly through the oxygen partial pressure during growth, and crystallization of the amorphous as-deposited films was obtained through ultra high vacuum annealing. The defect band of as-deposited MoOx films was studied by photoemission spectroscopy...

  12. Magnetron sputtering cluster apparatus for formation and deposition of size-selected metal nanoparticles

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    2015-01-01

    selection is achieved using an electrostatic quadrupole mass selector. The deposited silver clusters are studied using atomic force microscopy. The height distributions show typical relative standard size deviation of 9-13% for given sizes in the range between 5-23 nm. Thus, the apparatus demonstrates good......The experimental setup utilizing a DC magnetron sputtering source for production of metal clusters, their size (mass) selection and following deposition in high vacuum is described. The source is capable to form clusters of various metals, for example, copper, silver, gold etc. Cluster size...... capability in formation of supported size-selected metal nanoparticles with controllable coverage for various practical applications....

  13. Sputter deposition and characterisation of hard wear-resistant Ti/TiN multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Simmonds, M.C.; Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Multilayered Ti/TiN thin films have been synthesized by magnetron sputter deposition. Alternating layers of Ti and TiN with layer thickness in the 5-50 nm range are sequentially deposited. The structure of the films have been characterised by atomic force microscopy (AFM), X-ray diffraction and reflection and Auger depth profiling. The mechanical properties have been investigated using pin-on-disc wear rate testing, nanoindentation determination of hardness and micro scratch testing. (author) 1 fig., 3 refs.

  14. Modeling of magnetic properties of iron thin films deposited by RF magnetron sputtering using Preisach model

    Directory of Open Access Journals (Sweden)

    Bendjerad Adel

    2016-01-01

    Full Text Available Iron thin films were deposited on glass substrates using RF magnetron sputtering and their optimal deposition conditions were determined. The structure properties were analyzed using x-ray diffraction (XRD and their magnetic hysteresis loops were obtained by Vibrating Sample Magnetometer (VSM at room temperature. In this situation, the magnetic field is either parallel or perpendicular to the substrate plane. The main contribution of this work is to characterize the thin layers and present a mathematical model that can get best fit of the characteristics B(H. By using Preisach model, good agreement was obtained between theoretical and experimental results in both cases.

  15. Deposition of B{sub 4}C/BCN/c-BN multilayered thin films by r.f. magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, G. [Laboratorio de Recubrimientos Duros del CDT-ASTIN SENA, Cali (Colombia); Caicedo, J.M. [Laboratorio de Recubrimientos Duros del CDT-ASTIN SENA, Cali (Colombia); Baca, E. [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia); Prieto, P. [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)]. E-mail: pprieto@calima.univalle.edu.co; Balogh, A.G. [Institute for Material Science, Darmstadt University of Technology (Germany); Enders, S. [Max Plank Institute, Department of Material Research, Stuttgart (Germany)

    2006-01-03

    Thin films of cubic boron nitride (c-BN) and B{sub 4}C/BCN/c-BN multilayers, were deposited by r.f. (13.56 MHz) multi-target magnetron sputtering from high-purity (99.99%) h-BN and a (99.5%) B{sub 4}C targets, in an Ar (90%)/N{sub 2} (10%) gas mixture. Films were deposited onto silicon substrates with (100) orientations at 300 {sup o}C, with r.f. power density near 7 W/cm{sup 2}. In order to obtain the highest fraction of the c-BN phase, an r.f. substrate bias voltage between - 100 and - 300 V was applied during the initial nucleation process and - 50 to - 100 V during the film growth. Additionally, B{sub 4}C and BCN films were deposited and analyzed individually. For their deposition, we varied the bias voltage of the B{sub 4}C films between - 50 and - 250 V, and for the BCN coatings, the nitrogen gas flow from 3% to 12%. A 300-nm-thick TiN buffer layer was first deposited to improve the adhesion of all samples. X-ray diffraction patterns revealed the presence of c-BN (111) and h-BN phases. FTIR spectroscopy measurements indicate the presence of a peak at 780 cm{sup -} {sup 1} referred to as 'out-of-plane' h-BN vibration mode; another peak at 1100 cm{sup -} {sup 1} corresponds to the c-BN TO mode and the 'in-plane' vibration mode of the h-BN at 1400 cm{sup -} {sup 1}. BN films deposited at 300 deg. C at a pressure of 4.0 Pa and under - 150 V of nucleation r.f. bias, applied for 35 min, presented the highest c-BN fraction, near 85%. By using 32 layers, it was possible to deposit a 4.6-{mu}m-thick c-BN film with adequate mechanical properties and good adhesion to the substrate.

  16. Aluminum oxide films deposited in low pressure conditions by reactive pulsed dc magnetron sputtering

    CERN Document Server

    Seino, T

    2002-01-01

    The reactive pulsed dc sputtering technique is widely used for the deposition of oxide films. The operating pressure for sputtering is commonly above 0.13 Pa. In this study, however, aluminum oxide (alumina) films were deposited at operating pressures from 0.06 to 0.4 Pa using a sputtering system equipped with a scanning magnetron cathode and a pulsed dc power supply. The pulsed dc power was found to be useful not only to reduce arcing, but also to sustain the discharge at low pressure. The electrical breakdown field, intrinsic stress, O/Al ratio, refractive index, and surface roughness were investigated. Both a low intrinsic stress and an O/Al ratio around the stoichiometry were required to get the film having a high breakdown field. A low operating pressure of 0.1 Pa was found to provide the necessary stress and O/Al ratio targets. A 50-nm-thick alumina film having a maximum breakdown field of 7.4 MV/cm was obtained.

  17. Metal copper films deposited on cenosphere particles by magnetron sputtering method

    Science.gov (United States)

    Yu, Xiaozheng; Xu, Zheng; Shen, Zhigang

    2007-05-01

    Metal copper films with thicknesses from several nanometres to several micrometres were deposited on the surface of cenosphere particles by the magnetron sputtering method under different working conditions. An ultrasonic vibrating generator equipped with a conventional magnetron sputtering apparatus was used to prevent the cenosphere substrates from accumulating during film growth. The surface morphology, the chemical composition, the average grain size and the crystallization of cenosphere particles were characterized by field emission scanning electron microscopy (FE-SEM), inductively coupled plasma-atom emission spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction (XRD) analysis, respectively, before and after the plating process. The results indicate that the copper films were successfully deposited on cenosphere particles. It was found from the FE-SEM results that the films were well compacted and highly uniform in thickness. The XRD results show that the copper film coated on cenospheres has a face centred cubic structure and the crystallization of the film sample increases with increasing sputtering power.

  18. Metal copper films deposited on cenosphere particles by magnetron sputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Yu Xiaozheng [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing, 100083 (China); Xu Zheng [General Research Institute for Non-ferrous Metals, Beijing 100088 (China); Shen Zhigang [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing, 100083 (China)

    2007-05-07

    Metal copper films with thicknesses from several nanometres to several micrometres were deposited on the surface of cenosphere particles by the magnetron sputtering method under different working conditions. An ultrasonic vibrating generator equipped with a conventional magnetron sputtering apparatus was used to prevent the cenosphere substrates from accumulating during film growth. The surface morphology, the chemical composition, the average grain size and the crystallization of cenosphere particles were characterized by field emission scanning electron microscopy (FE-SEM), inductively coupled plasma-atom emission spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction (XRD) analysis, respectively, before and after the plating process. The results indicate that the copper films were successfully deposited on cenosphere particles. It was found from the FE-SEM results that the films were well compacted and highly uniform in thickness. The XRD results show that the copper film coated on cenospheres has a face centred cubic structure and the crystallization of the film sample increases with increasing sputtering power.

  19. Comparative studies on damages to organic layer during the deposition of ITO films by various sputtering methods

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Hao, E-mail: haolei@imr.ac.cn [State Key Laboratory for Corrosion and Protection, Division of Surface Engineering of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Meihan [College of Mechanical Engineering, Shenyang University, Shenyang 110044 (China); Hoshi, Yoichi; Uchida, Takayuki; Kobayashi, Shinichi; Sawada, Yutaka [Center for Hyper Media Research, Tokyo Polytechnic University, 1583 Iiyama, Atsugi, Kanagawa 243-0297 (Japan)

    2013-11-15

    Aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) was respectively bombarded and irradiated by Ar ions, oxygen ions, electron beam and ultraviolet light to confirm damages during the sputter-deposition of transparent conductive oxide (TCO) on organic layer. The degree of damage was evaluated by the photoluminescence (PL) spectra of BAlq. The results confirmed the oxygen ions led to a larger damage and were thought to play the double roles of bombardment to organic layer and reaction with organic layer as well. The comparative studies on PL spectra of BAlq after the deposition of TCO films by various sputtering systems, such as conventional magnetron sputtering (MS), low voltage sputtering (LVS) and kinetic-energy-control-deposition (KECD) system, facing target sputtering (FTS) were performed. Relative to MS, LVS and KECD system, FTS can completely suppress the bombardment of the secondary electrons and oxygen negative ions, and keep a higher deposition rate simultaneously, thus it is a good solution to attain a low-damage sputter-deposition.

  20. Thermochromic VO2 thin films deposited by magnetron sputtering for smart window applications

    Science.gov (United States)

    Fortier, Jean-Philippe

    "Smart" windows are a perfect innovative example of technology that reduces our energy dependence and our impact on the environment while saving on the economical point of view. With the use of vanadium dioxide (VO2), a thermochromic compound, and this, as a thin coating, it would in fact be possible to control the sun's transmission of infrared light (heat) as a function of the surrounding environment temperature. In other words, its optical behavior would allow a more effective management of heat exchanges between a living venue and the outdoor environment. However, this type of window is still in a developmental stage. First, the oxide's deposition is not simple in nature. Based on a conventional deposition technique called magnetron sputtering mainly used in the fenestration industry, several factors such as the oxygen concentration and the substrate temperature during deposition can affect the coating's thermochromic behavior, and this, by changing its composition and crystallinity. Other control parameters such as the deposition rate, the pressure in the sputtering chamber and the choice of substrate may also modify the film microstructure, thereby varying its optical and electrical properties. In addition, several issues still persist as to its commercial application. For starters, the material's structural transition, related to the change of its optical properties, only occurs around 68°C. In addition, its low transparency and natural greenish colour are not visually appealing. Then, to this day, the deposition temperature required to crystallize and form the thermochromic oxide remains an obstacle for a possible large-scale application. Ultimately, although the material's change in temperature has been shown to be advantageous in situations of varying climate, the existing corrective solutions to these issues generate a deterioration of the thermochromic behavior. With no practical expertise on the material, this project was undertaken with certain

  1. Thin Film Deposition of Boron Nitride by Femtosecond Laser Pulses with Different Wavelengths

    Science.gov (United States)

    Miyake, Hidekazu; Luculescu, Catalin; Sato, Shunichi

    2002-12-01

    Thin film deposition of hexagonal boron nitride was carried out using fundamental and second harmonic waves of a femtosecond Ti:sapphire laser. Morphological investigation of the deposited thin films showed that the number of fragments and the ablation threshold were smaller in the case of second harmonic wave ablation than fundamental wave ablation.

  2. Microstructural Comparisons of Ultra-Thin Cu Films Deposited by Ion-Beam and dc-Magnetron Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Prater, W.

    2004-11-04

    We report and contrast both the electrical resistance and the microstructure of copper thin films deposited in an oxygen containing atmosphere by ion-beam and dc-magnetron sputtering. For films with thicknesses 5 nm or less, the resistivity of the Cu films is minimized at oxygen concentrations ranging from 0.2% to 1% for dc-magnetron sputtering and 6% to 10% for ion beam sputtering. Films sputtered under both conditions show a similar decrease of interface roughness with increasing oxygen concentration, although the magnetron deposited films are smoother. The dc-magnetron produced films have higher resistivity, have smaller Cu grains, and contain a higher concentration of cuprous oxide particles. We discuss the mechanisms leading to the grain refinement and the consequent reduced resistivity in both types of films.

  3. Influence of the deposition geometry on the microstructure of sputter-deposited V-Al-C-N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Darma, Susan; Krause, Baerbel; Doyle, Stephen; Mangold, Stefan; Baumbach, Tilo [ISS, Karlsruher Institut fuer Technologie (Germany); Ulrich, Sven; Stueber, Michael [IAM-AWP, Karlsruher Institut fuer Technologie (Germany)

    2012-07-01

    Multi-element hard coating materials such as V-Al-C-N are of great interest for many technological applications. Their mechanical properties depend on the composition and microstructure of the coating. In order to determine the optimum composition and deposition conditions of these complex materials, many samples are required. One powerful tool for reducing the number of experiments is based on the so-called combinatorial approach for thin film deposition: many different thin film samples can be realized simultaneously, exploiting the deposition gradient resulting from codeposition of several materials. We will present an X-ray diffraction study of the influence of the deposition geometry on the microstructure of V-Al-C-N coatings. The films were deposited by reactive RF magnetron sputtering from a segmented target composed of AlN and VC. Synchrotron radiation measurements where performed at the beamline PDIFF at ANKA. Significant texture changes were observed which can be attributed to the deposition geometry, as verified by calculations of the flux distribution. We conclude that codeposition can accelerate significantly the screening of new materials, under the condition that the desired property is not significantly influenced by the microstructural changes due to the deposition geometry.

  4. Sputter Deposited TiOx Thin-Films as Electron Transport Layers in Organic Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Bomholt Jensen, Pia; Lakhotiya, Harish

    transparency and favorable energy-level alignment with many commonly used electron-acceptor materials. There are several methods available for fabricating compact TiOx thin-films for use in organic solar cells, including sol-gel solution processing, spray pyrolysis and atomic-layer deposition; however...... of around 7%, by incorporating sputter deposited TiOx thin-films as electron-transport and exciton-blocking layers. In the work, we report on the effect of different TiOx deposition temperatures and thicknesses on the organic-solar-cell device performance. Besides optical characterization, AFM and XRD...... analyses are performed to characterize the morphology and crystal structure of the films, and external quantum efficiency measurements are employed to shed further light on the device performance. Our study presents a novel method for implementation of TiOx thin-films as electron-transport layer in organic...

  5. Deposition of aluminium nitride film by magnetron sputtering for diamond-based surface acoustic wave applications

    Energy Technology Data Exchange (ETDEWEB)

    Mortet, V.; Nesladek, M.; D' Haen, J.; Vanhoyland, G.; D' Olieslaeger, M. [IMO, Limburgs Universitair Centrum, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Elmazria, O.; Assouar, M.B.; Alnot, P. [LPMIA, Universite H. Poincare, Nancy I, F-54506 Vandoeuvre-les-Nancy Cedex (France)

    2002-10-16

    Diamond/piezoelectric material thin film layered structures are expected to be applied to high frequency surface acoustic wave (SAW) devices because of the high acoustic wave velocity of diamond. Aluminium nitride (AlN) has been chosen as piezoelectric material because of its both high phase velocity and high resistivity. AlN thin films have been deposited by DC pulsed magnetron sputtering on Si(100) substrates. Texture and structure of the films have been investigated by X-ray diffraction, cross-section and in-plane view scanning electronic microscopy observation, and atomic force microscopy. One-micron thick, smooth and (002) oriented AlN films have been successfully deposited on freestanding chemical vapour deposition (CVD) diamond layers. The surface acoustic wave characteristics of AlN/diamond structure were investigated. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  6. Deposition of thin films by magnetron sputtering molybdenum in samples of pure copper; Deposicao de filmes finos de molibdenio por magnetron sputtering em amostra de cobre puro

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, N.M.; Almeida, E.O. de; Alves Junior, C. [Universidade Federal do Rio Grande do Norte, Campus Universitario Lagoa Nova, PPGCEM - Natal, RN (Brazil); Lourenco, J.M. [Instituto Federal de Educacao, Ciencias e Tecnologia do Rio Grande do Norte (IFRN), Natal, RN (Brazil)

    2010-07-01

    The deposition surface is a process of thermochemical treatment, which involves the deposition of a thin film usually about one to two microns on a metallic substrate, which constitutes one of the most important surface engineering techniques. The plasma deposition process with the configuration of magnetron sputtering it is removing material from a solid surface (target) through the impact of energetic particles from plasma. The aim of this study is to characterize the microstructure of the material under study using the techniques of optical microscopy and scanning electron microscopy. (author)

  7. Properties of a-C:H:Si thin films deposited by middle-frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jinlong, E-mail: golden_dragon@126.com [State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); School of Science, Lanzhou University of Technology, Lanzhou 730050 (China); Wang, Yubao; Du, Jinfang; Yang, Hua [State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Hao, Junying, E-mail: jyhao@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-08-30

    Highlights: • The a-C:H:Si films were deposited by magnetron sputtering Si target in argon and methane gas mixture atmosphere. • The growth of a-C:H:Si films is classified into three modes with increasing of methane flow rate. • The a-C:H:Si films at moderate methane flow rate exhibit low stress, high hardness and superior tribological properties. - Abstract: The silicon doped hydrogenated amorphous carbon (a-C:H:Si) films were prepared on silicon substrates by middle-frequency magnetron sputtering silicon target in an argon and methane gas mixture atmosphere. The deposition rate, chemical composition, structure, surface properties, stress, hardness and tribological properties in the ambient air of the films were systemically investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), nanoindentation and tribological tester. The results show that doped silicon content in the films is controlled in the wide range from 39.7 at.% to 0.2 at.% by various methane gas flow rate, and methane flow rate affects not only the silicon content but also its chemical bonding structure in the films due to the transformation of sputtering modes. Meanwhile, the sp{sup 3} carbon component in the films linearly increases with increasing of methane flow rate. The film deposited at moderate methane flow rate of 40–60 sccm exhibits the very smooth surface (RMS roughness 0.4 nm), low stress (0.42 GPa), high hardness (21.1 GPa), as well as low friction coefficient (0.038) and wear rate (1.6 × 10{sup −7} mm{sup 3}/Nm). The superior tribological performance of the films could be attributed to the formation and integral covering of the transfer materials on the sliding surface and their high hardness.

  8. Reactive co-sputter deposition of nanostructured cermet anodes for solid oxide fuel cells

    Science.gov (United States)

    Ionov, Igor V.; Solovyev, Andrey A.; Shipilova, Anna V.; Lebedynskiy, Alexey M.; Smolyanskiy, Egor A.; Lauk, Alexander L.; Semenov, Vyacheslav A.

    2018-01-01

    The impact of a nanostructured NiO/yttria-stabilized zirconia (NiO/YSZ) and NiO/gadolinia-doped ceria (NiO/GDC) anode functional layers on low- and intermediate-temperature solid oxide fuel cell (SOFC) performance is investigated. NiO/YSZ and NiO/GDC thin films were reactively sputter-deposited by pulsed direct current magnetron sputtering from the Ni, Zr–Y, and Ce–Gd targets onto commercial NiO/YSZ substrates. Anode-supported SOFCs based on magnetron sputtered YSZ and GDC electrolytes (∼4 µm) with and without the nanostructured anode layers are fabricated. A direct comparison of the YSZ- and GDC-based SOFCs in temperature range of 600–800 and 400–600 °C is made. The performance of cells with the nanostructured anode layers significantly increases as compared to that of the cell without it, especially at lower temperatures. Increase of cells performance was achieved by reduction of the total area-specific resistance by 26–30%.

  9. Experimental investigation on photoelectric properties of ZAO thin film deposited on flexible substrate by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ming [School of Mechanical Engineering and Automation, Northeastern University, 3-11 WenHua Rd., 319#, Shenyang, 110004 (China); Liu, Kun, E-mail: kliu@mail.neu.edu.cn [School of Mechanical Engineering and Automation, Northeastern University, 3-11 WenHua Rd., 319#, Shenyang, 110004 (China); Liu, Xinghua [Hubei Aerospace Industry Technology Academe Special Vehicle Technology Center, Wuhan (China); Wang, Dongyang; Ba, Dechun; Xie, Yuanhua; Du, Guangyu; Ba, Yaoshuai [School of Mechanical Engineering and Automation, Northeastern University, 3-11 WenHua Rd., 319#, Shenyang, 110004 (China)

    2016-12-01

    Highlights: • ZAO thin films were deposited on PET substrate. • A set of experimental parameters were systematically investigated. • Change rule of film photoelectric properties was obtained. • ZAO films with optimal properties were obtained at our working conditions. - Abstract: Transparent conductive ZAO (Zinc Aluminum Oxide) films on flexible substrates have a great potential for low-cost mass-production solar cells. ZAO thin films were achieved on flexible PET (polyethylene terephthalate) substrates by RF magnetron sputtering technology. The surface morphology and element content, the transmittance and the sheet resistance of the films were measured to determine the optical process parameters. The results show that the ZAO thin film shows the best parameters in terms of photoelectric performance including sputtering power, working pressure, sputtering time, substrate temperature (100 W, 1.5 Pa, 60 min, 125 °C). The sheet resistance of 510 Ω and transmittance in visible region of 92% were obtained after characterization. Surface morphology was uniform and compact with a good crystal grain.

  10. Electric and Magnetic Properties of Sputter Deposited BiFeO3 Films

    Directory of Open Access Journals (Sweden)

    N. Siadou

    2013-01-01

    Full Text Available Polycrystalline BiFeO3 films have been magnetron sputter deposited at room temperature and subsequently heat-treated ex situ at temperatures between 400 and 700°C. The deposition was done in pure Ar atmosphere, as the use of oxygen-argon mixture was found to lead to nonstoichiometric films due to resputtering effects. At a target-to-substrate distance d=2′′ the BiFeO3 structure can be obtained in larger range process gas pressures (2–7 mTorr but the films do not show a specific texture. At d=6′′ codeposition from BiFeO3 and Bi2O3 has been used. Films sputtered at low rate tend to grow with the (001 texture of the pseudo-cubic BiFeO3 structure. As the film structure does not depend on epitaxy similar results are obtained on different substrates. A result of the volatility of Bi, Bi rich oxide phases occur after heat treatment at high temperatures. A Bi2SiO5 impurity phase forms on the substrate side, and does not affect the properties of the main phase. Despite the deposition on amorphous silicon oxide substrate weak ferromagnetism phenomena and displaced loops have been observed at low temperatures showing that their origin is not strain. Ba, La, Ca, and Sr doping suppress the formation of impurity phases and leakage currents.

  11. A Magnetron Sputter Deposition System for the Development of X-Ray Multilayer Optics

    Science.gov (United States)

    Broadway, David

    2015-01-01

    The project objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and extreme ultraviolet (EUV) optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance NASA Marshall Space Flight Center's (MSFC's) position as a world leader in the design of innovative x-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures are absolutely necessary in order to advance the field of x-ray astronomy by pushing the limit for observing the universe to ever-increasing photon energies (i.e., up to 200 keV or higher), well beyond Chandra's (approx.10 keV) and NuStar's (approx.75 keV) capability. The addition of multilayer technology would significantly enhance the x-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication, and design of innovative x-ray instrumentation, which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments. To this aim, a magnetron vacuum sputter deposition system for the deposition of novel multilayer thin film x-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and x-ray optics for a broad range of applications including medical imaging.

  12. A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics

    Science.gov (United States)

    Broadway, David; Ramsey, Brian; Gubarev, Mikhail

    2014-01-01

    The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.

  13. Fabricating vertically aligned ultrathin graphene nanosheets without any catalyst using rf sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jian-Hua [College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300387 (China); Wu, Shao-Long; Yang, Yu-Mei; Zheng, Rui-Ting [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Cheng, Guo-An, E-mail: gacheng@bnu.edu.cn [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)

    2013-07-15

    Ultrathin graphene nanosheets (GNSs) were synthesized on Si substrates by using radio frequency sputtering deposition. SEM, TEM and Raman were employed to characterize the GNSs. The GNSs are well aligned on the Si substrates with sharp edges separated and unfolded outside. The TEM observation shows that most of the GNSs are less than 10 layers. The field emission properties of the GNSs synthesized for 10 h were also studied. They show good field emission characteristics, with a low turn-on electric field of 2.522 V/μm, a large field enhancement factor, and excellent stability behavior, suggesting promising prospects in the application of field electron emitting devices.

  14. Surface roughness of ultra-thin silver films sputter deposited on a glass.

    Science.gov (United States)

    Rakocevic, Z; Petrovic, R; Strbac, S

    2008-12-01

    Silver was sputter deposited on a glass with a thin film thickness ranging from 10 to 80 nm. Scanning tunnelling microscopy was used to study the morphology of the obtained Ag-glass surfaces and to estimate the surface roughness. An equation for the surface roughness of the thin film was evaluated using parameters related to the thin film features: the surface roughness of the substrate, the compressibility of the thin film and the film thickness. The experimental results were fitted using the evaluated equation, and the conditions favouring lower or higher surface roughness were analyzed.

  15. On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Ottsen, Tobias Sand; Stamate, Eugen

    2016-01-01

    The electrical properties of RF-sputtered Al-doped ZnO are often spatially inhomogeneous and strongly dependent on deposition parameters. In this work, we study the mechanisms that limit the minimum resistivity achievable under different deposition regimes. In a low- and intermediate-pressure reg...

  16. Deposition of thin titanium-copper films with antimicrobial effect by advanced magnetron sputtering methods

    Energy Technology Data Exchange (ETDEWEB)

    Stranak, V., E-mail: stranak@physik.uni-greifswald.de [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Wulff, H. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Rebl, H. [University of Rostock, Biomedical Res. Center, Dept. of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Zietz, C. [University of Rostock, Dept. of Orthopaedics, Doberaner Str. 142, 18057 Rostock (Germany); Arndt, K. [University of Rostock, Dept. of Med. Microbiol., Virology and Hygiene, Schillingallee 70, 18057 Rostock (Germany); Bogdanowicz, R. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Nebe, B. [University of Rostock, Biomedical Res. Center, Dept. of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Bader, R. [University of Rostock, Dept. of Orthopaedics, Doberaner Str. 142, 18057 Rostock (Germany); Podbielski, A. [University of Rostock, Dept. of Med. Microbiol., Virology and Hygiene, Schillingallee 70, 18057 Rostock (Germany); Hubicka, Z. [Academy of Sciences of the Czech Republic, Institute of Physics, Na Slovance 2, 180 00 Prague (Czech Republic); Hippler, R. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany)

    2011-10-10

    The antibacterial effect of thin titanium-copper (Ti-Cu) films combined with sufficient growth of human osteoblastic cells is reported in the paper. Thin Ti-Cu films were prepared by three different plasma-assisted magnetron sputtering methods: direct current magnetron sputtering (dc-MS), dual magnetron sputtering (dual-MS) as well as dual high power impulse magnetron sputtering (dual-HiPIMS). The antimicrobial effect is caused by copper released from the metallic Ti-Cu films, which was measured by atomic absorption spectroscopy (AAS). The copper release is influenced by the chemical and physical properties of the deposited films and was investigated by X-ray diffractometry and X-ray reflectometry (GIXD and XR) techniques. It was found that, within the first 24 h the amount of Cu released from dual-HiPIMS films (about 250 {mu}g) was much higher than from dc-MS and dual-MS films. In vitro planktonic growth tests on Ti-Cu surfaces for Staphylococcus epidermidis and S. aureus demonstrated the killing of both bacteria using the Ti-Cu films prepared using the dual-HiPIMS technique. The killing effects on biofilm bacteria were less obvious. After the total release of copper from the Ti-Cu film the vitality of exposed human osteoblast MG-63 cells increased significantly. An initial cytotoxic effect followed by the growth of osteoblastic cells was demonstrated. The cytotoxic effect combined with growth of osteoblastic cells could be used in joint replacement surgery to reduce the possibility of infection and to increase adoption of the implants. Highlights: {yields} Ti-Cu films with significant cytotoxic effect were prepared by dual-HiPIMS technique. {yields} The cytotoxic effect is caused by total release of copper species from thin films. {yields} The copper release is influenced by crystallography and chemical properties of thin films. {yields} Sufficient growth of osteoblastic cells follows after copper release.

  17. Hexagonal boron nitride nanowalls: physical vapour deposition, 2D/3D morphology and spectroscopic analysis

    Science.gov (United States)

    BenMoussa, B.; D'Haen, J.; Borschel, C.; Barjon, J.; Soltani, A.; Mortet, V.; Ronning, C.; D'Olieslaeger, M.; Boyen, H.-G.; Haenen, K.

    2012-04-01

    Hexagonal boron nitride nanowalls were synthesized using reactive radio-frequency magnetron sputtering in combination with a hexagonal BN target. The nanowall formation is purely governed by addition of hydrogen to the nitrogen/argon gas mixture, and leads to a decreased incorporation of carbon and oxygen impurities. The surface morphology is assessed with scanning electron microscopy, while stoichiometry and reduced impurity content of the material was evidenced using Rutherford backscattering spectroscopy. Transmission electron microscopy confirms the hexagonal nature of the nanowalls, whose luminescent properties are studied with cathodoluminescence spectroscopy, shedding more light on the location and nature of the excitonic emission and crystalline quality of the h-BN nanowalls.

  18. Effects of Sputtering Parameters on AlN Film Growth on Flexible Hastelloy Tapes by Two-Step Deposition Technique.

    Science.gov (United States)

    Peng, Bin; Gong, Dongdong; Zhang, Wanli; Jiang, Jianying; Shu, Lin; Zhang, Yahui

    2016-08-10

    AlN thin films were deposited on flexible Hastelloy tapes and Si (100) substrate by middle-frequency magnetron sputtering. A layer of Y₂O₃ films was used as a buffer layer for the Hastelloy tapes. A two-step deposition technique was used to prepare the AlN films. The effects of deposition parameters such as sputtering power, N₂/Ar flow rate and sputtering pressure on the microstructure of the AlN thin films were systematically investigated. The results show that the dependency of the full width at half maximum (FWHM) of AlN/Y₂O₃/Hastelloy on the sputtering parameters is similar to that of AlN/Si (100). The FWHM of the AlN (002) peak of the prepared AlN films decreases with increasing sputtering power. The FWHM decreases with the increase of the N₂/Ar flow rate or sputtering pressure, and increases with the further increase of the N₂/Ar flow rate or sputtering pressure. The FWHM of the AlN/Y₂O₃/Hastelloy prepared under optimized parameters is only 3.7° and its root mean square (RMS) roughness is 5.46 nm. Based on the experimental results, the growth mechanism of AlN thin films prepared by the two-step deposition process was explored. This work would assist us in understanding the AlN film's growth mechanism of the two-step deposition process, preparing highly c-axis-oriented AlN films on flexible metal tapes and developing flexible surface acoustic wave (SAW) sensors from an application perspective.

  19. Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Nelea, V.; Morosanu, C.; Iliescu, M.; Mihailescu, I.N

    2004-04-30

    Hydroxyapatite (HA) thin films for applications in the biomedical field were grown by pulsed laser deposition (PLD) and radio-frequency magnetron sputtering (RF-MS) techniques. The depositions were performed from pure hydroxyapatite targets on Ti-5Al-2.5Fe (TiAlFe) alloys substrates. In order to prevent the HA film penetration by Ti atoms or ions diffused from the Ti-based alloy during and after deposition, the substrates were pre-coated with a thin buffer layer of TiN. In both cases, TiN was introduced by reactive PLD from TiN targets in low-pressure N{sub 2}. The PLD films were grown in vacuum onto room temperature substrates. The RF-MS films were deposited in low-pressure argon on substrates heated at 550 deg. C. The initially amorphous PLD thin films were annealed at 550 deg. C for 1 h in ambient air in order to restore the initial crystalline structure of HA target. The thickness of the PLD and RF-MS films were {approx}1 {mu}m and {approx}350 nm, respectively. All films were structurally studied by scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray spectrometry (EDS) and white light confocal microscopy (WLCM). The mechanical properties of the films were tested by Berkovich nano-indentation. Both PLD and RF-MS films mostly contain HA phase and exhibit good mechanical characteristics. Peaks of CaO were noticed as secondary phase in the GIXRD patterns only for RF-MS films. By its turn, the sputtered films were smoother as compared to the ones deposited by PLD (50 nm versus 250 nm average roughness). The RF-MS films were harder, more mechanically resistant and have a higher Young modulus.

  20. Effect of deposition temperature on the properties of sputtered YIG films grown on quartz

    Energy Technology Data Exchange (ETDEWEB)

    Roumie, M., E-mail: mroumie@cnrs.edu.lb [Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, Airport Road, P.O. Box 11-8281, Beirut (Lebanon); Samad, B. Abdel [DIOM Laboratory, Jean Monnet University, 23 rue du Docteur Paul Michelon, Saint-Etienne 42023 (France); Tabbal, M.; Abi-Akl, M. [Department of Physics, American University of Beirut, Bliss Street, P.O. Box 11-0236, Beirut (Lebanon); Blanc-Mignon, M.-F. [DIOM Laboratory, Jean Monnet University, 23 rue du Docteur Paul Michelon, Saint-Etienne 42023 (France); Nsouli, B. [Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, Airport Road, P.O. Box 11-8281, Beirut (Lebanon)

    2010-11-01

    Yttrium Iron Garnet (YIG), Y{sub 3}Fe{sub 5}O{sub 12}, is an oxide material that has potential applications in the magneto-optical recording media and microwave device industries. These materials, when synthesized in thin film form, usually require post-deposition annealing in order to enhance their physical properties. Furthermore, integration of YIG based optical components requires the synthesis of high quality YIG material on quartz, a process that may be problematic due to poor adhesion and lattice mismatch. Thus, we have conducted a study on the effect of deposition temperature (from 25 to 800 deg. C) and post-deposition annealing (at 740 deg. C) on the crystalline quality and chemical composition of YIG thin films, grown by radio-frequency magnetron sputtering, on quartz substrates. X-ray diffraction (XRD) shows that as-grown layers are amorphous, and subsequent annealing is necessary to induce film crystallization. Rutherford backscattering spectrometry analyses were also conducted and the chemical composition of the films was found to depend on initial deposition temperature and is affected by post-deposition anneals. Comparison of the XRD and RBS results point out to the existence of an optimal deposition temperature at about 700 deg. C for the formation of high crystalline quality and stoichiometric YIG thin films. Magnetic measurements were found to correlate to the XRD and RBS analyses.

  1. Substrate Frequency Effects on Cr x N Coatings Deposited by DC Magnetron Sputtering

    Science.gov (United States)

    Obrosov, Aleksei; Naveed, Muhammad; Volinsky, Alex A.; Weiß, Sabine

    2017-01-01

    Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (Cr x N) coatings at various substrate bias frequencies are discussed. Cr x N coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of Cr x N coatings with the substrate bias frequency increase. This transformation is attributed to preferential formation of the Cr2N phase at high frequencies compared with CrN at low frequencies. Increase in frequency leads to an increase in deposition rate, which is believed to be due to increase in plasma ion density and energy of the incident adatoms. An increase in coating hardness along with decrease in elastic modulus was observed at high frequencies. Scratch tests show a slight increase in coating adhesion, whereas no clear increase in coating roughness can be found with the substrate bias frequency.

  2. Investigation of photocatalytic activity of titanium dioxide deposited on metallic substrates by DC magnetron sputtering

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Canulescu, Stela; Dirscherl, Kai

    2013-01-01

    The photocatalytic properties of titanium dioxide (TiO2) coating in the anatase crystalline structure deposited on aluminium AA1050 alloy and stainless steel S316L substrates were investigated. The coating was prepared by DC magnetron sputtering. The microstructure and surface morphology of the c......The photocatalytic properties of titanium dioxide (TiO2) coating in the anatase crystalline structure deposited on aluminium AA1050 alloy and stainless steel S316L substrates were investigated. The coating was prepared by DC magnetron sputtering. The microstructure and surface morphology...... of the coating were investigated using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-Ray Diffraction (XRD). The photocatalytic behaviour was studied using electrochemical methods such as open circuit potential measurements, linear...... sweep voltammetry, impedance measurements. The microstructure and surface morphology of the coating were similar irrespective of the nature of the substrate, while the photocatalytic behaviour was found to vary depending on the substrate type. In general the TiO2 coating on stainless steel was shown...

  3. Layer stacked Co/Pt films with high perpendicular anisotropy sputter deposited at room temperature

    Directory of Open Access Journals (Sweden)

    N. Honda

    2017-05-01

    Full Text Available The deposition of a Co/Pt layer-stacked film that has a high perpendicular anisotropy and saturation magnetization was investigated using co-sputtering of Co and Pt at room temperature. A film with a high perpendicular anisotropy of 1 × 107 erg/cm3 and a saturation magnetization of 600 emu/cm3 was obtained when 0.62 nm of Co and 0.45 nm of Pt layers were stacked at a high Ar deposition pressure of 4.8 Pa. Although the cause of the high anisotropy is not clear, the high perpendicular anisotropy and saturation magnetization that were obtained fulfill the magnetic property requirement of bit-patterned media for high-density recording.

  4. Microstructure evolution of Ti-Si-C-Ag nanocomposite coatings deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, J., E-mail: jonla@ifm.liu.se [Linkoeping University, Thin Film Physics Division, Department of Physics, Chemistry, and Biology, IFM, SE-581 83 Linkoeping (Sweden); Eklund, P.; Jensen, J. [Linkoeping University, Thin Film Physics Division, Department of Physics, Chemistry, and Biology, IFM, SE-581 83 Linkoeping (Sweden); Ljungcrantz, H. [Impact Coatings AB, Westmansgatan 29, SE-582 16 Linkoeping (Sweden); Oberg, A. [ABB Corporate Research, Forskargraend 7, SE-721 78 Vaesteras (Sweden); Lewin, E.; Jansson, U. [Uppsala University, Department of Materials Chemistry, Angstroem Laboratory, PO Box 538, SE-751 21 Uppsala (Sweden); Flink, A.; Hoegberg, H. [Impact Coatings AB, Westmansgatan 29, SE-582 16 Linkoeping (Sweden); Hultman, L. [Linkoeping University, Thin Film Physics Division, Department of Physics, Chemistry, and Biology, IFM, SE-581 83 Linkoeping (Sweden)

    2010-12-15

    Nanocomposite coatings consisting of Ag and TiC{sub x} (x < 1) crystallites in a matrix of amorphous SiC were deposited by high-rate magnetron sputtering from Ti-Si-C-Ag compound targets. Different target compositions were used to achieve coatings with a Si content of {approx}13 at.%, while varying the C/Ti ratio and Ag content. Electron microscopy, helium ion microscopy, X-ray photoelectron spectroscopy and X-ray diffraction were employed to trace Ag segregation during deposition and possible decomposition of amorphous SiC. Eutectic interaction between Ag and Si is observed, and the Ag forms threading grains which coarsen with increased coating thickness. The coatings can be tailored for conductivity horizontally or vertically by controlling the shape and distribution of the Ag precipitates. Coatings were fabricated with hardness in the range 10-18 GPa and resistivity in the range 77-142 {mu}{Omega} cm.

  5. Sputter-Deposited Oxides for Interface Passivation of CdTe Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kephart, Jason M.; Kindvall, Anna; Williams, Desiree; Kuciauskas, Darius; Dippo, Pat; Munshi, Amit; Sampath, W. S.

    2018-03-01

    Commercial CdTe PV modules have polycrystalline thin films deposited on glass, and devices made in this format have exceeded 22% efficiency. Devices made by the authors with a magnesium zinc oxide window layer and tellurium back contact have achieved efficiency over 18%, but these cells still suffer from an open-circuit voltage far below ideal values. Oxide passivation layers made by sputter deposition have the potential to increase voltage by reducing interface recombination. CdTe devices with these passivation layers were studied with photoluminescence (PL) emission spectroscopy and time-resolved photoluminescence (TRPL) to detect an increase in minority carrier lifetime. Because these oxide materials exhibit barriers to carrier collection, micropatterning was used to expose small point contacts while still allowing interface passivation. TRPL decay lifetimes have been greatly enhanced for thin polycrystalline absorber films with interface passivation. Device performance was measured and current collection was mapped spatially by light-beam-induced current.

  6. Low temperature magnetron sputter deposition of polycrystalline silicon thin films using high flux ion bombardment

    Science.gov (United States)

    Gerbi, Jennifer E.; Abelson, John R.

    2007-03-01

    We demonstrate that the microstructure of polycrystalline silicon thin films depends strongly on the flux of low energy ions that bombard the growth surface during magnetron sputter deposition. The deposition system is equipped with external electromagnetic coils which, through the unbalanced magnetron effect, provide direct control of the ion flux independent of the ion energy. We report the influence of low energy (thin films onto amorphous substrates. We use spectroscopic ellipsometry, Raman scattering, x-ray diffraction, and cross sectional transmission electron microscopy to analyze the film microstructure. We demonstrate that increasing the flux ratio of Ar+ ions to silicon neutrals (J+/J0) during growth by an order of magnitude (from 3 to 30) enables the direct nucleation of polycrystalline Si on glass and SiO2 coated Si at temperatures below 400°C. We discuss possible mechanisms for this enhancement of crystalline microstructure, including the roles of enhanced adatom mobility and the formation of shallow, mobile defects.

  7. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering.

    Science.gov (United States)

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-01-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  8. Vanadium oxide thin films deposited on silicon dioxide buffer layers by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen Sihai [Department of Optoelectronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China) and Wuhan National laboratory for Optoelectronics, Wuhan 430074 (China)]. E-mail: cshai99@yahoo.com; Ma Hong [Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang Shuangbao [Department of Optoelectronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Shen Nan [Department of Optoelectronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xiao Jing [Department of Optoelectronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou Hao [Department of Optoelectronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhao Xiaomei [Department of Optoelectronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National laboratory for Optoelectronics, Wuhan 430074 (China); Li Yi [Department of Optoelectronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory for Imaging Recognization and Intelligence Control, Huazhong University of Science and Technology, Wuhan 430074 (China); Yi Xinjian [State Key Laboratory for Imaging Recognization and Intelligence Control, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2006-02-21

    Thin films made by vanadium oxide have been obtained by direct current magnetron sputtering method on SiO{sub 2} buffer layers. A detailed electrical and structural characterization has been performed on the deposited films by four-point probe method and scanning electron microscopy (SEM). At room temperature, the four-point probe measurement result presents the resistance of the film to be 25 kU/sheet. The temperature coefficient of resistance is - 2.0%/K. SEM image indicates that the vanadium oxide exhibits a submicrostructure with lamella size ranging from 60 nm to 300 nm. A 32 x 32-element test microbolometer was fabricated based on the deposited thin film. The infrared response testing showed that the response was 200 mV. The obtained results allow us to conclude that the vanadium oxide thin films on SiO{sub 2} buffer layers is suitable for uncooled focal plane arrays applications.

  9. Plasma deposition of piezoelectric ZnO layers by rf sputtering, SolGel and pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Waetje, Kerstin; Ebbecke, Jens; Wixforth, A. [Institut fuer Physik der Universitaet Augsburg, Experimentalphysik I, Universitaetsstrasse 1, 86135 Augsburg (Germany); Thorwarth, Goetz; Ven, Mark van de [Institut fuer Physik der Universitaet Augsburg, Experimentalphysik IV, Universitaetsstrasse 1, 86135 Augsburg (Germany)

    2008-07-01

    As ''lab-on-a-chip-devices'' suited for analyses of least amounts of liquids are emerging from prototype status, cost-effective materials for mass production of these devices are sought. For handling and mixing components, surface acoustic waves generated by piezoelectric elements are routinely employed; however, the LiNbO{sub 3} single crystals used in such units are a significant cost factor. As an alternative, zinc oxide layers deposited onto the glass substrates hold the promise of cheaper production and easier integration into the assembly. In the present study, experiments regarding the deposition of such layers using different plasma processes are presented. Film synthesis was performed using rf magnetron sputtering, pulsed laser deposition and plasma based ion bombardment of Sol-Gel films on crystalline and amorphous substrates. The impacts of significant deposition parameters are discussed. At optimum deposition parameters, excellent columnar growth in the preferred c-axis orientation could be observed. The suitability of such films for the desired application is substanciated through first mixing experiments using optically lithographed interdigital transducers (IDTs). (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Photocatalytic activity of bipolar pulsed magnetron sputter deposited TiO{sub 2}/TiWO{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Ko-Wei; Hu, Chung-Hsuan; Hua, Li-Yu; Lee, Chin-Tan [Department of Electronic Engineering, National Quemoy University, 1 Daxue Road, Jinning Township, Kinmen 89250, Taiwan, ROC (China); Zhao, Yu-Xiang [Department of Computer Science and Information Engineering, National Quemoy University, Taiwan, ROC (China); Chang, Julian; Yang, Shu-Yi [Department of Applied English, National Quemoy University, Taiwan, ROC (China); Han, Sheng, E-mail: shenghan@nutc.edu.tw [Center for General Education, National Taichung University of Science and Technology, 129 San-min Road, Section 3, Taichung 40401, Taiwan, ROC (China)

    2016-08-15

    Highlights: • TiO{sub 2}/TiWO{sub x} films were fabricated by a bipolar pulsed magnetron sputtering apparatus. • Titanium oxide being sputtered tungsten enhanced the highly oriented of TiO{sub 2} (1 0 1) plane of the specimen assemblies. • The mechanism WO{sub 3}(h{sup +}, e{sup −})/TiO{sub 2}(h{sup +}, e{sup −}) → WO{sub 3}(e{sup −})/TiO{sub 2}(h{sup +}) shows the higher hydrophilicity and lower contact angle. - Abstract: Titanium oxide films were formed by sputtering and then TiWO{sub x} films were deposited by bipolar pulsed magnetron sputtering with pure titanium and tungsten metal targets. The sputtering of titanium oxide with tungsten enhanced the orientation of the TiO{sub 2} (1 0 1) plane of the specimen assemblies. The main varying parameter was the tungsten pulse power. Titanium oxide sputtered with tungsten using a pulsing power of 50 W exhibited a superior hydrophilic property, and a contact angle of 13.1°. This fabrication conditions maximized the photocatalytic decomposition of methylene blue solution. The mechanism by which the titanium oxide was sputtered with tungsten involves the photogeneration of holes and electron traps, inhibiting the hole–electron recombination, enhancing hydrophilicity and reducing the contact angle.

  11. Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Olaya, J.J. [Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Bogota Colombia (Colombia); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D. F. 04510 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D. F. 04510 (Mexico)], E-mail: muhl@servidor.unam.mx

    2008-10-01

    Niobium nitride (NbN) coatings have many interesting properties such as chemical inertness, excellent mechanical properties, high electrical conductivity, high melting point, and a superconducting transition temperature between 16 and 17 K. For this reason, these compounds have many potential thin film applications. In this work we compare the properties of NbN{sub x} films deposited using well-characterized balanced and unbalanced magnetron sputtering systems. Samples of NbN were deposited in the two systems under almost identical deposition conditions, that is, the same substrate temperature, plasma power, gas pressure, substrate to target distance and Ar/N{sub 2} ratio. Prior to the film preparation both the magnetic field geometry and the characteristics of the plasma were determined. The microstructure and composition of the deposits were analyzed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The corrosion resistance and the micro-abrasion wear resistance were measured by anodic polarization potentiodynamic studies and by ball cratering, respectively. The NbN films grown using the highly unbalanced magnetron configuration had a preferential (111) crystal orientation and a composite hardness of up to 2400 HV{sub 0.025}. While the films deposited using the balanced magnetron had a mixed crystalline orientation and a hardness of 2000 HV{sub 0.025}. The results demonstrate the strong effect of magnetic field configuration on the ion bombardment, and the resultant coating characteristics.

  12. New Insights in the Ion Beam Sputtering Deposition of ZnO-Fluoropolymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Maria Chiara Sportelli

    2018-01-01

    Full Text Available Surface modification treatments able to confer antistain/antibacterial properties to natural or synthetic materials are receiving increasing attention among scientists. Ion beam co-sputtering (IBS of zinc oxide (ZnO and poly-tetrafluoroethylene (PTFE targets allows for the preparation of novel multifunctional coatings composed of antimicrobial ZnO nanoparticles (NPs finely dispersed in an antistain PTFE polymeric matrix. Remarkably, IBS has been proved to be successful in the controlled deposition of thin nanocoatings as an alternative to wet methods. Moreover, tuning IBS deposition parameters allows for the control of ZnONP loadings, thus modulating the antibacterial/antistain coating’s final properties. All the deposited coatings were fully characterized by X-ray photoelectron spectroscopy (XPS, atomic force microscopy (AFM, and transmission electron microscopy (TEM in order to obtain information on the materials’ surface composition, with deep insight into the nanocoatings’ morphology as a function of the ZnONP loadings. An analysis of high-resolution XP spectra evidenced a high degree of polymer defluorination along with the formation of inorganic fluorides at increasing ZnO volume ratios. Hence, post-deposition treatments for fluorides removal, performed directly in the deposition chamber, were successfully developed and optimized. In this way, a complete stoichiometry for inorganic nanophases was obtained, allowing for the conversion of fluorides into ZnO.

  13. Growth, structure and stability of sputter-deposited MoS2 thin films.

    Science.gov (United States)

    Kaindl, Reinhard; Bayer, Bernhard C; Resel, Roland; Müller, Thomas; Skakalova, Viera; Habler, Gerlinde; Abart, Rainer; Cherevan, Alexey S; Eder, Dominik; Blatter, Maxime; Fischer, Fabian; Meyer, Jannik C; Polyushkin, Dmitry K; Waldhauser, Wolfgang

    2017-01-01

    Molybdenum disulphide (MoS2) thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER) in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS2 film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD) of MoS2 films by magnetron sputtering. MoS2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO2/Si and reticulated vitreous carbon (RVC) substrates. Samples deposited at room temperature (RT) and at 400 °C were compared. The deposited MoS2 was characterized by macro- and microscopic X-ray, electron beam and light scattering, scanning and spectroscopic methods as well as electrical device characterization. We find that room-temperature-deposited MoS2 films are amorphous, of smooth surface morphology and easily degraded upon moderate laser-induced annealing in ambient conditions. In contrast, films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS2 films, independent of deposition temperature. Possible reasons for these unusual electrical properties of our PVD MoS2 thin films are discussed. A potential application for such conductive nanostructured MoS2 films could be as catalytically active electrodes in (photo-)electrocatalysis and initial electrochemical measurements suggest directions for future work on our PVD MoS2 films.

  14. Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films

    Science.gov (United States)

    Mahadeva, Sreekanth K.; Fan, Jincheng; Biswas, Anis; Sreelatha, K.S.; Belova, Lyubov; Rao, K.V.

    2013-01-01

    We report a systematic study of room-temperature ferromagnetism (RTFM) in pristine MgO thin films in their amorphous and nano-crystalline states. The as deposited dc-sputtered films of pristine MgO on Si substrates using a metallic Mg target in an O2 containing working gas atmosphere of (N2 + O2) are found to be X-ray amorphous. All these films obtained with oxygen partial pressure (PO2) ~10% to 80% while maintaining the same total pressure of the working gas are found to be ferromagnetic at room temperature. The room temperature saturation magnetization (MS) value of 2.68 emu/cm3 obtained for the MgO film deposited in PO2 of 10% increases to 9.62 emu/cm3 for film deposited at PO2 of 40%. However, the MS values decrease steadily for further increase of oxygen partial pressure during deposition. On thermal annealing at temperatures in the range 600 to 800 °C, the films become nanocrystalline and as the crystallite size grows with longer annealing times and higher temperature, MS decreases. Our study clearly points out that it is possible to tailor the magnetic properties of thin films of MgO. The room temperature ferromagnetism in MgO films is attributed to the presence of Mg cation vacancies. PMID:28348346

  15. Experimental studies of thin films deposition by magnetron sputtering method for CIGS solar cell fabrication

    Science.gov (United States)

    Gułkowski, Sławomir; Krawczak, Ewelina

    2017-10-01

    Among a variety of the thin film solar cell technologies of second generation, copper-indium-gallium-diselenide device (CIGS) with the latest highest lab cell efficiency record of 22.4 % seems to be the most promising for the power generation. This is partly due to the advantages of using low cost films of few microns thick not only as a metallic contacts but also as a main structure of the solar cell consisted of high quality semiconductor layers. This paper reports the experimental studies of the CIGS absorber formation on Soda Lime Glass substrate covered by thin molybdenum film as a back contact layer. All structures were deposited with the use of magnetron sputtering method only. Technological parameters of the deposition process such as deposition power, pressure and deposition time were optimized for each layer of the structure. Mo back contact was examined in terms of resistivity. EDS measurements were carried out to verify stoichiometric composition of CIGS absorber. Thin film of Al was used as a top contact in order to examine the quality of p-n junction. The I-V electrical characteristic of the p-n junction was analysed in terms of solar cell application.

  16. Experimental studies of thin films deposition by magnetron sputtering method for CIGS solar cell fabrication

    Directory of Open Access Journals (Sweden)

    Gułkowski Sławomir

    2017-01-01

    Full Text Available Among a variety of the thin film solar cell technologies of second generation, copper-indium-gallium-diselenide device (CIGS with the latest highest lab cell efficiency record of 22.4 % seems to be the most promising for the power generation. This is partly due to the advantages of using low cost films of few microns thick not only as a metallic contacts but also as a main structure of the solar cell consisted of high quality semiconductor layers. This paper reports the experimental studies of the CIGS absorber formation on Soda Lime Glass substrate covered by thin molybdenum film as a back contact layer. All structures were deposited with the use of magnetron sputtering method only. Technological parameters of the deposition process such as deposition power, pressure and deposition time were optimized for each layer of the structure. Mo back contact was examined in terms of resistivity. EDS measurements were carried out to verify stoichiometric composition of CIGS absorber. Thin film of Al was used as a top contact in order to examine the quality of p-n junction. The I-V electrical characteristic of the p-n junction was analysed in terms of solar cell application.

  17. Indium oxide-based transparent conductive films deposited by reactive sputtering using alloy targets

    Science.gov (United States)

    Miyazaki, Yusuke; Maruyama, Eri; Jia, Junjun; Machinaga, Hironobu; Shigesato, Yuzo

    2017-04-01

    High-quality transparent conductive oxide (TCO) films, Sn-doped In2O3 (ITO) and In2O3-ZnO (IZO), were successfully deposited on either synthetic silica or polyethylene terephthalate (PET) substrates in the “transition region” by reactive dc magnetron sputtering using In-Zn and In-Sn alloy targets, respectively, with a specially designed plasma emission feedback system. The composition, crystallinity, surface morphology, and electrical and optical properties of the films were analyzed. All of the IZO films were amorphous, whereas the ITO films were polycrystalline over a wide range of deposition conditions. The minimum resistivities of the IZO and ITO films deposited on the heated PET substrates at 150 °C were 3.3 × 10-4 and 5.4 × 10-4 Ω·cm, respectively. By applying rf bias to unheated PET substrates, ITO films with a resistivity of 4.4 × 10-4 Ω·cm were deposited at a dc self-bias voltage of -60 V.

  18. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  19. HRTEM Microstructural Characterization of β-WO3 Thin Films Deposited by Reactive RF Magnetron Sputtering

    Science.gov (United States)

    Faudoa-Arzate, A.; Arteaga-Durán, A.; Saenz-Hernández, R.J.; Botello-Zubiate, M.E.; Realyvazquez-Guevara, P.R.; Matutes-Aquino, J.A.

    2017-01-01

    Though tungsten trioxide (WO3) in bulk, nanosphere, and thin film samples has been extensively studied, few studies have been dedicated to the crystallographic structure of WO3 thin films. In this work, the evolution from amorphous WO3 thin films to crystalline WO3 thin films is discussed. WO3 thin films were fabricated on silicon substrates (Si/SiO2) by RF reactive magnetron sputtering. Once a thin film was deposited, two successive annealing treatments were made: an initial annealing at 400 °C for 6 h was followed by a second annealing at 350 °C for 1 h. Film characterization was carried out by X-ray diffraction (XRD), high-resolution electron transmission microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. The β-WO3 final phase grew in form of columnar crystals and its growth plane was determined by HRTEM. PMID:28772559

  20. High performance ZnO:Al films deposited on PET substrates using facing target sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Tingting [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Dong, Guobo, E-mail: wavedong@buaa.edu.cn [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Gao, Fangyuan; Xiao, Yu [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Chen, Qiang [Key Laboratory of Micro-nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Diao, Xungang [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)

    2013-10-01

    ZnO:Al (ZAO) thin films have been deposited on flexible PET substrates using a plasma damage-free facing target sputtering system at room temperature. The structure, surface morphology, electrical and optical properties were investigated as a function of working power. All the samples have a highly preferred orientation of the c-axis perpendicular to the PET substrate and have a high quality surface. With increased working power, the carrier concentration changes slightly, the mobility increases at the beginning and decreases after it reaches a maximum value, in line with electrical conductivity. The figure of merit has been significantly improved with increasing of the working power. Under the optimized condition, the lowest resistivity of 1.3 × 10{sup −3} Ω cm with a sheet resistance of 29 Ω/□ and the relative visible transmittance above 93% in the visible region were obtained.

  1. Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature

    Directory of Open Access Journals (Sweden)

    Ningyu Ren

    2017-05-01

    Full Text Available ITO/Ag/ITO (IAI trilayer films were deposited on glass substrate by radio frequency magnetron sputtering at room temperature. A high optical transmittance over 94.25% at the wavelength of 550 nm and an average transmittance over the visual region of 88.04% were achieved. The calculated value of figure of merit (FOM reaches 80.9 10-3 Ω-1 for IAI films with 15-nm-thick Ag interlayer. From the morphology and structural characterization, IAI films could show an excellent correlated electric and optical performance if Ag grains interconnect with each other on the bottom ITO layer. These results indicate that IAI trilayer films, which also exhibit low surface roughness, will be well used in optoelectronic devices.

  2. Deposition and sputtering yields on EUV collector mirror from Laser Plasma Extreme Ultraviolet Sources

    Energy Technology Data Exchange (ETDEWEB)

    Wu Tao [Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Rao Zhiming [Depart of Computer Science, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi (China); Wang Shifang, E-mail: flatime@163.com [School of Physics and Electric Information, Hubei University of Education 1 Nanhuan Road, Wuhan East High-Tech. Zone, Wuhan 430205, Hubei (China)

    2011-02-01

    Based on the self-similar solution of gas dynamic equations, spherical expansion of the highly ionized plasma with limited mass into a vacuum is investigated for the droplet target laser-produced plasma extreme ultraviolet (LPP-EUV) sources. Using partially numerical and partially analytical technology, the velocity, the temperature and the density profiles in the plume versus ionization degree, adiabatic index and initial conditions are presented. Furthermore, the spatial thickness variations of the deposited substrate witness and ion sputtering yields for Ru, Mo, and Si under Sn ion bombardment are theoretically calculated, which can be useful to enable LPP-EUV sources suppliers to estimate collector lifetime and improve debris mitigation systems.

  3. Structural and superconducting properties of sputter-deposited niobium films for applications in RF accelerating cavities

    CERN Document Server

    Peck, M A

    2000-01-01

    The present work presents the results of a systematic study of superconducting and structural properties of niobium films sputter deposited onto the inner walls of radiofrequency copper resonators. The measured superconducting quantities include the surface resistance, the critical temperature, the penetration depth and the upper and lower critical fields. In addition to films grown with different discharge gases (Xe, Kr, Ar, Ne and Ar-Ne mixtures) and to films grown on substrates prepared under different conditions, the study also includes massive niobium cavities. The surface resistance is analysed in terms of its dependence on the temperature and on the rf field amplitude and, when possible, compared to theoretical predictions. In general, good agreement with BCS theory is observed. All experimental results are presented in the form of a simple, but adequate parameterisation. The residual resistance is observed to be essentially uncorrelated with the other variables, but strongly dependent on the macroscop...

  4. Structure and optical characterization of silicon nitride films deposited by r.f. magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaoyun; Xu, Zheng; Zhao, Suling [Beijing Jiaotong Univ. (China). Key Lab. of Luminescence and Optical Information, Ministry of Education; Tang, Yu; Zhou, Chunlan; Wang, Wenjing [Chinese Academy of Sciences, Beijing (China). Inst. of Electrical Engineering

    2008-07-01

    Silicon nitride films were deposited by radio frequency (r.f.) magnetron sputtering in an Ar-N{sub 2} gas mixture at a low substrate temperature. Subsequently the samples were annealed in pure N{sub 2} ambience. Influences of the Ar/N{sub 2} gas flow ratio as well as annealing on the optical properties and structure were studied. The optical properties of the films before annealing were examined using transmittance spectra. The composition of the samples was investigated by Fourier transform infrared (FTIR) spectra. Microstructure of the films was investigated using atomic force microscope (AFM). The films after annealing compared to former present a more compact construct, which is very dependent on the hydrogen concentration in the film. (orig.)

  5. Comparison of blistering of W bulk and film deposited by magnetron sputtering under helium irradiation

    Directory of Open Access Journals (Sweden)

    Jiangang Yu

    2017-08-01

    Full Text Available In this work, the W bulk prepared by powder sintering and W film deposited by magnetron sputtering were simultaneously exposed to the helium ions with the energy of 60keV and fluence of 1.0 × 1022 m−2 at room temperature. The surface modifications induced by the helium irradiation were studied by scanning electron microscopy. After helium ion irradiation, numerous blisters were observed on the surface of both samples, some of which burst in various degrees. The formation of blisters is attributed to the high gas pressure in the helium bubbles. In addition, the different structures between W bulk and W film lead to the differences in density and size of blisters.

  6. Effect of gas ratio on tribological properties of sputter deposited TiN coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chavda, Mahesh R., E-mail: maheshchavda1990@gmail.com [Department of Mechanical Engineering, Dr. Jivraj Mehta Institute of Technology, Mogar-388340 (India); Chauhan, Kamlesh V.; Rawal, Sushant K., E-mail: sushantrawal.me@charusat.ac.in [CHAMOS Matrusanstha Department of Mechanical Engineering, Chandubhai S. Patel Institute of Technology, Charotar University of Science and Technology (CHARUSAT), Changa-388421 (India)

    2016-05-06

    Titanium nitride (TiN) coatings were deposited on Si, corning glass, pins of mild steel (MS, ϕ3mm), aluminium (Al, ϕ4mm) and brass (ϕ6mm) substratesby DC magnetron sputtering. The argon and nitrogen (Ar:N{sub 2})gas ratio was precisely controlled by Mass Flow Controller (MFC) and was varied systematically at diffract values of 10:10,12:08, 16:04 and 18:02sccm. The structural properties of TiN coatings were characterized by X-ray diffraction (XRD) and its surface topography was studied using field emission scanning electron microscopy (FE-SEM). The tribological properties of TiN coatings were investigated using pin-on-disc tribometer.

  7. Sn-doped β-Ga2O3 nanowires deposited by radio frequency powder sputtering

    Science.gov (United States)

    Lee, Su Yong; Kang, Hyon Chol

    2018-01-01

    We report the synthesis and characterization of Sn-doped β-Ga2O3 nanowires (NWs) deposited using radio frequency powder sputtering. The growth sequence of Sn-doped β-Ga2O3 NWs is similar to that of the undoped β-Ga2O3 NWs. Self-assembled Ga clusters act as seeds for initiating the growth of Sn-doped β-Ga2O3 NWs through a vapor–liquid–solid process, while Sn atoms are incorporated into the trunk of NWs uniformly. Different from the straight shape of undoped NWs, the conical shape of NWs is observed, which is attributed to the change in supersaturation conditions and the diffusion of the catalyst tip and reaction species.

  8. High-performance anode for Polymer Electrolyte Membrane Fuel Cells by multiple-layer Pt sputter deposition

    Science.gov (United States)

    Natarajan, Sadesh Kumar; Hamelin, Jean

    We investigate the sputtering deposition as a tool for preparing Polymer Electrolyte Membrane Fuel Cell (PEMFC) electrodes with improved performance and catalyst utilization. Anodes of PEMFC with ultra-low loading of Pt (0.05 mg cm -2) are developed by alternate sputtering of Pt and painting layers of carbon nanotube ink with Nafion directly on the gas diffusion layer. Sputter depositing alternate layers of Pt on carbon-Nafion layer (CNL) has increased the anode activity over single-layer Pt deposited anode due to improved porosity and the presence of Pt nanoparticles in the inner CNL. Also, we investigated the influence of Nafion content in the CNL. The optimal Nafion content giving less resistance and better performance in an anode is 29 wt.%. This is significantly lower than for standard MEA anodes, indicating sufficient interfacial contact between each CNL. We studied the anodes prepared with 50 wt.% Nafion, which revealed larger ohmic resistance and also, blocks the CNL pores reducing gas permeability. Excellent mass transfer and performance is obtained with three-layer Pt sputter deposited anode with CNL containing 29 wt.% of Nafion.

  9. Features of copper coatings growth at high-rate deposition using magnetron sputtering systems with a liquid metal target

    Czech Academy of Sciences Publication Activity Database

    Bleykher, G.A.; Borduleva, A.O.; Yuryeva, A.V.; Krivobokov, V.P.; Lančok, Ján; Bulíř, Jiří; Drahokoupil, Jan; Klimša, Ladislav; Kopeček, Jaromír; Fekete, Ladislav; Čtvrtlík, Radim; Tomáštík, Jan

    2017-01-01

    Roč. 324, Sep (2017), s. 111-120 ISSN 0257-8972 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : magnetron sputtering * evaporation * high-rate coating deposition * coating properties * Cu coatings Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.589, year: 2016

  10. Platinum particles deposited on synthetic boron-doped diamond surfaces. Application to methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Montilla, F.; Morallon, E.; Duo, I.; Comninellis, Ch.; Vazquez, J.L

    2003-11-15

    Two methods have been used for the deposition of Pt particles on synthetic boron-doped diamond (BDD) surfaces: chemical deposition and electrodeposition under potentiostatic conditions. However, electrodeposition leads much higher platinum dispersion than chemical deposition. The mechanism of nucleation and growing of the electrodeposited platinum was investigated by means of chronoamperometric studies in acid medium. The electrodeposition on diamond surfaces shows a mechanism of progressive nucleation as deduced from the chronoamperometric studies in acid medium. The stability of the deposited platinum is very low and the platinum particle are dissolved/detached by cycling. The modified BDD electrodes by deposition of platinum have been tested for the oxidation of methanol, showing that multi-step deposition results in higher values of surface and mass activities for methanol oxidation than one-step deposition process.

  11. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ratova, Marina, E-mail: marina_ratova@hotmail.com [Surface Engineering Group, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD (United Kingdom); Kelly, Peter J.; West, Glen T. [Surface Engineering Group, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD (United Kingdom); Tosheva, Lubomira; Edge, Michele [School of Science and the Environment, Manchester Metropolitan University, Manchester M1 5GD (United Kingdom)

    2017-01-15

    Highlights: • Bismuth tungstate coatings were deposited by reactive magnetron sputtering. • Oscillating bowl was introduced to the system to enable coating of nanopartulates. • Deposition of Bi{sub 2}WO{sub 6} enhanced visible light activity of titania nanoparticles. • The best results were obtained for coating with Bi:W ratio of approximately 2:1. • Deposition of Bi{sub 2}WO{sub 6} onto TiO{sub 2} resulted in more efficient electron-hole separation. - Abstract: Titanium dioxide − bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO{sub 2} evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO{sub 2} nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these

  12. RF Magnetron Sputtering Deposited W/Ti Thin Film For Smart Window Applications

    Science.gov (United States)

    Oksuz, Lutfi; Kiristi, Melek; Bozduman, Ferhat; Uygun Oksuz, Aysegul

    2014-10-01

    Electrochromic (EC) devices can change reversible and persistent their optical properties in the visible region (400-800 nm) upon charge insertion/extraction according to the applied voltage. A complementary type EC is a device containing two electrochromic layers, one of which is anodically colored such as vanadium oxide (V2 O5) while the other cathodically colored such as tungsten oxide (WO3) which is separated by an ionic conduction layer (electrolyte). The use of a solid electrolyte such as Nafion eliminates the need for containment of the liquid electrolyte, which simplifies the cell design, as well as improves safety and durability. In this work, the EC device was fabricated on a ITO/glass slide. The WO3-TiO2 thin film was deposited by reactive RF magnetron sputtering using a 2-in W/Ti (9:1%wt) target with purity of 99.9% in a mixture gas of argon and oxygen. As a counter electrode layer, V2O5 film was deposited on an ITO/glass substrate using V2O3 target with the same conditions of reactive RF magnetron sputtering. Modified Nafion was used as an electrolyte to complete EC device. The transmittance spectra of the complementary EC device was measured by optical spectrophotometry when a voltage of +/-3 V was applied to the EC device by computer controlled system. The surface morphology of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) (Fig. 2). The cyclic voltammetry (CV) for EC device was performed by sweeping the potential between +/-3 V at a scan rate of 50 mV/s.

  13. Structural and optical properties of Al/ZnO thin films deposited by radio frequency sputtering

    Science.gov (United States)

    Osanyinlusi, O.; Mukolu, A. I.; Zebaze Kana, M. G.

    2016-09-01

    The effects of annealing temperature and variation of sample thickness on the structural and optical properties of zinc oxide thin films with aluminium contact (Al/ZnO) have been investigated. The study involved the synthesis of a bilayer thin film of Al/ZnO with varied thicknesses on a glass slide substrate by using radio frequency magnetron sputtering deposition technique. 99.99% pure ZnO and aluminium were used as the sputtering target. The films were then annealed in vacuum at annealing temperatures of 200 °C and 400 °C. The structural and optical properties of Al/ZnO thin films grown were characterized by x-ray diffraction (XRD) and optical measurements respectively. The results obtained from the XRD patterns showed that Al/ZnO films (both as-deposited and annealed), exhibits a crystalline structure with (002) preferred orientation. The peak intensity of the preferred plane increases as the annealing temperature increases. The optical studies of the Al/ZnO films showed a maximum value of transmittance ranging from 82% to 91% depending on the condition of the films. A decrease in transmittance as the thickness of the films increases was observed. The transmittance also increased with increasing annealing temperature. The energy gaps (E g) were determined from the transmittance data and found to be in the range 3.73-3.83 eV. The results obtained from the experiment also show that the optical band gap increases as the thickness and annealing temperature increase.

  14. Aluminium-induced crystallization of amorphous silicon films deposited by DC magnetron sputtering on glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kezzoula, F., E-mail: kezzoula@usa.com [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria); Laboratory of Materials, Mineral and Composite (LMMC), Boumerdes University (Algeria); Hammouda, A. [UPR CNRS 3079 CEMHTI - 1D Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Universite d' Orleans, 45067 Orleans Cedex 2 (France); Kechouane, M. [Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Simon, P. [UPR CNRS 3079 CEMHTI - 1D Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Universite d' Orleans, 45067 Orleans Cedex 2 (France); Abaidia, S.E.H. [Laboratory of Materials, Mineral and Composite (LMMC), Boumerdes University (Algeria); Keffous, A. [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria); Cherfi, R. [Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Menari, H.; Manseri, A. [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria)

    2011-09-15

    Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) films were deposited by DC magnetron sputtering technique with argon and hydrogen plasma mixture on Al deposited by thermal evaporation on glass substrates. The a-Si/Al and a-Si:H/Al thin films were annealed at different temperatures ranging from 250 to 550 deg. C during 4 h in vacuum-sealed bulb. The effects of annealing temperature on optical, structural and morphological properties of as-grown as well as the vacuum-annealed a-Si/Al and a-Si:H/Al thin films are presented in this contribution. The averaged transmittance of a-Si:H/Al film increases upon increasing the annealing temperature. XRD measurements clearly evidence that crystallization is initiated at 450 deg. C. The number and intensity of diffraction peaks appearing in the diffraction patterns are more important in a-Si:H/Al than that in a-Si/Al layers. Results show that a-Si:H films deposited on Al/glass crystallize above 450 deg. C and present better crystallization than the a-Si layers. The presence of hydrogen induces an improvement of structural properties of poly-Si prepared by aluminium-induced crystallization (AIC).

  15. Comparison of the surfaces and interfaces formed for sputter and electroless deposited gold contacts on CdZnTe

    Science.gov (United States)

    Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.

    2018-01-01

    Cadmium zinc telluride (CdZnTe) is a leading sensor material for spectroscopic X/γ-ray imaging in the fields of homeland security, medical imaging, industrial analysis and astrophysics. The metal-semiconductor interface formed during contact deposition is of fundamental importance to the spectroscopic performance of the detector and is primarily determined by the deposition method. A multi-technique analysis of the metal-semiconductor interface formed by sputter and electroless deposition of gold onto (111) aligned CdZnTe is presented. Focused ion beam (FIB) cross section imaging, X-ray photoelectron spectroscopy (XPS) depth profiling and current-voltage (IV) analysis have been applied to determine the structural, chemical and electronic properties of the gold contacts. In a novel approach, principal component analysis has been employed on the XPS depth profiles to extract detailed chemical state information from different depths within the profile. It was found that electroless deposition forms a complicated, graded interface comprised of tellurium oxide, gold/gold telluride particulates, and cadmium chloride. This compared with a sharp transition from surface gold to bulk CdZnTe observed for the interface formed by sputter deposition. The electronic (IV) response for the detector with electroless deposited contacts was symmetric, but was asymmetric for the detector with sputtered gold contacts. This is due to the electroless deposition degrading the difference between the Cd- and Te-faces of the CdZnTe (111) crystal, whilst these differences are maintained for the sputter deposited gold contacts. This work represents an important step in the optimisation of the metal-semiconductor interface which currently is a limiting factor in the development of high resolution CdZnTe detectors.

  16. Structural investigation of ZnO:Al films deposited on the Si substrates by radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.Y. [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC (China); Yang, J.R., E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC (China); Cheng, S.L. [Department of Chemical and Materials Science Engineering, National Central University, Jong-li 32001, Taiwan, ROC (China); Shiojiri, M. [Kyoto Institute of Technology, Kyoto 606-8585 (Japan)

    2013-10-31

    ZnO:Al films 400 nm thick were prepared on (100) Si substrates by magnetron sputtering. Energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM) revealed that in the initial stage of the deposition, an amorphous silicon oxide layer about 4 nm thick formed from damage to the Si substrate due to sputtered particle bombardment and the incorporation of Si atoms with oxygen. Subsequently, a crystalline Si (Zn) layer about 30 nm thick grew on the silicon oxide layer by co-deposition of Si atoms sputtered away from the substrate with Zn atoms from the target. Finally, a ZnO:Al film with columnar grains was deposited on the Si (Zn) layer. The sputtered particle bombardment greatly influenced the structure of the object films. The (0001) lattice fringes of the ZnO:Al film were observed in high-resolution TEM images, and the forbidden 0001 reflection spots in electron diffraction patterns were attributed to double diffraction. Therefore, the appearance of the forbidden reflection did not imply any ordering of Al atoms and/or O vacancies in the ZnO:Al film. - Highlights: • ZnO:Al films were deposited on (100) Si substrate using magnetron sputtering. • An amorphous silicon oxide layer with a thickness of 4 nm was formed on Si substrate. • Crystalline Si (Zn) layer about 30 nm thick grew on amorphous silicon oxide layer. • ZnO:Al film comprising columnar grains was deposited on the Si(Zn) layer. • Lattice image of the ZnO:Al film has been interpreted.

  17. Comparative analysis of electrophysical properties of ceramic tantalum pentoxide coatings, deposited by electron beam evaporation and magnetron sputtering methods

    Science.gov (United States)

    Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.

    2014-12-01

    Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes

  18. Differences in the bone differentiation properties of MC3T3-E1 cells on polished bulk and sputter-deposited titanium specimens.

    Science.gov (United States)

    Oya, Kei; Tanaka, Yuta; Moriyama, Yoshihisa; Yoshioka, Yuki; Kimura, Tsuyoshi; Tsutsumi, Yusuke; Doi, Hisashi; Nomura, Naoyuki; Noda, Kazuhiko; Kishida, Akio; Hanawa, Takao

    2010-08-01

    The roughness and cleanness of a titanium surface must be controlled in order to investigate the expression mechanism of hard tissue compatibility on titanium. In this study, osteogenic MC3T3-E1 cells were cultured and differentiation-induced on bulk and sputter-deposited titanium specimens, and the osteogenesis were investigated. For the preparation of bulk specimens, titanium discs were mirror-polished. On the other hand, titanium was sputter-deposited on smooth and clean cover glasses as sputter-deposited specimens. As a result, no significant difference was observed in the cell morphology and attached number. On the other hand, the time showing maximum activity in the alkaline phosphatase and gene expressions, which are related to bone differentiation on the bulk titanium, were superior to those on the sputter-deposited titanium. From the surface observation of the specimens with a scanning electron microscope and a scanning probe microscope, the surface on the sputter-deposited titanium was more uniform and cleaner than that on the bulk titanium. According to X-ray photoelectron spectroscopy, the thickness of surface oxide film on the sputter-deposited titanium was smaller than that on the bulk titanium. In addition, the proportions of TiO and Ti(2)O(3) in the surface oxide film on the sputter-deposited titanium were larger than those on the bulk titanium. These differences might influence the differentiation of osteoblastic cells. (c) 2010 Wiley Periodicals, Inc.

  19. Large-area, low-temperature deposition of chalcopyrite absorbers for thin film solar cells by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ellmer, Klaus; Seeger, Stefan [Helmholtz-Zentrum fuer Materialien und Energie, Berlin (Germany). Abt. Solare Energetik

    2010-07-01

    To this day, in the upcoming field of thin film photovoltaics, magnetron sputtering is not (yet) used for the active, i.e., the absorber layers which is due to electronic defects induced in semiconducting films by energetic particle bombardment. By tailoring the deposition conditions, reactive magnetron sputtering in Ar/H{sub 2}S or Ar/H{sub 2}Se atmospheres can be used to prepare thin film solar cells with Cu(In,Ga)S(e){sub 2} chalcopyrite absorbers, despite the inherently high particle energies in typical magnetron discharges. As an example C(In,Ga)S{sub 2} absorber films were prepared by reactive magnetron sputtering (RMS). These films exhibit a homogeneous gallium distribution across the film thickness. The widening of the gap by 0.36 eV leads to an increase of the open circuit voltage from 745 mV to 840 mV. (orig.)

  20. Mechanical and electrical properties of RF magnetron sputter deposited amorphous silicon-rich silicon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dergez, D.; Schneider, M., E-mail: michael.schneider@tuwien.ac.at; Bittner, A.; Pawlak, N.; Schmid, U.

    2016-05-01

    Amorphous silicon nitride thin films in a thickness range of 40 to 500 nm are deposited onto (100) silicon wafers using radio frequency magnetron sputter deposition. Analysis of variance techniques are used to determine which deposition parameter has a significant impact on the film properties. The biaxial stress of the layers is found to be compressive independent of the plasma chamber pressure levels and to increase with increasing plasma power. The chemical composition of the films is silicon-rich, resulting in an index of refraction (IOR) of 2.55 independent of deposition conditions. Both IOR and X-ray photoelectron spectroscopy measurements indicate a nitrogen to silicon ratio in the range of 0.71–0.85. The etch rates for HF wet chemical etching and for CF{sub 4}:O{sub 2} reactive ion etching are found to be much higher compared to direct current sputter deposited silicon nitride films with only a weak dependency on the deposition conditions. Temperature dependent leakage current measurements using Au/Cr/SiN{sub x}/Si structures between 25 and 300 °C show two dominating leakage current mechanisms: ohmic conduction dominates at low applied electric field values below 0.1 MV/cm and Poole–Frenkel type conduction above 0.3 MV/cm. The extracted electrical parameters such as the activation energy or the barrier height are found to be nearly unaffected by the deposition parameters. - Highlights: • RF reactive sputter deposited Si-rich silicon nitride thin films are investigated. • Deposition conditions show nearly no impact on film stress or chemical composition. • Wet and dry etch rates decrease with increasing process chamber pressure levels. • Electrical behaviour is dependent on film thickness, but not on deposition conditions.

  1. Structure and morphology of magnetron sputter deposited ultrathin ZnO films on confined polymeric template

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ajaib [Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore 453552 (India); Schipmann, Susanne [II. Insatitute of Physics and JARA-FIT, RWTH Aachen University, 52056 Aachen (Germany); Mathur, Aakash; Pal, Dipayan [Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore 453552 (India); Sengupta, Amartya [Department of Physics, Indian Institute of Technology Delhi, Delhi 110016 (India); Klemradt, Uwe [II. Insatitute of Physics and JARA-FIT, RWTH Aachen University, 52056 Aachen (Germany); Chattopadhyay, Sudeshna, E-mail: sudeshna@iiti.ac.in [Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore 453552 (India); Discipline of Physics, Indian Institute of Technology Indore, Indore 453552 (India); Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552 (India)

    2017-08-31

    Highlights: • Ultra-thin ZnO films grown on confined polymeric (polystyrene, PS) template. • XRR and GISAXS explore the surface/interfaces structure and morphology of ZnO/PS. • Insights into the growth mechanism of magnetron sputtered ZnO thin film on PS template. • Nucleated disk-like cylindrical particles are the basis of the formation of ZnO layers. • Effect of ZnO film thickness on room temperature PL spectra in ZnO/PS systems. - Abstract: The structure and morphology of ultra-thin zinc oxide (ZnO) films with different film thicknesses on confined polymer template were studied through X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS). Using magnetron sputter deposition technique ZnO thin films with different film thicknesses (<10 nm) were grown on confined polystyrene with ∼2R{sub g} film thickness, where R{sub g} ∼ 20 nm (R{sub g} is the unperturbed radius of gyration of polystyrene, defined by R{sub g} = 0.272 √M{sub 0}, and M{sub 0} is the molecular weight of polystyrene). The detailed internal structure, along the surface/interfaces and the growth direction of the system were explored in this study, which provides insight into the growth procedure of ZnO on confined polymer and reveals that a thin layer of ZnO, with very low surface and interface roughness, can be grown by DC magnetron sputtering technique, with approximately full coverage (with bulk like electron density) even in nm order of thickness, in 2–7 nm range on confined polymer template, without disturbing the structure of the underneath template. The resulting ZnO-polystyrene hybrid systems show strong ZnO near band edge (NBE) and deep-level (DLE) emissions in their room temperature photoluminescence spectra, where the contribution of DLE gets relatively stronger with decreasing ZnO film thickness, indicating a significant enhancement of surface defects because of the greater surface to volume ratio in thinner films.

  2. Electrical, optical and microstructural properties of transparent conducting GZO thin films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    You, Z.Z., E-mail: zzyyyzz@163.com [College of Electronic Information Engineering, South-Central University for Nationalities (SCUN), Wuhan 430074 (China); Hua, G.J. [Center of Computing and Experimenting, South-Central University for Nationalities (SCUN), Wuhan 430074 (China)

    2012-07-25

    Graphical abstract: Gallium-doped zinc oxide (GZO) thin films were grown by magnetron sputtering. The electrical, optical and microstructural properties of the thin films were systematically studied. Highlights: Black-Right-Pointing-Pointer Thin films of transparent conducting gallium-doped zinc oxide were grown by magnetron sputtering technique at various substrate temperatures. Black-Right-Pointing-Pointer The microstructural properties of the films were investigated by X-ray diffraction (XRD). Black-Right-Pointing-Pointer The chemical state and elemental composition of the films were analyzed by X-ray photoelectron spectroscopy (XPS). Black-Right-Pointing-Pointer The optical properties of the films were studied by optical characterization methods. Black-Right-Pointing-Pointer The optoelectrical properties of the films were quantified by means of the figure of merit. - Abstract: Thin films of transparent conducting gallium-doped zinc oxide (GZO) were deposited by magnetron sputtering technique onto glass substrates. The films were characterized by various methods to understand their microstructural, optical and electrical characteristics. The effects of substrate temperature on the physical properties of the films were investigated. The results show that the GZO films are polycrystalline in nature having a hexagonal wurtzite type crystal structure with a preferred grain orientation in the (0 0 2) direction. The substrate temperature significantly affects the crystal structure and optoelectrical properties of the films. The GZO film grown at the substrate temperature of 670 K has the largest crystal grain, the lowest resistivity and the highest figure of merit. Meanwhile, the optical constants, dielectric function and dissipation factor of the films were determined using the methods of Manifacier and Swanepoel. The dispersion behavior of the refractive index was studied in terms of the single-oscillator Wemple-DiDomenico (W-D) model, and the oscillator parameters

  3. Cell adhesion on NiTi thin film sputter-deposited meshes

    Energy Technology Data Exchange (ETDEWEB)

    Loger, K. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Engel, A.; Haupt, J. [Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel (Germany); Li, Q. [Biocompatible Nanomaterials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Lima de Miranda, R. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); ACQUANDAS GmbH, Kiel (Germany); Quandt, E. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Lutter, G. [Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel (Germany); Selhuber-Unkel, C. [Biocompatible Nanomaterials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany)

    2016-02-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium (NiTi) thin film meshes were produced by means of magnetron sputter deposition. Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm{sup 2} and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133 +) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm{sup 2} and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applications in cardiovascular tissue engineering, particularly for the fabrication of heart valves. - Highlights: • Freestanding NiTi thin film scaffolds were fabricated with magnetron sputtering process. • Effective mechanical properties of NiTi scaffolds can be adapted by the mesh structure parameters. • Cell adhesion on the NiTi thin film scaffold is controlled by the structure parameters of the mesh. • Cells strongly adhere after seven days and form a confluent layer on the mesh.

  4. Structure of anodized Al–Zr sputter deposited coatings and effect on optical appearance

    Energy Technology Data Exchange (ETDEWEB)

    Gudla, Visweswara Chakravarthy [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Canulescu, Stela [Department of Photonics Engineering, Technical University of Denmark, DK-4000 Roskilde (Denmark); Shabadi, Rajashekhara [Unité Matériaux et Transformations, Université Lille1, 59655 Villeneuve ‘Ascq (France); Rechendorff, Kristian [Tribology Centre, Danish Technological Institute, DK-8000 Århus C (Denmark); Dirscherl, Kai [Danish Fundamental Metrology, DK-2800 Kgs., Lyngby (Denmark); Ambat, Rajan, E-mail: ram@mek.dtu.dk [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2014-10-30

    Highlights: • Microstructure of magnetron sputtered Al–Zr coatings on AA6060 under as coated and heat treated condition. • Effect of heat treatment and precipitation of Al–Zr–Si (τ{sub 1}) phase on optical appearance of anodized layer. • Partial oxidation of τ{sub 1} precipitates after anodizing and relation to darkening of the anodized layer. • Oxidized region of τ{sub 1} precipitates was amorphous while unoxidized region retained crystallinity. • Unoxidized metallic τ{sub 1} in amorphous anodic alumina acts as light absorption centres and causes darkening after anodizing. - Abstract: The mechanism of interaction of light with the microstructure of anodized layer giving specific optical appearance is investigated using Al–Zr sputter deposited coating as a model system on an AA6060 substrate. Differences in the oxidative nature of various microstructural components result in the evolution of typical features in the anodized layer, which are investigated as a function of microstructure and correlated with its optical appearance. The Zr concentration in the coating was varied from 6 wt.% to 23 wt.%. Heat treatment of the coated samples was carried out at 550 °C for 4 h in order to evolve Al–Zr based second phase precipitates in the microstructure. Anodizing was performed using 20 wt.% sulphuric acid at 18 °C with an intention to study the effect of anodizing on the Al–Zr based precipitates in the coating. Detailed microstructural characterization of the coating and anodized layer was carried out using high resolution scanning and transmission electron microscopy, grazing incidence X-ray diffraction analysis, glow discharge optical emission spectroscopy, and optical appearance using spectrophotometry. The evolution of microstructure in the anodized layer as a function of anodizing parameters and their influence on the interaction of light is investigated and the results in general are applicable to discolouration of anodized layer on

  5. Rapidly switched wettability of titania films deposited by dc magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Shirolkar, Mandar; Abyaneh, Majid Kazemian; Singh, Akanksha; Kulkarni, Sulabha [DST Unit on Nanoscience, Department of Physics, University of Pune (India); Tomer, Anju; Choudhary, Ram; Sathe, Vasant; Phase, Deodatta [UGC-DAE Consortium for Scientific Research Indore Centre, University Campus, Khandwa Road, Indore (India)], E-mail: skk@physics.unipune.ernet.in

    2008-08-07

    Rapid switching (5-15 minutes) in the wettability of titania (TiO{sub 2}) thin films in the anatase phase has been observed after UV irradiation. The film surface becomes superhydrophilic when exposed to UV radiation. The relationship between wettability, thickness and crystallinity of TiO{sub 2} films has been investigated. Amorphous and anatase TiO{sub 2} thin films have been deposited by varying the argon to oxygen gas ratio, using the reactive dc magnetron sputtering technique. It was found that the gas ratio primarily affects thickness, crystallinity, morphology and wettability of the films. The highest contact angle that has been reported so far, namely, 170 deg. -176 deg., has been observed for film thickness varying from 112-500 nm in the case of pristine anatase TiO{sub 2} films. On the other hand, amorphous films show a variation in the contact angle from 120 deg. to 140 deg. as the thickness varied from 70 to 145 nm. The deposition is extremely robust and has an ultralow hysteresis in the contact angle. The films exhibit a morphology similar to the lotus leaf and the water hyacinth.

  6. Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Aryanto, Didik, E-mail: didi027@lipi.go.id [Research Center for Physics, Indonesian Institute of Sciences, Serpong 15314, Tangerang Selatan (Indonesia); Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Marwoto, Putut; Sugianto [Physics Department, Faculty of Mathematics and Science, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Sudiro, Toto [Research Center for Physics, Indonesian Institute of Sciences, Serpong 15314, Tangerang Selatan (Indonesia); Birowosuto, Muhammad D. [Research Center for Physics, Indonesian Institute of Sciences, Serpong 15314, Tangerang Selatan (Indonesia); CINTRA UMI CNRS/NTU/THALES 3288 Research Techno Plaza, 50 Nanyang Drive, Border X Block, level 6, 637553 (Singapore); Sulhadi [Physics Department, Faculty of Mathematics and Science, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia)

    2016-04-19

    Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtained at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.

  7. Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering

    Science.gov (United States)

    López-Huerta, Francisco; Cervantes, Blanca; González, Octavio; Hernández-Torres, Julián; García-González, Leandro; Vega, Rosario; Herrera-May, Agustín L.; Soto, Enrique

    2014-01-01

    We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior. PMID:28788667

  8. Morphological, structural and electrochemical analysis of sputter-deposited ceria and titania coatings for MCFC application

    Energy Technology Data Exchange (ETDEWEB)

    Albin, Valerie; Mendoza, Leonardo; Goux, Aurelie; Ringuede, Armelle; Cassir, Michel [Laboratoire d' Electrochimie et de Chimie Analytique, UMR 7575 CNRS, ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Billard, Alain; Briois, Pascal [Laboratoire de Science et Genie des Surfaces (UMR 7570), Ecole des Mines, Parc de Saurupt, F 54042 Nancy Cedex (France)

    2006-10-06

    In order to protect the MCFC nickel cathode, TiO{sub 2} and CeO{sub 2} coatings were prepared by DC reactive magnetron sputtering. These oxides are stable thermodynamically whatever the cathode or anode gaseous conditions. Good quality, dense and homogeneous coatings were obtained at thicknesses lower than 1{mu}m. The structure of the deposits, as analysed by XRD, was the expected one. In this work only dense nickel substrates were used. After their direct immersion in a Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} carbonate eutectic at 650{sup o}C, which can be considered as extremely corrosive conditions with respect to the usual MCFC conditions, the coatings were affected. TiO{sub 2} coatings were transformed into Li{sub 2}TiO{sub 3}, in agreement with thermodynamic predictions; however, they became progressively unstable, which was probably due to a problem of mechanical adhesion rather than to solubility. The thinner was the deposit, the higher was its conductance and the closer to that of a pure Ni electrode was its electrocatalytic activity. CeO{sub 2} coatings were stable in a ceria form and their adhesion was better even though not fully satisfactory. These first preliminary results are promising regarding the direct contact of the coatings with the corrosive carbonate melt, but the improvement of the adhesion is one of the major problems to solve. (author)

  9. Applications of ZnO:Al deposited by RF sputtering to InN low-cost technology

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Naranjo, F.B.; Valdueza-Felip, S. [Grupo de Ingenieria Fotonica, Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala Campus Universitario, Madrid (Spain); Abril, O. de [ISOM y Departamento de Fisica Aplicada, Escuela Tecnica Superior de Ingenieros de Telecomunicacion, Universidad Politenica de Madrid (Spain)

    2010-07-15

    InN/ZnO:Al heterostructures deposited at low temperature on different substrates by radio-frequency sputtering were studied. Using ZnO:Al as buffer layer, an improvement in the InN structural properties was achieved. Evaluating ZnO:Al as contact on InN, an Ohmic behaviour for the as-deposited layer on InN was achieved. A specific contact resistance of 2 {omega} cm{sup 2} was measured without any post-deposition treatment. These properties could result very promising for optoelectronic device applications. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Limits of carrier mobility in Sb-doped SnO{sub 2} conducting films deposited by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bissig, B., E-mail: Benjamin.bissig@empa.ch; Jäger, T.; Tiwari, A. N.; Romanyuk, Y. E. [Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Ding, L. [Photovoltaics and Thin Film Electronics Laboratory, Ecole Polytechnique Fédérale Lausanne (EPFL), Institute of Microengineering (IMT), Rue de la Maladière 71b, 2002 Neuchâtel (Switzerland)

    2015-06-01

    Electron transport in Sb-doped SnO{sub 2} (ATO) films is studied to unveil the limited carrier mobility observed in sputtered films as compared to other deposition methods. Transparent and conductive ATO layers are deposited from metallic tin targets alloyed with antimony in oxygen atmosphere optimized for reactive sputtering. The carrier mobility decreases from 24 cm{sup 2} V{sup −1} s{sup −1} to 6 cm{sup 2} V{sup −1} s{sup −1} when increasing the doping level from 0 to 7 at. %, and the lowest resistivity of 1.8 × 10{sup −3} Ω cm corresponding to the mobility of 12 cm{sup 2} V{sup −1} s{sup −1} which is obtained for the 3 at. % Sb-doped ATO. Temperature-dependent Hall effect measurements and near-infrared reflectance measurements reveal that the carrier mobility in sputtered ATO is limited by ingrain scattering. In contrast, the mobility of unintentionally doped SnO{sub 2} films is determined mostly by the grain boundary scattering. Both limitations should arise from the sputtering process itself, which suffers from the high-energy-ion bombardment and yields polycrystalline films with small grain size.

  11. Limits of carrier mobility in Sb-doped SnO2 conducting films deposited by reactive sputtering

    Directory of Open Access Journals (Sweden)

    B. Bissig

    2015-06-01

    Full Text Available Electron transport in Sb-doped SnO2 (ATO films is studied to unveil the limited carrier mobility observed in sputtered films as compared to other deposition methods. Transparent and conductive ATO layers are deposited from metallic tin targets alloyed with antimony in oxygen atmosphere optimized for reactive sputtering. The carrier mobility decreases from 24 cm2 V−1 s−1 to 6 cm2 V−1 s−1 when increasing the doping level from 0 to 7 at. %, and the lowest resistivity of 1.8 × 10−3 Ω cm corresponding to the mobility of 12 cm2 V−1 s−1 which is obtained for the 3 at. % Sb-doped ATO. Temperature-dependent Hall effect measurements and near-infrared reflectance measurements reveal that the carrier mobility in sputtered ATO is limited by ingrain scattering. In contrast, the mobility of unintentionally doped SnO2 films is determined mostly by the grain boundary scattering. Both limitations should arise from the sputtering process itself, which suffers from the high-energy-ion bombardment and yields polycrystalline films with small grain size.

  12. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jianliang, E-mail: Jianliang.lin@swri.org [Southwest Research Institute, San Antonio, TX 78238 (United States); Chistyakov, Roman [Zpulser LLC, Mansfield, MA 02048 (United States)

    2017-02-28

    Highlights: • Highly <0001> orientated AlN films were deposited by DOMS technique. • Controlled ion flux bombardment improved the <0001> texture and crystalline quality. • Excessive ion bombardment showed a detrimental effect on the c-axis orientation growth. • Improved c-axis alignment accompanied with stress relaxation with increasing film thickness. - Abstract: Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm{sup −2}) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm{sup −2} improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm{sup −2} showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

  13. Co-sputter deposited nickel-copper bimetallic nanoalloy embedded carbon films for electrocatalytic biomarker detection

    Science.gov (United States)

    Shiba, Shunsuke; Kato, Dai; Kamata, Tomoyuki; Niwa, Osamu

    2016-06-01

    -mannitol, which should be detected with a low detection limit in urine samples for the diagnosis of severe intestinal diseases. With a Ni/Cu ratio of around 64/36, the electrocatalytic current per metal area was 3.4 times larger than that of an alloy film electrode with a similar composition (~70/30). This improved electrocatalytic activity realized higher stability (n = 60, relative standard deviation (RSD): 4.6%) than the alloy film (RSD: 32.2%) as demonstrated by continuous measurements of d-mannitol. Electronic supplementary information (ESI) available: The concept of UBM co-sputtering for fabricating nanoalloy embedded carbon films. HRTEM images of the NiNP and Ni32Cu68 nanoalloy embedded carbon films. The experimental conditions for sputter deposition, HRTEM, HAADF-STEM, STEM-EDS measurements and continuous flow injection analysis. XPS analysis of the nanoalloy embedded carbon film. Repeated CVs of both the nanoalloy embedded carbon film and the alloy film. Amperometric detection of d-mannitol in the presence of chloride ions. See DOI: 10.1039/c6nr02287a

  14. Characterization of amorphous and nanocomposite Nb–Si–C thin films deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Nedfors, Nils, E-mail: nils.nedfors@kemi.uu.se [Department of Chemistry, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala (Sweden); Tengstrand, Olof [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Flink, Axel [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Impact Coatings AB, Westmansgatan 29, SE-582-16 Linköping (Sweden); Eklund, Per; Hultman, Lars [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Jansson, Ulf [Department of Chemistry, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala (Sweden)

    2013-10-31

    Two series of Nb–Si–C thin films of different composition have been deposited using DC magnetron sputtering. In the first series the carbon content was kept at about 55 at.% while the Si/Nb ratio was varied and in the second series the C/Nb ratio was varied instead while the Si content was kept at about 45 at.%. The microstructure is strongly dependent on Si content and Nb–Si–C films containing more than 25 at.% Si exhibit an amorphous structure as determined by X-ray diffraction. Transmission electron microscopy, however, induces crystallisation during analysis, thus obstructing a more detailed analysis of the amorphous structure. X-ray photo-electron spectroscopy suggests that the amorphous films consist of a mixture of chemical bonds such as Nb–Si, Nb–C, and Si–C. The addition of Si results in a hardness decrease from 22 GPa for the binary Nb–C film to 18 – 19 GPa for the Si-containing films, while film resistivity increases from 211 μΩcm to 3215 μΩcm. Comparison with recently published results on DC magnetron sputtered Zr–Si–C films, deposited in the same system using the same Ar-plasma pressure, bias, and a slightly lower substrate temperature (300 °C instead of 350 °C), shows that hardness is primarily dependent on the amount of Si–C bonds rather than type of transition metal. The reduced elastic modulus on the other hand shows a dependency on the type of transition metal for the films. These trends for the mechanical properties suggest that high wear resistant (high H/E and H{sup 3}/E{sup 2} ratio) Me–Si–C films can be achieved by appropriate choice of film composition and transition metal. - Highlights: • Si reduces crystallinity, amorphous structure for films containing > 25 at.% Si. • Electron beam induced crystallization during transmission electron microscopy. • Hardness and resistivity are primarily dependent on the relative amount of C–Si bonds.

  15. From atoms to layers: in situ gold cluster growth kinetics during sputter deposition

    Science.gov (United States)

    Schwartzkopf, Matthias; Buffet, Adeline; Körstgens, Volker; Metwalli, Ezzeldin; Schlage, Kai; Benecke, Gunthard; Perlich, Jan; Rawolle, Monika; Rothkirch, André; Heidmann, Berit; Herzog, Gerd; Müller-Buschbaum, Peter; Röhlsberger, Ralf; Gehrke, Rainer; Stribeck, Norbert; Roth, Stephan V.

    2013-05-01

    The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction of morphological real space parameters, such as cluster size and shape, correlation distance, layer porosity and surface coverage, directly from reciprocal space scattering data. This approach enables a large variety of future investigations of the influence of different process parameters on the thin metal film morphology. Furthermore, our study allows for deducing the wetting behavior of gold cluster films on solid substrates and provides a better understanding of the growth kinetics in general, which is essential for optimization of manufacturing parameters, saving energy and resources.The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction

  16. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, Nathan A. [Dept. of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1374 (United States); School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1376 (United States); Oldinski, Rachael A. [College of Engineering and Mathematical Science, University of Vermont, Burlington, VT 05405 (United States); Dept. of Bioengineering, University of Washington, Seattle, WA 98195-5061 (United States); Ma, Hongyan; Bryers, James D. [Dept. of Bioengineering, University of Washington, Seattle, WA 98195-5061 (United States); Williams, John D. [Dept. of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1374 (United States); Popat, Ketul C., E-mail: Ketul.Popat@colostate.edu [Dept. of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1374 (United States); School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1376 (United States)

    2012-12-01

    Since many orthopedic implants fail as a result of loosening, wear, and inflammation caused by repeated loading on the joints, coatings such as hydroxyapatite (HAp) on titanium with a unique topography have been shown to improve the interface between the implant and the natural tissue. Another serious problem with long-term or ideally permanent implants is infection. It is important to prevent initial bacterial colonization as existing colonies have the potential to become encased in an extracellular matrix polymer (biofilm) that is resistant to antibacterial agents. In this study, plasma-based ion implantation was used to examine the effects of pre-etching on plain titanium. Topographical changes to the titanium samples were examined and compared via scanning electron microscopy. Hydroxyapatite and silver-doped hydroxyapatite thin films were then sputter deposited on titanium substrates etched at - 700 eV. For silver-doped films, two concentrations of silver ({approx} 0.5 wt.% and {approx} 1.5 wt.%) were used. Silver concentrations in the film were determined using energy dispersive X-ray spectroscopy. Hydroxyapatite film thicknesses were determined by measuring the surface profile using contact profilometry. Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion studies were performed on plain titanium, titanium coated with hydroxyapatite, titanium coated with {approx} 0.5 wt.% silver-doped hydroxyapatite, and titanium coated with {approx} 1.5 wt.% silver-doped hydroxyapatite. Results indicate that less bacteria adhered to surfaces containing hydroxyapatite and silver; further, as the hydroxyapatite films delaminated, silver ions were released which killed bacteria in suspension. - Highlights: Black-Right-Pointing-Pointer We have developed a combination of plasma-based ion implantation and ion beam sputter deposition technique. Black-Right-Pointing-Pointer Silver-doped hydroxyapatite thin films on titanium were developed. Black-Right-Pointing-Pointer The

  17. EGFET pH Sensor Performance Dependence on Sputtered TiO2 Sensing Membrane Deposition Temperature

    Directory of Open Access Journals (Sweden)

    Khairul Aimi Yusof

    2016-01-01

    Full Text Available Titanium dioxide (TiO2 thin films were sputtered by radio frequency (RF magnetron sputtering method and have been employed as the sensing membrane of an extended gate field effect transistor (EGFET for pH sensing detection application. The TiO2 thin films were deposited onto indium tin oxide (ITO coated glass substrates at room temperature and 200°C, respectively. The effect of deposition temperature on thin film properties and pH detection application was analyzed. The TiO2 samples used as the sensing membrane for EGFET pH-sensor and the current-voltage (I-V, hysteresis, and drift characteristics were examined. The sensitivity of TiO2 EGFET sensing membrane was obtained from the transfer characteristic (I-V curves for different substrate heating temperatures. TiO2 thin film sputtered at room temperature achieved higher sensitivity of 59.89 mV/pH compared to the one deposited at 200°C indicating lower sensitivity of 37.60 mV/pH. Moreover the hysteresis and the drift of TiO2 thin film deposited at room temperature showed lower values compared to the one at 200°C. We have also tested the effect of operating temperature on the performance of the EGFET pH-sensing and found that the temperature effect was very minimal.

  18. Synthesis of boron nitride nanostructures from catalyst of iron compounds via thermal chemical vapor deposition technique

    Science.gov (United States)

    da Silva, Wellington M.; Ribeiro, Hélio; Ferreira, Tiago H.; Ladeira, Luiz O.; Sousa, Edésia M. B.

    2017-05-01

    For the first time, patterned growth of boron nitride nanostructures (BNNs) is achieved by thermal chemical vapor deposition (TCVD) technique at 1150 °C using a mixture of FeS/Fe2O3 catalyst supported in alumina nanostructured, boron amorphous and ammonia (NH3) as reagent gas. This innovative catalyst was synthesized in our laboratory and systematically characterized. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The X-ray diffraction profile of the synthesized catalyst indicates the coexistence of three different crystal structures showing the presence of a cubic structure of iron oxide and iron sulfide besides the gamma alumina (γ) phase. The results show that boron nitride bamboo-like nanotubes (BNNTs) and hexagonal boron nitride (h-BN) nanosheets were successfully synthesized. Furthermore, the important contribution of this work is the manufacture of BNNs from FeS/Fe2O3 mixture.

  19. Superhydrophobic photocatalytic PTFE – Titania coatings deposited by reactive pDC magnetron sputtering from a blended powder target

    Energy Technology Data Exchange (ETDEWEB)

    Ratova, Marina, E-mail: marina_ratova@hotmail.com; Kelly, Peter J.; West, Glen T.

    2017-04-01

    The production of photocatalytic coatings with superhydrophobic properties, as opposed to the conventional hydrophilic properties, is desirable for the prevention of adhesion of contaminants to photocatalytic surfaces with subsequent deterioration of photocatalytic properties. In this work polytetrafluoroethylene (PTFE) – TiO{sub 2} composite thin films were deposited using a novel method of reactive pulsed direct current (pDC) magnetron sputtering of a blended PTFE – titanium oxide powder target. The surface characteristics and photocatalytic properties of the deposited composite coatings were studied. The as-deposited coatings were annealed at 523 K in air and analysed with Raman spectroscopy, optical profilometry and scanning electron microscopy. Hydrophobicity was assessed though measurements of water contact angles, and photocatalytic properties were studied via methylene blue dye degradation under UV irradiation. It was found that variations of gas flow and, hence, process pressures allowed deposition of samples combining superhydrophobicity with stable photocatalytic efficiency under UV light irradiation. Reversible wettability behaviour was observed with the alternation of light-dark cycles. - Highlights: • PTFE-TiO{sub 2} coatings were deposited by pDC reactive magnetron sputtering. • Blended powder target was used for coatings deposition. • Deposited coatings combined superhydrophobic and photocatalytic properties. • Under UV irradiation coatings exhibited reversible wettability.

  20. Composition and structure variation for magnetron sputtered tantalum oxynitride thin films, as function of deposition parameters

    Energy Technology Data Exchange (ETDEWEB)

    Cristea, D.; Pătru, M.; Crisan, A.; Munteanu, D. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Crăciun, D. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Apreutesei, M. [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR 5270, CNRS, Ecole Centrale de Lyon, Ecully F-69134 (France); MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Moura, C. [Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Cunha, L., E-mail: lcunha@fisica.uminho.pt [Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-12-15

    Highlights: • Structural evolution from β-Ta, to fcc-Ta(O,N), to amorphous Ta{sub 2}O{sub 5} with increasing P(N{sub 2} + O{sub 2}). • The substrate bias influences the N content, but does not influence the O content of the films. • The structural features of the films appear at lower P(N{sub 2} + O{sub 2}) when produced with grounded substrate. - Abstract: Tantalum oxynitride thin films were produced by magnetron sputtering. The films were deposited using a pure Ta target and a working atmosphere with a constant N{sub 2}/O{sub 2} ratio. The choice of this constant ratio limits the study concerning the influence of each reactive gas, but allows a deeper understanding of the aspects related to the affinity of Ta to the non-metallic elements and it is economically advantageous. This work begins by analysing the data obtained directly from the film deposition stage, followed by the analysis of the morphology, composition and structure. For a better understanding regarding the influence of the deposition parameters, the analyses are presented by using the following criterion: the films were divided into two sets, one of them produced with grounded substrate holder and the other with a polarization of −50 V. Each one of these sets was produced with different partial pressure of the reactive gases P(N{sub 2} + O{sub 2}). All the films exhibited a O/N ratio higher than the N/O ratio in the deposition chamber atmosphere. In the case of the films produced with grounded substrate holder, a strong increase of the O content is observed, associated to the strong decrease of the N content, when P(N{sub 2} + O{sub 2}) is higher than 0.13 Pa. The higher Ta affinity for O strongly influences the structural evolution of the films. Grazing incidence X-ray diffraction showed that the lower partial pressure films were crystalline, while X-ray reflectivity studies found out that the density of the films depended on the deposition conditions: the higher the gas pressure, the

  1. Source of boron in the Palokas gold deposit, northern Finland: evidence from boron isotopes and major element composition of tourmaline

    Science.gov (United States)

    Ranta, Jukka-Pekka; Hanski, Eero; Cook, Nick; Lahaye, Yann

    2017-06-01

    The recently discovered Palokas gold deposit is part of the larger Rompas-Rajapalot gold-mineralized system located in the Paleoproterozoic Peräpohja Belt, northern Finland. Tourmaline is an important gangue mineral in the Palokas gold mineralization. It occurs as tourmalinite veins and as tourmaline crystals in sulfide-rich metasomatized gold-bearing rocks. In order to understand the origin of tourmaline in the gold-mineralized rocks, we have investigated the major element chemistry and boron isotope composition of tourmaline from three areas: (1) the Palokas gold mineralization, (2) a pegmatitic tourmaline granite, and (3) the evaporitic Petäjäskoski Formation. Based on textural evidence, tourmaline in gold mineralization is divided into two different types. Type 1 is located within the host rock and is cut by rock-forming anthophyllite crystals. Type 2 occurs in late veins and/or breccia zones consisting of approximately 80% tourmaline and 20% sulfides, commonly adjacent to quartz veins. All the studied tourmaline samples belong to the alkali-group tourmaline and can be classified as dravite and schorl. The δ11B values of the three localities lie in the same range, from 0 to -4‰. Tourmaline from the Au mineralization and from the Petäjäskoski Formation has similar compositional trends. Mg is the major substituent for Al; inferred low Fe3+/Fe2+ ratios and Na values (age of molybdenite related to the tourmaline-sulfide-quartz veins, we propose that the tourmaline-forming process is a result of a single magmatic-hydrothermal event related to the extensive granite magmatism at around 1.79-1.77 Ga. Tourmaline was crystallized throughout the hydrothermal process, which resulted in the paragenetic variation between type 1 and type 2. The close association of tourmaline and gold suggests that the gold precipitated from the same boron-rich source as tourmaline.

  2. Structural and optical characterization of terbium doped ZnGa2O4 thin films deposited by RF magnetron sputtering

    Science.gov (United States)

    Somasundaram, K.; Girija, K. G.; Sudarsan, V.; Selvin, P. Christopher; Vatsa, R. K.

    2016-05-01

    Tb3+ doped ZnGa2O4 nanophosphor (21 nm) has been synthesized via low temperature polyol route and subsequently thin films of the same were deposited on glass and ITO substrates by RF magnetron sputtering. The films were characterized by X-ray Diffraction and luminescence measurements. The XRD pattern showed that Tb3+ doped ZnGa2O4 nanophosphor has a cubic spinel phase. Luminescence behavior of the nanophosphor and as deposited sputtered film was investigated. The PL emission spectra of nanophosphor gave a broad ZnGa2O4 host emission band along with a strong terbium emission and the thin films showed only broad host emission band and there was no terbium ion emission.

  3. Residual stress and texture in Aluminum doped Zinc Oxide layers deposited by reactive radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Azanza Ricardo, C.L., E-mail: Cristy.Azanza@ing.unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 via Mesiano 77, Trento (Italy); Pastorelli, M.; D' Incau, M. [Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 via Mesiano 77, Trento (Italy); Aswath, P. [College of Engineering, University of Texas at Arlington, TX (United States); Scardi, P. [Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 via Mesiano 77, Trento (Italy)

    2016-04-30

    Aluminum doped Zinc Oxide thin films were deposited on standard soda-lime substrates by reactive radio frequency magnetron sputtering. Residual stress and texture were studied by X-ray diffraction, while X-ray Absorption Near Edge Spectroscopy provided information on the Al environment in the best performing thin films. The influence of deposition parameters on structural and microstructural properties is discussed. A correlation between microstructure and residual stress state with electrical and optical properties is proposed. - Highlights: • Al doped ZnO thin films were obtained by reactive radio frequency magnetron sputtering. • Correlation of stresses and texture with electrical and optical properties is shown. • Homogeneous and stress-free thin-films are the best performing ones. • XANES confirmed the doping mechanism and excluded some spurious phases.

  4. Monitoring the thin film formation during sputter deposition of vanadium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Kaufholz, Marthe, E-mail: marthe.kaufholz@kit.edu; Krause, Bärbel; Kotapati, Sunil; Köhl, Martin [ANKA/Institut für Photonenforschung und Synchrotronstrahlung, Karlsruher Institut für Technologie, Karlsruhe (Germany); Mantilla, Miguel F. [Max-Planck-Institut für Intelligente Systeme, Stuttgart (Germany); Stüber, Michael; Ulrich, Sven [Institut für Angewandte Materialien - Angewandte Werkstoffphysik, Karlsruher Institut für Technologie, Karlsruhe (Germany); Schneider, Reinhard; Gerthsen, Dagmar [Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie, Karlsruhe (Germany); Baumbach, Tilo [ANKA/Institut für Photonenforschung und Synchrotronstrahlung, Karlsruher Institut für Technologie, Karlsruhe (Germany)

    2015-01-01

    The theoretical description and the experimental realisation of in situ X-ray reflectivity measurements during thin film deposition of polycrystalline vanadium carbide coatings are presented. The thin film formation of magnetron sputtered polycrystalline coatings was monitored by in situ X-ray reflectivity measurements. The measured intensity was analyzed using the Parratt algorithm for time-dependent thin film systems. Guidelines for the on-line interpretation of the data were developed. For thick coatings, the experimental resolution needs to be included in the data evaluation in order to avoid misinterpretations. Based on a simple layer model, the time-dependent mean electron density, roughness and growth velocity were extracted from the data. As an example, the method was applied to the hard coating material vanadium carbide. Both instantaneous and slowly varying changes of the coating could be detected. It was shown that the growth velocity is proportional to the DC power. Significant changes of the microstructure induced by the working gas pressure are mainly driven by the chemical composition.

  5. Poole-Frenkel effect in sputter-deposited CuAlO(2+x) nanocrystals.

    Science.gov (United States)

    Banerjee, Arghya Narayan; Joo, Sang Woo

    2013-04-26

    Field-assisted thermionic emission within a sputter-deposited, nanocrystalline thin film of CuAlO2.06 is observed for the first time, and explained in terms of the Poole-Frenkel model. The presence of adsorbed oxygen ions as trap-states at the grain boundary regions of the nanostructured thin film is considered to manifest this phenomenon. Under an applied field, the barrier of the trap potential is lowered and thermal emission of charge carriers takes place at different sample temperatures to induce nonlinearity in the current (I)-voltage (V) characteristics of the nanomaterial. Fitting of the Poole-Frenkel model with the I-V data shows that the nonlinearity is effective above 50 V under the operating conditions. Calculations of the energy of the trap level, acceptor level and Fermi level reveal the existence of deep level trap-states and a shallow acceptor level with acceptor concentration considerably higher than the trap-states. Hall measurements confirm the p-type semiconductivity of the film, with a hole concentration around 10(18) cm(-3). Thermopower measurements give a room-temperature Seebeck coefficient around 130 μV K(-1). This temperature-dependent conductivity enhancement within CuAlO2 nanomaterial may find interesting applications in transparent electronics and high-voltage applications for power supply networks.

  6. Optical, structural and electrochromic properties of sputter- deposited W-Mo oxide thin films

    Science.gov (United States)

    Gesheva, K.; Arvizu, M. A.; Bodurov, G.; Ivanova, T.; Niklasson, G. A.; Iliev, M.; Vlakhov, T.; Terzijska, P.; Popkirov, G.; Abrashev, M.; Boyadjiev, S.; Jágerszki, G.; Szilágyi, I. M.; Marinov, Y.

    2016-10-01

    Thin metal oxide films were investigated by a series of characterization techniques including impedance spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, and Atomic Force Microscopy. Thin film deposition by reactive DC magnetron sputtering was performed at the Ångström Laboratory. W and Mo targets (5 cm diameter) and various oxygen gas flows were employed to prepare samples with different properties, whereas the gas pressure was kept constant at about 30 mTorr. The substrates were 5×5 cm2 plates of unheated glass pre-coated with ITO having a resistance of 40 ohm/sq. Film thicknesses were around 300 nm as determined by surface profilometry. Newly acquired equipment was used to study optical spectra, optoelectronic properties, and film structure. Films of WO3 and of mixed W- Mo oxide with three compositions showed coloring and bleaching under the application of a small voltage. Cyclic voltammograms were recorded with a scan rate of 5 mV s-1. Ellipsometric data for the optical constants show dependence on the amount of MoOx in the chemical composition. Single MoOx film, and the mixed one with only 8% MoOx have the highest value of refractive index, and similar dispersion in the visible spectral range. Raman spectra displayed strong lines at wavenumbers between 780 cm-1 and 950 cm-1 related to stretching vibrations of WO3, and MoO3. AFM gave evidence for domains of different composition in mixed W-Mo oxide films.

  7. Mechanical and Tribological Behavior of VN and HfN Films Deposited via Reactive Magnetron Sputtering

    Science.gov (United States)

    Escobar, C.; Villarreal, M.; Caicedo, J. C.; Esteve, J.; Prieto, P.

    2013-07-01

    HfN and VN thin films were deposited onto silicon and 4140 steel substrates with r.f. reactive magnetron sputtering by using Hf and V metallic targets with 4-inch diameter and 99.9% purity in argon/nitrogen atmosphere, applying a substrate temperature of 250°C and a pressure of 1.2 × 10-3 mbar. In order to evaluate the structural, chemical, morphological, mechanical and tribological properties, we used X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), scanning electron microscopy (SEM), nanoindentation, pin-on-disc and scratch tests. Film structure determined by XRD showed that FCC (NaCl-type) films are formed in both the cases by δ-HfN and δ-VN phases. Hardness and elastic modulus values obtained for both the films were 21 and 224 GPa for the HfN film and 19 and 205 GPa for the VN film, respectively. Additionally, the films showed low friction coefficient of 0.44 for HfN and 0.62 for VN when these films were evaluated against 100 Cr6 steel, and finally the critical load was found at 41 N for the HfN film and 34 N for the VN film.

  8. Annealing induced oxidation and transformation of Zr thin film prepared by ion beam sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, S.-W. [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Hsieh, T.-Y. [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Huang, H.-L. [Department of Mechanical Engineering, Chinese Military Academy, Kaohsiung, Taiwan (China); Gan Dershin [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China)], E-Mail: dgan@mail.nsysu.edu.tw; Shen Pouyan [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2007-04-15

    Nanocrystalline {alpha}-Zr condensates deposited by ion beam sputtering on the NaCl (1 0 0) surfaces and then annealed at 100-750 deg. C in air. The phases present were identified by transmission electron microscopy to be nanometer-size {alpha}-Zr + ZrO, {alpha}-Zr + ZrO + c-ZrO{sub 2}, c-ZrO{sub 2}, c- + t-ZrO{sub 2}, t-ZrO{sub 2}, and t- + m-ZrO{sub 2} phase assemblages with increasing annealing temperature. The ZrO{sub 2} showed strong {l_brace}1 0 0{r_brace} preferred orientation due to parallel epitaxy with NaCl (1 0 0) when annealed between 150 and 500 deg. C in air. The c- and t-ZrO{sub 2} condensates also showed (1 1 1)-specific coalescence among themselves. The c- and/or t-ZrO{sub 2} formation can be accounted for by the small grain size, the presence of low-valence Zr cation and the lateral constraint of the neighboring grains.

  9. Low temperature deposition of transparent conducting ITO/Au/ITO films by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daeil, E-mail: dkim84@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, San 29, Mugeo Dong, Nam Gu, Ulsan 680-749 (Korea, Republic of)

    2010-01-01

    Transparent conducting indium tin oxide/Au/indium tin oxide (ITO) multilayered films were deposited on unheated polycarbonate substrates by magnetron sputtering. The thickness of the Au intermediated film varied from 5 to 20 nm. Changes in the microstructure, surface roughness and optoelectrical properties of the ITO/Au/ITO films were investigated with respect to the thickness of the Au intermediated layer. X-ray diffraction measurements of ITO single layer films did not show characteristic diffraction peaks, while ITO/Au/ITO films showed an In{sub 2}O{sub 3} (2 2 2) characteristic diffraction peak. The optoelectrical properties of the films were also dependent on the presence and thickness of the Au thin film. The ITO 50 nm/Au 10 nm/ITO 40 nm films had a sheet resistance of 5.6 {Omega}/{open_square} and an average optical transmittance of 72% in the visible wavelength range of 400-700 nm. Consequently, the crystallinity, which affects the optoelectrical properties of ITO films, can be enhanced with Au intermediated films.

  10. The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ababneh, A., E-mail: a.ababneh@lmm.uni-saarland.de [Department of Mechatronics, Saarland University, D-66123 Saarbruecken (Germany); Schmid, U. [Department of Microsystems Technology, Vienna University of Technology, Floragasse 7, 1040 Vienna (Austria); Hernando, J.; Sanchez-Rojas, J.L. [Departamento Ingenieria Electrica, Electronica, Automatica y Comunicaciones, E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Seidel, H. [Department of Mechatronics, Saarland University, D-66123 Saarbruecken (Germany)

    2010-09-15

    Aluminium nitride (AlN) reactively sputter-deposited from an aluminium target is an interesting piezoelectric thin film material with high CMOS compatibility. A good c-axis orientation is essential for obtaining high piezoelectric coefficients. Therefore, the influence of different sputtering conditions on the microstructure of AlN thin films with a typical thickness of about 500 nm was investigated. In this study it is demonstrated that highly c-axis oriented AlN thin films can be deposited on nominally unheated (1 0 0) silicon substrates, most preferentially when using a pure nitrogen atmosphere. The degree of c-axis orientation increases with higher nitrogen concentration and with decreasing the sputtering pressure, whereas the influence of plasma power on the microstructure was found to be negligible. A low sputtering pressure is also useful for minimizing the amount of oxygen contaminations in the deposition chamber and hence for reducing the incorporation of impurities into the AlN films. Intrinsic stress values of AlN thin films were determined by wafer bow measurements and were found to be between -3.5 and 750 MPa depending on choice of deposition parameters. Finally, the piezoelectric coefficients d{sub 33} and d{sub 31} were determined experimentally by laser scanning vibrometry in conjunction with a theoretical model. Effective values in c-axis oriented 500 nm films with FWHM of 0.33 deg. are 3.0 and -1.0 pm/V. For a film of 2.4 {mu}m thickness, values of 5.0 and -1.8 pm/V were measured, which are near the bulk values.

  11. Al-doped ZnO films deposited by magnetron sputtering: effect of sputtering parameters on the electrical and optical properties

    Directory of Open Access Journals (Sweden)

    Pan Qingtao

    2017-07-01

    Full Text Available Aluminum-doped zinc oxide (AZO thin films were prepared by magnetron sputtering method. The influences of deposition pressure, substrate temperature, Ar flow rate and film thickness on optical and electrical properties were investigated using ultraviolet-visible (UV-Vis spectrometer and Hall measurements. The experimental results revealed that a low resistivity, smaller than 4 × 10-4 Ω·cm, was obtained when the deposition pressure was smaller than 0.67 Pa and substrate temperature about 200 °C. Ar flow rate had a small influence on the resistivity but a big influence on the transparency at near infrared range (NIR. We obtained optimized AZO thin films with high ponductivity and transparency at low deposition pressure, small Ar flow and appropriate temperature (around 200 °C. The etching behavior of the AZO thin films deposited at the different Ar flow rates was also studied in this paper. The results show that Ar flow rate is a very important factor affecting the etching behavior.

  12. Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics.

    Science.gov (United States)

    Wilke, Rudeger H T; Johnson-Wilke, Raegan L; Cotroneo, Vincenzo; Davis, William N; Reid, Paul B; Schwartz, Daniel A; Trolier-McKinstry, Susan

    2013-05-10

    Piezoelectric PbZr(0.52)Ti(0.48)O(3) (PZT) thin films deposited on thin glass substrates have been proposed for adjustable optics in future x-ray telescopes. The light weight of these x-ray optics enables large collecting areas, while the capability to correct mirror figure errors with the PZT thin film will allow much higher imaging resolution than possible with conventional lightweight optics. However, the low strain temperature and flexible nature of the thin glass complicate the use of chemical-solution deposition due to warping of the substrate at typical crystallization temperatures for the PZT. RF magnetron sputtering enabled preparation of PZT films with thicknesses up to 3 μm on Schott D263 glass substrates with much less deformation. X-ray diffraction analysis indicated that the films crystallized with the perovskite phase and showed no indication of secondary phases. Films with 1 cm(2) electrodes exhibited relative permittivity values near 1100 and loss tangents below 0.05. In addition, the remanent polarization was 26 μC/cm(2) with coercive fields of 33 kV/cm. The transverse piezoelectric coefficient was as high as -6.1±0.6 C/m(2). To assess influence functions for the x-ray optics application, the piezoelectrically induced deflection of individual cells was measured and compared with finite-element-analysis calculations. The good agreement between the results suggests that actuation of PZT thin films can control mirror figure errors to a precision of about 5 nm, allowing sub-arcsecond imaging.

  13. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    Science.gov (United States)

    Ratova, Marina; Kelly, Peter J.; West, Glen T.; Tosheva, Lubomira; Edge, Michele

    2017-01-01

    Titanium dioxide - bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO2 evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO2 nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these tests confirmed that such enhancement of the photocatalytic properties is due to more efficient photogenerated charge carrier separation, as well as to the contribution of the intrinsic photocatalytic properties of Bi2WO6.

  14. Novel texturing method for sputtered zinc oxide films prepared at high deposition rate from ceramic tube targets

    Directory of Open Access Journals (Sweden)

    Hüpkes J.

    2011-10-01

    Full Text Available Sputtered and wet-chemically texture etched zinc oxide (ZnO films on glass substrates are regularly applied as transparent front contact in silicon based thin film solar cells. In this study, chemical wet etching in diluted hydrofluoric acid (HF and subsequently in diluted hydrochloric acid (HCl on aluminum doped zinc oxide (ZnO:Al films deposited by magnetron sputtering from ceramic tube targets at high discharge power (~10 kW/m target length is investigated. Films with thickness of around 800 nm were etched in diluted HCl acid and HF acid to achieve rough surface textures. It is found that the etching of the films in both etchants leads to different surface textures. A two steps etching process, which is especially favorable for films prepared at high deposition rate, was systematically studied. By etching first in diluted hydrofluoric acid (HF and subsequently in diluted hydrochloric acid (HCl these films are furnished with a surface texture which is characterized by craters with typical diameter of around 500 − 1000 nm. The resulting surface structure is comparable to etched films sputtered at low deposition rate, which had been demonstrated to be able to achieve high efficiencies in silicon thin film solar cells.

  15. High-surface-quality nanocrystalline InN layers deposited on GaN templates by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Valdueza-Felip, Sirona; Naranjo, Fernando B.; Gonzalez-Herraez, Miguel [Grupo de Ingenieria Fotonica, Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala, Campus Universitario, 28871 Alcala de Henares, Madrid (Spain); Lahourcade, Lise; Monroy, Eva [Equipe mixte CEA-CNRS-UJF, Nanophysique et Semiconducteurs, INAC/SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Fernandez, Susana [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain)

    2011-01-15

    We report a detailed study of the effect of deposition parameters on optical, structural, and morphological properties of InN films grown by reactive radio-frequency (RF) sputtering on GaN-on-sapphire templates in a pure nitrogen atmosphere. Deposition parameters under study are substrate temperature, RF power, and sputtering pressure. Wurtzite crystallographic structure with c-axis preferred growth orientation is confirmed by X-ray diffraction measurements. For the optimized deposition conditions, namely at a substrate temperature of 450 C and RF power of 30 W, InN films present a root-mean-square surface roughness as low as {proportional_to}0.4 nm, comparable to the underlying substrate. The apparent optical bandgap is estimated at 720 nm (1.7 eV) in all cases. However, the InN absorption band tail is strongly influenced by the sputtering pressure due to a change in the species of the plasma. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Characterization of Boron Carbonitride (BCN) Thin Films Deposited by Radiofrequency and Microwave Plasma Enhanced Chemical Vapor Deposition

    OpenAIRE

    M. A. Mannan; Nagano, M.; K. Shigezumi; Kida, T.; Hirao, N.; Baba, Y.

    2008-01-01

    Boron carbonitride (BCN) thin films with a thickness of ~4 µ­m were synthesized on Si (100) substrate by radiofrequency and microwave plasma enhanced chemical vapor deposition using trimethylamine borane [(CH3)3N.BH3)] as a molecular precursor. The microstructures of the films were evaluated using field emission scanning electron microscopy (FE-SEM) and X-ray diffractometry (XRD). Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to analyze t...

  17. Effect of sputter deposited YSZ thin films on the fracture behavior of dental bioceramics

    Science.gov (United States)

    Teixeira, Erica Cappelletto Nogueira

    The fracture behavior of dental bioceramic materials was evaluated under physiologic conditions when modified by yttria stabilized zirconia (YSZ) thin film deposition. It was hypothesized that changing the YSZ thin film properties will produce a significant enhancement in the strength of bioceramic materials, ultimately promoting a more fatigue resistant construct. Porcelain, alumina, and zirconia were evaluated in terms of dynamic fatigue for an initial characterization of their fracture behavior. Data showed that strength degradation occurred in all three materials, most drastically in porcelain. Initial strength measurements, focused on depositing YSZ thin films on three unique substrates; porcelain, alumina, and zirconia, were carried out. A significant increase in strength was observed for alumina and porcelain. Since strength alone is not enough to characterize the fracture behavior of brittle materials, coated specimens of porcelain and zirconia were subjected to dynamic fatigue and Weibull analysis. Coated YSZ porcelain specimens showed a significant increase in strength at all tested stressing rates. YSZ coated zirconia specimens showed similar strength values at all stressing rates. The effect of film thickness on porcelain was also evaluated. Data demonstrated that film thickness alone does not appear to control increases in the flexural strength of a modified substrate. It is expected that deposition induced stress in YSZ sputtered films does not change with film thickness. However, a thicker film will generate a larger force at the film/substrate interface, contributing to delamination of the film. It was clear that in order to have a significant improvement in the fracture behavior of porcelain, changing the thickness of the film is not enough. The columnar structure of the YSZ films developed seems to favor an easy path for crack propagation limiting the benefits expected by the coating. The effect of a multilayered film, composed by brittle

  18. Interstitial Boron-Doped TiO2 Thin Films: The Significant Effect of Boron on TiO2 Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition.

    Science.gov (United States)

    Quesada-González, Miguel; Boscher, Nicolas D; Carmalt, Claire J; Parkin, Ivan P

    2016-09-28

    The work presented here describes the preparation of transparent interstitial boron-doped TiO2 thin-films by atmospheric pressure chemical vapor deposition (APCVD). The interstitial boron-doping, on TiO2, proved by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), is shown to enhance the crystallinity and significantly improve the photocatalytic activity of the TiO2 films. The synthesis, highly suitable for a reel-to-reel process, has been carried out in one step.

  19. Changes in the structural and electrical properties of vacuum post-annealed tungsten- and titanium-doped indium oxide films deposited by radio frequency magnetron sputtering

    NARCIS (Netherlands)

    Yan, L.T.; Schropp, R.E.I.

    2011-01-01

    Tungsten- and titanium-doped indium oxide (IWO and ITiO) filmswere deposited at room temperature by radio frequency (RF) magnetron sputtering, and vacuum post-annealing was used to improve the electron mobility. With increasing deposition power, the as deposited films showed an increasingly

  20. Growth morphology of nanoscale sputter-deposited Au films on amorphous soft polymeric substrates

    Science.gov (United States)

    Ruffino, F.; Torrisi, V.; Marletta, G.; Grimaldi, M. G.

    2011-06-01

    The growth of a room-temperature sputter-deposited thin Au film on two soft polymeric substrates, polystyrene (PS) and poly(methyl methacrylate) (PMMA), from nucleation to formation of a continuous film is investigated by means of atomic force microscopy. In particular, we studied the surface morphology evolution of the film as a function of the deposition time observing an initial Au three-dimensional island-type growth. Then the Au film morphology evolves, with increasing deposition time, from hemispherical islands to partially coalesced worm-like island structures, to percolation, and finally to a continuous and rough film. The overall Au morphology evolution is discussed in the framework of the interrupted coalescence model, allowing us to evaluate the island critical radius for the partial coalescence R c=8.7±0.9 nm for Au on PS and R c=7.6±0.8 nm for Au on PMMA. Furthermore, the application of the kinetic freezing model allows us to evaluate the room-temperature surface diffusion coefficient D s≈1.8×10-18 m2/s for Au on PS and D s≈1.1×10-18 m2/s for Au on PMMA. The application of the Vincent model allows us, also, to evaluate the critical coverage (at which the percolation occurs) P c=61% for Au on PS and P c=56% for Au on PMMA. Finally, the dynamic scaling theory of a growing interface was applied to characterize the kinetic roughening of the Au film on both PMMA and PS. Such analyses allow us to evaluate the dynamic scaling, growth, and roughness exponents z=3.8±0.4, β=0.28±0.03, α=1.06±0.05 for the growth of Au on PS and z=4.3±0.3, β=0.23±0.03, α=1.03±0.05 for the growth of Au on PMMA, in agreement with a non-equilibrium but conservative and linear growth process in which the surface diffusion phenomenon plays a key role.

  1. Study on the Microstructure and Electrical Properties of Boron and Sulfur Codoped Diamond Films Deposited Using Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2014-01-01

    Full Text Available The atomic-scale microstructure and electron emission properties of boron and sulfur (denoted as B-S codoped diamond films grown on high-temperature and high-pressure (HTHP diamond and Si substrates were investigated using atom force microscopy (AFM, scanning tunneling microscopy (STM, secondary ion mass spectroscopy (SIMS, and current imaging tunneling spectroscopy (CITS measurement techniques. The films grown on Si consisted of large grains with secondary nucleation, whereas those on HTHP diamond are composed of well-developed polycrystalline facets with an average size of 10–50 nm. SIMS analyses confirmed that sulfur was successfully introduced into diamond films, and a small amount of boron facilitated sulfur incorporation into diamond. Large tunneling currents were observed at some grain boundaries, and the emission character was better at the grain boundaries than that at the center of the crystal. The films grown on HTHP diamond substrates were much more perfect with higher quality than the films deposited on Si substrates. The local I-V characteristics for films deposited on Si or HTHP diamond substrates indicate n-type conduction.

  2. STEM-EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering.

    Science.gov (United States)

    Schierholz, Roland; Lacroix, Bertrand; Godinho, Vanda; Caballero-Hernández, Jaime; Duchamp, Martial; Fernández, Asunción

    2015-02-20

    A broad interest has been showed recently on the study of nanostructuring of thin films and surfaces obtained by low-energy He plasma treatments and He incorporation via magnetron sputtering. In this paper spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope is used to locate and characterize the He state in nanoporous amorphous silicon coatings deposited by magnetron sputtering. A dedicated MATLAB program was developed to quantify the helium density inside individual pores based on the energy position shift or peak intensity of the He K-edge. A good agreement was observed between the high density (∼35-60 at nm(-3)) and pressure (0.3-1.0 GPa) values obtained in nanoscale analysis and the values derived from macroscopic measurements (the composition obtained by proton backscattering spectroscopy coupled to the macroscopic porosity estimated from ellipsometry). This work provides new insights into these novel porous coatings, providing evidence of high-density He located inside the pores and validating the methodology applied here to characterize the formation of pores filled with the helium process gas during deposition. A similar stabilization of condensed He bubbles has been previously demonstrated by high-energy He ion implantation in metals and is newly demonstrated here using a widely employed methodology, magnetron sputtering, for achieving coatings with a high density of homogeneously distributed pores and He storage capacities as high as 21 at%.

  3. Reactive Ar ion beam sputter deposition of TiO{sub 2} films: Influence of process parameters on film properties

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Lautenschläger, T.; Thelander, E. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Spemann, D. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig (Germany)

    2017-03-15

    Highlights: • Ion beam sputter deposition under systematic variation of process parameters. • Thickness, growth rate, structure, mass density, composition, optical properties. • All TiO{sub 2} films are amorphous with systematic variations in mass density. • Considerable amount of inert process gas correlated with scattering angle. • Correlation of mass density and index of refraction. - Abstract: Several sets of TiO{sub 2} films were grown by Ar ion beam sputter deposition under systematic variation of ion energy and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, structural properties, composition, mass density, and optical properties. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and stoichiometric, but can contain a considerable amount of backscattered primary particles. The atomic fraction of Ar particles decreases systematically with increasing scattering angle, independent from ion energy and ion incidence angle. Mass density and index of refraction show similar systematic variations with ion energy and geometrical parameters. The film properties are mainly influenced by the scattering geometry, and only slightly by ion energy and ion incidence angle. The variations in the film properties are tentatively assigned to changes in the angular and energy distribution of the sputtered target particles and back-scattered primary particles.

  4. Characteristics of Bilayer Molybdenum Films Deposited Using RF Sputtering for Back Contact of Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Sea-Fue Wang

    2014-01-01

    Full Text Available Mo films prepared under a single deposition condition seldom simultaneously obtain a low resistivity and a good adhesion necessary for use in solar cells. In order to surmount the obstacle, bilayer Mo films using DC sputtering at a higher working pressure and a lower working pressure have been attempted as reported in the literature. In this study, RF sputtering with different powers in conjunction with different working pressures was explored to prepare bilayer Mo film. The first bottom layer was grown at a RF sputtering power of 30 W and a working pressure of 12 mTorr, and the second top layer was deposited at 100 W and 4.5 mTorr. The films revealed a columnar growth with a preferred orientation along the (110 plane. The bilayer Mo films reported an electrical resistivity of 6.35 × 10−5 Ω-cm and passed the Scotch tape test for adhesion to the soda-lime glass substrate, thereby qualifying the bilayer Mo films for use as back metal contacts for CIGS substrates.

  5. Effect of annealing on the mechanical and scratch properties of BCN films obtained by magnetron sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shuyan, E-mail: xsynefu@126.com [Key Laboratory of Forest Sustainable Management and Environmental Microorganism Engineering of Heilongjiang Province, Northeast Forestry University, Harbin 150040 (China); Ma, Xinxin [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wen, Huiying [Key Laboratory of Forest Sustainable Management and Environmental Microorganism Engineering of Heilongjiang Province, Northeast Forestry University, Harbin 150040 (China); Tang, Guangze [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Li, Chunwei [Key Laboratory of Forest Sustainable Management and Environmental Microorganism Engineering of Heilongjiang Province, Northeast Forestry University, Harbin 150040 (China)

    2014-09-15

    Highlights: • The amorphous BCN films were annealed at different temperatures under vacuum condition. • The order degree increases with the annealing temperature increasing, and the films do not decompose even the annealing temperature rise to 1000 °C. • The nano-hardness and modulus of the films decrease with the increasing of annealing temperatures. • The critical load of BCN films is not affected by the annealing temperature, and the films have good interfacial adhesion. • The scratch resistance properties of BCN film are improved by annealing at 600 °C. - Abstract: Boron-carbon-nitride (BCN) films have been fabricated by direct current unbalanced magnetron sputtering. Boron carbide/graphite compound and a mixture of nitrogen and argon are used as target and carrier gas, respectively, during BCN synthesis. The obtained BCN films are annealed at different temperatures under vacuum condition. The effect of annealing temperature on the structure, mechanical properties and scratch behavior of the BCN films has been investigated. The results indicate that no decomposition products are found even the BCN films are annealed at 1000 °C. The hardness and elastic modulus of the films decrease with the increase of annealing temperatures. The BCN film annealed at 600 °C has the strongest scratch resistance. The friction coefficient of all BCN films is in range of 0.05 to 0.15.

  6. Photocatalytic efficiency of reusable ZnO thin films deposited by sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahumada-Lazo, R.; Torres-Martínez, L.M. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450, México (Mexico); Ruíz-Gómez, M.A. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450, México (Mexico); Departmento de Física Aplicada, CINVESTAV-IPN, Antigua Carretera a Progreso km 6, Mérida, Yucatán 97310, México (Mexico); Vega-Becerra, O.E. [Centro de Investigación en Materiales Avanzados S.C, Alianza norte 202, Parque de Investigación e Innovación Tecnológica, C.P. 66600 Apodaca Nuevo León, México (Mexico); and others

    2014-12-15

    Graphical abstract: - Highlights: • Decolorization of Orange G dye using highly c-axis-oriented ZnO thin films. • The flake-shaped film shows superior and stable photoactivity at a wide range of pH. • The highest photodecolorization was achieved at pH of 7. • The exposure of (101) and (100) facets enhanced the photoactivity. • ZnO thin films exhibit a promising performance as recyclable photocatalysts. - Abstract: The photocatalytic activity of ZnO thin films with different physicochemical characteristics deposited by RF magnetron sputtering on glass substrate was tested for the decolorization of orange G dye aqueous solution (OG). The crystalline phase, surface morphology, surface roughness and the optical properties of these ZnO films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV–visible spectroscopy (UV–Vis), respectively. The dye photodecolorization process was studied at acid, neutral and basic pH media under UV irradiation of 365 nm. Results showed that ZnO films grow with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a (002) preferential crystalline orientation. A clear relationship between surface morphology and photocatalytic activity was observed for ZnO films. Additionally, the recycling photocatalytic abilities of the films were also evaluated. A promising photocatalytic performance has been found with a very low variation of the decolorization degree after five consecutive cycles at a wide range of pH media.

  7. RF sputtering deposited a-IGZO films for LCD alignment layer application

    Science.gov (United States)

    Wu, G. M.; Liu, C. Y.; Sahoo, A. K.

    2015-11-01

    In this paper, amorphous indium gallium zinc oxide (a-IGZO) inorganic films were deposited at a fixed oblique angle using radio-frequency sputtering on indium tin oxide (ITO) glass as alternative alignment layer for liquid crystal displays. A series of experiments have been carried out to reveal the physical characteristics of the a-IGZO films, such as optical transmittance, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The special treatment a-IGZO films were used to fabricate liquid crystal (LC) cells and investigate the performances of these cells. Pretilt angles were measured with anti-parallel LC cells and voltage-transmittance (V-T) curve, contrast ratio, and response time were evaluated with optically compensated bend (OCB) LC cells. The electro-optical characteristics of the aligned homogenous LCs, and OCB mode cells based on the a-IGZO alignment layer were compared to those based on rubbing processed polyimide (PI). The results showed that the average transmittance in the visible wavelength range was higher than 90% for the a-IGZO alignment layer. The LC pretilt angle has been determined at about 6°. The evaluted cell critical voltage at maximum transmittance was 1.8 V, lower than the control cell using PI alignment layer. The OCB cell rise time and fall time were 1.55 ms and 3.49 ms, respectivly. A very quick response time of 5.04 ms has thus been achived. In addition, the study of V-T characteristics suggested higher contrast ratio for LCD display applications.

  8. Optical and electrical properties of stainless steel oxynitride thin films deposited in an in-line sputtering system

    Science.gov (United States)

    Carretero, E.; Alonso, R.; Pelayo, C.

    2016-08-01

    The optical and electrical properties of stainless steel oxynitride thin films have been studied for different flow rates of the reactive gases during the deposition process. Films were deposited in an in-line magnetron sputtering system under similar conditions as those found in large area industrial systems. The study of the optical properties was performed by IR-VIS spectrophotometry, DC conductivity measurements were performed by the four point method and the microstructural study and chemical analysis were performed by XRD, FESEM and XPS. The results show the transition of sample films from metal to semiconductor, as well as the feasibility of obtaining visible absorbing coatings with low DC conductivity from low-cost materials. The deposited films show the typical growth structure for samples produced in in-line deposition systems commonly used in the large area coatings industry.

  9. Properties of Erbium Doped Hydrogenated Amorphous Carbon Layers Fabricated by Sputtering and Plasma Assisted Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2008-01-01

    Full Text Available We report about properties of carbon layers doped with Er3+ ions fabricated by Plasma Assisted Chemical Vapor Deposition (PACVD and by sputtering on silicon or glass substrates. The structure of the samples was characterized by X-ray diffraction and their composition was determined by Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The Absorbance spectrum was taken in the spectral range from 400 nm to 600 nm. Photoluminescence spectra were obtained using two types of Ar laser (λex=514.5 nm, lex=488 nm and also using a semiconductor laser (λex=980 nm. Samples fabricated by magnetron sputtering exhibited typical emission at 1530 nm when pumped at 514.5 nm. 

  10. The electromagnetic shielding of Ni films deposited on cenosphere particles by magnetron sputtering method

    Science.gov (United States)

    Yu, Xiaozheng; Shen, Zhigang

    2009-09-01

    Ni-coated cenosphere particles were successfully fabricated by an ultrasonic-assisted magnetron sputtering equipment. Their surface morphology and microstructure were analyzed using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). FE-SEM results indicate that the Ni films coated by magnetron sputtering are uniform and compact. Ni film uniformity was related with the sputtering power and a large uniform film could be achieved at lower sputtering power. XRD results imply that the Ni film coated on cenospheres was a face-centered cubic (fcc) structure and the crystallization of film sample increases with increasing the sputtering power. The electromagnetic interference (EMI) shielding effectiveness (SE) of Ni-coated cenosphere particles were measured to be 4-27 dB over a frequency range 80-100 GHz, higher than those of uncoated cenosphere particles. The higher sputtering power and Ni film thickness are the higher EMI SE of the specimens. Ni-coated cenosphere particles are most promising alternative candidates for millimeter wave EMI shielding due to their lightweight, low cost, ease of processing, high floating time, good dispersion and tunable conductivities as compared with typical electromagnetic wave countermeasure materials.

  11. The electromagnetic shielding of Ni films deposited on cenosphere particles by magnetron sputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Yu Xiaozheng [Beijing Key Laboratory for Powder Technology R. and D., Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); China National Academy of Nanotechnology and Engineering, Tianjin 300457 (China); Shen Zhigang [Beijing Key Laboratory for Powder Technology R. and D., Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); China National Academy of Nanotechnology and Engineering, Tianjin 300457 (China)], E-mail: shenzhg@buaa.edu.cn

    2009-09-15

    Ni-coated cenosphere particles were successfully fabricated by an ultrasonic-assisted magnetron sputtering equipment. Their surface morphology and microstructure were analyzed using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). FE-SEM results indicate that the Ni films coated by magnetron sputtering are uniform and compact. Ni film uniformity was related with the sputtering power and a large uniform film could be achieved at lower sputtering power. XRD results imply that the Ni film coated on cenospheres was a face-centered cubic (fcc) structure and the crystallization of film sample increases with increasing the sputtering power. The electromagnetic interference (EMI) shielding effectiveness (SE) of Ni-coated cenosphere particles were measured to be 4-27 dB over a frequency range 80-100 GHz, higher than those of uncoated cenosphere particles. The higher sputtering power and Ni film thickness are the higher EMI SE of the specimens. Ni-coated cenosphere particles are most promising alternative candidates for millimeter wave EMI shielding due to their lightweight, low cost, ease of processing, high floating time, good dispersion and tunable conductivities as compared with typical electromagnetic wave countermeasure materials.

  12. RF sputtering enhanced the morphology and photoluminescence of multi-oriented ZnO nanostructure produced by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Al-Salman, Husam S., E-mail: husam.shakir@yahoo.com [School of Physics, University Sains Malaysia, Penang 11800 (Malaysia); Dept. of Physics, College of Science, University of Basrah, Basrah (Iraq); Abdullah, M.J. [School of Physics, University Sains Malaysia, Penang 11800 (Malaysia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer A ZnO nanostructure was synthesized using the CVD and RF techniques. Black-Right-Pointing-Pointer High-quality ZnO nanorods were obtained. Black-Right-Pointing-Pointer The nanorods grow at a random angle on the substrate surface. Black-Right-Pointing-Pointer The RF sputter-coating step enhanced the structural quality of the ZnO film. - Abstract: Pure hexagonal wurtzite ZnO nanostructure was successfully synthesized by chemical vapor deposition (CVD) and RF-magnetron sputtering without using any catalysts. In the two-step process, high-quality multi-oriented ZnO nanorods were obtained. Multi-oriented spear-like ZnO rods were pre-deposited on the SiO{sub 2}/Si(1 0 0) substrate by CVD at 700 Degree-Sign C followed by RF sputtering of the ZnO nanostructure. The synthesized ZnO nanostructures were characterized by X-ray diffraction, field emission scanning electron microscopy, and photoluminescence (PL). The results show that the RF sputtering of the ZnO nanostructure, which was coated with a ZnO film produced by CVD, might have promoted the uniformity and crystalline quality of the multi-oriented spear-like ZnO film. The PL spectra revealed a sharp and dominant peak located at approximately 382 nm with a UV-to-visible PL intensity ratio (I{sub UV}/I{sub VS}) of 42 for the sample that was produced by the two-step process. The growth mechanism of the multi-oriented spear-like ZnO nanorods was investigated.

  13. Corrosion and wear behaviours of a reactive-sputter-deposited Ta2O5 nanoceramic coating

    Science.gov (United States)

    Hu, Wei; Xu, Jiang; Lu, Xiaolin; Hu, Dongsheng; Tao, Hongliang; Munroe, Paul; Xie, Zong-Han

    2016-04-01

    In order to improve the wear and corrosion resistance of Ti-6Al-4V, a novel β-Ta2O5 nanoceramic coating was synthesised using reactive sputter deposition enabled by double glow discharge plasma technique. The surface topography, chemical composition, and microstructure of the newly developed coating were characterised by a variety of surface analytical techniques. The coating microstructure was found to exhibit a compact striated pattern extending in a direction perpendicular to coating surface, which is composed of equiaxed β-Ta2O5 grains with an average grain size of ∼20 nm, well adhered to the Ti-6A1-4V substrate. The hardness and the Young's modulus of the as-deposited coating were obtained by nanoindentation, and the adhesion strength between the coating and substrate was determined by a scratch tester. The dry sliding wear behaviours of the coating were investigated at room temperature against Si3N4 ceramic balls at room temperature under applied loads ranging from 2.3 N to 5.3 N using a ball-on-disc tribometer. The specific wear rates of the coating exhibited only a slight increase with applied normal load, and were shown to be two orders of magnitude lower than that for Ti-6Al-4V under the same loading condition. Furthermore, the electrochemical behaviour of the coating immersed in 3.5 wt.% NaCl solution was systematically examined by using a range of complementary electrochemical techniques including potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis as well as potential of zero charge (PZC). The results showed that the corrosion resistance of the β-Ta2O5 nanoceramic coating was better than that of Ti-6Al-4V alloy in 3.5 wt.% NaCl solution. Hence, by possessing higher mechanical properties and good wear and corrosion resistance, the β-Ta2O5 nanoceramic coating is considered to be a promising candidate for protection of engineering components operating under harsh conditions.

  14. Comparative investigation of Si-C-N Films prepared by plasma enhanced chemical vapour deposition and magnetron sputtering

    Science.gov (United States)

    Kozak, A. O.; Porada, O. K.; Ivashchenko, V. I.; Ivashchenko, L. A.; Scrynskyy, P. L.; Tomila, T. V.; Manzhara, V. S.

    2017-12-01

    This paper reports on the results of comparative investigations of Si-C-N films prepared by using both plasma enhanced chemical vapor deposition (PECVD) and DC magnetron sputtering (MS) at different nitrogen flow rates (FN2). The films were characterized by an atomic force microscope, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, nanoindentation and photoluminescence spectroscopy. All the deposited films were X-ray amorphous. For the PECVD films, nanohardness (H) and elastic module (E) increase with FN2, which can be assigned to decreasing the hydrogen content. On the contrary, for the films, deposited by magnetron sputtering, the values of H and E decrease, when FN2 increases. The latter is supposed to be due to decreasing a number of strong Si-C bonds and to increasing a number of weak Sisbnd N and Csbnd N bonds. The surface roughness of two types of the films is smaller compared to that of silicon substrates. An increase in nitrogen flow rate causes the smoothing of the film surfaces. The PECVD films deposited at high FN2 exhibit bright photoemission with the main peak at ∼440 nm. The intensity of this peak increases with increasing nitrogen content.

  15. Adhesion Improvement and Characterization of Magnetron Sputter Deposited Bilayer Molybdenum Thin Films for Rear Contact Application in CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    Weimin Li

    2016-01-01

    Full Text Available Molybdenum (Mo thin films are widely used as rear electrodes in copper indium gallium diselenide (CIGS solar cells. The challenge in Mo deposition by magnetron sputtering lies in simultaneously achieving good adhesion to the substrates while retaining the electrical and optical properties. Bilayer Mo films, comprising five different thickness ratios of a high pressure (HP deposited bottom layer and a low pressure (LP deposited top layer, were deposited on 40 cm × 30 cm soda-lime glass substrates by DC magnetron sputtering. We focus on understanding the effects of the individual layer properties on the resulting bilayer Mo films, such as microstructure, surface morphology, and surface oxidation. We show that the thickness of the bottom HP Mo layer plays a major role in determining the micromechanical and physical properties of the bilayer Mo stack. Our studies reveal that a thicker HP Mo bottom layer not only improves the adhesion of the bilayer Mo, but also helps to improve the film crystallinity along the preferred [110] direction. However, the surface roughness and the porosity of the bilayer Mo films are found to increase with increasing bottom layer thickness, which leads to lower optical reflectance and a higher probability for oxidation at the Mo surface.

  16. Nano-laminate vs. direct deposition of high permittivity gadolinium scandate on silicon by high pressure sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Feijoo, P.C., E-mail: pedronska@fis.ucm.es [Dpto. Física Aplicada III (Electricidad y Electrónica), Universidad Complutense de Madrid, Fac. de CC. Físicas. Av/Complutense S/N, E-28040 Madrid (Spain); Pampillón, M.A.; San Andrés, E. [Dpto. Física Aplicada III (Electricidad y Electrónica), Universidad Complutense de Madrid, Fac. de CC. Físicas. Av/Complutense S/N, E-28040 Madrid (Spain); Fierro, J.L.G. [Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, C/Marie Curie 2, E-28049 Cantoblanco (Spain)

    2015-10-30

    In this work we use the high pressure sputtering technique to deposit the high permittivity dielectric gadolinium scandate on silicon substrates. This nonconventional deposition technique prevents substrate damage and allows for growth of ternary compounds with controlled composition. Two different approaches were assessed: the first one consists of depositing the material directly from a stoichiometric GdScO{sub 3} target; in the second one, we anneal a nano-laminate of < 0.5 nm thick Gd{sub 2}O{sub 3} and Sc{sub 2}O{sub 3} films in order to control the composition of the scandate. Metal–insulator–semiconductor capacitors were fabricated with platinum gates for electrical characterization. Accordingly, we grew a Gd-rich Gd{sub 2−x}Sc{sub x}O{sub 3} film that, in spite of higher leakage currents, presents a better effective relative permittivity of 21 and lower density of defects. - Highlights: • GdScO is deposited on Si as a high permittivity dielectric by two procedures. • Films sputtered from GdScO{sub 3} target are Sc-rich and present thick interface SiO{sub x}. • Gd-rich GdScO is obtained from a nano-laminate sputtered from Sc{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}. • Gd{sub 1.8}Sc{sub 0.2}O{sub 3} shows good effective permittivity and electrical properties.

  17. The effect of deposition parameters on the boron nitride films grown on Si(100) by PLD with nanosecond pulses

    Science.gov (United States)

    Luculescu, C. R.; Sato, Shunichi; Fenic, Constantin G.

    2004-10-01

    The effects of several deposition parameters on the quality of deposited boron nitride (BN) films by pulsed laser deposition (PLD) with short laser pulses are studied. The laser fluence, nitrogen background pressure, Si(100) substrate temperature and laser wavelength were varied in order to find the maximum content of the cubic phase in our BN films. We found that laser fluence and wavelength are affecting strongly the structure of BN films while background pressure and substrate temperature are affecting slightly the film morphology.

  18. Visible-light active thin-film WO3 photocatalyst with controlled high-rate deposition by low-damage reactive-gas-flow sputtering

    Science.gov (United States)

    Oka, Nobuto; Murata, Akiyo; Nakamura, Shin-ichi; Jia, Junjun; Iwabuchi, Yoshinori; Kotsubo, Hidefumi; Shigesato, Yuzo

    2015-10-01

    A process based on reactive gas flow sputtering (GFS) for depositing visible-light active photocatalytic WO3 films at high deposition rates and with high film quality was successfully demonstrated. The deposition rate for this process was over 10 times higher than that achieved by the conventional sputtering process and the process was highly stable. Furthermore, Pt nanoparticle-loaded WO3 films deposited by the GFS process exhibited much higher photocatalytic activity than those deposited by conventional sputtering, where the photocatalytic activity was evaluated by the extent of decomposition of CH3CHO under visible light irradiation. The decomposition time for 60 ppm of CH3CHO was 7.5 times more rapid on the films deposited by the GFS process than on the films deposited by the conventional process. During GFS deposition, there are no high-energy particles bombarding the growing film surface, whereas the bombardment of the surface with high-energy particles is a key feature of conventional sputtering. Hence, the WO3 films deposited by GFS should be of higher quality, with fewer structural defects, which would lead to a decrease in the number of centers for electron-hole recombination and to the efficient use of photogenerated holes for the decomposition of CH3CHO.

  19. Visible-light active thin-film WO3 photocatalyst with controlled high-rate deposition by low-damage reactive-gas-flow sputtering

    Directory of Open Access Journals (Sweden)

    Nobuto Oka

    2015-10-01

    Full Text Available A process based on reactive gas flow sputtering (GFS for depositing visible-light active photocatalytic WO3 films at high deposition rates and with high film quality was successfully demonstrated. The deposition rate for this process was over 10 times higher than that achieved by the conventional sputtering process and the process was highly stable. Furthermore, Pt nanoparticle-loaded WO3 films deposited by the GFS process exhibited much higher photocatalytic activity than those deposited by conventional sputtering, where the photocatalytic activity was evaluated by the extent of decomposition of CH3CHO under visible light irradiation. The decomposition time for 60 ppm of CH3CHO was 7.5 times more rapid on the films deposited by the GFS process than on the films deposited by the conventional process. During GFS deposition, there are no high-energy particles bombarding the growing film surface, whereas the bombardment of the surface with high-energy particles is a key feature of conventional sputtering. Hence, the WO3 films deposited by GFS should be of higher quality, with fewer structural defects, which would lead to a decrease in the number of centers for electron-hole recombination and to the efficient use of photogenerated holes for the decomposition of CH3CHO.

  20. FTIR and electrical characterization of a-Si:H layers deposited by PECVD at different boron ratios

    Energy Technology Data Exchange (ETDEWEB)

    Orduna-Diaz, A., E-mail: abdu@susu.inaoep.mx [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico); Trevino-Palacios, C.G. [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico); Rojas-Lopez, M.; Delgado-Macuil, R.; Gayou, V.L. [Centro de Investigacion en Biotecnologia Aplicada (CIBA), IPN, Tlaxcala, Tlax. 72197 (Mexico); Torres-Jacome, A. [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico)

    2010-10-25

    Hydrogenated amorphous silicon (a-Si:H) has found applications in flat panel displays, photovoltaic solar cell and recently has been employed in boron doped microbolometer array. We have performed electrical and structural characterizations of a-Si:H layers prepared by plasma enhanced chemical vapor deposition (PECVD) method at 540 K on glass substrates at different diborane (B{sub 2}H{sub 6}) flow ratios (500, 250, 150 and 50 sccm). Fourier transform infrared spectroscopy (FTIR) measurements obtained by specular reflectance sampling mode, show Si-Si, B-O, Si-H, and Si-O vibrational modes (611, 1300, 2100 and 1100 cm{sup -1} respectively) with different strengths which are associated to hydrogen and boron content. The current-voltage curves show that at 250 sccm flow of boron the material shows the lowest resistivity, but for the 150 sccm boron flow it is obtained the highest temperature coefficient of resistance (TCR).

  1. Studies on the effect of hydrogen doping during deposition of Al:ZnO films using RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Shantheyanda, Bojanna P. [Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816 (United States); Sundaram, Kalpathy B., E-mail: sundaram@mail.ucf.edu [Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816 (United States); Shiradkar, Narendra S. [Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816 (United States)

    2012-12-01

    Aluminum doped ZnO (ZnO:Al) films were deposited using rf magnetron sputtering in the presence of hydrogen gas in the chamber. A comparative study of the films deposited with and without hydrogen was performed. The XPS studies indicated that the decrease in resistivity of ZnO:Al films with the introduction of hydrogen gas is attributed to the reduced adsorption of oxygen species in the film grain boundaries. The average percentage transmission in the visible region of the films was around 92-95% and band gap was found to be about in the range of 3.15-3.17 eV. The lowest resistivity of 1.8 Multiplication-Sign 10{sup -4} {Omega} cm was achieved for the ZnO:Al film deposited with hydrogen.

  2. Submicrometer Hollow Bioglass Cones Deposited by Radio Frequency Magnetron Sputtering: Formation Mechanism, Properties, and Prospective Biomedical Applications.

    Science.gov (United States)

    Popa, A C; Stan, G E; Besleaga, C; Ion, L; Maraloiu, V A; Tulyaganov, D U; Ferreira, J M F

    2016-02-01

    This work reports on the unprecedented magnetron sputtering deposition of submicrometric hollow cones of bioactive glass at low temperature in the absence of any template or catalyst. The influence of sputtering conditions on the formation and development of bioglass cones was studied. It was shown that larger populations of well-developed cones could be achieved by increasing the argon sputtering pressure. A mechanism describing the growth of bioglass hollow cones is presented, offering the links for process control and reproducibility of the cone features. The composition, structure, and morphology of the as-synthesized hollow cones were investigated by energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), grazing incidence geometry X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM)-selected area electron diffraction (SAED). The in vitro biological performance, assessed by degradation tests (ISO 10993-14) and cytocompatibility assays (ISO 10993-5) in endothelial cell cultures, was excellent. This allied with resorbability and the unique morphological features make the submicrometer hollow cones interesting candidate material devices for focal transitory permeabilization of the blood-brain barrier in the treatment of carcinoma and neurodegenerative disorders.

  3. Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition.

    Science.gov (United States)

    Kinoshita, Yukinori; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2011-11-01

    Tungsten (W) is significantly suitable as a tip material for atomic force microscopy (AFM) because its high mechanical stiffness enables the stable detection of tip-sample interaction forces. We have developed W sputter-coating equipment to compensate the drawbacks of conventional Si cantilever tips used in AFM measurements. By employing an ion gun commonly used for sputter cleaning of a cantilever tip, the equipment is capable of depositing conductive W films in the preparation chamber of a general ultrahigh vacuum (UHV)-AFM system without the need for an additional chamber or transfer system. This enables W coating of a cantilever tip immediately after sputter cleaning of the tip apex and just before the use in AFM observations. The W film consists of grain structures, which prevent tip dulling and provide sharpness (coated Si tip can clearly resolve the atomic structures of a Ge(001) surface without any artifacts, indicating that, as a force sensor, the fabricated W-coated Si tip is superior to a bare Si tip. © 2011 American Institute of Physics

  4. Full Sputtering Deposition of Thin Film Solar Cells: A Way of Achieving High Efficiency Sustainable Tandem Cells?

    Science.gov (United States)

    Vilcot, J.-P.; Ayachi, B.; Aviles, T.; Miska, P.

    2017-11-01

    In the first part of this paper, we will show that a sputtering-based fabrication process exhibiting a low environmental footprint has been developed for the fabrication of copper indium gallium selenide (CIGS) absorbing material. Its originality lies in using room temperature sputtering in a pulsed—direct current mode of a single quaternary target followed by a post-anneal. At any stage of the process, selenium or sulfur atmosphere is used. Inert gas is used, respectively argon and a forming gas, for the deposition and annealing step, respectively. CIGS cells have been fabricated using such an absorbing layer. They exhibit an efficiency close to 12%. A tandem cell approach, using a thin film technology in conjunction with the well-established Si technology, is a promising technique, achieving cells with 30%, and higher, efficiency. Such cells are awaited, jointly with a stronger implementation of low environmental footprint technologies, as a vision for 2030. In the first section, sputtering technique has shown its ability to be developed in such a way achieving an environmentally friendly process that can be moreover compatible to be co-integrated with, for example, Si technology. In a second section, we will present a prospective discussion on the materials that can be applied to produce a sustainable approach for such a tandem cell configuration.

  5. Al-doped ZnO films deposited on a slightly reduced buffer layer by reactive dc unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kusayanagi, Minehide; Uchida, Azusa; Oka, Nobuto; Jia, Junjun [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan); Nakamura, Shin-ichi [Center for Instrumental Analysis, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan); Shigesato, Yuzo, E-mail: yuzo@chem.aoyama.ac.jp [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan)

    2014-03-31

    Al-doped ZnO (AZO) films were deposited on a fused silica glass substrate by reactive dc unbalanced magnetron sputtering using a Zn–Al (Al: 3.6 at.%) alloy target with an impedance control system. A very thin slightly reduced AZO buffer layer was inserted between the glass substrate and AZO films. For the AZO films deposited at 200 °C, the lowest resistivity in the absence of the buffer layer was 8.0 × 10{sup −4} Ω cm, whereas this was reduced to 5.9 × 10{sup −4} Ω cm after introducing a 5-nm-thick buffer layer. The transmittance for all the films was above 80% in the visible region. The effects of the buffer layer were analysed and discussed in detail. It is found that the insertion of the buffer layer can improve the crystallinity of the AZO film. - Highlights: • Al-doped ZnO (AZO) films with AZO buffer layers were deposited. • Reactive dc unbalance magnetron sputtering with impedance control was used. • Insertion of a buffer layer can lead to a lower resistivity. • Insertion of a buffer layer improved the crystallinity of AZO films.

  6. Protection of p+-n-Si Photoanodes by Sputter-Deposited Ir/IrOxThin Films

    DEFF Research Database (Denmark)

    Mei, Bastian Timo; Seger, Brian; Pedersen, Thomas

    2014-01-01

    Sputter deposition of Ir/IrOx on p+-n-Si without interfacial corrosion protection layers yielded photoanodes capable of efficient water oxidation (OER) in acidic media (1 M H2SO4). Stability of at least 18 h was shown by chronoamperomety at 1.23 V versus RHE (reversible hydrogen electrode) under ...... the necessary overpotential for OER at realistic device current, but also harvest ∼100 mV of free energy (voltage) which makes them among the best-performing Si-based photoanodes in low-pH media....

  7. RF magnetron sputtering deposition of NiO/Ni bilayer and approach of the Magnetic behavior using the Preisach model

    Energy Technology Data Exchange (ETDEWEB)

    Bendjerad, A., E-mail: bendjerad@gmail.com [L.E.B. Research Laboratory, Electrical Engineering Department, University of Batna 2, Batna (Algeria); Head of Clean Room, L.E.A Laboratory, University of Batna 2, Batna (Algeria); Boukhtache, S. [L.E.B. Research Laboratory, Electrical Engineering Department, University of Batna 2, Batna (Algeria); Benhaya, A. [Head of Clean Room, L.E.A Laboratory, University of Batna 2, Batna (Algeria); Lahmar, A. [Laboratoire de Physiques de la Matière Condensée (LPMC), University of Picardie Jules Vernes, Amiens (France); Zergoug, M. [C.S.C Centre de soudage et de contrôle, Dely Ibrahim, BP 64 Chéraga, Alger (Algeria); Luneau, D. [Université Claude Bernard Lyon 1 Laboratoire des Multimatériaux, (UMR 5615) 69622 cedex (France)

    2017-04-15

    Bilayer of nickel and nickel oxide were deposited on glass substrates using RF magnetron sputtering technique. The magnetic properties of the prepared thin films were carried out at room temperature in both parallel and perpendicular magnetic field to the sample. The Preisach model was applied to provide a mathematical model of the magnetic hysteresis loop in the case of parallel geometry, along the easy axis of the bi-layer NiO / Ni. Good agreement was obtained between the theoretical and experimental results.

  8. Synthesis, electronic structure, elastic properties, and interfacial behavior of icosahedral boron-rich solids

    OpenAIRE

    Hunold, Oliver

    2017-01-01

    Boron-rich solids are commonly characterized by icosahedral clusters, where 12 B atoms form an icosahedron, giving rise to outstanding mechanical and transport properties. However, broader applications are limited due to the high synthesis temperature required to obtain the icosahedra-based crystalline structure. Utilizing high power pulsed magnetron sputtering (HPPMS), the deposition temperature may be lowered as compared to direct current magnetron sputtering by enhanced surface diffusion. ...

  9. Pressure dependence of in situ boron-doped silicon films prepared by low-pressure chemical vapor deposition. II. Resistivity

    Science.gov (United States)

    Haji, L.; Hamedi, L.; Loisel, B.; Gauneau, M.; Joubert, P.; Sarret, M.

    1989-11-01

    The effects of silane pressure and temperature on the in situ boron incorporation and resistivity of low-pressure chemical vapor deposited polycrystalline silicon films were studied in the ranges of 2.5×10-3-1 Torr and 515-700 °C. By lowering the silane pressure, the boron concentration increases (up to 1×1022 cm-3) and the resistivity decreases down to about 2×10-3 Ω cm without annealing. For high deposition pressure (≥0.1 Torr), the resistivity decreases as the temperature is lowered. In this latter case the secondary-ion mass spectrometry profiles reveal a boron accumulation at the layer-substrate interface, which is always observed independently of the substrate nature.

  10. Copper deposition on fabrics by rf plasma sputtering for medical applications

    Science.gov (United States)

    Segura, G.; Guzmán, P.; Zuñiga, P.; Chaves, S.; Barrantes, Y.; Navarro, G.; Asenjo, J.; Guadamuz Vargas, S., VI; Chaves, J.

    2015-03-01

    The present work is about preparation and characterization of RF sputtered Cu films on cotton by the usage of a Magnetron Sputter Source and 99.995% purity Cu target at room temperature. Cotton fabric samples of 1, 2 and 4 min of sputtering time at discharge pressure of 1×10-2 Torr and distance between target and sample of 8 cm were used. The main goal was to qualitatively test the antimicrobial action of copper on fabrics. For that purpose, a reference strain of Escherichia Coli ATCC 35218 that were grown in TSA plates was implemented. Results indicated a decrease in the growth of bacteria by contact with Cu; for fabric samples with longer sputtering presented lower development of E. coli colonies. The scope of this research focused on using these new textiles in health field, for example socks can be made with this textile for the treatment of athlete's foot and the use in pajamas, sheets, pillow covers and robes in hospital setting for reducing the spread of microorganisms.

  11. Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide

    Science.gov (United States)

    Akinlabi, E. T.; Erinosho, M. F.

    2017-11-01

    Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.

  12. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren

    2015-01-01

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film...

  13. Mimicry of sputtered i-ZnO thin films using chemical bath deposition for solution-processed solar cells.

    Science.gov (United States)

    Della Gaspera, Enrico; van Embden, Joel; Chesman, Anthony S R; Duffy, Noel W; Jasieniak, Jacek J

    2014-12-24

    Solution processing provides a versatile and inexpensive means to prepare functional materials with specifically designed properties. The current challenge is to mimic the structural, optical, and/or chemical properties of thin films fabricated by vacuum-based techniques using solution-based approaches. In this work we focus on ZnO to show that thin films grown using a simple, aqueous-based, chemical bath deposition (CBD) method can mimic the properties of sputtered coatings, provided that the kinetic and thermodynamic reaction parameters are carefully tuned. The role of these parameters toward growing highly oriented and dense ZnO thin films is fully elucidated through detailed microscopic and spectroscopic investigations. The prepared samples exhibit bulk-like optical properties, are intrinsic in their electronic characteristics, and possess negligible organic contaminants, especially when compared to ZnO layers deposited by sol-gel or from nanocrystal inks. The efficacy of our CBD-grown ZnO thin films is demonstrated through the effective replacement of sputtered ZnO buffer layers within high efficiency solution processed Cu2ZnSnS4xSe4(1-x) solar cells.

  14. Physics of Plasma-Based Ion Implantation&Deposition (PBIID)and High Power Impulse Magnetron Sputtering (HIPIMS): A Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2007-08-28

    The emerging technology of High Power Impulse MagnetronSputtering (HIPIMS) has much in common with the more establishedtechnology of Plasma Based Ion Implantation&Deposition (PBIID):both use pulsed plasmas, the pulsed sheath periodically evolves andcollapses, the plasma-sheath system interacts with the pulse-drivingpower supply, the plasma parameters are affected by the power dissipated,surface atoms are sputtered and secondary electrons are emitted, etc.Therefore, both fields of science and technology could learn from eachother, which has not been fully explored. On the other hand, there aresignificant differences, too. Most importantly, the operation of HIPIMSheavilyrelies on the presence of a strong magnetic field, confiningelectrons and causing their ExB drift, which is closed for typicalmagnetron configurations. Second, at the high peak power levels used forHIPIMS, 1 kW/cm2 or greater averaged over the target area, the sputteredmaterial greatly affects plasma generation. For PBIID, in contrast,plasma generation and ion processing of the surface (ion implantation,etching, and deposition) are considered rela-tively independentprocesses. Third, secondary electron emission is generally considered anuisance for PBIID, especially at high voltages, whereas it is a criticalingredient to the operation of HIPIMS. Fourth, the voltages in PBIID areoften higher than in HIPIMS. For the first three reasons listed above,modelling of PBIID seems to be easier and could give some guidance forfuture HIPIMS models, which, clearly, will be more involved.

  15. Effects of oxygen addition in reactive cluster beam deposition of tungsten by magnetron sputtering with gas aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Polášek, J., E-mail: xpolasekj@seznam.cz [Department of Surface and Plasma Science, Faculty of Mathematics and Physic, Charles University, V Holešovičkách 2, Prague 8, CZ-18000 (Czech Republic); Mašek, K. [Department of Surface and Plasma Science, Faculty of Mathematics and Physic, Charles University, V Holešovičkách 2, Prague 8, CZ-18000 (Czech Republic); Marek, A.; Vyskočil, J. [HVM Plasma Ltd., Na Hutmance 2, Prague 5, CZ-158 00 (Czech Republic)

    2015-09-30

    In this work, we investigated the possibilities of tungsten and tungsten oxide nanoclusters generation by means of non-reactive and reactive magnetron sputtering with gas aggregation. It was found that in pure argon atmosphere, cluster aggregation proceeded in two regimes depending on argon pressure in the aggregation chamber. At the lower pressure, cluster generation was dominated by two-body collisions yielding larger clusters (about 5.5 nm in diameter) at lower rate. At higher pressures, cluster generation was dominated by three-body collisions yielding smaller clusters (3–4 nm in diameter) at higher rate. The small amount of oxygen admixture in the aggregation chamber had considerable influence on cluster aggregation process. At certain critical pressure, the presence of oxygen led to the raise of deposition rate and cluster size. Resulting clusters were composed mostly of tungsten trioxide. The oxygen pressure higher than critical led to the target poisoning and the decrease in the sputtering rate. Critical oxygen pressure decreased with increasing argon pressure, suggesting that cluster aggregation process was influenced by atomic oxygen species (namely, O{sup −} ion) generated by oxygen–argon collisions in the magnetron plasma. - Highlights: • Formation of tungsten and tungsten oxide clusters was observed. • Two modes of cluster aggregation in pure argon atmosphere were found. • Dependence of cluster deposition speed and size on oxygen admixture was observed. • Changes of dependence on oxygen with changing argon pressure were described.

  16. [Study on friction and abrasion behavior of TiN film on dental NiCr alloy by plasma magnetron reactive sputter deposition].

    Science.gov (United States)

    Yan, Xiao-dong; Mao, Zhao; Tang, Cheng-zhong; Mei, Jian-ping

    2008-12-01

    To investigate the effect of TiN film deposited by plasma magnetron reactive sputter deposition technique on the fiction and abrasion behavior of dental NiCr alloy. TiN film was deposited on the surface of dental NiCr alloy by plasma magnetron reactive sputter deposition technique. Surface topography of TiN film was observed by electron microscope. The frictional coefficient and abrasive loss in weight were measured by friction and abrasive apparatus. SPSS11.0 software package was used for Student's t test. The surface topography of TiN film was tiny diffusion and homogeneous distribution common burreed tuber structure. The average frictional coefficient of NiCr of none deposition was 0.651 while 0.525 after TiN deposited (Pabrasive loss in weight of none deposition was 0.0113g while 0.0007g after TiN deposited (Pabrasion behavior of NiCr with TiN film deposited by plasma magnetron reactive sputter deposition technique is better.

  17. Low temperature sputter-deposited ZnO films with enhanced Hall mobility using excimer laser post-processing

    Science.gov (United States)

    Tsakonas, C.; Kuznetsov, V. L.; Cranton, W. M.; Kalfagiannis, N.; Abusabee, K. M.; Koutsogeorgis, D. C.; Abeywickrama, N.; Edwards, P. P.

    2017-12-01

    We report the low temperature (T  ZnO thin films (~140 nm) with Hall mobility of up to 17.3 cm2 V‑1 s‑1 making them suitable for thin film transistor (TFT) applications. The films were deposited by rf magnetron sputtering at T  V‑1 s‑1 at a carrier density of 2.3  ×  1018 cm‑3 was measured from a 1 GΩ as deposited and aged film after the laser treatment. We suggest that the aging of non-processed films reduces structural defects mainly at grain boundaries by air species chemisorption, with concomitant increase in thermal conductivity so that laser processing can have an enhancing effect. Such a processing combination can act synergistically and produce suitable active layers for TFT applications with low temperature processing requirements.

  18. Nanocrystalline ZnO thin film deposition on flexible substrate by low-temperature sputtering process for plastic displays.

    Science.gov (United States)

    Banerjee, Arghya Narayan; Joo, Sang Woo; Min, Bong-Ki

    2014-10-01

    A low temperature sputter deposition process is adopted to fabricate nanocrystalline ZnO thin films on plastic (polyethylene terepthalate) substrate. Very good crystalline films are synthesized at a substrate temperature around 120 degrees C. Structural and microstructural analyses confirm the proper phase formation of the nanomaterial with an average nanoparticle size around 5-10 nm. Optical transmission analysis of the film deposited on plastic substrate depicts nearly 90% visible transmittance with a direct bandgap around 3.56 eV. This cost-effective, low-temperature fabrication of nanocrystalline thin film with very good structural and optical properties will find important applications in plastic display technology. Also the process is a vacuum-based clean process, which is compatible to CMOS-IC fabrication techniques and therefore, can easily be integrated with modern solid state device fabrication processes for diverse device applications.

  19. Structure and electrical properties of quaternary Cr–Si–Ni–W films prepared by ion beam sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y., E-mail: wxy@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Ma, J.X.; Li, C.G. [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Shao, J.Q. [BDS Electronics Co., Ltd., Bengbu 233010 (China)

    2014-08-01

    Highlights: • Quaternary Cr–Si–Ni–W thin film was prepared by IBSD. • As-deposited Cr–Si–Ni–W films show nanocrystalline state in XRD analysis. • Big massive particles in Cr–Si–Ni–W films are mainly formed in deposition process. • Conduction mechanism was discussed based on microscopic analysis. - Abstract: Si-rich Cr–Si–Ni–W films were deposited by ion beam sputter deposition (IBSD) using a mother alloy target on polished Al{sub 2}O{sub 3} substrates. Effects of ion beam voltage, annealing temperature and deposition time on sheet resistance and TCR of Cr–Si–Ni–W films were studied. Experimental results reveal that the as-deposited Cr–Si–Ni–W films obtained by IBSD show a crystalline state because of a high mobility of deposition atoms and molecules with more energy obtained from high energy ions. XRD and AFM analysis show that the big massive particles mainly composed of Si and CrSi{sub 2} in Cr–Si–Ni–W films are formed in the process of IBSD rather than in post-annealing stage. Long deposition time is significantly important to a decrease of the number and size of gaps between big particles in Cr–Si–Ni–W films and to an improvement of the continuity and compactness of film structure, influencing resistivity and TCR of deposition film. The conduction mechanism was discussed based on microscopic analysis and the conductive model proposed for Cr–Si–Ni–W films mainly composed of big particles.

  20. Properties of TiO{sub 2} thin films deposited by rf reactive magnetron sputtering on biased substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nezar, Sawsen, E-mail: snezar@cdta.dz [Equipe Plasma & Applications, Division des Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées, Cité du 20 Aout 1956, Baba Hassen, Alger (Algeria); Laboratoire des phénomènes de transfert, génie chimique, Faculté de Génie des procèdes, USTHB, BP 32 El-alia, Bab Ezzouar, Alger (Algeria); Saoula, Nadia [Equipe Plasma & Applications, Division des Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées, Cité du 20 Aout 1956, Baba Hassen, Alger (Algeria); Sali, Samira [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE Algiers) (Algeria); Faiz, Mohammed; Mekki, Mogtaba [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Laoufi, Nadia Aïcha [Laboratoire des phénomènes de transfert, génie chimique, Faculté de Génie des procèdes, USTHB, BP 32 El-alia, Bab Ezzouar, Alger (Algeria); Tabet, Nouar [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Doha (Qatar)

    2017-02-15

    Highlights: • TiO{sub 2} thin films were deposited on negatively biased substrates by rf magnetron sputtering technique. • The bias favors the formation of TiO{sub 2} crystalline phase. • The roughness of the films increases and the grain size decreases as the bias voltage is varied between (0 and −100 V). • XPS reveals the presence of adsorbed humidity of the surface and Ti{sup 4+} oxidation state in the as prepared samples. - Abstract: TiO{sub 2} thin films are of paramount importance due to their pervasive applications. In contrast to previous published works where the substrate was heated at high temperatures to obtain TiO{sub 2} crystalline phase, we show in this study that it is possible to deposit crystalline TiO{sub 2} thin films on biased and unbiased substrate at room temperature using reactive rf magnetron sputtering. The bias voltage was varied from 0 V to −100 V. The deposited films were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV–vis spectroscopy, Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and atomic force microscopy (AFM). The average crystallite size was estimated using x-ray diffraction. The results showed that the application of negative bias affects the surface roughness of the films and favors the formation of the rutile phase. The root mean square roughness (R{sub rms}), the average grain size and the optical band gap of the films decreased as the substrate bias voltage was varied from 0 to −100 V. The UV–visible transmittance spectra showed that the films were transparent in the visible range and absorb strongly in the UV range. This study shows that biasing the substrate could be a promising and effective alternative to deposit TiO{sub 2} crystallized thin films of engineered properties at room temperature.

  1. Bioactivity response of Ta{sub 1-x}O{sub x} coatings deposited by reactive DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Alves, C.F., E-mail: cristiana.alves@fisica.uminho.pt [GRF-CFUM, Physics Departament, University of Minho, Campus of Azurem, Guimaraes 4800-058 (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Coimbra 3030-788 (Portugal); Carvalho, S. [GRF-CFUM, Physics Departament, University of Minho, Campus of Azurem, Guimaraes 4800-058 (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Coimbra 3030-788 (Portugal)

    2016-01-01

    The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft–hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar + O{sub 2} atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates. - Highlights: • Ta{sub 1-x}O{sub x} coatings were deposited by reactive DC magnetron sputtering. • Amorphous oxide phases were achieved with higher oxygen amounts. • Contact angles progressively diminished, with increasing oxygen content. • Ta

  2. Synthesis of boron nitride nanotubes by Argon supported Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Ahmad, Pervaiz; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd

    2015-03-01

    Thermal Chemical Vapor Deposition technique is modified with the use of Argon gas flow inside the chamber as an alternative for vacuum and orientation of one end closed quartz test tube. The use of Argon gas not only simplified the experimental set up, but also made it ~ 18 % cost effective compared to the conventional set up. Field Emission Scanning Electron Microscopy micrographs show straight and long BNNTs along with some cotton like morphologies. Transmission electron microscopy revealed bamboo like structure inside the tube and ~0.34 nm interlayer spacing for highly crystalline nature of boron nitride nanotubes. X-ray photon spectroscopy shows B 1s peak at 191.08 eV and N 1s peak at 398.78 eV that represents h-BN. Whereas, Raman spectrum indicates a major peak at ~1379.60 (cm-1) that correspond to E2g mode of h-BN.

  3. Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    2016-11-01

    Full Text Available Hexagonal boron nitrite (h-BN is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.

  4. Anodization and Optical Appearance of Sputter Deposited Al-Zr Coatings

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Shabadi, Rajashekhara

    2014-01-01

    and microstructure of the commercial alloys, and even more difficult with recycled alloys. Sputter coating methods promise to control the chemical composition of the Al alloy surfaces and eventually modify the microstructure of the surfaces with heat treatments thus enabling the freedom on the substrate quality....... This paper evaluates the use of magnetron sputtered Al-Zr coatings on Al combined with heat treatment and anodizing for obtaining required optical properties. Metallurgical and optical characterization was carried out to investigate the effect of coating microstructure and anodizing parameters on appearance...... of the anodized layer. The microstructure of the coating is found to influence the appearance of anodized layer owing to the presence of completely or partially dissolved second phases during anodizing process. Oxidation status of the second phase particles in the coatings affected the light absorption...

  5. Characterisation Studies of the Structure and Properties of As-Deposited and Annealed Pulsed Magnetron Sputtered Titania Coatings

    Directory of Open Access Journals (Sweden)

    John A. Ridealgh

    2013-09-01

    Full Text Available Titanium dioxide thin films are durable, chemically stable, have a high refractive index and good electro/photochemical proprieties. Consequently, they are widely used as anti-reflective layers in optical devices and large area glazing products, dielectric layers in microelectronic devices and photo catalytic layers in self-cleaning surfaces. Titania coatings may have amorphous or crystalline structures, where three crystalline phases of TiO2 can be obtained: anatase, rutile and brookite, although the latter is rarely found. It is known, however, that the structure of TiO2 coatings is sensitive to deposition conditions and can also be modified by post-deposition heat treatments. In this study, titania coatings have been deposited onto soda-lime glass substrates by reactive sputtering from a metallic target. The magnetron was driven in mid-frequency pulsed DC mode. The as-deposited coatings were analysed by micro Raman spectroscopy, X-ray diffraction (XRD, atomic force microscopy (AFM and scanning electron microscopy (SEM. Selected coatings were annealed at temperatures in the range 200–700 °C and re-analysed. Whilst there was weak evidence of a nanocrystallinity in the as-deposited films, it was observed that these largely amorphous low temperature structures converted into strongly crystalline structures at annealing temperatures above 400 °C.

  6. Experimental and computer investigation of the diagnostic mirror behavior under sputtering and duct material deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bandourko, V.V.; Gridneva, E.A.; Koborov, N.N.; Kurnaev, V.A.; Levchuk, D.V. E-mail: denis@plasma.mephi.ru; Levchuk, S.S.; Trifonov, N.N.; Zhuravlev, A.V

    2002-12-01

    Experiments on stainless steel duct material, W and Mo mirror surfaces as well as modeling of the experiment using a new computer code which takes into account scanning tunnelling microscope measured surface topography are described. Simulations of the sputtering yield as a function of the primary ion energy and the angle of incidence for ion irradiated targets demonstrated the difference in behavior for ideally smooth, non-irradiated and irradiated targets.

  7. Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia

    Science.gov (United States)

    Baksheev, Ivan A.; Trumbull, Robert B.; Popov, Mikhail P.; Erokhin, Yuri V.; Kudryavtseva, Olesya E.; Yapaskurt, Vasily O.; Khiller, Vera V.; Vovna, Galina M.; Kiselev, Vladimir I.

    2017-07-01

    Tourmaline is abundant at the Mariinsky schist-hosted emerald deposit in the Central Urals, Russia, both in emerald-bearing phlogopite veins (type 1) and later, emerald-free pockets, lenses, and veinlets cutting the phlogopite veins (type 2). The Ca content in tourmaline is influenced by the host rocks (ultramafic and mafic rocks), associated minerals, and minerals crystallized before tourmaline (amphibole, fluorite, margarite). The Na concentration in tourmaline depends on the presence or absence of paragonite, and the association with micas also strongly influences the contents of Li, Zn, Ni, and Co in tourmaline. Type 1 tourmalines associated with phlogopite are relatively depleted in these elements, whereas type 2 tourmalines associated with margarite or paragonite are enriched. Some differences in isomorphic substitutions along with the trace element composition (Zn, V, Sr, Co, REE) may have value in exploration of emerald-bearing and emerald-free veins in schist-hosted emerald deposits. The δ11B values in tourmaline of all types fall in a narrow total range from -11.3 to -8.4‰. These values, combined with a mineralization temperature of 420-360 °C, yield an estimated δ11B fluid composition of -7.4 to -6.8‰ suggesting a mixed source of boron, likely dominated from the granitic rocks surrounding the emerald belt. The narrow range of B-isotope compositions in tourmaline from throughout the Mariinsky deposit suggests a well-mixed hydrothermal system.

  8. Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate.

    Science.gov (United States)

    Göncü, Yapıncak; Geçgin, Merve; Bakan, Feray; Ay, Nuran

    2017-10-01

    In this study, commercial pure titanium samples were coated with nano hydroxyapatite-nano hexagonal boron nitride (nano HA-nano hBN) composite by electrophoretic deposition (EPD). The effect of process parameters (applied voltage, deposition time and solid concentration) on the coating morphology, thickness and the adhesion behavior were studied systematically and crack free nano hBN-nano HA composite coating production was achieved for developing bioactive coatings on titanium substrates for orthopedic applications. For the examination of structural and morphological characteristics of the coating surfaces, various complementary analysis methods were performed. For the structural characterization, XRD and Raman Spectroscopy were used while, Scanning Electron Microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Transmission Electron Microscopy (TEM) techniques were carried out for revealing the morphological characterization. The results showed that nano HA-nano hBN were successfully deposited on Ti surface with uniform, crack-free coating by EPD. The amounts of hBN in suspension are considered to have no effect on coating thickness. By adding hBN into HA, the morphology of HA did not change and hBN has no significant effect on porous structure. These nanostructured surfaces are expected to be suitable for proliferation of cells and have high potential for bioactive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Structure, optical properties and thermal stability of HfErO films deposited by simultaneous RF and VHF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Y. [Soochow University, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou (China); Nanjing University of Posts and Telecommunications, School of Tongda, Nanjing (China); Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou (China); He, H.J.; Zhang, Z.; Jin, C.G.; Yang, Y.; Wang, Y.Y.; Ye, C. [Soochow University, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou (China); Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou (China); Zhuge, L.J. [Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou (China); Soochow University, Analysis and Testing Center, Suzhou (China); Wu, X.M. [Soochow University, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou (China); Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou (China); Chinese Academy of Sciences, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Shanghai (China)

    2015-01-23

    HfErO films are deposited on Si substrates by simultaneous radio frequency (RF) and very high frequency (VHF) magnetron sputtering technique. The content of the doped ingredient of Er and the body composition of HfO{sub x} are, respectively, controlled through the VHF and RF powers. Low content of Er doping in the HfErO films can be achieved, because the VHF source of 27.12 MHz has higher ion energy and lower ion flux than the RF source resulting in low sputtering rate in the magnetron sputtering system. The structure, optical properties and thermal stability of the HfErO films are investigated in this work. Results show that the doped content of Er is independently controlled by the VHF power. The oxygen vacancies are created by the Er incorporation. The hafnium in the HfErO films forms mixed valence of Hf{sup 2+} and Hf{sup 4+}. The HfErO films are composed with the structures of HfO{sub 2}, HfO and ErO{sub x}, which can be optimized through the VHF power. At high VHF power, the Hf-Er-O bonds are formed, which demonstrates that the Er atoms are doped into the lattice of HfO{sub 2} in the HfErO films. The HfErO films have bad thermal stability as the crystallization temperature decreases from 900 to 800 C. After thermal annealing, cubic phase of HfO{sub 2} are stabilized, which is ascribed to the oxygen vacancies creation by the Er incorporation. The optical properties such as the refractive index and the optical band gap of the HfErO films are optimized by the VHF power. (orig.)

  10. Pressure dependence of in situ boron-doped silicon films prepared by low-pressure chemical vapor deposition. I. Microstructure

    Science.gov (United States)

    Joubert, P.; Sarret, M.; Haji, L.; Hamedi, L.; Loisel, B.

    1989-11-01

    In situ boron-doped silicon films have been deposited by the low-pressure chemical vapor deposition technique in the pressure and temperature ranges of 1-2.5×10-3 Torr and 515-700 °C, respectively. These films have been investigated by means of x-ray diffraction and transmission electron microscopy in order to study the influence of the silane partial pressure and deposition temperature on the microstructure of the doped films. X-ray experiments combined with gradual etching were performed in order to check the in-depth distribution of the crystallite textures. The microstructure of the boron-doped and undoped polysilicon films are compared.

  11. The influence of deposition temperature on microstructure and corrosion resistance of ZrOxNy/ZrO₂ coatings deposited using RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, G.I., E-mail: gcubillos@unal.edu.co [Department of Chemistry, Faculty of Science, National University of Colombia, Av. Cra. 30 No 45-03, Bogotá (Colombia); Bethencourt, M., E-mail: manuel.bethencourt@uca.es [Department of Materials Science, Metallurgy Engineering and Inorganic Chemistry, International Campus of Excellence of the Sea (CEI-MAR), University of Cadiz, Avda. República Saharaui s/n, 11510 Puerto Real, Cádiz (Spain); Olaya, J.J., E-mail: jjolayaf@unal.edu.co [Department of Mechanical Engineering, Faculty of Engineering, National University of Colombia, Bogotá (Colombia); Alfonso, J.E., E-mail: jealfonsoo@unal.edu.co [Department of Physic, Faculty of Science, National University of Colombia, Av. Cra. 30 No 45-03, Bogotá (Colombia); Marco, J.F., E-mail: jfmarco@iqfr.csic.es [Instituto de Química Física “Rocasolano”, CSIC, C/Serrano 119, 28006 Madrid (Spain)

    2014-08-01

    This paper reports the influence of substrate temperature on the structure, morphology and corrosion resistance of ZrOxNy/ZrO₂ thin films deposited on 304 stainless steel using radio frequency sputtering (RF sputtering). Structural analysis was carried out by X-ray diffraction (XRD); morphological analysis was performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and surface chemical analysis was determined using X-ray photoelectron spectroscopy (XPS). XRD data showed that the films deposited at 300 °C (573 K) and 350 °C (623 K) result in the growth of a monoclinic zirconium oxynitride phase with preferential orientation along the (-1 1 1) plane, while at 14 °C (287 K) the predominant phase is of polycrystalline ZrO₂. The corrosion results indicate that the coatings provide good resistance to corrosion in chloride-containing media, being better in the film deposited at 350 °C (623 K). SEM analysis demonstrated the homogeneity of the films deposited at the three temperatures; AFM studies established the average roughness of the films to be 4.25 nm. The binding energies of the Zr 3d, N 1s, and O 1s core levels determined by XPS were all compatible with the formation of a zirconium oxynitride and zirconium oxide in the surface of the film. ZrOxNy/ZrO₂ thin films are promising candidates for increasing the corrosion resistance of the steels in chloride-rich environments.

  12. Microstructural characterization of radio frequency magnetron sputter-deposited Ga sub 2 O sub 3 :Mn phosphor thin films

    CERN Document Server

    Kim, J H

    2002-01-01

    Ga sub 2 O sub 3 :Mn phosphor thin films have been prepared by radio frequency (rf) magnetron sputtering of a 2 mol % Mn-doped Ga sub 2 O sub 3 target in an oxygen-argon mixture atmosphere. The deposition rate of the films decreased from 14 to 12 Aa/min when the working gas pressure decreased from 30 to 2 mTorr, while the O/Ga ratio of approx 1.5 did not systematically depend on the pressure. Films deposited at higher working gas pressure had a porous columnar structure containing a large void, typical of zone 1 growth, while films produced at lower pressure had relatively smooth surfaces with a dense structure, typical of zone T growth. The results obtained are consistent with energetic particle bombardment of the depositing films promoting surface adatom mobility at lower working gas pressure. Films deposited at working gas pressures>=15 mTorr showed a random orientation after a postdeposition anneal at 1000 deg. C. Below 15 mTorr, annealed films were strongly textured with the (111) and (020) planes parall...

  13. Synthesis of boron/nitrogen-incorporated diamond-like carbon films by pulsed laser deposition using nitrogen gas and a boron-containing graphite target

    Science.gov (United States)

    Nakazawa, Hideki; Osozawa, Ryoichi; Mohnai, Yusuke; Nara, Yuki

    2017-10-01

    We have deposited boron/nitrogen-incorporated diamond-like carbon (B-N-DLC) films by pulsed laser deposition (PLD) using N2 gas and a B-containing graphite target, and compared the mechanical, tribological, electrical, and surface properties of the B-N-DLC films with those of pure DLC, boron-incorporated DLC (B-DLC), and nitrogen-incorporated DLC (N-DLC) films prepared by PLD. The B-DLC film had a much higher critical load than the pure DLC. The critical load of the B-N-DLC films became maximum at an optimum N2 pressure, which was higher than those of the pure DLC, B-DLC, and N-DLC films. The friction property in air was degraded by the N incorporation, whereas the B incorporation did not have a significant effect on the friction coefficient. The B-N-DLC films deposited at higher N2 pressures exhibited superhydrophilic wetting properties. The B-N-DLC films prepared at moderate N2 pressures had resistivities much less than that of the pure DLC film.

  14. BiVO{sub 4} photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Haibo [Department of Material Science and Engineering, Jinan University, Jiwei Road 106, 250022 Jinan, Shandong Province (China); Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Freudenberg, Norman; Nie, Man; Krol, Roel van de; Ellmer, Klaus, E-mail: ellmer@helmholtz-berlin.de [Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2016-04-15

    Photoactive bismuth vanadate (BiVO{sub 4}) thin films were deposited by reactive co-magnetron sputtering from metallic Bi and V targets. The effects of the V-to-Bi ratio, molybdenum doping and post-annealing on the crystallographic and photoelectrochemical (PEC) properties of the BiVO{sub 4} films were investigated. Phase-pure monoclinic BiVO{sub 4} films, which are more photoactive than the tetragonal BiVO{sub 4} phase, were obtained under slightly vanadium-rich conditions. After annealing of the Mo-doped BiVO{sub 4} films, the photocurrent increased 2.6 times compared to undoped films. After optimization of the BiVO{sub 4} film thickness, the photocurrent densities (without a catalyst or a blocking layer or a hole scavenger) exceeded 1.2 mA/cm{sup 2} at a potential of 1.23 V{sub RHE} under solar AM1.5 irradiation. The surprisingly high injection efficiency of holes into the electrolyte is attributed to the highly porous film morphology. This co-magnetron sputtering preparation route for photoactive BiVO{sub 4} films opens new possibilities for the fabrication of large-scale devices for water splitting.

  15. BiVO4 photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering

    Directory of Open Access Journals (Sweden)

    Haibo Gong

    2016-04-01

    Full Text Available Photoactive bismuth vanadate (BiVO4 thin films were deposited by reactive co-magnetron sputtering from metallic Bi and V targets. The effects of the V-to-Bi ratio, molybdenum doping and post-annealing on the crystallographic and photoelectrochemical (PEC properties of the BiVO4 films were investigated. Phase-pure monoclinic BiVO4 films, which are more photoactive than the tetragonal BiVO4 phase, were obtained under slightly vanadium-rich conditions. After annealing of the Mo-doped BiVO4 films, the photocurrent increased 2.6 times compared to undoped films. After optimization of the BiVO4 film thickness, the photocurrent densities (without a catalyst or a blocking layer or a hole scavenger exceeded 1.2 mA/cm2 at a potential of 1.23 VRHE under solar AM1.5 irradiation. The surprisingly high injection efficiency of holes into the electrolyte is attributed to the highly porous film morphology. This co-magnetron sputtering preparation route for photoactive BiVO4 films opens new possibilities for the fabrication of large-scale devices for water splitting.

  16. Microstructure and mechanical properties of sputter deposited Ni/Ni{sub 3}Al multilayer films at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Lu, Fenggui; Huang, Jian; Wu, Yixiong [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China)

    2016-08-15

    Highlights: • Ni/Ni{sub 3}Al multilayers are prepared by magnetron sputtering. • Both grain size and phase constitution of annealed Ni/Ni{sub 3}Al multilayers are dependent on individual layer thickness. • The hardness of annealed Ni/Ni{sub 3}Al multilayers varies with individual layer thickness and annealing temperature. • 40 nm Ni/Ni{sub 3}Al multilayer exhibits excellent hardness at elevated temperature. - Abstract: Nano-structured Ni/Ni{sub 3}Al multilayer was prepared by magnetron sputtering, with individual layer thicknesses h varying from 10 to 160 nm. The microstructure and hardness of Ni/Ni{sub 3}Al multilayer were investigated by X-ray diffraction, transmission electron microscopy and nanoindentation. The results show that the hardness increases with decreasing h for as-deposited and 500 °C annealed multilayers. When annealed at 700 °C, the hardness approach a peak value at h = 40 nm with followed by softening at smaller h. The influence of individual layer thickness, grain size as well as formation of ordered Ni{sub 3}Al on strengthening mechanisms of Ni/Ni{sub 3}Al multilayers at elevated temperature are discussed.

  17. Systematic investigation of the properties of TiO2 films grown by reactive ion beam sputter deposition

    Science.gov (United States)

    Bundesmann, C.; Lautenschläger, T.; Spemann, D.; Finzel, A.; Thelander, E.; Mensing, M.; Frost, F.

    2017-11-01

    TiO2 films were grown by ion beam sputter deposition under systematic variation of ion beam parameters (ion species, ion energy) and geometrical parameters (ion incidence angle, polar emission angle) and characterized with respect to film thickness, growth rate, structural properties, surface topography, composition, optical properties, and mass density. The angular distributions of film thickness and growth rate show an over-cosine shape, which is tilted in forward direction. All films are amorphous and the surface roughness is below 0.22 nm. The investigation of the composition revealed stoichiometric TiO2 with implanted backscattered primary particles. The optical properties were analysed using the Tauc Lorentz (TL) model. The amplitude parameter of the TL model was found to vary systematically with the scattering angle, whereas the impact on the other TL parameters is negligible. Mass density follows the same trends as the optical properties, i.e. optical properties and mass density are correlated. Surface roughness, atomic fraction of implanted primary particles, optical properties and mass density show similar systematic variations with process parameters, especially, with the scattering geometry (i.e. scattering angle). Ion species, ion energy and ion incidence angle have no or only a small impact. The variations in the film properties are tentatively assigned to changes in the angular and energy distribution of the sputtered target particles and backscattered primary particles.

  18. Study of topological morphology and optical properties of SnO{sub 2} thin films deposited by RF sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Alhuthali, A. [Department of Physics, Faculty of Science, Taif University, P.O. Box 888, Taif 21974 (Saudi Arabia); El-Nahass, M.M. [Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Atta, A.A., E-mail: aatta08@yahoo.com [Department of Physics, Faculty of Science, Taif University, P.O. Box 888, Taif 21974 (Saudi Arabia); Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Abd El-Raheem, M.M. [Department of Physics, Faculty of Science, Taif University, P.O. Box 888, Taif 21974 (Saudi Arabia); Department of Physics, Faculty of Science, Sohag University, Sohag 82524 (Egypt); Elsabawy, Khaled M. [Materials Science Unit, Department of Chemistry, Faculty of Science, Tanta University, 31725 Tanta (Egypt); Department of Chemistry, Faculty of Science, Taif University, P.O. Box 888, Taif 21974 (Saudi Arabia); Hassanien, A.M. [Department of Physics, Faculty of Science and Humanity Studies at Al-Quwayiyah, Shaqra University, Al-Quwayiyah 11971 (Saudi Arabia)

    2015-02-15

    Transparent conducting thin films of tin dioxide (SnO{sub 2}) were prepared on glass substrates by RF sputtering technique. The as-deposited films were annealed at different temperatures (473, 673 and 823 K) for 3 h in air under normal atmospheric pressure. The film structure was characterized using atomic force microscopy (AFM). The optical properties of the prepared and annealed films were studied using their reflectance and transmittance spectra. The Urbach energy was found to decrease with increasing annealing temperature. The estimated direct optical band gap (E{sub g}{sup d}) values were found to decrease by annealing temperature. The photoluminescence (PL) spectroscopy measurement of the SnO{sub 2} film shows that the band to band emission peak atE{sub g}{sup PL}=4.18 eV. The dispersion curves of the refractive index of SnO{sub 2} thin films were found to obey the single oscillator model. - Highlights: • The structural and optical properties of RF Sputtered SnO{sub 2} thin Films have been studied. • AFM has been used to identify the structure properties. • From fundamental absorption edge, a picture of the energetic transitions of was described. • Optical band gap were also obtained from optical PL measurements. • A single-oscillator model and Drude model were used to describe the refractive index.

  19. Optical and electrochemical properties of optically transparent, boron-doped diamond thin films deposited on quartz.

    Science.gov (United States)

    Stotter, Jason; Zak, Jerzy; Behler, Zack; Show, Yoshiuki; Swain, Greg M

    2002-12-01

    The optical and electrochemical properties of transparent, boron-doped diamond thin film, deposited on quartz, are discussed. The films were deposited by microwave-assisted chemical vapor deposition, for 1-2 h, using a 0.5% CH4/H2 source gas mixture at 45 Torr and 600 W of power. A high rate of diamond nucleation was achieved by mechanically scratching the quartz. This pretreatment leads to the formation of a continuous film, in a short period of time, which consists of nanometer-sized grains of diamond. The thin-film electrode was characterized by cyclic voltammetry, atomic force microscopy, and UV-visible absorption spectrophotometry. The film's electrochemical response was evaluated using Ru(NH3)6(3+/2+) in 1 M KCl, Fe(CN)6(3-/4-) in 1 M KCl, and chlorpromazine (CPZ) in 10 mM HClO4. The film exhibited a low voltammetric background current and a stable and active voltammetric response for all three redox systems. The optical transparency of the polycrystalline film in the visible region was near 50% and fairly constant between 300 and 800 nm. The optical and electrical properties were extremely stable during 48-h exposure tests in various aqueous (HNO3, NaOH) solutions and nonaqueous (e.g., chlorinated) solvents. The properties were also extremely stable during anodic and cathodic potential cycling in harsh aqueous environments. This stability is in stark contrast to what was observed for an indium-doped tin oxide thin film coated on quartz. The spectroelectrochemical response (transmission mode) for CPZ was studied in detail, using a thin-layer spectroelectrochemical cell. Thin-layer voltammetry, potential step/ absorption measurements, and detection analytical figures of merit are presented. The results demonstrate that durable, stable, and optically transparent diamond thin films, with low electrical resistivity (approximately 0.026 omega x cm) laterally through the film, can be deposited on quartz.

  20. Thin film deposition by electric and magnetic crossed-field diode sputtering. [Patent application

    Science.gov (United States)

    Welch, K.M.

    1975-04-04

    Applying a coating of titanium nitride to a klystron window by means of a cross-field diode sputtering array is described. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent to a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate, and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thickness. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multifactoring under operating conditions of the components.

  1. Microstructure of ZnO Thin Films Deposited by High Power Impulse Magnetron Sputtering (Postprint)

    Science.gov (United States)

    2015-03-01

    crystallinity needed for the charge transport proper- ties. To extend ZnO applications to flexible polymer substrates, a reduc- tion of the growth temperature is...cathodic vacuum arc, Thin Solid Films 398–399 (2001) 244. [11] C.F. Yu, C.W. Sung, S.H. Chen, S.J. Sun, Relationship between the photoluminescence ... Photoluminescence and heteroepitaxy of ZnO on sapphire substrate (0001) grown by rf magnetron sputtering, J. Vac. Sci. Technol. A 18 (2000) 2864. r

  2. Sputter-deposited low reflectance vanadium oxide-molybdenum oxide thin films on silicon

    Science.gov (United States)

    Nayak, Manish Kumar; Esther, A. Carmel Mary; Bera, Parthasarathi; Dey, Arjun

    2017-09-01

    A single layer antireflective, smart, crystalline and nanocolumnar pulsed RF magnetron sputtered vanadium oxide-molybdenum oxide thin film on silicon is proposed for the alternate antireflective material for silicon based futuristic solar cell application. The VO-MO film with 130 nm thickness grown at 200 W shows significant low reflectance (1% within the 500-600 nm region). The VO-MO film with lowest reflectance shows a phase transition at around 55 °C which is beneficial due to film inherent variable IR emittance behaviour which may be helpful for eliminating excess heat load generated during in-service of silicon solar cell.

  3. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A. [LSPM-CNRS (formerly LIMHP), Universite Paris 13, 99, Avenue Jean-Baptiste Clement, 93430 Villetaneuse (France); Bisaro, R.; Servet, B.; Garry, G. [Thales Research and Technology France, Campus de Polytechnique, 1 Avenue Augustin Fresnel, F-91767 Palaiseau Cedex (France); Barjon, J. [GEMaC-CNRS, Universite de Versailles Saint Quentin Batiment Fermat, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France)

    2012-03-19

    In this study, 4 x 4 mm{sup 2} freestanding boron-doped diamond single crystals with thickness up to 260 {mu}m have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 10{sup 18} to 10{sup 20} cm{sup -3} which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 {Omega} cm have been obtained.

  4. Leakage current characteristics of thick cubic boron nitride films deposited on titanium

    Science.gov (United States)

    Kawamoto, S.; Nakakuma, T.; Teii, K.; Matsumoto, S.

    2017-12-01

    Thick cubic and sp2-bonded boron nitride (cBN and sp2BN) films are deposited on Ti substrates by plasma jet enhanced chemical vapor deposition using the chemistry of fluorine, and their direct current-voltage characteristics are studied for Ni-BN-Ti capacitor structures. The resistivity of the cBN film measured at room temperature is of the order of 108 Ωcm, which is three to four orders of magnitude lower than that of the sp2BN film. At high electric fields, Frenkel-Poole emission dominates the conduction of the sp2BN film, while thermionic emission is better able to describe the conduction of the cBN film at temperatures up to 473 K. A lower leakage current indicates lower densities of carriers and trap sites associated with defects, suggesting that a higher-quality cBN film with higher crystallinity and stoichiometry is potentially promising as an ultrahard dielectric material in high temperature condition.

  5. Optical and Mechanical Properties of Transparent Conductive Al-Doped ZnO Films Deposited by the Sputtering Method

    Science.gov (United States)

    Zhu, Yun; Wang, Yue; Wan, Peng-Fei; Li, Hong-Yu; Wang, Shou-Yu

    2012-03-01

    Al-doped ZnO transparent conductive oxide thin films (AZO) are prepared by the magnetron sputtering method. The structural, optical and mechanical properties of the AZO films are studied systematically. The average haze of the AZO sample is increased from 0.34% to 23.6% through wet etching treatment between 380 and 1100 nm, and the etched AZO sample has a higher average transmittance of about 82.3% in infrared wavelength range from 760 to 1100 nm due to the reduction of absorption by carriers. The average hardness and elastic modulus of the as-deposited AZO films, as determined using the nanoindentation technique, are approximately 10.2 GPa and 130 GPa, respectively. The critical fracture load related to the adhesion strength is about 91 mN. The optimized optical and electrical properties and referable mechanical data indicate that AZO films have good prospects for commercial applications.

  6. Nano-Particles and Films of Carbon Nitride Prepared by Using the Simple Plasma Sputtering Deposition Techniques

    Science.gov (United States)

    Yang, B. Q.; Li, H. Y.; Shi, Y. C.; Feng, P. X.

    Nanoscale particles and films of carbon nitride (CN) were synthesized on Si(100) substrates at room temperature by using simple plasma sputtering deposition techniques based on DC Glow Discharge with Hollow Cathode electrodes. The bonding structures of the films were investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. G and D bands in Raman spectra of the samples were identified. Following an increase of the precursor nitrogen pressure, the intensity of the D band in Raman spectra of the sample became strong. Similar phenomenon was also observed with an increase of the bias voltage. Scanning electron microscope images of the samples indicated that smooth and uniform CNx films were obtained at low bias voltages. Whereas, setting a pulsed bias voltage up to 5 kV, several groups of nanoparticles were observed. Each group of nanoparticles showed "sunflower" type of distribution.

  7. Multifunctional ZnO:V thin films deposited by rf-magnetron sputtering from aerogel nanopowder target material

    Energy Technology Data Exchange (ETDEWEB)

    El Mir, L., E-mail: Lassaad.ElMir@fsg.rnu.tn [Laboratoire de Physique des Materiaux et des Nanomateriaux appliquee a l' Environnement, Faculte des Sciences de Gabes, Universite de Gabes, Cite Erriadh Manara Zrig, 6072 Gabes (Tunisia); Ghribi, F.; Hajiri, M.; Ayadi, Z. Ben [Laboratoire de Physique des Materiaux et des Nanomateriaux appliquee a l' Environnement, Faculte des Sciences de Gabes, Universite de Gabes, Cite Erriadh Manara Zrig, 6072 Gabes (Tunisia); Djessas, K. [Laboratoire Procedes, Mathematiques et Energie Solaire (PROMES-CNRS), Universite de Perpignan, Rambla de la thermodynamique, Tecnosud, 66100 Perpignan Cedex (France); Cubukcu, M. [Institut des NanoSciences de Paris (INSP) UMR CNRS 7588, Universites Pierre et Marie Curie (Paris 6) et Denis Diderot - Paris 7, Campus Boucicaut, 140 rue de Lourmel, 75015, Paris (France); Bardeleben, H.J. von [Laboratoire de Physique des Materiaux et des Nanomateriaux appliquee a l' Environnement, Faculte des Sciences de Gabes, Universite de Gabes, Cite Erriadh Manara Zrig, 6072 Gabes (Tunisia)

    2011-06-30

    ZnO:V thin films have been grown onto suprasil substrates by rf-magnetron sputtering at room temperature using nanocrystalline powder synthesized by modified sol-gel method. In our approach the water for hydrolysis used in the synthesis of nanopowder was slowly released by esterification reaction followed by a thermal drying in ethyl alcohol at 250 deg. C. The effects of V concentration on structural, electrical, morphological and optical properties were studied. The as-deposited films with a thickness of about 0.4 {mu}m were polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (002) crystallographic direction. The films present high optical transmittance in the visible range of approximately 90%, carrier concentration of about 10{sup 20} cm{sup -3} and electrical resistivity of 10{sup -3} {Omega} cm at room temperature. In the as-prepared state the films also present ferromagnetic properties attributed to the presence of vanadium based secondary phases.

  8. Hybrid biocomposite with a tunable antibacterial activity and bioactivity based on RF magnetron sputter deposited coating and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, A.A. [Department of Theoretical and Experimental Physics, Center of Technology, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Surmenev, R.A., E-mail: rsurmenev@gmail.com [Department of Theoretical and Experimental Physics, Center of Technology, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Surmeneva, M.A.; Mukhametkaliyev, T. [Department of Theoretical and Experimental Physics, Center of Technology, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Loza, K.; Prymak, O.; Epple, M. [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen (Germany)

    2015-02-28

    Highlights: • A biocomposite of hydroxyapatite film and silver nanoparticles (AgNPs) was tested. • The concentration of the released silver in phosphate or acetate buffer was studied. • The concentration and release rate of AgNPs can be controlled in a tailored manner. - Abstract: In this work, we describe fabrication techniques used to prepare a multifunctional biocomposite based on a hydroxyapatite (HA) coating and silver nanoparticles (AgNPs). AgNPs synthesized by a wet chemical reduction method were deposited on Ti substrates using a dripping/drying method followed by deposition of calcium phosphate (CaP) coating via radio-frequency (RF) magnetron sputter-deposition. The negatively charged silver nanoparticles (zeta potential −21 mV) have a spherical shape with a metallic core diameter of 50 ± 20 nm. The HA coating was deposited as a dense nanocrystalline film over a surface of AgNPs. The RF-magnetron sputter deposition of HA films on the AgNPs layer did not affect the initial content of AgNPs on the substrate surface as well as NPs size and shape. SEM cross-sectional images taken using the backscattering mode revealed a homogeneous layer of AgNPs under the CaP layer. The diffraction patterns from the coatings revealed reflexes of crystalline HA and silver. The concentration of Ag ions released from the biocomposites after 7 days of immersion in phosphate and acetate buffers was estimated. The obtained results revealed that the amount of silver in the solutions was 0.27 ± 0.02 μg mL{sup −1} and 0.54 ± 0.02 μg mL{sup −1} for the phosphate and acetate buffers, respectively, which corresponded well with the minimum inhibitory concentration range known for silver ions in literature. Thus, this work establishes a new route to prepare a biocompatible layer using embedded AgNPs to achieve a local antibacterial effect.

  9. Influence of sputtering deposition parameters on electrical and optical properties of aluminium-doped zinc oxide thin films for photovoltaic applications

    Science.gov (United States)

    Krawczak, Ewelina; Agata, Zdyb; Gulkowski, Slawomir; Fave, Alain; Fourmond, Erwann

    2017-11-01

    Transparent Conductive Oxides (TCOs) characterized by high visible transmittance and low electrical resistivity play an important role in photovoltaic technology. Aluminum doped zinc oxide (AZO) is one of the TCOs that can find its application in thin film solar cells (CIGS or CdTe PV technology) as well as in other microelectronic applications. In this paper some optical and electrical properties of ZnO:Al thin films deposited by RF magnetron sputtering method have been investigated. AZO layers have been deposited on the soda lime glass substrates with use of variable technological parameters such as pressure in the deposition chamber, power applied and temperature during the process. The composition of AZO films has been investigated by EDS method. Thickness and refraction index of the deposited layers in dependence on certain technological parameters of sputtering process have been determined by spectroscopic ellipsometry. The measurements of transmittance and sheet resistance were also performed.

  10. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Directory of Open Access Journals (Sweden)

    José Elisandro de Andrade

    2013-01-01

    Full Text Available In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA epoxy resin cured at 150 °C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111].

  11. MoOx thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors

    Directory of Open Access Journals (Sweden)

    Can Liu

    2013-11-01

    Full Text Available In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoOx films (2 ≤ x ≤ 2.3 deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li2SO4. The MoOx (x ≈ 2.3 film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm−2 measured at 5 mV s−1, best rate capability and excellent stability at potentials below −0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO2 nanocrystals and amorphous MoOx (2.3 < x ≤ 3. A mechanism combining Mo(IV oxidation/reduction on the hydrated MoO2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process.

  12. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Jose Elisandro de; Machado, Rogerio; Macedo, Marcelo Andrade; Cunha, Frederico Guilherme Carvalho [Clinica de Medicina Nuclear e Radiologia de Maceio (MedRadiUS), Radiology and Imaging Diagnosis at Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil)

    2012-07-01

    In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA) epoxy resin cured at 150 deg C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM) in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD) at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111]. (author)

  13. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Jose Elisandro de; Machado, Rogerio; Macedo, Marcelo Andrade [Universidade Federal de Sergipe (UFSE), Aracaju, SE (Brazil). Programa de Pos-graduacao em Fisica; Cunha, Frederico Guilherme Carvalho [Universidade Federal de Sergipe (UFSE), Aracaju, SE (Brazil). Programa de Pos-graduacao em Ciencia e Engenharia de Materiais

    2012-07-01

    In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA) epoxy resin cured at 150 Degree-Sign C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM) in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD) at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111]. (author)

  14. Room temperature deposition of zinc oxide thin films by rf-magnetron sputtering for application in solar cells

    Science.gov (United States)

    Sanal, K. C.; Trujillo, R. R.; Nair, P. K.; Nair, M. T. S.

    2016-09-01

    Recent reports indicate that thin films of oxides of zinc: ZnO, Zn(O,S), or Zn-Mg-O, could be a better buffer component than CdS to provide an adequate band alignment with orthorhombic tin sulphide in thin lm solar cells. Thin films of ZnO were grown by rf-magnetron sputtering on different substrates at room temperature. Thin films of ZnO obtained by different deposition methods show hexagonal crystal structure, usually with a preferential orientation of (002) crystallographic planes parallel to the substrate surface. However, in the present study XRD patterns indicate that thicker ZnO films on glass substrates have preferential growth of (103) planes, while that on chemically deposited CdS or ZnS films preferential orientation of (002) planes persists. Bandgap of ZnO films increases from 3.2 eV to 3.4 eV when the chamber pressure used for deposition varies from 2.3 mTorr to 6 mTorr. ZnO films were incorporated in a solar cell structure stainless steel/SnS(cubic)/SnS(orthorhombic)/SnS(cubic)/CdS/ZnO/ZnO:Al. It showed open-circuit voltage of 0.318 V, short-circuit current density of 3.6 mA/cm2 and conversion efficiency of 0.82%.

  15. CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bagcivan, N.; Bobzin, K. [Surface Engineering Institute, RWTH Aachen University, Kackertstr. 15, D-52072 Aachen (Germany); Ludwig, A.; Grochla, D. [Institute for Materials, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum (Germany); Brugnara, R.H., E-mail: brugnara@iot.rwth-aachen.de [Surface Engineering Institute, RWTH Aachen University, Kackertstr. 15, D-52072 Aachen (Germany)

    2014-12-01

    Nanolaminate coatings based on transition metal nitrides such as CrN, AlN and TiN deposited via physical vapor deposition (PVD) have shown great advantage as protective coatings on tools and components subject to high loads in tribological applications. By varying the individual layer materials and their thicknesses it is possible to optimize the coating properties, e.g. hardness, Young's modulus and thermal stability. One way for further improvement of coating properties is the use of advanced PVD technologies. High power pulsed magnetron sputtering (HPPMS) is an advancement of pulsed magnetron sputtering (MS). The use of HPPMS allows a better control of the energetic bombardment of the substrate due to the higher ionization degree of metallic species. It provides an opportunity to influence chemical and mechanical properties by varying the process parameters. The present work deals with the development of CrN/AlN nanolaminate coatings in an industrial scale unit by using two different PVD technologies. Therefore, HPPMS and mfMS (middle frequency magnetron sputtering) technologies were used. The bilayer period Λ, i.e. the thickness of a CrN/AlN double layer, was varied between 6.2 nm and 47.8 nm by varying the rotational speed of the substrate holders. In a second step the highest rotational speed was chosen and further HPPMS CrN/AlN coatings were deposited applying different HPPMS pulse lengths (40, 80, 200 μs) at the same mean cathode power and frequency. Thickness, morphology, roughness and phase composition of the coatings were analyzed by means of scanning electron microscopy (SEM), confocal laser microscopy, and X-ray diffraction (XRD), respectively. The chemical composition was determined using glow discharge optical emission spectroscopy (GDOES). Detailed characterization of the nanolaminate was conducted by transmission electron microscopy (TEM). The hardness and the Young's modulus were analyzed by nanoindentation measurements. The residual

  16. Influence of sputtering power on structural and magnetic properties of as-deposited, annealed and ERTA Co2FeSi films: A comparative study

    Science.gov (United States)

    Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Therese, H. A.

    2018-02-01

    We report the effect of sputtering power (200 W - 350 W) on the structural, topographical and magnetic properties of Co2FeSi (CFS) films deposited at ambient temperatures as compared to the films which were either annealed at 300 °C or were subjected to Electron beam Rapid Thermal Annealed (ERTA) treatment. The structural and morphological analyses reveal changes in their crystalline phases and particle sizes. All the as-deposited and annealed CFS films showed A2 phase crystal structure. Whereas the CFS film sputtered at 350 W followed by ERTA displayed the fully ordered L21 structure. The particles are spherical in shape and their sizes increased gradually with increase in the sputtering power of the as-deposited and annealed CFS films. However, ERTA CFS films had spherical as well as columnar (elongated) shaped grains and their grain sizes increased nonlinearly with sputtering power. M-H studies on as-deposited, annealed and ERTA CFS films show ferromagnetic responses. The comparatively stronger ferromagnetic response was observed for the ERTA samples with low saturation field which depends on the enrichment of fine crystallites in these films. This indicates that, apart from higher sputtering powers used for deposition of CFS films, ERTA process plays a significant role in the enhancement of their magnetic responses. 350 W ERTA film has the considerable saturation magnetization (∼816 emu/cc), coercivity (∼527 Oe) and a good squareness values at 100 K than at 300 K, which could originate from the spin wave excitation effect. Further, the optimized parameters to achieve a CFS film with good structural and magnetic properties are discussed from the perspective of spintronics.

  17. Optical Properties of TiO2 Films Deposited by Reactive Electron Beam Sputtering

    Science.gov (United States)

    Kruchinin, V. N.; Perevalov, T. V.; Atuchin, V. V.; Gritsenko, V. A.; Komonov, A. I.; Korolkov, I. V.; Pokrovsky, L. D.; Shih, Cheng Wei; Chin, Albert

    2017-10-01

    Titanium dioxide (anatase, a-TiO2) films have been prepared by electron beam sputtering of a TiO2 target in reactive atmosphere and their structural, microstructural, and optical properties were evaluated by reflection high- energy electron diffraction (RHEED) and x-ray diffraction (XRD) analyses, atomic force microscopy (AFM), and spectroscopic ellipsometry (SE). Different reflection models for determination of film optical parameters were tested and compared. The dispersive optical parameters were defined using the Tauc-Lorentz model by SE in the photon energy range of E = 1.12-4.96 eV. The films were transparent at E 3 eV. The bandgap was estimated at the level of E g ≈ 3.44 eV.

  18. Hydroxyapatite thin films synthesized by pulsed laser deposition and magnetron sputtering on PMMA substrates for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Socol, G. [National Institute for Lasers, Plasma, and Radiation Physics, Atomistilor Street 409, RO-77125 Magurele, Ilfov (Romania); Macovei, A.M. [Institute of Biochemistry, Romanian Academy, Splaiul Independentei 296, 060031 Bucharest (Romania); Miroiu, F.; Stefan, N.; Duta, L.; Dorcioman, G. [National Institute for Lasers, Plasma, and Radiation Physics, Atomistilor Street 409, RO-77125 Magurele, Ilfov (Romania); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, Atomistilor Street 409, RO-77125 Magurele, Ilfov (Romania); Petrescu, S.M. [Institute of Biochemistry, Romanian Academy, Splaiul Independentei 296, 060031 Bucharest (Romania); Stan, G.E.; Marcov, D.A. [National Institute of Materials Physics, 105 bis Atomistilor Street, RO-77125 Bucharest-Magurele (Romania); Chiriac, A.; Poeata, I. [' Prof. Dr. N. Oblu' , Emergency Clinical Hospital, Neurosurgery Department, Ateneului Street, 3, 700309 Iasi (Romania)

    2010-05-25

    Functionalized implants represent an advanced approaching in implantology, aiming to improve the biointegration and the long-term success of surgical procedures. We report on the synthesis of hydroxyapatite (HA) thin films on polymethylmetacrylate (PMMA) substrates - used as cranio-spinal implant-type structures - by two alternative methods: pulsed laser deposition (PLD) and radio-frequency magnetron sputtering (MS). The deposition parameters were optimized in order to avoid the substrate overheating. Stoichiometric HA structures were obtained by PLD with incident laser fluences of 1.4-2.75 J/cm{sup 2}, pressures of 30-46.66 Pa and 10 Hz pulses repetition rate. The MS depositions were performed at constant pressure of 0.3 Pa in inert and reactive atmospheres. SEM-EDS, XRD, FTIR and pull-out measurements were performed assessing the apatitic-type structure of the prepared films along with their satisfactory mechanical adhesion. Cell viability, proliferation and adhesion tests in osteosarcoma SaOs2 cell cultures were performed to validate the bioactive behaviour of the structures and to select the most favourable deposition regimes. For PLD, this requires a low fluence of 1.4 J/cm{sup 2}, reduced pressure of water vapours and a 100 {sup o}C/4 h thermal treatment. For MS, the best results were obtained for 80% Ar + 20% O{sub 2} reactive atmosphere at low RF power ({approx}75 W). Cells grown on these coatings exhibit behaviour similar to those grown on the standard borosilicate glass control: increased viability, good proliferation, and optimal cell adhesion. In vitro tests proved that HA/PMMA neurosurgical structures prepared by PLD and MS are compatible for the interaction with human bone cells.

  19. Energy harvesting based on piezoelectric AlN and AlScN thin films deposited by high rate sputtering

    Science.gov (United States)

    Frach, Peter; Barth, Stephan; Bartzsch, Hagen; Gloess, Daniel

    2017-05-01

    Aluminum nitride (AlN) is a piezoelectric material often used as thin film in SAW/BAW devices. Furthermore, there is an increasing interest in its use for energy harvesting applications. Despite it has a relatively low piezoelectric coefficient, it is a suitable choice for energy harvesting applications and due to its low dielectric constant and good mechanical properties. In addition, it is a lead-free material. The films were deposited by reactive pulsed magnetron sputtering using the Double Ring Magnetron DRM 400. This sputter source together with suitable powering and process control allows depositing piezoelectric AlN very homogeneously on 8" substrates with deposition rates of up to 200 nm/min. With the developed technology, film thicknesses of several ten microns are technically and economically feasible. Moreover, by adjusting process parameters accordingly, it is possible to tune properties, like film stress, to application specific requirements. Additionally, it is known that the doping of AlN with Scandium results in a significantly increased piezoelectric coefficient. The influence of process parameters and Sc concentration on film properties were determined by piezometer, pulse echo, SEM, XRD, EDS and nanoindentation measurements. Energy harvesting measurements were done using an electromechanical shaker system for the excitation of defined vibrations and a laservibrometer for determination of the displacement of the samples. The generated power was measured as function of electric load at resonance. An rms power of up to 140μW using AlN films and of 350μW using AlScN films was generated on Si test pieces of 8x80mm2. Furthermore, energy harvesting measurements using manually bended steel strips of 75x25mm2 coated with AlScN were carried out as well. When using only a single actuation, energy of up to 8μJ could be measured. By letting the system vibrate freely, the damped vibration at resonance 50Hz resulted in a measured energy of 420μJ.

  20. Direct sputtering- and electro-deposition of gold coating onto the closed surface of ultralow-density carbon-hydrogen foam cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jiaqiu; Yin, Jialing; Zhang, Hao; Yao, Mengqi; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-12-15

    Highlights: • The surface pores of P(DVB/St) foam cylinder are sealed by CVD method. • Gold film was deposited on the surface of foam cylinder by magnetron sputtering. • Electroless plating was excluded in the present experiments. • The gold coatings were thickened through the electrodeposition process. - Abstract: This work aimed to fabricate a gold coating on the surface of ultralow-density carbon-hydrogen foam cylinder without electroless plating. Poly (divinylbenzene/styrene) foam cylinder was synthetized by high internal phase emulsion, and chemical vapor deposition polymerization approach was used to form a compact poly-p-xylylene film on the foam cylinder. Conducting gold thin films were directly deposited onto the poly-p-xylylene-modified foam cylinder by magnetron sputtering, and electrochemical deposition was adopted to thicken the gold coatings. The micro-structures and morphologies of poly (divinylbenzene/styrene) foam cylinder and gold coating were observed by field-emission scanning electron microscopy. The gold coating content was investigated by energy-dispersive X-ray. The thicknesses of poly-p-xylylene coating and sputtered gold thin-film were approximately 500 and 100 nm, respectively. After electrochemical deposition, the thickness of gold coating increased to 522 nm, and the gold coating achieved a compact and uniform structure.

  1. Bonding structure and morphology of chromium oxide films grown by pulsed-DC reactive magnetron sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gago, R., E-mail: rgago@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Vinnichenko, M. [Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, D-01277 Dresden (Germany); Hübner, R. [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden (Germany); Redondo-Cubero, A. [Departamento de Física Aplicada and Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain)

    2016-07-05

    Chromium oxide (CrO{sub x}) thin films were grown by pulsed-DC reactive magnetron sputter deposition in an Ar/O{sub 2} discharge as a function of the O{sub 2} fraction in the gas mixture (ƒ) and for substrate temperatures, T{sub s}, up to 450 °C. The samples were analysed by Rutherford backscattering spectrometry (RBS), spectroscopic ellipsometry (SE), atomic force microscopy (AFM), scanning (SEM) and transmission (TEM) electron microscopy, X-ray diffraction (XRD), and X-ray absorption near-edge structure (XANES). On unheated substrates, by increasing ƒ the growth rate is higher and the O/Cr ratio (x) rises from ∼2 up to ∼2.5. Inversely, by increasing T{sub s} the atomic incorporation rate drops and x falls to ∼1.8. XRD shows that samples grown on unheated substrates are amorphous and that nanocrystalline Cr{sub 2}O{sub 3} (x = 1.5) is formed by increasing T{sub s}. In amorphous CrO{sub x}, XANES reveals the presence of multiple Cr environments that indicate the growth of mixed-valence oxides, with progressive promotion of hexavalent states with ƒ. XANES data also confirms the formation of single-phase nanocrystalline Cr{sub 2}O{sub 3} at elevated T{sub s}. These structural changes also reflect on the optical and morphological properties of the films. - Highlights: • XANES of CrO{sub x} thin films grown by pulsed-DC reactive magnetron sputtering. • Identification of mixed-valence amorphous CrO{sub x} oxides on unheated substrates. • Promotion of amorphous chromic acid (Cr{sup VI}) by increasing O{sub 2} partial pressure. • Production of single-phase Cr{sub 2}O{sub 3} films by increasing substrate temperature. • Correlation of bonding structure with morphological and optical properties.

  2. Chemical bonding in hard boron-nitride multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, A.F.; Hayes, J.P.

    1997-06-01

    The oxides and nitrides of boron show great potential for use as hard, wear resistant materials. However, large intrinsic stresses and poor adhesion often accompany the hard coatings as found for the cubic boron-nitride phase. These effects may be moderated for use of a layered structure. Alternate stiff layers of boron and compliant layers of nitride are formed by modulating the sputter gas composition during deposition of boron target. The B/BN thin films are characterized with transmission electronic microscope to evaluate the microstructure, nanoindentation to measure hardness and ex-ray absorption spectroscopy to determine chemical bonding. The effects of layer pair spacing on chemical bonding and hardness are evaluated for the B/BN films.

  3. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications

    Science.gov (United States)

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-01-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation & immersion (E & I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm2) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance. PMID:26631493

  4. Room-Temperature Growth of SiC Thin Films by Dual-Ion-Beam Sputtering Deposition

    Directory of Open Access Journals (Sweden)

    C. G. Jin

    2008-01-01

    Full Text Available Silicon carbide (SiC films were prepared by single and dual-ion-beamsputtering deposition at room temperature. An assisted Ar+ ion beam (ion energy Ei = 150 eV was directed to bombard the substrate surface to be helpful for forming SiC films. The microstructure and optical properties of nonirradicated and assisted ion-beam irradicated films have been characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and Raman spectra. TEM result shows that the films are amorphous. The films exposed to a low-energy assisted ion-beam irradicated during sputtering from a-SiC target have exhibited smoother and compacter surface topography than which deposited with nonirradicated. The ion-beam irradicated improves the adhesion between film and substrate and releases the stress between film and substrate. With assisted ion-beam irradicated, the density of the Si–C bond in the film has increased. At the same time, the excess C atoms or the size of the sp2 bonded clusters reduces, and the a-Si phase decreases. These results indicate that the composition of the film is mainly Si–C bond.

  5. Effect of ion bombardment and substrate orientation on structure and properties of titanium nitride films deposited by unbalanced magnetron sputtering

    CERN Document Server

    Guruvenket, S

    2002-01-01

    The effect of substrate orientation and ion bombardment during the growth on the structure and properties of TiN films deposited by reactive unbalanced magnetron sputtering has been reported. Films deposited at a nitrogen partial pressure of 5x10 sup - sup 5 mbar and a current density of 2.50 mA cm-2 were golden yellow in color, characteristic of stoichiometric TiN. The effect of Si(100) and Si(111) substrates on the TiN film along with the substrate bias has been investigated. With an increase in the substrate bias on Si(111) substrate, TiN(111) is the most preferred orientation. On a Si(100) substrate with an increase in the substrate bias, TiN(220) orientation has been observed. The influence of the substrate on the growth of TiN films has been explained in terms of surface energy. The variation of grain size, resistivity, and the internal stress of TiN films as the function of substrate bias have also been investigated.

  6. Effects of argon pressure on the properties of ZnO:Ga thin films deposited by DC magnetron sputtering

    Science.gov (United States)

    Marwoto, Putut; Fatiatun, Sulhadi, Sugianto, Aryanto, Didik

    2016-03-01

    Gallium (Ga)-doped zinc oxide (ZnO:Ga) thin films were deposited on corning glass substrates by homemade DC magnetron sputtering. Effects of argon gas pressure on the structural and optical properties of ZnO:Ga thin films were investigated by XRD, SEM and UV-Vis spectroscopy. The argon gas pressure was adjusted at 450, 500 and 550 mtorr. All the films exhibit a strong (002) peak and a weak (004) peaks. The XRD pattern demonstrated that crystallinity of the film improved with increasing of the argon pressure. ZnO:Ga thin films deposited have polycrystalline structure. It was shown that the argon pressure has a great influence on ZnO:Ga film surface structures. The grain size of the films was increased with the increases of argon pressure. The grains shape of the film change from an equiaxed rough grain to a longish grain with the argon pressure. The average of transmittance of the films is about 80% in the visible range. It is shown that the argon pressure has no effect significantly on optical bandgap of ZnO:Ga, but in general it can be explained that increasing of the argon pressure can reduce the bandgap. The optical bandgap of ZnO:Ga thin films in the range of 3.25 - 3.3 eV.

  7. Aluminum doped ZnO thin films deposited by direct current sputtering: Structural and optical properties

    Science.gov (United States)

    Barhoumi, A.; Leroy, G.; Duponchel, B.; Gest, J.; Yang, L.; Waldhoff, N.; Guermazi, S.

    2015-06-01

    Direct current sputtering was used to growth Al-doped ZnO (AZO) thin films at various substrate temperatures. Structural and optical properties of AZO thin films were investigated by X-ray diffraction (XRD), energy dispersive X-ray (EDX) and Ultraviolet-Visible-Near IR spectroscopy. According to the XRD patterns, all films showed an hexagonal wurtzite structure with a preferred orientation along c-axis. EDX showed that all films are doped with 1% wt of Al. The transmittance and reflectance changed with the substrate temperature Ts. AZO has a high transmittance which is a crucial parameter for optical materials and applications. Thus, it is important to determine optical constants of the films. In this order, optical parameters such as the optical band gap, absorption coefficient, extinction coefficient, refractive index, dispersion parameter, dielectric constants and optical conductivity were studied in order to investigate the effects of Ts on the optical properties of AZO thin films. The dispersion energy, single-oscillator strength and the long wavelength refractive index of the AZO thin films were found to be affected by substrate temperature Ts.

  8. Corrosion resistance of zirconium oxynitride coatings deposited via DC unbalanced magnetron sputtering and spray pyrolysis-nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, G.I., E-mail: gcubillos@unal.edu.co [Department of Chemistry, Group of Materials and Chemical Processes, Universidad Nacional de Colombia, Av. Cra. 30 No 45-03, Bogotá (Colombia); Bethencourt, M., E-mail: manuel.bethencourt@uca.es [Department of Materials Science, Metallurgy Engineering and Inorganic Chemistry, International Campus of Excellence of the Sea - CEI-MAR, University of Cadiz, Avda. República Saharaui s/n, 11510 Puerto Real, Cádiz (Spain); Olaya, J.J., E-mail: jjolayaf@unal.edu.co [Faculty of Engineering, Group of Materials and Chemical Processes, Universidad Nacional de Colombia, Av. Cra. 30 No 45-03, Bogotá (Colombia)

    2015-02-01

    Highlights: • New ZrO{sub x}N{sub y} films were deposited on stainless steel 316L using PSY-N and UBMS. • ZrO{sub x}N{sub y} rhombohedral polycrystalline film grew with PSY-N. • Zr{sub 2}ON{sub 2} crystalline structures, mostly oriented along the (2 2 2) plane, grew with UBMS. • Layers improved corrosion behavior in NaCl media, especially those deposited by UBMS. - Abstract: ZrO{sub x}N{sub y}/ZrO{sub 2} thin films were deposited on stainless steel using two different methods: ultrasonic spray pyrolysis-nitriding (SPY-N) and the DC unbalanced magnetron sputtering technique (UBMS). Using the first method, ZrO{sub 2} was initially deposited and subsequently nitrided in an anhydrous ammonia atmosphere at 1023 K at atmospheric pressure. For UBMS, the film was deposited in an atmosphere of air/argon with a Φair/ΦAr flow ratio of 3.0. Structural analysis was carried out through X-ray diffraction (XRD), and morphological analysis was done through scanning electron microscopy (SEM) and atomic force microscopy (AFM). Chemical analysis was carried out using X-ray photoelectron spectroscopy (XPS). ZrO{sub x}N{sub y} rhombohedral polycrystalline film was produced with spray pyrolysis-nitriding, whereas using the UBMS technique, the oxynitride films grew with cubic Zr{sub 2}ON{sub 2} crystalline structures preferentially oriented along the (2 2 2) plane. Upon chemical analysis of the surface, the coatings exhibited spectral lines of Zr3d, O1s, and N1s, characteristic of zirconium oxynitride/zirconia. SEM analysis showed the homogeneity of the films, and AFM showed morphological differences according to the deposition technique of the coatings. Zirconium oxynitride films enhanced the stainless steel's resistance to corrosion using both techniques. The protective efficacy was evaluated using electrochemical techniques based on linear polarization (LP). The results indicated that the layers provide good resistance to corrosion when exposed to chloride

  9. Influence of bias voltage on the crystallographic orientation and morphology of sputter deposited yttria stabilized zirconia (YSZ) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, C.; Zambrano, G.; Prieto, P. [Thin Films Group, Excellence Center for Novel Materials, Universidad del Valle, Cali (Colombia); Caicedo, J. [Thin Films Group, Excellence Center for Novel Materials, Universidad del Valle, Cali (Colombia); Hard Coatings Laboratory, CDT-ASTIN SENA, Cali (Colombia); Bejarano, G. [Hard Coatings Laboratory, CDT-ASTIN SENA, Cali (Colombia); Group of Corrosion and Protection, Antioquia University, Medellin (Colombia); Cortes Escobedo, C.A.; Munoz-Saldana, J. [Center for Investigation and Advanced Studies, CINVESTAV-IPN, Queretaro (Mexico)

    2007-07-01

    ZrO{sub 2}-8% mol. Y{sub 2}O{sub 3} (8YSZ) thin films were deposited onto silicon [100] and AISI 304 stainless steel substrates by r.f. (13.56 MHz) multi-target magnetron sputtering. To improve the adhesion of a YSZ monolayer to the stainless steel substrate, a buffer layer of Al{sub 2}O{sub 3}was incorporated too. Crystal structure and Infrared (IR) absorption bands of YSZ were investigated as functions of substrate bias by X-ray diffraction (XRD) and Fourier Transformed Infrared Spectroscopy (FTIR), respectively. The influence of the bias voltage on the roughness, grain size, and microstructure of deposited thin films was determined by AFM and SEM. XRD results show the presence of a tetragonal phase with [111] and [200] orientations. On the other hand, FTIR spectra exhibit the 2E{sub u}and F{sub 1u} modes as two broad bands in the frequency range of 450{proportional_to}550 cm{sup -1}and 550{proportional_to}650 cm{sup -1}, corresponding to the tetragonal and cubic phases of ZrO{sub 2}, respectively. In this work we present the systematic influence of the bias voltage on the crystalline structure, the presence of the tetragonal phase and morphology of the YSZ thin films. The XRD, FTIR, and AFM results indicate that when the bias voltage increases from -20 V to -60 V the preferential crystallographic orientation of YSZ tetragonal phase changes from [111] to [200], and the percentage of the tetragonal phase diminishes, as well as the grain size of deposited films from (560{+-}5) to (470{+-}5) nm. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tallarico, D.A. [Federal University of Sao Carlos, Materials Science and Engineering Graduation Program, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil); Gobbi, A.L. [Brazilian Nanotechnology National Laboratory, Rua Giuseppe Máximo Scolfaro 10.000, CEP 13083-100 Campinas, SP (Brazil); Paulin Filho, P.I. [Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil); Maia da Costa, M.E.H. [Pontifical Catholic University of Rio de Janeiro, Department of Physics, CEP 22451-900 Rio de Janeiro, RJ (Brazil); Nascente, P.A.P., E-mail: nascente@ufscar.br [Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil)

    2014-10-01

    Low modulus of elasticity and the presence of non-toxic elements are important criteria for the development of materials for implant applications. Low modulus Ti alloys can be developed by designing β-Ti alloys containing non-toxic alloying elements such as Nb and Zr. Actually, most of the metallic implants are produced with stainless steel (SS) because it has adequate bulk properties to be used as biomaterials for orthopedic or dental implants and is less expensive than Ti and its alloys, but it is less biocompatible than them. The coating of this SS implants with Ti alloy thin films may be one alternative to improve the biomaterial properties at a relatively low cost. Sputtering is a physical deposition technique that allows the formation of nanostructured thin films. Nanostructured surfaces are interesting when it comes to the bone/implant interface due to the fact that both the surface and the bone have nanoscale particle sizes and similar mechanical properties. TiNbZr thin films were deposited on both Si(111) and stainless steel (SS) substrates. The TiNbZr/Si(111) film was used as a model system, while the TiNbZr/SS film might improve the biocompatibility and extend the life time of stainless steel implants. The morphology, chemical composition, Young's modulus, and hardness of the films were analyzed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and nanoindentation. - Highlights: • TiNbZr thin films were deposited on Si(111) and stainless steel (SS). • Their Young's modulus differences are within 5.3% and hardness 1.7%. • TiNbZr/SS film chemical composition remained almost constant with depth. • TiNbZr films presented nanostructured grains and low roughness for substrates. • TiNbZr/SS film hardness was about 100% greater than the SS substrate hardness.

  11. Preparation and properties of negative thermal expansion zirconium tungstate thin films deposited by radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong-Fei; Cheng, Xiao-Nong; Zhang, Zhi-Ping [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2008-11-15

    Zirconium tungstate (ZrW{sub 2}O{sub 8}) thin films were deposited on quartz substrates by radio frequency magnetron sputtering followed by annealing at various temperatures. The effects of post-deposition annealing temperature on the phase, morphology and negative thermal expansion properties of the ZrW{sub 2}O{sub 8} thin films were investigated. X-ray diffraction data confirmed that the as-deposited ZrW{sub 2}O{sub 8} films were amorphous, and crystalline ZrW{sub 2}O{sub 8} films could be obtained at high annealing temperature. Trigonal ZrW{sub 2}O{sub 8} films could be prepared at 740 C and cubic ZrW{sub 2}O{sub 8} films could be prepared at 1200 C. The surface morphologies of the ZrW{sub 2}O{sub 8} thin films were evaluated using scanning electron microscopy. The results indicated that amorphous ZrW{sub 2}O{sub 8} films were uniform and dense, and the grain size of the crystalline ZrW{sub 2}O{sub 8} films became larger with increasing annealing temperature. The resulting cubic ZrW{sub 2}O{sub 8} films showed negative thermal expansion, the average value of thermal expansion coefficient being -8.18 x 10{sup -6} K{sup -1} in the temperature range 15-700 C. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Process- and optoelectronic-control of NiOx thin films deposited by reactive high power impulse magnetron sputtering

    Science.gov (United States)

    Keraudy, Julien; Delfour-Peyrethon, Brice; Ferrec, Axel; Garcia Molleja, Javier; Richard-Plouet, Mireille; Payen, Christophe; Hamon, Jonathan; Corraze, Benoît; Goullet, Antoine; Jouan, Pierre-Yves

    2017-05-01

    In this contribution, based on the analyses of the discharge behavior as well as final properties of the deposited Ni-O films during reactive high power impulse magnetron sputtering discharge, we have demonstrated that monitoring the oxygen flow rate leads to 4 different regimes of discharge. Tuning the oxygen partial pressure allows deposition of a large range of chemical compositions from pure nickel to nickel-deficient NiOx (x > 1) in the poisoned mode. Investigation of the plasma dynamics by time-resolved optical emission spectroscopy suggests that the discharge behavior in the poisoned mode principally comes from the higher contribution of both oxygen and argon ions in the total ionic current, leading to a change in the ion induced secondary electron emission coefficient. Additionally, material characterizations have revealed that optoelectronic properties of NiOx films can be easily tuned by adjusting the O/Ni ratio, which is influenced by the change of the oxygen flow rate. Stoichiometric NiO films (O/Ni ratio ˜ 1) are transparent in the visible range with a transmittance ˜80% and insulating as expected with an electrical resistivity ˜106 Ω cm. On the other hand, increasing the O/Ni > 1 leads to the deposition of more conductive coating (ρ ˜ 10 Ω cm) films with a lower transmittance ˜ 50%. These optoelectronic evolutions are accompanied by a band-gap narrowing 3.65 to 3.37 eV originating from the introduction of acceptor states between the Fermi level and the valence band maximum. In addition, our analysis has demonstrated that nickel vacancies are homogeneously distributed over the film thickness, explaining the p-type of the films.

  13. Effect of growth temperature, thermal annealing and nitrogen doping on optoelectronic properties of sputter-deposited ZnTe films

    Energy Technology Data Exchange (ETDEWEB)

    Rakhshani, A.E., E-mail: ali.rakhshani@ku.edu.kw

    2013-06-01

    Thin films of zinc telluride were grown on glass substrate at different temperatures by magnetron sputtering. Nitrogen-doped films were also prepared at different doping levels. Films underwent a post deposition thermal annealing at low pressure of nitrogen. The film structure, optical and electrical properties were studied using various techniques. The results revealed that the films are composed from nano-size grains (3 – 19 nm) with cubic lattice structure. The grain growth during deposition is thermally activated with the activation energy of 108 meV. Direct optical transitions occurring from the valence band and also from the spin-orbit valence band to either a band gap defect level (for as-grown films) or to the conduction band (for annealed films) have been observed. The valence band split energy is found to be in the range 0.82 – 1.10 eV. The defect level, likely related to oxygen impurities, is located 1.77 eV above the valence band edge. The band gap energy of the annealed films is in the range 2.13 – 2.20 eV and the films doped with nitrogen, at optimum condition, have a free hole concentration and mobility of 2.9 × 10{sup 18} cm{sup −3} and 1.4 cm{sup 2} V{sup −1} s{sup −1}, respectively. - Highlights: • Undoped and nitrogen doped ZnTe films were grown on glass by sputtering technique. • Growth temperature varied in the range 35– 305 °C. • Optimum doping was achieved at the N{sub 2}/(N{sub 2} + Ar) flow rate ratio of 2%. • At optimum condition 2.9 × 10{sup 18} holes/cm{sup 3} with mobility 1.4 cm{sup 2} V{sup −1} s{sup −1} were obtained. • The split valence band and oxygen defects contribute to the absorption of light.

  14. Evaluation of the electrical conductivity and corrosion resistance for layers deposited via sputtering on stainless steel

    Science.gov (United States)

    Blanco, J.; Salas, Y.; Jiménez, C.; Pineda, Y.; Bustamante, A.

    2017-12-01

    In some Engineering fields, we need that conductive materials have a mechanic performance and specific electrical for that they maintain conditions or corrosive attack if they are in the environment or if they are closed structure. The stainless steels have an inert film on their surface and it has the function to act in contrast to external agents who generates the corrosion, especially for stings, spoiling the film until to fail. We found a solution taking into account the electrical performance and the anticorrosive; into the process we put recovering of specific oxides on, stainless steel using the method of sputtering with Unbalanced Magnetron, (UBM) varying the oxygen in the reactive environment. The coating obtained had a thickness one micron approximately and we saw on serious structural uniformity [1]. The corrosion resistance was evaluated through the potentiodynamics polarization and electrochemical spectroscopy impedance in NACL according to the standard. The cathode protection is the most important method employed for the corrosion prevention of metallic structures in the soil or immersed on the water. The electrical resistivity was evaluated with the four points methods and it showed a behaviour of diode type in some substrates with a threshold potential in several volts. We noticed a simple resistance solution when it was analysed in the Nyquist graphics whit the Electrochemical Impedance Spectroscopy technique. With on equivalent circuit, for this reason we determinate a variation in the corrosion speed in almost two orders of magnitude when we analysed the potentiodynamics curve by Tafel approximation. The data obtained and analysed show that this type of surface modification maintains the conductivity condition at the interface, improving the resistance in relation whit the corrosion of these elements where the recovering allowed the ionic flow wished for overcoming threshold voltage, acting as an insulator in different cases.

  15. Tribology of ZRN, CRN and TIALN thin films deposited by reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Alexander Ruden

    2013-01-01

    Full Text Available El coeficiente de fricción y el coeficiente de desgaste, representan dos variables importantes para la elección de recubrimientos duros en aplicaciones críticas de ingeniería tales como corte y conformado de materiales. Para explicar de manera profunda estas variables, es necesario conocer los diferentes tipos de desgaste que ocurren en estas superficies recubiertas. Se han evaluado recubrimientos de nitruro de circonio (ZrN, nitruro de cromo (CrN y nitruro de titanio aluminio (TiAlN, producidos por la técnica magnetrón sputtering reactivo, determinando las propiedades tribológicas, midiendo coeficientes de fricción (COF y desgaste, y mostrando un análisis de los mecanismos de desgaste presentes para cada recubrimiento durante el contacto tribológico en sistemas cerámicos. Se observó que el voltaje de polarización incrementa las fallas por deformación plástica y la generación de un tercer cuerpo en la superficie del ZrN. El aumento del flujo de nitrógeno en la deposición de CrN, mejora el comportamiento tribológico al segregar la fase cúbica del material, optimizando sus propiedades superficiales. Al incrementar la temperatura de deposición del TiAlN se mejora su calidad superficial (reducción de rugosidad y densidad de poros, reduciendo la abrasión y aumentando la capacidad de carga del compuesto.

  16. Ion-induced stress relaxation during the growth of cubic boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abendroth, B.E.

    2004-08-01

    in this thesis the deposition of cubic boron nitride films by magnetron sputtering is described. The deposition process is analyzed by Langmuir-probe measurement and energy resolved mass spectroscopy. the films are studied by stress measurement, spectroscopic ellipsometry, infrared spectroscopy, elastic recoil detection analysis, Rutherford backscattering spectroscopy, X-ray absorption near edge spectroscopy, X-ray diffraction, and transmission electron microscopy. Discussed are the stress relaxation and the microstructure and bonding characteristics together with the effects of ion bombardement. (HSI)

  17. Ellipsometry study of process deposition of amorphous Indium Gallium Zinc Oxide sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Talagrand, C., E-mail: talagrand@emse.fr [Ecole des Mines de Saint-Etienne CMP-GC, Dept PS2, Gardanne, 880 route de Mimet (France); Boddaert, X. [Ecole des Mines de Saint-Etienne CMP-GC, Dept PS2, Gardanne, 880 route de Mimet (France); Selmeczi, D.G.; Defranoux, C. [Semilab Semiconductor Physics Laboratory Co. Ltd., Budapest, 1117 (Hungary); Collot, P. [Ecole Nationale Supérieure d' Arts et Métiers ParisTech, Aix-en-Provence, 2 cours des Arts et Métiers (France)

    2015-09-01

    This paper reports on an InGaZnO optical study by spectrometric ellipsometry. First of all, the fitting results of different models and different structures are analysed to choose the most appropriate model. The Tauc–Lorentz model is suitable for thickness measurements but a more complex model allows the refractive index and extinction coefficient to be extracted more accurately. Secondly, different InGaZnO process depositions are carried out in order to investigate stability, influence of deposition time and uniformity. Films present satisfactory optical stability over time. InGaZnO optical property evolution as a function of deposition time is related to an increase in temperature. To understand the behaviour of uniformity, mapping measurements are correlated to thin film resistivity. Results show that temperature and resputtering are the two phenomena that affect IGZO uniformity. - Highlights: • Model and structure are investigated to fit IGZO ellipsometric angles. • Maximum refractive index rises with substrate temperature and thus deposition time. • Resputtering leads to inhomogeneity in IGZO electrical and optical properties.

  18. AES study on the chemical composition of ferroelectric BaTiO3 thin films RF sputter-deposited on silicon

    Science.gov (United States)

    Dharmadhikari, V. S.; Grannemann, W. W.

    1983-01-01

    AES depth profiling data are presented for thin films of BaTiO3 deposited on silicon by RF sputtering. By profiling the sputtered BaTiO3/silicon structures, it was possible to study the chemical composition and the interface characteristics of thin films deposited on silicon at different substrate temperatures. All the films showed that external surface layers were present, up to a few tens of angstroms thick, the chemical composition of which differed from that of the main layer. The main layer had stable composition, whereas the intermediate film-substrate interface consisted of reduced TiO(2-x) oxides. The thickness of this intermediate layer was a function of substrate temperature. All the films showed an excess of barium at the interface. These results are important in the context of ferroelectric phenomena observed in BaTiO3 thin films.

  19. Correlation of process parameters and properties of TiO2 films grown by ion beam sputter deposition from a ceramic target

    Science.gov (United States)

    Bundesmann, Carsten; Lautenschläge, Thomas; Spemann, Daniel; Finzel, Annemarie; Mensing, Michael; Frost, Frank

    2017-10-01

    The correlation between process parameters and properties of TiO2 films grown by ion beam sputter deposition from a ceramic target was investigated. TiO2 films were grown under systematic variation of ion beam parameters (ion species, ion energy) and geometrical parameters (ion incidence angle, polar emission angle) and characterized with respect to film thickness, growth rate, structural properties, surface topography, composition, optical properties, and mass density. Systematic variations of film properties with the scattering geometry, namely the scattering angle, have been revealed. There are also considerable differences in film properties when changing the process gas from Ar to Xe. Similar systematics were reported for TiO2 films grown by reactive ion beam sputter deposition from a metal target [C. Bundesmann et al., Appl. Surf. Sci. 421, 331 (2017)]. However, there are some deviations from the previously reported data, for instance, in growth rate, mass density and optical properties.

  20. Synthesis and structural characterization of boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Elena, M. (CMBM, 38050 Povo (Trento) (Italy)); Guzman, L. (CMBM, 38050 Povo (Trento) (Italy)); Calliari, L. (CMBM, 38050 Povo (Trento) (Italy)); Moro, L. (CMBM, 38050 Povo (Trento) (Italy)); Steiner, A. (Institute for Advanced Materials, Joint Research Centre, Commission of the European Communities, 21020 Ispra (Vatican City State, Holy See) (Italy)); Miotello, A. (Department of Physics, Trento Univ. (Italy)); Bonelli, M. (Department of Physics, Trento Univ. (Italy)); Capelletti, R. (Department of Physics, Parma Univ. (Italy)); Ossi, P.M. (Dipartimento di Ingegneria Nucleare del Politecnico, Milano (Italy))

    1994-12-15

    The purpose of this paper is to present first results of an investigation on the properties of boron-nitrogen thin films obtained by different deposition techniques. Films of different stoichiometries were produced on silicon substrates using r.f. magnetron sputtering and ion-beam-assisted deposition.In order to study the influence of the deposition process parameters on the film properties, the films were characterized by scanning electron microscopy. Auger electron spectroscopy, secondary neutral mass spectrometry, IR spectroscopy and nanoindentation.With the chosen experimental conditions, only hexagonal BN is formed. A considerable dependence of hardness of film microstructure has been evidenced. ((orig.))

  1. Low substrate temperature deposition of transparent and conducting ZnO:Al thin films by RF magnetron sputtering

    Science.gov (United States)

    Waykar, Ravindra; Amit, Pawbake; Kulkarni, Rupali; Jadhavar, Ashok; Funde, Adinath; Waman, Vaishali; Dewan, Rupesh; Pathan, Habib; Jadkar, Sandesh

    2016-04-01

    Transparent and conducting Al-doped ZnO (ZnO:Al) films were prepared on glass substrate using the RF sputtering method at different substrate temperatures from room temperature (RT) to 200 °C. The structural, morphological, electrical and optical properties of these films were investigated using a variety of characterization techniques such as low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), Hall measurement and UV-visible spectroscopy. The electrical properties showed that films deposited at RT have the lowest resistivity and it increases with an increase in the substrate temperature whereas carrier mobility and concentration decrease with an increase in substrate temperature. Low angle XRD and Raman spectroscopy analysis reavealed that films are highly crystalline with a hexagonal wurtzite structure and a preferred orientation along the c-axis. The FE-SEM analysis showed that the surface morphology of films is strongly dependent on the substrate temperature. The band gap decreases from 3.36 to 3.29 eV as the substrate temperature is increased from RT to 200 °C. The fundamental absorption edge in the UV region shifts towards a longer wavelength with an increase in substrate temperature and be attributed to the Burstein-Moss shift. The synthesized films showed an average transmission (> 85%) in the visible region, which signifies that synthesized ZnO:Al films can be suitable for display devices and solar cells as transparent electrodes.

  2. Influence of ferroelectric layer on artificial multiferroic LSMO/BTO bilayers deposited by Dc and RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, J. E.; Gomez, M. E.; Lopera, W. [Universidad del Valle, Department of Physics, A. A. 25360 Cali (Colombia)

    2016-11-01

    La{sub 2/3}Sr{sub 1/3}MnO{sub 3} (LSMO)/BaTiO{sub 3} (BTO) bilayers were deposited on (001) SrTiO{sub 3} substrates via Dc and RF sputtering at pure oxygen atmosphere at a substrate temperature of 830 degrees Celsius. We studied the structural, electrical and magnetic properties on LSMO/BTO bilayers, when LSMO thickness is fixed at nm and BTO thickness is varied from 20 to 100 nm. Reciprocal Space Maps in LSMO show a strained growth for all samples, while BTO layers are always relaxed. Magnetization and electrical measurements indicate the influence of the ferroelectric layer, due to saturation magnetization increases from 500 to 590 emu/cm{sup 3} and coercive field decreases from 178 to 82 Oe with BTO thickness. Mean Field mechanism is identified on all samples with critical exponent β between 0.42 and 0.54. Resistivity measurements show electron-electron and magnon-magnon scattering conduction mechanisms. The influence on magnetic and electrical properties of bilayers with BTO thickness is attributed to crystallographic strains at the interface and the corresponding relaxation with increasing BTO layer thickness. The thickness of the individual layers were obtained by X-ray reflectivity measurements in the bilayers, not shown. X-ray diffraction and Reciprocal Space Maps measurements show highly textured layers with preferential growth in the c-axis direction. (Author)

  3. Effect of heat treatment on properties of HfO2 film deposited by ion-beam sputtering

    Science.gov (United States)

    Liu, Huasong; Jiang, Yugang; Wang, Lishuan; Li, Shida; Yang, Xiao; Jiang, Chenghui; Liu, Dandan; Ji, Yiqin; Zhang, Feng; Chen, Deying

    2017-11-01

    The effects of atmosphere heat treatment on optical, stress, and microstructure properties of an HfO2 film deposited by ion-beam sputtering were systematically researched. The relationships among annealing temperature and refractive index, extinction coefficient, physical thickness, forbidden-band width, tape trailer width, Urbach energy, crystal phase structure, and stress were assessed. The results showed that 400 °C is the transformation point, and the microstructure of the HfO2 film changed from an amorphous into mixed-phase structure. Multistage phonons appeared on the HfO2 film, and the trends of the refractive index, extinction coefficient, forbidden-band width change, and Urbach energy shifted from decrease to increase. With the elevation of the annealing temperature, the film thickness increased monotonously, the compressive stress gradually turned to tensile stress, and the transformation temperature point for the stress was between 200 °C and 300 °C. Therefore, the change in the stress is the primary cause for the shifts in thin-film thickness.

  4. Optoelectronic properties of delafossite structure CuCr0.93Mg0.07O2 sputter deposited coatings

    Science.gov (United States)

    Sun, Hui; Arab Pour Yazdi, Mohammad; Sanchette, Frederic; Billard, Alain

    2016-05-01

    CuCr0.93Mg0.07O2 thin films with improved optoelectronic properties were deposited by reactive magnetron sputtering on fused quartz substrates. The influence of annealing temperature under vacuum on optoelectronic properties of the films was investigated. The amorphous films annealed under vacuum at temperatures higher than 923 K are single-phased delafossite structure, while impurity phases like CuCr2O4 that affect the optoelectronic properties of the films are detected below 873 K. c-axis orientation is observed for CuCr0.93Mg0.07O2 layers and the annealing temperature window in which the films are single-phased delafossite is much larger with Mg doping (923 K  →  1073 K) than that for undoped films (~953 K). The optical and electrical behaviours of the films are enhanced by Mg substitution and their direct band gap energy of about 3.12-3.14 eV is measured. The film possesses the optimum properties after annealing under vacuum at about 1023 K its average transmittance in the visible region can reach 54.23% while the film’s conductivity is about 0.27 S cm-1.

  5. Effect of Post-Deposition Annealing on RF-Sputtered Catalyst-Free Grown ZnO Nanostructures

    Science.gov (United States)

    Srivastava, Amit; Kumar, Naresh

    2017-08-01

    Catalyst-free zinc oxide (ZnO) nano-structures were synthesized on silicon (100) substrate by radio frequency sputtering. The as-deposited films were post-annealed at 200°C, 400°C, 600°C, and 800°C. The effects of annealing temperature on the structural, morphological and optical properties of these nanostructures were investigated using x-ray diffraction (XRD), atomic force microscopy (AFM) and spectroscopic ellipsometry. XRD showed c-axis-oriented growth with the increase in crystallinity at the higher annealing temperature of these ZnO nanostructures. The crystallite size calculated using Scherrer's formula in the XRD data was found to increase with the annealing temperature. AFM images confirmed the growth of grains at higher annealing temperatures. Optical band gaps of these ZnO nanostructures were calculated using reflectance spectra in the ultraviolet-visible region and found to decrease from 3.19 eV to 3.09 eV as the annealing temperature increased from 200°C to 800°C. The decrease in band gap may be attributed to the decrease in oxygen vacancies at higher annealing temperatures and may be useful for different applications.

  6. Development of superlattice CrN/NbN coatings for joint replacements deposited by high power impulse magnetron sputtering.

    Science.gov (United States)

    Hovsepian, Papken Ehiasarian; Ehiasarian, Arutiun Papken; Purandare, Yashodhan; Sugumaran, Arunprabhu Arunachalam; Marriott, Tim; Khan, Imran

    2016-09-01

    The demand for reliable coating on medical implants is ever growing. In this research, enhanced performance of medical implants was achieved by a CrN/NbN coating, utilising nanoscale multilayer/superlattice structure. The advantages of the novel high power impulse magnetron sputtering technology, namely, its unique highly ionised plasma, were exploited to deposit dense and strongly adherent coatings on CoCr implants. Transmission electron microscopy analysis revealed coating superlattice structure with bi-layer thickness of 3.5 nm. CrN/NbN deposited on CoCr samples showed exceptionally high adhesion, critical load values of LC2 = 50 N in scratch adhesion tests. Nanoindentation tests showed high hardness of 34 GPa and Young's modulus of 447 GPa. Low coefficient of friction (μ) 0.49 and coating wear coefficient (K C) = 4.94 × 10(-16) m(3) N(-1) m(-1) were recorded in dry sliding tests. Metal ion release studies showed a reduction in Co, Cr and Mo release at physiological and elevated temperatures (70 °C) to almost undetectable levels (<1 ppb). Rotating beam fatigue testing showed a significant increase in fatigue strength from 349 ± 59 MPa (uncoated) to 539 ± 59 MPa (coated). In vitro biological testing has been performed in order to assess the safety of the coating in biological environment; cytotoxicity, genotoxicity and sensitisation testing have been performed, all showing no adverse effects.

  7. Direct Imaging Mass Spectrometry of Plant Leaves Using Surface-assisted Laser Desorption/Ionization with Sputter-deposited Platinum Film.

    Science.gov (United States)

    Ozawa, Tomoyuki; Osaka, Issey; Hamada, Satoshi; Murakami, Tatsuya; Miyazato, Akio; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Plant leaves administered with systemic insecticides as agricultural chemicals were analyzed using imaging mass spectrometry (IMS). Matrix-assisted laser desorption/ionization (MALDI) is inadequate for the detection of insecticides on leaves because of the charge-up effect that occurs on the non-conductive surface of the leaves. In this study, surface-assisted laser desorption/ionization with a sputter-deposited platinum film (Pt-SALDI) was used for direct analysis of chemicals in plant leaves. Sputter-deposited platinum (Pt) films were prepared on leaves administered with the insecticides. A sputter-deposited Pt film with porous structure was used as the matrix for Pt-SALDI. Acephate and acetamiprid contained in the insecticides on the leaves could be detected using Pt-SALDI-MS, but these chemical components could not be adequately detected using MALDI-MS because of the charge-up effect. Enhancement of ion yields for the insecticides was achieved using Pt-SALDI, accompanied by prevention of the charge-up effect by the conductive Pt film. The movement of systemic insecticides in plants could be observed clearly using Pt-SALDI-IMS. The distribution and movement of components of systemic insecticides on leaves could be analyzed directly using Pt-SALDI-IMS. Additionally, changes in the properties of the chemicals with time, as an indicator of the permeability of the insecticides, could be evaluated.

  8. Process monitoring during AlN{sub x}O{sub y} deposition by reactive magnetron sputtering and correlation with the film's properties

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Joel, E-mail: joelborges@fisica.uminho.pt; Vaz, Filipe; Marques, Luis [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Martin, Nicolas [Institut FEMTO-ST, Département MN2S, UMR 6174 CNRS, Université de Franche-Comté, ENSMM, UTBM, 32, Avenue de l' Observatoire, 25044 Besançon Cedex (France)

    2014-03-15

    In this work, AlN{sub x}O{sub y} thin films were deposited by reactive magnetron sputtering, using an aluminum target and an Ar/(N{sub 2}+O{sub 2}) atmosphere. The direct current magnetron discharge parameters during the deposition process were investigated by optical emission spectroscopy and a plasma floating probe was used. The discharge voltage, the electron temperature, the ion flux, and the optical emission lines were recorded for different reactive gas flows, near the target and close to the substrate. This information was correlated with the structural features of the deposits as a first step in the development of a system to control the structure and properties of the films during reactive magnetron sputtering. As the target becomes poisoned, the discharge voltage suffers an important variation, due to the modification of the secondary electron emission coefficient of the target, which is also supported by the evolution of the electron temperature and ion flux to the target. The sputtering yield of the target was also affected, leading to a reduction of the amount of Al atoms arriving to the substrate, according to optical emission spectroscopy results for Al emission line intensity. This behavior, together with the increase of nonmetallic elements in the films, allowed obtaining different microstructures, over a wide range of compositions, which induced different electrical and optical responses of films.

  9. Analysis of the properties of functional titanium dioxide thin films deposited by pulsed DC magnetron sputtering with various O2:Ar ratios

    Science.gov (United States)

    Mazur, Michal

    2017-07-01

    For the purpose of thin film preparation, pulsed DC magnetron sputtering process was performed and various O2:Ar gas ratios were applied during deposition. Structural properties of thin films deposited with various sputtering atmospheres were determined based on the results of the x-ray diffraction method and Raman spectroscopy, which revealed that all coatings were nanocrystalline and had anatase or rutile structure. The surface morphology of the coatings were investigated with the aid of a scanning electron microscopy and atomic force microscopy. Surface properties were evaluated by x-ray photoelectron spectroscopy and wettability measurements. It was revealed that an increase of Ar amount in the sputtering gas atmosphere caused as a result an increase of thin film water contact angle and enhanced ability of the surface to adsorb water molecules and hydroxyl radicals. Optical properties evaluated on the basis of transmission and reflection measurements showed that all coatings were transparent in the visible wavelength range, but had different refractive index, porosity and packing density. The mechanical properties of the obtained coatings were determined on the basis of nanoindentation tests. Prepared TiO2 thin films had different surface, optical and mechanical properties depending on the gas atmosphere during deposition.

  10. Electrical and Structural Properties of Copper Thin Films Deposited by Novel RF Magnetized Plasma Sputtering with Gyratory Square-Shaped Arrangement by Bar Permanent Magnets

    Science.gov (United States)

    Hossain, Md Amzad; Ohtsu, Yasunori

    2016-09-01

    Rotating square-shaped arrangement by bar permanent magnets has been proposed for uniform target utilization in high-density radio frequency (RF) magnetized sputtering plasma. In this work, copper thin films are grown on unheated Si wafer by RF sputtering technique. The experiments are done in stainless-steel cylindrical vacuum chamber with outer diameter of 235 mm, inner diameter of 160 mm and 195 mm in height, whereas argon (Ar) gas pressure of 1.03 [Pa], rotating the iron yoke with speed of 40 [rpm,] sputtering time of 1.5 [h], and RF input power of 100 [W] at 13.56 [MHz] are realized. The deposited copper film thickness, electrical, structural properties and plasma density are investigated for case (a) without iron cover and case (b) with iron cover, respectively placed on the contact zone between the N-pole and the S-pole magnets. Radial profiles of the deposited copper thin film thickness and resistivity for case (b) are more uniform than case (a). It is found that the resistivities of deposited copper thin film for case (a) and (b) are approximately 7.89 × 10-8 Ω -m and 4.33 × 10-8 Ω -m, respectively at r = 30 mm. From AFM analysis, the uniformity of thin films grown throughout surface is better case (b) than case (a). The roughness of radial profile of the film thickness for case (a) and case (b) are 22.3% and 6.55%, respectively.

  11. Optical and electrical properties of Ti(Cr)O{sub 2}:N thin films deposited by magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kollbek, K., E-mail: kamila.kollbek@agh.edu.pl [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Szkudlarek, A.; Marzec, M.M. [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Lyson-Sypien, B.; Cecot, M. [Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Bernasik, A. [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Radecka, M. [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Zakrzewska, K. [Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland)

    2016-09-01

    Graphical abstract: - Highlights: • Co-doped well-crystallized stoichiometric Ti(Cr)O{sub 2}:N thin films are deposited. • Magnetron sputtering of ceramic TiO{sub 2} target is a new strategy for co-doping. • Bigger contribution from substitutionally incorporated nitrogen is seen in XPS. • Significant red shift of the fundamental absorption edge is obtained. - Abstract: The paper deals with TiO{sub 2}-based thin films, doped with Cr and N, obtained by magnetron co-sputtering from titanium dioxide ceramic and chromium targets in Ar + N{sub 2} atmosphere. Co-doped samples of Ti(Cr)O{sub 2}:N are investigated from the point of view of morphological, crystallographic, optical, and electrical properties. Characterization techniques such as: X-ray diffraction, XRD, scanning electron microscopy, SEM, atomic force microscopy, AFM, Energy Dispersive X-ray spectroscopy, EDX, X-ray photoelectron spectroscopy, XPS, optical spectrophotometry as well as impedance spectroscopy are applied. XRD reveals TiO{sub 2} and TiO{sub 2}:N thin films are well crystallized as opposed to those of TiO{sub 2}:Cr and Ti(Cr)O{sub 2}:N. XPS spectra confirm that co-doping has been successfully performed with the biggest contribution from the lower binding energy component of N 1s peak at 396 eV. SEM analysis indicates uniform and dense morphology without columnar growth. Comparison between the band gaps indicates a significant shift of the absorption edge towards visible range from 3.69 eV in the case of non-stoichiometric Ti(Cr)O{sub 2−x}:N to 2.78 eV in the case of stoichiometric Ti(Cr)O{sub 2}:N which should be attributed to the incorporation of both dopants at substitutional positions in TiO{sub 2} lattice. Electrical conductivity of stoichiometric Ti(Cr)O{sub 2}:N increases in comparison to co-doped nonstoichiometric TiO{sub 2−x} thin film and reaches almost the same value as that of TiO{sub 2} stoichiometric film.

  12. XPS and AFM Investigations of Ti-Al-N Coatings Fabricated Using DC Magnetron Sputtering at Various Nitrogen Flow Rates and Deposition Temperatures

    Directory of Open Access Journals (Sweden)

    Aleksei Obrosov

    2017-02-01

    Full Text Available Ti-Al-N coatings were deposited by direct current magnetron sputtering (DCMS onto IN 718 at different nitrogen flow rates and deposition temperatures. The coatings’ properties were characterized using atomic force microscopy (AFM, X-ray photoelectron spectroscopy (XPS as well as nanoindentation. It was found that higher deposition temperature leads to higher surface roughness and nitrogen flux influences the shape of grains. According to XPS, the bonding structure of all coatings exhibited the (Ti,AlN phase. Mechanical properties depend on the Al content within the films. The coating with the best mechanical properties (deposited at 500 °C and 20 standard cubic centimeters per minute (sccm was further deposited onto tungsten carbide (WC cutting tools for cylindrical turning experiments. A quasi-constant flank wear was observed until a machining volume of 23,500 mm3.

  13. Investigation of Hot Filament Chemical Vapor Deposition (HFCVD) of Heavily Boron Doped Superconductive Diamond for Device Applications

    Science.gov (United States)

    Green, Delroy Earl

    ABSTRACT Diamond has a wide bandgap of 5.47 eV at room temperature and is the hardest known naturally occurring material with a Knoop hardness of 10,400 kg/mm2 or 10 on the Mohs scale [1]. Due to the structure of the covalent bonding of its carbon atoms, diamond is extremely strong having each carbon atom bonded to four neighboring carbon atoms. Although diamond is hard, its toughness, when compared to most engineering materials, is poor. However, because of its hardness, it can be used as an efficient cutting and drilling tool. With the exception of naturally occurring blue diamonds, which are semiconductors, diamond is a good electrical insulator. However, unlike most insulators, diamond has the highest thermal conductivity of 22 W/cm-K [1, 2] among naturally occurring materials. Although diamond is a good electrical insulator, it also shows semiconducting properties when doped with impurities. When diamond is heavily doped with boron the resulting material possess excess holes and as such it is classified as a p-type material. If excess boron doping is achieved, then the resulting material is found to behave like a superconductor at very low temperatures. In this superconducting state, the doped diamond conducts electricity. A series of boron-doped diamond films were grown by hot filament chemical vapor deposition (HFCVD) and tested to determine the optimum technique for doping diamond with boron for superconductivity. The first sets of experiments were conducted by utilizing boron powder, paste or solid (B2O3) to dope the seeded diamond during growth on various substrates. The second technique, which was conducted at Blue Wave Semiconductors Inc. commercial laboratory, involves doping with diborane gas (B6H2). Various processing parameters were optimized for diamond quality, structure, morphology, and doping. A combined analysis of scanning electron microscope, Raman mapping and Hall measurements at various temperatures were conducted to ascertain the

  14. Annealing effect on the performance of sputtering deposited Metglas thin films

    KAUST Repository

    Cai, Liang

    2010-12-01

    Magnetostrictive sensors based on ferromagnetic materials have been widely used in detecting chemicals and biological species. The Metglas™ 2826MB is one of the bulk strip materials that is employed as the sensor platform. However, the sensitivity is limited by the large size of the sensors itself. In order to improve the sensitivity, we have developed a process to fabricate microscale sensors of 500 × 100 μm in size using conventional MEMS technology. As-deposited, the sensors suffered from internal stress, which was released by a annealing the sensors at 215 °C for two hours under vacuum condition. The annealing process improved the magnetic properties of the thin films and increased the resonant frequency of the sensor by 214 kHz.

  15. Effect of N{sub 2} flow rate on the properties of N doped TiO{sub 2} films deposited by DC coupled RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shou [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430000 (China); State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Yang, Yong, E-mail: 88087113@163.com [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Li, Gang; Jiang, Jiwen; Jin, Kewu; Yao, TingTing; Zhang, Kuanxiang [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Cao, Xin [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116000 (China); Wang, Yun; Xu, Genbao [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China)

    2016-09-05

    N doped TiO{sub 2} films were deposited on glass substrates at room temperature using DC coupled RF magnetron sputtering with a TiO{sub 2} ceramic target. The influences of N{sub 2} flow rate on the deposition rate, crystal structure, chemical composition and band gap of the deposited films were investigated by Optical profiler, X-ray diffraction, X-ray photoelectron spectroscope and ultraviolet-visible spectrophotometer. The film growth rate gradually decreased with increasing N{sub 2} flow rate. As N{sub 2} flow rate increased, the crystallization of the films deteriorated, and the films tended to form amorphous structure. XPS analysis revealed that N dopant atoms were added at the substitutional sites into TiO{sub 2} lattice structure. FE-SEM results showed that the grain size of the film decreased and the crystallinity degraded as N{sub 2} flow rate increases. In addition, N doping caused an obvious red shift in the optical absorption edge. - Highlights: • N doped TiO{sub 2} films were deposited by DC coupled RF magnetron reactive sputtering. • As N{sub 2} flow rate increases, the crystallization of the deposited films degrades. • The higher N{sub 2} flow rate is beneficial to form more substituted N in the film. • N doping causes an obvious red shift in the absorption wavelength.

  16. Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica (GRIFO), Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala, Campus Universitario, 28871 Alcala de Henares, Madrid (Spain)

    2010-02-15

    Aluminum-doped zinc oxide films were deposited at 100 C on polyethylene terephthalate by radio-frequency magnetron sputtering. The sputtering parameters such as RF power and Argon working pressure were varied from 25 to 125 W and from 1.1 to 0.2 Pa, respectively. The structural properties of as-deposited films were analysed by X-ray diffraction, showing that all the deposited films were polycrystalline, with hexagonal structure and a strong preferred c-axis orientation (0 0 2). Full width at half maximum and grain sizes were around 0.27 and ranged from 24 to 32 nm, respectively. The strain state of the samples was also estimated from X-ray diffraction measurements, obtaining compressive stresses from 0.29 to 0.05 GPa. Resistivity as low as 1.1 x 10{sup -3} {omega} cm was achieved for the film deposited at 75 W and 0.2 Pa, sample that showed a low strain state of -0.06 GPa. High optical transmittance ({proportional_to}80%) was exhibited when films were deposited at RF powers below 100 W. Band gap energies ranged from 3.36 to 3.39 eV and a refractive index of 1.80{+-}0.05, constant in the visible region, was also obtained. (author)

  17. Temperature-dependent microstructural evolution of Ti{sub 2}AlN thin films deposited by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheng [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), #08-03, 2 Fusionopolis Way, Innovis, 138634 (Singapore); Jin, Hongmei, E-mail: jinhm@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, Connexis 138632 (Singapore); Chai, Jianwei; Pan, Jisheng; Seng, Hwee Leng; Goh, Glen Tai Wei; Wong, Lai Mun [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), #08-03, 2 Fusionopolis Way, Innovis, 138634 (Singapore); Sullivan, Michael B. [Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, Connexis 138632 (Singapore); Wang, Shi Jie, E-mail: sj-wang@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), #08-03, 2 Fusionopolis Way, Innovis, 138634 (Singapore)

    2016-04-15

    Graphical abstract: - Highlights: • We investigate microstructural evolution of Ti{sub 2}AlN MAX thin films with temperature. • The film forms a mixture of Ti, Al and (Ti,Al)N cubic solid solution at 500 °C. • The film nucleates into polycrystalline Ti{sub 2}AlN M{sub n+1}AX{sub n} phases at 600 °C. • The film transforms into a single-crystalline Ti{sub 2}AlN (0 0 0 2) thin film at 750 °C. • The mechanisms behind Ti{sub 2}AlN phase transformation with temperature are discussed. - Abstract: Ti{sub 2}AlN MAX-phase thin films have been deposited on MgO (1 1 1) substrates between 500 and 750 °C using DC reactive magnetron sputtering of a Ti{sub 2}Al compound target in a mixed N{sub 2}/Ar plasma. The composition, crystallinity, morphology and hardness of the thin films have been characterized by X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and nano-indentation, respectively. The film initially forms a mixture of Ti, Al and (Ti,Al)N cubic solid solution at 500 °C and nucleates into polycrystalline Ti{sub 2}AlN MAX phases at 600 °C. Its crystallinity is further improved with an increase in the substrate temperature. At 750 °C, a single-crystalline Ti{sub 2}AlN (0 0 0 2) thin film is formed having characteristic layered hexagonal surface morphology, high hardness, high Young's modulus and low electrical resistivity. The mechanism behind the evolution of the microstructure with growth temperature is discussed in terms of surface energies, lattice mismatch and enhanced adatom diffusion at high growth temperatures.

  18. Mossbauer investigation of Fe{sub 1-x} Cr{sub x} films grown by ion-beam sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Eymery, J.P. [Laboratoire de Metallurgie Physique, UMR 6630 CNRS, Universite de Poitiers, batiment SP2MI, Teleport 2, boulevard Marie et Pierre Curie, BP 30179, F-86962 Futuroscope-Chasseneuil Cedex (France); Al-Khoury, W. [Laboratoire de Metallurgie Physique, UMR 6630 CNRS, Universite de Poitiers, batiment SP2MI, Teleport 2, boulevard Marie et Pierre Curie, BP 30179, F-86962 Futuroscope-Chasseneuil Cedex (France); Atomic Energy Commission of Syria, PO Box 6091, Damascus, Syria (Syrian Arab Republic); Goudeau, Ph. [Laboratoire de Metallurgie Physique, UMR 6630 CNRS, Universite de Poitiers, batiment SP2MI, Teleport 2, boulevard Marie et Pierre Curie, BP 30179, F-86962 Futuroscope-Chasseneuil Cedex (France)]. E-mail: philippe.goudeau@univ-poitiers.fr; Fnidiki, A. [Groupe de Physique des Materiaux, UMR 6634 CNRS, Universite de Rouen, site universitaire du Madrillet, avenue de l' Universite, BP 12, F-76801 Saint-Etienne du Rouvray Cedex (France)

    2006-05-31

    Fe{sub 1-x}Cr{sub x} (0sputter deposition, and their structural properties were determined by {sup 57}Fe conversion electron Mossbauer spectroscopy (CEMS) and X-ray diffraction experiments (XRD) at room temperature. CEM spectra show magnetic ordering for 0

  19. Pitting corrosion protection of stainless steel by sputter deposited hafnia, alumina, and hafnia-alumina nanolaminate films

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, M. A.; Aita, C. R. [Materials Department and the Advanced Coatings Experimental Laboratory, College of Engineering and Applied Science, University of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, Wisconsin 53201 (United States)

    2009-05-15

    316L stainless steel coated with sputter deposited HfO{sub 2}, Al{sub 2}O{sub 3}, and HfO{sub 2}-Al{sub 2}O{sub 3} nanolaminate films were subjected to direct current cyclic potentiodynamic polarization (DCP) in Hanks' balanced salt solution electrolyte. Postexposure morphology was characterized by scanning electron microscopy (SEM) with in situ energy dispersive spectroscopy (EDS). SEM/EDS data show that bare steel and steel coated with single-layer HfO{sub 2} develop pits with perforated covers. These pits become autocatalytic, consistent with an observed positive DCP hysteresis. On the other hand, SEM/EDS data show that steel coated with Al{sub 2}O{sub 3} and HfO{sub 2}-Al{sub 2}O{sub 3} nanolaminate films does not develop autocatalytic pits, consistent with an observed negative DCP hysteresis. However, Al{sub 2}O{sub 3} splinters upon polarization whereas the HfO{sub 2}-Al{sub 2}O{sub 3} nanolaminate remains intact. The areas of worst damage in the nanolaminate correspond to pit cover rupture before autocatalysis, allowing pit and bulk electrolyte to mix and the newly exposed steel surface to repassivate. The films' diverse behavior is discussed in terms of a model for perforated pit growth that requires occlusion until an autocatalytic geometry is established. The authors conclude that the key property a film must have to arrest autocatalytic geometry development is the ability to rupture locally at an early stage of pit growth.

  20. Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ficek, M.; Sobaszek, M.; Gnyba, M. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Ryl, J. [Department of Electrochemistry, Corrosion and Material Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk (Poland); Gołuński, Ł. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Smietana, M.; Jasiński, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw (Poland); Caban, P. [Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw (Poland); Bogdanowicz, R., E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-11-30

    Highlights: • Growth of 60% of transmittance diamond films with resistivity as low as 48 Ω cm. • Two step seeding process of fused silica: plasma hydrogenation and wet seeding. • Nanodiamond seeding density of 2 × 10{sup 10} cm{sup −2} at fused silica substrates. • High refractive index (2.4 @550 nm) was achieved for BDD films deposited at 500 °C. - Abstract: This paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density. First, the substrates undergo the hydrogen plasma treatment then spin-coating seeding using a dispersion consisting of detonation nanodiamond in dimethyl sulfoxide with polyvinyl alcohol was applied. Such an approach results in seeding density of 2 × 10{sup 10} cm{sup −2}. The scanning electron microscopy images showed homogenous, continuous and polycrystalline surface morphology with minimal grain size of 200 nm for highly boron doped films. The sp{sup 3}/sp{sup 2} ratio was calculated using Raman spectra deconvolution method. A high refractive index (range of 2.0–2.4 @550 nm) was achieved for BDD films deposited at 500 °C. The values of extinction coefficient were below 0.1 at λ = 550 nm, indicating low absorption of the film. The fabricated BDD thin films displayed resistivity below 48 Ohm cm and transmittance over 60% in the visible wavelength range.

  1. Study of working pressure on the optoelectrical properties of Al–Y codoped ZnO thin-film deposited using DC magnetron sputtering for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Feng-Hao [Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, No. 1, Dasyue Road, East District, Tainan City 701, Taiwan (China); Wang, Na-Fu; Tsai, Yu-Zen; Chuang, Ming-Chieh; Cheng, Yu-Song [Department of Electronic Engineering, Cheng Shiu University, 840 Chengcing Road, Niaosong District, Kaohsiung City 833, Taiwan (China); Houng, Mau-Phon, E-mail: mphoung@eembox.ncku.edu.tw [Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, No. 1, Dasyue Road, East District, Tainan City 701, Taiwan (China)

    2013-09-01

    Low cost transparent conductive Al–Y codoped ZnO (AZOY) thin-films were prepared on a glass substrate using a DC magnetron sputtering technique with various working pressures in the range of 5–13 mTorr. The relationship among the structural, electrical, and optical properties of sputtered AZOY films was studied as a function of working pressure. The XRD measurements show that the crystallinity of the films degraded as the working gas pressure increased. The AZOY thin-film deposited at a working pressure of 5 mTorr exhibited the lowest electrical resistivity of 4.3 × 10{sup −4} Ω cm, carrier mobility of 30 cm{sup 2}/V s, highest carrier concentration of 4.9 × 10{sup 20} cm{sup −3}, and high transmittance in the visible region (400–800 nm) of approximately 90%. Compared with Al doped ZnO (AZO) thin-films deposited using DC or RF magnetron sputtering methods, a high carrier mobility was observed in our AZOY thin-films. This result can be used to effectively decrease the absorption of near infrared-rays in solar cell applications. The mechanisms are attributed to the larger transition energy between Ar atoms and sputtering particles and the size compensation of the dopants. Finally, the optimal quality AZOY thin-film was used as an emitter layer (or window layer) to form AZOY/n-Si heterojunction solar cells, which exhibited a stable conversion efficiency (η) of 9.4% under an AM1.5 illumination condition.

  2. Sputtered Thin Film Research

    Science.gov (United States)

    1974-11-01

    and Idonllly hy block numbor) Reactive Sputtering, Heteroepitaxy, Thin Films Single Crystal Zinc Oxide, Titanium Dioxide, Aluminum Nitride, Gallium...Conditions were determined for the deposition of amorphous neodymium ultra- phosphate films. This material holds the potential for the fabrication...reaching the substrate at any time during sputtering. A 17.2 cm diameter quartz plate was covered with a thin coating of zinc sulflde and placed on

  3. Annealing effects on the ferromagnetic resonance linewidths of sputter-deposited Fe{sub 100−x}Co{sub x}(001) thin films (x < 11)

    Energy Technology Data Exchange (ETDEWEB)

    Kusaoka, A.; Kimura, J.; Takahashi, Y., E-mail: takahasy@yz.yamagata-u.ac.jp; Inaba, N. [Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Kirino, F. [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, Tokyo 110-8714 (Japan); Ohtake, M.; Futamoto, M. [Faculty of Science and Engineering, Chuo University, Tokyo 112-8551 (Japan)

    2015-05-07

    Effects of post-growth annealing on the magnetic damping of 3d transition alloy thin films were investigated. Fe{sub 100−x}Co{sub x} (x < 11 at. %) thin films were epitaxially deposited on GaAs(001) substrates by rf magnetron sputtering, and some of them were annealed without exposing to atmosphere. Electrical measurement showed that in-plane resistivity was smaller in the annealed films than in the as-deposited ones, indicating that the annealing mitigates crystalline imperfections and leads to reduced electron scattering rates. Magnetic damping was evaluated by the peak widths of ferromagnetic resonance (FMR) spectra obtained by a conventional Q-band spectrometer. Comparison of as-deposited and annealed specimens showed that the damping was decreased by annealing. Combined with the electrical and FMR measurements, these observations are consistent with the theoretical predictions that crystalline imperfections strongly influence the magnetic damping, both in intrinsic and extrinsic origins.

  4. Surface modification of tantalum pentoxide coatings deposited by magnetron sputtering and correlation with cell adhesion and proliferation in in vitro tests

    Science.gov (United States)

    Zykova, A.; Safonov, V.; Goltsev, A.; Dubrava, T.; Rossokha, I.; Donkov, N.; Yakovin, S.; Kolesnikov, D.; Goncharov, I.; Georgieva, V.

    2016-03-01

    The effect was analyzed of surface treatment by argon ions on the surface properties of tantalum pentoxide coatings deposited by reactive magnetron sputtering. The structural parameters of the as-deposited coatings were investigated by means of transmission electron microscopy, atomic force microscopy and scanning electron microscopy. X-ray diffraction profiles and X-ray photoelectron spectra were also acquired. The total surface free energy (SFE), the polar, dispersion parts and fractional polarities, were estimated by the Owens-Wendt-Rabel-Kaeble method. The adhesive and proliferative potentials of bone marrow cells were evaluated for both Ta2O5 coatings and Ta2O5 coatings deposited by simultaneous bombardment by argon ions in in vitro tests.

  5. In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper

    DEFF Research Database (Denmark)

    Kidambi, Piran R.; Blume, Raoul; Kling, Jens

    2014-01-01

    processing, and that this negatively affects the stability of h-BN on the catalyst. For extended air exposure Cu oxidation is observed, and upon re-heating in vacuum an oxygen-mediated disintegration of the h-BN film via volatile boron oxides occurs. Importantly, this disintegration is catalyst mediated, i...... protection and relate them to challenges in process integration and heterostructure CVD....

  6. Properties of Co-deposited indium tin oxide and zinc oxide films using a bipolar pulse power supply and a dual magnetron sputter source

    Science.gov (United States)

    Hwang, Man-Soo; Seob Jeong, Heui; Kim, Won Mok; Seo, Yong Woon

    2003-07-01

    Multilayer coatings consisting of metal layers sandwiched between transparent conducting oxide layers are widely used for flat panel display electrodes and electromagnetic shield coatings for plasma displays, due to their high electrical conductivity and light transmittance. The electrical and optical properties of these multilayer films depend largely on the surface characteristics of the transparent conducting oxide thin films. A smoother surface on the transparent conducting oxide thin films makes it easier for the metal layer to form a continuous film, thus resulting in a higher conductivity and visible light transmittance. Indium tin oxide (ITO) and zinc oxide (ZnO) films were co-deposited using a dual magnetron sputter and a bipolar pulse power supply to decrease the surface roughness of the transparent conducting oxide films. The symmetric pulse mode of the power supply was used to simultaneously sputter an In2O3 (90 wt %) : SnO2 (10 wt %) target and a ZnO target. We varied the duty of the pulses to control the ratio of ITO : ZnO in the thin films. The electrical and optical properties of the films were studied, and special attention was paid to the surface roughness and the crystallinity of the films. By co-depositing ITO and ZnO at a pulse duty ratio of ITO:ZnO=45:45 using a dual magnetron sputter and a bipolar pulse power supply, we were able to obtain amorphous transparent conducting oxide films with a very smooth surface which had a Zn-rich buffer layer under a In-rich surface layer. All of the films exhibited typical electrical and optical properties of transparent conducting oxide films deposited at room temperature.

  7. Epitaxial ZnO gate dielectrics deposited by RF sputter for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    Science.gov (United States)

    Yoon, Seonno; Lee, Seungmin; Kim, Hyun-Seop; Cha, Ho-Young; Lee, Hi-Deok; Oh, Jungwoo

    2018-01-01

    Radio frequency (RF)-sputtered ZnO gate dielectrics for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) were investigated with varying O2/Ar ratios. The ZnO deposited with a low oxygen content of 4.5% showed a high dielectric constant and low interface trap density due to the compensation of oxygen vacancies during the sputtering process. The good capacitance–voltage characteristics of ZnO-on-AlGaN/GaN capacitors resulted from the high crystallinity of oxide at the interface, as investigated by x-ray diffraction and high-resolution transmission electron microscopy. The MOS-HEMTs demonstrated comparable output electrical characteristics with conventional Ni/Au HEMTs but a lower gate leakage current. At a gate voltage of ‑20 V, the typical gate leakage current for a MOS-HEMT with a gate length of 6 μm and width of 100 μm was found to be as low as 8.2 × 10‑7 mA mm‑1, which was three orders lower than that of the Ni/Au Schottky gate HEMT. The reduction of the gate leakage current improved the on/off current ratio by three orders of magnitude. These results indicate that RF-sputtered ZnO with a low O2/Ar ratio is a good gate dielectric for high-performance AlGaN/GaN MOS-HEMTs.

  8. Bi{sub 4}V{sub 2}O{sub 11} and BITAVOX.20 coatings deposited by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Dereeper, E., E-mail: eloi.dereeper@utbm.fr [IRTES-LERMPS, UTBM, Site de Montbéliard, F90010 Belfort Cedex (France); Briois, P. [IRTES-LERMPS, UTBM, Site de Montbéliard, F90010 Belfort Cedex (France); Vannier, R.-N. [Unité de Catalyse et de Chimie du Solide, UMR CNRS 8181, Université Lille 1, ENSCL, BP 90108, 59652 Villeneuve d' Ascq Cedex (France); Billard, A. [IRTES-LERMPS, UTBM, Site de Montbéliard, F90010 Belfort Cedex (France)

    2015-03-01

    Bi{sub 4}V{sub 2}O{sub 11} and BITAVOX.20 films were deposited by magnetron sputtering in reactive conditions from Bi, V and Ta metallic targets. The influence of sputtering conditions on the films composition was studied and then a structural study at variable temperature was carried out. Before annealing, the films were amorphous and the γ-Bi{sub 4}V{sub 2}O{sub 11} structure was obtained for a treatment at temperatures over 550 °C whereas BITAVOX.20 started to crystallise at 425 °C. In both cases, crystallisation occurred via an intermediate fluorite phase presenting a tetragonal deformation as already observed for other compounds with the Aurivillius structure. - Highlights: • Bi{sub 4}V{sub 2}O{sub 11} and BITAVOX.20 were synthesized by reactive magnetron co-sputtering. • Crystallization of the coatings was studied by X-ray diffraction in temperature. • High temperature γ form grows from a new type of intermediate phase. • The conductivity of Bi{sub 4}V{sub 2}O{sub 11} coatings was investigated by impedance spectroscopy measurements along the sample surface.

  9. Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing

    CERN Document Server

    He, X M; Peters, A M; Taylor, B; Nastasi, M

    2002-01-01

    Fluorine (F) and boron (B) co-doped diamond-like carbon (FB-DLC) films were prepared on different substrates by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C sub 2 H sub 2), diborane (B sub 2 H sub 6), and hexafluoroethane (C sub 2 F sub 6) gas. Films of FB-DLC were deposited with different chemical compositions by varying the flow ratios of the C sub 2 H sub 2 , B sub 2 H sub 6 , and C sub 2 F sub 6 source gases. The incorporation of B sub 2 H sub 6 and C sub 2 F sub 6 into PIIP deposited DLC resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations effected the chemical bonding and the physical properties as was evident from the changes observed in density, hardness, stress, friction coefficient, and contact angle of water on films. Compared to B-doped or F-doped DLC films, the F and B co-doping of DLC during PIIP deposition...

  10. DEPOSITION OF NIOBIUM AND OTHER SUPERCONDUCTING MATERIALS WITH HIGH POWER IMPULSE MAGNETRON SPUTTERING: CONCEPT AND FIRST RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    High Current Electronics Institute, Tomsk, Russia; Anders, Andre; Mendelsberg, Rueben J.; Lim, Sunnie; Mentink, Matthijs; Slack, Jonathan L.; Wallig, Joseph G.; Nollau, Alexander V.; Yushkov, Georgy Yu.

    2011-07-24

    Niobium coatings on copper cavities have been considered as a cost-efficient replacement of bulk niobium RF cavities, however, coatings made by magnetron sputtering have not quite lived up to high expectations due to Q-slope and other issues. High power impulse magnetron sputtering (HIPIMS) is a promising emerging coatings technology which combines magnetron sputtering with a pulsed power approach. The magnetron is turned into a metal plasma source by using very high peak power density of ~ 1 kW/cm{sup 2}. In this contribution, the cavity coatings concept with HIPIMS is explained. A system with two cylindrical, movable magnetrons was set up with custom magnetrons small enough to be inserted into 1.3 GHz cavities. Preliminary data on niobium HIPIMS plasma and the resulting coatings are presented. The HIPIMS approach has the potential to be extended to film systems beyond niobium, including other superconducting materials and/or multilayer systems.

  11. Combinatorial study of low-refractive Mg-F-Si-O nano-composites deposited by magnetron co-sputtering from compound targets

    Science.gov (United States)

    Mertin, Stefan; Länzlinger, Tony; Sandu, Cosmin S.; Scartezzini, Jean-Louis; Muralt, Paul

    2018-03-01

    Deposition of nano-composite Mg-F-Si-O films on optical grade silica glass was studied employing RF magnetron co-sputtering from magnesium fluoride (MgF2) and fused silica (SiO2) targets. The aim was to obtain a stable and reliable sputtering process for optical coatings exhibiting a refractive index lower than the one of quartz glass (1.46 at 550 nm) without adding gaseous fluorine to the deposition process. The two magnetrons were installed in a confocal way at 45° off-axis with respect to a static substrate, thus creating a lateral gradient in the thin-film composition. The deposited Mg-F-Si-O coatings were structurally analysed by electron dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The obtained films consist of MgF2 nanocrystals embedded in a SiO2-rich amorphous matrix. Spectroscopic ellipsometry and spectrophotometry measurements showed that they are highly transparent exhibiting a very-low extinction coefficient k and a refractive index n in the desired range between the one of MgF2 (1.38) and SiO2 (1.46). Films with n = 1.424 and 1.435 at 550 nm were accomplished with absorption below the detection threshold.

  12. Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Jephias Gwamuri

    2016-01-01

    Full Text Available The opportunity for substantial efficiency enhancements of thin film hydrogenated amorphous silicon (a-Si:H solar photovoltaic (PV cells using plasmonic absorbers requires ultra-thin transparent conducting oxide top electrodes with low resistivity and high transmittances in the visible range of the electromagnetic spectrum. Fabricating ultra-thin indium tin oxide (ITO films (sub-50 nm using conventional methods has presented a number of challenges; however, a novel method involving chemical shaving of thicker (greater than 80 nm RF sputter deposited high-quality ITO films has been demonstrated. This study investigates the effect of oxygen concentration on the etch rates of RF sputter deposited ITO films to provide a detailed understanding of the interaction of all critical experimental parameters to help create even thinner layers to allow for more finely tune plasmonic resonances. ITO films were deposited on silicon substrates with a 98-nm, thermally grown oxide using RF magnetron sputtering with oxygen concentrations of 0, 0.4 and 1.0 sccm and annealed at 300 °C air ambient. Then the films were etched using a combination of water and hydrochloric and nitric acids for 1, 3, 5 and 8 min at room temperature. In-between each etching process cycle, the films were characterized by X-ray diffraction, atomic force microscopy, Raman Spectroscopy, 4-point probe (electrical conductivity, and variable angle spectroscopic ellipsometry. All the films were polycrystalline in nature and highly oriented along the (222 reflection. Ultra-thin ITO films with record low resistivity values (as low as 5.83 × 10−4 Ω·cm were obtained and high optical transparency is exhibited in the 300–1000 nm wavelength region for all the ITO films. The etch rate, preferred crystal lattice growth plane, d-spacing and lattice distortion were also observed to be highly dependent on the nature of growth environment for RF sputter deposited ITO films. The structural, electrical

  13. Modification of polylactic acid surface using RF plasma discharge with sputter deposition of a hydroxyapatite target for increased biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Tverdokhlebov, S.I., E-mail: tverd@tpu.ru [Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050 (Russian Federation); Bolbasov, E.N.; Shesterikov, E.V. [Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050 (Russian Federation); Antonova, L.V.; Golovkin, A.S.; Matveeva, V.G. [Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Disease, 6 Sosnovy Blvd, Kemerovo 650002 (Russian Federation); Petlin, D.G.; Anissimov, Y.G. [Griffith University, School of Natural Sciences, Engineering Dr., Southport, QLD 4222 (Australia)

    2015-02-28

    Highlights: • The treatment by plasma of radio-frequency magnetron discharge with hydroxyapatite target sputtering improves the biocompatibility of PLLA surface. • The treatment significantly increases the roughness of PLLA surface. • The formation of rough highly porous surface is due to the etching and crystallization processes on PLLA surface during treatment. • Maximum concentration of the ions from the sputtered target is achieved at 60 s of the plasma treatment. - Abstract: Surface modification of polylactic acid (PLLA) by plasma of radio-frequency magnetron discharge with hydroxyapatite target sputtering was investigated. Increased biocompatibility was demonstrated using studies with bone marrow multipotent mesenchymal stromal cells. Atomic force microscopy demonstrates that the plasma treatment modifies the surface morphology of PLLA to produce rougher surface. Infrared spectroscopy and X-ray diffraction revealed that changes in the surface morphology are caused by the processes of PLLA crystallization. Fluorescent X-ray spectroscopy showed that the plasma treatment also changes the chemical composition of PLLA, enriching it with ions of the sputtered target: calcium, phosphorus and oxygen. It is hypothesized that these surface modifications increase biocompatibility of PLLA without increasing toxicity.

  14. Laser annealing of sputter-deposited a-SiC and a-SiCxNy films

    Indian Academy of Sciences (India)

    Administrator

    quartz substrates by RF magnetron sputtering. Two samples of a-SiCxNy thin films were produced under different N2/Ar flow ratios. Rutherford backscattering spectroscopy (RBS), Raman analysis and Fourier transform infrared spectrometry (FTIR) techniques were used to investigate the composition and bonding structure ...

  15. Cupric and cuprous oxide by reactive ion beam sputter deposition and the photosensing properties of cupric oxide metal–semiconductor–metal Schottky photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min-Jyun; Lin, Yong-Chen; Chao, Liang-Chiun, E-mail: lcchao@mail.ntust.edu.tw; Lin, Pao-Hung; Huang, Bohr-Ran

    2015-08-15

    Highlights: • CuO and Cu{sub 2}O were deposited by reactive ion beam sputter deposition. • Single phase CuO thin film is obtained with Ar:O{sub 2} = 2:1. • CuO MSM PD shows photoresponse from 400 nm to 1.30 μm. • CuO MSM PD is RC limited with a decay time less than 1 μs. - Abstract: Cupric (CuO) and cuprous (Cu{sub 2}O) oxide thin films have been deposited by reactive ion beam sputter deposition at 400 °C with an Ar:O{sub 2} ratio from 2:1 to 12:1. With an Ar:O{sub 2} ratio of 2:1, single phase polycrystalline CuO thin films were obtained. Decreasing oxygen flow rate results in CuO + Cu{sub 2}O and Cu{sub 2}O + Cu mixed thin films. As Ar:O{sub 2} ratio reaches 12:1, Cu{sub 2}O nanorods with diameter of 250 nm and length longer than 1 μm were found across the sample. Single phase CuO thin film exhibits an indirect band gap of 1.3 eV with a smooth surface morphology. CuO metal–semiconductor–metal (MSM) Schottky photodiodes (PD) were fabricated by depositing Cu interdigitated electrodes on CuO thin films. Photosensing properties of the CuO PD were characterized from 350 to 1300 nm and a maximum responsivity of 43 mA/W was found at λ = 700 nm. The MSM PD is RC limited with a decay time constant less than 1 μs.

  16. Ultrafine sputter-deposited Pt nanoparticles for triiodide reduction in dye-sensitized solar cells: impact of nanoparticle size, crystallinity and surface coverage on catalytic activity.

    Science.gov (United States)

    Mukherjee, Somik; Ramalingam, Balavinayagam; Griggs, Lauren; Hamm, Steven; Baker, Gary A; Fraundorf, Phil; Sengupta, Shramik; Gangopadhyay, Shubhra

    2012-12-07

    This paper presents a detailed electrochemical impedance spectroscopy and cyclic voltammetry (CV) investigation into the electrocatalytic activity of ultrafine (i.e., smaller than 2 nm) platinum (Pt) nanoparticles generated on a fluorine-doped tin oxide (FTO) surface via room temperature tilted target sputter deposition. In particular, the Pt-decorated FTO electrode surfaces were tested as counter electrode candidates for triiodide (I3(-)) reduction in dye-sensitized solar cells (DSSCs). We observed a direct correlation between size-dependent Pt nanoparticle crystallinity and the I3(-) reduction activity underlying DSSC performance. CV analysis confirmed the higher electrocatalytic activities of sputter-deposited crystalline Pt nanoparticles (1-2 nm) compared with either sub-nanometre Pt clusters or a continuous Pt thin film. While the low catalytic activity and DSSC performance of Pt clusters smaller in size than 1 nm is believed to arise from their non-crystalline nature and charge-trapping attributes, we attribute the high catalytic performance of larger Pt nanoparticles in the 1-2 nm regime to their well-defined crystallinity and fast electron transfer kinetics. For DSSC applications, the optimized Pt loading was calculated to be ~2.54 × 10(-7) g cm(-2), which corresponds to surface coverage by ~1.6 nm sized Pt nanoparticles.

  17. The Influences of Thickness on the Optical and Electrical Properties of Dual-Ion-Beam Sputtering-Deposited Molybdenum-Doped Zinc Oxide Layer

    Directory of Open Access Journals (Sweden)

    Chin-Chiuan Kuo

    2011-01-01

    Full Text Available The thickness of transparent conductive oxide (TCO layer significantly affects not only the optical and electrical properties, but also its mechanical durability. To evaluate these influences on the molybdenum-doped zinc oxide layer deposited on a flexible polyethersulfone (PES substrate by using a dual-ion-beam sputtering system, films with various thicknesses were prepared at a same condition and their optical and electrical performances have been compared. The results show that all the deposited films present a crystalline wurtzite structure, but the preferred orientation changes from (002 to (100 with increasing the film thickness. Thicker layer contains a relative higher carrier concentration, but the consequently accumulated higher internal stress might crack the film and retard the carrier mobility. The competition of these two opposite trends for carrier concentration and carrier mobility results in that the electrical resistivity of molybdenum-doped zinc oxide first decreases with the thickness but suddenly rises when a critical thickness is reached.

  18. Structural and Mechanical Properties of CrNx Coatings Deposited by Medium-Frequency Magnetron Sputtering with and without Ion Source Assistance

    Directory of Open Access Journals (Sweden)

    Can Xin Tian

    2011-01-01

    Full Text Available CrNx coatings were deposited on Si (100 and WC-Co substrates by a home-made medium-frequency magnetron sputtering system with and without thermal filament ion source assistance. The structure and composition of the coatings were characterized by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. The mechanical and tribological properties were assessed by microhardness and pin-on-disc testing. The ion source-assisted system showed a deposition rate of 3.88 μm/h, much higher than the value 2.2 μm/h without ion source assistance. The CrNx coatings prepared with ion source assistance exhibited an increase in microhardness (up to 16.3 GPa and adecrease in friction coefficient (down to 0.48 at the optimized cathode source-to-substrate distance.

  19. Electrical mechanism analysis of Al{sub 2}O{sub 3} doped zinc oxide thin films deposited by rotating cylindrical DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyeongsik; Jang, Kyungsoo; Kumar, Krishna; Ahn, Shihyun; Cho, Jaehyun; Jang, Juyeon [School of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Ahn, Kyungjun; Yeom, Jeonghoon; Kim, Dongseok [SNTEK, 906 Hakun-li, Yangchon-myeon, Kimpo-si, Gyeonggi-do 415-843 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [School of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of)

    2011-08-01

    Cost efficient and large area deposition of superior quality Al{sub 2}O{sub 3} doped zinc oxide (AZO) films is instrumental in many of its applications, including solar cell fabrication due to its numerous advantages over indium tin oxide (ITO) films. In this study, AZO films were prepared by a highly efficient rotating cylindrical direct current (DC) magnetron sputtering system using an AZO target, which has a target material utilization above 80%, on glass substrates in argon (Ar) ambient. A detailed analysis on the electrical, optical, and structural characteristics of AZO thin films was performed for the solar cell, as well as display applications. The properties of films were found to critically depend on deposition parameters, such as sputtering power, substrate temperature, working pressure, and film thickness. A low resistivity of {approx} 5.5 x 10{sup -4} {Omega} cm was obtained for films deposited at 2 kW, keeping the pressure, substrate temperature and thickness constant at 3 mTorr, 230 deg. C and {approx} 1000 nm respectively. This was due to an increase in carrier mobility and large grain size. Mobility is found to be controlled by ionized impurity scattering within the grains, since the mean free path of carriers is much smaller than the grain size of the films. The AZO films showed a high transparency of {approx} 90% in the long wavelength region. Our results offer a cost-efficient AZO film deposition method that can fabricate films with significant low resistivity and high transmittance that can be applied in thin-film solar cells, as well as thin film transistor (TFT) and non-volatile memory (NVM).

  20. Effect of N{sub 2} flow rate on the microstructure and electrochemical behavior of TaN{sub x} films deposited by modulated pulsed power magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Mendizabal, L., E-mail: lucia.mendizabal@tekniker.es [IK4-TEKNIKER, Department of Surface Physics and Technology, Iñaki Goenaga 5, 20600 Eibar (Spain); Bayón, R. [IK4-TEKNIKER, Department of Tribology, Iñaki Goenaga 5, 20600 Eibar (Spain); G-Berasategui, E.; Barriga, J. [IK4-TEKNIKER, Department of Surface Physics and Technology, Iñaki Goenaga 5, 20600 Eibar (Spain); Gonzalez, J.J. [ETSIB University of Basque Country, Department of Material Science, Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2016-07-01

    Modulated pulsed power magnetron sputtering (MPPMS) technology offers the possibility to grow high performance coatings compared to the ones developed by conventional dc magnetron sputtering. The high degree of ionization of sputtered particles developed during MPPMS can be usefully utilized to precisely tailor the properties of the growing films. One of the main advantages of such a high metal ion flux is related to the densification of the coatings due to enhance ion bombardment towards the growing film. The development of extremely dense and low-defect microstructure coatings can have a positive effect on the corrosion resistance of tantalum nitride (TaN{sub x}) films. In this study, TaN{sub x} thin films have been deposited by MPPMS in a closed field unbalanced magnetron sputtering system. Structure, surface morphology, hardness and corrosion resistance of the developed coatings have been analyzed as a function of different N{sub 2}-to-Ar ratios (0, 0.25, 0.625, 1). X-ray diffraction and scanning electron microscopy analysis reveal high dependence of the grown crystal phases and the microstructure on N{sub 2}-to-Ar ratio. The hardness of the TaN{sub x} coatings increases when increasing N{sub 2}-to-Ar ratio up to a maximum value of 25 GPa (N{sub 2}-to-Ar ratio of 0.625). The corrosion behavior was investigated using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry. EIS measurements registered at different immersion times show high impedance values (in the order of 10 MΩ cm{sup 2}) and corrosion resistance enhancement with time, indicating the formation of a passive protective oxide layer on the top of their surfaces. TaN{sub x} film grown at 0.25 N{sub 2}-to-Ar ratio exhibits the highest corrosion resistance of 103.53 MΩ cm{sup 2} and low porosity of 1.63 × 10{sup −3} and is characterized by columnar-free microstructure. - Highlights: • TaN{sub X} coatings deposited by MPPMS at different N{sub 2}-to-Ar ratios have been

  1. Radio frequency sputter deposition of high-quality conductive and transparent ZnO:Al films on polymer substrates for thin film solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: susanamaria.fernandez@ciemat.es; Martinez-Steele, A.; Gandia, J.J. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica (GRIFO), Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala. Campus Universitario, 28871 Alcala de Henares, Madrid (Spain)

    2009-03-31

    Thick aluminum-doped zinc oxide films were deposited at substrate temperatures from 100 {sup o}C to room temperature on polyethylene terephthalate by radio frequency magnetron sputtering, varying the deposition parameters such as radio frequency power and working pressure. Structural, optical and electrical properties were analyzed using an x-ray diffractometer, a spectrophotometer and a four-point probe, respectively. Films were polycrystalline showing a strong preferred c-axis orientation (002). The best optical and electrical results were achieved using a substrate temperature of 100 {sup o}C. Furthermore, high transmittances close to 80% in the visible wavelength range were obtained for those films deposited at the lowest Argon pressure used of 0.2 Pa. In addition, resistivities as low as 1.1 x 10{sup -3} {omega} cm were reached deposited at a RF power of 75 W. Finally, a comparison of the properties of the films deposited on polymer and glass substrates was performed, obtaining values of the figure of merit for the films on polymer comparable to those obtained on glass substrates, 17,700 {omega}{sup -1} cm{sup -1} vs 14,900 {omega}{sup -1} cm{sup -1}, respectively.

  2. Growth of Boron-Rich Nanowires by Chemical Vapor Deposition (CVD

    Directory of Open Access Journals (Sweden)

    H. J. Kleebe

    2006-11-01

    Full Text Available B-rich nanowires are grown on Ni coated oxidized Si(111 substrate using diborane as the gas precursor in a CVD process at 20 torr and 900C∘. These nanowires have diameters around 20–100 nanometers and lengths up to microns. Icosahedron B12 is shown to be the basic building unit forming the amorphous B-rich nanowires as characterized by EDAX, XRD, XPS, and Raman spectroscopies. The gas chemistry at low [B2H6]/ [N2] ratio is monitored by the in situ mass spectroscopy, which identified N2 as an inert carrier gas leading to formation of the B-rich compounds. A nucleation controlled growth mechanism is proposed to explain the rugged nanowire growth of boron. The role of the Ni catalyst in the synthesis of the B-rich nanostructures is also discussed.

  3. Effect of deposition angle on the structure and properties of pulsed-DC magnetron sputtered TiAlN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, A.R., E-mail: akshath.shetty@epfl.c [Institut de Physique de la Matiere Condensee (IPMC), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne (Switzerland); Karimi, A. [Institut de Physique de la Matiere Condensee (IPMC), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne (Switzerland); Cantoni, M. [Centre Interdisciplinaire De Microscopie Electronique (CIME), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne (Switzerland)

    2011-04-29

    This article reports the comparison of structure and properties of titanium aluminum nitride (TiAlN) films deposited onto Si(100) substrates under normal and oblique angle depositions using pulsed-DC magnetron sputtering. The substrate temperature was set at room temperature, 400 {sup o}C and 650 {sup o}C, and the bias was kept at 0, - 25, - 50, and - 80 V for both deposition angles. The surface and cross-section of the films were observed by scanning electron microscopy. It was found that as the deposition temperature increases, films deposited under normal incidence exhibit distinct faceted crystallites, whereas oblique angle deposited (OAD) films develop a kind of 'tiles of a roof' or 'stepwise structure', with no facetted crystallites. The OAD films showed an inclined columnar structure, with columns tilting in the direction of the incident flux. As the substrate temperature was increased, the tilting of columns nearly approached the substrate normal. Both hardness and Young's modulus decreases when the flux angle was changed from {alpha} = 0{sup o} to 45{sup o} as measured by nanoindentation. This was attributed to the voids formed due to the shadowing effect. The crystallographic properties of these coatings were studied by {theta}-2{theta} scan and pole figure X-ray diffraction. Films deposited at {alpha} = 0{sup o} showed a mixed (111) and (200) out-of-plane orientation with random in-plane alignment. On the other hand, films deposited at {alpha} = 45{sup o} revealed an inclined texture with (111) orientation moving towards the incident flux direction and the (200) orientation approaching the substrate normal, showing substantial in-plane alignment.

  4. Performance comparison of small-pixel CdZnTe radiation detectors with gold contacts formed by sputter and electroless deposition

    Science.gov (United States)

    Bell, S. J.; Baker, M. A.; Duarte, D. D.; Schneider, A.; Seller, P.; Sellin, P. J.; Veale, M. C.; Wilson, M. D.

    2017-06-01

    Recent improvements in the growth of wide-bandgap semiconductors, such as cadmium zinc telluride (CdZnTe or CZT), has enabled spectroscopic X/γ-ray imaging detectors to be developed. These detectors have applications covering homeland security, industrial analysis, space science and medical imaging. At the Rutherford Appleton Laboratory (RAL) a promising range of spectroscopic, position sensitive, small-pixel Cd(Zn)Te detectors have been developed. The challenge now is to improve the quality of metal contacts on CdZnTe in order to meet the demanding energy and spatial resolution requirements of these applications. The choice of metal deposition method and fabrication process are of fundamental importance. Presented is a comparison of two CdZnTe detectors with contacts formed by sputter and electroless deposition. The detectors were fabricated with a 74 × 74 array of 200 μm pixels on a 250 μm pitch and bump-bonded to the HEXITEC ASIC. The X/γ-ray emissions from an 241Am source were measured to form energy spectra for comparison. It was found that the detector with contacts formed by electroless deposition produced the best uniformity and energy resolution; the best pixel produced a FWHM of 560 eV at 59.54 keV and 50% of pixels produced a FWHM better than 1.7 keV . This compared with a FWHM of 1.5 keV for the best pixel and 50% of pixels better than 4.4 keV for the detector with sputtered contacts.

  5. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers; Filmes finos de carbono depositados por meio da tecnica de magnetron sputtering usando cobalto, cobre e niquel como buffer-layers

    Energy Technology Data Exchange (ETDEWEB)

    Costa e Silva, Danilo Lopes

    2015-11-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  6. Structure and corrosion behavior of sputter deposited cerium oxide based coatings with various thickness on Al 2024-T3 alloy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuanyuan [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Huang, Jiamu, E-mail: huangjiamu@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); Claypool, James B.; Castano, Carlos E. [Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); O’Keefe, Matthew J., E-mail: mjokeefe@mst.edu [Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-11-15

    Highlights: • Crystalline CeO{sub 2} coatings are deposited on Al 2024-T3 alloys by magnetron sputtering. • The crystal size and internal stress both increased with the thickness of CeO{sub 2} coating. • The ∼210 nm thick coating has the highest adhesion strength to the Al alloy substrate. • The ∼900 nm thick coating increased the corrosion resistance two orders of magnitude. • CeO{sub 2} coatings provide good cathodic inhibition for Al alloys by acting as physical barriers. - Abstract: Cerium oxide based coatings from ∼100 to ∼1400 nm in thickness were deposited onto Al 2024-T3 alloy substrates by magnetron sputtering of a 99.99% pure CeO{sub 2} target. The crystallite size of CeO{sub 2} coatings increased from 15 nm to 46 nm as the coating thickness increased from ∼100 nm to ∼1400 nm. The inhomogeneous lattice strain increased from 0.36% to 0.91% for the ∼100 nm to ∼900 nm thick coatings and slightly decreased to 0.89% for the ∼1400 nm thick coating. The highest adhesion strength to Al alloy substrates was for the ∼210 nm thick coating, due to a continuous film coverage and low internal stress. Electrochemical measurements indicated that sputter deposited crystalline CeO{sub 2} coatings acted as physical barriers that provide good cathodic inhibition for Al alloys in saline solution. The ∼900 nm thick CeO{sub 2} coated sample had the best corrosion performance that increased the corrosion resistance by two orders magnitude and lowered the cathodic current density 30 times compared to bare Al 2024-T3 substrates. The reduced defects and exposed surface, along with suppressed charge mobility, likely accounts for the improved corrosion performance as coating thickness increased from ∼100 nm to ∼900 nm. The corrosion performance decreased for ∼1400 nm thick coatings due in part to an increase in coating defects and porosity along with a decrease in adhesion strength.

  7. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Surmeneva, Maria A. [Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Surmenev, Roman A., E-mail: rsurmenev@gmail.com [Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Nikonova, Yulia A.; Selezneva, Irina I. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142292 (Russian Federation); Ivanova, Anna A. [Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Putlyaev, Valery I. [Department of Chemistry, Moscow State University, Vorobievi Gory, 1, Moscow 119991 (Russian Federation); Prymak, Oleg; Epple, Matthias [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen (Germany)

    2014-10-30

    Highlights: • Growth of a columnar grain structure perpendicular to the substrate surface was observed. • Interplanar spacing distances measured using HRTEM were 0.82 and 0.28 nm, corresponding to the (0 0 1) and (2 1 1) lattice planes of hexagonal HA. • Grain size and crystallinity increased when increasing the deposition time. • Nanometer-thick low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules. - Abstract: A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.

  8. Development of ZnO:Al-based transparent contacts deposited at low-temperature by RF-sputtering on InN layers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B.; Valdueza-Felip, S. [Grupo de Ingenieria Fotonica, Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala Campus Universitario, 28871 Alcala de Henares, Madrid (Spain); Abril, O. de [ISOM and Departamento de Fisica Aplicada, Escuela Tecnica Superior de Ingenieros de Telecomunicacion, Universidad Politenica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2012-03-15

    Nitride semiconductors (Al,Ga,In)N attain material properties that make them suitable for photovoltaic and optoelectronics devices to be used in hard environments. These properties include an energy gap continuously tuneable within the energy range of the solar spectrum, a high radiation resistance and thermal stability. The developing of efficient devices requires contacts with low resistivity and high transmittance in visible region. ZnO:Al (AZO) emerges as a feasible candidate for transparent contact to nitride semiconductors, taking advantage of its low resistivity, high transparency in visible wavelengths and a very low lattice mismatch with respect to nitride semiconductors. This work presents a study of the applications of AZO films deposited at low-temperature by RF magnetron sputtering as transparent contact for InN layers. The optimization of AZO conditions deposition lead to the obtaining of contacts which shows an ohmic behaviour for the as-deposited layer, regardless the thickness of the ZnO:Al contact layer. Specific contact resistances of 1.6 {omega}.cm{sup 2} were achieved for the contact with 90 nm thick ZnO:Al layer without any post-deposition treatment (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Effect of film thickness on structural and mechanical properties of AlCrN nanocompoite thin films deposited by reactive DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Ravi; Kaur, Davinder, E-mail: dkaurfph@iitr.ac.in [Functional Nanomaterial Research lab, Department of Physics and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand (India)

    2016-05-06

    In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with different deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.

  10. Effect of Si addition on the structure and corrosion behavior of NbN thin films deposited by unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, L. [Universidad Nacional de Colombia, Departamento de Ingenieria Mecanica y Mecatronica, Facultad de Ingenieria, Bogota (Colombia); University of Southern California, Department of Chemical Engineering and Materials Science, Los Angeles, CA (United States); Olaya, J.J. [Universidad Nacional de Colombia, Departamento de Ingenieria Mecanica y Mecatronica, Facultad de Ingenieria, Bogota (Colombia); Rodil, S.E. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, Mexico, D. F. (Mexico)

    2016-02-15

    In this work, nanostructured Nb{sub x}Si{sub y}N{sub z} thin films were deposited onto stainless steel AISI 304 substrates by co-sputtering a Nb target with Si additions while using unbalanced magnetron sputtering. The microstructure was analyzed by X-ray diffraction, and the chemical composition was identified by X-ray photoelectron spectroscopy. The hardness was measured by nanoindentation, and the corrosion resistance was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy using a 3 wt% NaCl solution. The addition of Si in the NbN thin films changed the microstructure from a crystalline to an amorphous phase. The chemical analysis showed the presence of both Si{sub 3}N{sub 4} and NbN phases. The hardness decreased from 20 GPa (NbN) to 15 GPa for the film with the highest Si concentration (28.6 at.%). Nevertheless, the corrosion properties were significantly improved as the Si concentration increased; the polarization resistance after 168 h of immersion was two orders of magnitude larger in comparison with the substrate. (orig.)

  11. Internal stress and opto-electronic properties of ZnO thin films deposited by reactive sputtering in various oxygen partial pressures

    Science.gov (United States)

    Tuyaerts, Romain; Poncelet, Olivier; Raskin, Jean-Pierre; Proost, Joris

    2017-10-01

    In this article, we propose ZnO thin films as a suitable material for piezoresistors in transparent and flexible electronics. ZnO thin films have been deposited by DC reactive magnetron sputtering at room temperature at various oxygen partial pressures. All the films have a wurtzite structure with a strong (0002) texture measured by XRD and are almost stoichiometric as measured by inductively coupled plasma optical emission spectroscopy. The effect of oxygen concentration on grain growth has been studied by in-situ multi-beam optical stress sensor, showing internal stress going from 350 MPa to -1.1 GPa. The transition between tensile and compressive stress corresponds to the transition between metallic and oxidized mode of reactive sputtering. This transition also induces a large variation in optical properties—from absorbent to transparent, and in the resistivity—from 4 × 10 - 2 Ω .cm to insulating. Finally, the piezoresistance of the thin film has been studied and showed a gauge factor (ΔR/R)/ɛ comprised between -5.8 and -8.5.

  12. Effects of post-deposition annealing on sputtered SiO2/4H-SiC metal-oxide-semiconductor

    Science.gov (United States)

    Lee, Suhyeong; Kim, Young Seok; Kang, Hong Jeon; Kim, Hyunwoo; Ha, Min-Woo; Kim, Hyeong Joon

    2018-01-01

    Reactive sputtering followed by N2, NH3, O2, and NO post-deposition annealing (PDA) of SiO2 on 4H-SiC was investigated in this study. The results of ellipsometry, an etching test, and X-ray photoemission spectroscopy showed that N2 and NH3 PDA nitrified the SiO2. Devices using N2 and NH3 PDA exhibited a high gate leakage current and low breakdown field due to oxygen vacancies and incomplete oxynitride. SiO2/4H-SiC MOS capacitors were also fabricated and their electrical characteristics measured. The average breakdown fields of the devices using N2, NH3, O2, and NO PDA were 0.12, 0.17, 4.71 and 2.63 MV/cm, respectively. The shifts in the flat-band voltage after O2 and NO PDA were 0.95 and -2.56 V, respectively, compared with the theoretical value. The extracted effective oxide charge was -4.11 × 1011 cm-2 for O2 PDA and 1.11 × 1012 cm-2 for NO PDA. NO PDA for 2 h at 1200 °C shifted the capacitance-voltage curve in the negative direction. The oxygen containing PDA showed better electrical properties than non-oxygen PDA. The sputtering method described can be applied to 4H-SiC MOS fabrication.

  13. Rapid thermal annealing effect on the spatial resistivity distribution of AZO thin films deposited by pulsed-direct-current sputtering for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Ayachi, Boubakeur, E-mail: boubakeur.ayachi@ed.univ-lille1.fr [Institute of Electronics, Microelectronics and Nanotechnology, Lille 1 University, Avenue Poincaré, UMR 8520, CS 60069, Villeneuve d’Ascq 59652 (France); Aviles, Thomas [CROSSLUX, Avenue Georges Vacher, ZI Rousset Peynier, Immeuble CCE, Rousset 13106 (France); Vilcot, Jean-Pierre [Institute of Electronics, Microelectronics and Nanotechnology, Lille 1 University, Avenue Poincaré, UMR 8520, CS 60069, Villeneuve d’Ascq 59652 (France); Sion, Cathy [Institute of Electronics, Microelectronics and Nanotechnology, Lille 1 University, Avenue Poincaré, UMR 8520, CS 60069, Villeneuve d’Ascq 59652 (France); Ecole Centrale Lille, Cité Scientifique – CS20048, Villeneuve d’Ascq 59651 (France)

    2016-03-15

    Graphical abstract: - Highlights: • High quality pulsed-DC sputtered AZO thin films were obtained after RTA treatment. • RTA for 30 s was sufficient to achieve uniform spatial resistivity distribution. • RTA for longer than 1 min showed a small increase in resistivity value. • Such improvement was attributed to grain boundaries passivation and doping activation. • In the framework of low cost solar cells development, RTA process would be helpful. - Abstract: Room temperature deposited aluminium-doped zinc oxide thin films on glass substrate, using pulsed-DC magnetron sputtering, have shown high optical transmittance and low electrical resistivity with high uniformity of its spatial distribution after they were exposed to a rapid thermal annealing process at 400 °C under N{sub 2}H{sub 2} atmosphere. It is particularly interesting to note that such an annealing process of AZO thin films for only 30 s was sufficient, on one hand to improve their optical transmittance from 73% to 86%, on the other hand to both decrease their resistivity from 1.7 × 10{sup −3} Ω cm to 5.1 × 10{sup −4} Ω cm and achieve the highest uniformity spatial distribution. To understand the mechanisms behind such improvements of the optoelectronic properties, electrical, optical, structural and morphological changes as a function of annealing time have been investigated by using hall measurement, UV–visible spectrometry, X-ray diffraction and scanning electron microscope imaging, respectively.

  14. TaN thin films deposited by modulated pulsed power magnetron sputtering: Coating solutions for harsh environments

    OpenAIRE

    Mendizabal Ortiz de Guzmán, Lucía

    2016-01-01

    286 p. Los recubrimientos duros que se utilizan actualmente en la Industria para aumentar la vida útil de distintos componentes, están basados en nitruros metálicos de transición depositados por la técnica de magnetrón sputtering en corriente continua (DCMS por sus siglas en ingles). Sin embargo, y a pesar del elevado número de metales de transición existentes, la mayoría de recubrimientos están formados por uno o dos de los siguientes elementos: titanio, cromo, zirconio y aluminio. Actual...

  15. Laser-induced damage of rugate and quarter-wave stacks high reflectors deposited by ion-beam sputtering

    Science.gov (United States)

    Qiao, Zhao; Ma, Ping; Liu, Hao; Pu, Yunti; Liu, Zhichao

    2013-08-01

    Rugate and high/low quarter-wave stacks high reflector coatings for 1064 nm have been prepared with Ta2O5 and SiO by an ion-beam sputtering technique. A laser-induced damage experiment of the samples has been conducted at 1064 nm with pulse duration of 5 ns [full width at half maximum (FWHM)]. These two samples' damages both initiate at defects and show almost the same damage threshold within the experimental error. Nevertheless, the damage morphology on rugate is less severe at higher fluences. The thermal shock wave induced by a nanosecond pulsed laser is considered to be the main cause of catastrophic damage.

  16. Transparent conducting ZnO-Based thin films deposited by magnetron sputtering of a ZnO:Ga-C composite target

    Science.gov (United States)

    Abduev, A. Kh.; Akhmedov, A. K.; Asvarov, A. Sh.

    2014-07-01

    We have studied the structure, electrical, and optical properties of thin transparent conducting films based on gallium-doped zinc oxide (ZnO:Ga), which were deposited by magnetron sputtering of a ZnO:Ga-C composite target. The ion-bombardment-induced interaction of ZnO with carbon in a thin surface layer of the target leads to an increase in the excess zinc content in the reagent flow. The formation of transparent conducting ZnO:Ga films at a substrate temperature above 100°C in the presence of excess zinc near the growth surface leads to improvement in the structure and conductivity of films without decreasing their transmission in the visible spectral range.

  17. Observations on Si-based micro-clusters embedded in TaN thin film deposited by co-sputtering with oxygen contamination

    Directory of Open Access Journals (Sweden)

    Young Mi Lee

    2015-08-01

    Full Text Available Using scanning electron microscopy (SEM and high-resolution x-ray photoelectron spectroscopy with the synchrotron radiation we investigated Si-based micro-clusters embedded in TaSiN thin films having oxygen contamination. TaSiN thin films were deposited by co-sputtering on fixed or rotated substrates and with various power conditions of TaN and Si targets. Three types of embedded micro-clusters with the chemical states of pure Si, SiOx-capped Si, and SiO2-capped Si were observed and analyzed using SEM and Si 2p and Ta 4f core-level spectra were derived. Their different resistivities are presumably due to the different chemical states and densities of Si-based micro-clusters.

  18. IBA analysis and corrosion resistance of TiAlPtN/TiAlN/TiAl multilayer films deposited over a CoCrMo using magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Canto, C.E., E-mail: carloscanto2012@yahoo.com.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Andrade, E.; Lucio, O. de; Cruz, J.; Solís, C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Rocha, M.F. [ESIME-Z, IPN, U.P. ALM, Gustavo A. Madero, C.P. 07738 México D.F. (Mexico); Alemón, B. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jalisco 45101 (Mexico); Tecnológico de Monterrey, Av. General Ramón Corona 2514, Col. Nuevo México, Zapopan, Jalisco 45201 (Mexico); Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jalisco 45101 (Mexico); Huegel, J.C. [Tecnológico de Monterrey, Av. General Ramón Corona 2514, Col. Nuevo México, Zapopan, Jalisco 45201 (Mexico)

    2016-03-15

    The corrosion resistance and the elemental profile of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by Physical Vapor Deposition (PVD) reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt to enhance the corrosion resistance of a biomedical alloy of CoCrMo. Corrosion tests were performed using Simulated Body Fluid (SBF) using potentiodynamic polarization tests at typical body temperature. The elemental composition and thickness of the coatings were evaluated with the combination of two ion beam analysis (IBA) techniques: a Rutherford Backscattering Spectroscopy (RBS) with alpha beam and a Nuclear Reaction Analysis with a deuteron beam.

  19. Highly-enhanced reflow characteristics of sputter deposited Cu alloy thin films for large scale integrated interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Takashi [Advanced Technology Information Center, Shinko Research Co., Ltd., 2-7, 4-Chome, Iwaya-Nakamachi, Nada-ku, Kobe 657-0845 (Japan); Mizuno, Masao [Technical Development Group, Electronics Research Laboratory, Kobe Steel, Ltd., 5-5, Takatsukadai 1-chome, Nishi-ku, Kobe 651-2271 (Japan); Yoshikawa, Tetsuya; Munemasa, Jun [Machinery and Engineering Company, Kobe Steel, Ltd., 2-3-1, Shinhama, Arai-cho, Takasago 676-8670 (Japan); Mizuno, Masataka; Kihara, Teruo; Araki, Hideki [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita 565-0871 (Japan); Shirai, Yasuharu [Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2011-08-01

    An attempt to improve the reflow characteristics of sputtered Cu films was made by alloying the Cu with various elements. We selected Y, Sb, Nd, Sm, Gd, Dy, In, Sn, Mg, and P for the alloys, and ''the elasto-plastic deformation behavior at high temperature'' and ''the filling level of Cu into via holes'' were estimated for Cu films containing each of these elements. From the results, it was found that adding a small amount of Sb or Dy to the sputtered Cu was remarkably effective in improve the reflow characteristics. The microstructure and imperfections in the Cu films before and after high-temperature high-pressure annealing were investigated by secondary ion micrographs and positron annihilation spectroscopy. The results imply that the embedding or deformation mechanism is different for the Cu-Sb alloy films compared to the Cu-Dy alloy films. We consider that the former is embedded by softening or deformation of the Cu matrix, which has a polycrystalline structure, and the latter is embedded by grain boundary sliding.

  20. Spectroscopy analysis of graphene like deposition using DC unbalanced magnetron sputtering on γ‐Al{sub 2}O{sub 3} buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Aji, A. S., E-mail: yudi@fi.itb.ac.id; Darma, Y., E-mail: yudi@fi.itb.ac.id [Quantum Semiconductor and Devices Lab., Dept. of Physics, Institut Teknologi Bandung, Ganesa 10 Bandung, 40132 (Indonesia)

    2014-02-24

    In this work, graphene-like deposition using DC unbalanced magnetron-sputtering technique on γ‐Al{sub 2}O{sub 3} layer at low temperature has been systematically studied. The γ‐Al{sub 2}O{sub 3} was growth on silicon substrate using thermal evaporation of Al wire and continuing with dry oxidation of Al at 550 °C. Sputtering process were carried out using Fe-doped carbon pellet as a target by maintain the chamber pressure of 4.6×10{sup −2} Torr at substrate temperature of 300 °C for time deposition range of 1 to 4 hours. The quality of Al{sub 2}O{sub 3} on Si(100) and the characteristic of carbon thin film on γ‐Al{sub 2}O{sub 3} were analized by mean XRD, opctical microscopy, EDAX, FTIR, and Raman spectra. XRD and optical microscopy analysis shows that Al{sub 2}O{sub 3} film is growth uniformly on Si substrate and forming the γ phase of Al{sub 2}O{sub 3}. Raman and FTIR spectra confirm the formation of graphene like carbon layer on Al{sub 2}O{sub 3}. Additionally, thermal annealing for some sample series have been performed to study their structural stability. The change of atomic structure due to thermal annealing were analized by XRD spectra. The quality and the number of graphene layers are investigated by using Raman spectra peaks analysis.

  1. Mixed-mode high-power impulse magnetron sputter deposition of tetrahedral amorphous carbon with pulse-length control of ionization

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, M. D.; Marks, N. A. [Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6102 (Australia); Ganesan, R.; Bilek, M. M. M.; McKenzie, D. R. [School of Physics, The University of Sydney, Sydney, New South Wales 2006 (Australia); McCulloch, D. G.; Partridge, J. G. [School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, Victoria 3001 (Australia); Stueber, M.; Ulrich, S. [Karlsruhe Institute of Technology—KIT, Institute for Applied Materials—IAM, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-04-21

    High-power impulse magnetron sputtering (HiPIMS) is used to deposit amorphous carbon thin films with sp{sup 3} fractions of 13% to 82%. Increasing the pulse length results in a transition from conventional HiPIMS deposition to a “mixed-mode” in which an arc triggers on the target surface, resulting in a large flux of carbon ions. The films are characterized using X-ray photoelectron spectroscopy, Raman spectroscopy, ellipsometry, nanoindentation, elastic recoil detection analysis, and measurements of stress and contact angle. All properties vary in a consistent manner, showing a high tetrahedral character only for long pulses, demonstrating that mixed-mode deposition is the source of the high carbon ion flux. Varying the substrate bias reveals an “energy window” effect, where the sp{sup 3} fraction of the films is greatest for a substrate bias around −100 V and decreases for higher or lower bias values. In the absence of bias, the films' properties show little dependence on the pulse length, showing that energetic ions are the origin of the highly tetrahedral character.

  2. Multi-layer haemocompatible diamond-like carbon coatings obtained by combined radio frequency plasma enhanced chemical vapor deposition and magnetron sputtering.

    Science.gov (United States)

    Popa, A C; Stan, G E; Husanu, M A; Pasuk, I; Popescu, I D; Popescu, A C; Mihailescu, I N

    2013-12-01

    Radio-frequency Plasma Enhanced Chemical Vapour Deposition (in different methane dilutions) was used to synthesize adherent and haemocompatible diamond-like carbon (DLC) films on medical grade titanium substrates. The improvement of the adherence has been achieved by interposing a functional buffer layer with graded composition TixTiC1-x (x = 0-1) synthesized by magnetron co-sputtering. Bonding strength values of up to ~67 MPa have been measured by pull-out tests. Films with different sp(3)/sp(2) ratio have been obtained by changing the methane concentration in the deposition chamber. Raman spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction were employed for the physical-chemical characterization of the samples. The highest concentration of sp(3)-C (~87 %), corresponding to a lower DLC surface energy (28.7 mJ/m(2) ), was deposited in a pure methane atmosphere. The biological response of the DLC films was assayed by a state-of-the-art biological analysis method (surface enhanced laser desorption/ionization-time of flight mass spectroscopy), in conjunction with other dedicated testing techniques: Western blot and partial thromboplastin time. The data support a cause-effect relationship between sp(3)-C content, surface energy and coagulation time, as well as between platelet-surface adherence properties and protein adsorption profiles.

  3. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications

    Science.gov (United States)

    Surmeneva, Maria A.; Surmenev, Roman A.; Nikonova, Yulia A.; Selezneva, Irina I.; Ivanova, Anna A.; Putlyaev, Valery I.; Prymak, Oleg; Epple, Matthias

    2014-10-01

    A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.

  4. Effects of substrate heating on the photovoltaic characteristics of dye-sensitized solar cells during two-step Ti film deposition by RF magnetron sputtering.

    Science.gov (United States)

    Park, Min-Woo; Park, Seon-Hee; Kwak, Dong-Joo; Sung, Youl-Moon

    2012-04-01

    Nanoporous Ti metal film electrodes for use as photoanodes in dye-sensitized solar cells (DSSCs) were deposited directly on the nanoporous TiO2 layer using the two-step RF magnetron sputtering technique. The Ti film electrode replaces the transparent conducting oxide (TCO) layer. The effect of substrate heating during the deposition of the Ti film was studied to improve the porosity and columnar array of the film pores and the resulting cell efficiency. The porous Ti layer (-41 microm) with low sheet resistance (-1.7 omega/sq) was obtained by deposition at 250 degrees C. The porous Ti layer collects electrons from the TiO2 layer and allows the diffusion of I-/I3(-) through the holes. The DSSC efficiency (eta) using porous Ti layers with highly columnar structures was measured with the highest conversion efficiency of -5.77%; the other photovoltaic properties were ff: 0.76, V(oc): 0.72 V, and J(sc): 10.6 mA/cm2.

  5. Hopping of electron transport in granular Cu{sub x}(SiO{sub 2}){sub 1–x} nanocomposite films deposited by ion-beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Svito, I.; Fedotov, A.K. [Belarusian State University, 220030 Minsk (Belarus); Koltunowicz, T.N., E-mail: t.koltunowicz@pollub.pl [Lublin University of Technology, 20-618 Lublin (Poland); Zukowski, P. [Lublin University of Technology, 20-618 Lublin (Poland); Kalinin, Y.; Sitnikov, A. [Voronezh State Technical University, 250770 Voronezh (Russian Federation); Czarnacka, K. [Lublin University of Technology, 20-618 Lublin (Poland); Saad, A. [Al Balqa Applied University, Physics Department, P.O. Box 4545, Amman 11953 (Jordan)

    2014-12-05

    Highlights: • Nanocomposites deposited in the argon ambient. • Cu{sub x}(SiO{sub 2}){sub 1–x} nanocomposite films (0.36 < x < 0.73, 3–5 μm thickness). • Formation of the “shells” is probably due to the partial oxidation of Cu nanoparticles. - Abstract: The paper presents investigation into the Cu{sub x}(SiO{sub 2}){sub 1–x} nanocomposite films (0.36 < x < 0.73, 3–5 μm thick) deposited by ion-beam sputtering of the compound Cu/SiO{sub 2} target in argon ambient. It has been shown that at x < 0.68 the studied samples displayed a hopping mechanism of electron transport, whereas beyond this concentration a metallic-like character of σ(T) along the percolation net of Cu nanoparticles in the silica matrix was observed. Taking into account that at x = 0.68 associated with a much higher percolation threshold relevant to 3D metal–insulator composites (∼0.50), such a behavior can be attributed to the formation of the CuO{sub 2}-based “shells” around the Cu “cores” observed by Raman spectroscopy. The formation of the “shells” is probably due to partial oxidation of Cu nanoparticles during the deposition procedure, resulting from the residual oxygen in a vacuum chamber after its filling with Ar gas.

  6. Synthesis and properties of CS x F y thin films deposited by reactive magnetron sputtering in an Ar/SF6 discharge

    Science.gov (United States)

    Lai, Chung-Chuan; Goyenola, Cecilia; Broitman, Esteban; Näslund, Lars-Åke; Högberg, Hans; Hultman, Lars; Gueorguiev, Gueorgui K.; Rosen, Johanna

    2017-05-01

    A theoretical and experimental study on the growth and properties of a ternary carbon-based material, CS x F y , synthesized from SF6 and C as primary precursors is reported. The synthetic growth concept was applied to model the possible species resulting from the fragmentation of SF6 molecules and the recombination of S-F fragments with atomic C. The possible species were further evaluated for their contribution to the film growth. Corresponding solid CS x F y thin films were deposited by reactive direct current magnetron sputtering from a C target in a mixed Ar/SF6 discharge with different SF6 partial pressures ({{P}\\text{S{{\\text{F}}\\text{6}}}} ). Properties of the films were determined by x-ray photoelectron spectroscopy, x-ray reflectivity, and nanoindentation. A reduced mass density in the CS x F y films is predicted due to incorporation of precursor species with a more pronounced steric effect, which also agrees with the low density values observed for the films. Increased {{P}\\text{S{{\\text{F}}\\text{6}}}} leads to decreasing deposition rate and increasing density, as explained by enhanced fluorination and etching on the deposited surface by a larger concentration of F/F2 species during the growth, as supported by an increment of the F relative content in the films. Mechanical properties indicating superelasticity were obtained from the film with lowest F content, implying a fullerene-like structure in CS x F y compounds.

  7. Thermoelectric properties of Al-doped Mg{sub 2}Si thin films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-jian; Zhou, Bai-yang, E-mail: zby_112921@163.com; Li, Jian-xin; Wen, Cui-lian, E-mail: clwen@fzu.edu.cn

    2016-11-15

    Highlights: • The thin films were fabricated by two-target alternative magnetron sputtering. • The maximum power factor of Al-doped Mg{sub 2}Si thin film we obtained is 3.8 mW m{sup −1} k{sup −2}. • A proper Al dopant can enhance the thermoelectric properties of Mg{sub 2}Si thin films. • Low-dimensional technique can enhance thermoelectric performance effectively. - Abstract: The Al-doped Mg{sub 2}Si thin films were fabricated by two-target alternative magnetron sputtering technique, and the influences of different Al doping contents on the thermoelectric properties of Al-doped Mg{sub 2}Si thin films were investigated. The compositions, crystal structures, electronic transport properties and thermoelectric properties of the thin films were examined using energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Hall coefficient measurement and Seebeck coefficient measurement system, respectively. The EDS results show that the thin films doped with Al target sputtering power of 30 W, 60 W and 90 W have the Al content of 0.68 at.%, 1.56 at.% and 2.85 at.%, respectively. XRD results indicate that the diffraction peaks of Mg{sub 2}Si become stronger with increasing Al dopant. The results of Hall coefficient measurement and Seebeck coefficient measurement system reveal that all the samples are n-type. The conductivities of Al-doped Mg{sub 2}Si thin films are significantly greater than that of undoped Mg{sub 2}Si thin film, and increase with increasing Al doping content. With the increase of temperature, the absolute value of the Seebeck coefficients of Mg{sub 2}Si base thin films increase firstly and then decrease. The maximum power factor obtained is 3.8 mW m{sup −1} k{sup −2} for 1.56 at.% Al-doped Mg{sub 2}Si thin film at 573 K.

  8. Effect of deposition parameters and heat-treatment on the microstructure, mechanical and electrochemical properties of hydroxyapatite/titanium coating deposited on Ti6Al4V by RF-magnetron sputtering

    Science.gov (United States)

    Qi, Jianwei; Chen, Zhangbo; Han, Wenjun; He, Danfeng; Yang, Yiming; Wang, Qingliang

    2017-09-01

    Functionally graded HA/Ti coatings were deposited on silicon and Ti6Al4V substrate by radio-frequency (RF) magnetron sputtering. The effect of RF-power, negative bias and heat-treatment on the microstructure, mechanical and electrochemical properties of the coatings were characterized by SEM, XRD, FTIR, AFM Nanoindentation and electrochemical workstation. The obtained results showed that the as-deposited HA/Ti coatings were characteristic of amorphous structure, which transformed into a crystal structure after heat-treatment, and reformed O-H peak. The content of crystallization was increasing with the increase of negative bias. A dense, homogenous, smooth and featured surface, and columnar cross-section structure was observed in SEM observation. AFM results showed that the surface roughness became higher after heat-treatment, and increased with increasing RF-power. The mechanical test indicated that the coating had a higher nanohardness (9.1 GPa) in the case of  -100 V and 250 W than that of Ti6Al4V substrate, and a critical load as high as 17  ±  3.5 N. The electrochemical test confirmed the HA/Ti coating served as a stable protecting barrier in improving the corrosion resistance, which the corrosion current density was 1.3% of Ti6Al4V, but it was significantly influenced by RF-power and negative bias. The contact angle test demonstrated that all the coatings exhibited favorable hydrophilic properties, and it decreased by 20-25% compared to that untreated samples. Thus all results indicated that magnetron sputtering is a promising way for fabricating a better biocompatible ceramic coating by adjusting deposition parameters and post-deposition heat treatments.

  9. Dynamics of processes during the deposition of ZrO2 films by controlled reactive high-power impulse magnetron sputtering: A modelling study

    Science.gov (United States)

    Kozák, Tomáš; Vlček, Jaroslav

    2017-07-01

    A time-dependent parametric model was applied to controlled reactive high-power impulse magnetron sputtering (HiPIMS) depositions of stoichiometric ZrO2 films, carried out in our laboratories, (i) to clarify the complicated dynamics of the processes on the target and substrate surfaces during voltage pulses, and (ii) to corroborate the importance of the O2 inlet configuration (position and direction) which strongly affects the O2 dissociation in the discharge and the chemisorption flux of oxygen atoms and molecules onto the substrate. The repetition frequency was 500 Hz at the deposition-averaged target power densities of 25 Wcm-2, being close to a target power density applicable in industrial HiPIMS systems, and 50 Wcm-2 with a pulse-averaged target power density up to 2 kWcm-2. The pulse duration was 50 μs. For the experimental conditions with the to-substrate O2 inlets, the deposition-averaged target power density of 50 Wcm-2, and the oxygen partial pressure of 0.05 Pa (being close to the mean value during controlled depositions), our model predicts a low compound fraction, changing between 8% and 12%, in the target surface layer at an almost constant high compound fraction, changing between 92% and 93%, in the substrate surface layer during the pulse period (2000 μs). The calculated deposition rate of 89 nm/min for these films is in good agreement with the measured value of 80 nm/min achieved for optically transparent stoichiometric ZrO2 films prepared under these conditions.

  10. On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering: A global plasma model and experiments

    Science.gov (United States)

    Zheng, B. C.; Meng, D.; Che, H. L.; Lei, M. K.

    2015-05-01

    The modulated pulsed power magnetron sputtering (MPPMS) discharge processes are numerically modeled and experimentally investigated, in order to explore the effect of the pressure on MPPMS discharges as well as on the microstructure of the deposited thin films. A global plasma model has been developed based on a volume-averaged global description of the ionization region, considering the loss of electrons by cross-B diffusion. The temporal variations of internal plasma parameters at different pressures from 0.1 to 0.7 Pa are obtained by fitting the model to duplicate the experimental discharge data, and Cu thin films are deposited by MPPMS at the corresponding pressures. The surface morphology, grain size and orientation, and microstructure of the deposited thin films are investigated by scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. By increasing the pressure from 0.1 to 0.7 Pa, both the ion bombardment energy and substrate temperature which are estimated by the modeled plasma parameters decrease, corresponding to the observed transition of the deposited thin films from a void free structure with a wide distribution of grain size (zone T) into an underdense structure with a fine fiber texture (zone 1) in the extended structure zone diagram (SZD). The microstructure and texture transition of Cu thin films are well-explained by the extended SZD, suggesting that the primary plasma processes are properly incorporated in the model. The results contribute to the understanding of the characteristics of MPPMS discharges, as well as its correlation with the microstructure and texture of deposited Cu thin films.

  11. On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering: A global plasma model and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, B. C.; Meng, D.; Che, H. L.; Lei, M. K., E-mail: mklei@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-05-28

    The modulated pulsed power magnetron sputtering (MPPMS) discharge processes are numerically modeled and experimentally investigated, in order to explore the effect of the pressure on MPPMS discharges as well as on the microstructure of the deposited thin films. A global plasma model has been developed based on a volume-averaged global description of the ionization region, considering the loss of electrons by cross-B diffusion. The temporal variations of internal plasma parameters at different pressures from 0.1 to 0.7 Pa are obtained by fitting the model to duplicate the experimental discharge data, and Cu thin films are deposited by MPPMS at the corresponding pressures. The surface morphology, grain size and orientation, and microstructure of the deposited thin films are investigated by scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. By increasing the pressure from 0.1 to 0.7 Pa, both the ion bombardment energy and substrate temperature which are estimated by the modeled plasma parameters decrease, corresponding to the observed transition of the deposited thin films from a void free structure with a wide distribution of grain size (zone T) into an underdense structure with a fine fiber texture (zone 1) in the extended structure zone diagram (SZD). The microstructure and texture transition of Cu thin films are well-explained by the extended SZD, suggesting that the primary plasma processes are properly incorporated in the model. The results contribute to the understanding of the characteristics of MPPMS discharges, as well as its correlation with the microstructure and texture of deposited Cu thin films.

  12. Investigation of various properties of HfO2-TiO2 thin film composites deposited by multi-magnetron sputtering system

    Science.gov (United States)

    Mazur, M.; Poniedziałek, A.; Kaczmarek, D.; Wojcieszak, D.; Domaradzki, J.; Gibson, D.

    2017-11-01

    In this work the properties of hafnium dioxide (HfO2), titanium dioxide (TiO2) and mixed HfO2-TiO2 thin films with various amount of titanium addition, deposited by magnetron sputtering were described. Structural, surface, optical and mechanical properties of deposited coatings were analyzed. Based on X-ray diffraction and Raman scattering measuremets it was observed that there was a significant influence of titanium concentration in mixed TiO2-HfO2 thin films on their microstructure. Increase of Ti content in prepared mixed oxides coatings caused, e.g. a decrease of average crystallite size and amorphisation of the coatings. As-deposited hafnia and titania thin films exhibited nanocrystalline structure of monoclinic phase and mixed anatase-rutile phase for HfO2 and TiO2 thin films, respectively. Atomic force microscopy investigations showed that the surface of deposited thin films was densely packed, crack-free and composed of visible grains. Surface roughness and the value of water contact angle decreased with the increase of Ti content in mixed oxides. Results of optical studies showed that all deposited thin films were well transparent in a visible light range. The effect of the change of material composition on the cut-off wavelength, refractive index and packing density was also investigated. Performed measurements of mechanical properties revealed that hardness and Young's elastic modulus of thin films were dependent on material composition. Hardness of thin films increased with an increase of Ti content in thin films, from 4.90 GPa to 13.7 GPa for HfO2 and TiO2, respectively. The results of the scratch resistance showed that thin films with proper material composition can be used as protective coatings in optical devices.

  13. Raman studies on nanocomposite silicon carbonitride thin film deposited by r.f. magnetron sputtering at different substrate temperatures

    Science.gov (United States)

    Bhattacharyya, Arnab Sankar; Mishra, Suman Kumari

    2010-10-01

    Raman studies of nanocomposite SiCN thin film by sputtering showed that with an increase of substrate temperature from room temperature to 500oC, a transition from mostly sp2 graphitic phase to sp3 carbon took place which was observed from the variation of ID/IG ratio and the peak shifts. This process resulted in the growth of C3N4 and Si3N4 crystallites in the amorphous matrix which led to an increase in hardness and modulus obtained through nanoindentation. However, at a further higher temperature of 600oC, again an increase of sp2 C concentration in the film was observed and the H and E values showed a decrease due to increased growth of graphitic carbon phase. The whole process got reflected in a modified four stage Ferrari Robertson model of Raman spectroscopy.

  14. Surface and Interface Properties of 10–12 Unit Cells Thick Sputter Deposited Epitaxial CeO2 Films

    Directory of Open Access Journals (Sweden)

    L. V. Saraf

    2008-01-01

    Full Text Available Ultrathin and continuous epitaxial films with relaxed lattice strain can potentially maintain more of its bulk physical and chemical properties and are useful as buffer layers. We study surface, interface, and microstructural properties of ultrathin (∼10–12 unit cells thick epitaxial ceria films grown on single crystal YSZ substrates. The out-of -plane and in-plane lattice parameters indicate relaxation in the continuous film due to misfit dislocations seen by high-resolution transmission electron microscopy (HRTEM and substrate roughness of ∼1-2 unit cells, confirmed by atomic force microscopy and HRTEM. A combination of secondary sputtering, lattice mismatch, substrate roughness, and surface reduction creating secondary phase was likely the cause of surface roughness which should be reduced to a minimum level for effective use of it as buffer layers.

  15. Wear and Corrosion Resistance of CrN-based Coatings Deposited by R.F Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    K. Bouzid

    2015-03-01

    Full Text Available A comparative study was conducted to evaluate the performances against wear and corrosion of CrN, CrMoN, CrZrN, CrVN single layer thin films. The latest are synthesized onto steel substrates (DIN 90CrMoV8, using R.F reactive magnetron co-sputtering. The experimental work was achieved using ball-on-disc configuration in dry conditions against WC balls. The main conclusions are: (i electrochemical tests in 0.3 wt.% NaCl solution indicated that CrZrN are improved anticorrosion performance when compared to CrN, while CrMoN demonstrated a poor corrosion resistance;(ii the CrN coating presents the better tribological properties when compared to the ternary nitride coatings.

  16. Structure adhesion and corrosion resistance study of tungsten bisulfide doped with titanium deposited by DC magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    De La Roche, J. [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al aeropuerto, Campus La Nubia, Manizales (Colombia); González, J.M. [Laboratorio de Recubrimientos Duros y Aplicaciones Industriales – RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia); Restrepo-Parra, E., E-mail: erestrepop@unal.edu.co [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al aeropuerto, Campus La Nubia, Manizales (Colombia); Sequeda, F. [Laboratorio de Recubrimientos Duros y Aplicaciones Industriales – RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia); Alleh, V.; Scharf, T.W. [The University of North Texas, Department of Materials Science and Engineering, Denton, TX 76203 (United States)

    2014-11-30

    Highlights: • Ti-doped WS{sub 2} films were grown via the magnetron co-sputtering technique. • At a high Ti percentage, the crystalline structure of WS{sub 2} coatings tends to be amorphous. • As the Ti percentage increases in WS{sub 2} coatings, nanocomposites tend to form. • Ti-doped WS{sub 2} films have elastic behavior compared with the plastic response of pure WS{sub 2} films. • A high Ti percentage increases the corrosion resistance of WS{sub 2} films. - Abstract: Titanium-doped tungsten bisulfide thin films (WS{sub 2}-Ti) were grown using a DC magnetron co-sputtering technique on AISI 304 stainless steel and silicon substrates. The films were produced by varying the Ti cathode power from 0 to 25 W. Using energy dispersive spectroscopy (EDS), the concentration of Ti in the WS{sub 2} was determined, and a maximum of 10% was obtained for the sample grown at 25 W. Moreover, the S/W ratio was calculated and determined to increase as a function of the Ti cathode power. According to transmission electron microscopy (TEM) results, at high titanium concentrations (greater than 6%), nanocomposite formation was observed, with nanocrystals of Ti embedded in an amorphous matrix of WS{sub 2}. Using the scratch test, the coatings’ adhesion was analyzed, and it was observed that as the Ti percentage was increased, the critical load (Lc) also increased. Furthermore, the failure type changed from plastic to elastic. Finally, the corrosion resistance was evaluated using the electrochemical impedance spectroscopy (EIS) technique, and it was observed that at high Ti concentrations, the corrosion resistance was improved, as Ti facilitates coating densification and generates a protective layer.

  17. Sputtering in supported cluster arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Sáez, J.C., E-mail: jc.jimenez@upm.es [Dept. Física Aplicada a la Ingeniería Aeronáutica y Naval, ETSIAE, Universidad Politécnica de Madrid (UPM), 28040 Madrid (Spain); Pérez-Martín, A.M.C.; Jiménez-Rodríguez, J.J. [Dept. Física Aplicada III, Facultad de Ciencias Físicas, Universidad Complutense de Madrid (UCM), 28040 Madrid (Spain)

    2015-06-01

    Bombardment of periodical arrays formed by Co nanoislands deposited on a Cu(0 0 1) substrate with 1-keV argon ions is simulated by using molecular dynamics. Sputtering yield is analyzed distinguishing between particles sputtered across the supported cluster surface and across the flat substrate surface without nanoparticle above. The dependence of this magnitude on the height and the periodical spacing between nanoislands has been investigated. Results show that this dependence for the sputtering across the nanoislands and across the substrate is different. In the case of the total sputtering, the “substrate” effect prevails since the behavior of this magnitude is approximately analogous to the sputtering across the substrate. The more probable causes are analyzed in this article.

  18. In-Situ Coherent Grazing Incidence Small Angle X-ray Scattering (Co-GISAXS) Studies of Surface Fluctuations of Sputter Deposited WSi2 using X-ray Photon Correlation Spectroscopy (XPCS)

    Science.gov (United States)

    Dahal, Som; Ulbrandt, Jeffrey; Headrick, Randall; Demasi, Alexander; Ludwig, Karl

    2014-03-01

    We performed Coherent Grazing Incidence Small Angle X-ray Scattering (Co-GISAXS) studies of surface dynamics during magnetron sputtering deposited WSi2 amorphous thin films. The local dynamics of surface fluctuations was studied by X-ray Photon Correlation Spectroscopy (XPCS) in the late time regime where the static GIXAXS stops evolving. Our studies reveal that the correlation time of the sputtered species varies as a power law with the in-plane momentum transfer. The experimentally obtained results are compared with predictions from continuum models of surface growth.

  19. Relation between electrical properties and microstructure of YBa2Cu3O7 - x thin films deposited by single-target off-axis sputtering

    Science.gov (United States)

    Westerheim, A. C.; Anderson, Alfredo C.; Oates, D. E.; Basu, S. N.; Bhatt, D.; Cima, M. J.

    1994-01-01

    The relationship between the deposition conditions and the structural and electrical properties of in situ superconducting YBa2Cu3O7-x thin films deposited by off-axis magnetron sputtering has been investigated. High-quality films have been produced with a transition temperature TC (R=0) of 92 K, a critical current density JC (zero field) of 3.3×107 A/cm2 at 4.2 K and 4.8×106 A/cm2 at 77 K, and a microwave surface resistance RS of 2.6×10-6 Ω at 1.5 GHz and 4.2 K which rises to 8.3×10-6 Ω at 77 K. Among the deposition conditions explored, substrate temperature was identified as the most influential in producing these high-quality films. A quantitative relationship was established between substrate temperature and TC, normal-state resistivity ρ, JC, orientation distribution, x-ray-diffraction peak broadening, lattice expansion, RS, and penetration depth λ. Increasing substrate temperature results in an increase in TC, a decrease in ρ, an increase in JC, an increase in grain size, an increase in the ratio of c-axis- to a-axis-oriented grains, and a decrease in λ. The deposition conditions of high substrate temperature and oxygen pressure, used to form films of the highest electrical and structural quality, also promote the formation of CuO precipitates of about 1 μm in dimension, resulting from a slightly copper-rich stoichiometry.

  20. Ultra-high resistive and anisotropic CoPd–CaF{sub 2} nanogranular soft magnetic films prepared by tandem-sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Naoe, Masayuki, E-mail: naoe@denjiken.ne.jp [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Kobayashi, Nobukiyo [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Ohnuma, Shigehiro [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578 (Japan); Iwasa, Tadayoshi; Arai, Ken-Ichi [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Masumoto, Hiroshi [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578 (Japan)

    2015-10-01

    Ultra-high resistive and anisotropic soft magnetic films for gigahertz applications are desirable to demonstrate the really practical films. Here we present a study of novel nanogranular films fabricated by tandem-sputtering deposition. Their electromagnetic properties and nanostructure have also been discussed. These films consisted of nanocrystallized CoPd alloy-granules and CaF{sub 2} matrix, and a specimen having a composition of (Co{sub 0.69}Pd{sub 0.31}){sub 52}–(Ca{sub 0.31}F{sub 0.69}){sub 48} exhibited distinct in-plane uniaxial anisotropy after uniaxial field annealing with granule growth. Its complex permeability spectra have a ferromagnetic resonance frequency extending to the Super-High-Frequency band due to its higher anisotropy field, and its frequency response was quite well reproduced by a numerical calculation based on the Landau–Lifshitz–Gilbert equation. Furthermore, it was clarified that the CaF{sub 2}-based nanogranular film exhibits a hundredfold higher electrical resistivity than conventional oxide or nitride-based films. Higher resistivity enables the film thickness to achieve a margin exceeding threefold against eddy current loss. The greater resistivity of nanogranular films is attributed to the wide energy bandgap and superior crystallinity of CaF{sub 2} matrix. - Highlights: • We fabricated high-resistive and anisotropic granular films by tandem-sputtering. • CaF{sub 2}-based films exhibit a hundredfold higher resistivity than conventional films. • Uniaxial field annealing improved the magnetic properties dramatically. • High uniaxial anisotropy extended ferromagnetic resonance frequency to 4 GHz. • Annealed samples can be regarded as a ferromagnetic homogenized material.

  1. Three-dimensional piezoelectric MEMS actuator by using sputtering deposition of Pb(Zr,Ti)O3 on microstructure sidewalls

    Science.gov (United States)

    Kanda, Kensuke; Moriue, Shingo; Fujita, Takayuki; Maenaka, Kazusuke

    2017-04-01

    For the realization of piezoelectric microelectromechanical systems (MEMS) with multiple degrees-of-freedom, lead zirconate titanate thin films were deposited and micropatterned on the sidewalls of a pre-etched substrate with a feature depth of several hundred micrometers. The piezoelectric test structures, consisting of concave geometries and cantilevers with vertical and sloped sidewalls were successfully fabricated onto a 4 inch full sized wafer. Characterization of the fundamental properties of the lead zirconate titanate thin films indicated values comparable to those deposited on flat substrates. Actuation tests demonstrated that the triangular column cantilevers can be driven both in-plane and out-of-plane. The deposition of lead zironate titanate thin films onto a vertical sidewall created bimorph cantilevers composed of piezo/non-piezo/piezo structures in the horizontal direction. The use of microfabrication techniques to deposit lead zironate titanate thin films on pre-etched substrates gives MEMS actuators with multiple degrees-of-freedom and batch process compatibility.

  2. Thickness-dependent crystallization on thermal anneal for titania/silica nm-layer composites deposited by ion beam sputter method.

    Science.gov (United States)

    Pan, Huang-Wei; Wang, Shun-Jin; Kuo, Ling-Chi; Chao, Shiuh; Principe, Maria; Pinto, Innocenzo M; DeSalvo, Riccardo

    2014-12-01

    Crystallization following thermal annealing of thin film stacks consisting of alternating nm-thick titania/silica layers was investigated. Several prototypes were designed, featuring a different number of titania/silica layer pairs, and different thicknesses (in the range from 4 to 40 nm, for the titania layers), but the same nominal refractive index (2.09) and optical thickness (a quarter of wavelength at 1064 nm). The prototypes were deposited by ion beam sputtering on silicon substrates. All prototypes were found to be amorphous as-deposited. Thermal annealing in air at progressive temperatures was subsequently performed. It was found that the titania layers eventually crystallized forming the anatase phase, while the silica layers remained always amorphous. However, progressively thinner layers exhibited progressively higher threshold temperatures for crystallization onset. Accordingly it can be expected that composites with thinner layers will be able to sustain higher annealing temperatures without crystallizing, and likely yielding better optical and mechanical properties for advanced coatings application. These results open the way to the use of materials like titania and hafnia, that crystallize easily under thermal anneal, but ARE otherwise promising candidate materials for HR coatings necessary for cryogenic 3rd generation laser interferometric gravitational wave detectors.

  3. Strong bonding between sputtered bioglass–ceramic films and Ti-substrate implants induced by atomic inter-diffusion post-deposition heat-treatments

    Energy Technology Data Exchange (ETDEWEB)

    Stan, G.E., E-mail: george_stan@infim.ro [National Institute of Materials Physics, Bucharest-Magurele 077125 (Romania); Popa, A.C. [National Institute of Materials Physics, Bucharest-Magurele 077125 (Romania); Army Centre for Medical Research, Bucharest 020012 (Romania); Department of Cellular and Molecular Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 050474 (Romania); Galca, A.C.; Aldica, G. [National Institute of Materials Physics, Bucharest-Magurele 077125 (Romania); Ferreira, J.M.F. [Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal)

    2013-09-01

    Bioglasses (BG) are the inorganic materials exhibiting the highest indices of bioactivity. Their appliance as films for bio-functionalization of metallic implant surfaces has been regarded as an optimal solution for surpassing their limited bulk mechanical properties. This study reports on magnetron sputtering of alkali-free BG thin films by varying the target-to-substrate working distance, which proved to play an important role in determining the films’ properties. Post deposition heat-treatments at temperatures slightly above the glass transformation temperature were then applied to induce inter-diffusion processes at the BG/titanium substrate interface and strengthening the bonding as determined by pull-out adherence measurements. The morphological and structural features assessed by SEM–EDS, XRD, and FTIR revealed a good correlation between the formations of inter-metallic titanium silicide phases and the films’ bonding strength. The highest mean value of pull-out adherence (60.3 ± 4.6 MPa), which is adequate even for load-bearing biomedical applications, was recorded for films deposited at a working distance of 35 mm followed by a heat-treatment at 750 °C for 2 h in air. The experimental findings are explained on the basis of structural, compositional and thermodynamic considerations.

  4. Strong bonding between sputtered bioglass-ceramic films and Ti-substrate implants induced by atomic inter-diffusion post-deposition heat-treatments

    Science.gov (United States)

    Stan, G. E.; Popa, A. C.; Galca, A. C.; Aldica, G.; Ferreira, J. M. F.

    2013-09-01

    Bioglasses (BG) are the inorganic materials exhibiting the highest indices of bioactivity. Their appliance as films for bio-functionalization of metallic implant surfaces has been regarded as an optimal solution for surpassing their limited bulk mechanical properties. This study reports on magnetron sputtering of alkali-free BG thin films by varying the target-to-substrate working distance, which proved to play an important role in determining the films’ properties. Post deposition heat-treatments at temperatures slightly above the glass transformation temperature were then applied to induce inter-diffusion processes at the BG/titanium substrate interface and strengthening the bonding as determined by pull-out adherence measurements. The morphological and structural features assessed by SEM-EDS, XRD, and FTIR revealed a good correlation between the formations of inter-metallic titanium silicide phases and the films’ bonding strength. The highest mean value of pull-out adherence (60.3 ± 4.6 MPa), which is adequate even for load-bearing biomedical applications, was recorded for films deposited at a working distance of 35 mm followed by a heat-treatment at 750 °C for 2 h in air. The experimental findings are explained on the basis of structural, compositional and thermodynamic considerations.

  5. Correlations between 1/f noise and thermal treatment of Al-doped ZnO thin films deposited by direct current sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Barhoumi, A., E-mail: amira-barhoumi@yahoo.fr; Guermazi, S. [University of Sfax, Research Unit: PMISI, Faculty of Science Sfax, Route de la Soukra Km 3.5-B.P. n° 1171-3000 Sfax (Tunisia); Leroy, G.; Gest, J.; Carru, J. C. [University Lille North of France, ULCO, UDSMM, 62228 Calais (France); Yang, L. [Hebei Union University, Electrical Engineering, 46 Xinhua Road, Tangshan 063009, Hebei (China); Boughzala, H. [University of Tunis El-Manar, Faculty of Science Tunis,, Laboratory of Crystallochemistry, 1060 Tunis (Tunisia); Duponchel, B. [University Lille North of France, ULCO, UDSMM, 59140 Dunkerque (France)

    2014-05-28

    Al-doped ZnO thin films (AZO) have been deposited on amorphous glass substrates by DC sputtering at different substrate temperatures T{sub s}. X-Ray diffraction results reveal that AZO thin films have a hexagonal wurtzite structure with (002) preferred orientation. (002) peaks indicate that the crystalline structure of the films is oriented with c-axis perpendicular to the substrate. Three-dimensional (3D) atomic force microscopy images of AZO thin films deposited on glass substrate at 200 °C, 300 °C, and 400 °C, respectively, shows the improvement of the crystallinity and the homogeneity of AZO thin films with T{sub s} which is in agreement with the noise measurements. The noise was characterized between 1 Hz and 100 kHz and we have obtained 1/f spectra. The noise is very sensitive to the crystal structure especially to the orientation of the crystallites which is perpendicular to the substrate and to the grain boundaries which generate a high current flow and a sharp increase in noise. Through time, R{sub sh} and [αμ]{sub eff} increase with the modification of the crystallinity of AZO thin films. Study of noise aging shows that the noise is more sensitive than resistivity for all AZO thin films.

  6. Effects of post-deposition annealing ambient on band alignment of RF magnetron-sputtered Y2O3 film on gallium nitride.

    Science.gov (United States)

    Quah, Hock Jin; Cheong, Kuan Yew

    2013-01-29

    The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10-6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV).

  7. Co-deposition of band-gap tuned Zn1-xMgxO using high impulse power- and dc-magnetron sputtering

    Science.gov (United States)

    Mayes, E. L. H.; Murdoch, B. J.; Bilek, M. M. M.; McKenzie, D. R.; McCulloch, D. G.; Partridge, J. G.

    2015-04-01

    High impulse power- and direct current- magnetron sputtering have been used to reactively co-deposit Zn1 - xMgxO onto a 100 mm diameter a-plane sapphire wafer at 200 °C. The Zn1 - xMgxO film exhibited low surface roughness, high transparency, high electrical resistivity and a Mg fraction (x) depending on substrate location. The optical bandgap of the film varied monotonically with x up to the miscibility limit of ~0.32, beyond which a mixed cubic/wurtzite structure formed. Annealing at 550 °C in forming gas (95% N2, 5% H2), caused reduced compressive stress and dramatically reduced electrical resistivity. The latter was attributed to shallow doping by hydrogen bound to oxygen vacancies and these changes occurred in the wurtzite Zn1 - xMgxO without detectable phase transformation. A filtered UV detector, with active and filter layers fabricated from the co-deposited film, exhibited sensitivity to UV in a 330-355 nm pass-band and approximately three orders of magnitude UV-to-visible rejection.

  8. Enhancement of adhesion by a transition layer: Deposition of a-C film on ultrahigh molecular weight polyethylene (UHMWPE) by magnetron sputtering

    Science.gov (United States)

    He, F. F.; Bai, W. Q.; Li, L. L.; Wang, X. L.; Xie, Y. J.; Jin, G.; Tu, J. P.

    2016-02-01

    An amorphous carbon (a-C) film is deposited on the plasma-treated UHMWPE substrate using a closed field unbalanced magnetron sputtering to improve its tribological properties. During the plasma treatment period, a transition layer is prepared by high energy ion bombardment at a bias voltage of -500 V to enhance the adhesion between the a-C film and the substrate. The mechanical and tribological properties of the a-C film were evaluated by nano-indentation and ball-on-disk tribometer. After deposition of a-C film with a thickness 900 nm, the nano-hardness of UHMWPE significantly increases from 47 MPa to 720 MPa and the wear rate decreases from 9.82 × 10-15 m3 N-1 m-1 to 4.78 × 10-15 m3 N-1 m-1 in bovine calf serum solution. The formation of the transition layer is believed to be the reason why the vertical adhesion between the a-C film and the UHMWPE substrate is enhanced.

  9. Low-stress and high-reflectance Mo/Si multilayers for extreme ultraviolet lithography by magnetron sputtering deposition with bias assistance.

    Science.gov (United States)

    Yu, Bo; Jin, Chunshui; Yao, Shun; Li, Chun; Liu, Yu; Zhou, Feng; Guo, Benyin; Wang, Hui; Xie, Yao; Wang, Liping

    2017-09-10

    To explore the potential of achieving low-stress and high-reflectance Mo/Si multilayers deposited by conventional magnetron sputtering with bias assistance, we investigated the effects of varying Ar gas pressure, substrate bias voltage, and a bias-assisted Si ratio on the stress and extreme ultraviolet (EUV) reflectance of Mo/Si multilayers. To reduce the damage of ion bombardments on an Si-on-Mo interface, only the final part of the Si layer was deposited with bias assistance. Bias voltage has strong influence on the stress. The compressive stress of Mo/Si multilayers can be reduced remarkably by increasing bias voltage due to the increase of Mo-on-Si interdiffusion and postponement of Mo crystallization transition. Properly choosing gas pressure and a bias-assisted Si ratio is critical to obtain high EUV reflectance. Appropriately decreasing gas pressure can reduce the interface roughness without increasing interdiffusion. Too much bias assistance can seriously reduce the optical contrast between Mo and Si layers and lead to a remarkable decrease of EUV reflectance. Thus, by appropriately choosing gas pressure, bias voltage, and a bias-assisted Si ratio, the stress values of Mo/Si multilayers can be reduced to the order of -100  MPa with an EUV reflectance loss of about 1%.

  10. Study of Fluorine Addition Influence in the Dielectric Constant of Diamond-Like Carbon Thin Film Deposited by Reactive Sputtering

    Science.gov (United States)

    Trippe, S. C.; Mansano, R. D.

    The hydrogenated amorphous carbon films (a-C:H) or DLC (Diamond-Like Carbon) films are well known for exhibiting high electrical resistivity, low dielectric constant, high mechanical hardness, low friction coefficient, low superficial roughness and also for being inert. In this paper, we produced fluorinated DLC films (a-C:F), and studied the effect of adding CF4 on the above-mentioned properties of DLC films. These films were produced by a reactive RF magnetron sputtering system using a target of pure carbon in stable graphite allotrope. We performed measurements of electrical characteristic curves of capacitance as a function of applied tension (C-V) and current as a function of the applied tension (I-V). We showed the dielectric constant (k) and the resistivity (ρ) as functions of the CF4 concentration. On films with 65% CF4, we found that k = 2.7, and on films with 70% CF4, ρ = 12.3 × 1011 Ω cm. The value of the electrical breakdown field to films with 70% CF4 is 5.3 × 106 V/cm.

  11. Sputter deposition of multilayer thermoelectric films: An approach to the fabrication of two-dimensional quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; Barbee, T.W. Jr.; Chapline, G.C. Jr.; Foreman, R.J.; Summers, L.J. [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S.; Hicks, L.D. [Massachusetts Institute of Technology, Boston, MA (United States). Dept. of Physics

    1994-07-01

    The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Though all known thermoelectric materials are believed to have ZT{le}1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) or onedimensional (1D) quantum wires could have ZT{ge}3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering Bi{sub 0.9}Sb{sub 0.1} and PbTe{sub 0.8}Se{sub 0.2} onto a moving single-crystal sapphire substrate from dual magnetrons. These materials have been used to test the thermoelectric quantum-well concept and gain insight into relevant transport mechanisms. If successful, this research could lead to thermoelectric devices that have efficiencies close to that of an ideal Carnot engine. Ultimately, such devices could be used to replace conventional heat engines and mechanical refrigeration systems.

  12. Microstructured Nickel-Titanium Thin Film Leaflets for Hybrid Tissue Engineered Heart Valves Fabricated by Magnetron Sputter Deposition.

    Science.gov (United States)

    Loger, K; Engel, A; Haupt, J; Lima de Miranda, R; Lutter, G; Quandt, E

    2016-03-01

    Heart valves are constantly exposed to high dynamic loading and are prone to degeneration. Therefore, it is a challenge to develop a durable heart valve substitute. A promising approach in heart valve engineering is the development of hybrid scaffolds which are composed of a mechanically strong inorganic mesh enclosed by valvular tissue. In order to engineer an efficient, durable and very thin heart valve for transcatheter implantations, we developed a fabrication process for microstructured heart valve leaflets made from a nickel-titanium (NiTi) thin film shape memory alloy. To examine the capability of microstructured NiTi thin film as a matrix scaffold for tissue engineered hybrid heart valves, leaflets were successfully seeded with smooth muscle cells (SMCs). In vitro pulsatile hydrodynamic testing of the NiTi thin film valve leaflets demonstrated that the SMC layer significantly improved the diastolic sufficiency of the microstructured leaflets, without affecting the systolic efficiency. Compared to an established porcine reference valve model, magnetron sputtered NiTi thin film material demonstrated its suitability for hybrid tissue engineered heart valves.

  13. Piezoresistive pressure sensor using low-temperature aluminium induced crystallization of sputter-deposited amorphous silicon film

    Science.gov (United States)

    Tiwari, Ruchi; Chandra, Sudhir

    2013-09-01

    In the present work, we have investigated the piezoresistive properties of silicon films prepared by the radio frequency magnetron sputtering technique, followed by the aluminium induced crystallization (AIC) process. Orientation and grain size of the polysilicon films were studied by x-ray diffraction analysis and found to be in the range 30-50 nm. Annealing of the Al-Si stack on an oxidized silicon substrate was performed in air ambient at 300-550 °C, resulting in layer exchange and transformation from amorphous to polysilicon phase. Van der Pauw and Hall measurement techniques were used to investigate the sheet resistance and carrier mobility of the resulting polycrystalline silicon film. The effect of Al thickness on the sheet resistance and mobility was also studied in the present work. A piezoresistive pressure sensor was fabricated on an oxidized silicon substrate in a Wheatstone bridge configuration, comprising of four piezoresistors made of polysilicon film obtained by the AIC process. The diaphragm was formed by the bulk-micromachining of silicon substrate. The response of the pressure sensor with applied negative pressure in 10-95 kPa range was studied. The gauge factor was estimated to be 5 and 18 for differently located piezoresistors on the diaphragm. The sensitivity of the pressure sensor was measured to be ˜ 30 mV MPa-1, when the Wheatstone bridge was biased at 1 V input voltage.

  14. Effect of self-bias on the elemental composition and neutron absorption of boron carbide films deposited by RF plasma enhanced CVD

    Energy Technology Data Exchange (ETDEWEB)

    Bute, A., E-mail: butearundhati@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jagannath, E-mail: ssai@barc.gov.in [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kar, R., E-mail: rajibkar@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Chopade, S.S., E-mail: supriyagindalkar@rediffmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Desai, S.S., E-mail: ssdesai@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Deo, M.N., E-mail: mndeo@barc.gov.in [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Rao, Pritty, E-mail: praocccm@rediffmail.com [The National Centre for Compositional Characterization of Materials, Hyderabad (India); Chand, N., E-mail: naresh@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kumar, S., E-mail: sanjivcccm@rediffmail.com [The National Centre for Compositional Characterization of Materials, Hyderabad (India); Singh, K., E-mail: singhkw@barc.gov.in [Fusion Reactor Material Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Patil, D.S., E-mail: dspatil@iitb.ac.in [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Sinha, S., E-mail: ssinha@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-10-01

    Boron carbide films are increasingly being investigated for their application in new generation neutron detectors. It is implemented as conversion layer for neutrons and emerging as a potential alternative to {sup 3}He based detectors. This work reports synthesis of boron carbide (B{sub x}C) films from ortho-carborane (o-C{sub 2}B{sub 10}H{sub 12}) by radio frequency (RF) plasma enhanced chemical vapour deposition (PECVD) technique. Dependence of chemical composition, stoichiometry and total macroscopic cross section (Σ{sub t}) has been studied as a function of self-bias on the substrate, varied in the range −75 V to −175 V. Films were characterized by 3D optical profilometry, X-ray photoelectron spectroscopy (XPS), proton elastic backscattering spectrometry (p-EBS), Fourier transform infra-red spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM). Characterization results show noticeable change in the bulk as well as surface chemical composition, surface morphology and film stoichiometry with self-bias. Neutron transmission measurements exhibit increase in Σ{sub t} from 170.47 cm{sup −1} for −75 V film to 273.38 cm{sup −1} for −175 V film with self-bias. - Highlights: • Boron carbide films were deposited by RF PECVD, varying substrate RF self-bias. • B/C ratio increased with decreasing RF self-bias leading to boron rich B{sub x}C films. • Total macroscopic cross section for neutrons Σ{sub t} is found to increase with self-bias. • Higher bias caused rise in oxygen impurity in films and decrease in film stability.

  15. Hard Cr–Al–Si–B–(N) coatings deposited by reactive and non-reactive magnetron sputtering of CrAlSiB target

    Energy Technology Data Exchange (ETDEWEB)

    Kiryukhantsev-Korneev, Ph.V., E-mail: kiruhancev-korneev@yandex.ru [National University of Science and Technology “MISIS”, Leninsky pr., 4, Moscow 119049 (Russian Federation); Pierson, J.F. [Institut Jean Lamour - Ecole des Mines, Parc de Saurupt, CS 14 234, F-54042 Nancy (France); Kuptsov, K.A.; Shtansky, D.V. [National University of Science and Technology “MISIS”, Leninsky pr., 4, Moscow 119049 (Russian Federation)

    2014-09-30

    Highlights: • Cr–Al–Si–B–N coatings with amorphous structure. • Coatings demonstrate hardness in range of 18–30 GPa. • Coatings exhibit friction coefficient ∼0.4. • Coatings show a very high oxidation resistance up to 1300 °C. • Coatings withstand cyclic loads up to 1000 N for 10{sup 5} cycles without fracture. - Abstract: Relationships between chemical composition, mechanical and tribological properties, fracture resistance, thermal stability and oxidation resistance of the magnetron sputtered Cr–Al–Si–B–(N) coatings were determined using X-ray diffraction, scanning and transmission electron microscopy, glow discharge optical emission spectroscopy, nanoindentation, as well as pin-on-disk, scratch and impact tests. The coatings deposited in Ar showed high friction coefficient and wear rate of 0.8 and 46.0 × 10{sup −6} mm{sup 3}/N m during tribological tests compared with 0.4 and 2.0–2.1 × 10{sup −6} mm{sup 3}/N m of reactively deposited coatings. During impact tests, N-free coatings showed the smallest impact wear of 1.34 × 10{sup 5} μm{sup 3}, but, in contrast to the N-containing coatings, demonstrated fracture even at a load of 800 N. It was explained by the fact that the N-free coating, having high hardness of 30 GPa, yet was very brittle. Structural changes and oxidation mechanism of the Cr–Al–Si–B–(N) coatings during annealing in air at temperatures up to 1300 °C were also studied in detail. It was revealed that the coating deposited in Ar showed the best oxidation resistance up to 1300 °C.

  16. Hydrogenation behavior of Ti-implanted Zr-1Nb alloy with TiN films deposited using filtered vacuum arc and magnetron sputtering

    Science.gov (United States)

    Kashkarov, E. B.; Nikitenkov, N. N.; Sutygina, A. N.; Bezmaternykh, A. O.; Kudiiarov, V. N.; Syrtanov, M. S.; Pryamushko, T. S.

    2018-02-01

    More than 60 years of operation of water-cooled reactors have shown that local or general critical hydrogen concentration is one of the basic limiting criteria of zirconium-based fuel element claddings. During the coolant radiolysis, released hydrogen penetrates and accumulates in zirconium alloys. Hydrogenation of zirconium alloys leads to degradation of their mechanical properties, hydride cracking and stress corrosion cracking. In this research the effect of titanium nitride (TiN) deposition on hydrogenation behavior of Ti-implanted Zr-1Nb alloy was described. Ti-implanted interlayer was fabricated by plasma immersion ion implantation (PIII) at the pulsed bias voltage of 1500 V to improve the adhesion of TiN and reduce hydrogen penetration into Zr-1Nb alloy. We conducted the comparative analysis on hydrogenation behavior of the Ti-implanted alloy with sputtered and evaporated TiN films by reactive dc magnetron sputtering (dcMS) and filtered cathodic vacuum arc deposition (FVAD), respectively. The crystalline structure and surface morphology were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The elemental distribution was analyzed using glow-discharge optical emission spectroscopy (GD-OES). Hydrogenation was performed from gas atmosphere at 350 °C and 2 atm hydrogen pressure. The results revealed that TiN films as well as Ti implantation significantly reduce hydrogen absorption rate of Zr-1Nb alloy. The best performance to reduce the rate of hydrogen absorption is Ti-implanted layer with evaporated TiN film. Morphology of the films impacted hydrogen permeation through TiN films: the denser film the lower hydrogen permeation. The Ti-implanted interface plays an important role of hydrogen accumulation layer for trapping the penetrated hydrogen. No deterioration of adhesive properties of TiN films on Zr-1Nb alloy with Ti-implanted interface occurs under high-temperature hydrogen exposure. Thus, the fabrication of Ti

  17. Effect of Sb content on the thermoelectric properties of annealed CoSb{sub 3} thin films deposited via RF co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Aziz, E-mail: aziz_ahmed@ust.ac.kr [Department of Nano-Mechatronics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350 (Korea, Republic of); Department of Nano-Mechanics, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Han, Seungwoo, E-mail: swhan@kimm.re.kr [Department of Nano-Mechatronics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350 (Korea, Republic of); Department of Nano-Mechanics, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2017-06-30

    Graphical abstract: The X-ray diffraction patterns and temperature dependence of the Seebeck coefficient of the annealed Co–Sb thin films. - Highlights: • CoSb{sub 3} phase thin films were prepared using RF co sputtering method. • Thin film thermoelectric properties were hugely dependent on Sb content. • All thin films shows n-type conduction behavior at high temperatures. • The thin films with excess Sb possess the largest Seebeck coefficient. • The thin films with CoSb{sub 2} phase possess the largest power factor. - Abstract: A series of CoSb{sub 3} thin films with Sb contents in the range 70–79 at.% were deposited at room temperature via RF co-sputtering. The thin films were amorphous in the as-deposited state and annealed at 300 °C for 3 h to obtain crystalline samples. The annealed thin films were characterized using scanning electron microscopy and X-ray diffraction (XRD), and these data indicate that the films exhibited good crystallinity. The XRD patterns indicate single-phase CoSb{sub 3} thin films in the Sb-rich samples. For the Sb-deficient samples, however, mixed-phase thin films consisting of CoSb{sub 2} and CoSb{sub 3} components were obtained. The electrical and thermoelectric properties were measured at temperatures up to 760 K and found to be highly sensitive to the phases that were present. We observed a change in the thermoelectric properties of the films from p-type at low temperatures to n-type at high temperatures, which indicates potential applications as n-type thermoelectric thin films. A large Seebeck coefficient and power factor was obtained for the single-phase CoSb{sub 3} thin films. The CoSb{sub 2} phase thin films were also found to possess a significant Seebeck coefficient, which coupled with the much smaller electrical resistivity, provided a larger power factor than the single-phase CoSb{sub 3} thin films. We report maximum power factor of 7.92 mW/m K{sup 2} for the CoSb{sub 2}-containing mixed phase thin film and 1

  18. Influences of defects evolvement on the properties of sputtering deposited ZnO:Al films upon hydrogen annealing

    Directory of Open Access Journals (Sweden)

    Shiliu Yin

    2016-06-01

    Full Text Available Understanding how the defects interact with each other and affect the properties of ZnO:Al films is very important for improving their performance as a transparent conductive oxide (TCO. In the present work, we studied the effects of hydrogen annealing on the structural, optical and electrical properties of ZnO:Al films prepared by magnetron sputtering. High resolution transmission electron microscopy observations reveal that annealing at ∼300 oC induces the formation of partial dislocations (PD and stacking faults (SF, which disrupt the lattice periodicity leading to decreased grain size. Annealing at temperatures above ∼500 oC can remove the PD and SF, but large number of zinc vacancies will be generated. Our results show that when films are annealed at ∼500 oC, the oxygen-related defects (interstitials Oi, etc. in the as-grown films can be remarkably removed or converted, which lead to increments in the carrier concentration, mobility, and the transmittance in the visible range. At annealing temperatures above 550 oC, the hydrogen etching effect becomes predominant, and Al donors are deactivated by zinc vacancies. We also find an abnormal endothermic process by thermal analysis and an abnormal increase in the resistivity during heating the sample under hydrogen atmosphere, based on which the interaction of Oi with the defects (mainly Al donors and PD is discussed. It is also demonstrated that by annealing the as-grown AZO films at ∼500 oC under hydrogen atmosphere, high performance TCO films with a low resistivity of 4.48 × 10−4 Ωcm and high transmittance of above 90% in the visible light are obtained.

  19. Influences of defects evolvement on the properties of sputtering deposited ZnO:Al films upon hydrogen annealing

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shiliu; Shirolkar, Mandar M.; Li, Jieni; Li, Ming; Song, Xiao; Dong, Xiaolei; Wang, Haiqian, E-mail: hqwang@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-06-15

    Understanding how the defects interact with each other and affect the properties of ZnO:Al films is very important for improving their performance as a transparent conductive oxide (TCO). In the present work, we studied the effects of hydrogen annealing on the structural, optical and electrical properties of ZnO:Al films prepared by magnetron sputtering. High resolution transmission electron microscopy observations reveal that annealing at ∼300 {sup o}C induces the formation of partial dislocations (PD) and stacking faults (SF), which disrupt the lattice periodicity leading to decreased grain size. Annealing at temperatures above ∼500 {sup o}C can remove the PD and SF, but large number of zinc vacancies will be generated. Our results show that when films are annealed at ∼500 {sup o}C, the oxygen-related defects (interstitials O{sub i}, etc.) in the as-grown films can be remarkably removed or converted, which lead to increments in the carrier concentration, mobility, and the transmittance in the visible range. At annealing temperatures above 550 {sup o}C, the hydrogen etching effect becomes predominant, and Al donors are deactivated by zinc vacancies. We also find an abnormal endothermic process by thermal analysis and an abnormal increase in the resistivity during heating the sample under hydrogen atmosphere, based on which the interaction of O{sub i} with the defects (mainly Al donors and PD) is discussed. It is also demonstrated that by annealing the as-grown AZO films at ∼500 {sup o}C under hydrogen atmosphere, high performance TCO films with a low resistivity of 4.48 × 10{sup −4} Ωcm and high transmittance of above 90% in the visible light are obtained.

  20. Comparative study about Al-doped zinc oxide thin films deposited by Pulsed Electron Deposition and Radio Frequency Magnetron Sputtering as Transparent Conductive Oxide for Cu(In,Ga)Se{sub 2}-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pattini, F., E-mail: pattini@imem.cnr.it [IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Annoni, F.; Bissoli, F.; Bronzoni, M. [IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Garcia, J.P. [Delft University of Technology, Faculty of Applied Sciences, Delft Product and Process Design Institute, Julianalaan 67, 2628 BC Delft (Netherlands); Gilioli, E.; Rampino, S. [IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124 Parma (Italy)

    2015-05-01

    In this study, a comparison between Al-doped ZnO (AZO) as Transparent Conductive Oxide for Cu(In,Ga)Se{sub 2}-based solar cells grown by Pulsed Electron Deposition (PED) and Radio Frequency Magnetron Sputtering (RFMS) was performed. PED yielded polycrystalline [002] mono-oriented thin films with low electrical resistivity and high optical transparency with heater temperatures ranging from room temperature (RT) to 250 °C. The electrical resistivity of these films can be tuned by varying the heater temperature, reaching a minimum value of 3.5 × 10{sup −4} Ωcm at 150 °C and an average transmittance over 90% in the visible range. An AZO film grown at RT was deposited by PED on an actual Cu(In,Ga)Se{sub 2}-based solar cell, resulting to an efficiency value of 15.2% on the best device. This result clearly shows that PED is a suitable technique for growing ZnO-based thin films for devices/applications where low deposition temperature is required. On the other hand, an optimized AZO thin film front contact for thin film solar cells was studied and fabricated via RFMS. The parameters of this technique were tweaked to obtain highly conductive and transparent AZO thin films. The lowest resistivity value of 3.7 × 10{sup −4} Ωcm and an average transmittance of 86% in the 400-1100 nm wavelength range was obtained with a heater temperature of 250 °C. A thick sputtered AZO film was deposited at RT onto an identical cell used for PED-grown AZO, reaching the highest conversion efficiency value of 14.7%. In both cases, neither antireflection coatings nor pure ZnO layer was used. - Highlights: • Pulsed Electron Deposition (PED) lets high quality films grow at low temperature. • Al:ZnO (AZO) thin films grown by PED present high optical and electrical quality. • AZO electrical resistivity can be tuned from 10{sup −4} to 10{sup −2} Ωcm in proper condition. • Cu(In,Ga)Se{sub 2}-based simplified solar cells achieved efficiency of 15.2% for PED-grown AZO.

  1. Influence of substrate bias voltage on the properties of TiO{sub 2} deposited by radio-frequency magnetron sputtering on 304L for biomaterials applications

    Energy Technology Data Exchange (ETDEWEB)

    Bait, L. [Division Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées, CDTA,Cité du 20 aout 1956, Baba Hassen, BP n°. 17, Alger (Algeria); Azzouz, L. [Université de Amar Telidji, Laghouat (Algeria); Madaoui, N. [Division Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées, CDTA,Cité du 20 aout 1956, Baba Hassen, BP n°. 17, Alger (Algeria); Saoula, N., E-mail: nsaoula@cdta.dz [Division Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées, CDTA,Cité du 20 aout 1956, Baba Hassen, BP n°. 17, Alger (Algeria)

    2017-02-15

    Highlights: • TiO{sub 2} films were deposited on stainless steel 304L RF magnetron sputtering at different substrate bias. • The hardness of TiO{sub 2} coated 304L are higher than those obtained for uncoated substrate. • TiO{sub 2} films provide good protection for stainless steel against corrosion in Ringer solution. - Abstract: The aim of this paper is to investigate the effect of the substrate bias, varied from 0 to −100 V, on the structure and properties of the TiO{sub 2} thin films for biomaterials applications. The TiO{sub 2} films were grown onto 304L stainless steel substrate using radio-frequency (rf) magnetron sputtering from a pure titanium target in Ar-O{sub 2} gas mixture. The variation of substrate bias voltage from 0 to −100 V produces variations of structure and mechanical properties of the films. The deposited films were characterized by X-rays diffraction, nanoindentation and potentiodynamic polarization. Also, the friction and wear properties of TiO{sub 2} films sliding against alumina ball in air were investigated. Experimental results showed that the thickness increases for non-biased substrate voltage to Vs = −100 V from 820 nm to 1936 nm respectively. The roughness is in the range of 50 nm and 14 nm. XRD results show that all structures of the films are crystalline and changed with varying the bias voltage. The anatase phase is predominant in the low negative bias range (0–50 V). The hardness significantly increased from 2.2 to 6.4 GPa when the bias voltage was increased from 0 to 75 V and then slightly decrease to 5.1 GPa as further increased to 100 V. At the same time, the results indicate that TiO{sub 2} films deposited at −100 V exhibited better wear resistance compared to the other samples, i.e. the minimum wear rates and the lower coefficient of friction of 0.16. In order to simulate natural biological conditions, physiological serum (pH = 6.3), thermostatically controlled at 37 °C, was used as the electrolyte for the

  2. Characterization of ultrathin Al{sub 2}O{sub 3} gate oxide deposited by RF-magnetron sputtering on gallium nitride epilayer on sapphire substrate

    Energy Technology Data Exchange (ETDEWEB)

    Quah, Hock Jin; Cheong, Kuan Yew, E-mail: ckuanyew@yahoo.com

    2014-12-15

    A systematic study was performed on Al{sub 2}O{sub 3} films RF-magnetron sputtered on GaN substrate and subjected to different post-deposition annealing (PDA) temperatures (200–800 °C) in oxygen ambient. The as-deposited Al{sub 2}O{sub 3} film and Al{sub 2}O{sub 3} films subjected to PDA at 200 and 400 °C were present in amorphous phase and therefore undetectable by X-ray diffraction. By further enhancing the PDA temperature (≥600 °C), a transformation from amorphous to polycrystalline phase of Al{sub 2}O{sub 3} happened. The increment of PDA temperature has contributed to an enhancement in leakage current density-electric field (J–E) characteristics of the investigated samples. A correlation between the acquired J–E characteristics with effective oxide charge, slow trap density, interface trap density, and total interface trap density were discussed. A detailed investigation on the conduction of charges through the as-deposited Al{sub 2}O{sub 3} gate and Al{sub 2}O{sub 3} gates subjected to different PDA temperatures via space-charge-limited conduction, Schottky emission, Poole–Frenkel emission, and Fowler–Nordheim tunneling were presented. - Highlights: • Post-deposition annealing (PDA) in oxygen ambient of Al{sub 2}O{sub 3} films deposited on GaN. • Formation of crystalline Al{sub 2}O{sub 3} films subjected to PDA at/beyond 600 °C. • J–E characteristics of Al{sub 2}O{sub 3}/GaN system are dependent on MOS characteristics. • Al{sub 2}O{sub 3}/GaN system was subjected to high temperature measurements. • Current conduction mechanisms governing the leakage current of Al{sub 2}O{sub 3}/GaN system.

  3. Fabrication of Ta2O5/GeNx gate insulator stack for Ge metal-insulator-semiconductor structures by electron-cyclotron-resonance plasma nitridation and sputtering deposition techniques

    Science.gov (United States)

    Otani, Yohei; Itayama, Yasuhiro; Tanaka, Takuo; Fukuda, Yukio; Toyota, Hiroshi; Ono, Toshiro; Mitsui, Minoru; Nakagawa, Kiyokazu

    2007-04-01

    The authors have fabricated germanium (Ge) metal-insulator-semiconductor (MIS) structures with a 7-nm-thick tantalum pentaoxide (Ta2O5)/2-nm-thick germanium nitride (GeNx) gate insulator stack by electron-cyclotron-resonance plasma nitridation and sputtering deposition. They found that pure GeNx ultrathin layers can be formed by the direct plasma nitridation of the Ge surface without substrate heating. X-ray photoelectron spectroscopy revealed no oxidation of the GeNx layer after the Ta2O5 sputtering deposition. The fabricated MIS capacitor with a capacitance equivalent thickness of 4.3nm showed excellent leakage current characteristics. The interface trap density obtained by the modified conductance method was 4×1011cm-2eV-1 at the midgap.

  4. Influence of annealing on the optical properties of reactively sputtered BCN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Todi, Vinit O.; Shantheyanda, Bojanna P.; Sundaram, Kalpathy B., E-mail: kalpathy.sundaram@ucf.edu

    2013-09-16

    Optical properties of the Boron Carbon Nitride (BCN) thin films deposited in a multi gun radio frequency (rf) magnetron sputtering system using a B{sub 4}C target have been studied. Films of different compositions were deposited by varying the ratio of argon and nitrogen in the sputtering ambient. The films were annealed in dry oxygen ambient in the temperature range of 300 °C–700 °C. The effect of annealing on the optical properties of the films was investigated. It was found that the optical transmission of the films increased with nitrogen incorporation. Annealing at higher temperatures leads to considerable increase in optical transmission. Optical energy gaps (Tauc gap) calculated from the absorption data are influenced by annealing temperatures. Changes in optical properties were correlated to the chemical modifications in the films due to annealing through X-ray photoelectron spectroscopy (XPS). Studies reveal that the carbon and nitrogen concentrations in the films are highly sensitive to temperature. Annealing at higher temperatures leads to broken C–N bonds which results in the loss of C and N in the films. This is believed to be the primary cause for variations in optical properties of the films. - Highlights: • Boron Carbon Nitride thin films were sputter deposited by varying Ar/N2 ratio. • Deposited films were annealed in dry oxygen in the range of 300 °C–700 °C. • The effect of annealing on the optical properties of the films was investigated. • Changes in optical properties were correlated to the chemical modifications.

  5. Numerical simulation and experimental investigation of the elastocaloric cooling effect in sputter-deposited TiNiCuCo thin films

    Science.gov (United States)

    Welsch, F.; Ullrich, J.; Ossmer, H.; Schmidt, M.; Kohl, M.; Chluba, C.; Quandt, E.; Schütze, A.; Seelecke, S.

    2017-06-01

    The exploitation of the elastocaloric effect in superelastic shape memory alloys (SMA) for cooling applications shows a promising energy efficiency potential but requires a better understanding of the non-homogeneous martensitic phase transformation. Temperature profiles on sputter-deposited superelastic {Ti_{55.2Ni_{29.3}Cu_{12.7}Co_{2.8}}} shape memory alloy thin films show localized release and absorption of heat during phase transformation induced by tensile deformation with a strong rate dependence. In this paper, a model for the simulation of the thermo-mechanically coupled transformation behavior of superelastic SMA is proposed and its capability to reproduce the mechanical and thermal responses observed during experiments is shown. The procedure for experiment and simulation is designed such that a significant temperature change from the initial temperature is obtained to allow potential cooling applications. The simulation of non-local effects is enabled by the use of a model based on the one-dimensional Müller-Achenbach-Seelecke model, extended by 3D mechanisms such as lateral contraction and by non-local interaction, leading to localization effects. It is implemented into the finite element software COMSOL Multiphysics, and comparisons of numerical and experimental results show that the model is capable of reproducing the localized transformation behavior with the same strain rate dependency. Additionally to the thermal and the mechanical behavior, the quantitative prediction of cooling performance with the presented model is shown.

  6. Effects of the ion-beam voltage on the properties of the diamond-like carbon thin film prepared by ion-beam sputtering deposition

    Science.gov (United States)

    Sun, Peng; Hu, Ming; Zhang, Feng; Ji, Yi-Qin; Liu, Hua-Song; Liu, Dan-Dan; Leng, Jian

    2015-06-01

    Diamond-like carbon (DLC) thin film is one of the most widely used optical thin films. The fraction of chemical bondings has a great influence on the properties of the DLC film. In this work, DLC thin films are prepared by ion-beam sputtering deposition in Ar and CH4 mixtures with graphite as the target. The influences of the ion-beam voltage on the surface morphology, chemical structure, mechanical and infrared optical properties of the DLC films are investigated by atomic force microscopy (AFM), Raman spectroscopy, nanoindentation, and Fourier transform infrared (FTIR) spectroscopy, respectively. The results show that the surface of the film is uniform and smooth. The film contains sp2 and sp3 hybridized carbon bondings. The film prepared by lower ion beam voltage has a higher sp3 bonding content. It is found that the hardness of DLC films increases with reducing ion-beam voltage, which can be attributed to an increase in the fraction of sp3 carbon bondings in the DLC film. The optical constants can be obtained by the whole infrared optical spectrum fitting with the transmittance spectrum. The refractive index increases with the decrease of the ion-beam voltage, while the extinction coefficient decreases. Project supported by the National Natural Science Foundation of China (Grant No. 61235011) and the Science Foundation of the Science and Technology Commission of Tianjin Municipality, China (Grant Nos. 13JCYBJC17300 and 12JCQNIC01200).

  7. Ion induced crystallization and grain growth of hafnium oxide nano-particles in thin-films deposited by radio frequency magnetron sputtering

    Science.gov (United States)

    Dhanunjaya, M.; Khan, S. A.; Pathak, A. P.; Avasthi, D. K.; Nageswara Rao, S. V. S.

    2017-12-01

    We report on the swift heavy ion (SHI) irradiation induced crystallization and grain growth of HfO2 nanoparticles (NPs) within the HfO2 thin-films deposited by radio frequency (RF) magnetron sputtering technique. As grown films consisted of amorphous clusters of non-spherical HfO2 NPs. These amorphous clusters are transformed to crystalline grains under 100 MeV Ag ion irradiation. These crystallites are found to be spherical in shape and are well dispersed within the films. The average size of these crystallites is found to increase with fluence. Pristine and irradiated films have been characterized by high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), grazing incident x-ray diffraction (GIXRD) and photo luminescence (PL) measurements. The PL measurements suggested the existence of different types of oxygen related defects in pristine and irradiated samples. The observed results on crystallization and grain growth under the influence of SHI are explained within the framework of thermal spike model. The results are expected to provide useful information for understanding the electronic excitation induced crystallization of nanoparticles and can lead to useful applications in electronic and photonic devices.

  8. Anion and cation effects on the size control of Au nanoparticles prepared by sputter deposition in imidazolium-based ionic liquids.

    Science.gov (United States)

    Hatakeyama, Yoshikiyo; Judai, Ken; Onishi, Kei; Takahashi, Satoshi; Kimura, Satoshi; Nishikawa, Keiko

    2016-01-28

    The sputter deposition of metals in an ionic liquid (IL) capture medium is a simple and elegant method for preparing nanoparticles without any chemical reaction. Although there have been some reports on the size determination factors for Au nanoparticles (AuNPs) prepared using this method, the effects with respect to the type of IL used have not been clearly elucidated. This is because there are some complicating factors, some of which have been revealed by our previous systematic studies. In the present study, we prepare AuNPs in nine types of imidazolium-based IL to examine the size determination effects of the type of anion involved, the length of the alkyl chain of the cation, and the preparation temperature for each IL, while keeping other factors constant. For most of the capture media ILs, the sizes of the AuNPs increase with an increase in temperature. The AuNPs prepared in ILs containing different types of anions exhibit distinctly different particle sizes and temperature dependences. Conversely, the alkyl chain is regarded as a secondary stabilizer that works only at higher preparation temperatures. We conclude that the sizes of AuNPs prepared by this method may be determined by the competition between the collision frequency of the ejected Au atoms and the stabilizing capability of the anions that form the first coordination shell around the AuNPs. The AuNP sizes are closely related to the volume of anions.

  9. Structural evolution and growth mechanisms of RF-magnetron sputter-deposited hydroxyapatite thin films on the basis of unified principles

    Science.gov (United States)

    Ivanova, Anna A.; Surmeneva, Maria A.; Surmenev, Roman A.; Depla, Diederik

    2017-12-01

    The structural features of RF-magnetron sputter-deposited hydroxyapatite (HA) coatings are investigated in order to reveal the effect of the working gas composition and the sample position of the substrate relative to the target erosion zone. The film properties were observed to change as a result of bombardment with energetic ions. XRD analysis of the coated substrates indicates that with the increase of the ion-to-atom ratio, the fiber texture changes from a mixed (11 2 bar 2) + (0002) over (0002) orientation, finally reaching a (30 3 bar 0) out-of-plane orientation at high ion-to-atom ratios. TEM reveals that the microstructure of the HA coating consists of columnar grains and differs with the coating texture. The contribution of Ji/Ja to the development of microstructure and texture of the HA coating is schematically represented and discussed. The obtained results may contribute substantially to the progress of research into the development of HA coatings with tailored properties, and these coatings may be applied on the surfaces of metal implants used in bone surgery.

  10. Effect of thickness on structural, corrosion and mechanical properties of a thin ZrN film deposited by medium frequency (MF) reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, Ayyalu; Kannan, Raman [Anna Univ., Dindigul (India). Dept. of Physics; Loganathan, Subramani [Titan Industries, Hosur, Tamilnadu (India). Ion Plating Dept.

    2016-07-01

    Zirconium nitride (ZrN) thin films were prepared on stainless steel (SS) substrates by medium frequency (MF) reactive sputtering with gas ion source (GIS) by varying the deposition time and obtained thickness (t{sub ZrN}) in the range of 1.25 to 3.24 μm. The effect of thickness on the structural and microstructural properties was studied using XRD and AFM. XRD characterization revealed that the texture of the ZrN thin films changes as a function of thickness. Both, the (111) and (200) peak, appear initially and (111) becomes more intense with increasing t{sub ZrN}. AFM imaging revealed that the ZrN thin film coated with t{sub ZrN} ∼ 3.24 μm shows larger grains that are uniformly distributed over the surface. An average hardness value of 19.79 GPa was observed for ZrN thin films having t{sub ZrN} ∼ 3.24 μm. The ZrN thin films having t{sub ZrN} ∼ 3.24 μm exhibits better adhesion strength up to 20 N. The electrochemical polarization studies indicated that the ZrN thin film having larger thickness shows improved corrosion resistance compared to SS in 3.5 % NaCl solution.

  11. Wet-Chemical Surface Texturing of Sputter-Deposited ZnO:Al Films as Front Electrode for Thin-Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Xia Yan

    2015-01-01

    Full Text Available Transparent conductive oxides (TCOs play a major role as the front electrodes of thin-film silicon (Si solar cells, as they can provide optical scattering and hence improved photon absorption inside the devices. In this paper we report on the surface texturing of aluminium-doped zinc oxide (ZnO:Al or AZO films for improved light trapping in thin-film Si solar cells. The AZO films are deposited onto soda-lime glass sheets via pulsed DC magnetron sputtering. Several promising AZO texturing methods are investigated using diluted hydrochloric (HCl and hydrofluoric acid (HF, through a two-step etching process. The developed texturing procedure combines the advantages of the HCl-induced craters and the smaller and jagged—but laterally more uniform—features created by HF etching. In the two-step process, the second etching step further enhances the optical haze, while simultaneously improving the uniformity of the texture features created by the HCl etch. The resulting AZO films show large haze values of above 40%, good scattering into large angles, and a surface angle distribution that is centred at around 30°, which is known from the literature to provide efficient light trapping for thin-film Si solar cells.

  12. Annealing dependence on flexible p-CuGaO2/n-ZnO heterojunction diode deposited by RF sputtering method

    Directory of Open Access Journals (Sweden)

    Lam Mui Li

    2017-01-01

    Full Text Available In this work, p-CuGaO2/n-ZnO heterojunction diodes were deposited by RF powered sputtering method on polyethylene terephthalate (PETP, PET substrates. Structural, morphology, optical and electrical properties of CuGaO2/ZnO heterojunction was investigated as a function of annealing duration. The structural properties show the ZnO films (002 peak were stronger at the range of 34° while CuGaO2 (015 peak is not visible at 44°. The surface morphology revealed that RMS roughness become smoother as the annealing duration increase to 30 minutes and become rougher as the annealing duration is increased to 60 minutes. The optical properties of CuGaO2/ZnO heterojunction diode at 30 minutes exhibit approximately 75% optical transmittance in the invisible region. The diodes exhibited a rectifying characteristic and the maximum forward current was observed for the diode annealed for 30 minutes. The diodes show an ideality factor range from 43.69 to 71.29 and turn on voltage between 0.75 V and 1.05 V.

  13. Optical characterization and electrochemical behavior of electrochromic windows using magnetron sputter deposition Tungsten Oxide and (1-x) WO 3xTiO II thin films

    Science.gov (United States)

    Li, Zhuying; Liu, Zuli; Yao, Kailun; Song, Yusu

    2006-02-01

    Since Deb's experiment in 1973 on the electrochromic effect, transmissive electrochromic devices (ECDs) exhibit outstanding potential as energy efficient window controls which allow dynamic control of the solar energy transmission [1]. These devices with non-volatile memory, once in the coloured state, remain in the same state even after removal of the field. The optical and electrochemical properties of electrochromic windows using magnetron sputter deposition tungsten oxide thin films and titanium oxide doped tungsten oxide thin films are investigated. From the UV region of the transmittance spectra, the band gap energy from the fundamental absorption edge can be determined. And the impedance of these thin films in 1 mol LiClO 4 propylene carbonate electrolyte (LIPC) are measured and analysed. Equivalent circuit of thin film impedances, and correlative resistances and constant phase angle element are gained. SEM and XRD of the tungsten oxide thin films and (1-x) WO 3xTiO II thin films are studied. These performance characteristics make tungsten oxide thin films and titanium oxide doped tungsten oxide thin films materials suitable for electrochromic windows applications.

  14. Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media

    DEFF Research Database (Denmark)

    Bae, Dowon; Shayestehaminzadeh, Seyedmohammad; Thorsteinsson, Einar B.

    2016-01-01

    Si is an excellent absorber material for use in photoelectrochemical (PEC) hydrogen production. Only a few studies have been done using Si in alkaline electrolyte for hydrogen evolution due to its poor chemical stability in high pH electrolyte, indicating that a chemically stable protection layer...... is essential. Here we investigate thin TiO2 films deposited by high power impulse magnetron sputtering (HiPIMS) as a protection layer for a p-type silicon photocathode for photoelectrochemical H2 evolution in a high pH electrolyte. The X-ray reflectometry analysis reveals that the HiPIMS process provides...... improved film density for TiO2 films (4.15 g/cm3), and consequently results in a significantly less corroded Si surface. The Si photocathode protected by the HiPIMS grown TiO2 film along with Pt as co-catalyst produced a photocurrent onset potential of ~0.5 V vs. RHE in 1 M KOH and showed a 4% decay over...

  15. Annealing dependence on flexible p-CuGaO2/n-ZnO heterojunction diode deposited by RF sputtering method

    Science.gov (United States)

    Li Lam, Mui; Hafiz Abu Bakar, Muhammad; Lam, Wai Yip; Alias, Afishah; Rahman, Abu Bakar Abd; Anuar Mohamad, Khairul; Uesugi, Katsuhiro

    2017-11-01

    In this work, p-CuGaO2/n-ZnO heterojunction diodes were deposited by RF powered sputtering method on polyethylene terephthalate (PETP, PET) substrates. Structural, morphology, optical and electrical properties of CuGaO2/ZnO heterojunction was investigated as a function of annealing duration. The structural properties show the ZnO films (002) peak were stronger at the range of 34° while CuGaO2 (015) peak is not visible at 44°. The surface morphology revealed that RMS roughness become smoother as the annealing duration increase to 30 minutes and become rougher as the annealing duration is increased to 60 minutes. The optical properties of CuGaO2/ZnO heterojunction diode at 30 minutes exhibit approximately 75% optical transmittance in the invisible region. The diodes exhibited a rectifying characteristic and the maximum forward current was observed for the diode annealed for 30 minutes. The diodes show an ideality factor range from 43.69 to 71.29 and turn on voltage between 0.75 V and 1.05 V.

  16. Effect of target self-bias voltage on the mechanical properties of diamond-like carbon films deposited by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, S.; Laugier, M.T.; Rahman, I.Z

    2004-12-01

    Diamond-like carbon (DLC) thin films were deposited by RF magnetron sputtering under different target self-bias voltages from -290 to -1090 V. Mechanical properties of these films in terms of hardness, Young's modulus, elastic recovery, and plastic resistance parameter (H/E) under different target self-bias voltages were analysed by the nanoindentation technique. Hardness and Young's modulus were found to increase in the range of 11-22 and 110-152 GPa, respectively, with increase of target self-bias voltage. The Korsunsky composite hardness model was used in order to determine the true hardness of DLC films from measurement on the film/substrate system. Residual stress in the films, measured using the bending beam method, was found to be compressive and increased with the increase of target self-bias voltage. The variation of intensity ratio, I{sub d}/I{sub g} and the position of G-band of the DLC films with respect to target self-bias voltage were also investigated by Raman spectroscopy.

  17. Transparent Conductive In and Ga Doped ZnO/Cu Bi-Layered Films Deposited by DC and RF Magnetron Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hyun-Joo; Song, Young-Hwan; Oh, Jung-Hyun; Heo, Sung-Bo; Kim, Daeil [University of Ulsan, Ulsan (Korea, Republic of)

    2016-06-15

    In- and Ga-doped ZnO (IGZO) films were deposited on 5 nm thick Cu film buffered poly-carbonate substrates with RF magnetron sputtering and the effects of the Cu buffer layer on the optical and electrical properties of the films were investigated. The IGZO single layer films exhibited an electrical resistivity of 1.2×10{sup -}1 Ω cm while the IGZO/Cu bi-layered films exhibited a lower resistivity of 1.6×10{sup -}3 Ω cm. With respect to optical properties, the optical band gap of the IGZO films appeared to decrease as a result of an increasing carrier concentration due to the Cu buffer layer. In addition, the RMS roughness (8.2 nm) of the IGZO films also decreased to 6.8 nm by a Cu buffer layer in AFM observation. Although the optical transmittance in the range of visible wavelengths was deteriorated by the Cu buffer layer, the IGZO films with a 5 nm thick Cu buffer layer exhibited a higher figure of merit of 2.6×10{sup -}4 Ω{sup -}1 compared with the IGZO single layer films due to enhanced optoelectrical performance.

  18. Mechanical, tribological, and electrochemical behavior of Cr 1- xAl xN coatings deposited by r.f. reactive magnetron co-sputtering method

    Science.gov (United States)

    Sanchéz, J. E.; Sanchéz, O. M.; Ipaz, L.; Aperador, W.; Caicedo, J. C.; Amaya, C.; Landaverde, M. A. Hernández; Beltran, F. Espinoza; Muñoz-Saldaña, J.; Zambrano, G.

    2010-02-01

    Chromium aluminum nitride (Cr 1- xAl xN) coatings were deposited onto AISI H13 steel and silicon substrates by r.f. reactive magnetron co-sputtering in (Ar/N 2) gas mixture from chromium and aluminum targets. Properties of deposited Cr 1- xAl xN coatings such as compositional, structural, morphological, electrochemical, mechanical and tribological, were investigated as functions of aluminum content. X-ray diffraction patterns of Cr 1- xAl xN coatings with different atomic concentrations of aluminum (0.51 < x < 0.69) showed the presence and evolution of (1 1 1), (2 0 0), and (1 0 2) crystallographic orientations associated to the Cr 1- xAl xN cubic and w-AlN phases, respectively. The rate of corrosion of the steel coated with Cr 1- xAl xN varied with the applied power; however, always being clearly lower when compared to the uncoated substrate. The behavior of the protective effect of the Cr 1- xAl xN coatings is based on the substitution of Cr for Al, when the power applied to the aluminum target increases. The mechanical properties were also sensitive to the power applied, leading to a maximum in hardness and a reduced elastic modulus of 30 and 303 GPa at 350 W and a monotonic decrease to 11 and 212 GPa at 450 W, respectively. Finally, the friction coefficient measured by pin-on disk revealed values between 0.45 and 0.70 in humid atmosphere.

  19. The effect of the oxygen ratio control of DC reactive magnetron sputtering on as-deposited non stoichiometric NiO thin films

    Science.gov (United States)

    Wang, Mengying; Thimont, Yohann; Presmanes, Lionel; Diao, Xungang; Barnabé, Antoine

    2017-10-01

    Non-stoichiometric Ni1-xO thin films were prepared on glass substrate by direct current reactive magnetron sputtering in a large range of oxygen partial pressure (0 ≤ pO2 ≤ 1 Pa). The dependence of the deposited film structure and properties on oxygen stoichiometry were systematically analyzed by X-ray diffraction, X-ray reflectivity, X-ray photoemission spectroscopy, Raman spectroscopy, atomic force microscopy, UV-vis measurements and electrical transport properties measurements. The deposition rates, surface morphology and opto-electrical properties are very sensitive to the oxygen partial pressure lower than 0.05 Pa due to the presence of metallic nickel cluster phase determined by X-ray diffraction, X-ray reflectivity and XPS spectroscopy. Presence of nanocrystallized NiO phase was highlighted even for pO2 = 0 Pa. For pO2 > 0.05 Pa, only the NiO phase was detected. Progressive appearance of Ni3+ species is characterized by a fine increase of the lattice parameter and (111) preferred orientation determined by grazing angle X-ray diffraction, fine increase of the X-ray reflectivity critical angle, displacement of the Ni 2p3/2 signal towards lower energy, significant increase of the electrical conductivity and decrease of the total transmittance. Quantification of Ni3+ by XPS method is discussed. We also showed that the use of Raman spectroscopy was relevant for demonstrating the presence of Ni3+ in the Ni1-xO thin films.

  20. Epitaxial Bi3Fe5O12(001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques

    Science.gov (United States)

    Adachi, N.; Denysenkov, V. P.; Khartsev, S. I.; Grishin, A. M.; Okuda, T.

    2000-09-01

    We report on processing and comparative characterization of epitaxial Bi3Fe5O12 (BIG) films grown onto Gd3(ScGa)5O12[GSGG,(001)] single crystal using pulsed laser deposition (PLD) and reactive ion beam sputtering (RIBS) techniques. A very high deposition rate of about 0.8 μm/h has been achieved in the PLD process. Comprehensive x-ray diffraction analyses reveal epitaxial quality both of the films: they are single phase, exclusively (001) oriented, the full width at half maximum of the rocking curve of (004) Bragg reflection is 0.06 deg for PLD and 0.05 deg for RIBS film, strongly in-plane textured with cube-on-cube film-to-substrate epitaxial relationship. Saturation magnetization 4πMs and Faraday rotation at 635 nm were found to be 1400 Gs and -7.8 deg/μm in PLD-BIG, and 1200 Gs and -6.9 deg/μm in RIBS-BIG. Ferromagnetic resonance (FMR) measurements performed at 9.25 GHz yielded the gyromagnetic ratio γ=1.797×107l/s Oe, 1.826×107 l/s Oe; the constants of uniaxial magnetic anisotropy were Ku*=-8.66×104erg/cm3, -8.60×104 erg/cm3; the cubic magnetic anisotropy K1=-2.7×103 erg/cm3,-3.8×103 erg/cm3; and the FMR linewidth ΔH=25 and 34 Oe for PLD and RIBS films correspondingly. High Faraday rotation, low microwave loss, and low coercive field ⩽40 Oe of BIG/GSGG(001) films promise their use in integrated magneto-optic applications.

  1. Secondary growth mechanism of SiGe islands deposited on a mixed-phase microcrystalline Si by ion beam co-sputtering

    Science.gov (United States)

    Ke, S. Y.; Yang, J.; Qiu, F.; Wang, Z. Q.; Wang, C.; Yang, Y.

    2015-11-01

    We discuss the SiGe island co-sputtering deposition on a microcrystalline silicon (μc-Si) buffer layer and the secondary island growth based on this pre-SiGe island layer. The growth phenomenon of SiGe islands on crystalline silicon (c-Si) is also investigated for comparison. The pre-SiGe layer grown on μc-Si exhibits a mixed-phase structure, including SiGe islands and amorphous SiGe (a-SiGe) alloy, while the layer deposited on c-Si shows a single-phase island structure. The preferential growth and Ostwald ripening growth are shown to be the secondary growth mechanism of SiGe islands on μc-Si and c-Si, respectively. This difference may result from the effect of amorphous phase Si (AP-Si) in μc-Si on the island growth. In addition, the Si-Ge intermixing behavior of the secondary-grown islands on μc-Si is interpreted by constructing the model of lateral atomic migration, while this behavior on c-Si is ascribed to traditional uphill atomic diffusion. It is found that the aspect ratios of the preferential-grown super islands are higher than those of the Ostwald-ripening ones. The lower lateral growth rate of super islands due to the lower surface energy of AP-Si on the μc-Si buffer layer for the non-wetting of Ge at 700 °C and the stronger Si-Ge intermixing effect at 730 °C may be responsible for this aspect ratio difference.

  2. Hybrid biocomposites based on titania nanotubes and a hydroxyapatite coating deposited by RF-magnetron sputtering: Surface topography, structure, and mechanical properties

    Science.gov (United States)

    Chernozem, Roman V.; Surmeneva, Maria A.; Krause, Bärbel; Baumbach, Tilo; Ignatov, Viktor P.; Tyurin, Alexander I.; Loza, Kateryna; Epple, Matthias; Surmenev, Roman A.

    2017-12-01

    In this study, biocomposites based on porous titanium oxide structures and a calcium phosphate (CaP) or hydroxyapatite (HA) coating are described and prepared. Nanotubes (NTs) with different pore dimensions were processed using anodic oxidation of Ti substrates in a NH4F-containing electrolyte solution at anodization voltages of 30 and 60 V with a DC power supply. The external diameters of the nanotubes prepared at 30 V and 60 V were 53 ± 10 and 98 ± 16 nm, respectively. RF-magnetron sputtering of the HA target in a single deposition run was performed to prepare a coating on the surface of TiO2 NTs prepared at 30 and 60 V. The thickness of the CaP coating deposited on the mirror-polished Si substrate in the same deposition run with TiO2 NTs was determined by optical ellipsometry (SE) 95 ± 5 nm. Uncoated and CaP-coated NTs were annealed at 500 °C in air. Afterwards, the presence of TiO2 (anatase) was observed. The scanning electron microscopy (SEM), X-ray diffraction (XRD), photoelectron spectroscopy (XPS) and nanoindentation results revealed the influence that the NT dimensions had on the CaP coating deposition process. The tubular surfaces of the NTs were completely coated with the HA coating when prepared at 30 V, and no homogeneous CaP coating was observed when prepared at 60 V. The XRD patterns show peaks assigned to crystalline HA only for the coated TiO2 NTs prepared at 30 V. High-resolution XPS spectra show binding energies (BE) of Ca 2p, P 2p and O 1s core-levels corresponding to HA and amorphous calcium phosphate on TiO2 NTs prepared at 30 V and 60 V, respectively. Fabrication of TiO2 NTs results in a significant decrease to the elastic modulus and nanohardness compared to the Ti substrate. The porous structure of the NTs causes an increase in the elastic strain to failure of the coating (H/E) and the parameter used to describe the resistance of the material to plastic deformation (H3/E2) at the nanoscale level compared to the Ti substrate. Furthermore

  3. Deposition of multicomponent chromium carbide coatings using a non-conventional source of chromium and silicon with micro-additions of boron

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Ruiz, Jesus Eduardo, E-mail: jesus.gonzalez@biomat.uh.cu [Biomaterials Center, University of Havana (Cuba); Rodriguez Cristo, Alejandro [Mechanical Plants Company, Road of the Sub-Plan, Farm La Cana, Santa Clara, Villa Clara (Cuba); Ramos, Adrian Paz [Department of Chemistry, Universite de Montreal, Quebec (Canada); Quintana Puchol, Rafael [Welding Research Center, Central University Marta Abreu of Las Villas, Villa Clara (Cuba)

    2017-01-15

    The chromium carbide coatings are widely used in the mechanical industry due to its corrosion resistance and mechanical properties. In this work, we evaluated a new source of chromium and silicon with micro-additions of boron on the deposition of multi-component coatings of chromium carbides in W108 steel. The coatings were obtained by the pack cementation method, using a simultaneous deposition at 1000 deg for 4 hours. The coatings were analyzed by X-ray diffraction, X-ray energy dispersive spectroscopy, optical microscopy, microhardness test method and pin-on-disc wear test. It was found that the coatings formed on W108 steel were mainly constituted by (Cr,Fe){sub 23}C{sub 6} , (Cr,Fe){sub 7} C{sub 3} , Cr{sub 5-x}Si{sub 3-x} C{sub x+z}, Cr{sub 3} B{sub 0,44}C{sub 1,4} and (or) Cr{sub 7} BC{sub 4} . The carbide layers showed thicknesses between 14 and 15 μm and maximum values of microhardness between 15.8 and 18.8 GPa. Also, the micro-additions of boron to the mixtures showed statistically significant influence on the thickness, microhardness and abrasive wear resistance of the carbide coatings. (author)

  4. Modeling target erosion during reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Strijckmans, K., E-mail: Koen.Strijckmans@ugent.be; Depla, D.

    2015-03-15

    Highlights: • The erosion of a target is simulated with the RSD2013 software during reactive magnetron sputtering. • The influence of redeposition on the target state and on the hysteresis is explained. • The racetrack formation along the hysteresis and as function of the redeposition is quantified. • Comparison of the racetrack and the sputter profile shows clear differences. - Abstract: The influence of the reactive sputter conditions on the racetrack and the sputter profile for an Al/O{sub 2} DC reactive sputter system is studied by modeling. The role of redeposition, i.e. the deposition of sputtered material back on the target, is therefore taken into account. The used model RSD2013 is capable of simulating the effect of redeposition on the target condition in a spatial resolved way. Comparison between including and excluding redeposition in the RSD2013 model shows that the in-depth oxidation profile of the target differs. Modeling shows that it is important to distinguish between the formed racetrack, i.e. the erosion depth profile, and the sputter profile. The latter defines the distribution of the sputtered atoms in the vacuum chamber. As the target condition defines the sputter yield, it does determine the racetrack and the sputter profile of the planar circular target. Both the shape of the racetrack and the sputter profile change as function of the redeposition fraction as well as function of the oxygen flow change. Clear asymmetries and narrowing are observed for the racetrack shape. Similar effects are noticed for the sputter profile but to a different extent. Based on this study, the often heard misconception that the racetrack shape defines the distribution of the sputtered atoms during reactive sputtering is proven to be wrong.

  5. Specific features of sputtered atoms transport during Ta sub 2 O sub 5 film deposition on substrates of complicated spatial configuration

    CERN Document Server

    Bystrov, Y A; Volpyas, V A; Govako, E A; Timofeev, D E; Troshkov, V V

    2002-01-01

    The possibility of providing for uniform properties of the Ta sub 2 O sub 5 films on the surface of substrates, having complex form, is considered. The attempt is made to consider the sputtered atoms transport in the space of the target-substrate drift through the determination of the thermalization zone geometrical sizes and the subsequent transition of the sputtered particles into the diffusion mode. Various calculational models and static modeling methods are used for describing the process of the sputtered particles transport

  6. Zr-ZrO sub 2 cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    CERN Document Server

    Zhang Qi Chu; Lee, K D; Shen, Y G

    2003-01-01

    High solar performance Zr-ZrO sub 2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO sub 2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO sub 2 or Al sub 2 O sub 3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80 deg. C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO sub 2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coating film w...

  7. Electric and pyroelectric properties of AlN thin films deposited by reactive magnetron sputtering on Si substrate

    Science.gov (United States)

    Stan, G. E.; Botea, M.; Boni, G. A.; Pintilie, I.; Pintilie, L.

    2015-10-01

    Electric and pyroelectric properties of AlN layers deposited on Si substrates with different resistivities were investigated. The dielectric constant was found to be around 12, while the conductance determined from dc current measurements was found to be in the 10-9 to 10-10 S range. The pyroelectric measurements were performed in voltage mode using two types of IR sources: a laser diode with 800 nm wavelength and a black body at 700 °C. A peculiar behavior was observed for the signal recorded when the laser diode was used as IR source. It was found that the Si substrate is introducing a signal component, due to the photogenerated carriers, which is adding to the pyroelectric signal generated by the AlN layer. This component is strongly dependent on the resistivity of the Si substrate. For strongly doped Si (Si++) the signal generated into the substrate represents only 10% of the recorded pyroelectric voltage. For electronic grade Si the signal generated into the substrate is about 100 times larger than the pyroelectric signal generated in the AlN layer. This effect can be used as an optical amplification of the pyroelectric signal. The frequency dependence observed for the pyroelectric signal recorded when the black body is used as IR source is typical for a pyroelectric detector. A value as large as 12.4 μC m-2 K-1 was obtained for the pyroelectric coefficient using for estimation the constant signal at low modulation frequencies of the IR beam. However, the value of the pyroelectric coefficient is strongly affected by the electrical conductance of the AlN layer. As the conductance is frequency dependent it results that the value of the pyroelectric coefficient is frequency dependent, the value from above being valid only for very small frequencies of the temperature variation. It was also found that the electric and pyroelectric properties are dependent on the crystalline quality of the AlN layer.

  8. Influence of ternary elements (X = Si, B, Cr) on TiAlN coating deposited by magnetron sputtering process with single alloying targets

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Duck Hyeong [Korea Institute of Industrial Technology, Heat and Surface Technology Service Center, Incheon, 426-791 (Korea, Republic of); Department of Materials Engineering, Hanyang University, Gyeonggi-do, 426-791 (Korea, Republic of); Moon, Kyoung Il; Shin, Seung Yong [Korea Institute of Industrial Technology, Heat and Surface Technology Service Center, Incheon, 426-791 (Korea, Republic of); Lee, Caroline Sunyong, E-mail: sunyonglee@hanyang.ac.kr [Department of Materials Engineering, Hanyang University, Gyeonggi-do, 426-791 (Korea, Republic of)

    2013-11-01

    Ti–Al based single alloying targets were prepared by mechanical alloying and spark plasma sintering. Also, Si, B, and Cr added targets were prepared to improve wear and corrosion properties. The investigation on the alloying targets showed that their microstructures were about 20–30 nm in size and all the elements were homogeneously distributed. Ternary Ti–Al-based coatings were deposited by magnetron sputtering method with various alloying targets, such as TiAlSi, TiAlB and TiAlCr. The composition of the coating was almost the same with that of the target. Their microstructures and mechanical properties were investigated by X-ray diffractometer, field emission scanning electron microscope, nano-indenter, tribometer and etc. Moreover, effects of 3rd element on the wear and corrosion properties of Ti–Al–N based coatings were studied here. From the results of TiAlN-X coating properties, the sample coated with TiAlN-B showed the highest hardness. Moreover, TiAlN-Cr coatings showed the best friction coefficient in oil condition and best corrosion resistance with the lowest corrosion current density. Therefore, easy method of coating TiAlN with ternary element using single target, was demonstrated as well as its improved structural properties. - Highlights: • Improve properties of TiAlN coatings by adding third elements such as Si, B, and Cr • TiAlN-B coatings showed the highest hardness. • TiAlN-Cr coatings showed the best friction coefficient in oil condition. • TiAlN-Cr coatings showed the best corrosion resistance.

  9. Deposition of SiOx thin films on Y-TZP by reactive magnetron sputtering: influence of plasma parameters on the adhesion properties between Y-TZP and resin cement for application in dental prosthesis

    Directory of Open Access Journals (Sweden)

    José Renato Calvacanti de Queiroz

    2011-01-01

    Full Text Available In this paper SiOx thin films were deposited on Y-TZP ceramics by reactive magnetron sputtering technique in order to improve the adhesion properties between Y-TZP and resin cement for applications in dental prosthesis. For fixed cathode voltage, target current, working pressure and target-to-substrate distance, SiOx thin films were deposited at different oxygen concentrations in the Ar+O2 plasma forming gas. After deposition processes, SiOx thin films were characterized by profilometry, energy dispersive spectroscopy (EDS, optical microscopy and scanning electron microscopy (SEM. Adhesion properties between Y-TZP and resin cement were evaluated by shear testing. Results indicate that films deposited at 20%O2 increased the bond strength to (32.8 ± 5.4 MPa. This value has not been achieved by traditional methods.

  10. Optical and Electrical Properties of the Different Magnetron Sputter Power 300°C Deposited -ZnO Thin Films and Applications in p-i-n -Si:H Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2013-01-01

    Full Text Available A compound of ZnO with 3 wt% Ga2O3 (ZnO : Ga2O3 = 97 : 3 in wt%, GZO was sintered at C as a target. The GZO thin films were deposited on glass using a radio frequency magnetron sputtering system at C by changing the deposition power from 50 W to 150 W. The effects of deposition power on the crystallization size, lattice constant (c, resistivity, carrier concentration, carrier mobility, and optical transmission rate of the GZO thin films were studied. The blue shift in the transmission spectrum of the GZO thin films was found to change with the variations of the carrier concentration because of the Burstein-Moss shifting effect. The variations in the optical band gap ( value of the GZO thin films were evaluated from the plots of , revealing that the measured value decreased with increasing deposition power. As compared with the results deposited at room temperature by Gong et al., (2010 the C deposited GZO thin films had apparent blue shift in the transmission spectrum and larger value. For the deposited GZO thin films, both the carrier concentration and mobility linearly decreased and the resistivity linearly increased with increasing deposition power. The prepared GZO thin films were also used as transparent electrodes to fabricate the amorphous silicon thin-film solar cells, and their properties were also measured.

  11. Sputtering and surface structure modification of gold thin films deposited onto silicon substrates under the impact of 20–160 keV Ar{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, S., E-mail: smammeri@yahoo.fr [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Ouichaoui, S. [Université des Sciences et de la Technologie H. Boumediene (USTHB), Faculté de Physique, Laboratoire SNIRM, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria); Ammi, H.; Dib, A. [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria)

    2014-10-15

    Highlights: •Sputter yields were measured for gold thin films under keV Ar{sup +} ion bombardment. •RBS analysis was used to derive energy dependence of sputtering yield. •Surface effects under Ar{sup +} ion irradiation were studied by SEM and XRD analyses. -- Abstract: The induced sputtering and surface state modification of Au thin films bombarded by swift Ar{sup +} ions under normal incident angle have been studied over an energy range of (20–160) keV using three complementary techniques: Rutherford backscattering spectroscopy (RBS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The sputtering yields determined by RBS measurements using a 2 MeV {sup 4}He{sup +} ion beam were found to be consistent with previous data measured within the Ar{sup +} ion energy region E ⩽ 50 keV, which are thus extended to higher bombarding energies. Besides, the SEM and XRD measurements clearly point out that the irradiated Au film surfaces undergo drastic modifications with increasing the Ar{sup +} ion energy, giving rise to the formation of increasingly sized grains of preferred (1 1 1) crystalline orientations. The relevance of different sputtering yield models for describing experimental data is discussed with invoking the observed surface effects induced by the Ar{sup +} ion irradiation.

  12. Direct formation of a current collector layer on a partially reduced graphite oxide film using sputter-assisted metal deposition to fabricate high-power micro-supercapacitor electrodes

    Science.gov (United States)

    Byun, Segi; Yu, Jin

    2016-03-01

    When a reduced graphite oxide (RGO) freestanding film is fabricated on a supercapacitor cell via compression onto a current collector, there are gaps between the film and the current collector, even if the cell is carefully assembled. These gaps can induce increases in the electrical series resistance (ESR) of the cell, resulting in degradation of the cell's electrochemical performance. Here, to effectively reduce the ESR of the supercapacitor, metal sputtering deposition is introduced. This enables the direct formation of the current collector layer on a partially reduced GO (pRGO) film, the model system. Using metal sputtering, a nickel (Ni) layer with a thickness <1 μm can be created easily on one side of the pRGO film. Good electrical interconnection between the pRGO film and the current collector can be obtained using a Ni layer formed on the pRGO film. The pRGO film sustains its film form with high packing density (∼1.31 g cm-3). Furthermore, the Ni-sputtered pRGO film with optimized Ni thickness exhibits remarkable enhancement of its electrochemical performance. This includes a superior rate capability and semi-permanent cycle life compared with the untreated pRGO film. This is due to the significant decrease in the ESR of the film.

  13. Influence of vanadium incorporation on the microstructure, mechanical and tribological properties of Nb–V–Si–N films deposited by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hongbo; Xu, Junhua, E-mail: jhxu@just.edu.cn

    2015-09-15

    Composite Nb–V–Si–N films with various V contents (3.7–13.2 at.%) were deposited by reactive magnetron sputtering and the effects of V content on the microstructure, mechanical and tribological properties of Nb–V–Si–N films were investigated. The results revealed that a three-phase structure, consisting of face-centered cubic (fcc) Nb–V–Si–N, hexagonal close-packed (hcp) Nb–V–Si–N and amorphous Si{sub 3}N{sub 4}, co-exists in the Nb–V–Si–N films and the cubic phase is dominant. The hardness and critical load (L{sub c}) of Nb–V–Si–N films initially increased gradually and reached a summit, then decreased with the increasing V content in the films and the maximum values were 35 GPa and 9.8 N, respectively, at 6.4 at.% V. The combination of V into Nb–Si–N film led to the fracture toughness linearly increasing from 1.11 MPa·m{sup 1/2} at 3.7 at.% V to 1.67 MPa·m{sup 1/2} at 13.2 at.% V. At room temperature (RT), the average friction coefficient decreased from 0.80 at 3.7 at.% V to 0.55 at 13.2 at.% V for the Nb–V–Si–N films. The wear rate of Nb–V–Si–N films initially decreased and then increased after reaching a minimum value of about 6.35 × 10{sup −} {sup 7} mm{sup 3}/N·mm at 6.4 at.% V. As the rise of testing temperature from 200 °C to 600 °C, the average friction coefficient of Nb–V–Si–N films decreased with the increase of the testing temperature regardless of V content. However, the wear rate gradually increased for all films. The average friction coefficient and wear rate at RT and elevated temperatures were mainly influenced by the vanadium oxides with weakly bonded lattice planes. - Highlight: • Fcc-Nb–V–Si–N, hcp-Nb–V–Si–N and amorphous Si{sub 3}N{sub 4} co-existed in the films. • The amount of Si{sub 3}N{sub 4} decreased with increasing V content in the films. • Hardness of Nb–V–Si–N film (6.4 at.%) reached a maximum value of 35 GPa. • Addition of V led to the

  14. Probing the Dielectric Properties of Ultrathin Al/Al2O3/Al Trilayers Fabricated Using in Situ Sputtering and Atomic Layer Deposition.

    Science.gov (United States)

    Acharya, Jagaran; Wilt, Jamie; Liu, Bo; Wu, Judy

    2018-01-12

    Dielectric properties of ultrathin Al2O3 (1.1-4.4 nm) in metal-insulator-metal (M-I-M) Al/Al2O3/Al trilayers fabricated in situ using an integrated sputtering and atomic layer deposition (ALD) system were investigated. An M-I interfacial layer (IL) formed during the pre-ALD sample transfer even under high vacuum has a profound effect on the dielectric properties of the Al2O3 with a significantly reduced dielectric constant (εr) of 0.5-3.3 as compared to the bulk εr ∼ 9.2. Moreover, the observed soft-type electric breakdown suggests defects in both the M-I interface and the Al2O3 film. By controlling the pre-ALD exposure to reduce the IL to a negligible level, a high εr up to 8.9 was obtained on the ALD Al2O3 films with thicknesses from 3.3 to 4.4 nm, corresponding to an effective oxide thickness (EOT) of ∼1.4-1.9 nm, respectively, which are comparable to the EOTs found in high-K dielectrics like HfO2 at 3-4 nm in thickness and further suggest that the ultrathin ALD Al2O3 produced in optimal conditions may provide a low-cost alternative gate dielectric for CMOS. While εr decreases at a smaller Al2O3 thickness, the hard-type dielectric breakdown at 32 MV/cm and in situ scanning tunneling spectroscopy revealed band gap ∼2.63 eV comparable to that of an epitaxial Al2O3 film. This suggests that the IL is unlikely a dominant reason for the reduced εr at the Al2O3 thickness of 1.1-2.2 nm but rather a consequence of the electron tunneling as confirmed in the transport measurement. This result demonstrates the critical importance in controlling the IL to achieving high-performance ultrathin dielectric in MIM structures.

  15. Characterization of Si sub 1 sub - sub x Ge sub x thin films prepared by sputtering

    CERN Document Server

    Noguchi, T

    2000-01-01

    By bombarding solid targets, we deposited Si sub 1 sub - sub x Ge sub x thin films by sputtering without using inflammable CVD (chemical vapor deposition) gases. After the B sup + -implanted Si sub 1 sub - sub x Ge sub x films were thermally annealed, they were characterized. As the content of Ge increased, the refractive index increased and the band edge narrowed. The higher the annealing temperature, the lower the resistivity. For Si sub 1 sub - sub x Ge sub x films with a high Ge content (X approx 0.5), the flat-band voltage of the gate deduced from C-V curve was adjusted to the middle point between p sup + and n sup + polySi gates. Boron-doped SiGe films are promising gate materials for MOS (metal oxide semiconductor) and SOI (silicon on insulator) transistors driven at low driving voltage.

  16. SnO{sub 2}:F thin films deposited by RF magnetron sputtering: effect of the SnF{sub 2} amount in the target on the physical properties

    Energy Technology Data Exchange (ETDEWEB)

    De Moure F, F. [universidad Autonoma de Queretaro, Facultad de Quimica Materiales, Queretaro 76010, Queretaro (Mexico); Guillen C, A.; Nieto Z, K. E.; Quinones G, J. G.; Hernandez H, A.; Melendez L, M.; Olvera, M. de la L., E-mail: fcomoure@hotmail.com [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Apdo. Postal 14-740, 07360 Mexico D. F. (Mexico)

    2013-08-01

    SnO{sub 2}:F thin films were prepared by RF magnetron sputtering onto glass substrates using SnF{sub 2} as fluorine source. The films were deposited under a mixed argon/hydrogen atmosphere at a substrate temperature of 500 C. The X-ray diffraction shows that polycrystalline films were grown with a phases mixture of SnO{sub 2} and Sn O. The optical transmittance is between 80 and 90%. The physical properties of the films suggest that SnO{sub 2} thin films grown with small SnF{sub 2} content in the target can be considered as candidates for transparent electrodes. (Author)

  17. The structure of boron in boron fibres

    Science.gov (United States)

    Bhardwaj, J.; Krawitz, A. D.

    1983-01-01

    The structure of noncrystalline, chemically vapour-deposited boron fibres was investigated by computer modelling the experimentally obtained X-ray diffraction patterns. The diffraction patterns from the models were computed using the Debye scattering equation. The modelling was done utilizing the minimum nearest-neighbour distance, the density of the model, and the broadening and relative intensity of the various peaks as boundary conditions. The results suggest that the fibres consist of a continuous network of randomly oriented regions of local atomic order, about 2 nm in diameter, containing boron atoms arranged in icosahedra. Approximately half of these regions have a tetragonal structure and the remaining half a distorted rhombohedral structure. The model also indicates the presence of many partial icosahedra and loose atoms not associated with any icosahedra. The partial icosahedra and loose atoms indicated in the present model are in agreement with the relaxing sub-units which have been suggested to explain the anelastic behavior of fibre boron and the loosely bound boron atoms which have been postulated to explain the strengthening mechanism in boron fibres during thermal treatment.

  18. Non-conducting interfaces of LaAlO3/SrTiO3 produced in sputter deposition : The role of stoichiometry

    NARCIS (Netherlands)

    Dildar, I.M.; Boltje, D.B.; Hesselberth, M.H.S.; Aarts, J.; Xu, Q.; Zandbergen, H.W.; Harkema, S.

    2013-01-01

    We have investigated the properties of interfaces between LaAlO3 films grown on SrTiO3 substrates singly terminated by TiO2. We used RF sputtering in a high-pressure oxygen atmosphere. The films are smooth, with flat surfaces. Transmission electron microscopy shows sharp and continuous interfaces

  19. Boron nitride nanotubes grown on stainless steel from a mixture of diboron trioxide and boron

    Science.gov (United States)

    E, Songfeng; Long, Xiaoyang; Li, Chaowei; Geng, Renjie; Han, Dongbo; Lu, Weibang; Yao, Yagang

    2017-11-01

    Boron nitride nanotubes (BNNTs) can be grown on stainless steel by annealing a mixture of diboron trioxide (B2O3) and boron (B) at 1200-1300 °C under ammonia (NH3). In previously reported boron oxide chemical vapor deposition methods for the synthesis of BNNTs, diboron dioxide (B2O2) is generated in situ by the reaction of boron and metal oxides. In this study, we directly used a mixture of B2O3 and boron as boron sources, thereby, avoiding the use of metal containing species in the starting material. The concentration of B2O3 significantly influenced the formation, quality and quantity of BNNTs.

  20. Electrochemically deposited Cu{sub 2}O cubic particles on boron doped diamond substrate as efficient photocathode for solar hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Mavrokefalos, Christos K. [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom); Hasan, Maksudul, E-mail: maksudul.hasan@chem.ox.ac.uk [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom); Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Rohan, James F. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Compton, Richard G. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, England (United Kingdom); Foord, John S., E-mail: john.foord@chem.ox.ac.uk [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom)

    2017-06-30

    Highlights: • Fabrication of low-cost photocathode by electrochemical method is described. • Boron-doped diamond is presented as catalyst support. • NiO nanoparticles on Cu{sub 2}O surface enhances photocurrent and electrode stability. • Synergy of metallic interaction between Cu and Ni leads to high efficiency. - Abstract: Herein, we report a novel photocathode for the water splitting reaction. The electrochemical deposition of Cu{sub 2}O particles on boron doped diamond (BDD) electrodes and the subsequent decoration with NiO nanoparticles by a dip coating method to act as co-catalyst for hydrogen evolution reaction is described. The morphology analysis by scanning electron microscope (SEM) revealed that Cu{sub 2}O particles are cubic and decorated sporadically with NiO nanoparticles. X-ray photoelectron spectroscopy (XPS) confirmed the electronic interaction at the interface between Cu{sub 2}O and NiO through a binding energy shift of the main Cu 2p peak. The photoelectrochemical (PEC) performance of NiO-Cu{sub 2}O/BDD showed a much higher current density (−0.33 mA/cm{sup 2}) and photoconversion efficiency (0.28%) compared to the unmodified Cu{sub 2}O/BDD electrode, which are only −0.12 mA/cm{sup 2} and 0.06%, respectively. The enhancement in PEC performance is attributable to the synergy of NiO as an electron conduction mediator leading to the enhanced charge separation and transfer to the reaction interface for hydrogen evolution as evidenced by electrochemical impedance spectroscopy (EIS) and charge carrier density calculation. Stability tests showed that the NiO nanoparticles loading content on Cu{sub 2}O surface is a crucial parameter in this regard.

  1. Stress reduction of cubic boron nitride films by oxygen addition

    Energy Technology Data Exchange (ETDEWEB)

    Ye, J. [Forschungszentrum Karlsruhe, IMF I, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)], E-mail: Jian.Ye@imf.fzk.de; Ulrich, S.; Ziebert, C.; Stueber, M. [Forschungszentrum Karlsruhe, IMF I, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2008-12-01

    Cubic boron nitride (c-BN) films with significantly reduced residual stresses were successfully grown onto silicon substrates by means of controlled oxygen addition into the films. The deposition was based on radio-frequency magnetron sputtering of a hexagonal boron nitride (h-BN) target, and was accomplished in a reactive mode using gas mixtures of argon, nitrogen, and oxygen at 0.3 Pa pressure, 400 deg. C growth temperature, and - 250 V substrate bias. Results of systematic investigations are shown in this article with respect to the critical influences of oxygen concentration during deposition upon the stress, cubic phase fraction, as well as nanohardness of the deposited films. Under the specified growth conditions, the formation of c-BN was generally completely hindered for oxygen concentrations above 1.5 vol.% in the gas mixture. At concentrations below approximately 1 vol.%, the added oxygen exhibits however marginal influences on the c-BN fraction, but on the other side a strong impact on the stress of the deposited films. Cubic-phase dominated films (containing 70-80 vol.% c-BN) with their compressive stress three times reduced were thus produced through careful control of oxygen fraction in the gas mixture, showing an excellent nanohardness of almost 60 GPa. For such films, a post-deposition thermal treatment at 900 deg. C led to an additional drastic stress reduction resulting in a final residual stress that is almost 10 times lower than that of as-deposited c-BN films without intentional oxygen addition.

  2. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  3. Corrosion behavior of magnetron sputter-deposited (Mo/0.6/Ru/0.4/)82B18 and Mo82B18 amorphous metal films

    Science.gov (United States)

    Williams, R. M.; Thakoor, A. P.; Khanna, S. K.; Johnson, W. L.

    1984-01-01

    Amorphous metallic films of Mo49Ru33B18 and Mo82B18 have been prepared by magnetron sputtering, and their corrosion behavior was investigated and compared with amorphous liquid-quenched Mo49Ru33B18 and crystalline Mo i acidic and basic solutions. Sputtered Mo49Ru33B18 showed lower corrosion rates compared with liquid-quenched Mo49Ru33B18, owing to the superior surface smoothness and uniformity of the former. Amorphous Mo82B18 showed low corrosion rates in both acidic and basic aqueous solutions. Comparison of the corrosion properties of Mo49Ru33B18 with Mo82B18 and Mo demonstrates the roles of the alloys' constituents. Ru significantly extends the passive region to high-anodic potentials, but, at less-anodic potentials, Mo82B18 has the lowest corrosion rate.

  4. Yellow light emission from Ta2O5:Er, Eu, Ce thin films deposited using a simple co-sputtering method

    Directory of Open Access Journals (Sweden)

    K. Miura

    2015-01-01

    Full Text Available Erbium, europium, and cerium co-doped tantalum oxide (Ta2O5:Er, Eu, Ce thin films were prepared using a simple co-sputtering method, and yellow light emission was observed by the naked eye from a sample annealed at 900 °C for 20 min. The hexagonal Ta2O5 phase is very important, but the hexagonal CeTa7O19 phase should be avoided to obtain strong yellow light emission from Ta2O5:Er, Eu, Ce films. The co-sputtered films can be used as high-refractive-index and yellow-light-emitting materials of autocloned photonic crystals that can be applied to novel light-emission devices, and they will also be used as anti-reflection and down-conversion layers toward high-efficiency silicon solar cells.

  5. Sputtering and crystalline structure modification of bismuth thin films deposited onto silicon substrates under the impact of 20-160 keV Ar{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, S. [CRNA/Division des Techniques Nucleaires, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Ouichaoui, S., E-mail: souichaoui@gmail.co [USTHB/Faculte de Physique, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria); Ammi, H. [CRNA/Division des Techniques Nucleaires, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Zemih, R. [USTHB/Faculte de Physique, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria)

    2010-01-15

    The sputtering of bismuth thin films induced by 20-160 keV Ar{sup +} ions has been studied using Rutherford backscattering spectrometry, scanning electron microscopy and X-ray energy dispersive and diffraction spectroscopy. These techniques revealed increasing modifications of the Bi film surfaces with increasing both ion beam energy and fluence up to their complete deterioration under irradiation conditions E = 160 keV and phi = 1.5 x 10{sup 16} cm{sup -2}, leaving isolated islands of preferred (0 1 2) orientation on the Si substrate. The observed surface morphology and crystalline structure evolutions are likely due to a complex interplay of interaction mechanisms involving both elastic nuclear collisions and inelastic electronic ones. The measured Bi sputtering yields versus Ar{sup +} ion fluence for a fixed ion energy exhibit a significant depression at very low phi-values followed by a steady state regime above approx2.0 x 10{sup 14} cm{sup -2}. Measured sputtering yields versus Ar{sup +} ion energy with fixing ion fluence to 1.2 x 10{sup 16} cm{sup -2} in the upper part of the yield saturation regime are also reported. Their comparison to theoretical model and SRIM 2008 Monte Carlo simulation predictions is discussed.

  6. Laser micromachined wax-covered plastic paper as both sputter deposition shadow masks and deep-ultraviolet patterning masks for polymethylmethacrylate-based microfluidic systems

    KAUST Repository

    Fan, Yiqiang

    2013-12-16

    We report a technically innovative method of fabricating masks for both deep-ultraviolet (UV) patterning and metal sputtering on polymethylmethacrylate (PMMA) for microfluidic systems. We used a CO2 laser system to cut the required patterns on wax-covered plastic paper; the laser-patterned wax paper will either work as a mask for deep-UV patterning or as a mask for metal sputtering. A microfluidic device was also fabricated to demonstrate the feasibility of this method. The device has two layers: the first layer is a 1-mm thick PMMA substrate that was patterned by deep-UV exposure to create microchannels. The mask used in this process was the laser-cut wax paper. The second layer, also a 1-mm thick PMMA layer, was gold sputtered with patterned wax paper as the shadow mask. These two pieces of PMMA were then bonded to form microchannels with exposed electrodes. This process is a simple and rapid method for creating integrated microfluidic systems that do not require cleanroom facilities.

  7. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma; Deposition assistee par un plasma a arc a haut courant continu de couches minces de Nitrure de Bore et de Silicium microcristallin hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Franz, D. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    1999-09-01

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 {sup o}C according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 10{sup 12}-10{sup 1'}3 cm{sup -3}. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind

  8. Microstructure and electrical properties of bismuth and bismuth oxide deposited by magnetron sputtering UBM; Microestructura y propiedades electricas de bismuto y oxido de bismuto depositados por magnetron sputtering UBM

    Energy Technology Data Exchange (ETDEWEB)

    Otalora B, D. M.; Dussan, A. [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Carrera 30 No. 45-03, 111321 Bogota (Colombia); Olaya F, J. J., E-mail: jjolayaf@unal.edu.co [Universidad Nacional de Colombia, Facultad de Ingenieria, Departamento de Ingenieria Mecanica y Mecatronica, Carrera 30 No. 45-03, 111321 Bogota (Colombia)

    2015-07-01

    In this work, bismuth (Bi) and bismuth oxide (Bi{sub 2}O{sub 3}) thin films were prepared, at room temperature, by Sputtering Unbalanced Magnetron (UBM - Unbalance Magnetron) technique under glass substrates. Microstructural and electrical properties of the samples were studied by X-ray diffraction (XRD) and System for Measuring Physical Properties - PPMS (Physical Property Measurement System). Dark resistivity of the material was measured for a temperature range between 100 and 400 K. From the XRD measurements it was observed a polycrystalline character of the Bi associated to the presence of phases above the main peak, 2θ = 26.42 grades and a growth governed by a rhombohedral structure. Crystal parameters were obtained for both compounds, Bi and Bi{sub 2}O{sub 3}. From the analysis of the spectra of the conductivity as a function of temperature, it was established that the transport mechanism that governs the region of high temperature (T>300 K) is thermally activated carriers. From conductivity measurements the activation energies were obtained of 0.0094 eV and 0.015 eV for Bi{sub 2}O{sub 3} and Bi, respectively. (Author)

  9. Synthesis of well-aligned boron nanowires and their structural stability under high pressure

    CERN Document Server

    Cao Li Min; Gao Cun Xiao; Li Yan Cun; Li Xiao Dong; Wang, Y Q; Zhang, Z; Cui Qi Liang; Zou Guang Tian; Sun Li; Wang Wen Kui

    2002-01-01

    Owing to its unusual bonding and vast variety of unique crystal structures, boron is one of the most fascinating elements in the periodic table. Here we report the large-scale synthesis of well-ordered boron nanowires and their structural stability at high pressure. Boron nanowires with uniform diameter and length grown vertically on silicon substrates were synthesized by radio-frequency magnetron sputtering with a target of pure boron using argon as the sputtering atmosphere without involvement of templates and catalysts. Detailed characterization by high-resolution transmission electron microscopy and electron diffraction indicates that the boron nanowires are amorphous. Structural stability of the boron nanowires at room temperature has been investigated by means of in situ high-pressure energy-dispersive x-ray powder diffraction using synchrotron radiation in a diamond anvil cell. No crystallization was observed up to a pressure of 103.5 GPa, suggesting that the amorphous structure of boron nanowires is s...

  10. Study of the oxidation resistance of ZrxNand ZrxSi1-xN thin films deposited by reactive magnetron sputtering; Estudo da resistencia a oxidacao de filmes finos de ZrxN e ZrxSi1-xN depositados por magnetron sputtering reativo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, D.R.; Freitas, F.G.R.; Felix, L.C.; Carvalho, R.G.; Fontes Junior, A.S.; Tentardini, E.K., E-mail: daniel.angel0275@gmail.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Ciencia e Engenharia de Materiais; Silva Junior, H. da [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2016-07-01

    The objective of this work is to evaluate the oxidation resistance on pure zirconium nitride thin films and with silicon addition (ZrN and ZrSiN respectively). The thin films deposition were performed using reactive magnetron sputtering. The coatings were characterized by Rutherford Backscattering Spectroscopy (RBS), grazing angle X ray diffraction (GAXRD), scanning electronic microscopy (SEM-FEG) and oxidation tests starting from 500°C to 700°C. This study evaluated thin films with silicon content up to 14,9 at.%. GAXRD results showed only ZrN characteristics peaks, which allow the inference that Si3N4 has an amorphous structure. Oxidation tests demonstrate that the film with highest silicon content shows an increase of 200°C in oxidation temperature when compared with ZrN pure thin film. (author)

  11. Computer simulation of sputtering of graphite target in magnetron sputtering device with two zones of erosion

    Directory of Open Access Journals (Sweden)

    Bogdanov R.V.

    2015-03-01

    Full Text Available A computer simulation program for discharge in a magnetron sputtering device with two erosion zones was developed. Basic laws of the graphite target sputtering process and transport of sputtered material to the substrate were taken into account in the Monte Carlo code. The results of computer simulation for radial distributions of density and energy flux of carbon atoms on the substrate (at different values of discharge current and pressure of the working gas confirmed the possibility of obtaining qualitative homogeneous films using this magnetron sputtering device. Also the discharge modes were determined for this magnetron sputtering device, in which it was possible to obtain such energy and density of carbon atoms fluxes, which were suitable for deposition of carbon films containing carbon nanotubes and other nanoparticles.

  12. Effect of CdCl{sub 2} treatment on structural and electronic property of CdTe thin films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.A. [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Hossain, M.S.; Aliyu, M.M. [Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Karim, M.R. [Center of Excellence for Research in Engineering Materials (CEREM) College of Engineering, King Saud University, Riyadh, 11421 (Saudi Arabia); Razykov, T.; Sopian, K. [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Amin, N., E-mail: nowshad@eng.ukm.my [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Center of Excellence for Research in Engineering Materials (CEREM) College of Engineering, King Saud University, Riyadh, 11421 (Saudi Arabia)

    2013-11-01

    The structural and electrical properties of the magnetron sputtered CdTe thin films with subsequent CdCl{sub 2} solution treatment have been studied with a major focus on the influence of CdCl{sub 2} treatment to achieve high quality thin films. In this study, CdTe films with a thickness of 1.5 to 2 μm have been grown using the magnetron sputtering technique on top of glass substrate at an optimized substrate temperature of 250 °C. Aqueous CdCl{sub 2} concentration varied from 0.3 mol to 1.2 mol with the annealing temperature from 360 °C to 450 °C. The surface roughness of the films increases with the increase of solution concentration, while it fluctuates with the increase of annealing temperature. The density of nucleation centers and the strain increases for the films treated at 360 °C with 0.3 M to1.2 M while the grain growth of the films reduces. However, these strains are released at higher annealing temperatures, resulting in reduced dislocation densities, structural defects as well as increased crystalline property and grain size. The carrier concentration increases with the increase of treated CdCl{sub 2} concentration and subsequent annealing temperature. The highest carrier concentration of 1.05 × 10{sup 14}/cm{sup 3} was found for the CdTe thin films treated with 0.3 M CdCl{sub 2} solution followed by an annealing treatment at 420 °C for 20 min. - Highlights: • CdTe thin films are grown as absorption layers in CdTe solar cells by sputtering. • CdTe film quality in terms of structural and electronic properties is examined. • All growth parameters are optimized in the range of 1.5 to 2 μm CdTe films.

  13. Catalytic activity and stability of nanometic Rh overlayers prepared by pulsed arc-plasma deposition and r.f. magnetron-sputtering

    Science.gov (United States)

    Misumi, Satoshi; Matsumoto, Akinori; Yoshida, Hiroshi; Sato, Tetsuya; Machida, Masato

    2018-01-01

    50 μm-thick Fe-Cr-Al metal foils covered by 7 nm-thick Rh overlayers were prepared by pulsed arc-plasma (AP) and r.f. magnetron sputtering technique to compare their catalytic activities. As-prepared metal foil catalysts were wrapped into a honeycomb structure with a density of 900 cells per square inches and the stoichiometric NO-CO-C3H6-O2 reaction was performed at space velocity of 1.2 × 105 h-1. During temperature ramp at 10 °C min-1, honeycomb catalysts showed steep light-off of NO, CO, and C3H6 at above 200 °C and their conversions soon reached to almost 100%. Both catalysts exhibited high turnover frequencies close to or more than 50-fold greater compared with those for a reference Rh/ZrO2 powder-coated cordierite honeycomb prepared using a conventional slurry coating. When the temperature ramping was repeated, however, the catalytic activity was decreased to the different extent depending on the preparation procedure. Significant deactivation occurred only when prepared by sputtering, whereas the sample prepared by AP showed no signs of deactivation. The deactivation is associated with the formation of passivation layers consisting of Fe, Cr, and Al oxides, which covered the surface and decreased the surface concentration of Rh. The Rh overlayer formed by AP was found to be thermally stable because of the strong adhesion to the metal foil surface, compared to the sample prepared by sputtering.

  14. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, A.; Kannan, R. [Department of Physics, University College of Engineering, Anna University, Dindugal-624622 (India); Subramanian, N. Sankara [Department of Physics, Thiagarajar College of Engineering, Madurai -625015, Tamilnadu (India); Loganathan, S. [Ion Plating, Titan Industries Ltd., Hosur - 635126, Tamilnadu (India)

    2014-04-24

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  15. Evaluating the microstructure and mechanical performance of sputtered TiAlBN nanocomposite coating

    Science.gov (United States)

    Das, Pritam; Anwar, Shahid; Anwar, Sharmistha

    2017-05-01

    We report here the microstructural and mechanical properties of nanocrystalline (nc) Titanium Aluminium Nitride (TiAlN) embedded in nanocrystalline Boron Nitride (BN) nanocomposite films. The coatings were deposited on Si substrate using reactive magnetron co-sputtering by varying BN power. Coatings were characterized by using grazing incident X-ray diffraction (GIXRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and nanoindentation. GIXRD showed the formation of cubic Ti3AlN and hexagonal BN phase in the coating. Variation in structure and target power of BN influence the mechanical property of the coating. Mechanical property increases with power up to 100W, then decrease with further increase in power.

  16. Characteristics of Carrier Transport and Crystallographic Orientation Distribution of Transparent Conductive Al-Doped ZnO Polycrystalline Films Deposited by Radio-Frequency, Direct-Current, and Radio-Frequency-Superimposed Direct-Current Magnetron Sputtering.

    Science.gov (United States)

    Nomoto, Junichi; Inaba, Katsuhiko; Kobayashi, Shintaro; Watanabe, Takeshi; Makino, Hisao; Yamamoto, Tetsuya

    2017-08-09

    We investigated the characteristics of carrier transport and crystallographic orientation distribution in 500-nm-thick Al-doped ZnO (AZO) polycrystalline films to achieve high-Hall-mobility AZO films. The AZO films were deposited on glass substrates at 200 °C by direct-current, radio-frequency, or radio-frequency-superimposed direct-current magnetron sputtering at various power ratios. We used sintered AZO targets with an Al₂O₃ content of 2.0 wt. %. The analysis of the data obtained by X-ray diffraction, Hall-effect, and optical measurements of AZO films at various power ratios showed that the complex orientation texture depending on the growth process enhanced the contribution of grain boundary scattering to carrier transport and of carrier sinks on net carrier concentration, resulting in the reduction in the Hall mobility of polycrystalline AZO films.

  17. Optical and XPS studies of BCN thin films by co-sputtering of B{sub 4}C and BN targets

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Adithya, E-mail: adithya@knights.ucf.edu; Sundaram, Kalpathy B.

    2017-02-28

    Highlights: • Wide range of optical band gaps (Eg) are achieved for dual target sputtered BCN films in the range of 1.9 eV−3.7 eV. • Optical band gap (Eg) studies are performed as a function of target powers, gas ratios and deposition temperatures. • Eg is found to increase with N{sub 2}/Ar flow ratios and deposition temperatures. • XPS studies are conducted to ascertain the chemical and bonding characteristics. • XPS showed higher h-BN and B{sub 4}C property at higher N{sub 2}/Ar gas ratios for films deposited at 20 W and 40 W B{sub 4}C power respectively. - Abstract: Boron carbon nitride (BCN) thin films are investigated for their optical properties. BCN, is the unanimous choice for inter-dielectric layer (IDL) in very large scale integration (VLSI) because of its low-k dielectric constant. Optical properties can be tailored as a function of elemental composition, which makes BCN a prospective material in UV-filters and mirrors. Films are deposited by reactive co-sputtering of boroncarbide (B{sub 4}C) and boronnitride (BN) with varying N{sub 2}/Ar gas flow ratio by DC and RF sputtering respectively. XPS studies are performed to deduce the bonding and chemical properties of the BCN thinfilms. Optical band gap (Eg) studies are performed as a result of varying target powers, gas ratios and deposition temperatures. Eg is found to increase with N{sub 2}/Ar flow ratios and deposition temperatures. BCN deposited at 20 W DC exhibited higher band gap range and the highest achieved is 3.7 eV at N{sub 2}/Ar = 0.75. Lowest value achieved is 1.9 eV at N{sub 2}/Ar = 0.25 for as-deposited films.

  18. Application of magnetron sputtering for producing bioactive ceramic ...

    Indian Academy of Sciences (India)

    Radio frequency (RF) magnetron sputtering is a versatile deposition technique that can produce thin, uniform, dense calcium phosphate coatings. In this paper, principle and character of magnetron sputtering is introduced, and development of the hydroxyapatite and its composite coatings application is reviewed. In addition ...

  19. Indium-tin oxide thin films deposited at room temperature on glass and PET substrates: Optical and electrical properties variation with the H{sub 2}–Ar sputtering gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Fraga, L.; Jiménez-Villacorta, F.; Sánchez-Marcos, J.; Andrés, A. de; Prieto, C., E-mail: cprieto@icmm.csic.es

    2015-07-30

    Highlights: • ITO deposition on glass and PET at room temperature by using H. • High transparency and low resistance is obtained by tuning the H. • The figure of merit for ITO films on PET becomes maximal for thickness near 100 nm. - Abstract: The optical and electrical properties of indium tin oxide (ITO) films deposited at room temperature on glass and polyethylene terephthalate (PET) substrates were investigated. A clear evolution of optical transparency and sheet resistance with the content of H{sub 2} in the gas mixture of H{sub 2} and Ar during magnetron sputtering deposition is observed. An optimized performance of the transparent conductive properties ITO films on PET was achieved for samples prepared using H{sub 2}/(Ar + H{sub 2}) ratio in the range of 0.3–0.6%. Moreover, flexible ITO-PET samples show a better transparent conductive figure of merit, Φ{sub TC} = T{sup 10}/R{sub S}, than their glass counterparts. These results provide valuable insight into the room temperature fabrication and development of transparent conductive ITO-based flexible devices.

  20. Room temperature deposition of high figure of merit Al-doped zinc oxide by pulsed-direct current magnetron sputtering: Influence of energetic negative ion bombardment on film's optoelectronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Fumagalli, F., E-mail: francesco.fumagalli@iit.it; Martí-Rujas, J., E-mail: javier.rujas@iit.it; Di Fonzo, F., E-mail: fabio.difonzo@iit.it

    2014-10-31

    Aluminum-doped zinc oxide is regarded as a promising indium-free transparent conductive oxide for photovoltaic and transparent electronics. In this study high transmittance (up to 90,6%) and low resistivity (down to 8,4°1{sup −4} Ω cm) AZO films were fabricated at room temperature on thermoplastic and soda-lime glass substrates by means of pulsed-DC magnetron sputtering in argon gas. Morphological, optical and electrical film properties were characterized using scanning electron microscopy, UV–vis–nIR photo-spectrometer, X-ray spectroscopy and four probes method. Optimal deposition conditions were found to be strongly related to substrate position. The dependence of functional properties on substrate off-axis position was investigated and correlated to the angular distributions of negative ions fluxes emerging from the plasma discharge. Figure of merit as high as 2,15 ± 0,14 Ω{sup −1} were obtained outside the negative oxygen ions confinement region. Combination of high quality AZO films deposited on flexible polymers substrates by means of a solid and scalable fabrication technique is of interest for application in cost-effective optoelectrical devices, organic photovoltaics and polymer based electronics. - Highlights: • High figure of merit transparent conductive oxide's deposited at room temperature. • High transmittance and low resistivity obtained on thermoplastic substrates. • Competitive optoelectrical properties compared to high temperature deposition. • Negative ion fluxes confinement influence structural and optoelectrical properties. • Easily adaptable for scaled-up low temperature AZO film deposition installations.

  1. Room Temperature Optical Constants and Band Gap Evolution of Phase Pure M1-VO2 Thin Films Deposited at Different Oxygen Partial Pressures by Reactive Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Meng Jiang

    2014-01-01

    Full Text Available Spectroscopic ellipsometry study was employed for phase pure VO2(M1 thin films grown at different oxygen partial pressures by reactive magnetron sputtering. The optical constants of the VO2(M1 thin films have been determined in a photon energy range between 0.73 and 5.05 eV. The near-infrared extinction coefficient and optical conductivity of VO2(M1 thin films rapidly increase with decreasing O2-Ar ratios. Moreover, two electronic transitions can be uniquely assigned. The energy gaps correlated with absorption edge (E1 at varied O2-Ar ratios are almost the same (~2.0 eV; consequently, the absorption edge is not significantly changed. However, the optical band gap corresponding to semiconductor-to-metal phase transition (E2 decreases from 0.53 to 0.18 eV with decreasing O2-Ar ratios.

  2. The influence of substrate temperature on properties of Cu-Al-O films deposited using the reactive ion beam sputtering method

    Directory of Open Access Journals (Sweden)

    A.I. Ievtushenko

    2017-10-01

    Full Text Available For the first time, Cu-Al-O films were grown using the reactive ion beam sputtering at temperatures ranging from 80 to 380 °C in 50 °C increments. Correlations between the properties of as-grown films measured by X-ray diffraction, energy dispersive X-ray spectroscopy, atomic force microscopy, Fourier transform infrared spectrometry and optical transmission measurements have been discussed. It was shown that the increase of substrate temperature caused formation of the CuAlO2 phase. Additional optimization of technological parameters of growth and post-growth temperature annealing are necessary to obtain single-phase CuAlO2 films.

  3. Influence of substrate on structural, morphological and optical properties of TiO2 thin films deposited by reaction magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Xinghua Zhu

    2017-12-01

    Full Text Available Titanium dioxide (TiO2 films have been prepared by DC reaction magnetron sputtering technique on different substrates (glass, SiO2, platinum electrode-Pt, Silicon-Si. X-ray diffraction (XRD patterns showed that all TiO2 films were grown along the preferred orientation of (110 plane. Samples on Si and Pt substrates are almost monophasic rutile, however, samples on glass and SiO2 substrates accompanied by a weak anatase structure. Atomic force microscopy (AFM images revealed uniform grain distribution except for films on Pt substrates. Photoluminescence (PL spectra showed obvious intrinsic emission band, but films on glass was accompanied by a distinct defect luminescence region. Raman spectroscopy suggested that all samples moved to high wavenumbers and films on glass moved obviously.

  4. R.F. planar magnetron sputtered ZnO films I: structural properties

    NARCIS (Netherlands)

    van de Pol, F.C.M.; van de Pol, F.C.M.; Blom, F.R.; Blom, F.R.; Popma, T.J.A.

    1991-01-01

    The structural properties of r.f. planar magnetron sputtered ZnO films are studied as a function of deposition parameters: substrate type, substrate temperature, sputter gas pressure, growth rate and sputtering power. These films are applied as piezoelectric transducers in micromechanical sensors

  5. Numerical Simulation of Cold Dense Plasma Sputtering with VORPAL

    Science.gov (United States)

    Zhou, Chuandong; Stoltz, Peter; Veitzer, Seth

    2009-10-01

    Sputtering is an evaporation process that physically removes atoms from a solid target material. This process takes place under bombardment of the target surface by energetic ions. Sputtering is widely applied in material processing and coating, such as etching and thin film deposition. Numerical simulation of sputtering process requires both accurate models of nuclear stopping in materials, particle dynamics and consistent electromagnetic fields. The particle in cell code VORPAL can simulate cold dense plasma under many different electromagnetic configurations. The dynamics of both incident particles and sputtered neutral atoms are simulated in VORPAL, and the sputtering yield is calculated from a standalone numerical library for a variety of materials that are commonly used in industrial applications. Numerical simulation of the spatial distribution of sputtering resulting from a cold dense plasma under externally applied magnetic field and self-consistent electric field is presented.

  6. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    NARCIS (Netherlands)

    Mohammadi, V.; Nihtianov, S.

    2016-01-01

    The lateral gas phase diffusion length of boron atoms, LB, along silicon and boron surfaces during chemical vapor deposition(CVD) using diborane (B2H6) is reported. The value of LB is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and

  7. Analysis of Eu-effect on stabilization of the TiO2-anatase structure in high temperature and photoluminescence efficiency for the coatings as-deposited in magnetron sputtering process

    Science.gov (United States)

    Wojcieszak, D.

    2017-11-01

    In this work the influence of annealing on structural properties and photoluminescence efficiency of TiO2 thin films doped with 0.2 at.% of Eu was described. Coatings were as-deposited in magnetron sputtering process and additionally annealed at 800 °C. Due to application of 'high energy' process the undoped titanium dioxide had fine crystalline rutile structure directly after deposition. In the case of TiO2:Eu film the situation was different. Doping with europium resulted in receiving of nanocrystalline anatase form. Moreover, Eu-dopant was stabilizing the anatase structure in high temperature (at 800 °C) and the phase transformation effect did not occurred. The influence of europium on the microstructure of TiO2 thin films was determined by X-ray diffraction, transmission electron microscope and Raman spectroscopy. The analysis was correlated with photoluminescence measurements. It was found that the crystal form of the TiO2 matrix as well as presence of defect states had a direct impact on PL efficiency. Moreover, the excitation mechanism of photo-generate electrons from TiO2 conduction band via matrix defect states into europium ions was discussed with the respect to location of Eu2+ and Eu3+ ions and its surrounding in the film.

  8. Optimization of the structural, microstructural and optical properties of nanostructured Cr{sup 2+}:ZnSe films deposited by magnetron co-sputtering for mid-infrared applications

    Energy Technology Data Exchange (ETDEWEB)

    Vivet, N. [Centre de Recherche sur les Ions, les Materiaux et la Photonique (CIMAP)-ENSICAEN, 6 Bd. du Marechal Juin, F-14050 Caen (France); Morales, M., E-mail: magali.morales@ensicaen.f [Centre de Recherche sur les Ions, les Materiaux et la Photonique (CIMAP)-ENSICAEN, 6 Bd. du Marechal Juin, F-14050 Caen (France); Levalois, M. [Centre de Recherche sur les Ions, les Materiaux et la Photonique (CIMAP)-ENSICAEN, 6 Bd. du Marechal Juin, F-14050 Caen (France); Charvet, S. [Laboratoire de Physique de la Matiere Condensee (LPMC), Universite de Picardie Jules Verne, 33, rue Saint-Leu-F-80039 Amiens (France); Jomard, F. [Laboratoire de Physique des Solides et de Cristallogenese (LPSC), 1 place Aristide Briand, F-92195 Meudon (France)

    2010-10-29

    In order to obtain optimally adherent films having the highest mid-infrared photoluminescence efficiency, nanostructured Cr{sup 2+}:ZnSe films were deposited at room temperature on various substrates by magnetron radiofrequency co-sputtering of a SiO{sub 2} target covered by a given number of ZnSe and Cr chips, at different Argon pressures and radiofrequency powers. The deposition parameter effect on the compositional, structural, microstructural and optical properties of the films has been investigated using X-ray reflectivity and diffraction, optical transmission spectroscopy, transmission electron microscopy, and photoluminescence studies. The corresponding films are composed by highly textured cubic and hexagonal ZnSe phases and exhibit strong tensile in-plane residual stresses. The evolution of the tensile residual stress and porosity values are consistent with the optical properties of the layers, and in particular the evolutions of both optical gap and refractive index. The room temperature mid-infrared (2-3 {mu}m) photoluminescence measurements under direct excitation (1850 nm) revealed that chromium has been incorporated in the Cr{sup 2+} active state, and the corresponding fluorescence efficiency for an optimized thin film is only two times smaller than the one of a Cr{sup 2+}:ZnSe reference bulk single crystal.

  9. Influence of addition of indium and of post-annealing on structural, electrical and optical properties of gallium-doped zinc oxide thin films deposited by direct-current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Duy Phong [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Nguyen, Huu Truong [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Phan, Bach Thang [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Faculty of Materials Science, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Hoang, Van Dung [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam); Maenosono, Shinya [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Tran, Cao Vinh, E-mail: tcvinh@hcmus.edu.vn [Laboratory of Advanced Materials, University of Science, Vietnam National University, HoChiMinh (Viet Nam)

    2015-05-29

    In this study, both gallium-doped zinc oxide (GZO) and indium-added gallium-doped zinc oxide (IGZO) thin films were deposited on commercial glasses by magnetron dc-sputtering in argon atmosphere. The crystal structure, electrical conductivity and optical transmission of as-deposited as well as post-annealed thin films of both GZO and IGZO were investigated for comparison. A small amount of indium introduced into GZO thin films had improved their polycrystalline structure and increased their electrical conductivity by over 29%. All obtained GZO and IGZO thin films have strong [002] crystalline direction, a characteristic orientation of ZnO thin films. Although post-annealed in air at high temperatures up to 500 °C, IGZO thin films still had very low sheet resistance of 6.6 Ω/□. Furthermore, they had very high optical transmission of over 80% in both visible and near-infrared regions. - Highlights: • Doping 0.1 at.% indium enhanced crystalline, electrical properties of GZO films. • The mobility of IGZO films was 25% higher than that of GZO films. • The IGZO films will be potential materials for transparent conducting electrodes.

  10. Influence of substrate pre-treatments by Xe{sup +} ion bombardment and plasma nitriding on the behavior of TiN coatings deposited by plasma reactive sputtering on 100Cr6 steel

    Energy Technology Data Exchange (ETDEWEB)

    Vales, S., E-mail: sandra.vales@usp.br [Universidade de São Paulo (USP), Escola de Engenharia de São Carlos, Av. Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 (Brazil); Brito, P., E-mail: ppbrito@gmail.com [Pontifícia Universidade Católica de Minas Gerais (PUC-MG), Av. Dom José Gaspar 500, 30535-901 Belo Horizonte, MG (Brazil); Pineda, F.A.G., E-mail: pipe8219@gmail.com [Universidade de São Paulo (USP), Escola de Engenharia de São Carlos, Av. Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 (Brazil); Ochoa, E.A., E-mail: abigail_ochoa@hotmail.com [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); Droppa, R., E-mail: roosevelt.droppa@ufabc.edu.br [Universidade Federal do ABC (UFABC), Av. dos Estados, 5001, Santo André, SP CEP 09210-580 (Brazil); Garcia, J., E-mail: jose.garcia@sandvik.com [Sandvik Coromant R& D, Lerkrogsvägen 19, SE-12680, Stockholm (Sweden); Morales, M., E-mail: monieriz@gmail.com [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); Alvarez, F., E-mail: alvarez@ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); and others

    2016-07-01

    In this paper the influence of pre-treating a 100Cr6 steel surface by Xe{sup +} ion bombardment and plasma nitriding at low temperature (380 °C) on the roughness, wear resistance and residual stresses of thin TiN coatings deposited by reactive IBAD was investigated. The Xe{sup +} ion bombardment was carried out using a 1.0 keV kinetic energy by a broad ion beam assistance deposition (IBAD, Kaufman cell). The results showed that in the studied experimental conditions the ion bombardment intensifies nitrogen diffusion by creating lattice imperfections, stress, and increasing roughness. In case of the combined pre-treatment with Xe{sup +} ion bombardment and subsequent plasma nitriding, the samples evolved relatively high average roughness and the wear volume increased in comparison to the substrates exposed to only nitriding or ion bombardment. - Highlights: • Effect of Xe ion bombardment and plasma nitriding on TiN coatings was investigated. • Xe ion bombardment with 1.0 KeV increases nitrogen retention in plasma nitriding. • 1.0 KeV ion impact energy causes sputtering, thus increasing surface roughness. • TiN coating wear is minimum after plasma nitriding due to lowest roughness.

  11. Structural analysis of W{sub 3}O/WO{sub 3} and TiO/TiO{sub 2} periodic multilayer thin films sputter deposited by the reactive gas pulsing process

    Energy Technology Data Exchange (ETDEWEB)

    Cacucci, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 5209 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 DIJON Cedex (France); Potin, V., E-mail: Valerie.Potin@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 5209 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 DIJON Cedex (France); Imhoff, L.; Marco de Lucas, M.C. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 5209 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 DIJON Cedex (France); Martin, N. [Institut FEMTO-ST, UMR 6174, CNRS, Universite de Franche-Comte, ENSMM, UTBM, 32 Avenue de l' Observatoire, 25044 Besancon Cedex (France)

    2012-05-01

    DC reactive sputtering was used to deposit titanium and tungsten-based metal/oxide periodic nanometric multilayers using pure metallic targets and Ar + O{sub 2} gas mixture as reactive atmosphere. The innovative technique namely, the reactive gas pulsing process allows switching between the metal and oxide to prepare a periodic multilayered structure with various metalloid concentrations and nanometric dimensions. The same pulsing period was used for each deposition to produce metal-oxide periodic alternations close to 10 nm. Structure, crystallinity and chemical composition of these films were systematically investigated by Raman spectroscopy, X-ray diffraction and Energy-dispersiveX-ray spectroscopy techniques. The high resolution transmission electron microscopy allowed observing the sharpness of the metal/oxide interfaces and measuring the thickness of each kind of layers. Moreover, the crystalline structure of metal and metal oxide layers was also studied. The difference of reactivity between the two systems leads to periodic {beta}-W{sub 3}O/a-WO{sub 3} and face-centered-cubic-TiO/a-TiO{sub 2} multilayers.

  12. Mineral resource of the month: boron