WorldWideScience

Sample records for spray calciner target

  1. Spray calcination of nuclear wastes

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-01-01

    The spray calciner is a relatively simple machine; operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of all commercial fuel reprocessor high-level liquid wastes and mixed high and intermediate-level wastes have been demonstrated. Wastes have been calcined containing over 2M sodium. Thus waste generated during plant startup and shutdown can be blended with normal waste and calcined. Spray calcination of ILLW has also been demonstrated. A remotely replaceable atomizing nozzle has been developed for use in plant scale equipment. The 6 mm (0.25 inch) orifice and ceramic tip offer freedom from plugging and erosion thus nozzle replacement should be required only after several months operation. Calciner capacity of over 75 l/h (20 gal/h) has been demonstrated in pilot scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. Since such a small amount of radionuclides escape the calciner the volume of recycle required from the effluent treatment system is very small. The noncondensable off-gas volume is also low, less than 0.5 m 3 /min (15 scfm) for a liquid feedrate of 75 l/hr (20 gal/hr). Calcine holdup in the calciner is less than 1 kg, thus the liquid feedrate is directly relatable to calcine flowrate. The calcine produced is very fine and reactive. Successful remote operation and maintenance of a heated wall spray calciner has been demonstrated while processing actual high-level waste. During these operations radionuclide volatilization from the calciner was acceptably low. 8 figures

  2. Design and performance of a full-scale spray calciner for nonradioactive high-level-waste-vitrification studies

    International Nuclear Information System (INIS)

    Miller, F.A.

    1981-06-01

    In the spray calcination process, liquid waste is spray-dried in a heated-wall spray dryer (termed a spray calciner), and then it may be combined in solid form with a glass-forming frit. This mixture is then melted in a continuous ceramic melter or in an in-can melter. Several sizes of spray calciners have been tested at PNL- laboratory scale, pilot scale and full scale. Summarized here is the experience gained during the operation of PNL's full-scale spray calciner, which has solidified approx. 38,000 L of simulated acid wastes and approx. 352,000 L of simulated neutralized wastes in 1830 h of processing time. Operating principles, operating experience, design aspects, and system descriptions of a full-scale spray calciner are discussed. Individual test run summaries are given in Appendix A. Appendices B and C are studies made by Bechtel Inc., under contract by PNL. These studies concern, respectively, feed systems for the spray calciner process and a spray calciner vibration analysis. Appendix D is a detailed structural analysis made at PNL of the spray calciner. These appendices are included in the report to provide a complete description of the spray calciner and to include all major studies made concerning PNL's full-scale spray calciner

  3. Design and performance of atomizing nozzles for spray calcination of high-level wastes

    International Nuclear Information System (INIS)

    Miller, F.A.; Stout, L.A.

    1981-05-01

    A key aspect of high-level liquid-waste spray calcination is waste-feed atomization by using air atomizing nozzles. Atomization substantially increases the heat transfer area of the waste solution, which enhances rapid drying. Experience from the spray-calciner operations has demonstrated that nozzle flow conditions that produce 70-μ median-volume-diameter or smaller spray droplets are required for small-scale spray calciners (drying capacity less than 80 L/h). For large-scale calciners (drying capacity greater than 300 L/h), nozzle flow conditions that produce 100-μ median-volume-diameter or smaller spray droplets are required. Mass flow ratios of 0.2 to 0.4, depending on nozzle size, are required for proper operation of internal-mix atomizing nozzles. Both internal-mix and external-mix nozzles have been tested at PNL. Due to the lower airflow requirements and fewer large droplets produced, the internal-mix nozzle has been chosen for primary development in the spray calciner program at PNL. Several nozzle air-cap materials for internal-mix nozzles have been tested for wear resistance. Results show that nozzle air caps of stainless steel and Cer-vit (a machineable glass ceramic) are suceptible to rapid wear by abrasive slurries, whereas air caps of alumina and reaction-bonded silicon nitride show only slow wear. Longer-term testing is necessary to determine more accurately the actual frequency of nozzle replacement. Atomizing nozzle air caps of alumina are subject to fracture from thermal shock, whereas air caps of silicon nitride and Cer-vit are not. Fractured nozzles are held in place by the air-cap retaining ring and continue to atomize satisfactorily. Therefore, fractures caused by thermal shocking do not necessarily result in nozzle failure

  4. Spray Calciner/In-Can Melter high-level waste solidification technical manual

    International Nuclear Information System (INIS)

    Larson, D.E.

    1980-09-01

    This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application

  5. Vitrification of radioactive high-level waste by spray calcination and in-can melting

    Science.gov (United States)

    Hanson, M. S.; Bjorklund, W. J.

    1980-07-01

    After several nonradioactive test runs, radioactive waste from the processing of 1.5 t of spent, light water reactor fuel was successfully concentrated, dried and converted to a vitreous product. A total of 97 L of waste glass (in two stainless steel canisters) was produced. The spray calcination process coupled to the in-can melting process, as developed at Pacific Northwest Labortory, was used to vitrify the waste. An effluent system consisting of a variety of condensation of scrubbing steps more than adequately decontaminated the process off gas before it was released to the atmosphere.

  6. Connecting section and associated systems concept for the spray calciner/in-can melter process

    International Nuclear Information System (INIS)

    Petkus, L.L.; Gorton, P.S.; Blair, H.T.

    1981-06-01

    For a number of years, researchers at the Pacific Northwest Laboratory have been developing processes and equipment for converting high-level liquid wastes to solid forms. One of these processes is the Spray Calciner/In-Can Melter system. To immobilize high-level liquid wastes, this system must be operated remotely, and the calcine must be reliably conveyed from the calciner to the melting furnace. A concept for such a remote conveyance system was developed at the Pacific Northwest Laboratory, and equipment was tested under full-scale, nonradioactive conditions. This concept and the design of demonstration equipment are described, and the results of equipment operation during experimental runs of 7 d are presented. The design includes a connecting section and its associated systems - a canister sypport and alignment concept and a weight-monitoring system for the melting furnace. Overall, the runs demonstrated that the concept design is an acceptable method of connecting the two pieces of process equipment together. Although the connecting section has not been optimized in all areas of concern, it provides a first-generation design of a production-oriented system

  7. Investigation of corrosion experienced in a spray calciner/ceramic melter vitrification system

    International Nuclear Information System (INIS)

    Dierks, R.D.; Mellinger, G.B.; Miller, F.A.; Nelson, T.A.; Bjorklund, W.J.

    1980-08-01

    After periodic testing of a large-scale spray calciner/ceramic melter vitrification system over a 2-yr period, sufficient corrosion was noted on various parts of the vitrification system to warrant its disassembly and inspection. A majority of the 316 SS sintered metal filters on the spray calciner were damaged by chemical corrosion and/or high temperature oxidation. Inconel-601 portions of the melter lid were attacked by chlorides and sulfates which volatilized from the molten glass. The refractory blocks, making up the walls of the melter, were attacked by the waste glass. This attack was occurring when operating temperatures were >1200 0 C. The melter floor was protected by a sludge layer and showed no corrosion. Corrosion to the Inconel-690 electrodes was minimal, and no corrosion was noted in the offgas treatment system downstream of the sintered metal filters. It is believed that most of the melter corrosion occurred during one specific operating period when the melter was operated at high temperatures in an attempt to overcome glass foaming behavior. These high temperatures resulted in a significant release of volatile elements from the molten glass, and also created a situation where the glass was very fluid and convective, which increased the corrosion rate of the refractories. Specific corrosion to the calciner components cannot be proven to have occurred during a specific time period, but the mechanisms of attack were all accelerated under the high-temperature conditions that were experienced with the melter. A review of the materials of construction has been made, and it is concluded that with controlled operating conditions and better protection of some materials of construction corrosion of these systems will not cause problems. Other melter systems operating under similar strenuous conditions have shown a service life of 3 yr

  8. The flashcal process for the fabrication of fuel-metal oxides using the whiteshell roto-spray calciner

    International Nuclear Information System (INIS)

    Sridhar, T.S.

    1988-01-01

    A one-step, continuous, thermochemical calcination process, called the FLASHCAL (Flash Calcination) process has been developed for the production of single- and mixed-oxide powders of fuel metals (uranium, thorium and plutonium) from the respective nitrate solutions using the Whiteshell Roto-Spray Calciner (RSC). The metal-nitrate feed solution, either by itself or mixed with a suitable chemical reactant or additive, is converted to its oxide powder in the RSC at temperatures between 300 and 600 0 C. Rapid denitration takes place in the calciner, yielding the metal-oxide powders while simultaneously destroying any excess chemical additive and reaction by-products. In the production of precursor oxide powders suitable for fuel fabrication, the FLASHCAL process has advantages over batch calcination and other processes that involve precipitation and filtration steps because fewer processing and handling operations are needed. Results obtained with thorium nitrate and uranium nitrate-thorium nitrate mixtures indicate that some measure of control over the size distribution and morphology of the oxide product powders is possible in this process with the proper selection of chemical additive, as well as the operating parameters of the calciner

  9. Behavior of radioactive iodine and technetium in the spray calcination of high-level waste

    Science.gov (United States)

    Knox, C. A.; Farnsworth, R. K.

    1981-08-01

    The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.

  10. Behavior of radioactive iodine and technetium in the spray calcination of high-level waste

    International Nuclear Information System (INIS)

    Knox, C.A.; Farnsworth, R.K.

    1981-08-01

    The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In this facility, which is installed in a radiochemical cell, small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. Initial operations were completed with nonradioactive, simulated waste solutions (Knox, Siemens and Berger 1981). The first radioactive operations in this facility were performed with a simulated, commercial waste composition containing tracer levels of 99 Tc and 131 I. This report describes the facility and test operations and presents the results of the behavior of 131 I and 99 Tc during solidification of radioactive liquid wastes. During the spray calcination of commercial high-level liquid waste spiked with 99 Tc and 131 I, there was a 0.3 wt% loss of particulates, a 0.15 wt% loss of 99 Tc and a 31 wt% loss of 131 I past the sintered-metal filters. These filters and a venturi scrubber were very efficient in removing particulates and 99 Tc from the off-gas stream. Liquid scrubbers were not efficient in removing 131 I, as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents will be needed to remove iodine. For all future RLSWTF operations where iodine is present, a silver zeolite adsorber will be used

  11. Technology status of spray calcination--vitrification of high-level liquid waste for full-scale application

    International Nuclear Information System (INIS)

    Keeley, R.B.; Bonner, W.F.; Larson, D.E.

    1977-01-01

    Spray calcination and vitrification technology for stabilization of high-level nuclear wastes has been developed to the point that initiation of technology transfer to an industrial-sized facility could begin. This report discusses current process and equipment development status together with additional R and D studies and engineering evaluations needed. Preliminary full-scale process and equipment descriptions are presented. Technology application in a full-scale plant would blend three distinct maintenance design philosophies, depending on service life anticipated: (1) totally remote maintenance with limited viewing and handling equipment, (2) totally remote maintenance with extensive viewing and handling equipment, and (3) contact maintenance

  12. Calcine production and management

    International Nuclear Information System (INIS)

    Dickey, B.R.; Hogg, G.W.; Berreth, J.R.

    1979-01-01

    The process technology related to calcination of power reactor wastes is summarized. The primary calcination processes developed are spray calcination, fluidized-bed calcination, and rotary kiln calcination. Calcines from the spray calciner and rotary kiln are fed directly to a glassification process. The fluidized-bed product can either be fed to a waste form conversion process or stored. The major process steps for calcinations are feed preparation, calcination and product handling, and off-gas cleanup. Feed systems for the three processes are basically similar. Gravity flow and pump pressurized systems have been used successfully. The major problems are fatigue failure of feed valve bellows, plugging by undissolved solids, and calibration of flowmeters. Process heat input is by electrical resistance heating for the spray and rotary kiln calciners and in-bed combustion or in-bed heat exchange for the fluidized-bed system. Low-melting solids which can cause scaling or solids agglomeration in any of the processes is a major calcination problem; however, feed blending, process operating conditions, and equipment design have successfully controlled solids agglomeration. Primary off-gas cleanup devices for particulates are cyclones, sintered metal filters, venturi scrubbers, and HEPA filters. Scrubbers, condensers, and solid adsorbents are used successfully for volatile ruthenium removal. The years of pilot-plant and plant-scale calcination testing and operation of the three systems have shown that reactor wastes can be calcined safely and practically. 11 figures, 2 tables

  13. Retrofit design of remotely removable decontamination spray nozzles for the new waste calcining facility at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Gay, J.A.

    1988-01-01

    High level radioactive liquid waste is converted to a solid form at the Idaho Chemical Processing Plant (ICPP). The conversion is done by a fluidized bed combustion process in the calciner vessel. The interior decontamination system for the calciner vessel uses a common header bolted to four decontamination nozzles around the upper head. The retrofit was required to eliminate hands-on maintenance and difficulty in nozzle removal because of nozzle plugging. The retrofit design for this project demonstrates the solution of problems associated with thermal phenomena, structural supports, seismic requirements, remote handling and installations into extremely restricted spaces

  14. Automatic targeting of plasma spray gun

    International Nuclear Information System (INIS)

    Abbatiello, L.A.; Neal, R.E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is described. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun

  15. Automatic targeting of plasma spray gun

    Science.gov (United States)

    Abbatiello, Leonard A.; Neal, Richard E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.

  16. Programmable Ultrasonic Sensing System for Targeted Spraying in Orchards

    Directory of Open Access Journals (Sweden)

    Marko Hočevar

    2012-11-01

    Full Text Available This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits.

  17. Programmable Ultrasonic Sensing System for Targeted Spraying in Orchards

    Science.gov (United States)

    Stajnko, Denis; Berk, Peter; Lešnik, Mario; Jejčič, Viktor; Lakota, Miran; Štrancar, Andrej; Hočevar, Marko; Rakun, Jurij

    2012-01-01

    This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD) on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits. PMID:23202220

  18. Preparation and properties of Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} by spray-drying and post-calcining method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Li, Xinhai, E-mail: yangbo@csu.edu.cn; Guo, Huajun; Wang, Zhixing; Xiao, Wei

    2015-09-15

    Highlights: • The spray-drying method is a simple and energy-saving method to prepare LATP. • The compounds with single phase structure of LATP were synthesized at 700–900 °C. • The ionic conductivity of the prepared LATP was maximized at 0.622 mS cm{sup −1} at 800 °C. - Abstract: Solid state electrolyte Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} is synthesized by spray-drying and post-calcining method. X-ray diffraction is employed to characterize the powders calcined in the range of 700–900 °C for 2 h, which indicates powders are well crystallized. FTIR shows trivalent cation Al{sup 3+} is substituted by Ti{sup 4+}. The composite material appears as 2–5 μm spherical particle. TG–DTA results confirm that the thermal decomposition of precursors obtained by spray-drying method occurred at lower temperature compares with solid phase synthesis method and sol–gel method. The ionic conductivity of the pellets reaches a maximum of 0.622 mS cm{sup −1} at calcining temperature of 800 °C.

  19. Assessing Reliability of Cold Spray Sputter Targets in Photovoltaic Manufacturing

    Science.gov (United States)

    Hardikar, Kedar; Vlcek, Johannes; Bheemreddy, Venkata; Juliano, Daniel

    2017-10-01

    Cold spray has been used to manufacture more than 800 Cu-In-Ga (CIG) sputter targets for deposition of high-efficiency photovoltaic thin films. It is a preferred technique since it enables high deposit purity and transfer of non-equilibrium alloy states to the target material. In this work, an integrated approach to reliability assessment of such targets with deposit weight in excess of 50 lb. is undertaken, involving thermal-mechanical characterization of the material in as-deposited condition, characterization of the interface adhesion on cylindrical substrate in as-deposited condition, and developing means to assess target integrity under thermal-mechanical loads during the physical vapor deposition (PVD) sputtering process. Mechanical characterization of cold spray deposited CIG alloy is accomplished through the use of indentation testing and adaptation of Brazilian disk test. A custom lever test was developed to characterize adhesion along the cylindrical interface between the CIG deposit and cylindrical substrate, overcoming limitations of current standards. A cohesive zone model for crack initiation and propagation at the deposit interface is developed and validated using the lever test and later used to simulate the potential catastrophic target failure in the PVD process. It is shown that this approach enables reliability assessment of sputter targets and improves robustness.

  20. Radiant-heat spray-calcination process for the solid fixation of radioactive waste. Part 1, Non-radioactive pilot unit

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R.T.; Johnson, B.M. Jr.

    1960-11-14

    The fixation of radioactive waste in a stable solid media by means of calcination of these aqueous solutions has been the subject of considerable-effort throughout the U. S. Atomic Energy Commission and by atomic energy organizations in other countries. Several methods of doing this on a continuous or semi-continuous basis have been devised, and a fev have been demonstrated to be feasible for the handling of non-radioactive, or low-activity, simulated wastes. Notable among methods currently under development are: (a) batch-operated pot calcination of waste generated from reprocessing stainless steel clad fuel elements (Darex process) and Purex waste, (b) combination rotary kiln and ball mill calcination of aluminum nitrate (TBP-25 and Redox process), and (c) fluidized bed calcination of TBP-25 and Purex wastes. Although a considerable amount of engineering experience has been obtained on the calcination of dissolved salts in a fluidized bed, and the other methods have been the subjects of a great deal of study, none of them have been developed to-the extent which would rule out the desirability of further investigation of other possible methods of calcination.

  1. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses.

    Science.gov (United States)

    Garcerá, Cruz; Moltó, Enrique; Chueca, Patricia

    2017-12-01

    Only a portion of the water volume sprayed is deposited on the target when applying plant protection products with air-assisted axial-fan airblast sprayers in high growing crops. A fraction of the off-target losses deposits on the ground, but droplets also drift away from the site. This work aimed at assessing the spray distribution to different compartments (tree canopy, ground and air) during pesticide applications in a Mediterranean citrus orchard. Standard cone nozzles (Teejet D3 DC35) and venturi drift reducing nozzles (Albuz TVI 80 03) were compared. Applications were performed with a conventional air-assisted sprayer, with a spray volume of around 3000lha -1 in a Navel orange orchard. Brilliant Sulfoflavine (BSF) was used as a tracer. Results showed that only around 46% of the applied spray was deposited on the target trees and around 4% of the spray was deposited on adjacent trees from adjoining rows independently of the nozzle type. Applications with standard nozzles produced more potential airborne spray drift (23%) than those with the drift reducing nozzles (17%) but fewer direct losses to the ground (22% vs. 27%). Indirect losses (sedimenting spray drift) to the ground of adjacent paths were around 7-9% in both cases. The important data set of spray distribution in the different compartments around sprayed orchard (air, ground, vegetation) generated in this work is highly useful as input source of exposure to take into account for the risk assessment in Mediterranean citrus scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Spray solidification of nuclear waste

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-08-01

    The spray calciner is a relatively simple machine. Operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of high-level and mixed high- and intermediate-level liquid wastes has been demonstrated. Waste concentrations of from near infinite dilution to less than 225 liters per tonne of fuel are calcinable. Wastes have been calcined containing over 2M sodium. Feed concentration, composition, and flowrate can vary rapidly by over a factor of two without requiring operator action. Wastes containing mainly sodium cations can be spray calcined by addition of finely divided silica to the feedstock. A remotely replaceable atomizing nozzle has been developed for use in plant-scale equipment. Calciner capacity of over 75 l/h has been demonstrated in pilot-scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. The volume of recycle required from the effluent treatment system is very small. Vibrator action maintains the calcine holdup in the calciner at less than 1 kg. Successful remote operation and maintenance of a heated-wall spray calciner have been demonstrated while processing high-level waste. Radionuclide volatilization was acceptably low

  3. Theoretical Design and First Test in Laboratory of a Composite Visual Servo-Based Target Spray Robotic System

    Directory of Open Access Journals (Sweden)

    Dongjie Zhao

    2016-01-01

    Full Text Available In order to spray onto the canopy of interval planting crop, an approach of using a target spray robot with a composite vision servo system based on monocular scene vision and monocular eye-in-hand vision was proposed. Scene camera was used to roughly locate target crop, and then the image-processing methods for background segmentation, crop canopy centroid extraction, and 3D positioning were studied. Eye-in-hand camera was used to precisely determine spray position of each crop. Based on the center and area of 2D minimum-enclosing-circle (MEC of crop canopy, a method to calculate spray position and spray time was determined. In addition, locating algorithm for the MEC center in nozzle reference frame and the hand-eye calibration matrix were studied. The processing of a mechanical arm guiding nozzle to spray was divided into three stages: reset, alignment, and hovering spray, and servo method of each stage was investigated. For preliminary verification of the theoretical studies on the approach, a simplified experimental prototype containing one spray mechanical arm was built and some performance tests were carried out under controlled environment in laboratory. The results showed that the prototype could achieve the effect of “spraying while moving and accurately spraying on target.”

  4. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: tree deposition and off-target losses

    Science.gov (United States)

    The ultimate goal of a pesticide spraying system is to provide adequate coverage on intended canopies with a minimum amount of spray materials and off-target waste. Better spray coverage requires an understanding of the fate and transport of spray droplets carried by turbulent airflows in orchards. ...

  5. Uranium dioxide calcining apparatus

    International Nuclear Information System (INIS)

    Cole, E.A.; Peterson, R.S.

    1978-01-01

    This invention relates to an improved continuous calcining apparatus for consistently and controllably producing from calcinable reactive solid compounds of uranium, such as ammonium diuranate, uranium dioxide (UO 2 ) having an oxygen to uranium ratio of less than 2.2. The apparatus comprises means at the outlet end of a calciner kiln for receiving hot UO 2 , means for cooling the UO 2 to a temperature of below 100 deg C and conveying the cooled UO 2 to storage or to subsequent UO 2 processing apparatus where it finally comes into contact with air, the means for receiving cooling and conveying being sealed to the outlet end of the calciner and being maintained full of UO 2 and so operable as to exclude atmospheric oxygen from coming into contact with any UO 2 which is at elevated temperatures where it would readily oxidize, without the use of extra hydrogen gas in said means. (author)

  6. Targeting indoor residual spraying for malaria using epidemiological data: a case study of the Zambia experience.

    Science.gov (United States)

    Pinchoff, Jessie; Larsen, David A; Renn, Silvia; Pollard, Derek; Fornadel, Christen; Maire, Mark; Sikaala, Chadwick; Sinyangwe, Chomba; Winters, Benjamin; Bridges, Daniel J; Winters, Anna M

    2016-01-06

    In Zambia and other sub-Saharan African countries affected by ongoing malaria transmission, indoor residual spraying (IRS) for malaria prevention has typically been implemented over large areas, e.g., district-wide, and targeted to peri-urban areas. However, there is a recent shift in some countries, including Zambia, towards the adoption of a more strategic and targeted IRS approach, in coordination with increased emphasis on universal coverage of long-lasting insecticidal nets (LLINs) and effective insecticide resistance management. A true targeted approach would deliver IRS to sub-district areas identified as high-risk, with the goal of maximizing the prevention of malaria cases and deaths. Together with the Government of the Republic of Zambia, a new methodology was developed applying geographic information systems and satellite imagery to support a targeted IRS campaign during the 2014 spray season using health management information system data. This case study focuses on the developed methodology while also highlighting the significant research gaps which must be filled to guide countries on the most effective strategy for IRS targeting in the context of universal LLIN coverage and evolving insecticide resistance.

  7. Method for calcining radioactive wastes

    International Nuclear Information System (INIS)

    Bjorklund, W.J.; McElroy, J.L.; Mendel, J.E.

    1979-01-01

    A method for the preparation of radioactive wastes in a low leachability form involves calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix

  8. [Preparation of citrulline microspheres by spray drying technique for colonic targeting].

    Science.gov (United States)

    Bahri, S; Zerrouk, N; Lassoued, M-A; Tsapis, N; Chaumeil, J-C; Sfar, S

    2014-03-01

    Citrulline is an amino acid that becomes essential in situations of intestinal insufficiency such as short bowel syndrome. It is therefore interesting to provide the patients with dosage forms for routing citrulline to the colon. The aim of this work is to formulate microspheres of citrulline for colonic targeting by the technique of spray drying. Eudragit(®) FS 30D was selected as polymer to encapsulate citrulline using the spray drying technique. Citrulline and Eudragit(®) FS 30D were dissolved in water and ethanol, respectively. The aqueous and the ethanolic solutions were then mixed in 1:2 (v/v) ratio. Microspheres were obtained by nebulizing the citrulline-Eudragit(®) FS 30D solution using a Mini spray dryer equipped with a 0.7mm nozzle. The microspheres have been formulated using citrulline and Eudragit(®) FS 30D. The size distribution of microspheres was determined by light diffraction. The morphology of the microspheres was studied by electron microscopy. Manufacturing yields, encapsulation rate and dissolution profiles were also studied. The microspheres obtained had a spherical shape with a smooth surface and a homogeneous size except for the microspheres containing the highest concentration of polymer (90 %). The formulation showed that the size and morphology of the microspheres are influenced by the polymer concentration. Manufacturing yields were about 51 % but encapsulation rate were always very high (above 90 %). The in vitro dissolution study showed that the use of the Eudragit(®) FS 30D under these conditions is not appropriate to change the dissolution profile of the citrulline. This technique has led to the formulation of microspheres with good physical properties in terms of morphology and size. The compression of the microspheres should help to control citrulline release for colonic targeting. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials.

    Science.gov (United States)

    Winnicki, M; Baszczuk, A; Rutkowska-Gorczyca, M; Jasiorski, M; Małachowska, A; Posadowski, W; Znamirowski, Z; Ambroziak, A

    2017-01-01

    Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In 2 O 3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In 2 O 3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide) films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions.

  10. Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials

    Directory of Open Access Journals (Sweden)

    M. Winnicki

    2017-01-01

    Full Text Available Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In2O3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In2O3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions.

  11. Fluidized bed calciner

    International Nuclear Information System (INIS)

    Sheely, W.F.

    1986-01-01

    A unique way to convert radioactive scrap into useful nuclear fuel products was developed for the Department of Energy at Hanford. An advanced, fluidized bed calciner is used to convert metallic nitrate scrap or waste solutions into benign, solid and gaseous products. There are broad potential applications of this concept beyond those in the nuclear industry

  12. Numerical and Experimental Investigation on the Spray Coating Process Using a Pneumatic Atomizer: Influences of Operating Conditions and Target Geometries

    Directory of Open Access Journals (Sweden)

    Qiaoyan Ye

    2017-01-01

    Full Text Available This paper presents a numerical simulation of the spray painting process using a pneumatic atomizer with the help of a computational fluid dynamics code. The droplet characteristics that are necessary for the droplet trajectory calculation were experimentally investigated using different shaping air flow rates. It was found that the droplet size distribution depends on both the atomizing and the shaping air flow rate. An injection model for creating the initial droplet conditions is necessary for the spray painting simulation. An approach for creating these initial conditions has been proposed, which takes different operating conditions into account and is suitable for practical applications of spray coating simulation using spray guns. Further, tests on complicated targets and complex alignments of the atomizer have been carried out to verify this numerical approach. The results confirm the applicability and reliability of the chosen method for the painting process.

  13. Granule size control and targeting in pulsed spray fluid bed granulation.

    Science.gov (United States)

    Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko

    2009-07-30

    The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.

  14. Evaluation of Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-Target Spray Drift.

    Science.gov (United States)

    Winchell, Michael F; Pai, Naresh; Brayden, Benjamin H; Stone, Chris; Whatling, Paul; Hanzas, John P; Stryker, Jody J

    2018-01-01

    The estimation of pesticide concentrations in surface water bodies is a critical component of the environmental risk assessment process required by regulatory agencies in North America, the European Union, and elsewhere. Pesticide transport to surface waters via deposition from off-field spray drift can be an important route of potential contamination. The spatial orientation of treated fields relative to receiving water bodies make prediction of off-target pesticide spray drift deposition and resulting aquatic estimated environmental concentrations (EECs) challenging at the watershed scale. The variability in wind conditions further complicates the simulation of the environmental processes leading to pesticide spray drift contributions to surface water. This study investigates the use of the Soil Water Assessment Tool (SWAT) for predicting concentrations of malathion (O,O-deimethyl thiophosphate of diethyl mercaptosuccinate) in a flowing water body when exposure is a result of off-target spray drift, and assesses the model's performance using a parameterization typical of a screening-level regulatory assessment. Six SWAT parameterizations, each including incrementally more site-specific data, are then evaluated to quantify changes in model performance. Results indicate that the SWAT model is an appropriate tool for simulating watershed scale concentrations of pesticides resulting from off-target spray drift deposition. The model predictions are significantly more accurate when the inputs and assumptions accurately reflect application practices and environmental conditions. Inclusion of detailed wind data had the most significant impact on improving model-predicted EECs in comparison to observed concentrations. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Characterization of Ce0.9Gd0.1O1.95 powders synthesized by spray drying

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Chen, Weiwu; Lundberg, Mats

    2009-01-01

    Ce0.9Gd0.1O1.95 powders were synthesized by spray drying and successive calcinations. The phase purity, BET surface area, and particle morphology of as-sprayed and calcined powders were characterized. After calcination above 300 °C, the powders were single phase and showed a BET surface area of 68...

  16. A comparative study on NbOx films reactively sputtered from sintered and cold gas sprayed targets

    Science.gov (United States)

    Lorenz, Roland; O'Sullivan, Michael; Fian, Alexander; Sprenger, Dietmar; Lang, Bernhard; Mitterer, Christian

    2018-04-01

    The aim of this work is to evaluate novel cold gas sprayed Nb targets in a reactive sputter deposition process of thin films with respect to the widely used sintered Nb targets. With the exception of a higher target discharge voltage of ∼100 V for the cold gas sprayed targets and the thus higher film growth rate compared to sintered targets, NbOx films with comparable microstructure and properties were obtained for both target variants. The amorphous films with thicknesses between 2.9 and 4.9 μm present an optical shift from dark and non-transparent towards transparent properties, as the oxygen partial pressure increases. X-ray photoelectron spectroscopy confirms the occurrence of the Nb5+ oxidation state for the highest oxygen partial pressure, while Nb4+ is additionally present at lower oxygen partial pressure settings. With a maximal transparency of ∼80% and a refractive index of ∼2.5, the transparent films show characteristics similar to Nb2O5.

  17. Calcination/dissolution residue treatment

    International Nuclear Information System (INIS)

    Knight, R.C.; Creed, R.F.; Patello, G.K.; Hollenberg, G.W.; Buehler, M.F.; O'Rourke, S.M.; Visnapuu, A.; McLaughlin, D.F.

    1994-09-01

    Currently, high-level wastes are stored underground in steel-lined tanks at the Hanford site. Current plans call for the chemical pretreatment of these wastes before their immobilization in stable glass waste forms. One candidate pretreatment approach, calcination/dissolution, performs an alkaline fusion of the waste and creates a high-level/low-level partition based on the aqueous solubilities of the components of the product calcine. Literature and laboratory studies were conducted with the goal of finding a residue treatment technology that would decrease the quantity of high-level waste glass required following calcination/dissolution waste processing. Four elements, Fe, Ni, Bi, and U, postulated to be present in the high-level residue fraction were identified as being key to the quantity of high-level glass formed. Laboratory tests of the candidate technologies with simulant high-level residues showed reductive roasting followed by carbonyl volatilization to be successful in removing Fe, Ni, and Bi. Subsequent bench-scale tests on residues from calcination/dissolution processing of genuine Hanford Site tank waste showed Fe was separated with radioelement decontamination factors of 70 to 1,000 times with respect to total alpha activity. Thermodynamic analyses of the calcination of five typical Hanford Site tank waste compositions also were performed. The analyses showed sodium hydroxide to be the sole molten component in the waste calcine and emphasized the requirement for waste blending if fluid calcines are to be achieved. Other calcine phases identified in the thermodynamic analysis indicate the significant thermal reconstitution accomplished in calcination

  18. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses

    Science.gov (United States)

    Hong, Se-Woon; Zhao, Lingying; Zhu, Heping

    2018-02-01

    The ultimate goal of a pesticide spraying system is to provide adequate coverage on intended canopies with a minimum amount of spray materials and off-target waste. Better spray coverage requires an understanding of the fate and transport of spray droplets carried by turbulent airflows in orchards. In this study, an integrated computational fluid dynamics (CFD) model was developed to predict displacement of pesticide spray droplets discharged from an air-assisted sprayer, depositions onto tree canopies, and off-target deposition and airborne drift in an apple orchard. Pesticide droplets discharged from a moving sprayer were tracked using the Lagrangian particle transport model, and the deposition model was applied to droplets entering porous canopy zones. Measurements of the droplet deposition and drift in the same orchard were used to validate the model simulations. Good agreement was found between the measured and simulated spray concentrations inside tree canopies and off-target losses (ground deposition and airborne drifts) with the overall relative errors of 22.1% and 40.6%, respectively, under three growth stages. The CFD model was able to estimate the mass balance of pesticide droplets in the orchard, which was practically difficult to investigate by measurements in field conditions. As the foliage of trees became denser, spray deposition inside canopies increased from 8.5% to 65.8% and airborne drift and ground deposition decreased from 25.8% to 7.0% and 47.8% to 21.2%, respectively. Higher wind speed also increased the spray airborne drift downwind of the orchard. This study demonstrates that CFD model can be used to evaluate spray application performance and design and operate sprayers with increased spray efficiencies and reduced drift potentials.

  19. Calcination/dissolution testing for Hanford Site tank wastes

    International Nuclear Information System (INIS)

    Colby, S.A.; Delegard, C.H.; McLaughlin, D.F.; Danielson, M.J.

    1994-07-01

    Thermal treatment by calcination offers several benefits for the treatment of Hanford Site tank wastes, including the destruction of organics and ferrocyanides and an hydroxide fusion that permits the bulk of the mostly soluble nonradioactive constituents to be easily separated from the insoluble transuranic residue. Critical design parameters were tested, including: (1) calciner equipment design, (2) hydroxide fusion chemistry, and (3) equipment corrosion. A 2 gal/minute pilot plant processed a simulated Tank 101-SY waste and produced a free flowing 700 C molten calcine with an average calciner retention time of 20 minutes and >95% organic, nitrate, and nitrite destruction. Laboratory experiments using actual radioactive tank waste and the simulated waste pilot experiments indicate that 98 wt% of the calcine produced is soluble in water, leaving an insoluble transuranic fraction. All of the Hanford Site tank wastes can benefit from calcination/dissolution processing, contingent upon blending various tank waste types to ensure a target of 70 wt% sodium hydroxide/nitrate/nitrite fluxing agent. Finally, corrosion testing indicates that a jacketed nickel liner cooled to below 400 C would corrode <2 mil/year (0.05 mm/year) from molten calcine attack

  20. Alternative calcination development status report

    International Nuclear Information System (INIS)

    Boardman, R.D.

    1997-12-01

    The Programmatic Spent Nuclear Fuel and (INEEL) Environmental Restoration and Waste Management Programs Environmental Impact Statement Record of Decision, dated June 1, 1995, specifies that high-level waste stored in the underground tanks at the ICPP continue to be calcined while other options to treat the waste are studied. Therefore, the High-Level Waste Program has funded a program to develop new flowsheets to increase the liquid waste processing rate. Simultaneously, a radionuclide separation process, as well as other options, are also being developed, which will be compared to the calcination treatment option. Two alternatives emerged as viable candidates; (1) elevated temperature calcination (also referred to as high temperature calcination), and (2) sugar-additive calcination. Both alternatives were determined to be viable through testing performed in a lab-scale calcination mockup. Subsequently, 10-cm Calciner Pilot Plant scoping tests were successfully completed for both flowsheets. The results were compared to the standard 500 C, high-ANN flow sheet (baseline flowsheet). The product and effluent streams were characterized to help elucidate the process chemistry and to investigate potential environmental permitting issues. Several supplementary tests were conducted to gain a better understanding of fine-particles generation, calcine hydration, scrub foaming, feed makeup procedures, sugar/organic elimination, and safety-related issues. Many of the experiments are only considered to be scoping tests, and follow-up experiments will be required to establish a more definitive understanding of the flowsheets. However, the combined results support the general conclusion that flowsheet improvements for the NWCF are technically viable

  1. Radiant-Heat Spray Calcination Studies; Calcination par Pulverisation et Chauffage Radiant; 0418 0421 0421 041b 0415 0414 041e 0412 0410 041d 0418 042f 041d 0410 041a 0410 041b 042c 0426 0418 041d 0410 0422 041e 0420 0410 0425 0424 041e 0420 0421 0423 041d 041e 0427 041d 041e 0413 041e 0422 0418 041f 0410 0421 041d 0410 0413 0420 0415 0412 0410 041d 0418 0415 041c 0422 0415 041f 041b 041e 0412 042b 041c 0418 0417 041b 0423 0427 0415 041d 0418 0415 041c ; Estudios de Calcinacion por Pulverizacion y Calentamiento Radiante

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R. T.; Moore, R. L.; Upson, U. L. [Hanford Laboratories General Electric Co., Richland, WA (United States)

    1963-02-15

    The radiant-heat spray calcination process for conversion of liquid wastes to solids is described and the design of a one-gallon-per-hour spray calcination unit coupled with a small melt pot, capable of being run separately as a pot calciner, is discussed. The units were designed to test the feasibility of the calcination process with actual Purex plant waste in terms of the process as a unit operation, off-gas treatment, fission-product behaviour, condensate and calcined waste characteristics. The entire system was made to fit into an available 7-1/2 ft x 15 ft x 15 ft tall, manipulator-equipped, shielded cell which is also described. Included in the design discussion are: the resistance heating of the spray calciner column, thermal insulation of the column, spray nozzle, method of nozzle replacement, induction heating of the melt pot, radioactivity scanner for the pot, off-gas processing system including condenser, scrubber and filters, off-gas sampling device, liquid sampling device, wash-down system, feed system, instrumentation and control methods. The experience gained in operating the calciners and associated equipment is discussed. Experimental results presented show the effectiveness of off-gas decontamination and behaviour of gross chemical constituents and some specific fission products. (author) [French] Les auteurs etudient le procede de calcination par pulverisation et chauffage radiant utilise pour transformer les dechets liquides en solides; ils decrivent notamment une installation de calcination par pulverisation (d'une capacite de 1 gallon par heure) accouplee a un petit creuset que l'on peut utiliser separement comme creuset de calcination. Cet ensemble- a ete concu pour etudier la possibilite de calciner des dechets reels resultant du traitement Purex, en tenant compte des facteurs suivants: operations dans un seul appareil, traitement des gaz d'echappement, comportement des produits de fission, caracteristiques du condense et des dechets

  2. Method and apparatus for evaporating radioactive liquid and calcinating the residue

    International Nuclear Information System (INIS)

    Sridhar, T.S.

    1984-01-01

    This invention provides an apparatus and a process for evaporating liquid wastes and calcining the residue. The liquid is sprayed against a hollow, rotating heated cylinder within a casing. The dried residue is scraped from the rotating cylinder and released through a valve at the bottom of the casing, while the effluent gas is filtered

  3. Advanced fluid bed calciner information on IR-100 award

    International Nuclear Information System (INIS)

    Druby, M.C.; Owen, T.J.; Klem, M.J.

    1986-01-01

    The advanced fluidized bed calciner provides time, temperature and turbulence to change a liquid slurry such as ammonium diuranate into a uranium dioxide powder. The liquid is sprayed into a hot chamber (up to 700 0 C) which includes thousands of tiny metal beads, about the size of BB's. The constantly moving beads provide an efficient heat transfer media for the immediate transformation of the slurry droplets into dry particles of powder, which are carried out by hot nitrogen gas and recovered in a collector

  4. New Waste Calciner High Temperature Operation

    International Nuclear Information System (INIS)

    Swenson, M.C.

    2000-01-01

    A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm

  5. Plasma Spraying of Silica-Rich Calcined Clay Shale

    Czech Academy of Sciences Publication Activity Database

    Dubský, Jiří; Chráska, Tomáš; Pala, Zdeněk; Nevrlá, Barbara; Chráska, Pavel

    2014-01-01

    Roč. 23, č. 4 (2014), s. 732-741 ISSN 1059-9630 R&D Projects: GA ČR GAP107/12/1922; GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 Keywords : clay shale * crystallinity * grain size * mullite * water stabilized plasma * x-ray diffraction Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.344, year: 2014 http://link.springer.com/article/10.1007%2Fs11666-014-0076-3

  6. Summary of Waste Calcination at INTEC

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Barry Henry; Newby, Bill Joe

    2000-10-01

    Fluidized-bed calcination at the Idaho Nuclear Technologies and Engineering Center (INTEC, formally called the Idaho Chemical Processing Plant) has been used to solidify acidic metal nitrate fuel reprocessing and incidental wastes wastes since 1961. A summary of waste calcination in full-scale and pilot plant calciners has been compiled for future reference. It contains feed compositions and operating conditions for all the processing campaigns for the original Waste Calcining Facility (WCF), the New Waste Calcining Facility (NWCF) started up in 1982, and numerous small scale pilot plant tests for various feed types. This summary provides a historical record of calcination at INTEC, and will be useful for evaluating calcinability of future wastes.

  7. Development of Concentration and Calcination Technology For High Level Liquid Waste

    International Nuclear Information System (INIS)

    Pande, D.P.

    2006-01-01

    The concentrated medium and high-level liquid radio chemicals effluents contain nitric acid, water along with the dissolved chemicals including the nitrates of the radio nuclides. High level liquid waste contain mainly nitrates of cesium, strontium, cerium, zirconium, chromium, barium, calcium, cobalt, copper, pickle, iron etc. and other fission products. This concentrated solution requires further evaporation, dehydration, drying and decomposition in temperature range of 150 to 700 deg. C. The addition of the calcined solids in vitrification pot, instead of liquid feed, helps to avoid low temperature zone because the vaporization of the liquid and decomposition of nitrates do not take place inside the melter. In our work Differential and thermo gravimetric studies has been carried out in the various stages of thermal treatment including drying, dehydration and conversion to oxide forms. Experimental studies were done to characterize the chemicals present in high-level radioactive waste. A Rotary Ball Kiln Calciner was used for development of the process because this is amenable for continuous operation and moderately good heat transfer can be achieved inside the kiln. This also has minimum secondary waste and off gases generation. The Rotary Ball Kiln Calciner Demonstration facility system was designed and installed for the demonstration of calcination process. The Rotary Ball Kiln Calciner is a slowly rotating slightly inclined horizontal tube that is externally heated by means of electric resistance heating. The liquid feed is sprayed onto the moving bed of metal balls in a slowly rotating calciner by a peristaltic type-metering pump. The vaporization of the liquid occurs in the pre-calcination zone due to counter current flow of hot gases. The dehydration and denitration of the solids occurs in the calcination zone, which is externally heated by electrical furnace. The calcined powder is cooled in the post calcination portion. It has been demonstrated that the

  8. Calcination under negative atmosphere for SYNROC preparation

    International Nuclear Information System (INIS)

    Ambashta, R.D.; Wattal, P.K.; Govindankutty, K.V.

    2006-01-01

    SYNROC-C is a ceramic waste formulation designed to immobilise reprocessing waste from fast breeder reactor. This formulation is capable of incorporating noble metals, other fission products, corrosion products and activation products in its multiphase assemblage. Calcination is an important step of SYNROC preparation for decomposition of nitrates of the radioactive waste and conversion to oxide precursors. This paper presents a comparison between properties of calcine prepared under different calcination procedures to obtain product suitable for compaction

  9. SPRAY CASTING

    OpenAIRE

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and comp...

  10. High-Throughput Screening and Quantitation of Target Compounds in Biofluids by Coated Blade Spray-Mass Spectrometry.

    Science.gov (United States)

    Tascon, Marcos; Gómez-Ríos, Germán Augusto; Reyes-Garcés, Nathaly; Poole, Justen; Boyacı, Ezel; Pawliszyn, Janusz

    2017-08-15

    Most contemporary methods of screening and quantitating controlled substances and therapeutic drugs in biofluids typically require laborious, time-consuming, and expensive analytical workflows. In recent years, our group has worked toward developing microextraction (μe)-mass spectrometry (MS) technologies that merge all of the tedious steps of the classical methods into a simple, efficient, and low-cost methodology. Unquestionably, the automation of these technologies allows for faster sample throughput, greater reproducibility, and radically reduced analysis times. Coated blade spray (CBS) is a μe technology engineered for extracting/enriching analytes of interest in complex matrices, and it can be directly coupled with MS instruments to achieve efficient screening and quantitative analysis. In this study, we introduced CBS as a technology that can be arranged to perform either rapid diagnostics (single vial) or the high-throughput (96-well plate) analysis of biofluids. Furthermore, we demonstrate that performing 96-CBS extractions at the same time allows the total analysis time to be reduced to less than 55 s per sample. Aiming to validate the versatility of CBS, substances comprising a broad range of molecular weights, moieties, protein binding, and polarities were selected. Thus, the high-throughput (HT)-CBS technology was used for the concomitant quantitation of 18 compounds (mixture of anabolics, β-2 agonists, diuretics, stimulants, narcotics, and β-blockers) spiked in human urine and plasma samples. Excellent precision (∼2.5%), accuracy (≥90%), and linearity (R 2 ≥ 0.99) were attained for all the studied compounds, and the limits of quantitation (LOQs) were within the range of 0.1 to 10 ng·mL -1 for plasma and 0.25 to 10 ng·mL -1 for urine. The results reported in this paper confirm CBS's great potential for achieving subsixty-second analyses of target compounds in a broad range of fields such as those related to clinical diagnosis, food, the

  11. Experimental and modeling study of flash calcination of kaolinite rich clay particles in a gas suspension calciner

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    2015-01-01

    gas suspension calciner, with the aim to derive useful guidelines on smart calcination for obtaining products of the best pozzolanic properties. Calcination tests are performed in the calciner under six different operation conditions. The raw feed and the calcined clay samples are all characterized...

  12. XANES analysis of dried and calcined bones

    International Nuclear Information System (INIS)

    Rajendran, Jayapradhi; Gialanella, Stefano; Aswath, Pranesh B.

    2013-01-01

    The structure of dried and calcined bones from chicken, bovine, deer, pig, sheep and chamois was examined using X-ray Absorption Near Edge Structure (XANES) spectroscopy. The oxygen K-edge absorption edge indicates that the surface of dried bone has a larger proportion of carbonate than the interior that is made up of phosphates. The phosphorus L and K edge clearly indicate that pyrophosphates, α-tricalcium phosphate (α-TCP) and hydrogen phosphates of Ca do not exist in either the dried bone or calcined bone and phosphorus exists as either β-tricalcium phosphate (β-TCP) or hydroxyapatite, both in the dried and calcined conditions. The Ca K-edge analysis indicates that β-TCP is the likely form of phosphate in both the dried and calcined conditions. - Highlights: • For the first time bones of five different species of vertebrates have been compared in both the dried and calcined states. • O, P and Ca edges detail the local coordination of these atoms in dried and calcined bone. • O K-edge shows that the surface of bone has more CO 3 while the interior has more PO 4 . • P and Ca edges eliminate the presence of pyrophosphates and confirmed the presence of HA and β-TCP. • The stability of these phosphates on calcination has been examined using XANES

  13. XANES analysis of dried and calcined bones

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Jayapradhi [Materials Science and Engineering Department, University of Texas at Arlington (United States); Gialanella, Stefano [Materials Science and Industrial Technology Department, University of Trento (Italy); Aswath, Pranesh B., E-mail: aswath@uta.edu [Materials Science and Engineering Department, University of Texas at Arlington (United States)

    2013-10-15

    The structure of dried and calcined bones from chicken, bovine, deer, pig, sheep and chamois was examined using X-ray Absorption Near Edge Structure (XANES) spectroscopy. The oxygen K-edge absorption edge indicates that the surface of dried bone has a larger proportion of carbonate than the interior that is made up of phosphates. The phosphorus L and K edge clearly indicate that pyrophosphates, α-tricalcium phosphate (α-TCP) and hydrogen phosphates of Ca do not exist in either the dried bone or calcined bone and phosphorus exists as either β-tricalcium phosphate (β-TCP) or hydroxyapatite, both in the dried and calcined conditions. The Ca K-edge analysis indicates that β-TCP is the likely form of phosphate in both the dried and calcined conditions. - Highlights: • For the first time bones of five different species of vertebrates have been compared in both the dried and calcined states. • O, P and Ca edges detail the local coordination of these atoms in dried and calcined bone. • O K-edge shows that the surface of bone has more CO{sub 3} while the interior has more PO{sub 4}. • P and Ca edges eliminate the presence of pyrophosphates and confirmed the presence of HA and β-TCP. • The stability of these phosphates on calcination has been examined using XANES.

  14. Calcined solids storage facility closure study

    International Nuclear Information System (INIS)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C.

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a open-quotes Settlement Agreementclose quotes (or open-quotes Batt Agreementclose quotes) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed

  15. Calcined solids storage facility closure study

    Energy Technology Data Exchange (ETDEWEB)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

  16. Redox calcination study of Synroc D powder containing simulated SRL waste

    International Nuclear Information System (INIS)

    Chen, C.

    1982-01-01

    According to Ringwood [A.E. Ringwood, W. Sinclair, and G.M. McLaughlin, Nuclear Waste Immobilization, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-15147 (1979)], the iron oxidation state is important in controlling, the spinel mineralogy and composition if the amount of titania (TiO 2 ) consumed in spinel formation is to be minimized in favor of the formation of the Synroc phases, zirconolite, perovskite, and nepheline. In our redox calcination studies we observed that the iron oxidation state of FeO/Fe 2 O 3 can be controlled by the redoxcalcining atmosphere. In a CO atmosphere, the oxidation state was reduced to less than 7 wt % Fe 2 O 3 . With appropriate CO 2 /CO gas mixtures the resultant iron oxidation states were in the range of 45 to 59 wt % Fe 2 O 3 . Direct rotary redox calcination of spray dried powder at 600 0 C, without prior air calcination, showed increased redox efficiency when compared to powder that had been previously air calcined at 650 0 C. We believe this is caused by a reduction in particle size. Rotary calcination at 800 0 C in argon has no measurable reduction affect on the iron oxidation state of Synroc D powder

  17. New Waste Calcining Facility (NWCF) Waste Streams

    International Nuclear Information System (INIS)

    K. E. Archibald

    1999-01-01

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF

  18. Activity and structure of calcined coal gangue

    Energy Technology Data Exchange (ETDEWEB)

    Gong Chenchen; Li Dongxu; Wang Xiaojun; Li Zongjin [Nanjing University of Technology, Nanjing (China). College of Materials Science and Engineering

    2007-12-15

    Coal gangue was activated by means of calcination in seven temperature ranges. Systematic research was made about activation mechanism and structural evolution. The glycerin-ethanol method, SEM, MIP and XRD were used to determine the variation of structure and activation of coal gangue during calcination. The experimental results show that because of heat treatment in the range of calcination temperatures, mineral composition and microstructure of coal gangue are changed. In addition, its activity is improved. The amount of lime absorbed by the sample calcined at 700{sup o}C is 2-4 times that by uncalcined coal gangue in the course of hydration. When NaOH is added to coal gangue-lime system, the hydration reaction rate of the system is increased and the microstructure of hydrating samples of coal gangue is improved.

  19. Uranium dioxide calcining apparatus and method

    International Nuclear Information System (INIS)

    Cole, E.A.; Peterson, R.S.

    1978-01-01

    This invention relates to an improved continuous calcining apparatus for consistently and controllably producing from calcinable reactive solid compounds of uranium, such as ammonium diuranate, uranium dioxide (UO 2 ) having an oxygen to uranium ratio of less than 2.2. The apparatus comprises means at the outlet end of a calciner kiln for receiving hot UO 2 , means for cooling the UO 2 to a temperature of below 100 0 C and conveying the cooled UO 2 to storage or to subsequent UO 2 processing apparatus where it finally comes into contact with air, the means for receiving, cooling and conveying being sealed to the outlet end of the calciner and being maintained full of UO 2 and so operable as to exclude atmospheric oxygen from coming into contact with any UO 2 which is at elevated temperatures where it would readily oxidize, without the use of extra hydrogen gas in said means

  20. Bin Set 1 Calcine Retrieval Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    R. D. Adams; S. M. Berry; K. J. Galloway; T. A. Langenwalter; D. A. Lopez; C. M. Noakes; H. K. Peterson; M. I. Pope; R. J. Turk

    1999-10-01

    At the Department of Energy's Idaho Nuclear Technology and Engineering Center, as an interim waste management measure, both mixed high-level liquid waste and sodium bearing waste have been solidified by a calculation process and are stored in the Calcine Solids Storage Facilities. This calcined product will eventually be treated to allow final disposal in a national geologic repository. The Calcine Solids Storage Facilities comprise seven ''bit sets.'' Bin Set 1, the first to be constructed, was completed in 1959, and has been in service since 1963. It is the only bin set that does not meet current safe-shutdown earthquake seismic criteria. In addition, it is the only bin set that lacks built-in features to aid in calcine retrieval. One option to alleviate the seismic compliance issue is to transport the calcine from Bin Set 1 to another bin set which has the required capacity and which is seismically qualified. This report studies the feasibility of retrieving the calcine from Bi n Set 1 and transporting it into Bin Set 6 which is located approximately 650 feet away. Because Bin Set 1 was not designed for calcine retrieval, and because of the high radiation levels and potential contamination spread from the calcined material, this is a challenging engineering task. This report presents preconceptual design studies for remotely-operated, low-density, pneumatic vacuum retrieval and transport systems and equipment that are based on past work performed by the Raytheon Engineers and Constructors architectural engineering firm. The designs presented are considered feasible; however, future development work will be needed in several areas during the subsequent conceptual design phase.

  1. Bin Set 1 Calcine Retrieval Feasibility Study

    International Nuclear Information System (INIS)

    Adams, R.D.; Berry, S.M.; Galloway, K.J.; Langenwalter, T.A.; Lopez, D.A.; Noakes, C.M.; Peterson, H.K.; Pope, M.I.; Turk, R.J.

    1999-01-01

    At the Department of Energy's Idaho Nuclear Technology and Engineering Center, as an interim waste management measure, both mixed high-level liquid waste and sodium bearing waste have been solidified by a calculation process and are stored in the Calcine Solids Storage Facilities. This calcined product will eventually be treated to allow final disposal in a national geologic repository. The Calcine Solids Storage Facilities comprise seven ''bit sets.'' Bin Set 1, the first to be constructed, was completed in 1959, and has been in service since 1963. It is the only bin set that does not meet current safe-shutdown earthquake seismic criteria. In addition, it is the only bin set that lacks built-in features to aid in calcine retrieval. One option to alleviate the seismic compliance issue is to transport the calcine from Bin Set 1 to another bin set which has the required capacity and which is seismically qualified. This report studies the feasibility of retrieving the calcine from Bi n Set 1 and transporting it into Bin Set 6 which is located approximately 650 feet away. Because Bin Set 1 was not designed for calcine retrieval, and because of the high radiation levels and potential contamination spread from the calcined material, this is a challenging engineering task. This report presents preconceptual design studies for remotely-operated, low-density, pneumatic vacuum retrieval and transport systems and equipment that are based on past work performed by the Raytheon Engineers and Constructors architectural engineering firm. The designs presented are considered feasible; however, future development work will be needed in several areas during the subsequent conceptual design phase

  2. Properties of radioactive calcine retrieved from the second calcined solids storage facility at ICPP

    International Nuclear Information System (INIS)

    Staples, B.A.; Pomiak, G.S.; Wade, E.L.

    1979-03-01

    The chemical and physical properties of radioactive alumina and zirconia calcine samples retrieved from the storage bins at ICPP were measured. Chemical properties measured include chemical composition, crystalline structure, and radiochemical composition. The physical properties measured and reported include density, size distribution, relative attrition, solubility in 8 M HNO 3 , thermal stability, and flow characteristics. The chemical and physical properties of the retrieved calcine after the 10 to 12 years of storage are very similar to freshly prepared simulated calcine

  3. [Infrared spectral analysis for calcined borax].

    Science.gov (United States)

    Zhao, Cui; Ren, Li-Li; Wang, Dong; Zhou, Ping; Zhang, Qian; Wang, Bo-Tao

    2011-08-01

    To valuate the quality of calcined borax which is sold in the market, 18 samples of calcined borax were studied using the Fourier transform infrared, and samples with different water content were selected and analyzed. Then, the results of analysis were used to evaluate the quality of calcined borax. Results show that the infrared spectra of calcined borax include OH vibration, BO3(-3) vibration and BO4(5-) vibration absorption bands. The position and width of OH vibration absorption band depend on the level of water content, and the more the water content, the wider the absorption band. The number of BO3(3-) vibration and BO4(5-) vibration bands also depend on the level of water content, and the more the water content, and the stronger the hydrogen bond and the lower the symmetry of B atoms, the more the number of infrared absorption peaks. It was concluded that because the quality of calcined borax has direct correlation with water content, the infrared spectroscopy is an express and objective approach to quality analysis and evaluation of calcined borax.

  4. [The spectra of a laser-produced plasma source with CO2, O2 and CF4 liquid aerosol spray target].

    Science.gov (United States)

    Ni, Qi-Liang; Chen, Bo

    2008-11-01

    A laser-produced plasma (LPP) source with liquid aerosol spray target and nanosecond laser was developed, based on both soft X-ray radiation metrology and extreme ultraviolet projection lithography (EUVL). The LPP source is composed of a stainless steel solenoid valve whose temperature can be continuously controlled, a Nd : YAG laser with pulse width, working wavelength and pulse energy being 7 ns, 1.064 microm and 1J respectively, and a pulse generator which can synchronously control the valve and the laser. A standard General Valve Corporation series 99 stainless steel solenoid valve with copper gasket seals and a Kel-F poppet are used in order to minimize leakage and poppet deformation during high-pressure cryogenic operation. A close fitting copper cooling jacket surrounds the valve body. The jacket clamps a copper coolant carrying tube 3 mm in diameter, which is fed by an automatically pressurized liquid nitrogen-filled dewar. The valve temperature can be controlled between 77 and 473 K. For sufficiently high backing pressure and low temperature, the valve reservoir gas can undergo a gas-to-liquid phase transition. Upon valve pulsing, the liquid is ejected into a vacuum and breaks up into droplets, which is called liquid aerosol spray target. For the above-mentioned LPP source, firstly, by the use of Cowan program on the basis of non-relativistic quantum mechanics, the authors computed the radiative transition wavelengths and probabilities in soft X-ray region for O4+, O5+, O6+, O7+, F5+, F6+ and F7+ ions which were correspondingly produced from the interaction of the 10(11)-10(12) W x cm(-2) power laser with liquid O2, CO2 and CF4 aerosol spray targets. Secondly, the authors measured the spectra of liquid O2, CO2 and CF4 aerosol spray target LPP sources in the 6-20 nm band for the 8 x 10(11) W x cm(-2) laser irradiance. The measured results were compared with the Cowan calculated results ones, and the radiative transition wavelength and probability for the

  5. A report on the indoor residual spraying (IRS) in the control of Phlebotomus argentipes, the vector of visceral leishmaniasis in Bihar (India): an initiative towards total elimination targeting 2015 (Series-1).

    Science.gov (United States)

    Kumar, V; Kesari, S; Dinesh, D S; Tiwari, A K; Kumar, A J; Kumar, R; Singh, V P; Das, P

    2009-09-01

    Visceral leishmaniasis, commonly known as kala-azar is endemic in Bihar state, India. Current vector control programme in Bihar focuses mainly on spraying the sandfly infested dwellings with DDT. The Government of India in collaboration with WHO has fixed the target 2015 for total elimination of kala-azar. The present study was carried out to see the impact of DDT and improved IEC in the containment of vector density vis-à-vis disease transmission. Before the start of the spraying operations training was imparted to all the medical and paramedical personnel regarding the methods of spraying operations. Pre- and post-sandfly density was monitored in four selected districts. Incidences of kala-azar cases were compared for pre- and post-spray periods. Social acceptability and perceptions of households was collected through questionnaires from 500 randomly selected households in the study districts. House index in three study districts reduced considerably during post-spray when compared to pre-spray. Kala-azar incidence in many districts was reduced after the DDT spray. Either partial or complete refusal was reported in 14.4%, while 35% were not satisfied with the suspension concentration and coverage; and 46.6% were found satisfied with the spraying procedure. Strengthening the IEC activities to sensitise the community, proper training of health personnel, monitoring of spray, good surveillance, proper treatment of cases and two rounds of DDT spray with good coverage in the endemic districts up to three years are essential to achieve the desired total elimination of kala-azar in Bihar state.

  6. Experimental results: Pilot plant calcine dissolution and liquid feed stability

    International Nuclear Information System (INIS)

    Herbst, R.S.; Fryer, D.S.; Brewer, K.N.; Johnson, C.K.; Todd, T.A.

    1995-02-01

    The dissolution of simulated Idaho Chemical Processing Plant pilot plant calcines, containing none of the radioactive actinides, lanthanides or fission products, was examined to evaluate the solubility of calcine matrix materials in acidic media. This study was a necessary precursor to dissolution and optimization experiments with actual radionuclide-containing calcines. The importance of temperature, nitric acid concentration, ratio of acid volume to calcine mass, and time on the amount, as a weight percentage of calcine dissolved, was evaluated. These parameters were studied for several representative pilot plant calcine types: (1) Run No. 74 Zirconia calcine; (2) Run No. 17 Zirconia/Sodium calcine; (3) Run No. 64 Zirconia/Sodium calcine; (3) Run No. 1027 Alumina calcine; and (4) Run No. 20 Alumina/Zirconia/Sodium calcine. Statistically designed experiments with the different pilot plant calcines indicated the effect of the studied process variables on the amount of calcine dissolved decreases in the order: Acid/Calcine Ratio > Temperature > HNO 3 Concentration > Dissolution Time. The following conditions are suitable to achieve greater than 90 wt. % dissolution of most Zr, Al, or Na blend calcines: (1) Maximum nitric acid concentration of 5M; (2) Minimum acid/calcine ratio of 10 mL acid/1 gram calcine; (3) Minimum dissolution temperature of 90 degrees C; and (4) Minimum dissolution time of 30 minutes. The formation of calcium sulphate (CaSO 4 ) precipitates was observed in certain dissolved calcine solutions during the dissolution experiments. Consequently, a study was initiated to evaluate if and under what conditions the resulting dissolved calcine solutions would be unstable with regards to precipitate formation. The results indicate that precipitate formation in the calcine solutions prepared under the above proposed dissolution conditions are not anticipated

  7. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  8. Recovery of gold and uranium from calcines

    Energy Technology Data Exchange (ETDEWEB)

    Livesey-Goldblatt, E.

    1981-10-06

    The invention concerns the recovery of non-ferrous metals, such as gold, uranium or the like from iron oxide containing calcines which have the non-ferrous metal present in solid solution and/or encapsulated within the iron oxide. The calcine is reacted, while stirring vigorously, with sulphuric acid or another strong inorganic acid to cause the iron to form the ferric salt. The material obtained is mixed with water and the liquid and solid phases are separated from each other. The non-ferrous metal is then obtained from at least one of these phases by leaching, or the like.

  9. 1st International Conference on Calcined Clays for Sustainable Concrete

    CERN Document Server

    Favier, Aurélie

    2015-01-01

    This volume focuses on research and practical issues linked to Calcined Clays for Sustainable Concrete. The main subjects are geology of clays, hydration and performance of blended systems with calcined clays, alkali activated binders, economic and environmental impacts of the use of calcined clays in cement based materials. Topics addressed in this book include the influence of processing on reactivity of calcined clays, influence of clay mineralogy on reactivity, geology of clay deposits, Portland-calcined clay systems, hydration, durability, performance, Portland-calcined clay-limestone systems, hydration, durability, performance, calcined clay-alkali systems, life cycle analysis, economics and environmental impact of use of calcined clays in cement and concrete, and field applications. This book compiles the different contributions of the 1st International Conference on Calcined Clays for Sustainable Concrete, which took place in Lausanne, Switzerland, June, 23-25, 2015.The papers present the latest  res...

  10. A new method for spray deposit assessment

    Science.gov (United States)

    Chester M. Himel; Leland Vaughn; Raymond P. Miskus; Arthur D. Moore

    1965-01-01

    Solid fluorescent particles suspended in a spray liquid are distributed in direct proportion to the size of the spray droplets. Use of solid fluorescent particles is the basis of a new method for visual recognition of the size and number of droplets impinging on target and nontarget portions of sprayed areas.

  11. Remotely replaceable fuel and feed nozzles for the new waste calcining facility calciner vessel

    International Nuclear Information System (INIS)

    Fletcher, R.D.; Carter, J.A.; May, K.W.

    1978-01-01

    The development and testing of remotely replaceable fuel and feed nozzles for calcination of liquid radioactive wastes in the calciner vessel of the New Waste Calcining Facility being built at the Idaho National Engineering Laboratory is described. A complete fuel nozzle assembly was fabricated and tested at the Remote Maintenance Development Facility to evolve design refinements, identify required support equipment, and develop handling techniques. The design also provided for remote replacement of the nozzle support carriage and adjacent feed and fuel pipe loops using two pairs of master-slave manipulators

  12. Reaction between Hydrogen Sulfide and Limestone Calcines

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Trnka, Otakar; Čermák, Jiří

    2002-01-01

    Roč. 41, č. 10 (2002), s. 2392-2398 ISSN 0888-5885 R&D Projects: GA AV ČR IAA4072711; GA AV ČR IAA4072801 Keywords : hydrogen sulfide * limestone calcines * desulfurization Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.247, year: 2002

  13. Evaluation of Calcine Disposition Path Forward

    International Nuclear Information System (INIS)

    Birrer, S.A.; Heiser, M.B.

    2003-01-01

    This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward

  14. Development and evaluation of alumina calcination

    International Nuclear Information System (INIS)

    Bennett, I.J.

    2000-01-01

    This thesis focuses on a number of aspects governing the transformation of gibbsite, via intermediate phases, to α-alumina. These aspects include the size and morphology of the gibbsite grains, the influence of additions of foreign elements, the effect of a mechanical treatment of the gibbsite prior to calcination, and combinations of these factors. The materials were characterised by scanning electron microscopy, X-ray diffraction and surface area measurements. For some of the calcined materials an attempt was made to sinter the powders to a dense body to investigate if any of the treatments during calcination had an effect on this process. The literature review covers the current state of understanding of the production of bulk alumina powder by the Bayer process and the phase changes seen on calcination of precursors to the stable α-alumina phase. A detailed description of the phase changes is given and the various routes and conditions necessary for the transformations to occur are considered. The transformations are examined in relation to the morphology of the crystals and the variables controlling the phase transformation route are discussed. Calcination in air showed that the size of the gibbsite grain governs the calcination route taken to reach oc-alumina. The standard gibbsites used in this work show a mixed calcination sequence transforming both via the boehmite phase, followed by the γ, δ and θ phases, and via the χ and κ phases. The formation of boehmite is attributed to retention of water vapour within the grain. Differences in morphology of the starting materials showed that for the range of materials seen, the morphology of the grain is less important than its size. The super fine material confirmed that a small grain size transforms via the non-boehmite route only, with the other gibbsites taking intermediate routes as for the standard gibbsites. Of the additions made prior to calcination, aluminium fluoride was found to reduce the

  15. Kinetic Study of Calcination of Jakura Limestone Using Power Rate ...

    African Journals Online (AJOL)

    National Research Institute for Chemical Technology, P.M. B 1052, Zaria, ... calcination of Jakura limestone was also found to be first order reaction with respect to CaCO3 ... Keywords: Jakura, limestone, calcination, kinetics, power law model.

  16. Dissolution studies with pilot plant and actual INTEC calcines

    International Nuclear Information System (INIS)

    Herbst, R.S.; Garn, T.G.

    1999-01-01

    The dissolution of Idaho Nuclear Technology and Engineering Center (INTEC) pilot plant calcines was examined to determine solubility of calcine matrix components in acidic media. Two representatives pilot plant calcine types were studied: Zirconia calcine and Zirconia/Sodium calcine. Dissolution of these calcines was evaluated using lower initial concentrations of nitric acid than used in previous tests to decrease the [H+] concentration in the final solutions. Lower [H+] concentrations contribute to more favorable TRUEX/SREX solvent extraction flowsheet performance. Dissolution and analytical results were also obtained for radioactive calcines produced using high sodium feeds blended with non-radioactive Al(NO 3 ) 3 solutions to dilute the sodium concentration and prevent bed agglomeration during the calcination process. Dissolution tests indicated >95 wt.% of the initial calcine mass can be dissolved using the baseline dissolution procedure, with the exception that higher initial nitric acid concentrations are required. The higher initial acid concentration is required for stoichiometric dissolution of the oxides, primarily aluminum oxide. Statistically designed experiments using pilot plant calcine were performed to determine the effect of mixing rate on dissolution efficiency. Mixing rate was determined to provide minimal effects on wt.% dissolution. The acid/calcine ratio and temperature were the predominate variables affecting the wt.% dissolution, a result consistent with previous studies using other similar types of pilot plant calcines

  17. Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    2016-01-01

    Use of properly calcined kaolinite rich clay (i.e., metakaolin) to offset part of CO2-intensive clinkers not only reduces CO2 footprint from cement industry but also improves the performance of concrete. However, calcination under inappropriately high temperatures or long retention times may...... suspension calciner. The model is validated by the experimental data (e.g., the degree of dehydroxylation and the density of the calcines). Based on the model, the impacts of process conditions and feed properties on the quality of the calcination products are thoroughly examined....

  18. The increase performance BMF-14 calcination unit

    International Nuclear Information System (INIS)

    Triyono

    2013-01-01

    The heating element of performance increase BMF-14 calcination unit has been installed. The activity includes: installation and function test heating element step by step. The main component includes: kanthal heating element type with size long 58,2 cm diameter 0,9 cm slot total 28, flexible cable resists heat 30 Amperes, band cable heat resists and flexible clamp. The heating elements installation includes from 3 groups and every groups have 4 heating elements to connectly series. Every group connecting to every phase RST and neutral for getting electric voltage 380 Volts follow contact relay 3 phases to controlling by digital temperature control. The resulting installation of heating element in the BMF-14 calcination unit showed that: BMF-14 calcination unit can be again of the setting temperature step by step. In the step I get optimal temperature 560 °C test time 1068 minutes with rate velocity heat 0 to 18,0 °C/minutes with current between 5,8 to 6,4 Amperes voltage 103 to 123 Volts (phase R and T). In the step II gets optimal temperature 600 °C test time 265 minutes getting rate velocity heat 0 to 40,3 °C/minutes with current 3,8 to 8,5 Amperes voltage 76 to 142 Volts (phase RST). In the step III gets optimal temperature 1000 °C test time 107 minutes getting rate velocity heat 0 to 53,5 °C/minutes with current 9,7 to 12,5 Amperes voltage 215 to 225 Volts (phase RST). (author)

  19. Waste Calcining Facility remote inspection report

    International Nuclear Information System (INIS)

    Patterson, M.W.; Ison, W.M.

    1994-08-01

    The purpose of the Waste Calcining Facility (WCF) remote inspections was to evaluate areas in the facility which are difficult to access due to high radiation fields. The areas inspected were the ventilation exhaust duct, waste hold cell, adsorber manifold cell, off-gas cell, calciner cell and calciner vessel. The WCF solidified acidic, high-level mixed waste generated during nuclear fuel reprocessing. Solidification was accomplished through high temperature oxidation and evaporation. Since its shutdown in 1981, the WCFs vessels, piping systems, pumps, off-gas blowers and process cells have remained contaminated. Access to the below-grade areas is limited due to contamination and high radiation fields. Each inspection technique was tested with a mock-up in a radiologically clean area before the equipment was taken to the WCF for the actual inspection. During the inspections, essential information was obtained regarding the cleanliness, structural integrity, in-leakage of ground water, indications of process leaks, indications of corrosion, radiation levels and the general condition of the cells and equipment. In general, the cells contain a great deal of dust and debris, as well as hand tools, piping and miscellaneous equipment. Although the building appears to be structurally sound, the paint is peeling to some degree in all of the cells. Cracking and spalling of the concrete walls is evident in every cell, although the east wall of the off-gas cell is the worst. The results of the completed inspections and lessons learned will be used to plan future activities for stabilization and deactivation of the facility. Remote clean-up of loose piping, hand tools, and miscellaneous debris can start immediately while information from the inspections is factored into the conceptual design for deactivating the facility

  20. Quantitative Assessment of Spray Deposition with Water-Sensitive Paper

    Science.gov (United States)

    Spray droplets, discharged from the lower six nozzles of an airblast sprayer, were sampled on pairs of absorbent filter and water-sensitive papers at nine distances from sprayer. Spray deposition on filter targets were measured by fluorometry and spray distribution on WSP targets were assessed by t...

  1. Design and development of a rotary calciner for radiochemical waste

    International Nuclear Information System (INIS)

    Pande, D.P.; Sutar, V.D.; Sengar, P.B.S.

    1997-01-01

    Present experience and knowledge in handling of radioactive waste has led to identification of major thrust areas in the development of the treatment processes. In order to reduce evaporation and volatility losses in the vitrification facility, it is advantageous to carry out evaporation and calcination steps in another equipment like rotary calciner. Efforts have been directed for the engineering development of a Rotary Ball Kiln calciner. This paper highlights the important design features of the Rotary Ball Kiln Calciner for the radioactive waste. In this work, an attempt has been made to systematically evaluate the influence of process and design parameters. The results obtained on calcination will provide a design basis and rational methodology for the optimum utilization of these processes and equipment for volume reduction and calcination of the liquid waste

  2. Calcinating petroleum coke in a furnace with a rotating hearth

    Energy Technology Data Exchange (ETDEWEB)

    Akhmetov, M M; Ezhov, B M; Galeeva, Z G; Goriunov, V S; Karpinskaia, N N; Zaitseva, S A

    1980-01-01

    A scheme is described for an industrial device with a bottom furnace for calcinating coke from slow coking. The consumption and operational indicators of the process during the calcination of standard and needle cokes are given, together with data on the quality of dry and calcinated cokes under different conditions. The basic drawbacks in the operation of the device are described, and measures are proposed for increasing its operational effectiveness.

  3. Pilot-plant development of a Rover waste calcination flowsheet

    International Nuclear Information System (INIS)

    Birrer, S.A.

    1978-04-01

    Results of eight runs, six using the 10-cm dia and two using the 30-cm dia pilot-plant calciners, in which simulated first-cycle Rover waste was calcined, are described. Results of the tests showed that a feed blend consisting of one volume simulated first-cycle Rover waste and one or two volumes simulated first-cycle zirconium waste could not be successfully calcined. 5 figs., 8 tables

  4. Microwave heating application in calcination and SYNROC formation

    International Nuclear Information System (INIS)

    Ambashta, R.D.; Wattal, P.K.; Malav, R.K.; Mallik, G.K.

    2006-01-01

    Microwave for calcination of titanate based ceramic wasteform (SYNROC) is being reported for the first time in this paper. Although major constituents in SYNROC were non microwave active, the combination with microwave active constituents rendered the mixture calcinable. Calcine was sintered at 1150 degC under hot uniaxial conditions at an applied pressure of ∼30 MPa. XRD shows presence of major phases of SYNROC in the compacted sample. (author)

  5. Product removal and solids transport from fluidized-bed calciners

    International Nuclear Information System (INIS)

    Grimmett, E.S.; Munger, D.H.

    1978-09-01

    Methods of removing the solid product from pilot-plant and production fluidized-bed calciners, and transporting product to underground storage vaults are reported here. Testing of dense-phase solids transport systems in test loops during development of a 15-cm-diam. and 30-cm-diam. calciner are described. A lean-phase solid transport system is used with the Waste Calcining Facility. The results of some recent tests done in a lean-phase transport system connected to the 30-cm-diam. calciner are included in this report

  6. Effect of calcination environments and plasma treatment on structural, optical and electrical properties of FTO transparent thin films

    Directory of Open Access Journals (Sweden)

    Madhav Kafle

    2017-07-01

    Full Text Available The dependence of the structural, optical and electrical properties of the FTO thin films on the film thickness (276 nm - 546 nm, calcination environment, and low temperature plasma treatment were examined. The FTO thin films, prepared by spray pyrolysis, were calcinated under air followed by either further heat treatment under N2 gas or treatment in low temperature atmospheric plasma. The samples before and after calcination under N2, and plasma treatment will be represented by Sair, SN2 and SPl, respectively, hereafter. The thin films were characterized by measuring the XRD spectra, SEM images, optical transmittance and reflectance, and sheet resistance of the films before and after calcination in N2 environment or plasma treatment. The presence of sharp and narrow multiple peaks in XRD spectra hint us that the films were highly crystalline (polycrystalline. The samples Sair with the thickness of 471 nm showed as high as 92 % transmittance in the visible range. Moreover, from the tauc plot, the optical bandgap Eg values of the Sair found to be noticeably lower than that of the samples SN2. Very surprisingly, the electrical sheet resistance (Rsh found to decrease following the trend as Rshair > RshN2 > RshPl. The samples exposed to plasma found to possess the lowest RshPl (for film with thickness 546 nm, the RshPl was 17 Ω/sq..

  7. SYNROC production using a fluid bed calciner

    International Nuclear Information System (INIS)

    Ackerman, F.J.; Grens, J.Z.; Ryerson, F.J.; Hoenig, C.L.; Bazan, F.; Campbell, J.H.

    1982-01-01

    SYNROC is a titanate-based ceramic developed for immobilization of high-level nuclear reactor wastes in solid form. Fluid-bed SYNROC production permits slurry drying, calcining and redox to be carried out in a single unit. We present results of studies from two fluid beds; the Idaho Exxon internally-heated unit and the externally-heated unit constructed at Lawrence Livermore National laboratory. Bed operation over a range of temperature, feed rate, fluidizing rate and redox conditions indicate that high density, uniform particle-size SYNROC powders are produced which facilitate the densification step and give HUP parts with dense, well-developed phases and good leaching characteristics. 3 figures, 3 tables

  8. Calcination of kaolinite clay particles for cement production

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    2014-01-01

    Kaolinite rich clay particles calcined under certain conditions can attain favorable pozzolanic properties and can be used to substitute part of the CO2 intensive clinker in cement production. To better guide calcination of a clay material, a transient one-dimensional single particle model...

  9. Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project

    International Nuclear Information System (INIS)

    J. T. Beck

    2007-01-01

    This document identifies the need to establish the Calcine Disposition Project to determine and implement the final disposition of calcine including characterization, retrieval, treatment (if necessary), packaging, loading, onsite interim storage pending shipment to a repository or interim storage facility, and disposition of related facilities

  10. Modeling of calcination of single kaolinitic clay particle

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    The present work aims at modeling of the calcination (dehydroxylation) process of clay particles, specifically kaolinite, and its thermal transformation. For such purpose, 1D single particle calcination model was developed based on the concept of shrinking core model to assess the dehydroxylation...

  11. Practical results of the MESA 1 line calcinator trial operation

    International Nuclear Information System (INIS)

    Napravnik, J.; Sazavsky, P.; Skaba, V.; Zahalka, F.; Vild, J.; Kulovany, J.

    1987-01-01

    Mobile calcination and cementation unit MESA 1 was designed and built by UJV Rez in cooperation with many enterprises, mainly with the Kralovopolske Strojirny Brno. This facility for direct fixation of liquid radioactive wastes was experimentally tested using model non-radioactive solutions and model and actual wastes from the Jaslovske Bohunice nuclear power plant. The calciner was run in trial operation at the Kralovopolske SAtrojirny Brno. A total of 1.3 m 3 of model solutions was processed into 180 kg of calcinate. The fixation of the calcinate in cement, the times of solidification and of hardening and the moisture content of concrete blocks were studied. The application was also tested of the calciner in drying ion exchangers from WWER-440 prior to their bituminization. Following the despatch of the cementation module to the Chernobyl nuclear power plant, the direct calcination module was tested at Dukovany together with an auxiliary module which makes possible self-contained calciner operation. Model non-radioactive solutions from the Dukovany nuclear power plant were treated containing H 3 BO 3 and NaNO 3 as main components. The usability in actual conditions of the mobile calcination and cementation unit for radioactive wastes was tested in a total of about 70 operating hours. (E.S.). 2 figs., 2 refs

  12. Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Pieters, Jan G; Nuyttens, David

    2014-03-01

    Spray boom systems, an alternative to the predominantly-used spray guns, have the potential to considerably improve crop protection management in glasshouses. Based on earlier experiments, the further optimization of the deposits of a medium spray quality extended range flat fan nozzle type using easy adjustable spray boom settings was examined. Using mineral chelate tracers and water sensitive papers, the spray results were monitored at three plant levels, on the upper side and the underside of the leaves, and on some off-target collectors. In addition, the deposition datasets of all tree experiments were compared. The data showed that the most efficient spray distribution with the medium spray quality flat fan nozzles was found with a 30° forward angled spray combined with air support and an application rate of 1000 L ha(-1) . This technique resulted in a more uniform deposition in the dense canopy and increased spray deposition on the lower side of the leaves compared with the a standard spray boom application. Applying 1000 L ha(-1) in two subsequent runs instead of one did not seem to show any added value. Spray deposition can be improved hugely simply by changing some spray boom settings like nozzle type, angling the spray, using air support and adjusting the spray volume to the crop. © 2013 Society of Chemical Industry.

  13. Properties of Formula 127 glass prepared with radioactive zirconia calcine

    International Nuclear Information System (INIS)

    Staples, B.A.; Pavlica, D.A.; Cole, H.S.

    1982-09-01

    Formula 127 glass has been developed to immobilize ICPP zirconia calcine. This glass has been prepared remotely on a laboratory scale basis with actual radioactive zirconia calcine retrieved after ten years of storage from Bin Set 2. The aqueous leachability of the glass produced was investigated and compared through application of the MCC-1, MCC-2 and Soxhlet leach tests with that of Formula 127 glass prepared with simulated calcine. The solid state properties of the glasses prepared with actual and simulated calcines were also measured by electron spectroscopy for chemical analysis (ESCA) and scanning electron microscopy energy dispersive x-ray (SEM-EDX). Based on the application of these leaching tests and analysis techniques the properties measured in this study are similar for 127 glass prepared with either simulated or radioactive calcine. 13 figures, 16 tables

  14. Energy saving plan for lime calcining kiln

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Lime calcining kilns operating in China are of old type, consuming more heat energy by 30% or more than the latest type kilns. For the purpose of the COP3 joint implementation, a renewal plan was discussed taking up Benxi Steel Group Company as the object. The new type kiln is a parallel flow energy regenerating (Maerz) kiln. It has as high thermal efficiency as 900 kcal/kg of product. Annual fuel conservation as converted into crude oil will be 7.49x10{sup 3} tons, annual fuel cost reduction will be 101,200,000 yuan, and annual reduction in CO2 emission will be 23,200 tons. The estimated cost required for the project will be 991 million yen, or 66,070,000 yuan if the exchange rate is assumed to be 15 yen to one yuan. The profitability was discussed based on using bank loans and the special environmental yen loan. The investment recovering period was calculated as 7.9 years. This provides no realizability as a project on the business base. However, China strongly desires renewal of the facilities because of discharge of dust from old type facilities, and inferior quality of lime products. The project could be a candidate without doubt if the CDM system will have been established. (NEDO)

  15. Calcination of the cerium concentrate to be cerium oxide

    International Nuclear Information System (INIS)

    Suyanti; MV Purwani

    2016-01-01

    Calcination of the cerium concentrate to be cerium oxide has done. The cerium concentrate were obtained from the Ce making process wear KBrO_3 and without using KBrO_3. The calcination were done with a variation of time 1, 2, 3 and 4 hours with the temperature variations of 700, 800 and 900°C. The easiest calcination of Ce concentrates to be CeO_2 containing majority of Ce(OH)_4 and contains least impurities as Th(OH)_4, (NH_4)_2Y(NO_3), H_4N_5O_1_2La, H_1_2N_3NdO_1_5 and N_3O_9Sm. On the calcination of Ce concentrates process results without using KBrO_3 1, the calcination temperature 900°C was obtained CeO_2 content of 73.53% for calcination time of 4 hours, has little difference when compared with the predictions and calculation result of complete calcination was equal 73.84%. (author)

  16. Assessment of soda ash calcination treatment of Turkish trona ore

    Directory of Open Access Journals (Sweden)

    Gezer Sibel

    2016-01-01

    Full Text Available Trona is relatively rare, non-metallic mineral, Na2CO3 · NaHCO3 · 2H2O. The pure material contains 70.3% sodium carbonate and by calcination the excess CO2 and water can be driven off, yielding natural soda ash. The terms soda ash and sodium carbonate are used interchangeably. Trona calcining is a key process step in production of soda ash (sodium carbonate anhydrate from the relatively cheap trona ore. The calcination reaction may proceeds in a sequence of steps. Depending on the conditions, it may result in formation of either sodium carbonate monohydrate (Na2CO3 · H2O, sodium sesquicarbonate or weigschederite (Na2CO3 · 3NaHCO3. The Beypazarı Turkish trona deposit is the second largest deposit in the world with the content of 84% trona. The decomposition of trona appeared to be a single stage process across the temperature range studied (150-200 °C with the representative samples of different size fractions in the draught up metallurgical furnace. The optimum particle size and calcination time were −6.35 mm and 30 minutes, respectively, at calcination temperature of 175 °C in a metallurgical furnace. Microwave-induced dry calcination of trona was possible and 5 minutes of calcination time at a power level of 900 was sufficient for complete calcination of −6.35 mm feed. This includes short time calcinations with the goal of improving economics and simplifying the thermal process.

  17. Experimental characterization of gasoline sprays under highly evaporating conditions

    Science.gov (United States)

    Khan, Muhammad Mahabat; Sheikh, Nadeem Ahmed; Khalid, Azfar; Lughmani, Waqas Akbar

    2018-05-01

    An experimental investigation of multistream gasoline sprays under highly evaporating conditions is carried out in this paper. Temperature increase of fuel and low engine pressure could lead to flash boiling. The spray shape is normally modified significantly under flash boiling conditions. The spray plumes expansion along with reduction in the axial momentum causes the jets to merge and creates a low-pressure area below the injector's nozzle. These effects initiate the collapse of spray cone and lead to the formation of a single jet plume or a big cluster like structure. The collapsing sprays reduces exposed surface and therefore they last longer and subsequently penetrate more. Spray plume momentum increase, jet plume reduction and spray target widening could delay or prevent the closure condition and limit the penetration (delayed formation of the cluster promotes evaporation). These spray characteristics are investigated experimentally using shadowgraphy, for five and six hole injectors, under various boundary conditions. Six hole injectors produce more collapsing sprays in comparison to five hole injector due to enhanced jet to jet interactions. The spray collapse tendency reduces with increase in injection pressure due high axial momentum of spray plumes. The spray evaporation rates of five hole injector are observed to be higher than six hole injectors. Larger spray cone angles of the six hole injectors promote less penetrating and less collapsing sprays.

  18. Study of as-synthesized and calcined hydrocalumites as possible ...

    Indian Academy of Sciences (India)

    Administrator

    ments. Finally, these solids were tested as antacids by using a synthetic gastric juice. Results showed that calcined samples were able to neutralize the synthetic gastric juice in more extension as an as-synthesized ..... D 2010 Appl. Clay Sci.

  19. Effect of calcination conditions of pork bone sludge on behaviour

    Indian Academy of Sciences (India)

    ... bone sludge from meat plant via two essentially different calcination methods using ... tissue and suitability for further investigations intended for medical grafting. ... The Alfred Meissner Higher School of Dental Engineering and Humanities, ...

  20. CSER 99-001: PFP LAB Dentirating calciner

    International Nuclear Information System (INIS)

    MILLER, E.M.; DOBBIN, K.D.

    1999-01-01

    A criticality safety evaluation report was prepared for the Plutonium Finishing Plant (PFP) laboratory denigrating calciner, located in Glovebox 188-1, that converts Pu(NO 3 ) 4 solutions to the high fired stable oxide PuO 2 . Fissile mass limits and volume limits are set for the glovebox for testing operations and training operators using only nitric acid feed to a plutonium oxide bed in the calciner

  1. Activity Based Startup Plan for Prototype Vertical Denitration Calciner

    International Nuclear Information System (INIS)

    SUTTER, C.S.

    1999-01-01

    Testing activation on the Prototype Vertical Denitration Calciner at PFP were suspended in January 1997 due to the hold on fissile material handling in the facility. The restart of testing activities will require a review through an activity based startup process based upon Integrated Safety Management (ISM) principles to verify readiness. The Activity Based Startup Plan for the Prototype vertical Denitration Calciner has been developed for this process

  2. Fixation of calcined waste by bituminization or cementation

    International Nuclear Information System (INIS)

    Napravnik, J.; Kyrs, M.; Ditl, P.

    1983-01-01

    The overall concept is given of the combination of calcination with fixation into bitumen, cement etc. The design is shown of a calciner with the capacity of 10 L/h which was tested on real radioactive wastes for 2000 h. The geometrical and operating parameters of the apparatus have been optimized based on a statistical evaluation of the experiments. Wastes containing nitrates are calcined at 300-550 deg. C, yielding oxides. Wastes containing sulphates, carbonates, KMnO 4 , or borates are calcined at 150-330 deg. C, yielding soluble salts. The content of H 3 BO 4 and Na 2 B 4 O 7 and in some cases of sulphates in the calcinate retards hardening of the mixture with cement. Nitrates and detergents also interfere. The effect of the above components on the products mixed with bitumen is much less. Detergents can be decomposed at 200-300 deg. C; organic acids can be reacted with A1 salts to form insoluble substances lowering the leaching rate of Sr and Cs; small amounts of SiO 2 eliminate the effect of borates on cement hardening. The drawbacks of bituminization with bitumen emulsions are the complicated preparation of the emulsion, higher leaching rate of the product and low stability of the emulsion against breaking. The leachability was determined (1-50 days) of different products containing LWR wastes: 33% of concentrated waste in cement of calcination product stabilized with PVA exhibit approx. 8x10 - 3 g/cm 2 per day, 33% of calcine in cement approx. 3x10 - 3 ; 40% concentrate fixed with bitumen emulsion approx. 9x10 - 4 ; 50% calcine stabilized with PVA in bitumen, pilot-plant scale approx. 2x10 - 5 ; the same but on a laboratory scale approx. 1.10 - 5 . (author)

  3. Optical fuel spray measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hillamo, H.

    2011-07-01

    Diesel fuel sprays, including fuel/air mixing and the physics of two-phase jet formation, are discussed in the thesis. The fuel/air mixing strongly affects emissions formation in spray combustion processes where the local combustion conditions dictate the emission formation. This study comprises optical measurements both in pressurized spray test rigs and in a running engine.The studied fuel injection was arranged with a common rail injection system and the injectors were operated with a solenoid-based injection valve. Both marine and heavy-duty diesel engine injectors were used in the study. Optical fuel spray measurements were carried out with a laser-based double-framing camera system. This kind of equipments is usually used for flow field measurements with Particle Image Velocimetry technique (PIV) as well as for backlight imaging. Fundamental fuel spray properties and spray formation were studied in spray test rigs. These measurements involved studies of mixing, atomization, and the flow field. Test rig measurements were used to study the effect of individual injection parameters and component designs. Measurements of the fuel spray flow field, spray penetration, spray tip velocity, spray angle, spray structure, droplet accumulation, and droplet size estimates are shown. Measurement campaign in a running optically accessible large-bore medium-speed engine was also carried out. The results from engine tests were compared with equivalent test rig measurements, as well as computational results, to evaluate the level of understanding of sprays. It was shown that transient spray has an acceleration and a deceleration phase. Successive flow field measurements (PIV) in optically dense diesel spray resulted in local and average velocity data of diesel sprays. Processing fuel spray generates a flow field to surrounding gas and entrainment of surrounding gas into fuel jet was also seen at the sides of the spray. Laser sheet imaging revealed the inner structure of diesel

  4. Comparison of the Characteristics and Performance of Flurbiprofen 8.75 mg Spray for Sore Throat.

    Science.gov (United States)

    Veale, David; Shephard, Adrian; Adams, Verity; Lidster, Charlotte

    2017-01-01

    Sore throat sprays provide targeted relief by delivering the active ingredient directly to the site of pain. Different sprays vary in characteristics, thus affecting delivery of the active ingredient to the throat, which can impact compliance. The characteristics and performance of FLURBIPROFEN 8.75 mg SPRAY were compared with 12 other sprays. Parameters assessed included spray angle and pattern, droplet size distribution, shot weight uniformity and shot weight throughout life. Among all sprays tested WICK Sulagil Halsspray had the smallest spray angle (46°) and also the smallest diameter spray pattern (X=32.8 mm; Y=34.4 mm). Thiovalone® Buccal Spray Suspension had both the largest spray angle (82°) and largest diameter spray pattern (X=62.6 mm; Y=78.0 mm). Hasco Sept® Aerosol Spray had the smallest droplet size (Dv90=118.4 μm) whereas OKi infiammazione e dolore® 0.16% spray had the largest (Dv90=214.34 μm). In terms of shot weight uniformity, TANTUM® VERDE GOLA 0.25% spray showed the least variation (2% RSD) between shots and UNIBEN Aerosol Spray the most (23.4% RSD). Shot weight throughout life studies showed that FLURBIPROFEN 8.75 mg SPRAY had the least deviation from shot weight (1.77%) whereas OKi infiammazione e dolore® 0.16% spray deviated the most (44.9%). FLURBIPROFEN 8.75 mg SPRAY had the second smallest spray angle/pattern and droplet size distribution and also the least variation in shot weight. Different sore throat sprays vary in different attributes, affecting delivery of the active ingredient. FLURBIPROFEN 8.75 mg SPRAY performed well overall, ranking first among all sprays tested, and providing a dose which is targeted and uniformly delivered throughout the life of the bottle. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Boardman; B. H. O& #39; Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing

  6. Fixed automated spray technology.

    Science.gov (United States)

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  7. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  8. Optimization of Calcine Blending During Retrieval From Binsets

    International Nuclear Information System (INIS)

    Taylor, D.D.; Mohr, C.M.; Nelson, L.O.

    2000-01-01

    This report documents a study performed during advanced feasibility studies for the INTEC Technology Development Facility (ITDF). The study was commissioned to provide information about functional requirements for the ITDF related to development of equipment and procedures for retrieving radioactive calcine from binset storage at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). Calcine will be retrieved prior to treating it for permanent disposal in a national repository for high level waste. The objective this study was to estimate the degree of homogenization of the calcine that might be achieved through optimized retrieval and subsequent blending. Such homogenization has the potential of reducing the costs for treatment of the calcine and for qualifying of the final waste forms for acceptance at the repository. Results from the study indicate that optimized retrieval and blending can reduce the peak c oncentration variations of key components (Al, Zr, F) in blended batches of retrieved calcine. During un-optimized retrieval these variations are likely to be 81-138% while optimized retrieval can reduce them to the 5-10% range

  9. Optimization of Calcine Blending During Retrieval From Binsets; TOPICAL

    International Nuclear Information System (INIS)

    Taylor, D.D.; Mohr, C.M.; Nelson, L.O.

    2000-01-01

    This report documents a study performed during advanced feasibility studies for the INTEC Technology Development Facility (ITDF). The study was commissioned to provide information about functional requirements for the ITDF related to development of equipment and procedures for retrieving radioactive calcine from binset storage at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). Calcine will be retrieved prior to treating it for permanent disposal in a national repository for high level waste. The objective this study was to estimate the degree of homogenization of the calcine that might be achieved through optimized retrieval and subsequent blending. Such homogenization has the potential of reducing the costs for treatment of the calcine and for qualifying of the final waste forms for acceptance at the repository. Results from the study indicate that optimized retrieval and blending can reduce the peak c oncentration variations of key components (Al, Zr, F) in blended batches of retrieved calcine. During un-optimized retrieval these variations are likely to be 81-138% while optimized retrieval can reduce them to the 5-10% range

  10. Optimization of Calcine Blending During Retrieval from Binsets

    International Nuclear Information System (INIS)

    Nelson, Lee Orville; Mohr, Charles Milton; Taylor, Dean Dalton

    2000-01-01

    This report documents a study performed during advanced feasibility studies for the INTEC Technology Development Facility (ITDF). The study was commissioned to provide information about functional requirements for the ITDF related to development of equipment and procedures for retrieving radioactive calcine from binset storage at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). Calcine will be retrieved prior to treating it for permanent disposal in a national repository for high level waste. The objective this study was to estimate the degree of homogenization of the calcine that might be achieved through optimized retrieval and subsequent blending. Such homogenization has the potential of reducing the costs for treatment of the calcine and for qualifying of the final waste forms for acceptance at the repository. Results from the study indicate that optimized retrieval and blending can reduce the peak concentration variations of key components (Al, Zr, F) in blended batches of retrieved calcine. During un-optimized retrieval these variations are likely to be 81-138% while optimized retrieval can reduce them to the 5-10% range

  11. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  12. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Staiger, M. Daniel; Swenson, Michael C.

    2011-01-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  13. Two intelligent spraying systems developed for tree crop production

    Science.gov (United States)

    Precision pesticide application technologies are needed to achieve efficient and effective spray deposition on target areas and minimize off-target losses. Two variable-rate intelligent sprayers were developed as an introduction of new generation sprayers for tree crop applications. The first spraye...

  14. Remotely controlled spray gun

    Science.gov (United States)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  15. Total oxidation of toluene over calcined trimetallic hydrotalcites type catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Palacio, Luz A. [Instituto Superior Tecnico, IBB - Centro de Engenharia Biologica e Quimica, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Grupo Catalizadores y Adsorbentes, Universidad de Antioquia 1-317, A.A. 1226 Medellin (Colombia); Velasquez, Juliana; Echavarria, Adriana [Grupo Catalizadores y Adsorbentes, Universidad de Antioquia 1-317, A.A. 1226 Medellin (Colombia); Faro, Arnaldo [Departamento de Fisicoquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, CT bloco A, Rio de Janeiro (Brazil); Ramoa Ribeiro, F. [Instituto Superior Tecnico, IBB - Centro de Engenharia Biologica e Quimica, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ribeiro, M. Filipa, E-mail: filipa.ribeiro@ist.utl.pt [Instituto Superior Tecnico, IBB - Centro de Engenharia Biologica e Quimica, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2010-05-15

    Two trimetallic ZnCuAl and MnCuAl hydrotalcites have been successfully synthesized by a co-precipitation method. The manganese based material was identified as a new hydrotalcite phase. Both lamellar precursors were calcined at 450 and 600 deg. C and the resulting catalysts were tested on reaction of total oxidation of toluene. The solids were characterized by X-ray diffraction, thermal analysis, atomic absorption spectroscopy, Fourier transformed infrared spectroscopy, N{sub 2} adsorption and H{sub 2} temperature-programmed reduction. It was found that ZnCuAl materials are composed of copper and zinc oxides supported on alumina; while MnCuAl ones comprise basically spinel phases, which were not completely identified. The catalytic behavior of the calcined samples showed that Mn hydrotalcite calcined at 450 deg. C exhibited the best catalytic performance that corresponds to 100% toluene conversion into CO{sub 2} at about 300 deg. C.

  16. Fluidized bed system for calcination of high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Pande, D P; Prasad, T L; Yadgiri, N K; Theyyunni, T K [Process Engineering and Systems Development Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    During the operation of nuclear facilities significant quantities of radiochemical liquid effluents of different concentrations and varying chemical compositions are generated. These effluents contain activated radionuclides, corrosion products and fission products. The advantage of feeding the waste in solid form into the vitrifying equipment are multifold. Efforts are therefore made in many countries to calcine the high level waste, and obtain waste in the oxide form before the same is mixed with glass forming additives and fed into the melter unit. An experimental rig for fluidized bed calcination is constructed for carrying out the detailed investigation of this process, in order to adopt the same for plant scale application. To achieve better gas-solid contact and avoid raining down of solids, a distributor of bubble cap type was designed. A review of existing experience at various laboratories and design of new experimental facility for development of calciners are given. (author). 11 refs., 5 figs.

  17. Microstructural changes in porous hematite nanoparticles upon calcination

    DEFF Research Database (Denmark)

    Johnsen, Rune; Knudsen, Kenneth D.; Molenbroek, Alfons M.

    2011-01-01

    This combined study using small-angle neutron scattering (SANS), X-ray powder diffraction (XRPD), transmission electron microscopy (TEM) and adsorption isotherm techniques demonstrates radical changes in the microstructure of porous hematite (-Fe2O3) nanoparticles upon calcination in air. TEM....... The change in microstructure also causes a reduction in the surface area as calculated by gaseous adsorption. The XRPD and SANS data show that the crystallite and SANS particle sizes are virtually unchanged by calcination at 623 K. Calcination at 973 K induces a significant alteration of the sample. The XRPD...... data reveal that the crystallite size increases significantly, and the SANS and adsorption isotherm studies suggest that the specific surface area decreases by a factor of 5–6. The TEM images show that the particles are sintered into larger agglomerates, but they also show that parts of the porous...

  18. Total oxidation of toluene over calcined trimetallic hydrotalcites type catalysts

    International Nuclear Information System (INIS)

    Palacio, Luz A.; Velasquez, Juliana; Echavarria, Adriana; Faro, Arnaldo; Ramoa Ribeiro, F.; Ribeiro, M. Filipa

    2010-01-01

    Two trimetallic ZnCuAl and MnCuAl hydrotalcites have been successfully synthesized by a co-precipitation method. The manganese based material was identified as a new hydrotalcite phase. Both lamellar precursors were calcined at 450 and 600 deg. C and the resulting catalysts were tested on reaction of total oxidation of toluene. The solids were characterized by X-ray diffraction, thermal analysis, atomic absorption spectroscopy, Fourier transformed infrared spectroscopy, N 2 adsorption and H 2 temperature-programmed reduction. It was found that ZnCuAl materials are composed of copper and zinc oxides supported on alumina; while MnCuAl ones comprise basically spinel phases, which were not completely identified. The catalytic behavior of the calcined samples showed that Mn hydrotalcite calcined at 450 deg. C exhibited the best catalytic performance that corresponds to 100% toluene conversion into CO 2 at about 300 deg. C.

  19. Letter report: Evaluation of dryer/calciner technologies for testing

    International Nuclear Information System (INIS)

    Sevigny, G.

    1996-02-01

    This letter report describes some past experiences on the drying and calcination of radioactive materials or corresponding simulants; and the information needed from testing. The report also includes an assessment of informational needs including possible impacts to a full-scale plant. This includes reliability, maintenance, and overall size versus throughput. Much of the material was previously compiled and reported by Mike Elliott of PNL open-quotes Melter Performance Assessmentclose quotes and Larry Eisenstatt of SEG on contract to WHC in a letter to Rod Powell. Also, an annotated bibliography was prepared by Reagan Seymour of WHC. Descriptions of the drying and calciner technologies, development status, advantages and disadvantages of using a WFE or calciner, and recommendations for future testing are discussed in this report

  20. Techniques for detection of transition phases in calcined alumina

    International Nuclear Information System (INIS)

    Pandolfelli, V.C.; Folgueras-Dominguez, S.

    1987-01-01

    Detection of transition phases in alumina, is very important in the receiving control and calcination of aluminium hydroxide. The non alfa or transition phases difficults the processability and causes localized shrinkage on sintering compromising the dimensional and mechanical aspects of the product. In this research using refraction index, absorption of dyes, specific density, X-ray diffraction and scanning electron microscopy, analyses, are done in calcined hydroxides submited to different thermal treatments. The limits and facilities of each technique are discussed and compared. (Author) [pt

  1. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Staiger

    1999-06-01

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  2. Process Design Concepts for Stabilization of High Level Waste Calcine

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Thomas; A. K. Herbst

    2005-06-01

    The current baseline assumption is that packaging ¡§as is¡¨ and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80„aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels

  3. Restart plan for the prototype vertical denitration calciner

    Energy Technology Data Exchange (ETDEWEB)

    SUTTER, C.S.

    1999-09-01

    Testing activities on the Prototype Vertical Denitration Calciner at PFP were suspended in January 1997 due to the hold on fissile material handling in the facility. The Restart Plan will govern the transition of the test program from the completion of the activity based startup review; through equipment checkout and surrogate material runs; to resumption of the testing program and transition to unrestricted testing.

  4. CALCIUM OXIDE CHARACTERISTICS PREPARED FROM AMBUNTEN’S CALCINED LIMESTONE

    Directory of Open Access Journals (Sweden)

    Fatimatul Munawaroh

    2018-05-01

    Full Text Available Calcium oxide (CaO and calcium carbonate (CaCO3 are widely used in industry. CaO and CaCO3 can be synthesized or derived from limestone. The purpose of this study to determine the characteristics of CaO calcined limestone from Ambunten Sumenep. Lime in calcined at 850 ° C for 6 hours. Characterization of X-ray fluorescence (XRF was conducted to determine the chemical composition of limestone, X-ray diffraction test (XRD to find the lime crystalline phase and FTIR test to determine the absorption of wave number. XRF test results showed that the limestone chemical composition consisted of Ca of 95.37% as the dominant element, Mg of 4.1%, Fe 0.17% and Y by 0.39%. The XRD test results showed that the limestone crystal phase is ankerite (Ca [Fe, Mg] [CO3] 2 and after the calcined phase calcination is vaterite (Ca [OH] 2, calcite (CaO and calcite (CaCO3. While the FTIR test results show that the CaO spectra are seen at 3741.24, 1417.12 and 874.14 cm-1.

  5. Inductive classification of operating data from a fluidized bed calciner

    International Nuclear Information System (INIS)

    O'Brien, B.H.

    1990-01-01

    A process flowsheet expert system for a fluidized bed calciner which solidifies high-level radioactive liquid waste was developed from pilot-plant data using a commercial, inductive classification program. After initial classification of the data, the resulting rules were inspected and adjusted to match existing knowledge of process chemistry. The final expert system predicts performance of process flowsheets based upon the chemical composition of the calciner feed and has been successfully used to identify potential operational problems prior to calciner pilot-plant testing of new flowsheets and to provide starting parameters for pilot-plant tests. By using inductive classification techniques to develop the initial rules from the calciner pilot-plant data and using existing process knowledge to verify the accuracy of these rules, an effective expert system was developed with a minimum amount of effort. This method may be applied for developing expert systems for other processes where numerous operating data are available and only general process chemistry effects are known

  6. Ninth Processing Campaign in the Waste Calcining Facility

    International Nuclear Information System (INIS)

    Childs, K.F.; Donovan, R.I.; Swenson, M.C.

    1982-04-01

    This report discusses the Ninth (and final) Processing Campaign at the Waste Calcining Facility. Several processing interruptions were experienced during this campaign and the emphasis of this report is on process and equipment performance with operating problems and corrective actions discussed in detail

  7. Physical and chemical characterization of synthetic calcined sludge

    International Nuclear Information System (INIS)

    Slates, R.V.; Mosley, W.C. Jr.; Tiffany, B.; Stone, J.A.

    1982-03-01

    Calcined synthetic sludge was chemically characterized in support of engineering studies to design a processing plant to solidify highly radioactive waste at the Savannah River Plant. An analytical technique is described which provides quantitative data by mass spectrometric analysis of gases evolved during thermogravimetric analysis without measurements of gas flow rates or mass spectrometer sensitivities. Scanning electron microprobe analysis, Mossbauer spectroscopy, and several other common analytical methods were also used. Calcined sludge consists primarily of amorphous particles of hydrous oxides with iron, manganese, nickel, and calcium distributed fairly uniformly throughout the powder. Iron, manganese, nickel, and calcium exist in forms that are highly insoluble in water, but aluminum, sulfate, nitrate, and sodium exhibit relative water solubilities that increase in the given order from 60% to 94%. Evolved gas analysis in a helium atmosphere showed that calcined sludge is completely dehydrated by heating to 400 0 C, carbon dioxide is evolved between 100 to 700 0 C with maximum evolution at 500 0 C, and oxygen is evolved between 400 and 1000 0 C. Evolved gas analyses are also reported for uncalcined sludge. A spinel-type oxide similar to NiFe 2 O 4 was detected by x-ray diffraction analysis at very low-level in calcined sludge

  8. Calcined eggshell (CES): An efficient natural catalyst for ...

    Indian Academy of Sciences (India)

    hydes with active methylene compounds using calcined eggshell (CES) as an efficient ... of the important reactions to achieve carbon–carbon ... solid catalyst for biodiesel production,24 as a catalyst ... which supports for adsorption of water on CaO and ... The organic phase .... After extraction of the product with ethylac-.

  9. Kinetic Study of Calcination of Jakura Limestone Using Power Rate ...

    African Journals Online (AJOL)

    The calcination of Jakura limestone was also found to be first order reaction with respect to CaCO3 concentration having average regression coefficient of 0.99. The temperature dependent terms were found using Arrhenius law and it was observed that the reaction temperature has a direct effect on the rate of reaction.

  10. Effect of Calcination and Reduction Temperatures on the Reduction ...

    African Journals Online (AJOL)

    2003-12-05

    Dec 5, 2003 ... the catalyst activity. The results obtained by Rathousky et al.,9 however, revealed that the pretreatment conditions had a significant effect on the catalytic properties of Co/Al2O3 and. Co/SiO2 catalysts. Turnover frequency (TOF) for the F-T reaction decreased with increasing calcination temperature for both.

  11. Restart plan for the prototype vertical denitration calciner

    International Nuclear Information System (INIS)

    SUTTER, C.S.

    1999-01-01

    Testing activities on the Prototype Vertical Denitration Calciner at PFP were suspended in January 1997 due to the hold on fissile material handling in the facility. The Restart Plan will govern the transition of the test program from the completion of the activity based startup review; through equipment checkout and surrogate material runs; to resumption of the testing program and transition to unrestricted testing

  12. Screening Level Risk Assessment for the New Waste Calcining Facility

    Energy Technology Data Exchange (ETDEWEB)

    M. L. Abbott; K. N. Keck; R. E. Schindler; R. L. VanHorn; N. L. Hampton; M. B. Heiser

    1999-05-01

    This screening level risk assessment evaluates potential adverse human health and ecological impacts resulting from continued operations of the calciner at the New Waste Calcining Facility (NWCF) at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory (INEEL). The assessment was conducted in accordance with the Environmental Protection Agency (EPA) report, Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste. This screening guidance is intended to give a conservative estimate of the potential risks to determine whether a more refined assessment is warranted. The NWCF uses a fluidized-bed combustor to solidify (calcine) liquid radioactive mixed waste from the INTEC Tank Farm facility. Calciner off volatilized metal species, trace organic compounds, and low-levels of radionuclides. Conservative stack emission rates were calculated based on maximum waste solution feed samples, conservative assumptions for off gas partitioning of metals and organics, stack gas sampling for mercury, and conservative measurements of contaminant removal (decontamination factors) in the off gas treatment system. Stack emissions were modeled using the ISC3 air dispersion model to predict maximum particulate and vapor air concentrations and ground deposition rates. Results demonstrate that NWCF emissions calculated from best-available process knowledge would result in maximum onsite and offsite health and ecological impacts that are less then EPA-established criteria for operation of a combustion facility.

  13. Criticality safety analysis of a calciner exit chute

    International Nuclear Information System (INIS)

    Haught, C.F.; Basoglu, B.; Brewer, R.W.; Hollenback, D.F.; Wilkinson, A.D.; Dodds, H.L.

    1994-01-01

    Calcination of uranyl nitrate into uranium oxide is part of normal operations of some enrichment plants. Typically, a calciner discharges uranium oxide powder (U 3 O 8 ) into an exit chute that directs the powder into a receiving can located in a glove box. One possible scenario for a criticality accident is the exit chute becoming blocked with powder near its discharge. The blockage restricts the flow of powder causing the exit chute to become filled with the powder. If blockage does occur, the height of the powder could reach a level that would not be safe from a criticality point of view. In this analysis, the subcritical height limit is examined for 98% enriched U 3 O 8 in the exit chute with full water reflection and optimal water moderation. The height limit for ensuring criticality safety during such an accumulation is 28.2 cm above the top of the discharge pipe at the bottom of the chute. Chute design variations are also evaluated with full water reflection and optimal water moderation. Subcritical configurations for the exit chute variation are developed, but the configurations are not safe when combined with the calciner. To ensure criticality safety, modifications must be made to the calciner tube or safety measures must be implemented if these designs are to be utilized with 98% enriched material. A geometrically safe configuration for the exit chute is developed for a blockage of 20% enriched powder with full water reflection and optimal water moderation, and this configuration is safe when combined with the existing calciner

  14. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC and dipalmitoylphosphatidylethanolamine poly(ethylene glycol (DPPE-PEG microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols

    Directory of Open Access Journals (Sweden)

    Meenach SA

    2013-01-01

    total-reflectance Fourier-transform infrared (ATR-FTIR spectroscopy and confocal Raman microscopy (CRM, and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™ coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the spray-drying process had a significant effect on the solid-state particle properties and that a higher pump rate produced the most optimal system. Advanced dry powder inhalers of inhalable lipopolymers for targeted dry powder inhalation delivery were successfully achieved.Keywords: biocompatible biodegradable lipopolymers, lung surfactant, pulmonary delivery, self-assemblies, solid-state, lipospheres

  15. In Vitro Studies Evaluating Leaching of Mercury from Mine Waste Calcine Using Simulated Human Body Fluids

    OpenAIRE

    Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almad?n, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute prim...

  16. High-T/sub c/ oxide superconductors prepared by spray-drying method

    International Nuclear Information System (INIS)

    Nakamura, N.; Nakano, T.; Goth, S.; Shimotomai, M.

    1988-01-01

    A spray-drying method has been worked out to prepare the superconducting oxide YBa/sub 2/Cu/sub 3/O/sub x/ by using aqueous solution of acetates of the component metals. Spray-dried powders have shown to be very reactive and full calcination has been easily attained at 900 0 C for 12 hrs. The density of the ceramics sintered at 950 0 C for 12 hrs has reached a value of 98% of the theoretical density. The resistivity of the spray-dry processed sample is 150μΩ-cm at the onset temperature and the residual resistivity extrapolated to O K is almost zero. It is also found that degradation of the superconducting state by application of magnetic field is much improved for the spray-dry processed samples

  17. Mathematical modeling of an in-line low-NOx calciner

    DEFF Research Database (Denmark)

    Iliuta, Ion; Dam-Johansen, Kim; Jensen, Lars Skaarup

    2002-01-01

    The reduction of the NOx content in in-line-calciner-type kiln systems can be made by optimization of the primary filing in the rotary kiln and of the secondary firing in the calciner. Because the optimization of calciner offers greater opportunities the mathematical modeling of this reactor...

  18. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Staiger

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  19. Assessment of spray deposition with water-sensitive paper cards

    Science.gov (United States)

    Spatial distributions of spray droplets discharged from an airblast sprayer, were sampled on pairs of absorbent paper (AP) and water-sensitive paper (WSP) targets at several distances from the sprayer. Spray solutions, containing a fluorescent tracer, were discharged from two size nozzles to achiev...

  20. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction

    Science.gov (United States)

    Fritz, Bradley K.; Hoffmann, W. Clint

    2016-01-01

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected. PMID:27684589

  1. Doped nanocrystalline ZnO powders for non-linear resistor applications by spray pyrolysis method.

    Science.gov (United States)

    Hembram, Kaliyan; Vijay, R; Rao, Y S; Rao, T N

    2009-07-01

    Homogeneous and doped nanocrystalline ZnO powders (30-200 nm) were synthesized by spray pyrolysis technique. The spray pyrolysed powders were calcined in the temperature range of 500-750 degrees C. Formation of insulating pyrochlore phase started from 700 degrees C during the calcination itself. The calcined powders were compacted and sintered at different temperatures ranging from 900-1200 degrees C for 0.5-4 h. The densification behavior was found to be dependent on calcination temperature of the nanopowder. The resulting discs were found to have density (5.34-5.62 g/cc) in the range of 96-99% of theoretical density. The breakdown voltage value obtained for the nanopowder based non-linear resistor is 10.3 kV/cm with low leakage current density of 0.7 microA/cm2 and coefficient of nonlinearity as high as 193. The activation energy for grain growth of the doped ZnO nanopowder powders is 449.4 +/- 15 kJ/mol.

  2. Corrosion monitoring of storage bins for radioactive calcines

    International Nuclear Information System (INIS)

    Hoffman, T.L.

    1975-01-01

    Highly radioactive liquid waste produced at the Idaho Chemical Processing Plant is calcined to a granular solid for long term storage in stainless steel bins. Corrosion evaluation of coupons withdrawn from these bins indicates excellent performance for the materials of construction of the bins. At exposure periods of up to six years the average penetration rates are 0.01 and 0.05 mils per year for Types 304 and 405 stainless steels, respectively. (auth)

  3. Improvements in or relating to calcining reducible compounds

    International Nuclear Information System (INIS)

    Cole, E.A.; Peterson, R.S.

    1974-01-01

    Apparatus is described for calcining compounds of uranium compounds to temperatures of up to about 1000 0 C to produce UO 2 powders of uniform quality and having an oxygen content of less than 2.2 atoms of oxygen per atom of uranium. The apparatus comprises discharge and cooling means having an inlet end operatively joined with an air tight seal to a rotating Kiln to receive hot UO 2 powder therefrom without contact with air. (author)

  4. Leaching properties and chemical compositions of calcines produced at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Staples, B.A.; Paige, B.E.; Rhodes, D.W.; Wilding, M.W.

    1980-01-01

    No significant chemical differences were determined between retrieved and fresh calcine based on chemical and spectrochemical analyses. Little can be derived from the amounts of the radioisotopes present in the retrieved calcine samples other than the ratios of strontium-90 to cesium-137 are typical of aged fission product. The variations in concentrations of radionuclides within the composite samples of each bin also reflect the differences in compositions of waste solutions calcined. In general the leaching characteristics of both calcines by distilled water are similar. In both materials the radionuclides of cesium and strontium were selectively leached at significant rates, although cesium leached much more completely from the alumina calcine than from the zirconia calcine. Cesium and strontium are probably contained in both calcines as nitrate salts and also as fluoride salts in zirconia calcine, all of which are at least slightly soluble in water. Radionuclides of cerium, ruthenium, and plutonium in both calcines were highly resistant to leaching and leached at rates similar to or less than those of the matrix elements. These elements exist as polyvalent metal ions in the waste solutions before calcination and they probably form insoluble oxides and fluorides in the calcine. The relatively slow leaching of nitrate ion from zirconia calcine and radiocesium from both calcines suggests that the calcine matrix in some manner prevents complete or immediate contact of the soluble ions with water. Whether radiostrontium forms slightly fluoride salts or forms nitrate salts which are protected in the same manner as radiocesium is unknown. Nevertheless, selective leaching of cesium and strontim is retarded in some manner by the calcine matrix

  5. Interim status of vertical calciner testing through calendar year 1996

    International Nuclear Information System (INIS)

    Compton, J.A.

    1998-01-01

    A prototype vertical calciner was constructed and tested for use in converting plutonium solutions to dry plutonium dioxide in the Hanford Plutonium Finishing Plant. Six non-radioactive runs were completed in June and July, 1995. Fourteen runs with plutonium nitrate solutions were completed between September, 1995 and August, 1996. Equipment modifications were made following those runs. The test runs with plutonium have converted 62.3 L of feed solution containing 11.1 kg of plutonium into dry plutonium dioxide containing 8.5 kg of plutonium. The decrease in product plutonium content is primarily due to plutonium accumulation within the calciner powder bed from particle compaction. Nine of the eleven product batches have had Losses On Ignition that met the storage criterion of less than 0.5 weight percent at 950 C. The highest Loss On Ignition found was 0.718 weight percent. Initial problems with agitator shaft binding and breakage of bushings have been eliminated. A feed pump control problem has been found and the pump replaced. Improvement in scrubber efficiency is needed. Future runs are planned to confirm that (1) the remainder of product meets the Loss On Ignition criterion, (2) the replacement feedpump works as needed, and (3) the scrubber efficiency improves. The operating staff for the production calciner may also be observing the prototype's runs to gain familiarity with the process and equipment

  6. Synthesis of type A zeolite from calcinated kaolin

    International Nuclear Information System (INIS)

    Rodrigues, E.C.; Neves, R.F.; Souza, J.A.S.; Moraes, C.G.; Macedo, E.N.

    2011-01-01

    The mineral production has caused great concern in environmental and industrial scenario due to the effects caused to the environment. The industries of processing kaolin for paper are important economically for the state of Para, but produce huge quantities of tailings, which depend on large areas to be stocked. This material is rich in silico-aluminates can be recycled and used as raw material for other industries. The objective is to synthesize zeolite A at different temperatures of calcination and synthesis. The starting materials and synthesis of zeolite A have been identified and characterized through analysis of X-ray diffraction (DRX) and scanning electron microscopy (MEV). The synthesis process of zeolite A, using as source of silica and the aluminum metakaolin, which was calcined at temperatures of 700 ° C and 800 ° C for 2 hours of landing in a burning furnace type muffle. Observed in relation to the calcination of kaolin as the main phase, the metakaolin. This is just a removal of water from its structure, so we opted for the lower temperature, less energy consumption. The synthesis process of zeolite A, produced good results for the formation of zeolites type A, which were characterized with high purities. (author)

  7. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  8. Characterization of norm sources in petroleum coke calcining processes - 16314

    International Nuclear Information System (INIS)

    Hamilton, Ian S.; Halter, Donald A.; Fruchtnicht, Erich H.; Arno, Matthew G.; Haumann, Donald F

    2009-01-01

    Petroleum coke, or 'petcoke', is a waste by-product of the oil refining industry. The majority of petcoke consumption is in energy applications; catalyst coke is used as refinery fuel, anode coke for electricity conduction, and marketable coke for heating cement kilns. Roskill has predicted that long-term growth in petroleum coke production will be maintained, and may continue to increase slightly through 2012. Petcoke must first be calcined to drive off any undesirable petroleum by-products that would shorten the coke product life cycle. As an example, the calcining process can take place in large, rotary kilns heated to maximum temperatures as high as approximately 1400-1540 deg. C. The kilns and combustion/settling chambers, as well as some cooler units, are insulated with refractory bricks and other, interstitial materials, e.g., castable refractory materials, to improve the efficiency of the calcining process. The bricks are typically made of 70-85-percent bauxite, and are slowly worn away by the calcining process; bricks used to line the combustion chambers wear away, as well, but at a slower rate. It has been recognized that the refractory materials contain slight amounts of naturally occurring radioactive materials (NORM) from the uranium- and thorium-decay series. Similarly, low levels of NORM could be present in the petcoke feed stock given the nature of its origin. Neither the petcoke nor the refractory bricks represent appreciable sources of radiation or radioactive waste. However, some of the demolished bricks that have been removed from service because of the aforementioned wearing process have caused portal alarms to activate at municipal disposal facilities. This has lead to the current investigation into whether there is a NORM concentrating mechanism facilitated by the presence of the slightly radioactive feed stock in the presence of the slightly radioactive refractory materials, at calcining-zone temperatures. Research conducted to date has been

  9. The influence of calcination on the physical and chemical properties of petroleum and mixed cokes

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, K; Syrek, H

    1980-01-01

    Freshly prepared petroleum and coal-petroleum cokes, before utilization for the production of various materials, are subjected to calcining--thermal treatment in a neutral or reducing atmosphere without the admission of air at less than or equal to 1400/sup 0/. During calcining, stabilization of the physical and chemical properties of the cokes takes place. The properties of the obtained coke depend chiefly on the calcining time and temperature. During calcining, volatile substances are removed almost completely from the coke; the coke density is increased, and its structure is put in order; the electrical conductivity is improved; the mechanical strength is increased; and the reactivity of the coke is decreased. Laboratory studies were conducted on calcining mixed coal-petroleum cokes of two grades at 1200, 1250, and 1300/sup 0/ for 2-6 h. In the calcining products the content of volatile substances, the ash content, S content, and density were determined. It was ascertained that calcining of mixed coal-petroleum cokes goes analogously to calcining of pure petroleum cokes. Raising the temperature and increasing the time of calcining has a substantial effect on improvement of coke physical and chemical properties. For high-quality coke, calcining is to be carried out at greater than or equal to 1300/sup 0/ for 4-6 h, for ordinary coke at > 1200/sup 0/ and greater than or equal to 4 h. The results are regarded as starting data for an industrial study of the calcining process.

  10. Electrostatically atomised hydrocarbon sprays

    Energy Technology Data Exchange (ETDEWEB)

    Yule, A.J.; Shrimpton, J.S.; Watkins, A.P.; Balachandran, W.; Hu, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, Dept. of Mechanical Engineering

    1995-07-01

    A burner using an electrostatic method to produce and control a fuel spray is investigated for non-burning sprays. The burner has a charge injection nozzle and the liquid flow rate and charge injection rate are varied using hydrocarbon liquids of differing viscosities, surface tensions and electrical conductivities (kerosene, white spirit and diesel oil). Droplet size distributions are measured and it is shown how the dropsize, spray pattern, breakup mechanism and breakup length depend on the above variables, and in particular on the specific charge achieved in the spray. The data are valuable for validating two computer models under development. One predicts the electric field and flow field inside the nozzle as a function of emitter potential, geometry and flow rate. The other predicts the effect of charge on spray dispersion, with a view to optimizing spray combustion. It is shown that electrostatic disruptive forces can be used to atomize oils at flow rates commensurate with practical combustion systems and that the charge injection technique is particularly suitable for highly resistive liquids. Possible limitations requiring further research include the need to control the wide spray angle, which may provide fuel-air mixtures too lean near the nozzle, and the need to design for maximum charge injection rate, which is thought to be limited by corona breakdown in the gas near the nozzle orifice. 30 refs., 15 figs., 1 tab.

  11. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  12. Thermal Arc Spray Overview

    International Nuclear Information System (INIS)

    Malek, Muhamad Hafiz Abd; Saad, Nor Hayati; Abas, Sunhaji Kiyai; Shah, Noriyati Mohd

    2013-01-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  13. Reactor container spray device

    International Nuclear Information System (INIS)

    Yanai, Ryoichi.

    1980-01-01

    Purpose: To enable decrease in the heat and the concentration of radioactive iodine released from the reactor vessel into the reactor container in the spray device of BWR type reactors. Constitution: A plurality of water receiving trays are disposed below the spray nozzle in the dry well and communicated to a pressure suppression chamber by way of drain pipeways passing through a diaphragm floor. When the recycling system is ruptured and coolants in the reactor vessel and radioactive iodine in the reactor core are released into the dry well, spray water is discharged from the spray nozzle to eliminate the heat and the radioactive iodine in the dry well. In this case, the receiving trays collect the portions of spray water whose absorption power for the heat and radioactive iodine is nearly saturated and falls them into the pool water of the pressure suppression chamber. Consequently, other portions of the spray water that still possess absorption power can be jetted with no hindrance, to increase the efficiency for the removal of the heat and iodine of the spray droplets. (Horiuchi, T.)

  14. Calcination of Rod-like Hydroxyapatite Nanocrystals with an Anti-sintering Agent Surrounding the Crystals

    International Nuclear Information System (INIS)

    Okada, M.; Furuzono, T.

    2007-01-01

    Sintering-free nanocrystals of calcined hydroxyapatite (HAp) having a rod-like morphology were fabricated by calcination at 800 deg. C for 1 h with an anti-sintering agent surrounding original HAp particles and the agent was subsequently removed after calcination. The original HAp particles having a rod-like morphology with a size ranging from 30 to 80 nm (short axis) and 300 to 500 nm (long axis) were prepared by wet chemical process, and poly(acrylic acid, calcium salt) (PAA-Ca) was used as the anti-sintering agent. In the case of calcination without additives, the mean size of HAp crystals dispersed in an ethanol medium increased by about 4 times and the specific surface area of the crystals exhibited a 25% decrease compared to those of the original HAp particles because of calcination-induced sintering among the crystals. On the other hand, the HAp crystals calcined with the anti-sintering agent, PAA-Ca, could be dispersed in an ethanol medium at the same size as the original particles, and they preserved the specific surface area after calcination. These results indicate that PAA-Ca and/or its thermally decomposed product, CaO, surrounded the HAp particles and protected them against calcination-induced sintering during calcination. The HAp crystals calcined with PAA-Ca showed high crystallinity, and no other calcium phosphate phases could be detected after washing with water

  15. Remote process connectors for the new waste calcining facility

    International Nuclear Information System (INIS)

    Jacobs, R.T.; Carter, J.A.; Hohback, A.C.

    1978-01-01

    The remote process connectors developed, used, and tested at the Remote Maintenance Development Facility are described. These connectors, including the three-bolt kinematic-graphite flange and watertight electrical connectors, are assembled on master jigs (holding-welding fixture) to form interchangeable pump and valve loop assemblies. These assemblies, with their guide-in platforms, make possible a method of performing remote maintenance at the New Waste Calcining Facility which is a departure from methods that until now have been the standard of the industry

  16. Dynamics of flare sprays

    International Nuclear Information System (INIS)

    Tandberg-Hanssen, E.; Hansen, R.T.

    1980-01-01

    During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable pass-band filters, multi-slit spectroscopy and extended angular field coronographs). From combined analysis of 13 well-observed sprays which occured between 1969-1974 we conclude that (i) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (ii) the spray material is confined within a steadily expanding, loop-shaped (presumably magnetically controlled) envelope with part of the material draining back down along one or both legs of the loop. (orig.)

  17. Triamcinolone Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... 5 sprays into the air away from the face. If you have not used it for 2 ...

  18. Beclomethasone Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... your thumb. Point the applicator away from your face. If you are using the spray for the ...

  19. Flunisolide Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... your thumb. Point the applicator away from your face. If you are using the spray for the ...

  20. ROTARY SPRAY DUSTER

    Directory of Open Access Journals (Sweden)

    E. S. Nechaeva

    2013-01-01

    Full Text Available Results of researches of hydraulic resistance, ablation of splashes and efficiency of dedusting in the rotor spray dust collector are given. Influence of frequency of rotation of the spray, the specified speed of gas and diameter of spattering holes on hydraulic resistance, size ablation of splashes and efficiency of a dedusting the device by diameter 0,25 m is investigated. As model liquid water is used. Results of mathematical processing are presented.

  1. Retrieval System for Calcined Waste for the Idaho Cleanup Project - 12104

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Randy L.; Johnston, Beau A.; Lower, Danielle E. [CH2M-WG Idaho, LLC. The Idaho Cleanup Project at the Idaho National Laboratory (United States)

    2012-07-01

    This paper describes the conceptual approach to retrieve radioactive calcine waste, hereafter called calcine, from stainless steel storage bins contained within concrete vaults. The retrieval system will allow evacuation of the granular solids (calcine) from the storage bins through the use of stationary vacuum nozzles. The nozzles will use air jets for calcine fluidization and will be able to rotate and direct the fluidization or displacement of the calcine within the bin. Each bin will have a single retrieval system installed prior to operation to prevent worker exposure to the high radiation fields. The addition of an articulated camera arm will allow for operations monitoring and will be equipped with contingency tools to aid in calcine removal. Possible challenges (calcine bridging and rat-holing) associated with calcine retrieval and transport, including potential solutions for bin pressurization, calcine fluidization and waste confinement, are also addressed. The Calcine Disposition Project has the responsibility to retrieve, treat, and package HLW calcine. The calcine retrieval system has been designed to incorporate the functions and technical characteristics as established by the retrieval system functional analysis. By adequately implementing the highest ranking technical characteristics into the design of the retrieval system, the system will be able to satisfy the functional requirements. The retrieval system conceptual design provides the means for removing bulk calcine from the bins of the CSSF vaults. Top-down vacuum retrieval coupled with an articulating camera arm will allow for a robust, contained process capable of evacuating bulk calcine from bins and transporting it to the processing facility. The system is designed to fluidize, vacuum, transport and direct the calcine from its current location to the CSSF roof-top transport lines. An articulating camera arm, deployed through an adjacent access riser, will work in conjunction with the

  2. Proposed Atomic Energy of Canada Ltd. 99Mo waste calcination process

    International Nuclear Information System (INIS)

    Ramey, D.W.; Haas, P.A.; Malkemus, D.W.; McGinnis, C.P.; Meyers, E.S.; Patton, B.D.; Birdwell, J.F.; Jubin, R.T.; Coltharp, K.A.

    1994-10-01

    Atomic Energy of Canada Limited (AECL), at its Chalk River Laboratory, generates from 3000 to 5000 L/year of high-level fissile waste solution from the production of 99 Mo. In this Mo process, highly enriched uranium (93 wt % 235 U, total uranium basis) contained in uranium-aluminum alloy target rods is irradiated to produce the 99 Mo product. The targets are removed from the reactor and dissolved in a mercury nitrate-catalyzed reaction with nitric acid. The 99 Mo product is then recovered by passing the solution through an alumina (Al 2 O 3 ) column. During discussions with personnel from the Oak Ridge National Laboratory (ORNL) on September 10, 1992, the ORNL-developed technology formerly applied to the solidification of aqueous uranium waste (Consolidated Edison Uranium Solidification Program or CEUSP) was judged potentially applicable to the AECL 99 Mo waste. Under a Work-for-Others contract (no. ERD-92-1132), which began May 24, 1993, ORNL was tasked to determine the feasibility of applying the CEUSP (or a similar) calcination process to solidify AECL's 99 Mo waste for > 30 years of safe dry storage. This study was to provide sufficient detailed information on the applicability of a CEUSP-type waste solidification process to allow AECL to select the process which best suited its needs. As with the CEUSP process, evaporation of the waste and a simultaneously partial destruction of acid by reaction with formaldehyde followed by in situ waste can thermal denitration waste was chosen as the best means of solidification. Unlike the CEUSP material, the 99 Mo waste has a considerable number of problem volatile and semivolatile constituents which must be recovered in the off-gas treatment system. Mercury removal before calcination was seen as the best option

  3. Precipitation of plutonium (III) oxalate and calcination to plutonium oxide

    International Nuclear Information System (INIS)

    Esteban, A.; Orosco, E.H.; Cassaniti, P.; Greco, L.; Adelfang, P.

    1989-01-01

    The plutonium based fuel fabrication requires the conversion of the plutonium nitrate solution from nuclear fuel reprocessing into pure PuO2. The conversion method based on the precipitation of plutonium (III) oxalate and subsequent calcination has been studied in detail. In this procedure, plutonium (III) oxalate is precipitated, at room temperature, by the slow addition of 1M oxalic acid to the feed solution, containing from 5-100 g/l of plutonium in 1M nitric acid. Before precipitation, the plutonium is adjusted to trivalent state by addition of 1M ascorbic acid in the presence of an oxidation inhibitor such as hydrazine. Finally, the precipitate is calcinated at 700 deg C to obtain PuO2. A flowsheet is proposed in this paper including: a) A study about the conditions to adjust the plutonium valence. b) Solubility data of plutonium (III) oxalate and measurements of plutonium losses to the filtrate and wash solution. c) Characterization of the obtained products. Plutonium (III) oxalate has several potential advantages over similar conversion processes. These include: 1) Formation of small particle sizes powder with good pellets fabrication characteristics. 2) The process is rather insensitive to most process variables, except nitric acid concentration. 3) Ambient temperature operations. 4) The losses of plutonium to the filtrate are less than in other conversion processes. (Author) [es

  4. Chloride Ingress in Chemically Activated Calcined Clay-Based Cement

    Directory of Open Access Journals (Sweden)

    Joseph Mwiti Marangu

    2018-01-01

    Full Text Available Chloride-laden environments pose serious durability concerns in cement based materials. This paper presents the findings of chloride ingress in chemically activated calcined Clay-Ordinary Portland Cement blended mortars. Results are also presented for compressive strength development and porosity tests. Sampled clays were incinerated at a temperature of 800°C for 4 hours. The resultant calcined clay was blended with Ordinary Portland Cement (OPC at replacement level of 35% by mass of OPC to make test cement labeled PCC35. Mortar prisms measuring 40 mm × 40 mm × 160 mm were cast using PCC35 with 0.5 M Na2SO4 solution as a chemical activator instead of water. Compressive strength was determined at 28th day of curing. As a control, OPC, Portland Pozzolana Cement (PPC, and PCC35 were similarly investigated without use of activator. After the 28th day of curing, mortar specimens were subjected to accelerated chloride ingress, porosity, compressive strength tests, and chloride profiling. Subsequently, apparent diffusion coefficients (Dapp were estimated from solutions to Fick’s second law of diffusion. Compressive strength increased after exposure to the chloride rich media in all cement categories. Chemically activated PCC35 exhibited higher compressive strength compared to nonactivated PCC35. However, chemically activated PCC35 had the least gain in compressive strength, lower porosity, and lower chloride ingress in terms of Dapp, compared to OPC, PPC, and nonactivated PCC35.

  5. Fluidized-bed calcination of simulated commercial high-level radioactive wastes

    International Nuclear Information System (INIS)

    Freeby, W.A.

    1975-11-01

    Work is in progress at the Idaho Chemical Processing Plant to verify process flowsheets for converting simulated commercial high-level liquid wastes to granular solids using the fluidized-bed calcination process. Primary emphasis in the series of runs reported was to define flowsheets for calcining simulated Allied-General Nuclear Services (AGNS) waste and to evaluate product properties significant to calcination, solids storage, or post treatment. Pilot-plant studies using simulated high-level acid wastes representative of those to be produced by Nuclear Fuel Services, Inc. (NFS) are also included. Combined AGNS high-level and intermediate-level waste (0.26 M Na in blend) was successfully calcined when powdered iron was added (to result in a Na/Fe mole ratio of 1.0) to the feed to prevent particle agglomeration due to sodium nitrate. Long-term runs (approximately 100 hours) showed that calcination of the combined waste is practical. Concentrated AGNS waste containing sodium at concentrations less than 0.2 M were calcined successfully; concentrated waste containing 1.13 M Na calcined successfully when powdered iron was added to the feed to suppress sodium nitrate formation. Calcination of dilute AGNS waste by conventional fluid-bed techniques was unsuccessful due to the inability to control bed particle size--both particle size and bed level decreased. Fluid-bed solidification of AGNS dilute waste at conditions in which most of the calcined solids left the calciner vessel with the off-gas was successful. In such a concept, the steady-state composition of the bed material would be approximately 22 wt percent calcined solids deposited on inert particles. Calcination of simulated NFS acid waste indicated that solidification by the fluid-bed process is feasible

  6. 46 CFR 148.04-17 - Petroleum coke, calcined, at 130 °F or above.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Petroleum coke, calcined, at 130 °F or above. 148.04-17...-17 Petroleum coke, calcined, at 130 °F or above. (a) The requirements of this part do not apply to bulk shipments of petroleum coke, calcined, on any vessel when the material is less than 130 °F. (b...

  7. Wind tunnel measurement of spray drift from on-off controlled sprayer nozzles

    DEFF Research Database (Denmark)

    Lund, Ivar; Jensen, Peter Kryger; Miller, Paul

    wide surface area with a length of 200 mm. The test was conducted in the wind tunnel at Silsoe Spray Applications Unit in the UK. The measurements consisted of two test series; airborne drift was collected on polyethylene lines more than 375 mm away from the centerline of the nozzle and ground deposits...... and arranged to deliver a pulse of spray using the WeedSeeker valve. The tests were conducted to determine accumulated spray deposit at different crosswind and forward speeds. In general, the deposits, especially those measured downwind close to the target zone showed significant increase as the crosswind......Sensor-based precision weed control system at a high resolution requires a high spray application accuracy to keep the spray in a small target zone. The objective of this research was to investigate the target accuracy and spray drift from individual controlled sprayer nozzles targeting a 250 mm...

  8. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids

    Science.gov (United States)

    Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.

  9. Experimental study on the effect of calcination on the volcanic ash activity of diatomite

    Science.gov (United States)

    Xiao, Liguang; Pang, Bo

    2017-09-01

    The volcanic ash activity of diatomite was studied under the conditions of aerobic calcination and vacuum calcination by the combined water rate method, it was characterized by XRD, BET and SEM. The results showed that the volcanic ash activity of diatomite under vacuum conditions was higher than that of aerobic calcination, 600°C vacuum calcination 2h, the combined water rate of diatomite-Ca(OH)2-H2O system was increased from 6.24% to 71.43%, the volcanic ash activity reached the maximum value, the specific surface

  10. Mesoporous high surface area Ce0.9Gd0.1O1.95 synthesized by spray drying

    DEFF Research Database (Denmark)

    Lundberg, Mats; Wang, Hsiang-Jen; Blennow Tullmar, Peter

    2011-01-01

    Mesoporous gadolinium doped cerium dioxide with high surface area was produced by spray drying using Pluronic 123 as surfactant. The powder, when calcined at 400 °C, had a BET surface area of 136 m2 g−1 and was polycrystalline as confirmed by XRD and TEM. XEDS confirmed Ce, Gd and O, as the only......, corresponding to the crystallite size calculated from XRD data. The similar size range of the mesopores and the observed crystallite size indicates that the porosity is partly formed from intergranular mesoporosity. Using the spray drying method of a surfactant assisted liquid precursor solution it can...

  11. Spray boom for selectively spraying a herbicidal composition onto dicots

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a method and spray boom for discriminating cereal crop (monocot) and weeds (dicots). The spray boom includes means for digitally recording an image of a selected area to be treated by a nozzle on the spray boom, whereby a plant material is identified based on a segmentation proc...

  12. Dissolution of two NWCF calcines: Extent of dissolution and characterization of undissolved solids

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.

    1995-01-01

    A study was undertaken to determine the dissolution characteristics of two NWCF calcine types. A two-way blended calcine made from 4 parts nonradioactive aluminum nitrate and one part WM-102 was studied to determine the extent of dissolution for aluminum-type calcines. A two-way blend of 3.5 parts fluorinel waste from WM-187 and 1 part sodium waste from WM-185 was used to determine the extent of dissolution for zirconium-type calcines. This study was necessary to develop suitable aqueous separation flowsheets for the partitioning of actinides and fission products from ICPP calcines and to determine the disposition of the resulting undissolved solids (UDS). The dissolution flowsheet developed by Herbst was used to dissolve these two NWCF calcine types. Results show that greater than 95 wt% of aluminum and zirconium calcine types were dissolved after a single batch contact with 5 M HNO 3 . A characterization of the UDS indicates that the weight percent of TRU elements in the UDS resulting from both calcine type dissolutions increases by approximately an order of magnitude from their concentrations prior to dissolution. Substantial activities of cesium and strontium are also present in the UDS resulting from the dissolution of both calcine types. Multiple TRU, Cs, and Sr analyses of both UDS types show that these solids are relatively homogeneous. From this study, it is estimated that between 63.5 and 635 cubic meters of UDS will be generated from the dissolution of 3800 M 3 of calcine. The significant actinide and fission product activities in these UDS will preclude their disposal as low-level waste. If the actinide and fission activity resulting from the UDS is the only considered source in the dissolved calcine solutions, an estimated 99.9 to 99.99 percent of the solids must be removed from this solution for it to meet non-TRU Class A low-level waste

  13. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  14. Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates.

    Science.gov (United States)

    Okada, Masahiro; Furukawa, Keiko; Serizawa, Takeshi; Yanagisawa, Yoshihiko; Tanaka, Hidekazu; Kawai, Tomoji; Furuzono, Tsutomu

    2009-06-02

    Interfacial interactions between calcined hydroxyapatite (HAp) nanocrystals and surface-modified substrates were investigated by measuring adsorption behavior and adhesion strength with a quartz crystal microbalance (QCM) and a contact-mode atomic force microscope (AFM), respectively. The goal was to develop better control of HAp-nanocrystal coatings on biomedical materials. HAp nanocrystals with rodlike or spherical morphology were prepared by a wet chemical process followed by calcination at 800 degrees C with an antisintering agent to prevent the formation of sintered polycrystals. The substrate surface was modified by chemical reaction with a low-molecular-weight compound, or graft polymerization with a functional monomer. QCM measurement showed that the rodlike HAp nanocrystals adsorbed preferentially onto anionic COOH-modified substrates compared to cationic NH2- or hydrophobic CH3-modified substrates. On the other hand, the spherical nanocrystals adsorbed onto NH2- and COOH-modified substrates, which indicates that the surface properties of the HAp nanocrystals determined their adsorption behavior. The adhesion strength, which was estimated from the force required to move the nanocrystal in contact-mode AFM, on a COOH-grafted substrate prepared by graft polymerization was almost 9 times larger than that on a COOH-modified substrate prepared by chemical reaction with a low-molecular-weight compound, indicating that the long-chain polymer grafted on the substrate mitigated the surface roughness mismatch between the nanocrystal and the substrate. The adhesion strength of the nanocrystal bonded covalently by the coupling reaction to a Si(OCH3)-grafted substrate prepared by graft polymerization was approximately 1.5 times larger than that when adsorbed on the COOH-grafted substrate.

  15. Sprayed concrete linings

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-12-01

    Sprayed concrete, or shotcrete, was invented in the 1920s for preserving dinosaur skeletons and was used underground initially in coalmines for the preservation and fine proofing of timber supports. Its use as a support lining in rock tunnelling was developed in the 1950s and 60s. The article surveys equipment available from major manufacturers and suppliers of concrete spraying equipment (Aliva, Cifa, GIA, Industri, Ingersoll Rand, etc.), specialist cement and additive manufacturers (Castle, Cement, Moria Carbotech). manufacturers of lattice girders and fibre reinforcement, and manufacturers of instrumentation for tunnel linings. 5 tabs., 9 photos.

  16. SPRAY code user's report

    International Nuclear Information System (INIS)

    Shire, P.R.

    1977-03-01

    The SPRAY computer code has been developed to model the effects of postulated sodium spray release from LMFBR piping within containment chambers. The calculation method utilizes gas convection, heat transfer and droplet combustion theory to calculate the pressure and temperature effects within the enclosure. The applicable range is 0-21 mol percent oxygen and .02-.30 inch droplets with or without humidity. Droplet motion and large sodium surface area combine to produce rapid heat release and pressure rise within the enclosed volume

  17. Application of Constrained Linear MPC to a Spray Dryer

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2014-01-01

    In this paper we develop a linear model predictive control (MPC) algorithm for control of a two stage spray dryer. The states are estimated by a stationary Kalman filter. A non-linear first-principle engineering model is developed to simulate the spray drying process. The model is validated against...... experimental data and able to precisely predict the temperatures, the air humidity and the residual moisture in the dryer. The MPC controls these variables to the target and reject disturbances. Spray drying is a cost-effective method to evaporate water from liquid foods and produces a free flowing powder...

  18. Increasing efficacy of graminicides with a forward angled spray

    DEFF Research Database (Denmark)

    Jensen, Peter Kryger

    2012-01-01

    Control of annual grass species with vertically oriented leaves in agricultural crops by application of foliar acting herbicides with conventional hydraulic sprayers can be increased using forward angled nozzles. Changing the spray angle from the normally predominantly vertical spray towards...... an angled spray increases the potential target size of vertically oriented targets. This theory was tested in field experiments from 2005 to 2009 investigating control of three different grass species and a dicotyledonous weed species at early growth stages using foliar acting herbicides. Lolium perenne...... efficacy on L. perenne at early growth stages using nozzles with different spray quality, at different driving speeds and in different wind conditions. Similarly graminicide efficacy was increased when nozzles were angled 60° forward controlling A. myosuroides. Experiments investigating control of the two...

  19. Model of fragmentation of limestone particles during thermal shock and calcination in fluidised beds

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J.; Pikkarainen, T.; Tourunen, A.; Rasanen, M.; Jantti, T. [VTT Technical Research Center, Jyvaskyla (Finland)

    2008-11-15

    Fragmentation of limestone due to thermal shock and calcination in a fluidised bed was studied through experiments and modelling. The time for heating was estimated by model calculations and the time for calcination by measurements. Fragmentation due to thermal shock was carried out by experiments in a CO{sub 2} atmosphere in order to prevent the effect of calcination. It was found to be much less than fragmentation due to calcination. Average particle sizes before and after fragmentation are presented for several types of limestone. The effects of particle size and gas composition on the primary fragmentation were studied through experiments. Increasing the fluidisation velocity increased the tendency to fragment. The evolution of the particle size distribution (PSD) of limestone particles due to thermal shock and during calcination (or simultaneous calcination and sulphation) were calculated using a population balance model. Fragmentation due to thermal shock is treated as an instantaneous process. The fragmentation frequency during calcination is presented as exponentially decaying over time. In addition to the final PSD, this model also predicts the PSD during the calcination process. The fragmentation was practically found to end after 10 min. Furthermore. a population balance method to calculate the particle size distribution and amount of limestone in fluidised beds in dynamic and steady state, when feeding history is known, is presented.

  20. Model for the sulfidation of calcined limestone and its use in reactor models.

    NARCIS (Netherlands)

    Heesink, Albertus B.M.; Brilman, Derk Willem Frederik; van Swaaij, Willibrordus Petrus Maria

    1998-01-01

    A mathematical model describing the sulfidation of a single calcined limestone particle was developed and experimentally verified. This model, which includes no fitting parameters, assumes a calcined limestone particle to consist of spherical grains of various sizes that react with H2S according to

  1. A conceptual and calculational model for gas formation from impure calcined plutonium oxides

    International Nuclear Information System (INIS)

    Lyman, John L.; Eller, P. Gary

    2000-01-01

    Safe transport and storage of pure and impure plutonium oxides requires an understanding of processes that may generate or consume gases in a confined storage vessel. We have formulated conceptual and calculational models for gas formation from calcined materials. The conceptual model for impure calcined plutonium oxides is based on the data collected to date

  2. Calcination effects on CeZrOx geometry and styrene production from ethylbenzene

    NARCIS (Netherlands)

    Kovacevic, M.; Brunet Espinosa, Roger; Lefferts, Leonardus; Mojet, Barbara

    2014-01-01

    A series of CeZrOx catalysts was prepared by calcination of hydrothermally obtained metal oxide precipitate at increasing temperatures. The samples were characterized by HRSEM, XRD and Raman spectroscopy, showing a change in morphology and particle size as a function of calcination temperature.

  3. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    International Nuclear Information System (INIS)

    COMPTON, J.A.

    1999-01-01

    A vertical calciner will be used to demonstrate the direct denitration process for converting plutonium-bearing liquors to stable plutonium rich solids. The calciner and some of its associated equipment were previously tested with non-radioactive chemicals to demonstrate operability

  4. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    Energy Technology Data Exchange (ETDEWEB)

    COMPTON, J.A.

    1999-10-05

    A vertical calciner will be used to demonstrate the direct denitration process for converting plutonium-bearing liquors to stable plutonium rich solids. The calciner and some of its associated equipment were previously tested with non-radioactive chemicals to demonstrate operability.

  5. An experimental methodology to quantify the spray cooling event at intermittent spray impact

    International Nuclear Information System (INIS)

    Moreira, Antonio L.N.; Carvalho, Joao; Panao, Miguel R.O.

    2007-01-01

    The present paper describes an experimental methodology devised to study spray cooling with multiple-intermittent sprays as those found in fuel injection systems of spark-ignition and diesel engines, or in dermatologic surgery applications. The spray characteristics and the surface thermal behaviour are measured by combining a two-component phase-Doppler anemometer with fast response surface thermocouples. The hardware allows simultaneous acquisition of Doppler and thermocouple signals which are processed in Matlab to estimate the time-varying heat flux and fluid-dynamic characteristics of the spray during impact. The time resolution of the acquisition system is limited by the data rate of validation of the phase-Doppler anemometer, but it has been shown to be accurate for the characterization of spray-cooling processes with short spurt durations for which the transient period of spray injection plays an important role. The measurements are processed in terms of the instantaneous heat fluxes, from which phase-average values of the boiling curves are obtained. Two of the characteristic parameters used in the thermal analysis of stationary spray cooling events, the critical heat flux (CHF) and Leidenfrost phenomenon, are then inferred in terms of operating conditions of the multiple-intermittent injections, such as the frequency, duration and pressure of injection. An integral method is suggested to describe the overall process of heat transfer, which accounts for the fluid-dynamic heterogeneities induced by multiple and successive droplet interactions within the area of spray impact. The method considers overall boiling curves dependant on the injection conditions and provides an empirical tool to characterize the heat transfer processes on the impact of multiple-intermittent sprays. The methodology is tested in a preliminary study of the effect of injection conditions on the heat removed by a fuel spray striking the back surface of the intake valve as in spark

  6. Influence of calcination temperature on the structure and morphology of HAp bioceramics

    International Nuclear Information System (INIS)

    Teixeira, C.M.L.; Santos, P.T.A.; Rodrigues, P.A.; Costa, A.C.F.M.

    2012-01-01

    This study aimed to evaluate the influence of calcination temperature on the structure and morphology of samples of hydroxyapatite (HAp) synthesized by the wet method. For hydroxyapatite was used as precursor solutions of calcium hydroxide and phosphoric acid 1M solution of calcium hydroxide was stirred and heated to 80 ° C and then dropwise with a solution of phosphoric acid. After the liquid was evaporated without an oven at 110 ° C and sieved. The sample of PA as synthesized was submitted to calcination at 900 °C and 1100 °C / 2 hours. The samples as synthesized and after calcination were characterized by XRD, XRF, FTIR, SEM. The XRD showed the presence of phase hydroxyapatite for samples without calcining and both calcination temperatures studied. FTIR spectra showed bands group and PO 4 3- , CO 3 2- . Through the SEM micrograph, there is the formation of agglomerates in the form of porous flakes approximately spherical shape. (author)

  7. LITERATURE REVIEW OF PUO2 CALCINATION TIME AND TEMPERATURE DATA FOR SPECIFIC SURFACE AREA

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G.

    2012-03-06

    The literature has been reviewed in December 2011 for calcination data of plutonium oxide (PuO{sub 2}) from plutonium oxalate Pu(C{sub 2}O{sub 4}){sub 2} precipitation with respect to the PuO{sub 2} specific surface area (SSA). A summary of the literature is presented for what are believed to be the dominant factors influencing SSA, the calcination temperature and time. The PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} calcination data from this review has been regressed to better understand the influence of calcination temperature and time on SSA. Based on this literature review data set, calcination temperature has a bigger impact on SSA versus time. However, there is still some variance in this data set that may be reflecting differences in the plutonium oxalate preparation or different calcination techniques. It is evident from this review that additional calcination temperature and time data for PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} needs to be collected and evaluated to better define the relationship. The existing data set has a lot of calcination times that are about 2 hours and therefore may be underestimating the impact of heating time on SSA. SRNL recommends that more calcination temperature and time data for PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} be collected and this literature review data set be augmented to better refine the relationship between PuO{sub 2} SSA and its calcination parameters.

  8. Thermal spray for commercial shipbuilding

    Science.gov (United States)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  9. Comparative evaluation of glasses reprocessing and reversible conditioning of calcinates

    International Nuclear Information System (INIS)

    Boen, R.

    2000-01-01

    Fission products and minor actinides separated during the spent fuel reprocessing treatment are industrially vitrified on-line and thus confined inside a glass matrix with admittedly durability properties. In the framework of the feasibility of a reversible conditioning, this document examines first the possible alternative ways of conditioning and storage of calcinates before vitrification, which may simplify the reversibility aspect. Such a conditioning must be compatible with the storage process, with a possible extraction of actinides and long-lived fission products, and with the vitrification process if no extraction is performed. Calcinates are pulverulent and comprise an important soluble fraction, a proportion of nitrates of about 30%, and release a high thermal power (17 kW/m 3 ) combined to a low thermal conductivity (0.1 to 0.15 W.m -1 k -1 ). Among the different foreseeable solutions (denitration, mixing with another material, with or without compacting, dissolution inside another material..), the dissolution inside a borate seems to be the most acceptable with respect to the safety, feasibility and vitrification aspects. The thermal aspect of the storage remains complex as a specific container is necessary. In a second part, this report analyzes the possibility to re-extract back the long-lived radionuclides from vitrified wastes. The different possible ways to destroy the glass structure and to transfer the fission products and minor actinides in an aqueous solution compatible with an hydrometallurgical separation process are explored. Two processes are foreseeable: a low temperature dissolution process which requires a preliminary crushing and the handling of huge amounts of acids, and a both high and low temperature process which comprises the following steps: melting, fractionation by water tempering, addition of Na 2 O or sodium tetraborate to make it sensible to hot leaching, separation of fission products and minor actinides, recycling of

  10. CFD Modelling and Experimental Testing of Thermal Calcination of Kaolinite Rich Clay Particles - An Effort towards Green Concrete

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay

    Cement industry is one of the major industrial emitters of greenhouse gases, generating 5-7% of the total anthropogenic CO2 emissions. Consequently, use of supplementary cementitious materials (SCM) to replace part of the CO2-intensive cement clinker is an attractive way to mitigate CO2 emissions...... from cement industry. SCMs based on industrial byproducts like fly ashes and slags are subject to availability problems. Yet clays are the most ubiquitous material on earth's crust. Thus, properly calcined clays are a very promising candidate for SCMs to produce green cements. Calcination...... property of the calcined clay material, among which is the density of calcines. By using the variation in density of calcines, an optimum residence time has been marked. At this time the calcines display a minimum density that corresponds to the most dehydroxylated calcines. The behavior of flash calcined...

  11. Production of porous titanate microspheres by spray-drying of sols

    International Nuclear Information System (INIS)

    Sizgek, E.; Bartlett, J.R.; Woolfrey, J.L.

    1992-01-01

    Porous, multi-component titanate microspheres (20 to 50 μm in diameter) have been produced on a 10 kg scale by spray-drying a precursor sol containing titania, zirconia and alumina, and calcining the resulting powders at 723 K. The mixed TiO 2 /ZrO 2 sols were produced by hydrolysing tetraisopropyltitanate and peptising the hydrolysate slurry with zirconyl nitrate solution. TiO 2 /ZrO 2 sols with oxide concentrations in excess of 900 g dm -3 were produced. These sols were subsequently mixed with dispersible δ-Al 2 O 3 to produce well-dispersed TiO 2 /ZrO 2 /Al 2 O 3 (TZA) sols. The rheology and degree of aggregation of the multi-component sols were controlled by the addition of Al(NO 3 ) 3 solution. At relatively low electrolyte concentrations, the sols exhibited Newtonian behaviour, and the viscosity increased with increasing addition of electrolyte. However, at higher electrolyte concentrations, the colloidal dispersions exhibited shear-thinning behaviour. Hollow spheres were produced by spray-drying well-dispersed sols. In contrast, 'solid' spheres were produced by using dilute Al(NO 3 ) 3 to produce partially-aggregated TZA sols, prior to spray-drying. Calcined microspheres produced from partially-aggregated sols had total porosities of ∼ 50 %, with average pore diameters of ∼ 8 nm. These particles exhibited a high sorption capacity for simulated High Level Nuclear Waste

  12. Microwave calcination for plutonium immobilization and residue stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Harris, M.J.; Rising, T.L.; Roushey, W.J.; Sprenger, G.S. [Kaiser-Hill Co., Golden, CO (United States)

    1995-12-01

    In the late 1980`s development was begun on a process using microwave energy to vitrify low level mixed waste sludge and transuranic mixed waste sludge generated in Building 374 at Rocky Flats. This process was shown to produce a dense, highly durable waste form. With the cessation of weapons production at Rocky Flats, the emphasis has changed from treatment of low level and TRU wastes to stabilizaiton of plutonium oxide and residues. This equipment is versatile and can be used as a heat source to calcine, react or vitrify many types of residues and oxides. It has natural economies in that it heats only the material to be treated, significantly reducing cycle times over conventional furnaces. It is inexpensive to operate in that most of the working components remain outside of any necessary contamination enclosure and therefore can easily be maintained. Limited testing has been successfully performed on cerium oxide (as a surrogate for plutonium oxide), surrogate electrorefining salts, surrogate residue sludge and residue ash. Future plans also include tests on ion exchange resins. In an attempt to further the usefullness of this technology, a mobile, self-contained microwave melting system is currently under development and expected to be operational at Rocky Flats Enviromental Technology Site by the 4th quarter of FY96.

  13. Microwave calcination for plutonium immobilization and residue stabilization

    International Nuclear Information System (INIS)

    Harris, M.J.; Rising, T.L.; Roushey, W.J.; Sprenger, G.S.

    1995-01-01

    In the late 1980's development was begun on a process using microwave energy to vitrify low level mixed waste sludge and transuranic mixed waste sludge generated in Building 374 at Rocky Flats. This process was shown to produce a dense, highly durable waste form. With the cessation of weapons production at Rocky Flats, the emphasis has changed from treatment of low level and TRU wastes to stabilizaiton of plutonium oxide and residues. This equipment is versatile and can be used as a heat source to calcine, react or vitrify many types of residues and oxides. It has natural economies in that it heats only the material to be treated, significantly reducing cycle times over conventional furnaces. It is inexpensive to operate in that most of the working components remain outside of any necessary contamination enclosure and therefore can easily be maintained. Limited testing has been successfully performed on cerium oxide (as a surrogate for plutonium oxide), surrogate electrorefining salts, surrogate residue sludge and residue ash. Future plans also include tests on ion exchange resins. In an attempt to further the usefullness of this technology, a mobile, self-contained microwave melting system is currently under development and expected to be operational at Rocky Flats Enviromental Technology Site by the 4th quarter of FY96

  14. Calcination/dissolution chemistry development Fiscal year 1995

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1995-09-01

    The task open-quotes IPC Liaison and Chemistry of Thermal Reconstitutionclose quotes is a $300,000 program that was conducted in Fiscal Year (FY) 1995 with U.S. Department of Energy (DOE) Office of Research and Development (EM-53) Efficient Separations and Processing Crosscutting Program supported under technical task plan (TTP) RL4-3-20-04. The principal investigator was Cal Delegard of the Westinghouse Hanford Company (WHC). The task encompassed the following two subtasks related to the chemistry of alkaline Hanford Site tank waste: (1) Technical Liaison with the Institute of Physical Chemistry of the Russian Academy of Science (IPC/RAS) and its research into the chemistry of transuranic elements (TRU) and technetium (Tc) in alkaline media. (2) Laboratory investigation of the chemistry of calcination/dissolution (C/D) (or thermal reconstitution) as an alternative to the present reference Hanford Site tank waste pretreatment flowsheet, Enhanced Sludge Washing (ESW). This report fulfills the milestone for the C/D subtask to open-quotes Provide End-of-Year Report on C/D Laboratory Test Resultsclose quotes due 30 September 1995. A companion report, fulfilling the milestone to provide an end-of-year report on the IPC/RAS liaison, also has been prepared

  15. Design and performance of a 100-kg/h, direct calcine-fed electric-melter system for nuclear-waste vitrification

    International Nuclear Information System (INIS)

    Dierks, R.D.

    1980-11-01

    This report describes the physical characteristics of a ceramic-lined, joule-heated glass melter that is directly connected to the discharge of a spray calciner and is currently being used to study the vitrification of simulated nuclear-waste slurries. Melter performance characteristics and subsequent design improvements are described. The melter contains 0.24 m 3 of glass with a glass surface area of 0.76 m 2 , and is heated by the flow of an alternating current (ranging from 600 to 1200 amps) between two Inconel-690 slab-type electrodes immersed in the glass at either end of the melter tank. The melter was maintained at operating temperature (900 to 1260 0 C) for 15 months, and produced 62,000 kg of glass. The maximum sustained operating period was 122 h, during which glass was produced at the rate of 70 kg/h

  16. Pyrochemical separation of radioactive components from inert materials in ICPP high-level calcined waste

    International Nuclear Information System (INIS)

    Del Debbio, J.A.; Nelson, L.O.; Todd, T.A.

    1995-05-01

    Since 1963, calcination of aqueous wastes from reprocessing of DOE-owned spent nuclear fuels has resulted in the accumulation of approximately 3800 m 3 of high-level waste (HLW) at the Idaho Chemical Processing Plant (ICPP). The waste is in the form of a granular solid called calcine and is stored on site in stainless steel bins which are encased in concrete. Due to the leachability of 137 Cs and 90 Sr and possibly other radioactive components, the calcine is not suitable for final disposal. Hence, a process to immobilize calcine in glass is being developed. Since radioactive components represent less than 1 wt % of the calcine, separation of actinides and fission products from inert components is being considered to reduce the volume of HLW requiring final disposal. Current estimates indicate that compared to direct vitrification, a volume reduction factor of 10 could result in significant cost savings. Aqueous processes, which involve calcine dissolution in nitric acid followed by separation of actinide and fission products by solvent extraction and ion exchange methods, are being developed. Pyrochemical separation methods, which generate small volumes of aqueous wastes and do not require calcine dissolution, have been evaluated as alternatives to aqueous processes. This report describes three proposed pyrochemical flowsheets and presents the results of experimental studies conducted to evaluate their feasibility. The information presented is a consolidation of three reports, which should be consulted for experimental details

  17. Calcination of calcium acetate and calcium magnesium acetate: effect of the reacting atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Adanez, J.; Diego, L.F. de; Garcia-Labiano, F. [Instituto de Carboquimica, Zaragoza (Spain). Dept. of Energy and Environment

    1999-04-01

    The calcination process of the calcium acetate (CA) and calcium magnesium acetate (CMA) was investigated as a previous step for coal gas desulfurisation during sorbent injection at high temperatures because the excellent results demonstrated by these sorbents as sulfur removal agents both in combustion and gasification processes. As pore structure developed during calcination is one of the most important characteristics of the sorbent related with the later reaction with the gaseous pollutants, several calcination tests were conducted in a drop tube reactor at temperatures from 700{degree}C to 1100{degree}C, and residence times from 0.8 to 2.4 s. Four different gas atmospheres were used for comparative purposes: inert, oxidising, reducing, and non-calcining (pure CO{sub 2}). Despite the advantage of the high porous cenospheric structure developed by these sorbents during their injection at high temperature, calcination of the CaCO{sub 3} was not complete even at the longest residence time, 2.4 s, and the highest temperature, 1100{degree}C, tested. An important effect of the reacting atmosphere on the calcination conversion and on the sorbent pore structure was detected. The CO{sub 2} concentration around the particle, both that fed in the reacting gases or that generated by organic material combustion, seems to be responsible for the final calcination conversions obtained in each case, also affecting the sintering suffered by the sorbents. 19 refs., 10 figs.

  18. Stop Smoking—Tube-In-Tube Helical System for Flameless Calcination of Minerals

    Directory of Open Access Journals (Sweden)

    Nils Haneklaus

    2017-11-01

    Full Text Available Mineral calcination worldwide accounts for some 5–10% of all anthropogenic carbon dioxide (CO2 emissions per year. Roughly half of the CO2 released results from burning fossil fuels for heat generation, while the other half is a product of the calcination reaction itself. Traditionally, the fuel combustion process and the calcination reaction take place together to enhance heat transfer. Systems have been proposed that separate fuel combustion and calcination to allow for the sequestration of pure CO2 from the calcination reaction for later storage/use and capture of the combustion gases. This work presents a new tube-in-tube helical system for the calcination of minerals that can use different heat transfer fluids (HTFs, employed or foreseen in concentrated solar power (CSP plants. The system is labeled ‘flameless’ since the HTF can be heated by other means than burning fossil fuels. If CSP or high-temperature nuclear reactors are used, direct CO2 emissions can be divided in half. The technical feasibility of the system has been accessed with a brief parametric study here. The results suggest that the introduced system is technically feasible given the parameters (total heat transfer coefficients, mass- and volume flows, outer tube friction factors, and –Nusselt numbers that are examined. Further experimental work will be required to better understand the performance of the tube-in-tube helical system for the flameless calcination of minerals.

  19. Numerical modelling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, C.

    1999-06-01

    The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs

  20. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  1. Flame spraying of polymers

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-01-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs

  2. Plasma sprayed thermoregulating coatings

    International Nuclear Information System (INIS)

    Kudinov, V.V.; Puzanov, A.A.; Zambrzhitskij, A.P.; Soboleva, V.V.

    1979-01-01

    Shown is the possibility of plasma spraying application for thermoregulating coating formation. Given are test results of service properties of BeO, Al 2 O 2 plasma coatings on the substrates of the MA2-1 magnesium alloy. Described is a device for studying durability of coating optical parameters under ultraviolet irradiation in deep vacuum. Dynamics of absorption coefficient, growth caused by an increase in absorption centers amount under such irradiation is investigated

  3. Emulsions from Aerosol Sprays

    Science.gov (United States)

    Hengelmolen; Vincent; Hassall

    1997-12-01

    An electrostatic emulsification apparatus has been designed for the purpose of studying diffusion from oil droplets which have a mean size in the range of approximately 1.5-3.5 &mgr;m, with standard deviations of 40-50%. The emulsification technique involves the collection of a spray of electrically charged oil droplets onto a rotating water film which is sustained from a reservoir. In this way, emulsions with volume fractions of approximately 10(-3) are produced within several minutes at oil flow rates of around 10(-2) ml min-1. Phase-Doppler anemometry (PDA) was used to assess droplet size distributions for the sprays and emulsions. Results show that the mean emulsion droplet size was smaller than the mean spray droplet size by several orders of magnitude. At flow rates around 10(-2) ml min-1, the spray droplet size distribution was little affected by the applied potential between about -4.20 and -4.65 kV (mean droplet size between approximately 7.6 and 7.8 &mgr;m, with standard deviations of approximately 20%), whereas the mean droplet size of the corresponding emulsion decreased more rapidly with applied potential. Above an applied potential of approximately -4.30 kV, which corresponded to an emulsion droplet size below approximately 2 &mgr;m, the measured volume fraction of the emulsion decreased with respect to the volume fraction as calculated on the basis of total amount of injected oil. Copyright 1997 Academic Press. Copyright 1997Academic Press

  4. Radiolysis of spray solutions

    International Nuclear Information System (INIS)

    Habersbergerova, A.; Janovsky, I.

    1985-01-01

    The factors were studied affecting thiosulfate radiolysis in the so-called spray solution for nuclear power plant containments. The reaction mechanism of primary radiolytic reactions leading to thiosulfate decomposition was studied using pulse radiolysis. Also measured was hydrazine loss in the irradiation of the bubbling solution intended for the capture of volatile chemical forms of radioiodine. Pulse radiolysis was used to study the kinetics of hydrazine reaction with elemental iodine. (author)

  5. A Summary of Properties Used to Evaluate INEEL Calcine Disposal in the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Dahl, C.A.

    2003-01-01

    To support evaluations of the direct disposal of Idaho National Engineering and Environmental Laboratory calcines to the repository at Yucca Mountain, an evaluation of the performance of the calcine in the repository environment must be performed. This type of evaluation demonstrates, through computer modeling and analysis, the impact the calcine would have on the ability of the repository to perform its function of containment of materials during the repository lifetime. This report discusses parameters that were used in the scoping evaluation conducted in FY 2003. It provides nominal values for the parameters, with explanation of the source of the values, and how the values were modified for use in repository analysis activities

  6. The effect of calcination conditions on the graphitizability of novel synthetic and coal-derived cokes

    Science.gov (United States)

    Bennett, Barbara Ellen

    The effects of calcination heating rate and ultimate calcination temperature upon calcined coke and subsequent graphitic material microstructures were studied for materials prepared from three different precursors. The pitch precursors used were Mitsubishi AR pitch (a synthetic, 100% mesophase pitch), the NMP-extracted portion of a raw coal, and the NMP-extracted fraction of a coal liquefaction residue obtained from an HTI pilot plant. These materials were all green-coked under identical conditions. Optical microscopy confirmed that the Mitsubishi coke was very anisotropic and the HTI coke was nearly as anisotropic. The coke produced from the direct coal extract was very isotropic. Crystalline development during calcination heating was verified by high-temperature x-ray diffraction. Experiments were performed to ascertain the effects of varying calcination heating rate and ultimate temperature. It was determined that calcined coke crystallite size increased with increasing temperature for all three materials but was found to be independent of heating rate. The graphene interplanar spacing decreased with increasing temperature for the isotropic NMP-extract material but increased with increasing temperature for the anisotropic materials---Mitsubishi and HTI cokes. Graphene interplanar spacing was also found to be independent of heating rate. Calcined coke real densities were, likewise, found to be independent of heating rate. The anisotropic cokes (Mitsubishi and HTI) exhibited increasing real density with increasing calcination temperature. The NMP-extract coke increased in density up to 1050°C and then suffered a dramatic reduction in real density when heated to 1250°C. This is indicative of puffing. Since there was no corresponding disruption in the crystalline structure, the puffing phenomena was determined to be intercrystalline rather than intracrystalline. After the calcined cokes were graphitized (under identical conditions), the microstructures were re

  7. The nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit

    International Nuclear Information System (INIS)

    Kurbonov, A.S.; Mamatov, E.D.; Suleymani, M.; Borudzherdi, A.; Mirsaidov, U.M.

    2011-01-01

    Present article is devoted to nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit of Tajikistan. The obtaining of boric acid from pre backed danburite concentrate by decomposition of nitric acid was studied. The chemical composition of danburite concentrate was determined. The laboratory study of danburite leaching by nitric acid was conducted. The influence of temperature, process duration, nitric acid concentration on nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit was studied as well. The optimal conditions of nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit, including temperature, process duration, nitric acid concentration and particle size were proposed.

  8. Remotely replaceable fuel and feed nozzles for the NWCF calciner vessel

    International Nuclear Information System (INIS)

    Fletcher, R.D.; Carter, J.A.; May, K.W.

    1978-01-01

    The development and testing of remotely replaceable fuel and feed nozzles for calcination of liquid radioactive wastes in the calciner vessel of the New Waste Calcining Facility (NWCF) being built at the Idaho National Engineering Laboratory are described. A complete fuel nozzle assembly was fabricated and tested at the Remote Maintenance Development Facility to evolve design refinements, identify required support equipment, and develop handling techniques. The design also provided for remote replacement of the nozzle support carriage and adjacent feed and fuel pipe loops using two pairs of master-slave manipulators

  9. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity.

    Science.gov (United States)

    Tong, Xuwen; Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Tu, Jiyuan

    2016-10-01

    In this study, the effects of nasal drug delivery device and the spray nozzle orientation on sprayed droplets deposition in a realistic human nasal cavity were numerically studied. Prior to performing the numerical investigation, an in-house designed automated actuation system representing mean adults actuation force was developed to produce realistic spray plume. Then, the spray plume development was filmed by high speed photography system, and spray characteristics such as spray cone angle, break-up length, and average droplet velocity were obtained through off-line image analysis. Continuing studies utilizing those experimental data as boundary conditions were applied in the following numerical spray simulations using a commercially available nasal spray device, which was inserted into a realistic adult nasal passage with external facial features. Through varying the particle releasing direction, the deposition fractions of selected particle sizes on the main nasal passage for targeted drug delivery were compared. The results demonstrated that the middle spray direction showed superior spray efficiency compared with upper or lower directions, and the 10µm agents were the most suitable particle size as the majority of sprayed agents can be delivered to the targeted area, the main passage. This study elaborates a comprehensive approach to better understand nasal spray mechanism and evaluate its performance for existing nasal delivery practices. Results of this study can assist the pharmaceutical industry to improve the current design of nasal drug delivery device and ultimately benefit more patients through optimized medications delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Visualization research on spray atomization, evaporation and combustion processes of ethanol–diesel blend under LTC conditions

    International Nuclear Information System (INIS)

    Huang, Sheng; Deng, Peng; Huang, Ronghua; Wang, Zhaowen; Ma, Yinjie; Dai, Hui

    2015-01-01

    Highlights: • Spray combustion of E20 diesel in LTC condition shows a U-shape flame structure. • The chasing behavior of fuel spray exists near the spray axis. • Fuel ignition doesn’t initiate at the spray tip but in peripheral regions behind it. • An improper chamber structure may lead to a long post-combustion duration. - Abstract: Utilization of ethanol in diesel engines has been widely studied by means of engine experiments and emission detection. However, pertinent studies on the spray combustion process of ethanol–diesel blends are scarce. In order to verify the effect of ethanol in modern diesel engines, an experiment is conducted to visualize the spray combustion process of ethanol–diesel blend under LTC conditions. Stages including atomization, evaporation and combustion, are investigated individually to realize synergistic analysis. Meanwhile, considering the long time scale of combustion after fuel injection finishes, characteristics during and after injection period are both targeted in this paper. Moreover, measurement of macroscopic characteristics, such as spray tip penetration, spray spreading cone angle and flame lift off length, provides a quantitative profile of the spray structure. Results show that, evaporation, different from atomization, has little influence on spray penetration, but promotes the spray spreading angle and spray projected area. So does combustion, which enlarges the spray projected area further. Ignition takes place on the periphery behind the spray tip, then quickly extends to the whole head of the spray and forms a U-shape diffusion structure. After the injection period, the residual spray tail develops into wavelike structures due to absence of subsequent entrainment force. Also, the penetration speed falls greatly to an extent much slower than flame propagation, which frees the flame from the lift-off effect. Subsequently, the flame propagates upstream towards the nozzle orifice. After consumed all fuel in

  11. Calcining natural zeolites to improve their effect on cementitious mixture workability

    International Nuclear Information System (INIS)

    Seraj, Saamiya; Ferron, Raissa D.; Juenger, Maria C.G.

    2016-01-01

    Despite the benefits to long-term concrete durability, the use of natural zeolites as supplementary cementitious materials (SCMs) is uncommon due to their high water demand. The motivation of the research presented here was to better understand how the physical and chemical characteristics of natural zeolites influenced the workability of cementitious mixtures and whether those properties could be modified through calcination to mitigate the high water demand of natural zeolites. In this research, three different natural zeolites were characterized in their original and calcined states using x-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) surface area measurements. Rheology experiments were then conducted on cementitious pastes containing these natural zeolites, in their original and calcined states, to assess mixture viscosity and yield stress. Results showed that calcination destabilized the structure of the natural zeolites and reduced their surface area, which led to an improvement in mixture viscosity and yield stress.

  12. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    KAUST Repository

    Yoon, Seyoon; Moon, Juhyuk; Bae, Sungchul; Duan, Xiaonan; Giannelis, Emmanuel P.; Monteiro, Paulo M.

    2014-01-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had

  13. Design criteria for the new waste calcining facility at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Anderson, F.H.; Bingham, G.E.; Buckham, J.A.; Dickey, B.R.; Slansky, C.M.; Wheeler, B.R.

    1976-01-01

    The New Waste Calcining Facility (NWCF) at the Idaho Chemical Processing Plant (ICPP) is being built to replace the existing fluidized-bed, high-level waste calcining facility (WCF). Performance of the WCF is reviewed, equipment failures in WCF operation are examined, and pilot-plant studies on calciner improvements are given in relation to NWCF design. Design features of the NWCF are given with emphasis on process and equipment improvements. A major feature of the NWCF is the use of remote maintenance facilities for equipment with high maintenance requirements, thereby reducing personnel exposures during maintenance and reducing downtime resulting from plant decontamination. The NWCF will have a design net processing rate of 11.36 m 3 of high-level waste per day, and will incorporate in-bed combustion of kerosene for heating the fluidized bed calciner. The off-gas cleaning system will be similar to that for the WCF

  14. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    International Nuclear Information System (INIS)

    COMPTON, J.A.

    2000-01-01

    Stored solutions containing plutonium and nitric acid and possibly uranium thorium and minor amounts of other substances will be used for development and demonstration of a vertical calciner direct denitration process for conversion of those to stable storable PuO 2 rich solids. Some of those solutions are quite dilute and very impure these require either pretreatment to make them suitable for calciner feed or an alternate stabilization method. Untreated scrap solutions containing some amounts of sulfate phosphate sodium and/or potassium may also be tested for suitability of direct denitration for conversion directly to PuO 2 -rich solids. A vertical calciner will be used to demonstrate the direct denitration process for converting plutonium-bearing liquors to stable plutonium-rich solids. The calciner and some of its ancillary equipment were previously tested with non-radioactive chemicals to demonstrate operability

  15. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    International Nuclear Information System (INIS)

    COMPTON, J.A.

    2000-01-01

    Stored solutions containing plutonium and nitric acid and possibly uranium thorium and minor amounts of other substances will be used for development and demonstration of a vertical calciner direct denitration process for conversion of those to stable storable PuO 2 rich solids. Some of those solutions are quite dilute and very impure these require either pretreatment to make them suitable for calciner feed or an alternate stabilization method. Untreated scrap solutions containing some amounts of sulfate phosphate sodium and/or potassium may also be tested for suitability of direct denitration for conversion directly to PuO 2 -rich solids. A vertical calciner will be used to demonstrate the direct denitration process for converting plutonium-bearing liquors to stable plutonium rich solids. The calciner and some of its associated equipment were previously tested with non-radioactive chemicals to demonstrate operability

  16. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    Energy Technology Data Exchange (ETDEWEB)

    COMPTON, J.A.

    2000-02-03

    Stored solutions containing plutonium and nitric acid and possibly uranium thorium and minor amounts of other substances will be used for development and demonstration of a vertical calciner direct denitration process for conversion of those to stable storable PuO{sub 2} rich solids. Some of those solutions are quite dilute and very impure these require either pretreatment to make them suitable for calciner feed or an alternate stabilization method. Untreated scrap solutions containing some amounts of sulfate phosphate sodium and/or potassium may also be tested for suitability of direct denitration for conversion directly to PuO{sub 2}-rich solids. A vertical calciner will be used to demonstrate the direct denitration process for converting plutonium-bearing liquors to stable plutonium-rich solids. The calciner and some of its ancillary equipment were previously tested with non-radioactive chemicals to demonstrate operability.

  17. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    Energy Technology Data Exchange (ETDEWEB)

    COMPTON, J.A.

    2000-02-03

    Stored solutions containing plutonium and nitric acid and possibly uranium thorium and minor amounts of other substances will be used for development and demonstration of a vertical calciner direct denitration process for conversion of those to stable storable PuO{sub 2} rich solids. Some of those solutions are quite dilute and very impure these require either pretreatment to make them suitable for calciner feed or an alternate stabilization method. Untreated scrap solutions containing some amounts of sulfate phosphate sodium and/or potassium may also be tested for suitability of direct denitration for conversion directly to PuO{sub 2}-rich solids. A vertical calciner will be used to demonstrate the direct denitration process for converting plutonium-bearing liquors to stable plutonium rich solids. The calciner and some of its associated equipment were previously tested with non-radioactive chemicals to demonstrate operability.

  18. Decomposition of pre calcined aluminium silicate ores of Afghanistan by hydrochloric acid

    International Nuclear Information System (INIS)

    Khomidi, A.K.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to decomposition of pre calcined aluminium silicate ores of Afghanistan by hydrochloric acid. The physicochemical properties of initial aluminium silicate ores were studied by means of X-ray phase, differential thermal and silicate analysis. The chemical composition of aluminium containing ores was determined. The optimal conditions of interaction of initial and pre calcined siallites with hydrochloric acid were defined. The kinetics of acid decomposition of aluminium silicate ores was studied as well.

  19. Quantitative analysis of calcined fertilizers by X-ray diffraction patterns

    International Nuclear Information System (INIS)

    Cekinski, E.

    1987-01-01

    An X-ray diffraction pattern method for quantitative analyses of phosphate fertilizers obtained by calcination of a misture of Anitapolis phosphate concentrate and sodium carbonate is described. The method consists in plotting a calibration curve, using spinel (MgAl 2 O 4 ) as internal standard, of the phases that were formed by calcination, sintetized in laboratory. The tests conducted in order to avail the method accuracy showed good correlation between the obtained data and the real values. (author) [pt

  20. Formulation Efforts for Direct Vitrification of INEEL Blend Calcine Waste Simulate: Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Vienna, John D.; Peeler, David K.; Reamer, I. A.

    2001-03-30

    This report documents the results of glass formulation efforts for Idaho National Engineering and Environmental Laboratory (INEEL) high level waste (HWL) calcine. Two waste compositions were used during testing. Testing started by using the Run 78 calcine composition and switched to simulated Blend calcine composition when it became available. The goal of the glass formulation efforts was to develop a frit composition that will accept higher waste loading that satisfies the glass processing and product acceptance constraints. 1. Melting temperature of 1125 ? 25?C 2. Viscosity between 2 and 10 Pa?s at the melting temperature 3. Liquidus temperature at least 100?C below the melting temperature 4. Normalized release of B, Li and Na each below 1 g/m2 (per ASTM C 1285-97) Glass formulation efforts tested several frit compositions with variable waste loadings of Run 78 calcine waste simulant. Frit 107 was selected as the primary candidate for processing since it met all process and performance criteria up to 45 mass% waste loading. When the simulated Blend calcine waste composition became available Frits 107 and 108 compositions were retested and again Frit 107 remained the primary candidate. However, both frits suffered a decrease in waste loading when switching from the Run 78 calcine to simulated Blend calcine waste composition. This was due to increase concentrations of both F and Al2O3 along with a decrease in CaO and Na2O in the simulate Blend calcine waste all of which have strong impacts on the glass properties that limit waste loading of this type of waste.

  1. Silicon-Polymer Encapsulation of High-Level Calcine Waste for Transportation or Disposal

    International Nuclear Information System (INIS)

    Loomis, G.G.; Miller, C.M.; Giansiracusa, J.A.; Kimmel, R.; Prewett, S.V.

    2000-01-01

    This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: (1) a characterization of the pilot calcine waste; (2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, (3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test

  2. Waste Treatment of Acidic Solutions from the Dissolution of Irradiated LEU Targets for 99-Mo Production

    Energy Technology Data Exchange (ETDEWEB)

    Bakel, Allen J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Conner, Cliff [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-10-01

    One of the missions of the Reduced Enrichment for Research and Test Reactors (RERTR) program (and now the National Nuclear Security Administrations Material Management and Minimization program) is to facilitate the use of low enriched uranium (LEU) targets for 99Mo production. The conversion from highly enriched uranium (HEU) to LEU targets will require five to six times more uranium to produce an equivalent amount of 99Mo. The work discussed here addresses the technical challenges encountered in the treatment of uranyl nitrate hexahydrate (UNH)/nitric acid solutions remaining after the dissolution of LEU targets. Specifically, the focus of this work is the calcination of the uranium waste from 99Mo production using LEU foil targets and the Modified Cintichem Process. Work with our calciner system showed that high furnace temperature, a large vent tube, and a mechanical shield are beneficial for calciner operation. One- and two-step direct calcination processes were evaluated. The high-temperature one-step process led to contamination of the calciner system. The two-step direct calcination process operated stably and resulted in a relatively large amount of material in the calciner cup. Chemically assisted calcination using peroxide was rejected for further work due to the difficulty in handling the products. Chemically assisted calcination using formic acid was rejected due to unstable operation. Chemically assisted calcination using oxalic acid was recommended, although a better understanding of its chemistry is needed. Overall, this work showed that the two-step direct calcination and the in-cup oxalic acid processes are the best approaches for the treatment of the UNH/nitric acid waste solutions remaining from dissolution of LEU targets for 99Mo production.

  3. The leaching of base minerals from the calcines produced by the roasting of pyrite concentrates

    International Nuclear Information System (INIS)

    Nicol, M.J.; Filmer, A.O.

    1985-01-01

    A number of gold and uranium plants in South Africa concentrate the pyrite in the ore residue by flotation and roast the concentrate for the production of sulphuric acid. The calcine produced, which is predominantly hematite, is generally subjected to cyanidation for the recovery of gold and silver. The calcines often contain economically significant quantities of copper, nickel , cobalt and uranium. Prior treatment of the calcine for the recovery of these metals would be desirable in terms of the value of the products. Several processes for the leaching of the base metals from plant calcines have been investigated, and an important general conclusion is that an adequate recovery of the base metals requires that a large proportion of the iron should also be extracted. This observation led to a more extensive investigation of the kinetics of leaching of various iron oxides. The application of electrochemical theory and techniques resulted in a fuller understanding of the various factors that govern the rate of leaching of iron oxides. As a result of this fundamental work, alternative treatment schemes that should yield more efficient extraction from calcines were suggested. Several of these possibilities were investigated, and the most promising were found to require reducing conditions during the leach, or prior partial reduction of the calcine to magnetite or wustite

  4. Origin of Activity and Stability Enhancement for Ag3PO4 Photocatalyst after Calcination

    Directory of Open Access Journals (Sweden)

    Pengyu Dong

    2016-11-01

    Full Text Available Pristine Ag3PO4 microspheres were synthesized by a co-precipitation method, followed by being calcined at different temperatures to obtain a series of calcined Ag3PO4 photocatalysts. This work aims to investigate the origin of activity and stability enhancement for Ag3PO4 photocatalyst after calcination based on the systematical analyses of the structures, morphologies, chemical states of elements, oxygen defects, optical absorption properties, separation and transfer of photogenerated electron-hole pairs, and active species. The results indicate that oxygen vacancies (VO˙˙ are created and metallic silver nanoparticles (Ag NPs are formed by the reaction of partial Ag+ in Ag3PO4 semiconductor with the thermally excited electrons from Ag3PO4 and then deposited on the surface of Ag3PO4 microspheres during the calcination process. Among the calcined Ag3PO4 samples, the Ag3PO4-200 sample exhibits the best photocatalytic activity and greatly enhanced photocatalytic stability for photodegradation of methylene blue (MB solution under visible light irradiation. Oxygen vacancies play a significantly positive role in the enhancement of photocatalytic activity, while metallic Ag has a very important effect on improving the photocatalytic stability. Overall, the present work provides some powerful evidences and a deep understanding on the origin of activity and stability enhancement for the Ag3PO4 photocatalyst after calcination.

  5. Effects of rapid calcination on properties of calcium-based sorbents

    International Nuclear Information System (INIS)

    Yan, Chang-Feng; Grace, John R.; Lim, C. Jim

    2010-01-01

    The calcination process may influence subsequent fragmentation, sintering and swelling when CaO derived from limestone acts as a CO 2 or SO 2 -sorbent in combustion, gasification and reforming. Sorbent properties are affected by CO 2 partial pressure, total pressure, temperature, heating rate, impurities and sample size. In this study, the effect of calcination heating rate was investigated based on an electrically heated platinum foil. The effects of heating rate (up to 800 C/s), calcination temperature (700-950 C), particle size (90-180 μm) and sweep gas velocity were investigated. Higher initial heating rates led to lower extents of limestone calcination, but the extents of carbonation of the resulting CaO were similar to each other. Calcium utilization declined markedly during carbonation or sulphation of CaO after calcination by rapid heating. Experimental results show that carbonation and calcium utilization were most effective for carbonation temperatures between 503 and 607 C. Increasing the extent of calcination is not the best way to improve overall calcium utilization due to the vast increase in energy consumption. (author)

  6. ICPP calcined solids storage facility closure study. Volume III: Engineering design files

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The following information was calculated to support cost estimates and radiation exposure calculations for closure activities at the Calcined Solids Storage Facility (CSSF). Within the estimate, volumes were calculated to determine the required amount of grout to be used during closure activities. The remaining calcine on the bin walls, supports, piping, and floor was also calculated to approximate the remaining residual calcine volumes at different stages of the removal process. The estimates for remaining calcine and vault void volume are higher than what would actually be experienced in the field, but are necessary for bounding purposes. The residual calcine in the bins may be higher than was is experienced in the field as it was assumed that the entire bin volume is full of calcine before removal activities commence. The vault void volumes are higher as the vault roof beam volumes were neglected. The estimations that follow should be considered rough order of magnitude, due to the time constraints as dictated by the project`s scope of work. Should more accurate numbers be required, a new analysis would be necessary.

  7. Characterization of magnetic biochar amended with silicon dioxide prepared at high temperature calcination

    Directory of Open Access Journals (Sweden)

    Baig Shams Ali

    2016-09-01

    Full Text Available Calcination is considered to increase the hardness of composite material and prevent its breakage for the effective applications in environmental remediation. In this study, magnetic biochar amended with silicon dioxide was calcined at high temperature under nitrogen environment and characterized using various techniques. X-ray diffraction (XRD analysis revealed elimination of Fe3O4 peaks under nitrogen calcination and formation of Fe3Si and iron as major constituents of magnetic biochar-SiO2 composite, which demonstrated its superparamagnetic behavior (>80 A2·kg−1 comparable to magnetic biochar. Thermogravimetric analysis (TGA revealed that both calcined samples generated higher residual mass (>96 % and demonstrated better thermal stability. The presence of various bands in Fourier transform infrared spectroscopy (FT-IR was more obvious and the elimination of H–O–H bonding was observed at high temperature calcination. In addition, scanning electron microscopy (SEM images revealed certain morphological variation among the samples and the presence of more prominent internal and external pores, which then judged the surface area and pore volume of samples. Findings from this study suggests that the selective calcination process could cause useful changes in the material composites and can be effectively employed in environmental remediation measures.

  8. ICPP calcined solids storage facility closure study. Volume III: Engineering design files

    International Nuclear Information System (INIS)

    1998-02-01

    The following information was calculated to support cost estimates and radiation exposure calculations for closure activities at the Calcined Solids Storage Facility (CSSF). Within the estimate, volumes were calculated to determine the required amount of grout to be used during closure activities. The remaining calcine on the bin walls, supports, piping, and floor was also calculated to approximate the remaining residual calcine volumes at different stages of the removal process. The estimates for remaining calcine and vault void volume are higher than what would actually be experienced in the field, but are necessary for bounding purposes. The residual calcine in the bins may be higher than was is experienced in the field as it was assumed that the entire bin volume is full of calcine before removal activities commence. The vault void volumes are higher as the vault roof beam volumes were neglected. The estimations that follow should be considered rough order of magnitude, due to the time constraints as dictated by the project's scope of work. Should more accurate numbers be required, a new analysis would be necessary

  9. DepositScan, a Scanning Program to Measure Spray Deposition Distributions

    Science.gov (United States)

    DepositScan, a scanning program was developed to quickly measure spray deposit distributions on water sensitive papers or Kromekote cards which are widely used for determinations of pesticide spray deposition quality on target areas. The program is installed in a portable computer and works with a ...

  10. Spray-formed tooling

    Science.gov (United States)

    McHugh, K. M.; Key, J. F.

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  11. Microplasma sprayed hydroxyapatite coatings

    CERN Document Server

    Dey, Arjun

    2015-01-01

    ""This unique book on development of microplasma sprayed HAp coating has been organized in a very compact yet comprehensive manner. This book also highlights the horizons of future research that invites the attention of global community, particularly those in bio-medical materials and bio-medical engineering field. This book will surely act as a very useful reference material for both graduate/post-graduate students and researchers in the field of biomedical, orthopedic and manufacturing engineering and research. I truly believ that this is the first ever effort which covers almost all the

  12. Calcination, Reduction and Sintering of ADU Spheres for HTGR Fuel

    International Nuclear Information System (INIS)

    Jeong, Kyung Chai; Eom, Sung Ho; Kim, Yeon Ku; Kim, Woong Ki; Kim, Young Min; Lee, Young Woo; Kim, Ju Hee; Cho, Hyo Jin; Cho, Moon Seoung

    2011-01-01

    formation of spheres is then formed by the dispersed in air and ammonia gases atmosphere. The gelation of polymer was induced at the surface of the droplets in this step. The surfaces of these liquid droplets are slightly solidified by reaction of ammonia gas and uranyl ion into the droplets. Spherical droplets are converted to aged-ADU gels in NH 4 OH solution. Then, many steps, such as the ageing and drying of ADU gel, the calcining to UO 3 , the sintering to UO 2 , were progressed continuously

  13. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  14. Characterization of Sodium Spray Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C. T.; Koontz, R. L.; Silberberg, M. [Atomics International, North American Rockwell Corporation, Canoga Park, CA (United States)

    1968-12-15

    The consequences of pool and spray fires require evaluation in the safety analysis of liquid metal-cooled fast breeder reactors. Sodium spray fires are characterized by high temperature and pressure, produced during the rapid combustion of sodium in air. Following the initial energy release, some fraction of the reaction products are available as aerosols which follow the normal laws of agglomeration, growth, settling, and plating. An experimental study is underway at Atomics International to study the characteristics of high concentration sprays of liquid sodium in reduced oxygen atmospheres and in air. The experiments are conducted in a 31.5 ft{sup 3} (2 ft diam. by 10 ft high) vessel, certified for a pressure of 100 lb/in{sup 2} (gauge). The spray injection apparatus consists of a heated sodium supply pot and a spray nozzle through which liquid sodium is driven by nitrogen pressure. Spray rate and droplet size can be varied by the injection velocity (nozzle size, nitrogen pressure, and sodium temperature). Aerosols produced in 0, 4, and 10 vol. % oxygen environments have been studied. The concentration and particle size distribution of the material remaining in the air after the spray injection and reaction period are measured. Fallout rates are found to be proportional to the concentration of aerosol which remains airborne following the spray period. (author)

  15. Substrate system for spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Men G. (Export, PA); Chernicoff, William P. (Harrisburg, PA)

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  16. Effects of Coke Calcination Level on Pore Structure in Carbon Anodes

    Science.gov (United States)

    Fang, Ning; Xue, Jilai; Lang, Guanghui; Bao, Chongai; Gao, Shoulei

    2016-02-01

    Effects of coke calcination levels on pore structure of carbon anodes have been investigated. Bench anodes were prepared by 3 types of cokes with 4 calcination temperatures (800°C, 900°C, 1000°C and 1100°C). The cokes and anodes were characterized using hydrostatic method, air permeability determination, mercury porosimetry, image analysis and confocal microscopy (CSLM). The cokes with different calcination levels are almost the same in LC values (19-20 Å) and real density (1.967-1.985 g/cm3), while the anode containing coke calcined at 900°C has the lowest open porosity and air permeability. Pore size distribution (represented by Anode H sample) can be roughly divided into two ranges: small and medium pores in diameter of 10-400 μm and large pores of 400-580 μm. For the anode containing coke calcined at 800°C, a number of long, narrow pores in the pore size range of 400-580 μm are presented among cokes particles. Formation of these elongated pores may be attributed to coke shrinkages during the anode baking process, which may develop cracking in the anode under cell operations. More small or medium rounded pores with pore size range of 10-400 μm emerge in the anodes with coke calcination temperatures of 900°C, 1000°C and 1100°C, which may be generated due to release of volatiles from the carbon anode during baking. For the anode containing coke calcined at 1100°C, it is found that many rounded pores often closely surround large coke particles, which have potential to form elongated, narrow pores.

  17. Spray deposition and spray drift in orchard spraying by multiple row sprayers

    NARCIS (Netherlands)

    Wenneker, M.; Zande, van de J.C.; Michielsen, J.G.P.; Stallinga, H.; Velde, van P.

    2016-01-01

    The evaluation of the latest data on spray drift in orchard spraying in the Netherlands, and measurements of surface water quality parameters show that the current legislation and measures are insufficient to protect the surface water. To meet the national and European objectives regarding surface

  18. Nanostructure of plasma-sprayed hydroxyapatite coating

    International Nuclear Information System (INIS)

    Suvorova, E.I.; Klechkovskaya, V.V.; Bobrovsky, V.V.; Khamchukov, Yu.D.; Klubovich, V.V.

    2003-01-01

    Calcium phosphate coatings were studied by high-resolution transmission microscopy, microdiffraction, and X-ray energy-dispersive spectroscopy. Coatings were prepared by spraying hydroxyapatite targets onto copper, nickel, and chromium substrates and onto NaCl and BaF 2 single crystals in an argon plasma at a gas pressure of ∼1 Pa; the sputter power was about 200 W; and the RF-generator frequency was 13.56 MHz. Under the conditions used, thin layers of nanocrystalline hydroxyapatite were formed regardless of the nature of the substrate

  19. Determination of the Rate of Formation of Hydroceramic Waste Forms made with INEEL Calcined Wastes; FINAL

    International Nuclear Information System (INIS)

    Barry Scheetz; Johnson Olanrewaju

    2001-01-01

    The formulation, synthesis, characterization and hydration kinetics of hydroceramic waste forms designed as potential hosts for existing INEEL calcine high-level wastes have been established as functions of temperature and processing time. Initial experimentations were conducted with several aluminosilicate pozzolanic materials, ranging from fly ash obtained from various power generating coal and other combustion industries to reactive alumina, natural clays and ground bottled glass powders. The final selection criteria were based on the ease of processing, excellent physical properties and chemical durability (low-leaching) determined from the PCT test produced in hydroceramic. The formulation contains vermiculite, Sr(NO32), CsC1, NaOH, thermally altered (calcined natural clay) and INEEL simulated calcine high-level nuclear wastes and 30 weight percent of fluorinel blend calcine and zirconia calcine. Syntheses were carried out at 75-200 degree C at autogeneous water pressure (100% relative humidity) at various time intervals. The resulting monolithic compact products were hard and resisted breaking when dropped from a 5 ft height. Hydroceramic host mixed with fluorinel blend calcine and processed at 75 degree C crumbled into rice hull-side grains or developed scaly flakes. However, the samples equally possessed the same chemical durability as their unbroken counterparts. Phase identification by XRD revealed that hydroceramic host crystallized type zeolite at 75-150 degree C and NaP1 at 175-200 degree C in addition to the presence of quartz phase originating from the clay reactant. Hydroceramic host mixed with either fluorinel blend calcine or zirconia calcine crystallized type A zeolite at 75-95 degree C, formed a mixture of type A zeolite and hydroxysodalite at 125-150 degree C and hydroxysodalite at 175-200 degree C. Quartz, calcium fluoride and zirconia phases from the clay reactant and the two calcine wastes were also detected. The PCT test solution

  20. Determination of the Rate of Formation of Hydroceramic Waste Forms made with INEEL Calcined Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Barry Scheetz; Johnson Olanrewaju

    2001-10-15

    The formulation, synthesis, characterization and hydration kinetics of hydroceramic waste forms designed as potential hosts for existing INEEL calcine high-level wastes have been established as functions of temperature and processing time. Initial experimentations were conducted with several aluminosilicate pozzolanic materials, ranging from fly ash obtained from various power generating coal and other combustion industries to reactive alumina, natural clays and ground bottled glass powders. The final selection criteria were based on the ease of processing, excellent physical properties and chemical durability (low-leaching) determined from the PCT test produced in hydroceramic. The formulation contains vermiculite, Sr(NO32), CsC1, NaOH, thermally altered (calcined natural clay) and INEEL simulated calcine high-level nuclear wastes and 30 weight percent of fluorinel blend calcine and zirconia calcine. Syntheses were carried out at 75-200 degree C at autogeneous water pressure (100% relative humidity) at various time intervals. The resulting monolithic compact products were hard and resisted breaking when dropped from a 5 ft height. Hydroceramic host mixed with fluorinel blend calcine and processed at 75 degree C crumbled into rice hull-side grains or developed scaly flakes. However, the samples equally possessed the same chemical durability as their unbroken counterparts. Phase identification by XRD revealed that hydroceramic host crystallized type zeolite at 75-150 degree C and NaP1 at 175-200 degree C in addition to the presence of quartz phase originating from the clay reactant. Hydroceramic host mixed with either fluorinel blend calcine or zirconia calcine crystallized type A zeolite at 75-95 degree C, formed a mixture of type A zeolite and hydroxysodalite at 125-150 degree C and hydroxysodalite at 175-200 degree C. Quartz, calcium fluoride and zirconia phases from the clay reactant and the two calcine wastes were also detected. The PCT test solution

  1. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  2. Preparation of plutonium waste forms with ICPP calcined high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Staples, B.A.; Knecht, D.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); O`Holleran, T.P. [Argonne National Lab.-West, Idaho Falls, ID (United States)] [and others

    1997-05-01

    Glass and glass-ceramic forms developed for the immobilization of calcined high-level wastes generated by Idaho Chemical Processing Plant (ICPP) fuel reprocessing activities have been investigated for ability to immobilize plutonium and to simultaneously incorporate calcined waste as an anti-proliferation barrier. Within the forms investigated, crystallization of host phases result in an increased loading of plutonium as well as its incorporation into potentially more durable phases than the glass. The host phases were initially formed and characterized with cerium (Ce{sup +4}) as a surrogate for plutonium (Pu{sup +4}) and samarium as a neutron absorber for criticality control. Verification of the surrogate testing results were then performed replacing cerium with plutonium. All testing was performed with surrogate calcined high-level waste. The results of these tests indicated that a potentially useful host phase, based on zirconia, can be formed either by devitrification or solid state reaction in the glass studied. This phase incorporates plutonium as well as samarium and the calcined waste becomes part of the matrix. Its ease of formation makes it potentially useful in excess plutonium dispositioning. Other durable host phases for plutonium and samarium, including zirconolite and zircon have been formed from zirconia or alumina calcine through cold press-sintering techniques and hot isostatic pressing. Host phase formation experiments conducted through vitrification or by cold press-sintering techniques are described and the results discussed. Recommendations are given for future work that extends the results of this study.

  3. Applied laboratory research of high-level waste denitration and calcination technologies

    International Nuclear Information System (INIS)

    Napravnik, J.

    1977-01-01

    Denitration and calcination processes are assessed for model solutions of high-level radioactive wastes. The kinetics was studied of the reaction of HNO 3 with HCOOH with respect to the final composition of the gaseous product. A survey is presented of used denitration agents and of reaction processes. Calcination was studied both as associated with denitration in a single technological step and separately. Also studied was the pyrolysis and chemical decomposition of sodium nitrate which forms an indecomposable melt in the temperature region of 320 to 850 degC under normal conditions. Based on the experiments a laboratory unit was designed and produced for the denitration and calcination of model solutions of high-level radioactive wastes operating in a temperature range of 100 to 550 degC with a capacity of 1000 ml/h. A boiler type stirred evaporator with electric heating (3 kW) was chosen for the denitration unit while a vertical calcinator modified from a film evaporator with a thermal input of 4 kW was chosen for the calcination unit. (B.S.)

  4. Chemistry of proposed calcination/dissolution processing of Hanford Site tank wastes

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1995-01-01

    Plans exist to separate radioactive waste stored in underground tanks at the US Department of Energy's Hanford Site in south central Washington State into low-level and high-level fractions, and to immobilize the separate fractions in high-integrity vitrified forms for long-term disposal. Calcination with water dissolution has been proposed as a possible treatment for achieving low/high-level separation. Chemistry development activities conducted since 1992 with simulated and genuine tank waste show that calcination/dissolution destroys organic carbon and converts nitrate and nitrite to hydroxide and benign offgases. The process also dissolves significant quantities of bulk chemicals (aluminum, chromium, and phosphate), allowing their redistribution from the high-level to the low-level fraction. Present studies of the chemistry of calcination/dissolution processing of genuine wastes, conducted in the period October 1993 to September 1994, show the importance of sodium fluoride phosphate double salt in controlling phosphate dissolution. Peptization of waste solids is of concern if extensive washing occurs. Strongly oxidizing conditions imposed by calcination reactions were found to convert transition metals to soluble anions in the order chromate > manganate > > ferrate. In analogy with manganese behavior, plutonium dissolution, presumably by oxidation to more soluble anionic species, also occurs by calcination/dissolution. Methods to remove plutonium from the product low-level solution stream must be developed

  5. Design of a hot pilot plant facility for demonstration of the pot calcination process

    Energy Technology Data Exchange (ETDEWEB)

    Buckham, J A

    1962-01-01

    A facility was designed for demonstration of the pot calcination process with wastes from processing aluminum alloy fuels, Darex or electrolytic processing of stainless-steel fuels, and Purex processes. This facility will also permit determination of procedures required for economical production of low-porosity, relatively nonleachable materials by addition of suitable reagents to the wastes fed to the calciner. The process consists of concentration by evaporation and thermal decomposition in situ in pots which also serve as the final disposal containers. This unit permits determination of pot loading and density, leachability, melting point, volatile material content, heat release, and thermal conductivity of the calcine. Also to be determined are transient calcine temperature distributions, fission product behavior during calcination, deentrainment obtained in the various parts of the system, decontamination achieved on all liquid and gaseous effluent streams, need for venting of stored pots, optimum means of remotely sealing the pots, and methods required for production of a minimum volume of noncondensable off-gas. This facility will employ nominal full-scale pots 8 and 12 in. in diameter and 8 ft long. A unique evaporator design was evolved to permit operation either with close-coupled continuous feed preparation or with bath feed preparation. Provisions were made to circumvent possible explosions due to organic material in feed solutions and other suspected hazards.

  6. Final safety-analysis report for the Fifth Calcined Solids Storage Facility

    International Nuclear Information System (INIS)

    1982-01-01

    Radioactive aqueous wastes generated by the solvent extraction of uranium from expended fuels at ICPP will be calcined in the New Waste Calcining Facility (NWCF). The calcined solids are pneumatically transferred to stainless steel bins enclosed in concrete vaults for interim storage of up to 500 years. The Fifth Calcined Solids Storage Facility (CSSF) provides 1000 m 3 of storage and consists of seven annular stainless steel bins inside a reinforced concrete vault set on bedrock. Storage of calcined solids is essentially a passive operation with very little opportunity for release of radionuclides and with no potential for criticality. There will be no potential for fire or explosion. Shielding has been designed to assure that the radiation levels at the vault exterior surfaces will be limited to less than 0.5 mRem/h. A sump in the vault floor will collect any in-leakage that may occur. Any water that collects in the sump will be sampled then removed with the sump jet. There will be an extremely small chance of release of radioactive particulates into the atmosphere as a result of a bin leak. The Design Basis Accident (DBA) postulates the spill of solids from an eroded fill line into the vault coupled with a failure of the vault cooling air radiation monitor. For the DBA, the maximum calculated radiation dose to an exposed individual near the site boundary is less than 1.2 μRem to the bone and lung

  7. Removal of Dissolved Silica using Calcinated Hydrotalcite in Real-life Applications.

    Energy Technology Data Exchange (ETDEWEB)

    Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krumhansl, James L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Water shortages are a growing global problem. Reclamation of industrial and municipal wastewater will be necessary in order to mitigate water scarcity. However, many operational challenges, such as silica scaling, prevent large scale water reuse. Previously, our team at Sandia has demonstrated the use of selective ion exchange materials, such as calcinated hydrotalcite (HTC, (Mg 6 Al 2 (OH) 16 (CO 3 )*4H 2 O)), for the low cost removal of silica from synthetic cooling tower water. However, it is not currently know if calcinated HTC has similar capabilities in realistic applications. The purpose of this study was to investigate the ability of calcinated HTC to remove silica from real cooling tower water. This was investigated under both batch and continuous conditions, and in the presence of competing ions. It was determined that calcinated HTC behaved similarly in real and synthetic cooling tower water; the HTC is highly selective for the silica even in the presence of competing cations. Therefore, the data concludes that calcinated HTC is a viable anti-scaling pretreatment for the reuse of industrial wastewaters.

  8. Preparation of plutonium waste forms with ICPP calcined high-level waste

    International Nuclear Information System (INIS)

    Staples, B.A.; Knecht, D.A.; O'Holleran, T.P.

    1997-05-01

    Glass and glass-ceramic forms developed for the immobilization of calcined high-level wastes generated by Idaho Chemical Processing Plant (ICPP) fuel reprocessing activities have been investigated for ability to immobilize plutonium and to simultaneously incorporate calcined waste as an anti-proliferation barrier. Within the forms investigated, crystallization of host phases result in an increased loading of plutonium as well as its incorporation into potentially more durable phases than the glass. The host phases were initially formed and characterized with cerium (Ce +4 ) as a surrogate for plutonium (Pu +4 ) and samarium as a neutron absorber for criticality control. Verification of the surrogate testing results were then performed replacing cerium with plutonium. All testing was performed with surrogate calcined high-level waste. The results of these tests indicated that a potentially useful host phase, based on zirconia, can be formed either by devitrification or solid state reaction in the glass studied. This phase incorporates plutonium as well as samarium and the calcined waste becomes part of the matrix. Its ease of formation makes it potentially useful in excess plutonium dispositioning. Other durable host phases for plutonium and samarium, including zirconolite and zircon have been formed from zirconia or alumina calcine through cold press-sintering techniques and hot isostatic pressing. Host phase formation experiments conducted through vitrification or by cold press-sintering techniques are described and the results discussed. Recommendations are given for future work that extends the results of this study

  9. RECONSTRUCTION OF CALCINED Zn -Al LAYERED DOUBLE HYDROXIDES DURING TETRACYCLINE ADSORPSION

    Directory of Open Access Journals (Sweden)

    G. M. Starukh

    2015-12-01

    Full Text Available Zn-Al mixed oxides containing ZnO different degree crystallinity were obtained by calcinations of Zn-Al layered double hydroxides (LDHs. The reconstruction of calcined Zn-Al LDHs has been performed under stirring in aqueous suspensions. The assynthesized LDHs, its decomposition products, as well as the reconstructed solids upon hydration were characterized by XRD, N2adsorption, differential and thermal gravimetric analysis. It was found that the ability of Zn-Al LDHs to recover a layered structure under the hydration of mixed oxides depends on the degree of ZnO crystallinity. The partial reconstruction of Zn-Al layered structure occurs in tetracycline solutions irrespective to the degree of ZnO crystallinity in calcined LDHs. Calcined Zn-Al LDHs demonstrate the higher adsorption capacity to tetracycline in comparison with as-prepared Zn-Al LDHs. The adsorption of TC on calcined and uncalcined ZnAl LDHs occurs on the centers of one particular type. It is suggested that surface complexation of the A-ring ligand of TC with Al-OH centers takes place.

  10. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Bryant, J.W.; Nenni, J.A.

    2003-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  11. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Jeffrey Bryant

    2008-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  12. Modifications Of A Commercial Spray Gun

    Science.gov (United States)

    Allen, Peter B.

    1993-01-01

    Commercial spray gun modified to increase spray rate and make sprayed coats more nearly uniform. Consists of gun head and pneumatic actuator. Actuator opens valves for two chemical components, called "A" and "B," that react to produce foam. Components flow through orifices, into mixing chamber in head. Mixture then flows through control orifice to spray tip. New spray tip tapered to reduce area available for accumulation of foam and makes tip easier to clean.

  13. Calcination of Fluorinel-sodium waste blends using sugar as a feed additive (formerly WINCO-11879)

    International Nuclear Information System (INIS)

    Newby, B.J.; Thomson, T.D.; O'Brien, B.H.

    1992-06-01

    Methods were studied for using sugar as a feed additive for converting the sodium-bearing wastes stored at the Idaho Chemical Processing Plant into granular, free flowing solids by fluidized-bed calcination at 500 degrees C. All methods studied blended sodium-bearing wastes with Fluorinel wastes but differed in the types of sugar (sucrose or dextrose) that were added to the blend. The most promising sugar additive was determined to be sucrose, since it is converted more completely to inorganic carbon than is dextrose. The effect of the feed aluminum-to-alkali metal mole ratio on calcination of these blends with sugar was also investigated. Increasing the aluminum-to-alkali metal ratio from 0.6 to 1.0 decreased the calcine product-to-fines ratio from 3.0 to 1.0 and the attrition index from 80 to 15%. Further increasing the ratio to 1.25 had no effect

  14. Ce - promoted catalyst from hydrotalcites for CO2 reforming of methane: calcination temperature effect

    Directory of Open Access Journals (Sweden)

    Carlos Enrique Daza

    2012-01-01

    Full Text Available Ce-promoted Ni-catalysts from hydrotalcites were obtained. The effect of calcination temperature on the chemical and physical properties of the catalysts was studied. Several techniques were used to determine the chemical and physical characteristics of oxides. The apparent activation energies of reduction were determined. Catalytic experiments at 48 L g-1h-1 without pre-reduction in CO2 reforming of methane were performed. The spinel-like phase in these oxides was only formed at 1000 ºC. The reduction of Ni2+ in the oxides was clearly affected by the calcination temperature which was correlated with catalytic performance. The catalyst calcined at 700 ºC showed the greatest activity.

  15. Pyrochemical treatment of Idaho Chemical Processing Plant high-level waste calcine

    International Nuclear Information System (INIS)

    Todd, T.A.; DelDebbio, J.A.; Nelson, L.O.; Sharpsten, M.R.

    1993-01-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1951 to recover uranium, krypton-85, and isolated fission products for interim treatment and immobilization. The acidic radioactive high-level liquid waste (HLLW) is routinely stored in stainless steel tanks and then, since 1963, calcined to form a dry granular solid. The resulting high-level waste (HLW) calcine is stored in seismically hardened stainless steel bins that are housed in underground concrete vaults. A research and development program has been established to determine the feasibility of treating ICPP HLW calcine using pyrochemical technology.This technology is described

  16. Stoichiometry of the U3O8 phase formed during calcination of some uranium compounds

    International Nuclear Information System (INIS)

    El-Fekey, S.A.; Farah, M.Y.; Rofail, N.H.

    1981-01-01

    Although recent work has shown U 3 O 8 phase to be the decomposition product obtained after calcining uranyl nitrate, sulphate or ammonium uranate, neither the necessary conditions for obtaining stoichiometric U 3 O 8 nor the details of the reaction have been established. Presence of sulphate or nitrate ions during preparation greatly affects the O/U of the obtained oxides and the physico-chemical properties of uranium tetrafluoride prepared afterwards from it (1-3). The aim of the present investigation was to study the effect of calcination regimes on the stoichiometry of the U 3 O 8 phase produced by the thermal decomposition of uranyl nitrate, sulphate, and ammonium uranate, which was prepared by precipitation from nuclear-pure uranyl sulphate. Stoichiometry of the U 3 O 8 phase formed during calcination of ammonium uranate precipitated from nuclear pure uranyl nitrate solution was reported before (1)

  17. An Assessment of Using Vibrational Compaction of Calcined HLW and LLW in DWPF Canisters

    International Nuclear Information System (INIS)

    Yi, Yun-Bo; Amme, Robert C.; Shayer, Zeev

    2008-01-01

    Since 1963, the INEL has calcined almost 8 million gallons of liquid mixed waste and liquid high-level waste, converting it to some 1.1 million gallons of dry calcine (about 4275.0 m3), which consists of alumina-and zirconia-based calcine and zirconia-sodium blend calcine. In addition, if all existing and projected future liquid wastes are solidified, approximately 2,000 m3 of additional calcine will be produced primarily from sodium-bearing waste. Calcine is a more desirable material to store than liquid radioactive waste because it reduces volume, is much less corrosive, less chemically reactive, less mobile under most conditions, easier to monitor and more protective of human health and the environment. This paper describes the technical issue involved in the development of a feasible solution for further volume reduction of calcined nuclear waste for transportation and long term storage, using a standard DWPF canister. This will be accomplished by developing a process wherein the canisters are transported into a vibrational machine, for further volume reduction by about 35%. The random compaction experiments show that this volume reduction is achievable. The main goal of this paper is to demonstrate through computer modeling that it is feasible to use volume reduction vibrational machine without developing stress/strain forces that will weaken the canister integrity. Specifically, the paper presents preliminary results of the stress/strain analysis of the DWPF canister as a function of granular calcined height during the compaction and verifying that the integrity of the canister is not compromised. This preliminary study will lead to the development of better technology for safe compactions of nuclear waste that will have significant economical impact on nuclear waste storage and treatment. The preliminary results will guide us to find better solutions to the following questions: 1) What are the optimum locations and directions (vertical versus horizontal or

  18. Characterisation of sugar cane straw waste as pozzolanic material for construction: Calcining temperature and kinetic parameters

    International Nuclear Information System (INIS)

    Frias, Moises; Villar-Cocina, E.; Valencia-Morales, E.

    2007-01-01

    This paper reports on the influence of calcining temperature (800 and 1000 deg. C) on the pozzolanic activation of sugar cane straw (SCS). The reaction kinetics of SCS ash-lime mixtures were inferred from physicochemical characteristics (X-ray diffraction patterns and thermogravimetry analysis. The fitting of a kinetic-diffusive model to the experimental data (fixed lime versus time) allowed the computing of the kinetic parameters (reaction rate constant) of the pozzolanic reaction. Results obtained confirm that the sugar cane straw ash (SCSA) calcined at 800 and 1000 deg. C have properties indicative of very high pozzolanic activity. No influence of calcining temperature on the pozzolanic activity was observed. Also, no crystalline compounds during the pozzolanic reaction were identified up to 90 days of reaction. Environmental durability and strength of the consequential mortars remain to be assessed

  19. Synthesis of well-dispersed ZnO nanomaterials by directly calcining zinc stearate

    International Nuclear Information System (INIS)

    Guo Guangsheng; Shi Chen; Tao Dongliang; Qian Weizhong; Han Dongmei

    2009-01-01

    Well-dispersed ZnO nanomaterials were synthesized by direct calcination of zinc stearate. Results from Fourier transform infrared (FT-IR) spectra and X-ray diffraction (XRD) indicated both the decomposition degree of organic ligand and the purity of calcined products were increased with the calcination temperature. The influence of decomposition temperature on the morphology of ZnO nanomaterials was investigated by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The experimental results revealed the morphology of ZnO transformed from nanosheets to hexagonal nanopyramids and then to nanoparticles at 573, 673 and 773 K respectively. Finally, a morphology evolution model of ZnO nanomaterials under different temperatures was proposed

  20. Calcinated tea and cellulose composite films and its dielectric and lead adsorption properties.

    Science.gov (United States)

    Jayaramudu, Tippabattini; Varaprasad, Kokkarachedu; Kim, Hyun Chan; Kafy, Abdullahil; Kim, Jung Woong; Kim, Jaehwan

    2017-09-01

    In this paper, calcinated tea and cellulose composite (CTCC) films were fabricated via solution casting method. Chemical structure, morphology, crystallinity and thermal stability of the fabricated films were characterized by using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and thermogravimetric analysis. The effect of calcinated tea loading on the properties of the prepared CTCC films was studied. The results suggest that the prepared CTCC films show higher mechanical properties, thermal stability and dielectric constant than the neat cellulose film. In addition, the CTCC films adsorb Pb 2+ ions and its adsorption performance depends on the calcinated tea content and pH level. The CTCC films are useful for sensors, flexible capacitor as well as lead adsorption applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Absorption/desorption in sprays

    International Nuclear Information System (INIS)

    Naimpally, A.

    1987-01-01

    This survey paper shall seek to present the present state of knowledge concerning absorption and desorption in spray chambers. The first part of the paper presents the theories and formulas for the atomization and break-up of sprays in nozzles. Formulas for the average (sauter-mean) diameters are then presented. For the case of absorption processes, the formulas for the dimensionless mass transfer coefficients is in drops. The total; mass transfer is the total of the transfer in individual drops. For the case of desorption of sparingly soluble gases from liquids in a spray chamber, the mass transfer occurs in the spray just at the point of break-up of the jet. Formulas for the desorption of gases are presented

  2. Magnesium Repair by Cold Spray

    National Research Council Canada - National Science Library

    Champagne, V. K; Leyman, P.F; Helfritch, D. J

    2008-01-01

    .... Army Research Laboratory has developed a cold spray process to reclaim magnesium components that shows significant improvement over existing methods and is in the process of qualification for use on rotorcraft...

  3. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst

    International Nuclear Information System (INIS)

    Sirisomboonchai, Suchada; Abuduwayiti, Maidinamu; Guan, Guoqing; Samart, Chanatip; Abliz, Shawket; Hao, Xiaogang; Kusakabe, Katsuki; Abudula, Abuliti

    2015-01-01

    Highlights: • Calcined scallop shell was used as low-cost and effective catalyst for biodiesel production. • BDF yield from waste cooking oil reached 86% at 65 °C with a catalyst loading amount of 5 wt%. • Calcined scallop shell showed good reusability. • Calcium glyceroxide played an important role on the reusability of calcined scallop shell. • Water in the waste cooking oil had negative effect on the catalytic activity of calcined scallop shell. - Abstract: Transesterification of waste cooking oil (WCO) and methanol by using calcined scallop shell (CSS) as catalyst was carried out in a closed system for biodiesel fuel (BDF) production. It is found that the optimum calcination temperature for the preparation of CSS was 1000 °C. The effects of transesterification temperature, reaction time, methanol/oil molar ratio and catalyst loading amount on the BDF yield were investigated. Compared with the commercial CaO, CSS showed higher catalytic activity and the BDF yield reached 86% at 65 °C with a catalyst loading amount of 5 wt% (WCO basis) and a reaction time of 2 h. The catalyst was reused for 5 cycles whilst the BDF yield decreased 23%. It is found that CaO in CSS was transferred to calcium glyceroxide after the transesterification reaction, and calcium glyceroxide also showed good catalytic activity and reusability. Furthermore, Water content in WCO had negative effect on BDF yield. It is found that BDF yield reduced 15% due to the occurring of saponification when the water content was increased from 0.64% to 2.48%. It is expected that CCS can be used as an alternative and cheap catalyst for the biodiesel production

  4. Study of variation grain size in desulfurization process of calcined petroleum coke

    Science.gov (United States)

    Pintowantoro, Sungging; Setiawan, Muhammad Arif; Abdul, Fakhreza

    2018-04-01

    Indonesia is a country with abundant natural resources, such as mineral mining and petroleum. In petroleum processing, crude oil can be processed into a source of fuel energy such as gasoline, diesel, oil, petroleum coke, and others. One of crude oil potentials in Indonesia is petroleum coke. Petroleum coke is a product from oil refining process. Sulfur reducing process in calcined petroleum cokes can be done by desulfurization process. The industries which have potential to become petroleum coke processing consumers are industries of aluminum smelting (anode, graphite block, carbon mortar), iron riser, calcined coke, foundry coke, etc. Sulfur reducing process in calcined petroleum coke can be done by thermal desulfurization process with alkaline substance NaOH. Desulfurization of petroleum coke process can be done in two ways, which are thermal desulfurization and hydrodesulphurization. This study aims to determine the effect of various grain size on sulfur, carbon, and chemical bond which contained by calcined petroleum coke. The raw material use calcined petroleum coke with 0.653% sulfur content. The grain size that used in this research is 50 mesh, then varied to 20 mesh and 100 mesh for each desulfurization process. Desulfurization are tested by ICP, UV-VIS, and FTIR to determine levels of sulfur, carbon, chemical bonding and sulfur dissolved water which contained in the residual washing of calcined petroleum coke. From various grain size that mentioned before, the optimal value is on 100 mesh grain size, where the sulfur content in petroleum coke is 0.24% and carbon content reaches the highest level of 97.8%. Meanwhile for grain size 100 mesh in the desulfurization process is enough to break the chemical bonds of organic sulfur in petroleum coke.

  5. Volatilisation of ruthenium in vitrification. Isothermal calcination studies of 'Magnox' and thermal oxide simulates

    International Nuclear Information System (INIS)

    Cains, P.W.; Hay, D.A.

    1982-12-01

    Ru volatilities have been measured for the static, isothermal calcination of ''Magnox'' and Thermal Oxide HAL's (Highly Active Liquors) at temperatures up to 600 0 C. Model solutions containing Ru, HNO 3 , and nitrates of important individual cations have also been investigated. Experimental design was primarily based on the requirements of rotary calcination process development. The results have been interpreted in terms of a reaction model involving competition between the simple degradation of Ru(NO) complexes to RuO 2 and oxidative decomposition to volatile species (e.g. RuO 4 ). (author)

  6. ICPP radioactive liquid and calcine waste technologies evaluation final report and recommendation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Using a formalized Systems Engineering approach, the Latched Idaho Technologies Company developed and evaluated numerous alternatives for treating, immobilizing, and disposing of radioactive liquid and calcine wastes at the Idaho Chemical Processing Plant. Based on technical analysis data as of March, 1995, it is recommended that the Department of Energy consider a phased processing approach -- utilizing Radionuclide Partitioning for radioactive liquid and calcine waste treatment, FUETAP Grout for low-activity waste immobilization, and Glass (Vitrification) for high-activity waste immobilization -- as the preferred treatment and immobilization alternative.

  7. Microwave energy for post-calcination treatment of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary

  8. Talc-silicon glass-ceramic waste forms for immobilization of high- level calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    Talc-silicon glass-ceramic waste forms are being evaluated as candidates for immobilization of the high level calcined waste stored onsite at the Idaho Chemical Processing Plant. These glass-ceramic waste forms were prepared by hot isostatically pressing a mixture of simulated nonradioactive high level calcined waste, talc, silicon and aluminum metal additives. The waste forms were characterized for density, chemical durability, and glass and crystalline phase compositions. The results indicate improved density and chemical durability as the silicon content is increased

  9. Volatilization and trapping of ruthenium during calcination of nitric acid solutions

    International Nuclear Information System (INIS)

    Klein, M.; Weyers, C.; Goossens, W.R.A.; Smet, M. de; Trine, J.

    1983-01-01

    Solid radioactive aerosols and semi-volatile fission products e.g. Ru, Cs, Sb are generated during high level liquid waste calcination and vitrification processes. The retention of Ruthenium was studied because of its strong tendency to form volatile compounds in oxidative media. Since RuO 4 was the suspected form for high temperature processes, the study was carried out on the behaviour of RuO 4 and its retention on adsorbants and catalysts for various gas compositions. The behaviour of volatilized Ru species obtained by calcination of nitrosyl Ru compounds was then compared with the RuO 4 case

  10. Fuzzy modeling and control of the calcination process in a kiln

    International Nuclear Information System (INIS)

    Ramirez, M.; Haber, R.

    1999-01-01

    Calcination kilns are strongly nonlinear, multivariable processes, that only can be modeled with great uncertainty. In order to get a quality product and ensure the process efficiency, the controller must keep a prescribed temperature profile optimizing the fuel consumption. In this paper, a design methodology of a multivariable fuzzy controller for a nickel calcination kiln is presented. The controller structure is a classical one, and uses the Mamdani fuzzy inference system. In simulation results the fuzzy controller exhibits a great robustness in presence of several types of disturbances, and a better performance than the PID in same conditions is observed. (author)

  11. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, Shawn M; Harrison, Mark A [Food Science and Technology Department, University of Georgia, Athens, GA, 30602-2610 (United States); Law, S Edward, E-mail: edlaw@engr.uga.edu [Biological and Agricultural Engineering Department, Applied Electrostatics Laboratory www.ael.engr.uga.edu, University of Georgia, Athens, GA, 30602-4435 (United States)

    2011-06-23

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic

  12. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    International Nuclear Information System (INIS)

    Lyons, Shawn M; Harrison, Mark A; Law, S Edward

    2011-01-01

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic

  13. 3rd International Workshop on Turbulent Spray Combustion

    CERN Document Server

    Gutheil, Eva

    2014-01-01

    This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth ...

  14. Spray Lakes reclamation project

    International Nuclear Information System (INIS)

    Zacaruk, M.R.

    1996-01-01

    When the level of the Spray Lakes (Alberta) reservoir was lowered by four metres, 208 ha of shoreline was exposed offering little to no wildlife benefit and only limited recreation potential. A reclamation plan for 128 ha of shoreline was therefore developed. A wild life-palatable, self-sustaining vegetation cover was established. Approximately 90 ha was scarified, and/or had tree stumps removed prior to seeding, while approximately 40 ha was seeded and fertilized only. The remaining 80 ha of shoreline was not revegetated due to limited access; these areas will be allowed to re-establish naturally from the forested edge. The species were selected based on their adaptation to alkaline soils, drought tolerance, persistence in a stand and rooting characteristics, as well as palatability to wildlife. Alfalfa, white clover and fall rye were seeded. In general, all areas of the reclamation plan are successfully revegetated. Areas which were recontoured are stable and non-eroding. Success was most significant in areas which had been scarified, then seeded and trackpacked. Areas that were seeded and fertilized only were less well established at the end of the first year, but showed improvement in the second and third years. The area will be monitored to ensure the reclaimed vegetation is self-sustaining

  15. Slurry spray distribution within a simulated laboratory scale spray dryer

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1979-01-01

    It was found that the distribution of liquid striking the sides of a simulated room temperature spray dryer was not significantly altered by the choice of nozles, nor by a variation in nozzle operating conditions. Instead, it was found to be a function of the spray dryer's configuration. A cocurrent flow of air down the drying cylinder, not possible with PNL's closed top, favorably altered the spray distribution by both decreasing the amount of liquid striking the interior of the cylinder from 72 to 26% of the feed supplied, and by shifting the zone of maximum impact from 1.0 to 1.7 feet from the nozzle. These findings led to the redesign of the laboratory scale spray dryer to be tested at the Savannah River Plant. The diameter of the drying chamber was increased from 5 to 8 inches, and a cocurrent flow of air was established with a closed recycle. Finally, this investigation suggested a drying scheme which offers all the advantages of spray drying without many of its limitations

  16. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    International Nuclear Information System (INIS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-01-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  17. Use of calcination in exposing the entrapped Fe particles from multi-walled carbon nanotubes grown by chemical vapour deposition

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2009-03-01

    Full Text Available behaviour of the as-prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air, at 400°C for 1 h, was found to be an efficient and simple method to extract metallic impurities from the amorphous carbon shells...

  18. Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers

    Directory of Open Access Journals (Sweden)

    B.B. Kenne Diffo

    2015-03-01

    Full Text Available Kaolin samples of the same mass were treated at 700 °C for the same duration of 30 min by varying the rate of calcination (1, 2.5, 5, 10, 15 and 20 °C/min in order to obtain metakaolins which were used to produce geopolymers. Depending on the nature of each type of material, kaolin, metakaolins and geopolymers were characterized using thermal analysis, chemical analysis, XRD, FTIR, particle size distribution, specific surface area, bulk density, setting time and compressive strength. FTIR and XRD analyses showed that metakaolins except at 1 °C/min contained residual kaolinite whose quantity increased with the rate of calcination of kaolin and which influenced the characteristics of geopolymers. Thus as the rate of calcination of kaolin increased, the setting time increased (226 min (rate of 1 °C/min–773 min (rate of 20 °C/min while the compressive strength reduced (49.4 MPa (rate of 1 °C/min–20.8 MPa (rate of 20 °C/min. From the obtained results the production of geopolymers having high compressive strength along with low setting time requires that the calcination of kaolin be carried out at a low rate.

  19. Influence of calcined mud on the mechanical properties and shrinkage of self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Fatima Taieb

    2018-01-01

    Full Text Available The use of SCC has a particular interest in terms of sustainable development. Indeed, their specific formulation leads to a greater volume of dough than for common concretes, thus, a larger quantity of cement. However, for economical, ecological and technical reasons, it is sought to limit their cement content [1]. It is therefore necessary to almost always use mineral additions as a partial replacement for cement because the technology of self-compacting concretes can consume large quantities of fines, in this case calcinated mud issued from dams dredging sediments that can give and/or ameliorate characteristics and performances of this type of concretes. Four SCCs had been formulated from the same composition where the only percentage of calcinated mud of Chorfa (west of Algeria dam changed (0%, 10%, 20% and 30%. The effect of calcinated mud on characteristics at fresh state of SCC according to AFGC was quantified. Mechanical strengths and shrinkage deformation (total, autogenous, drying were evaluated. The results show the possibility to make SCCs with different dosages of calcinated mud having strengths that can defy those of the control SCC. The analysis of free deformations indicates the beneficial impact of the mud by contributing to decrease the amplitudes of the shrinkage compared to those of the control SCC.

  20. Restart Plan for the Prototype Vertical Denitration Calciner [SD Coversheet has Incorrect Document Number

    Energy Technology Data Exchange (ETDEWEB)

    SUTTER, C.S.

    1999-07-26

    Testing activities on the Prototype Vertical Denitration Calciner at PFP were suspended in January 1997 due to the hold on fissile material handling in the facility. The Restart Plan will govern the transition of the test program from the completion of the activity based startup review; through equipment checkout and surrogate material runs; to resumption of the testing program and transition to unrestricted testing.

  1. Phosphorous removal from aqueous solution can be enhanced through the calcination of lime sludge.

    Science.gov (United States)

    Bal Krishna, K C; Niaz, Mohamed R; Sarker, Dipok C; Jansen, Troy

    2017-09-15

    Water treatment plants generate an enormous amount of the sludge which is normally treated as waste. In the recent past, many investigations have been focused on developing an economical adsorbent using water treatment sludge to remove phosphorous (P) from aqueous solutions. However, the great extents of the studies have been limited in the use of alum- and iron-based sludges. This study, therefore, investigated the P removal performance of the calcined lime sludge. Calcined lime sludge at 700 °C significantly enhanced the P removal efficiency whereas marginal improvement was noted when the sludge calcined at 400 °C was tested. With increase P removal efficiency, final pH values of the solution also significantly increased. P removal efficiency of the calcined sludge decreased with increasing the initial P concentrations. However, the removal efficiency could be improved by increasing the weight of the sludge. Further analysis demonstrated that P removal trend followed both pseudo-second order and diffusion-chemisorption kinetics signifying the P removal is potentially due to a multi-mechanistic reaction in which, the process is controlled by intra-particle diffusion followed by chemisorptions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Sorption-desorption of antimony species onto calcined hydrotalcite: Surface structure and control of competitive anions.

    Science.gov (United States)

    Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa

    2018-02-15

    Calcined hydrotalcite can be applied to remove anionic contaminants from aqueous systems such as antimony species due to its great anion exchange capacity and high surface area. Hence, this study evaluated antimonite and antimonate sorption-desorption processes onto calcined hydrotalcite in the presence of nitrate, sulfate and phosphate. Sorption and desorption experiments of antimonite and antimonate were carried out in batch equilibrium and the post-sorption solids were analyzed by X-ray fluorescence (EDXRF). Sorption data were better fitted by dual-mode Langmuir-Freundlich model (R 2 >0.99) and desorption data by Langmuir model. High maximum sorption capacities were found for the calcined hydrotalcite, ranging from 617 to 790meqkg -1 . The competing anions strongly affected the antimony sorption. EDXRF analysis and mathematical modelling showed that sulfate and phosphate presented higher effect on antimonite and antimonate sorption, respectively. High values for sorption efficiency (SE=99%) and sorption capacity were attributed to the sorbent small particles and the large surface area. Positive hysteresis indexes and low mobilization factors (MF>3%) suggest very low desorption capacity to antimony species from LDH. These calcined hydrotalcite characteristics are desirable for sorption of antimony species from aqueous solutions. Copyright © 2017. Published by Elsevier B.V.

  3. CO{sub 2} capture behavior of shell during calcination/carbonation cycles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J.; Zhao, C.S.; Chen, H.C.; Duan, L.B.; Chen, X.P. [School of Energy and Environment, Southeast University, Nanjing (China)

    2009-08-15

    The cyclic carbonation performances of shells as CO{sub 2} sorbents were investigated during multiple calcination/carbonation cycles. The carbonation kinetics of the shell and limestone are similar since they both exhibit a fast kinetically controlled reaction regime and a diffusion controlled reaction regime, but their carbonation rates differ between these two regions. Shell achieves the maximum carbonation conversion for carbonation at 680-700 C. The mactra veneriformis shell and mussel shell exhibit higher carbonation conversions than limestone after several cycles at the same reaction conditions. The carbonation conversion of scallop shell is slightly higher than that of limestone after a series of cycles. The calcined shell appears more porous than calcined limestone, and possesses more pores >230 nm, which allow large CO{sub 2} diffusion-carbonation reaction rates and higher conversion due to the increased surface area of the shell. The pores of the shell that are greater than 230 nm do not sinter significantly. The shell has more sodium ions than limestone, which probably leads to an improvement in the cyclic carbonation performance during the multiple calcination/carbonation cycles. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  4. Studies on the calcination of ammonium uranates with special reference to density

    International Nuclear Information System (INIS)

    El-Fekey, S.A.; Rofail, N.H.; Farah, M.Y.

    1980-01-01

    The objective of this study was to throw some light on ammonium uranates precipitated from uranyl nitrate solution using ammonia or urea. The effect of washing the uranates, thickness of their layers on the trays during subsequent calcination, temperature and duration, on the densities of powders formed during thermal decomposition was studied. (author)

  5. Synthesis of alumina powder with seeds by Pechini Method using O2 as calcination atmosphere

    International Nuclear Information System (INIS)

    Salem, R.E.P.; Guilherme, K.A.; Chinelatto, A.S.A.; Chinelatto, A. L.

    2012-01-01

    Alumina is a very investigated material due to its excellent refractory characteristics and mechanical properties. Its alpha phase, the most stable one, has a formation temperature of about 1200 ° C. Due to its high temperature of formation, many researches have been trying to reduce it through addition of seeds of alpha phase in chemical processes of synthesis. This work aims to synthesize ultrafine powders of alpha-alumina by the Pechini method with seeding, and using an O 2 atmosphere in the pre-calcination (500 ° C) and calcination (1000 ° C and 1100° C) steps. The resulting powders were characterized through X-ray diffractometry, infrared spectroscopy and scanning electron microscopy. The results were compared with samples calcined on ai. It was verified that the presence of oxygen in the calcination atmosphere favored the elimination of residual carbon from the precursor powders, forthcoming from the great amount of organic material used on the synthesis, modifying its morphology and favoring reduction of particle size. (author)

  6. Physical, morphological and rheological alterations of properties by the calcination of aluminium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Pandolfelli, V C; Varela, J A; Longo, E

    1987-03-01

    Evolution of physical, morphological and rheological characteristics resulted from several thermal treatments on national aluminium hydroxide, are evaluated and discussed after mercury porosimetry analysis, scanning electron microscopy, surface area and pressure curve compaction. The results may consider about the Kinetics of the reaction during the aglomerate calcination and to verify the better processing conditions to get products with superior performance. (Autor).

  7. Measurement of the loss on ignition of bulk calcined bauxite samples by neutron moderation

    International Nuclear Information System (INIS)

    Aylmer, J.A.; Borsaru, M.

    1985-01-01

    The production of high-grade calcined bauxite is very dependent on the moisture content of the final product. Existing procedures rely on the ignition of small samples to monitor the effectiveness of the calcination process. The results obtained by this gravimetric technique are several hours behind production and do not permit regular adjustment of the furnace to optimize the control of the chemically bound water content (LOI). To provide rapid and more relevant results, a neutron moderation technique has been developed for measuring the LOI of bulk samples of calcined bauxite while they are still hot. The method uses fast neutrons from an 241 Am-Be neutron source to irradiate the samples, and the backscattered thermal neutrons detected are a measure of bound moisture content. The rms deviation between neutron and conventional determinations of LOI, in 15 calcined bauxite samples, was 0.08 per cent LOI over the range 0.1 to 0.9 per cent LOI. When allowance is made for the rms error in the ignition method, the error in the neutron method is found to be 0.07 per cent LOI

  8. 46 CFR 148.04-15 - Petroleum coke, uncalcined; petroleum coke, uncalcined and calcined (mixture).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Petroleum coke, uncalcined; petroleum coke, uncalcined and calcined (mixture). 148.04-15 Section 148.04-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Requirements for Certain Material § 148.04-15 Petroleum coke, uncalcined; petroleum coke, uncalcined and...

  9. Plasma spraying process of disperse carbides for spraying and facing

    International Nuclear Information System (INIS)

    Blinkov, I.V.; Vishnevetskaya, I.A.; Kostyukovich, T.G.; Ostapovich, A.O.

    1989-01-01

    A possibility to metallize carbides in plasma of impulsing capacitor discharge is considered. Powders granulation occurs during plasma spraying process, ceramic core being completely capped. X-ray phase and chemical analyses of coatings did not show considerable changes of carbon content in carbides before and after plasma processing. This distinguishes the process of carbides metallization in impulsing plasma from the similar processing in arc and high-frequency plasma generator. Use of powder composites produced in the impulsing capacitor discharge, for plasma spraying and laser facing permits 2-3 times increasing wear resistance of the surface layer as against the coatings produced from mechanical powders mixtures

  10. Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials

    International Nuclear Information System (INIS)

    Ma, Quanxin; Peng, Fangwei; Li, Ruhong; Yin, Shibo; Dai, Changsong

    2016-01-01

    Highlights: • A series of Li-rich layered oxide cathode materials (Li_1_._2Mn_0_._5_6Ni_0_._1_6Co_0_._0_8O_2) were successfully synthesized via a two-step synthesis method. • The effects of calcination temperature on the cathode materials were researched in detail. • A well-crystallized layered structure was obtained as the calcination temperature increased. • The samples calcined in a range of 850–900 °C exhibited excellent electrochemical performance. - Abstract: Lithium-rich layered oxide cathode materials (Li_1_._2Mn_0_._5_6Ni_0_._1_6Co_0_._0_8O_2 (LLMO)) were synthesized via a two-step synthesis method involving co-precipitation and high-temperature calcination. The effects of calcination temperature on the cathode materials were studied in detail. Structural and morphological characterizations revealed that a well-crystallized layered structure was obtained at a higher calcination temperature. Electrochemical performance evaluation revealed that a cathode material obtained at a calcination temperature of 850 °C delivered a high initial discharge capacity of 266.8 mAh g"−"1 at a 0.1 C rate and a capacity retention rate of 95.8% after 100 cycles as well as excellent rate capability. Another sample calcinated at 900 °C exhibited good cycling stability. It is concluded that the structural stability and electrochemical performance of Li-rich layered oxide cathode materials were strongly dependent on calcination temperatures. The results suggest that a calcination temperature in a range of 850–900 °C could promote electrochemical performance of this type of cathode materials.

  11. Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Quanxin; Peng, Fangwei; Li, Ruhong; Yin, Shibo; Dai, Changsong, E-mail: changsd@hit.edu.cn

    2016-11-15

    Highlights: • A series of Li-rich layered oxide cathode materials (Li{sub 1.2}Mn{sub 0.56}Ni{sub 0.16}Co{sub 0.08}O{sub 2}) were successfully synthesized via a two-step synthesis method. • The effects of calcination temperature on the cathode materials were researched in detail. • A well-crystallized layered structure was obtained as the calcination temperature increased. • The samples calcined in a range of 850–900 °C exhibited excellent electrochemical performance. - Abstract: Lithium-rich layered oxide cathode materials (Li{sub 1.2}Mn{sub 0.56}Ni{sub 0.16}Co{sub 0.08}O{sub 2} (LLMO)) were synthesized via a two-step synthesis method involving co-precipitation and high-temperature calcination. The effects of calcination temperature on the cathode materials were studied in detail. Structural and morphological characterizations revealed that a well-crystallized layered structure was obtained at a higher calcination temperature. Electrochemical performance evaluation revealed that a cathode material obtained at a calcination temperature of 850 °C delivered a high initial discharge capacity of 266.8 mAh g{sup −1} at a 0.1 C rate and a capacity retention rate of 95.8% after 100 cycles as well as excellent rate capability. Another sample calcinated at 900 °C exhibited good cycling stability. It is concluded that the structural stability and electrochemical performance of Li-rich layered oxide cathode materials were strongly dependent on calcination temperatures. The results suggest that a calcination temperature in a range of 850–900 °C could promote electrochemical performance of this type of cathode materials.

  12. Template-assisted electrostatic spray deposition as a new route to mesoporous, macroporous, and hierarchically porous oxide films.

    Science.gov (United States)

    Sokolov, S; Paul, B; Ortel, E; Fischer, A; Kraehnert, R

    2011-03-01

    A novel film coating technique, template-assisted electrostatic spray deposition (TAESD), was developed for the synthesis of porous metal oxide films and tested on TiO(2). Organic templates are codeposited with the titania precursor by electrostatic spray deposition and then removed during calcination. Resultant films are highly porous with pores casted by uniformly sized templates, which introduced a new level of control over the pore morphology for the ESD method. Employing the amphiphilic block copolymer Pluronic P123, PMMA latex spheres, or a combination of the two, mesoporous, macroporous, and hierarchically porous TiO(2) films are obtained. Decoupled from other coating parameters, film thickness can be controlled by deposition time or depositing multiple layers while maintaining the coating's structure and integrity.

  13. Synthesis and property of powders of oxide superconductor by the spray drying and the mist pyrolysis method

    Energy Technology Data Exchange (ETDEWEB)

    Awano, M.; Takagi, H.; Torii, Y.; Tsuzuki, A.; Murayama, N.; Ishii, E. (Government Industrial Research Inst., Nagoya (Japan)); Sudo, E. (Tokyo Kokyu Rozai Co. Ltd., Fukuoka (Japan))

    1989-01-01

    Powders of oxide superconductor (Ba-Y-Cu-O and Bi-Pb-Sr-Ca-Cu-O systems) were synthesized by the spray drying and the mist pyrolysis methods. Fine Ba{sub 2}YCu{sub 3}O{sub 7-y} particles with diameter of 0.1-0.3 {mu}m were produced by the spray drying of the oxalates coprecipitated slurry and following calcination at 800deg C. By the pyrolyzing of nitrates mist containing Ba{sup 2+},Y{sup 3+},Cu{sup 2+} ions in the reaction zone heated at 950-980deg C fine particles were also produced. For Bi-Pb-Sr-Ca-Cu-O system, above mentioned methods were effective to produce fine homogeneous particles of compound at intermediate stage to high Tc phase. Sintered body made from these fine homogeneous powders were densified to about 95-98% of theoretical densitiy. (orig.).

  14. Electrostatic spraying in the chemical control of Triozoida limbata (Enderlein) (Hemiptera: Triozidae) in guava trees (Psidium guajava L.).

    Science.gov (United States)

    Tavares, Rafael M; Cunha, João Par; Alves, Thales C; Bueno, Mariana R; Silva, Sérgio M; Zandonadi, César Hs

    2017-06-01

    Owing to the difficulty in reaching targets during pesticide applications on guava trees, it is important to evaluate new technologies that may improve pest management. In electrostatic spraying, an electric force is added to the droplets to control their movements such that they are efficiently directed to the target. The present study evaluated the performance of electrostatic and non-electrostatic spraying in the control of the guava psyllid, the deposition of the spray mixture on the leaves and the losses to the soil. The deposition of the spray mixture was up to 2 times greater when using electrostatic spraying in comparison with non-electrostatic application. The losses of the spray mixture to the soil were up to 4 times smaller with the electrostatic spraying. Electrostatic spraying had better control of the psyllid. It was possible to reduce the volume rate of application with electrostatic spraying without adversely affecting the control of the guava psyllid. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Center for Cold Spray Research and Development

    Data.gov (United States)

    Federal Laboratory Consortium — This is the only DoD facility capable of cold spray research and development, production, and field-repair. It features three stationary cold spray systems used for...

  16. Spray casting project final report

    International Nuclear Information System (INIS)

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step

  17. Diesel spray characterization; Dieselmoottorin polttoainesuihkujen ominaisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.; Turunen, R.; Paloposki, T.; Rantanen, P.; Virolainen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Internal Combustion Engine Lab.

    1997-10-01

    Fuel injection of diesel engines will be studied using large-scale models of fuel injectors. The advantage of large-scale models is that the measurement of large-scale diesel sprays will be easier than the measurement of actual sprays. The objective is to study the break-up mechanism of diesel sprays and to measure drop size distributions in the inner part of the spray. The results will be used in the development of diesel engines and diesel fuels. (orig.)

  18. A decision-support tool to predict spray deposition of insecticides in commercial potato fields and its implications for their performance.

    Science.gov (United States)

    Nansen, Christian; Vaughn, Kathy; Xue, Yingen; Rush, Charlie; Workneh, Fekede; Goolsby, John; Troxclair, Noel; Anciso, Juan; Gregory, Ashley; Holman, Daniel; Hammond, Abby; Mirkov, Erik; Tantravahi, Pratyusha; Martini, Xavier

    2011-08-01

    Approximately US $1.3 billion is spent each year on insecticide applications in major row crops. Despite this significant economic importance, there are currently no widely established decision-support tools available to assess suitability of spray application conditions or of the predicted quality or performance of a given commercial insecticide applications. We conducted a field study, involving 14 commercial spray applications with either fixed wing airplane (N=8) or ground rig (N=6), and we used environmental variables as regression fits to obtained spray deposition (coverage in percentage). We showed that (1) ground rig applications provided higher spray deposition than aerial applications, (2) spray deposition was lowest in the bottom portion of the canopy, (3) increase in plant height reduced spray deposition, (4) wind speed increased spray deposition, and (5) higher ambient temperatures and dew point increased spray deposition. Potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), mortality increased asymptotically to approximately 60% in response to abamectin spray depositions exceeding around 20%, whereas mortality of psyllid adults reached an asymptotic response approximately 40% when lambda-cyhalothrin/thiamethoxam spray deposition exceeded 30%. A spray deposition support tool was developed (http://pilcc.tamu.edu/) that may be used to make decisions regarding (1) when is the best time of day to conduct spray applications and (2) selecting which insecticide to spray based on expected spray deposition. The main conclusion from this analysis is that optimization of insecticide spray deposition should be considered a fundamental pillar of successful integrated pest management programs to increase efficiency of sprays (and therefore reduce production costs) and to reduce risk of resistance development in target pest populations.

  19. Environmental Technology Verification Report: Pesticide spray drift reduction technologies--Evaluation of the verification protocol for low and high speed wind tunnel testing

    Science.gov (United States)

    Pesticide spray drift is defined as the movement of spray droplets through the air at the time of application or soon thereafter from the target site to any non- or off-target site, excluding pesticide movements by erosion, migration, volatility, or windblown soil particles after...

  20. CONCHAS-SPRAY, Reactive Flows with Fuel Sprays

    International Nuclear Information System (INIS)

    Cloutman, L.D.; Dukowicz, J.K.; Ramshaw, J.D.; Amsden, A.A.

    2001-01-01

    Description of program or function: CONCHAS-SPRAY solves the equations of transient, multicomponent, chemically reactive fluid dynamics, together with those for the dynamics of an evaporating liquid spray. The program was developed with applications to internal combustion engines in mind. The formulation is spatially two-dimensional, and encompasses both planar and axisymmetric geometries. In the latter case, the flow is permitted to swirl about the axis of symmetry. CONCHAS-SPRAY is a time-marching, finite- difference program that uses a partially implicit numerical scheme. Spatial differences are formed with respect to a generalized two- dimensional mesh of arbitrary quadrilaterals whose corner locations are specified functions of time. This feature allows a Lagrangian, Eulerian, or mixed description, and is particularly useful for representing curved or moving boundary surfaces. Arbitrary numbers of species and chemical reactions are allowed. The latter are subdivided into kinetic and equilibrium reactions, which are treated by different algorithms. A turbulent law-of-the-wall boundary layer option is provided. CONCHAS-SPRAY calls a number of LANL system subroutines to display graphic or numerical information on microfiche. These routines are not included, but are described in the reference report. Several routines called from LINPACK and SLATEC1.0 are included

  1. Albendazole Microparticles Prepared by Spray Drying Technique ...

    African Journals Online (AJOL)

    Purpose: To enhance the dissolution of albendazole (ABZ) using spray-drying technique. Method: ABZ binary mixtures with Kollicoat IR® (KL) and polyvinyl pyrrolidone (PVP) in various drug to polymer ratios (1: 1, 1: 2 and 1; 4) were prepared by spray-drying. The spray-dried particles were characterized for particle shape, ...

  2. 14 CFR 23.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 23.239 Section 23.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Handling Characteristics § 23.239 Spray characteristics. Spray may not dangerously obscure the vision of...

  3. 14 CFR 29.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 29.239 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 29.239 Spray characteristics. If certification for water operation is requested, no spray characteristics...

  4. 14 CFR 27.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 27.239 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 27.239 Spray characteristics. If certification for water operation is requested, no spray characteristics...

  5. Fluidized-bed calcination of LWR fuel-reprocessing HLLW: requirements and potential for off-gas cleanup

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1979-01-01

    Fluidized-bed solidification (calcination) was developed on a pilot scale for a variety of simulated LWR high-level liquid-waste (HLLW) and blended high-level and intermediate-level liquid-waste (ILLW) compositions. It has also been demonstrated with ICPP fuel-reprocessing waste since 1963 in the Waste Calcining Facility (WCF) at gross feed rates of 5 to 12 m 3 /day. A fluidized-bed calciner produces a relatively large volume of off-gas. A calciner solidifying 6 m 3 /day of liquid waste would generate about 13 standard m 3 /min of off-gas containing 10 to 20 g of entrained solids per standard m 3 of off-gas. Use of an off-gas system similar to that of the WCF could provide an overall process decontamination factor for particulates of about 2 x 10 10 . A potential advantage of fluidized-bed calcination over other solidification methods is the ability to control ruthenium volatilization from the calciner at less than 0.01% by calcining at 500 0 C or above. Use of an off-gas system similar to that of the WCF would provide an overall process decontamination factor for volatile ruthenium of greater than 1.6 x 10 7

  6. The variation of cationic microstructure in Mn-doped spinel ferrite during calcination and its effect on formaldehyde catalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaoliang [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); Liu, Peng [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); He, Hongping, E-mail: hehp@gig.ac.cn [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); Wei, Gaoling [Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Chen, Tianhu [School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009 (China); Tan, Wei; Tan, Fuding [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); Zhu, Jianxi; Zhu, Runliang [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China)

    2016-04-05

    Highlights: • Calcination causes the activity variation of Mn-doped ferrites for HCHO oxidation. • The variation of catalytic activity of ferrites by calcination is non-linear. • Mn enriches on the calcinated ferrite surface in the valence of +3 and +4. • The reduction temperature of surface Mn{sup 4+} species is well correlated to T50. - Abstract: In this study, a series of Mn substituted spinel ferrites calcinated at different temperatures were used as catalysts for the oxidation of formaldehyde (HCHO). X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and H{sub 2} temperature-programmed reduction were conducted to characterize the structure and physico-chemical properties of catalysts, which were affected by calcination in the range of 200–600 °C. Results show that all the ferrites were with spinel structure, and those calcinated in the range of 300–600 °C were in the phase of maghemite. The calcination changed the valence and distribution of Mn and Fe on the ferrite surface, and accordingly the reducibility of ferrites. The HCHO catalytic oxidation test showed that with the increase of calcination temperature, the activity was initially improved until 400 °C, but then decreased. The variation of HCHO conversion performance was well positively correlated to the variation of reduction temperature of surface Mn{sup 4+} species. The remarkable effect of calcination on the catalytic activity of Mn-doped spinel ferrites for HCHO oxidation was discussed in view of reaction mechanism and variations in cationic microstructure of Mn-doped ferrites.

  7. The variation of cationic microstructure in Mn-doped spinel ferrite during calcination and its effect on formaldehyde catalytic oxidation

    International Nuclear Information System (INIS)

    Liang, Xiaoliang; Liu, Peng; He, Hongping; Wei, Gaoling; Chen, Tianhu; Tan, Wei; Tan, Fuding; Zhu, Jianxi; Zhu, Runliang

    2016-01-01

    Highlights: • Calcination causes the activity variation of Mn-doped ferrites for HCHO oxidation. • The variation of catalytic activity of ferrites by calcination is non-linear. • Mn enriches on the calcinated ferrite surface in the valence of +3 and +4. • The reduction temperature of surface Mn"4"+ species is well correlated to T50. - Abstract: In this study, a series of Mn substituted spinel ferrites calcinated at different temperatures were used as catalysts for the oxidation of formaldehyde (HCHO). X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and H_2 temperature-programmed reduction were conducted to characterize the structure and physico-chemical properties of catalysts, which were affected by calcination in the range of 200–600 °C. Results show that all the ferrites were with spinel structure, and those calcinated in the range of 300–600 °C were in the phase of maghemite. The calcination changed the valence and distribution of Mn and Fe on the ferrite surface, and accordingly the reducibility of ferrites. The HCHO catalytic oxidation test showed that with the increase of calcination temperature, the activity was initially improved until 400 °C, but then decreased. The variation of HCHO conversion performance was well positively correlated to the variation of reduction temperature of surface Mn"4"+ species. The remarkable effect of calcination on the catalytic activity of Mn-doped spinel ferrites for HCHO oxidation was discussed in view of reaction mechanism and variations in cationic microstructure of Mn-doped ferrites.

  8. Transdermal Spray in Hormone Delivery

    African Journals Online (AJOL)

    market for the delivery system and ongoing development of transdermal sprays for hormone ... (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts ... patches and gels have been very popular owing ... This product was developed for ... In a safety announcement, the US Food and.

  9. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  10. High-Temperature Release of SO2 from Calcined Cement Raw Materials

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Larsen, Morten B.; Glarborg, Peter

    2011-01-01

    During combustion of alternative fuels in the material inlet end of cement rotary kilns, local reducing conditions may occur and cause reductive decomposition of sulfates from calcined cement raw materials. Decomposition of sulfates is problematic because it increases the gas-phase SO2...... concentration, which may cause deposit formation in the kiln system. In this study, the release of sulfur from calcined cement raw materials under both oxidizing and reducing conditions is investigated. The investigations include thermodynamic equilibrium calculations in the temperature interval of 800–1500 °C...... and experiments in a tube furnace reactor in the temperature interval of 900–1100 °C. The investigated conditions resemble actual conditions in the material inlet end of cement rotary kilns. It was found that the sulfates CaSO4, K2SO4, and Na2SO4 were all stable under oxidizing conditions but began to decompose...

  11. A parametric study of a solar calcinator using computational fluid dynamics

    International Nuclear Information System (INIS)

    Fidaros, D.K.; Baxevanou, C.A.; Vlachos, N.S.

    2007-01-01

    In this work a horizontal rotating solar calcinator is studied numerically using computational fluid dynamics. The specific solar reactor is a 10 kW model designed and used for efficiency studies. The numerical model is based on the solution of the Navier-Stokes equations for the gas flow, and on Lagrangean dynamics for the discrete particles. All necessary mathematical models were developed and incorporated into a computational fluid dynamics model with the influence of turbulence simulated by a two-equation (RNG k-ε) model. The efficiency of the reactor was calculated for different thermal inputs, feed rates, rotational speeds and particle diameters. The numerically computed degrees of calcination compared well with equivalent experimental results

  12. Formation of barium strontium titanate powder by solid state reaction using different calcination temperatures

    International Nuclear Information System (INIS)

    Teoh Wah Tzu; Ahmad Fauzi Mohd Noor; Zainal Arifin Ahmad

    2002-01-01

    The unique electrical properties of large permittivity in Barium Strontium Titanate have been widely used to make capacitors; it can be produced by solid state reaction. In this study, the mixture of Barium Carbonate, Strontium Carbonate and Titanium Dioxide was calcined at 500 degree C, 1000 degree C, 1100 degree C , 1150 degree C, 1200 degree C, 1250 degree C and 1300 degree C. The results of the phases change in each stage were investigated via X ay Diffraction. The results show that the formation of Barium Strontium Titanate started at 1100 degree C with the presence of other phases. The mixture is fully reacted to form Barium Strontium Titanate at 1150 degree C. Only Barium Strontium Titanate was formed as the calcination temperature was set higher. (Author)

  13. Bone mineral change during experimental calcination: an X-ray diffraction study.

    Science.gov (United States)

    Galeano, Sergio; García-Lorenzo, Mari Luz

    2014-11-01

    The effects of calcination (400-1200°C) on pig bones have been studied using powder X-ray diffraction (XRD) and secondary modifications, such as color change and weight loss. The characterisation by powder XRD confirmed the presence of the crystalline phase of hydroxyapatite, and comparison of the results obtained at different temperatures suggested that at 650°C, all the organic components and carbonate substitutions were completely removed. Accordingly, these samples were white. In addition, the crystallinity degree and the crystallite size progressively increased with the calcination temperature until 650°C, remaining stable until 1200°C. Below 650°C, bone samples presented organic compounds, resulting in background noise in the diffractogram and gray or black color. In addition, impurities in the lattice correspond to low crystallite sizes. © 2014 American Academy of Forensic Sciences.

  14. Synthesis of zirconium dioxide by ultrasound assisted precipitation: effect of calcination temperature.

    Science.gov (United States)

    Prasad, Krishnamurthy; Pinjari, D V; Pandit, A B; Mhaske, S T

    2011-09-01

    Nanostructured zirconium dioxide was synthesized from zirconyl nitrate using both conventional and ultrasound assisted precipitation in alkaline medium. The synthesized samples were calcinated at temperatures ranging from 400°C to 900°C in steps of 100°C. The ZrO(2) specimens were characterized using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The thermal characteristics of the samples were studied via Differential Scanning Calorimetry-Thermo-Gravimetry Analysis (DSC-TGA). The influence of the calcination temperature on the phase transformation process from monoclinic to tetragonal to cubic zirconia and its consequent effect on the crystallite size and % crystallinity of the synthesized ZrO(2) was studied and interpreted. It was observed that the ultrasound assisted technique helped to hasten to the phase transformation and also at some point resulted in phase stabilization of the synthesized zirconia. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Conceptual design for remote handling methods using the HIP process in the Calcine Immobilization Program

    International Nuclear Information System (INIS)

    Berry, S.M.; Cox, C.G.; Hoover, M.A.

    1994-03-01

    This report recommends the remote conceptual design philosophy for calcine immobilization using the hot isostatic press (HIP) process. Areas of remote handling operations discussed in this report include: (1) introducing the process can into the front end of the HIP process, (2) filling and compacting the calcine/frit mixture into the process can, (3) evacuating and sealing the process can, (4) non-destructive testing of the seal on the process can, (5) decontamination of the process can, (6) HIP furnace loading and unloading the process can for the HIPing operation, (7) loading an overpack canister with processed HIP cans, (8) sealing the canister, with associated non-destructive examination (NDE) and decontamination, and (9) handling canisters for interim storage at the Idaho Chemical Processing Plant (ICPP) located on the Idaho National Engineering Laboratory (INEL) site

  16. Separation of non-hazardous, non-radioactive components from ICPP calcine via chlorination

    International Nuclear Information System (INIS)

    Nelson, L.O.

    1995-05-01

    A pyrochemical treatment method for separating non-radioactive from radioactive components in solid granular waste accumulated at the Idaho Chemical Processing Plant was investigated. The goal of this study was to obtain kinetic and chemical separation data on the reaction products of the chlorination of the solid waste, known as calcine. Thermodynamic equilibrium calculations were completed to verify that a separation of radioactive and non-radioactive calcine components was possible. Bench-scale chlorination experiments were completed subsequently in a variety of reactor configurations including: a fixed-bed reactor (reactive gases flowed around and not through the particle bed), a packed/fluidized-bed reactor, and a packed-bed reactor (reactive gases flowed through the particle bed). Chemical analysis of the reaction products generated during the chlorination experiments verified the predictions made by the equilibrium calculations. An empirical first-order kinetic rate expression was developed for each of the reactor configurations. 20 refs., 16 figs., 21 tabs

  17. Evaluation and selection of aqueous-based technology for partitioning radionuclides from ICPP calcine

    International Nuclear Information System (INIS)

    Olson, A.L.; Schulz, W.W.; Burchfield, L.A.; Carlson, C.D.; Swanson, J.L.; Thompson, M.C.

    1993-02-01

    Early in 1993 Westinghouse Idaho Nuclear Company (WINCO) chartered a Panel of Nuclear Separations Experts. The purpose of this Panel was to assist WINCO scientists and engineers in selecting, evaluating, and ranking candidate aqueous-based processes and technologies for potential use in partitioning selected radionuclides from nitric acid solutions of retrieved Idaho Chemical Processing Plant (ICPP) calcine. Radionuclides of interest are all transuranium elements, 90 Sr, 99 Tc, 129 I, and 137 Cs. The six man Panel met for 4 days (February 16--19, 1993) on the campus of the Idaho State University in Pocatello, Idaho. Principal topics addressed included: Available radionuclide removal technology; applicability of separations technology and processes to ICPP calcine; and potential integrated radionuclide partitioning schemes. This report, prepared from contributions from all Panel members, presents a comprehensive account of the proceedings and significant findings of the February, 1993 meeting in Pocatello

  18. Influence of calcination temperature in pozolanicity of gray sugar cane bagasse

    International Nuclear Information System (INIS)

    Santos, T.A.; Argolo, R.A.; Andrade, H.M.C.; Ribeiro, D.V.

    2016-01-01

    BCA (Sugar Cane Bagasse) is burned in boilers in the process of electricity cogeneration causing the generation of CBCA (Gray Sugar Cane Bagasse), which is the final residue of sucroalcooeira industry. Currently, several studies seek alternative materials that can replace Portland cement, promoting discussions on the use of pozzolanic materials in cementitious matrices. Thus, this research seeks to analyze the pozzolanicity the CBCA, obtained by calcining the residue at different temperatures, to be determined by TG / DTG and DTA tests. For analysis of pozzolanicity these ashes were used electrical conductivity techniques, chemical titration NP EN 196-5, chapelle modified NBR 15895/2010 and the IAP method (Activity Index pozzolanic NBR:5752). The results obtained during the study demostraramm no difference between the ash calcined at temperatures of 500 ° C, 600 ° C and 700 ° C. (author)

  19. Pheromone-assisted techniques to improve the efficacy of insecticide sprays against Linepithema humile (Hymenoptera: Formicidae).

    Science.gov (United States)

    Choe, Dong-Hwan; Tsai, Kasumi; Lopez, Carlos M; Campbell, Kathleen

    2014-02-01

    Outdoor residual sprays are among the most common methods for targeting pestiferous ants in urban pest management programs. If impervious surfaces such as concrete are treated with these insecticides, the active ingredients can be washed from the surface by rain or irrigation. As a result, residual sprays with fipronil and pyrethroids are found in urban waterways and aquatic sediments. Given the amount of insecticides applied to urban settings for ant control and their possible impact on urban waterways, the development of alternative strategies is critical to decrease the overall amounts of insecticides applied, while still achieving effective control of target ant species. Herein we report a "pheromone-assisted technique" as an economically viable approach to maximize the efficacy of conventional sprays targeting the Argentine ant. By applying insecticide sprays supplemented with an attractive pheromone compound, (Z)-9-hexadecenal, Argentine ants were diverted from nearby trails and nest entrances and subsequently exposed to insecticide residues. Laboratory experiments with fipronil and bifenthrin sprays indicated that the overall kill of the insecticides on Argentine ant colonies was significantly improved (57-142% increase) by incorporating (Z)-9-hexadecenal in the insecticide sprays. This technique, once it is successfully implemented in practical pest management programs, has the potential of providing maximum control efficacy with reduced amount of insecticides applied in the environment.

  20. Screw calciner mechanical direct denitration process for plutonium nitrate to oxide conversion

    International Nuclear Information System (INIS)

    Souply, K.R.; Sperry, W.E.

    1977-01-01

    This report describes a screw calciner direct-denitration process for converting plutonium nitrate to plutonium oxide. The information should be used when making comparisons of alternative plutonium nitrate-to-oxide conversion processes or as a basis for further detailed studies. The report contains process flow sheets with a material balance; a process description; and a discussion of the process including history, advantages and disadvantages, and additional research required

  1. 3.6. The kinetics of sulfuric acid decomposition of calcined concentrate of borosilicate ore

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Kurbonov, A.S.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to kinetics of sulfuric acid decomposition of calcined concentrate of borosilicate ore. The experimental data of kinetics of extraction of boron oxide from danburite at sulfuric acid decomposition were obtained at 20-90 deg C temperature range and process duration 15-90 minutes. The flowsheet of obtaining of boric acid from borosilicate ores of Ak-Arkhar Deposit by sulfuric acid method was proposed.

  2. Attrition, elutriation, and growth of particles produced in fluidized-bed waste calciners

    International Nuclear Information System (INIS)

    McDonald, F.N.

    1982-09-01

    The Idaho Chemical Processing Plant reduces the volume of high-level liquid radioactive wastes in a fluidized bed to produce a granular calcine product. In the past, difficulties have been experienced in controlling the product's particle size when processing certain blends of sodium-bearing waste. Therefore, experiments in attrition, elutriation, and particle growth were done to characterize how best to control these three parameters. 15 figures, 16 tables

  3. In-situ investigation of the calcination process of mixed oxide xerogels with Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Panitz, J C [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The controlled calcination of materials derived by sol-gel reactions is important for the evolution of the final structure. Raman spectroscopy is an ideal tool for the identification of surface species under in-situ conditions, as demonstrated in the following for the example of a molybdenum oxide-silica xerogel. Raman spectra of this particular sample were recorded at temperatures as high as 1173 K, and compared with those of a reference material.(author) 3 figs., 4 refs.

  4. Study on Al2O3 extraction from activated coal gangue under different calcination atmospheres

    Science.gov (United States)

    Dong, Ling; Liang, Xinxing; Song, Qiang; Gao, Gewu; Song, Lihua; Shu, Yuanfeng; Shu, Xinqian

    2017-12-01

    Coal gangue was calcinated under air, nitrogen, carbon dioxide, air-hydrogen, and hydrogen atmospheres. The effects of different calcination temperatures and atmospheres on the mineral composition of activated coal gangue were investigated by X-ray diffraction. Moreover, the acid leaching kinetics of aluminum oxide from coal gangue was investigated with sulfuric acid. It showed that the air atmosphere promoted kaolinite decomposition during coal gangue calcination. The hydrogen atmosphere promoted the activation and decomposition of kaolinite at reaction temperatures exceeding 650°C. The carbon dioxide atmosphere eliminated the influence of residual carbon on coal gangue. When the ratio of acid/coal gangue was 1.5 and reaction temperature was 650°C, the sulfuric acid leaching rate under air, air-hydrogen, carbon dioxide, hydrogen and nitrogen atmospheres were 93.66%, 90.90%, 84.06%, 81.91% and 77.54% respectively. The acid leaching reaction process conformed to unreacted shrinking core model of particle unchanged, and was controlled by the interfacial chemical reaction. The reaction kinetic equation for the leaching process was 1-(1-x)1/3=kt with an apparent activation energy of 48.97 kJ/mol.

  5. Effect of Calcination at Synthesis of Mg-Al Hydrotalcite Using co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Niar Kurnia Julianti

    2017-01-01

    Full Text Available The use of hydrotalcite in catalysis has wide attention in academic research and industrial parties. Based on its utilization, hydrotalcite can be active catalyst or support. This research is focused on the investigation of characteristic like spesific surface area of Mg-Al hydrotalcite which is prepared with different temperature of calcination. Synthesis of Mg-Al hydrotalcites with Mg/Al molar ratio 3:1 were prepared by co-precipitation method. Mg(NO33.6H2O and Al(NO33.9H2O as precursors of Mg-Al hydrotalcite. Na2CO3 was used as precipitant agent and NaOH was used as buffer solution. The solution was mixed and aging for 5 hours at 650oC. The dried precipitate was calcined at 2500oC, 3500oC, 4500oC, 5500oC and 6500oC. The characterization of functional group was determined by Fourier Transform Infra Red (FT-IR. The Identical peaks diffractogram were analyzed by X-Ray Diffraction (XRD. The spesific surface area was determined by adsorption-desorption of nitrogen. The largest surface area that obtained from the calcination temperature of 650oC is 156.252 m2/g.

  6. Effect of calcination temperature on the synthesis of potassium titanate with platy morphology

    International Nuclear Information System (INIS)

    Farina, R.; Fredericci, C.; Yoshimura, H.N.

    2011-01-01

    The dramatic increases in the number of pneumoconiosis cases have stimulated the search of new materials for replacement of asbestos fibers. Titanate plates with formula A y Ti 2-x M x O 4 , where A = K, Rb, Cs and M = Li, Mg, Co, Ni, Cu, Zn, Mn (III), Fe (III) have been studied as an alternative for the use of fibers. The effect of the variation of calcination temperature on the reaction of K 2 CO 3 -TiO 2 -Mg(OH) 2 system was studied with the aim of understanding the relationship of this parameter with the morphology and symmetry of the obtained plates. For this study the samples were calcined for 5 hours at temperatures of 950°C, 1000°C, 1050°C and 1100°C. The powders were analyzed by X-ray diffraction and scanning electron microscopy. It was concluded that 1000°C is the better calcination temperature for obtaining more symmetric plates with smaller particle size dispersion. (author)

  7. Mobile calcination and cementation unit for solidification of concentrated radioactive wastes

    International Nuclear Information System (INIS)

    Napravnik, J.; Sazavsky, P.; Skaba, V.; Skvarenina, R.; Ditl, P.

    1985-01-01

    Mobile experimental unit MESA-1 was developed and manufactured for processing radioactive concentrates by direct cementation. The unit is mainly designed for processing low-level liquid wastes from nuclear power plants and other nuclear installations, in which the level of radioactivity does not exceed 10 10 Bq/m 3 , the salt content of liquid solutions does not exceed 500 kg/m 3 and the maximum amount of boric acid is 130 kg/m 3 . The equipment is built into three modules which may be assembled and dismantled in a short time and transported separately. The unit without the calciner module was tested in non-radioactive mode and in operation with actual radioactive wastes from the V-1 nuclear power plant. The course and results of the tests are described in detail. All project design values were achieved, a total of 18 dm 3 model solutions were processed and 1 m 3 of actual wastes with a salt content of 450 kg/m 3 . The test showed that with regard to the radiation level reached it will be necessary in the process of calcination to increase the shielding of certain exposed points. The calciner module is being assembled for completion. (Z.M.)

  8. Adsorption of basic chromium sulfate used in the tannery industries by calcined hydrotalcite

    International Nuclear Information System (INIS)

    Lopez M, B. E.; Rivera R, R.; Iturbe G, J. L.; Olguin G, M. T.

    2011-01-01

    The sorption behavior of the chemical species of Cr(III) from aqueous solutions by hydrotalcite calcined products was investigated considering the equilibrium ph (5.0 to 8.9) and the chromium concentration in aqueous solution (from 10.6 to 430.0 mmol/L) to obtain the corresponding isotherms. Each solution was prepared from basic Cr(III) sulphate which is a primary tanning agent used in the tannery industries. In this work no previous oxidation treatment was done to form Cr(vi) in order to remove the chromium from aqueous solutions by hydrotalcite. The amount of chromium in the remaining solutions after the sorption processes in a batch system by visible spectroscopy (Vis) was determined. The calcined hydrotalcite before and after the contact with the chromium(III) solutions by X-ray power diffraction, thermogravimetric analysis and Fourier transformed infrared spectroscopy, were characterized. The specific are by Brunauer, Emmett and Teller (Bet) method of each sample was also evaluated. It was found that under the experimental conditions of this work hydrolyzed species of Cr(III) are precipitated on the surface of the calcined hydrotalcite instead other adsorption mechanism, and the sulfate ions were the responsible to regenerated the crystalline structure of hydrotalcite, therefore the results are discussed in terms of both Cr(III) and sulfate chemical species. (Author)

  9. Processing of concentrated radioactive wastes into cement and bitumens following calcination

    International Nuclear Information System (INIS)

    Napravnik, J.; Sazavsky, P.; Ditl, P.; Prikryl, P.

    1985-01-01

    A brief characteristic is presented of the most frequently used processes of solidification of liquid radioactive wastes, viz., bituminization, cementation and their combination with calcination. The effect of individual parameters is assessed on the choice of the type of solidification process as is their importance in the actual process, in temporary storage, during transportation and under conditions of long-term storage. It has been found that a combination of the procedures could lead to a modular system of methods and equipment. This would allow to approach optimal solidification of wastes in the present period and to establish a research reserve for the development of more modern, economically advantageous and safer procedures. A rough estimate is made of the costs of the solidification of 1 m 3 of radioactive concentrate from the V-1 power plant at a production of 380 m 3 /year, this for the cementation-calcination and bituminization-calcination procedures. The said rough economic analysis only serves to identify the major operating components which have the greatest effect on the economic evaluation of the solidification procedures. (Z.M.)

  10. Calcined clay lightweight ceramics made with wood sawdust and sodium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Santis, Bruno Carlos de; Rossignolo, Joao Adriano, E-mail: desantis.bruno@gmail.com [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil); Morelli, Marcio Raymundo [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2016-11-15

    This paper aims to study the influence of including wood sawdust and sodium silicate in the production process of calcined clay lightweight ceramics. In the production process first, a sample used by a company that produces ceramic products in Brazil was collected. The sample was analysed by techniques of liquidity (LL) and plasticity (LP) limits, particle size analysis, specific mass, X-ray diffraction (XRD) and X ray fluorescence spectrometry (XRF). From the clay, specimens of pure clay and mixtures with wood sawdust (10%, 20% and 30% by mass) and sodium silicate were produced and fired at a temperature of 900 deg C. These specimens were submitted to tests of water absorption, porosity, specific mass and compressive strength. Results of this research indicate that the incorporation of wood sawdust and sodium silicate in the ceramic paste specimens can be useful to make calcined clay lightweight ceramics with special characteristics (low values of water absorption and specific mass and high values of compressive strength), which could be used to produce calcined clay lightweight aggregates to be used in structural concrete. (author)

  11. Adsorption of Anionic Dyes from Aqueous Solutions by Calcined and Uncalcined Mg/ Al Layered Double Hydroxide

    International Nuclear Information System (INIS)

    Siti Mariam Sumari; Zaini Hamzah; Kantasamy, N.

    2016-01-01

    The uptake of Acid Blue 29 (AB29), Reactive Orange 16 (RO16) and Reactive Red 120 (RR120) from aqueous solutions by calcined (CLDH) and uncalcined Mg/Al layered double hydroxide (LDH) has been investigated. The adsorption process was conducted in a batch mode at 25 degree Celcius. Anionic dye removal was more efficient using the CLDH rather than LDH. The adsorption process by CLDH involved reconstruction and hydration of the calcined LDH and intercalation of AB29, RO16 and RR120. Physical characterization using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) were used to ascertain the memory effect phenomenon that is structural reconstruction to regain its original LDH after rehydration. To gain insight into the mechanism of adsorption by CLDH, the pseudo-first order (PFO) and pseudo-second order (PSO) and intraparticle diffusion (IPD) kinetic models were used to analyse experimental data. Based on the correlation coefficient (R 2 ), the PSO has better fitting (R 2 =0.987-1.00) compared to PFO (R 2 =0.867-0.990). Furthermore the values of maximum adsorption capacity, (q e ) calculated from PSO model are consistent with the experimental q e indicating that the experimental kinetic data for AB29, RO16 and RR120 adsorption by CLDH are suitable for this model. Recycling of the adsorbent, in cycles of calcination-reconstruction process promised a possibility of regeneration of CLDH. (author)

  12. Selection of a glass-ceramic formulation to immobilize fluorinel- sodium calcine

    International Nuclear Information System (INIS)

    Staples, B.A.; Wood, H.C.

    1994-12-01

    One option for immobilizing calcined high level wastes produced by nuclear fuel reprocessing activities at the Idaho Chemical Processing Plant (ICPP) is conversion to a glass-ceramic form through hot isostatic pressing. Calcines exist in several different chemical compositions, and thus candidate formulations have been developed for converting each to glass-ceramic forms which are potentially resistant to aqueous corrosion and stable enough to qualify for repository storage. Fluorinel/Na, a chemically complex calcine type, is one of the types being stored at ICPP, and development efforts have identified three formulations with potential for immobilizing it. These are a glass forming additive that uses aluminum metal to enhance reactivity, a second glass forming additive that uses titanium metal to enhance reactivity and a third that uses not only a combination of silicon and titanium metals but enough phosphorous pentoxide to form a calcium phosphate host phase in the glass-ceramic product. Glass-ceramics of each formulation performed well in restricted characterization tests. However, none of the three was subjected to rigorous testing that would provide information on whether each was processable, that is able to retain favorable characteristics over a practical range of processing conditions

  13. Adsorption of basic chromium sulfate used in the tannery industries by calcined hydrotalcite

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, B. E.; Rivera R, R.; Iturbe G, J. L.; Olguin G, M. T., E-mail: beatriz.lopez@inin.gob.mx [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-07-01

    The sorption behavior of the chemical species of Cr(III) from aqueous solutions by hydrotalcite calcined products was investigated considering the equilibrium ph (5.0 to 8.9) and the chromium concentration in aqueous solution (from 10.6 to 430.0 mmol/L) to obtain the corresponding isotherms. Each solution was prepared from basic Cr(III) sulphate which is a primary tanning agent used in the tannery industries. In this work no previous oxidation treatment was done to form Cr(vi) in order to remove the chromium from aqueous solutions by hydrotalcite. The amount of chromium in the remaining solutions after the sorption processes in a batch system by visible spectroscopy (Vis) was determined. The calcined hydrotalcite before and after the contact with the chromium(III) solutions by X-ray power diffraction, thermogravimetric analysis and Fourier transformed infrared spectroscopy, were characterized. The specific are by Brunauer, Emmett and Teller (Bet) method of each sample was also evaluated. It was found that under the experimental conditions of this work hydrolyzed species of Cr(III) are precipitated on the surface of the calcined hydrotalcite instead other adsorption mechanism, and the sulfate ions were the responsible to regenerated the crystalline structure of hydrotalcite, therefore the results are discussed in terms of both Cr(III) and sulfate chemical species. (Author)

  14. Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants

    International Nuclear Information System (INIS)

    Romeo, Luis M.; Abanades, J. Carlos; Escosa, Jesus M.; Pano, Jara; Gimenez, Antonio; Sanchez-Biezma, Andres; Ballesteros, Juan C.

    2008-01-01

    Postcombustion CO 2 capture is the best suitable capture technology for existing coal power plants. This paper focuses on an emerging technology that involves the separation of CO 2 using the reversible carbonation reaction of CaO to capture CO 2 from the flue gas, and the calcination of CaCO 3 to regenerate the sorbent and produce concentrated CO 2 for storage. We describe the application to this concept to an existing (with today's technology) power plant. The added capture system incorporates a new supercritical steam cycle to take advantage of the large amount of heat coming out from the high temperature capture process (oxyfired combustion of coal is needed in the CaCO 3 calciner). In these conditions, the capture system is able to generate additional power (26.7% efficiency respect to LHV coal input to the calciner after accounting for all the penalties in the overall system), without disturbing the steam cycle of the reference plant (that retains its 44.9 efficiency). A preliminary cost study of the overall system, using well established analogues in the open literature for the main components, yields capture cost around 16 Euro /ton CO 2 avoided and incremental cost of electricity of just over 1 Euro /MW h e

  15. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.

    Science.gov (United States)

    Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun

    2015-07-01

    In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs.

  16. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    International Nuclear Information System (INIS)

    COMPTON, J.A.

    1999-01-01

    The prototype Vertical Denitration Calciner (VDC) is installed in glovebox 188 in the Plutonium Process Support Laboratory (PPSL). Safety analysis contained in WHC-SD-CP-SAR-021 (FSAR) Rev. 0-L and Addendum to WHC-SD-CP-SAR-021, ''Laboratory Prototype Calciner'' establishes the prototype VDC needs to be shut down if a seismic event of greater than 0.07 g occurs. Shut down is to be automatic upon detection of the seismic event. This requires tie-in of various valves and power for the prototype VDC into the existing Seismic Shutdown System for the Ventilation Supply Fans described in FSAR 5.4.1.2.4. The proposed changes covered by this USQ evaluation include: (1) the physical tie-in modifications, including drawings and Engineering Change Notice (ECN), (2) the work package for accomplishing the modifications, (3) the changes to the System Description Documents, (4) the changes to the Safety Equipment List necessitated by the modifications, and (5) the changes to the failure modes and effects analysis. WHC-SDCP-OSR-010, Plutonium Finishing Plant Operational Safety Requirements Limiting Condition for Operation (LCO) 3.2.3 has been revised to include the requirement for the existing seismic shutdown system to also shut down the laboratory calciner in the event of detection of a greater than 0.07 g seismic event

  17. The effect of calcination on multi-walled carbon nanotubes produced by dc-arc discharge.

    Science.gov (United States)

    Pillai, Sreejarani K; Augustyn, Willem G; Rossouw, Margaretha H; McCrindle, Robert I

    2008-07-01

    Multi-walled carbon nanotubes were synthesized by dc-arc discharge in helium atmosphere and the effect of calcination at different temperatures ranging from 300-600 degrees C was studied in detail. The degree of degradation to the structural integrity of the multi-walled carbon nanotubes during the thermal process was studied by Raman spectroscopy, Scanning electron microscopy and High resolution transmission electron microscopy. The thermal behaviour of the as prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air at 400 degrees C for 2 hours was found to be an efficient and simple method to eliminate carbonaceous impurities from the nanotube bundles with minimal damage to the tube walls and length. The impurities were oxidized at a faster rate when compared to the nanotubes and gave good yield of about 50%. The nanotubes were observed to be damaged at temperature higher than 450 degrees C. The results show that this method is less destructive when compared liquid phase oxidation with 5 M HNO3.

  18. Test plan for radioactive testing of a vertical direct denitration calciner

    Energy Technology Data Exchange (ETDEWEB)

    COMPTON, J.A.

    1999-08-31

    The prototype Vertical Denitration Calciner (VDC) is installed in glovebox 188 in the Plutonium Process Support Laboratory (PPSL). Safety analysis contained in WHC-SD-CP-SAR-021 (FSAR) Rev. 0-L and Addendum to WHC-SD-CP-SAR-021, ''Laboratory Prototype Calciner'' establishes the prototype VDC needs to be shut down if a seismic event of greater than 0.07 g occurs. Shut down is to be automatic upon detection of the seismic event. This requires tie-in of various valves and power for the prototype VDC into the existing Seismic Shutdown System for the Ventilation Supply Fans described in FSAR 5.4.1.2.4. The proposed changes covered by this USQ evaluation include: (1) the physical tie-in modifications, including drawings and Engineering Change Notice (ECN), (2) the work package for accomplishing the modifications, (3) the changes to the System Description Documents, (4) the changes to the Safety Equipment List necessitated by the modifications, and (5) the changes to the failure modes and effects analysis. WHC-SDCP-OSR-010, Plutonium Finishing Plant Operational Safety Requirements Limiting Condition for Operation (LCO) 3.2.3 has been revised to include the requirement for the existing seismic shutdown system to also shut down the laboratory calciner in the event of detection of a greater than 0.07 g seismic event.

  19. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    Energy Technology Data Exchange (ETDEWEB)

    COMPTON, J.A.

    1999-08-31

    The prototype Vertical Denitration Calciner (VDC) is installed in glovebox 188 in the Plutonium Process Support Laboratory (PPSL). Safety analysis contained in WHC-SD-CP-SAR-021 (FSAR) Rev. 0-L and Addendum to WHC-SD-CP-SAR-021, ''Laboratory Prototype Calciner'' establishes the prototype VDC needs to be shut down if a seismic event of greater than 0.07 g occurs. Shut down is to be automatic upon detection of the seismic event. This requires tie-in of various valves and power for the prototype VDC into the existing Seismic Shutdown System for the Ventilation Supply Fans described in FSAR 5.4.1.2.4. The proposed changes covered by this USQ evaluation include: (1) the physical tie-in modifications, including drawings and Engineering Change Notice (ECN), (2) the work package for accomplishing the modifications, (3) the changes to the System Description Documents, (4) the changes to the Safety Equipment List necessitated by the modifications, and (5) the changes to the failure modes and effects analysis. WHC-SDCP-OSR-010, Plutonium Finishing Plant Operational Safety Requirements Limiting Condition for Operation (LCO) 3.2.3 has been revised to include the requirement for the existing seismic shutdown system to also shut down the laboratory calciner in the event of detection of a greater than 0.07 g seismic event.

  20. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    Energy Technology Data Exchange (ETDEWEB)

    COMPTON, J.A.

    1999-08-13

    The prototype Vertical Denitration Calciner (VDC) is installed in glovebox 188 in the Plutonium Process Support Laboratory (PPSL). Safety analysis contained in WHC-SD-CP-SAR-021 (FSAR) Rev. 0-L and Addendum to WHC-SD-CP-SAR-021, ''Laboratory Prototype Calciner'' establishes the prototype VDC needs to be shut down if a seismic event of greater than 0.07 g occurs. Shut down is to be automatic upon detection of the seismic event. This requires tie-in of various valves and power for the prototype VDC into the existing Seismic Shutdown System for the Ventilation Supply Fans described in FSAR 5.4.1.2.4. The proposed changes covered by this USQ evaluation include: (1) the physical tie-in modifications, including drawings and Engineering Change Notice (ECN), (2) the work package for accomplishing the modifications, (3) the changes to the System Description Documents, (4) the changes to the Safety Equipment List necessitated by the modifications, and (5) the changes to the failure modes and effects analysis. WHC-SDCP-OSR-010, Plutonium Finishing Plant Operational Safety Requirements Limiting Condition for Operation (LCO) 3.2.3 has been revised to include the requirement for the existing seismic shutdown system to also shut down the laboratory calciner in the event of detection of a greater than 0.07 g seismic event.

  1. Parameters of electrostatic spraying and its influence on the application efficiency

    Directory of Open Access Journals (Sweden)

    Robson Shigueaki Sasaki

    2013-08-01

    Full Text Available When the electrostatic spraying is used correctly, it provides advantages over conventional systems, however many factors can affect the system efficiency. Therefore, the objective of this study was to evaluate the charge/mass ratio (Q/M at different spraying distances (0, 1, 2, 3, 4 and 5 m, and the liquid deposition efficiency on the target. Evaluating the Q/M ratio the Faraday cage method was used and to evaluate the liquid deposition efficiency the artificial targets were positioned longitudinally and transversely to the spray jet. It was found that the spraying distance affects the Q/M ratio, consequently, the liquid deposition efficiency. For the closest distance to the target the Q/M ratio was 4.11 mC kg-1, and at distances of 1, 2, 3, 4 and 5 m, the ratio decreased to 1.38, 0.64, 0.31, 0.17 and 0.005 mC kg-1, respectively. For the liquid deposition, the electrostatic system was affected by the target orientation and spraying distance. The target transversely to the jet of liquid did not improve the liquid deposition, but longitudinally increased the deposition up to 3 meters of distance.

  2. Volatilities of ruthenium, iodine, and technetium on calcining fission product nitrate wastes

    International Nuclear Information System (INIS)

    Rimshaw, S.J.; Case, F.N.

    1980-01-01

    Various high-level nitrate wastes were subjected to formic acid denitration. Formic acid reacts with the nitrate anion to yield noncondensable, inert gases according to the following equation: 4 HCOOH + 2 HNO 3 → N 2 O + 4 CO 2 + 5 H 2 O. These gases can be scrubbed free of 106 Ru, 131 I, and 99 Tc radioactivities prior to elimination from the plant by passage through HEPA filters. The formation of deleterious NO/sub x/ is avoided. Moreover, formic acid reduces ruthenium to a lower valence state with a sharp reduction in RuO 4 volatility during subsequent calcination of the pretreated waste. It is shown that a minimum of 3% of RuO 4 in an off-gas stream reacts with Davison silica gel (Grade 40) to give a fine RuO 2 aerosol having a particle size of 0.5 μ. This RuO 2 aerosol passes through water or weak acid scrub solutions but is trapped by a caustic scrub solution. Iodine volatilizes almost completely on calcining an acidic waste, and the iodine volatility increases with increasing calcination temperature. On calcining an alkaline sodium nitrate waste the iodine volatility is about an order of magnitude lower, with a relatively low iodine volatility of 0.39% at a calcination temperature of 250 0 C and a moderate volatility of 9.5% at 600 0 C. Volatilities of 99 Tc were generally 0 C. Data are presented to indicate that 99 Tc concentrates in the alkaline sodium nitrate supernatant waste, with approx. 10 mg 99 Tc being associated with each curie of 137 Cs present in the waste. It is shown that lutidine (2,4 dimethyl-pyridine) extracts Tc(VII) quantitatively from alkaline supernatant wastes. The distribution coefficient (K/sub D/) for Tc(VII) going into the organic phase in the above system is 102 for a simulated West Valley waste and 191 for a simulated Savannah River Plant (SRP) waste

  3. Spray-drying and fabrication of superionic conducting sodium rare-earth silicates

    International Nuclear Information System (INIS)

    Yamashita, Kimihiro; Nicholson, P.S.

    1985-01-01

    Fine precursor powders of particle diameter of 0.50-7 μm and high surface area (9 m 2 /g) for superionic conducting Na 5 RESi 4 O 12 (RE = Gd, Y) were successfully produced by spray-drying and an optimised calcination procedure. Using these powders, dense sinters (>98% of theoretical) with f(NGS) or f(NYS) = 1.0 (the proposed parameter for purity) were obtained under normal sintering conditions. 300 0 C ionic resistivities were calculated from ac impedance and had values of 5.6 Ω cm with an activation energy for conduction of 4.5 kcal/mol for Na 5 GdSi 4 O 12 and 7.7 Ω cm and 5.9 kcal/mol for Na 5 YSi 4 O 12 . These values were dependent on the f(NGS) or f(NYS). (orig.)

  4. Improvement of the crystallinity and photocatalytic property of zinc oxide as calcination product of Zn–Al layered double hydroxide

    International Nuclear Information System (INIS)

    Ahmed, Abdullah Ahmed Ali; Talib, Zainal Abidin; Hussein, Mohd Zobir bin; Zakaria, Azmi

    2012-01-01

    Highlights: ► ZnO phase and ZnAl 2 O 4 spinel can be formed as Zn–Al–NO 3 –LDH calcination products. ► The crystallinity of ZnO phase increased with an increase of calcination temperature. ► The optical band gaps of ZnO were improved with an increase in temperature. ► The oxygen vacancies in ZnO and ZnAl 2 O 4 generated the ESR signals. - Abstract: Zinc oxide with different degrees of crystallinity can be formed as Zn–Al-layered double hydroxide (Zn–Al–NO 3 –LDH) calcination products. ZnAl 2 O 4 spinel is also formed in a range of calcination temperatures from 600 to 1000 °C from the LDH. X-ray diffraction patterns showed that the crystallinity of the ZnO phase increased as calcination temperatures increased. The LDH structure was fully collapsed at and above 400 °C. The photocatalytic activity was determined by UV–VIS–NIR diffuse reflectance spectroscopy. The band gap of the calcined samples increased as the calcination temperature increased. Electron spin resonance (ESR) spectra of the fresh and calcined LDH at room temperature demonstrated that oxygen vacancies in the ZnO and ZnAl 2 O 4 were responsible for the generation of ESR signals. One BET specific surface area increased from 1 m 2 /g for the LDH to a maximum at 400 °C (43 m 2 /g) and decreased thereafter down to 6 m 2 /g at 1000 °C.

  5. 4.2. The kinetics of nitric acid decomposition of calcined borosilicate raw material of Ak-Arkhar Deposit

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Kurbonov, A.S.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to kinetics of nitric acid decomposition of calcined borosilicate raw material of Ak-Arkhar Deposit. The dependence of nitric acid decomposition of calcined boric raw material for extraction of boron oxide on temperature (20-100 deg C) and process duration (15-60 minutes) was defined. It was defined that at temperature increasing the extraction rate of boron oxide increases from 20.8 to 78.6%.

  6. Effect of calcination routes on phase formation of BaTiO3 and their electronic and magnetic properties

    Science.gov (United States)

    Majumder, Supriyo; Choudhary, R. J.; Tripathi, M.; Phase, D. M.

    2018-05-01

    We have investigated the phase formation and correlation between electronic and magnetic properties of oxygen deficient BaTiO3 ceramics, synthesized by solid state reaction method, following different calcination paths. The phase analysis divulge that a higher calcination temperature above 1000° C is favored for tetragonal phase formation than the cubic phase. The core level X-ray photo electron spectroscopy measurements confirm the presence of oxygen vacancies and oxygen vacancy mediated Ti3+ states. As the calcination temperature and calcination time increases these oxygen vacancies and hence Ti3+ concentrations reduce in the sample. The temperature dependent magnetization curves suggest unexpected magnetic ordering, which may be due to the presence of unpaired electron at the t2g state (d1) of nearest-neighbor Ti atoms. In magnetization vs magnetic field isotherms, the regular decrease of saturation moment value with increasing calcination temperature and calcination time, can be discussed considering the amount of oxygen deficiency induced Ti3+ concentrations, present in the sample.

  7. Role of Calcination Temperature on the Hydrotalcite Derived MgO–Al2O3 in Converting Ethanol to Butanol

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Santosa, Daniel M.; Li, Xiaohong S.; Devaraj, Arun; Karkamkar, Abhijeet J.; Wang, Yong

    2015-10-09

    In the base catalyzed ethanol condensation reactions, the calcined MgO-Al2O3 derived hydrotalcites used broadly as catalytic material and the calcination temperature plays a big role in determining the catalytic activity. The characteristic of the hydrotalcite material treated between catalytically relevant temperatures 450ºC and 800ºC have been studied with respect to the physical, chemical, and structural properties and compared with catalytic activity testing. With the increasing calcination temperature, the total measured catalytic basicity dropped linearly with the calcination temperature and the total measured acidity stayed the same for all the calcination temperatures except 800ºC. However, the catalyst activity testing does not show any direct correlation between the measured catalytic basicity and the catalyst activity to the ethanol condensation reaction to form 1-butanol. The highest ethanol conversion of 44 percent with 1-butanol selectivity of 50 percent was achieved for the 600ºC calcined hydrotalcite material.

  8. Effect of calcination temperature on structural properties and photocatalytic activity of Mn-C-codoped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jianbo; Xin, Wei; Liu, Guanglong; Lin, Die; Zhu, Duanwei, E-mail: liugl@mail.hzau.edu.cn [Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University (HZAU), Wuhan (China)

    2016-03-15

    Mn-C-codoped TiO{sub 2} catalysts were synthesized by modified sol-gel method based on the self-assembly technique using polyoxyethylene sorbitan monooleate (Tween 80) as template and carbon precursor and the effect of calcination temperature on their structural properties and photocatalytic activity were investigated. The XRD results showed undoped and Mn-C-codoped TiO{sub 2} calcined at 400 deg C only include anatase phase and the rutile phase appears when the calcination temperature reached to 600 deg C. UV-vis absorption spectroscopy demonstrates that the absorption spectra are strongly modified by the calcination temperature. Moreover, the Mn-C-TiO{sub 2} calcined at 400 deg C showed the lowest PL intensity due to a decrease in the recombination rate of photogenerated electrons and holes under light irradiation. The photocatalytic activity of Mn-C-codoped TiO{sub 2} were evaluated by the degradation of methyl orange (MO) under the simulate daylight irradiation and all the prepared Mn-C-codoped TiO{sub 2} samples exhibited high photocatalytic activities for photocatalytic decolorisation of methyl orange aqueous solution. At 400 deg C, the Mn-C-codoped TiO{sub 2} samples showed the highest photocatalytic activity due to synergetic effects of good crystallize ation, appropriate phase composition and slower recombination rate of photogenerated charge carriers, which further confirms the calcination temperature could affect the properties of Mn-C-codoped TiO2 significantly. (author)

  9. Semi-automatic spray pyrolysis deposition of thin, transparent, titania films as blocking layers for dye-sensitized and perovskite solar cells.

    Science.gov (United States)

    Krýsová, Hana; Krýsa, Josef; Kavan, Ladislav

    2018-01-01

    For proper function of the negative electrode of dye-sensitized and perovskite solar cells, the deposition of a nonporous blocking film is required on the surface of F-doped SnO 2 (FTO) glass substrates. Such a blocking film can minimise undesirable parasitic processes, for example, the back reaction of photoinjected electrons with the oxidized form of the redox mediator or with the hole-transporting medium can be avoided. In the present work, thin, transparent, blocking TiO 2 films are prepared by semi-automatic spray pyrolysis of precursors consisting of titanium diisopropoxide bis(acetylacetonate) as the main component. The variation in the layer thickness of the sprayed films is achieved by varying the number of spray cycles. The parameters investigated in this work were deposition temperature (150, 300 and 450 °C), number of spray cycles (20-200), precursor composition (with/without deliberately added acetylacetone), concentration (0.05 and 0.2 M) and subsequent post-calcination at 500 °C. The photo-electrochemical properties were evaluated in aqueous electrolyte solution under UV irradiation. The blocking properties were tested by cyclic voltammetry with a model redox probe with a simple one-electron-transfer reaction. Semi-automatic spraying resulted in the formation of transparent, homogeneous, TiO 2 films, and the technique allows for easy upscaling to large electrode areas. The deposition temperature of 450 °C was necessary for the fabrication of highly photoactive TiO 2 films. The blocking properties of the as-deposited TiO 2 films (at 450 °C) were impaired by post-calcination at 500 °C, but this problem could be addressed by increasing the number of spray cycles. The modification of the precursor by adding acetylacetone resulted in the fabrication of TiO 2 films exhibiting perfect blocking properties that were not influenced by post-calcination. These results will surely find use in the fabrication of large-scale dye-sensitized and perovskite solar

  10. Sprays and Cartan projective connections

    Science.gov (United States)

    Saunders, D. J.

    2004-10-01

    Around 80 years ago, several authors (for instance H. Weyl, T.Y. Thomas, J. Douglas and J.H.C. Whitehead) studied the projective geometry of paths, using the methods of tensor calculus. The principal object of study was a spray, namely a homogeneous second-order differential equation, or more generally a projective equivalence class of sprays. At around the same time, E. Cartan studied the same topic from a different point of view, by imagining a projective space attached to a manifold, or, more generally, attached to a `manifold of elements'; the infinitesimal `glue' may be interpreted in modern language as a Cartan projective connection on a principal bundle. This paper describes the geometrical relationship between these two points of view.

  11. The 2016 Thermal Spray Roadmap

    Czech Academy of Sciences Publication Activity Database

    Vardelle, A.; Moreau, Ch.; Akedo, J.; Ashrafizadeh, H.; Berndt, C. C.; Berghaus-Oberste, J.; Boulos, M.; Brogan, J.; Bourtsalas, A.C.; Dolatabadi, A.; Dorfman, M.; Eden, T.J.; Fauchais, P.; Fisher, G.; Gaertner, F.; Gindrat, M.; Henne, R.; Hyland, M.; Irissou, E.; Jordan, E.H.; Khor, K.A.; Killinger, A.; Lau, Y.C.; Li, C.-J.; Li, L.; Longtin, J.; Markocsan, N.; Masset, P.J.; Matějíček, Jiří; Mauer, G.; McDonald, A.; Mostaghimi, J.; Sampath, S.; Schiller, G.; Shinoda, K.; Smith, M.F.; Syed, A.A.; Themelis, N.J.; Toma, F.-L.; Trelles, J.P.; Vassen, R.; Vuoristo, P.

    2016-01-01

    Roč. 25, č. 8 (2016), s. 1376-1440 ISSN 1059-9630 Institutional support: RVO:61389021 Keywords : anti-wear and anti-corrosion coatings * biomedical * electronics * energy generation * functional coatings * gas turbines * thermal spray processes Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://dx.doi.org/10.1007/s11666-016-0473-x

  12. Uniform-droplet spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Blue, C.A.; Sikka, V.K. [Oak Ridge National Lab., TN (United States); Chun, Jung-Hoon [Massachusetts Institute of Technology, Cambridge, MA (United States); Ando, T. [Tufts Univ., Medford, MA (United States)

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.

  13. Effect of Pressurized Metered Dose Inhaler Spray Characteristics and Particle Size Distribution on Drug Delivery Efficiency.

    Science.gov (United States)

    Yousefi, Morteza; Inthavong, Kiao; Tu, Jiyuan

    2017-10-01

    A key issue in pulmonary drug delivery is improvement of the delivery device for effective and targeted treatment. Pressurized metered dose inhalers (pMDIs) are the most popular aerosol therapy device for treating lung diseases. This article studies the effect of spray characteristics: injection velocity, spray cone angle, particle size distribution (PSD), and its mass median aerodynamic diameter (MMAD) on drug delivery. An idealized oral airway geometry, extending from mouth to the main bronchus, was connected to a pMDI device. Inhalation flow rates of 15, 30, and 60 L/min were used and drug particle tracking was a one-way coupled Lagrangian model. The results showed that most particles deposited in the pharynx, where the airway has a reduced cross-sectional area. Particle deposition generally decreased with initial spray velocity and with increased spray cone angle for 30 and 60 L/min flow rates. However, for 15 L/min flow rate, the deposition increased slightly with an increase in the spray velocity and cone angle. The effect of spray cone angle was more significant than the initial spray velocity on particle deposition. When the MMAD of a PSD was reduced, the deposition efficiency also reduces, suggesting greater rates of particle entry into the lung. The deposition rate showed negligible change when the MMAD was more than 8 μm. Spray injection angle and velocity change the drug delivery efficacy; however, the efficiency shows more sensitivity to the injection angle. The 30 L/min airflow rate delivers spray particles to the lung more efficiently than 15 and 60 L/min airflow rate, and reducing MMAD can help increase drug delivery to the lung.

  14. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  15. 1994 Thermal spray industrial applications: Proceedings

    International Nuclear Information System (INIS)

    Berndt, C.C.; Sampath, S.

    1994-01-01

    The 7th National Thermal Spray Conference met on June 20--24, 1994, in Boston, Massachusetts. The conference was sponsored by the Thermal Spray Division of ASM International and co-sponsored by the American Welding Society, Deutscher Verband fur Schweisstechnik e.V., High Temperature Society of Japan, International Thermal Spray Association, and Japanese Thermal Spraying Society. The conference covered applications for automobiles, aerospace, petrochemicals, power generation, and biomedical needs. Materials included metals, ceramics, and composites with a broad range of process developments and diagnostics. Other sections included modeling and systems control; spray forming and reactive spraying; post treatment; process, structure and property relationships; mechanical properties; and testing, characterization and wear. One hundred and seventeen papers have been processed separately for inclusion on the data base

  16. Effectiveness of containment sprays in containment management

    International Nuclear Information System (INIS)

    Nourbakhsh, H.P.; Perez, S.E.; Lehner, J.R.

    1993-05-01

    A limited study has been performed assessing the effectiveness of containment sprays-to mitigate particular challenges which may occur during a severe accident. Certain aspects of three specific topics related to using sprays under severe accident conditions were investigated. The first was the effectiveness of sprays connected to an alternate water supple and pumping source because the actual containment spray pumps are inoperable. This situation could occur during a station blackout. The second topic concerned the adverse as well as beneficial effects of using containment sprays during severe accident scenario where the containment atmosphere contains substantial quantities of hydrogen along with steam. The third topic was the feasibility of using containment sprays to moderate the consequences of DCH

  17. Multiphysics modelling of the spray forming process

    International Nuclear Information System (INIS)

    Mi, J.; Grant, P.S.; Fritsching, U.; Belkessam, O.; Garmendia, I.; Landaberea, A.

    2008-01-01

    An integrated, multiphysics numerical model has been developed through the joint efforts of the University of Oxford (UK), University of Bremen (Germany) and Inasmet (Spain) to simulate the spray forming process. The integrated model consisted of four sub-models: (1) an atomization model simulating the fragmentation of a continuous liquid metal stream into droplet spray during gas atomization; (2) a droplet spray model simulating the droplet spray mass and enthalpy evolution in the gas flow field prior to deposition; (3) a droplet deposition model simulating droplet deposition, splashing and re-deposition behavior and the resulting preform shape and heat flow; and (4) a porosity model simulating the porosity distribution inside a spray formed ring preform. The model has been validated against experiments of the spray forming of large diameter IN718 Ni superalloy rings. The modelled preform shape, surface temperature and final porosity distribution showed good agreement with experimental measurements

  18. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  19. Thermally sprayed coatings: Aluminum on lead

    International Nuclear Information System (INIS)

    Usmani, S.; Czajkowski, C.J.; Zatorski, R.

    1999-01-01

    An experimental program to determine the feasibility of thermally spraying aluminum on a lead substrate was initiated in support of the accelerator production of tritium (APT) Project for the US Department of Energy. The program consisted of two distinct parts: (1) the characterization of the thermally sprayed coatings, including microhardness testing, effects of heating, and microstructure and porosity determinations, and (2) effects of mercury doping and heat treatments on the thermally sprayed composite. The project determined that aluminum could successfully be thermally sprayed onto the lead. The coatings had a dense microstructure, with a Vicker's Pyramid Hardness (VPH) of about 60, and a maximum porosity (found in strips on the samples) of 12%

  20. Synthesis and antibacterial evaluation of calcinated Ag-doped nano-hydroxyapatite with dispersibility.

    Science.gov (United States)

    Furuzono, Tsutomu; Motaharul, Mazumder; Kogai, Yasumichi; Azuma, Yoshinao; Sawa, Yoshiki

    2015-05-01

    Dispersible hydroxyapatite (HAp) nanoparticles are very useful for applying a monolayer to implantable medical devices using the nano-coating technique. To improve tolerance to infection on implanted medical devices, silver-doped HAp (Ag-HAp) nanoparticles with dispersiblity and crystallinity were synthesized, avoiding calcination-induced sintering, and evaluated for antibacterial activity. The Ca10-xAgx(PO4)6(OH)2 with x = 0 and 0.2 were prepared by wet chemical processing at 100°C. Before calcination at 700°C for 2 h, two kinds of anti-sintering agents, namely a Ca(NO3)2 (Ca salt) and a polyacrylic acid/Ca salt mixture (PAA-Ca), were used. Escherichia coli was used to evaluate the antibacterial activity of the nanopowder. When PAA-Ca was used as an anti-sintering agent in calcination to prepare the dispersible nanoparticles, strong metallic Ag peaks were observed at 38.1° and 44.3° (2θ) in the X-ray diffraction (XRD) profile. However, the Ag peak was barely observed when Ca salt was used alone as the anti-sintering agent. Thus, using Ca salt alone was more effective for preparation of dispersible Ag-HAp than PAA-Ca. The particle average size of Ag-HAp with 0.5 mol% of Ag content was found to be 325 ± 70 nm when the formation of large particleaggregations was prevented, as determined by dynamic light scattering instrument. The antibacterial activity of the Ag-HAp nanoparticles possessing 0.5 mol% against E. coli was greater than 90.0%. Dispersible and crystalline nano Ag-HAp can be obtained by using Ca salt alone as an anti-sintering agent. The nanoparticles showed antibacterial activity.

  1. Physical, Chemical and Structural Evolution of Zeolite - Containing Waste Forms Produced from Metakaolinite and Calcined HLW

    International Nuclear Information System (INIS)

    Grutzeck, Michael

    2005-01-01

    During the seventh year of the current grant (DE-FG02-05ER63966) we completed an exhaustive study of cold calcination and began work on the development of tank fill materials to fill empty tanks and control residuals. Cold calcination of low and high NOx low activity waste (LAW) SRS Tank 44 and Hanford AN-107 simulants, respectively with metallic Al + Si powders was evaluated. It was found that a combination of Al and Si powders could be used as reducing agents to reduce the nitrate and nitrite content of both low and high NOx LAW to low enough levels to allow the LAW to be solidified directly by mixing it with metakaolin and allowing it to cure at 90 C. During room temperature reactions, NOx was reduced and nitrogen was emitted as N2 or NH3. This was an important finding because now one can pretreat LAW at ambient temperatures which provides a low-temperature alternative to thermal calcination. The significant advantage of using Al and Si metals for denitration/denitrition of the LAW is the fact that the supernate could potentially be treated in situ in the waste tanks themselves. Tank fill materials based upon a hydroceramic binder have been formulated from mixtures of metakaolinite, Class F fly ash and Class C flue gas desulphurization (FGD) ash mixed with various concentrations of NaOH solution. These harden over a period of hours or days depending on composition. A systematic study of properties of the tank fill materials (leachability) and ability to adsorb and hold residuals is under way

  2. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  3. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    Science.gov (United States)

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  4. Development of a SREX flowsheet for the separation of strontium from dissolved INEEL zirconium calcine

    International Nuclear Information System (INIS)

    Law, J.D.; Wood, D.J.; Todd, T.A.

    1999-01-01

    Laboratory experimentation has indicated that the SREX process is effective for partitioning 90 Sr from acidic radioactive waste solutions located at the Idaho Nuclear Technology and Engineering Center. These laboratory results were used to develop a flowsheet for countercurrent testing of the SREX process with dissolved pilot plant calcine. Testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. Dissolved Run No.64 pilot plant calcine spiked with 85 Sr was used as feed solution for the testing. The flowsheet tested consisted of an extraction section (0.15 M 4prime,4prime(5prime)-di-(tert-butylcyclohexo)-18-crown-6 and 1.5 M TBP in Isopar-L.), a 1.0 M NaNO 3 scrub section to remove extracted K from the SREX solvent, a 0.01 M HNO 3 strip section for the removal of Sr from the SREX solvent, a 0.25 M Na2CO 3 wash section to remove degradation products from the solvent, and a 0.1 M HNO 3 rinse section. The behavior of 85 Sr, Na, K, Al, B, Ca, Cr, Fe, Ni, and Zr was evaluated. The described flowsheet successfully extracted 85 Sr from the dissolved pilot plant calcine with a removal efficiency of 99.6%. Distribution coefficients for 85 Sr ranged from 3.6 to 4.5 in the extraction section. With these distribution coefficients a removal efficiency of approximately >99.99% was expected. It was determined that the lower than expected removal efficiency can be attributed to a stage efficiency of only 60% in the extraction section. Extracted K was effectively scrubbed from the SREX solvent with the 1.0 M NaNO 3 resulting in only 6.4% of the K in the HLW strip product. Sodium was not extracted from the dissolved calcine by the SREX solvent; however, the use of a 1.0 M NaNO 3 scrub solution resulted in a Na concentration of 70 mg/L (12.3% of the feed concentration) in the HLW strip product. Al, B, Ca, Cr, Fe, Ni, and Zr were determined to be essentially inextractable

  5. Structure and pozzolanic activity of calcined coal gangue during the process of mechanical activation

    Energy Technology Data Exchange (ETDEWEB)

    Wei Guo; Dongxu Li; Jianhua Chen; Nanru Yang [Yancheng Institute of Technology, Yancheng (China). Department of Material Engineering

    2009-04-15

    On the basis of analyzing coal gangue's chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR, NMR, and the mechanical strength of the cement doped coal gangue with various specific surface area was tested. The experimental results indicate that the lattice structure of metakaolin in coal gangue samples calcined at 700{sup o}C disorganizes gradually and becomes disordered, and the lattice structure of {alpha}-quartz is distorted slightly. The pozzolanic activity of the coal gangue increases obviously with its structural disorganization.

  6. Volume reduction of low- and medium-level waste by incineration/calcination

    International Nuclear Information System (INIS)

    Buzonniere, A. de; Gauthey, J.C.

    1993-01-01

    Nuclear installations generate large quantities of low- and medium-level radwaste. This waste comes from various installations in the fuel cycle, reactor operation, research institute, hospitals, nuclear plate dismantling, etc.. TECHNICATOME did the project development work for the incineration plant of PIERRELATE (France) on behalf of COGEMA (Compagnie Generale des d'Etudes Technique). This plant has been in active service since November 1987. In addition, TECHNICATOME was in charge of the incinerator by a turnkey contract. This incinerator was commissioned in 1992. For a number of years, TECHNICATOME has been examining, developing and producing incineration and drying/calcination installations. They are used for precessing low- and medium-level radwaste

  7. Aerial electrostatic spray deposition and canopy penetration in cotton

    Science.gov (United States)

    Spray deposition on abaxial and adaxial leaf surfaces along with canopy penetration are essential for insect control and foliage defoliation in cotton production agriculture. Researchers have reported that electrostatically charged sprays have increased spray deposit onto these surfaces under widel...

  8. Mechanism of Action of Lung Damage Caused by a Nanofilm Spray Product

    DEFF Research Database (Denmark)

    Larsen, Søren T.; Dallot, Constantin; Larsen, Susan W

    2014-01-01

    and identification of toxicological targets are important to perform rational and cost-effective toxicological studies. Thus, because the pulmonary surfactant system appears to be an important toxicological target for waterproofing spray products, study of surfactant inhibition could be included in toxicological...... during respiration. The active film-forming component used in the present spray product is also found in several other products on the market. Hence, it may be expected that these products may have a toxicity similar to the waterproofing product studied here. Elucidation of the toxicological mechanism...

  9. Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables.

    Science.gov (United States)

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-03-01

    The present study compared entomopathogenic nematode delivery at the base of savoy cabbage and cauliflower, at the lower side of savoy cabbage and cauliflower leaves and in leek stems and the ground deposition using a five-nozzle spray boom equipped with an ISO 08 flat fan, an air induction flat fan and Twinjet spray nozzles. Additionally, an air support system and a row application system were evaluated. Approximately 40% of the applied nematodes did not reach the foot of the cabbage plants. The use of an air support system or a row application system improved nematode deposition at the savoy cabbage base. Relative nematode deposition on the lower side of savoy cabbage leaves was 27.20%, while only 2.64% of the applied nematodes reached the lower side of cauliflower leaves. After spraying leek with a standard boom, a low relative nematode deposition (26.64%) was measured in the leek stem. Nozzle type affected the distribution of nematodes in droplet spots. Nozzle type has a minor effect on the number of entomopathogenic nematodes delivered on difficult-to-reach targets. The use of modified spray application techniques directing the spray to the target site are necessary to increase the chances of contact of entomopathogenic nematodes with their target. Copyright © 2011 Society of Chemical Industry.

  10. Analysis of Biological Samples Using Paper Spray Mass Spectrometry: An Investigation of Impacts by the Substrates, Solvents and Elution Methods.

    Science.gov (United States)

    Ren, Yue; Wang, He; Liu, Jiangjiang; Zhang, Zhiping; McLuckey, Morgan N; Ouyang, Zheng

    2013-10-01

    Paper spray has been developed as a fast sampling ionization method for direct analysis of raw biological and chemical samples using mass spectrometry (MS). Quantitation of therapeutic drugs in blood samples at high accuracy has also been achieved using paper spray MS without traditional sample preparation or chromatographic separation. The paper spray ionization is a process integrated with a fast extraction of the analyte from the raw sample by a solvent, the transport of the extracted analytes on the paper, and a spray ionization at the tip of the paper substrate with a high voltage applied. In this study, the influence on the analytical performance by the solvent-substrate systems and the selection of the elution methods was investigated. The protein hemoglobin could be observed from fresh blood samples on silanized paper or from dried blood spots on silica-coated paper. The on-paper separation of the chemicals during the paper spray was characterized through the analysis of a mixture of the methyl violet 2B and methylene blue. The mode of applying the spray solvent was found to have a significant impact on the separation. The results in this study led to a better understanding of the analyte elution, on-paper separation, as well as the ionization processes of the paper spray. This study also help to establish a guideline for optimizing the analytical performance of paper spray for direct analysis of target analytes using mass spectrometry.

  11. Reduction of spray pressure leads to less emission and better deposition of spray liquid at high-volume spraying in greenhouse tomato

    NARCIS (Netherlands)

    Os, van E.A.; Michielsen, J.M.G.P.; Corver, F.J.M.; Berg, van den J.V.; Bruins, M.A.; Porskamp, H.A.J.; Zande, van de J.C.

    2005-01-01

    In an experimental greenhouse, growing a tomato crop, it was investigated if a reduction in spray pressure could improve the spray result, while, simultaneously, emission to the ground could be reduced. Spray deposition on the leaves and the emission to the ground was evaluated at different spray

  12. Conceptual design for vitrification of HLW at West Valley using a rotary calciner/metallic melter

    International Nuclear Information System (INIS)

    Giraud, J.P.; Conord, J.P.; Saverot, P.M.

    1984-01-01

    The CEA has had an extensive research program in the field of vitrification technology for over 24 years, and several testing facilities were used throughout all phases of development and engineering: The Vulcain facility comprises a vitrification hot cell and four auxiliary hot cells. Vulcain allows the production of 2-kg samples of active glass. The off-gas treatment system allows testing the DF of each equipment. The auxiliary cells are equipped with leach-rate tests, diffusion tests, and irradiation tests on the glass samples. The Atlas facility is a reproduction of AVM calcination and vitrification furnaces at 1/2 scale enclosed in a glove box. This facility is used for testing ruthenium volatility and containment in the vitrification process. The full-scale AVM inactive pilot facility is used for testing calcination and vitrification of new compositions of high-level waste and for developing new types of vitrification furnaces. The inactive test loop is for testing air cooling of glass containers. The full-scale AVH inactive pilot facility is used for testing AVH technology and has been in operation since late 1981

  13. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip [Department of Chemistry, Faculty of Arts and Science, University of Dumlupinar, Kuetahya (Turkey); Olgun, Asim [Department of Chemistry, Faculty of Arts and Science, University of Dumlupinar, Kuetahya (Turkey)]. E-mail: aolgun@dumlupinar.edu.tr

    2007-07-19

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1.Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW.

  14. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste

    International Nuclear Information System (INIS)

    Atar, Necip; Olgun, Asim

    2007-01-01

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1.Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW

  15. Photocatalytic hydrogen evolution of palladium nanoparticles decorated black TiO2 calcined in argon atmosphere

    Science.gov (United States)

    Wu, Ming-Chung; Hsiao, Kai-Chi; Chang, Yin-Hsuan; Chan, Shun-Hsiang

    2018-02-01

    Black TiO2 nanoparticles (BTN) was prepared by sol-gel derived precursor calcined in an argon atmosphere. The synthesized BTN with trivalent titanium ion, structural defect, and oxygen vacancy shows a remarkably high absorbance in the visible light spectrum. BTN thus behaves a higher visible-active nanoreactor than white TiO2 nanoparticles (WTN) in the aqueous solution for organic pollutant degradation. Moreover, palladium decoration on the BTN surface (Pd-BTN) demonstrates a fascinating clean energy application. The obtained Pd-BTN fulfills a satisfied green material demand in the photocatalytic hydrogen production application. Pd-BTN calcined at 400 °C (Pd-BTN-400) shows the high photocatalytic hydrogen generation rate of 5200 μmol/g h under UV-A irradiation and 9300 μmol/g h under UV-B irradiation, respectively. The well-developed material, Pd-BTN-400, could be one of the best solutions in the concern of clean energy and water-purification with regard to the continuous environmental issue.

  16. Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Khaled; Abdelkarim, Omar; Srasra, Ezzeddine [Centre National des Recherches en Sciences des Matériaux (CNRSM), Soliman (Turkey); Frini-Srasra, Najoua [Faculté des Sciences de Tunis (FST), Tunis (Turkey)

    2015-01-15

    Mg-Al-Ti layered double hydroxides (LDH), consisting of di-, tri- and tetra-valent cations with different Al{sup 3+}/Ti{sup 4+} ratio, have been synthesized by co-precipitation which was demonstrated as efficient visible-light photocatalysts. The structure and chemical composition of the compound were characterized by PXRD, FT-IR, SAA, N{sub 2} adsorption-desorption isotherms, and DSC techniques. It is found that no hydrotalcites structure were formed for Ti{sup 4+}/(Ti{sup 4+}+ Al{sup 3+})>0.5 and the substitution of Ti(IV) for Al(III) in the layer increases the thermal stability of the resulting LDH materials. The calcined sample containing titanium showed relatively high adsorption capacity for MB as compared to that without titanium. Results show that the pseudo-second-order kinetic model and the Langmuir were found to correlate the experimental data well. The photocatalytic activity was evaluated for the degradation of the methylene blue. The photocatalytic activity increased with the increase of the Al/Ti cationic ratio. 71% of the dye could be removed by the Mg/Al/Ti-LDH with the cationic ratio Al/Ti=0 : 1 and calcined at 500 .deg. C.

  17. Calcined hydrotalcites for the catalytic decomposition of N{sub 2}O in simulated process streams

    Energy Technology Data Exchange (ETDEWEB)

    Armor, J.N.; Braymer, T.A.; Farris, T.S.; Li, Y.; Petrocelli, F.P.; Weist, E.L. [Air Products and Chemicals, Inc., Allentown, PA (United States); Kannan, S.; Swamy, C.S. [Department of Chemistry, Indian Institute of Technology, Madras (India)

    1996-01-18

    Various hydrotalcite based catalysts were prepared for testing for the catalytic decomposition of N{sub 2}O. Co-Al, Ni-Al, Co/Pd-Al, Co/Rh-Al, and Co/Mg-Al substituted hydrotalcites and Co-La-Al hydroxides offer very good activity at modest temperatures. Precalcination of these materials at ca. 450-500C, which destroys the hydrotalcite phase, is necessary for optimum activity and life. For Co substituted hydrotalcites, the optimal ratio of Co/Al is 3.0. The temperature for 50% conversion of N{sub 2}O of these calcined cobalt hydrotalcites is ca. 75C lower than for the previous highly active Co-ZSM-5. These calcined cobalt hydrotalcite materials display sustained life at temperatures in excess of 670C in an O{sub 2} rich, wet stream with high levels of N{sub 2}O (10%). Excess O{sub 2} does not seriously impact N{sub 2}O decomposition, but the combination of both water vapor and O{sub 2} does reduce activity by ca. 50%

  18. Implementation of industrial waste ferrochrome slag in conventional and low cement castables: Effect of calcined alumina

    Directory of Open Access Journals (Sweden)

    Pattem Hemanth Kumar

    2014-12-01

    Full Text Available A new class of conventional and low-cement ferrochrome slag-based castables were prepared from 40 wt.% ferrochrome slag and 45 wt.% calcined bauxite. Rest fraction varied between high alumina cement (HAC acting as hydraulic binder and calcined alumina as pore filling additive. Standard ASTM size briquettes were prepared for crushing and bending strengths evaluation, and the samples were then subjected to firing at 800, 1100 and 1300 °C for a soaking period of 3 h. The microstructure and refractory properties of the prepared castables have been investigated using X-ray diffraction (XRD, scanning electron microscopy (SEM, cold crushing strength, modulus of rupture and permanent linear changes (PLCs test. Castables show good volume stability (linear change <0.7% at 1300 °C. The outcomes of these investigations were efficacious and in accordance with previously reported data of similar compositions. High thermo-mechanical and physico-chemical properties were attained pointing out an outstanding potential to increase the refractory lining working life of non-recovery coke oven and reheating furnaces.

  19. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

    Directory of Open Access Journals (Sweden)

    Matthias Augustin

    2015-01-01

    Full Text Available Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mnx+ oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure–property relationships. The oxidation process related to the different MnOx species was observed by in situ X-ray diffraction (XRD measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnOx species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnOx species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species.

  20. Effects of Composition and Calcination Temperature on Photocatalytic Evolution over from Glycerol and Water Mixture

    Directory of Open Access Journals (Sweden)

    Cancan Fan

    2012-01-01

    Full Text Available A series of sulfide coupled semiconductors supported on SiO2, (, was prepared by incipient wet impregnation method. The photocatalysts were characterized by XRD, XPS, TPR, and UV/Vis DRS. Characterization results show that the chemical actions between ZnS and CdS resulted in the formation of solid solutions on the surface of the support and the formation of them is affected by the molar ratio of ZnS/CdS and calcination temperature. Performance of photocatalysts was tested in the home made reactor under both UV light and solar-simulated light irradiation by detecting the rate of the photocatalytic H2 evolution from glycerol solution. The hydrogen production rates are related to the catalyst composition, surface structure, photoabsorption property, as well as the amount of solid solution. The maximum rate of hydrogen production, 550 μmol·h−1 under UV light irradiation and 210 μmol·h−1 under solar-simulated light irradiation, was obtained over Cd0.8Zn0.2S/SiO2 solid solution calcined at 723 K.

  1. Calcination temperature influenced multiferroic properties of Ca-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Dhir, Gitanjali; Uniyal, Poonam; Verma, N. K.

    2015-01-01

    The influence of Ca-doping and particle size on structural, morphological and magnetic properties of BiFeO 3 nanoparticles has been studied. A sol-gel method was employed for the synthesis of nanoparticles and their particle size was tailored by varying the calcination temperature. Structural analysis revealed a rhombohedral distortion induced by Ca-substitution. The broadening of diffraction peaks with decreasing calcination temperature was indicative of reduction in crystallite size. The morphological analysis revealed the formation of agglomerated nanoparticles having average particle size ranging from 10-15 and 50-55 nm for C4 and C6, respectively. The agglomeration is attributed to high surface energy of nanoparticles. Ferromagnetism has been displayed by all the synthesized nanoparticles. Enhancement of saturation magnetization with Ca-substitution is attributed to suppression of spin cycloid structure by the reduction in size, lattice distortion and creation of oxygen vacancies by the substitution of divalent ion at trivalent site. Further, this value increases as a function of decreasing particle size. Strong particle size effects on magnetic properties of the synthesized nanoparticles are owed to increasing surface to volume ratio. All these observations are indicative of strong dependence of multiferroism on particle size

  2. Evaluation of calcination temperature and phase composition ratio for new hyroxyapatite

    Science.gov (United States)

    Salimi, M. N. Ahmad; Chin, H. S.

    2017-10-01

    The demand of production of hydroxyapatite (HA) has been increasing for the purpose of medical and dental application. HA possesses the excellent properties leads to the priority choice for ceramic bone replacement. Synthesis route by wet chemical precipitation is commonly practised in industrial scale. Calcium hydroxide and Orthophosphoric acid are the precursors for production scale. The synthesis of HA is conducted by varying the synthetic condition: stirring rate, calcium-phosphate and calcination temperature. This paper is focused on the properties of HA produced by regulating the synthetic condition so that the qualities of HA can be well performed. Characterization studies were also carried out by Fourier Transform Infrared Spectroscopy (FT-IR) for functional group identification, Scanning Electron Microscope (SEM) for surface morphology analysis and X-Ray Diffraction (XRD) for phase composition and crystallinity respectively. Narrow particle size distribution contributed to better quality of hydroxyapatite for bone replacement. Both calcium-phosphate ratio and calcination temperature would affect the phase composition of calcium phosphate.

  3. Mercury removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Ashworth

    2000-02-27

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

  4. Mercury Removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, Samuel Clay; Wood, R. A.; Taylor, D. D.; Sieme, D. D.

    2000-03-01

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

  5. Memory effect of calcined layered samarium hydroxy chlorides in aqueous solution

    International Nuclear Information System (INIS)

    Lee, Byung Il; Byeon, Song Ho

    2015-01-01

    The decomposition and recovery behavior of layered samarium hydroxychloride (Sm 2 (OH) 5 Cl·nH 2 O, LSmH) has been closely studied in various conditions. Although the heat treatment of LSmH at 700 °C completely collapsed typical layered structure, the calcined LSmH (c-LSmH) recovered its layered characteristics and consequently its ability to intercalate anions into the interlayer space when it was rehydroxylated and rehydrated in aqueous solutions containing organic and inorganic anions. This phenomenon is similar to the memory effect observed in classical layered double hydroxides (LDHs), where LDHs calcined to a mixture of metal oxides can recover their layered structures in aqueous solutions. In contrast, the recovery reaction of c-LSmH in water without any counter anions was unsuccessful and instead resulted in the formation of Sm(OH) 3 . Such a difference was interpreted on the basis of the salt effect on Sm 2 (OH) 5 Cl·nH 2 O–Sm(OH) 3 phase equilibria in water

  6. Mercury removal at Idaho National Engineering and Environmental Laboratory's New Waste Calciner Facility

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    2000-01-01

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended

  7. Influence of calcination process on the formation of selected air pollutants

    Directory of Open Access Journals (Sweden)

    Wydrych Jacek

    2017-01-01

    Full Text Available The subject of the study is to analyze the phenomena of thermal flow in the precalcinator chamber of the exchanger's furnace tower including the combustion of coal dust and decarbonisation of raw lime powder. During the research were provided development of a mathematical model of particulate solid fuels combustion, calcining the raw material, NOx and COx formation. Moreover conducting the number for the current and the upgraded design of the precalcinator and analysis of the results. In this study, a mathematical model based on Euler's method to describe the motion of the gas phase and the Lagrange method to describe the motion of particles [1-4]. In the calculations there were assumed fractional particles raw material and fuel, and the following processes: flow of exhaust gases from the rotary kiln through the precalcinator chamber, heat exchange between the particles of raw material and exhaust gases, the additional fuel combustion in the precalcinator, the process of raw material calcination, transformation of gaseous substances, effect of the additional (tertiary air delivery on the processes in the chamber.

  8. Easily recycled Bi2O3 photocatalyst coatings prepared via ball milling followed by calcination

    Science.gov (United States)

    Cheng, Lijun; Hu, Xumin; Hao, Liang

    2017-06-01

    Bi2O3 photocatalyst coatings derived from Bi coatings were first prepared by a two-step method, namely ball milling followed by the calcination process. The as-prepared samples were characterized by XRD, SEM, XPS and UV-Vis spectra, respectively. The results showed that monoclinic Bi2O3 coatings were obtained after sintering Bi coatings at 673 or 773 K, while monoclinic and triclinic mixed phase Bi2O3 coatings were obtained at 873 or 973 K. The topographies of the samples were observably different, which varied from flower-like, irregular, polygonal to nanosized particles with the increase in calcination temperature. Photodegradation of malachite green under simulated solar irradiation for 180 min showed that the largest degradation efficiency of 86.2% was achieved over Bi2O3 photocatalyst coatings sintered at 873 K. The Bi2O3 photocatalyst coatings, encapsulated with Al2O3 ball with an average diameter around 1 mm, are quite easily recycled, which provides an alternative visible light-driven photocatalyst suitable for practical water treatment application.

  9. Pecularities of carrying out radioactive wastes vitrification process without preliminary calcination of wastes

    International Nuclear Information System (INIS)

    Konstantinovich, A.A.; Kulichenko, V.V.; Bel'tyukov, V.A.; Nikiforov, A.S.; Nikipelov, B.V.; Stepanov, S.E.; Baskov, L.I.; Kulakov, S.I.

    1978-01-01

    Vitrification technology is considered for liquid radioactive wastes by means of electric furnace where heating of glass-paste is done by electric current passing through the melt. Continious process of gehydration, calcination and vitrification is going on in one apparatus. Testing if the method has been performed by use of a model solution, containing sodium and aluminium nitrates. To obtain phosphoric acid has been added into the solution. Lay-out of the device and its description as well as technical parameters of the electric furnace are given. The results are stated for determination of the optimum operation conditions for the device. To reduce entrainment of solid components, molasses has been added in the solution. Parameters are given for the process of the solution containing 80 g/l molasses processing. It has been shown that edding molasses to the solution permitted to reduse power consumption of the process due to the heat generation during oxidation-reduction reaction on the melt surface. The results are given for investigations of the nitrogen oxides catching in scrubbers. These results have shown that introduction of molasses reduces nitrigen oxides concentration. The results of the experimental works have shown the possibility of the continious process of dehydration, calcination and vitrification in single device with application of remote control and monitoring by means of automatics. (I.T.) [ru

  10. Effects of milling method and calcination condition on phase and morphology characteristics of Mg4Nb2O9 powders

    International Nuclear Information System (INIS)

    Wongmaneerung, R.; Sarakonsri, T.; Yimnirun, R.; Ananta, S.

    2006-01-01

    Magnesium niobate, Mg 4 Nb 2 O 9 , powders has been synthesized by a solid-state reaction. Both conventional ball- and rapid vibro-milling have been investigated as milling methods, with the formation of the Mg 4 Nb 2 O 9 phase investigated as a function of calcination conditions by DTA and XRD. The particle size distribution of the calcined powders was determined by laser diffraction technique, while morphology, crystal structure and phase composition were determined via a combination of SEM, TEM and EDX techniques. The type of milling method together with the designed calcination condition was found to show a considerable effect on the phase and morphology evolution of the calcined Mg 4 Nb 2 O 9 powders. It is seen that optimization of calcination conditions can lead to a single-phase Mg 4 Nb 2 O 9 in both milling methods. However, the formation temperature and dwell time for single-phase Mg 4 Nb 2 O 9 powders were lower with the rapid vibro-milling technique

  11. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  12. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    International Nuclear Information System (INIS)

    1997-01-01

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns

  13. Holodiscus (K. Koch) Maxim.: ocean-spray

    Science.gov (United States)

    Nancy L. Shaw; Emerenciana G. Hurd; Peter F. Stickney

    2008-01-01

    Holodiscus is a taxonomically complex genus including about 6 species of western North America and northern South America (Hitchcock and others 1961; Ley 1943). The 2 generally recognized North American species (table 1) - creambush ocean-spray and gland ocean-spray - are deciduous, multistemmed shrubs with simple, alternate, deciduous, toothed to shallowly lobed,...

  14. Spray drying of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Abrams, R.F.; Monat, J.P.

    1984-01-01

    Full scale performance tests of a Koch spray dryer were conducted on simulated liquid radioactive waste streams. The liquid feeds simulated the solutions that result from radwaste incineration of DAW an ion exchange resins, as well as evaporator bottoms. The integration of the spray dryer into a complete system is discussed

  15. Summary of the Blackmo 88 spray experiment

    Science.gov (United States)

    D. R. Miller; W. E. Yendol; M. L. McManus; D. E. Anderson; K. Mierzejewski

    1991-01-01

    The Blackmo 88 spray trial experiment was conducted for two primary purposes: To quantify the effects of local micrometeorological processes, in and near the canopy, on the deposition patterns of aerially applied BT in a mature oak forest; To generate a data set containing simultaneous measurements of spray deposition and detailed micrometeorology, in a canopy of known...

  16. Cyclic carbonation calcination studies of limestone and dolomite for CO{sub 2} separation from combustion flue gases - article no. 011801

    Energy Technology Data Exchange (ETDEWEB)

    Senthoorselvan, S.; Gleis, S.; Hartmut, S.; Yrjas, P.; Hupa, M. [TUM, Garching (Germany)

    2009-01-15

    Naturally occurring limestone and dolomite samples, originating from different geographical locations, were tested as potential sorbents for carbonation/calcination based CO{sub 2} capture from combustion flue gases. Samples have been studied in a thermogravimetric analyzer under simulated flue gas conditions at three calcination temperatures, viz., 750{sup o}C, 875{sup o}C, and 930{sup o}C for four carbonation calcination reaction (CCR) cycles. The dolomite sample exhibited the highest rate of carbonation than the tested limestones. At the third cycle, its CO{sub 2} capture capacity per kilogram of the sample was nearly equal to that of Gotland, the highest reacting limestone tested. At the fourth cycle it surpassed Gotland, despite the fact that the CaCO{sub 3} content of the Sibbo dolomite was only 2/3 of that of the Gotland. Decay coefficients were calculated by a curve fitting exercise and its value is lowest for the Sibbo dolomite. That means, most probably its capture capacity per kilogram of the sample would remain higher well beyond the fourth cycle. There was a strong correlation between the calcination temperature, the specific surface area of the calcined samples, and the degree of carbonation. It was observed that the higher the calcination temperature, the lower the sorbent reactivity. For a given limestone/dolomite sample, sorbents CO{sub 2} capture capacity depended on the number of CCR cycles and the calcination temperature. According to the equilibrium thermodynamics, the CO{sub 2} partial pressure in the calciner should be lowered to lower the calcination temperature. This can be achieved by additional steam supply into the calciner. Steam could then be condensed in an external condenser to single out the CO{sub 2} stream from the exit gas mixture of the calciner. A calciner design based on this concept is illustrated.

  17. Spray characteristics and spray cooling heat transfer in the non-boiling regime

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Han, Feng-Yun; Liu, Qi-Nie; Fan, Han-Lin

    2011-01-01

    Spray cooling is an effective method for dissipating high heat fluxes in the field of electronics thermal control. In this study, experiments were performed with distilled water as a test liquid to study the spray cooling heat transfer in non-boiling regime. A Phase Doppler Anemometry (PDA) was used to study the spray characteristics. The effects of spray flow rate, spray height, and inlet temperature on spray cooling heat transfer were investigated. It was found that the parameters affect heat transfer of spray cooling in non-boiling regime by the spray characteristics and working fluid thermophysical properties. Then the corresponding droplet axial velocity and Sauter mean diameter (SMD) were successfully correlated with mean absolute error of 15%, which were based upon the orifice diameter, the Weber and Reynolds numbers of the orifice flow prior to liquid breakup, dimensionless spray height and spray cross-section radius. The heat transfer in non-boiling regime was correlated with a mean absolute error of 7%, which was mainly associated with the working fluid thermophysical properties, the Weber and Reynolds numbers hitting the heating surface, dimensionless heating surface temperature and diameter. -- Highlights: → The spray flow rate, spray height, and inlet temperature affect heat transfer of spray cooling in non-boiling regime by the spray characteristics and the working fluid thermophysical properties. → Then the corresponding droplet axial velocity and Sauer mean diameter (SMD) were successfully correlated with mean absolute error of 15%. → The heat transfer in non-boiling regime was correlated with a mean absolute error of 7%.

  18. High resolution visualization and analysis of nasal spray drug delivery.

    Science.gov (United States)

    Inthavong, Kiao; Fung, Man Chiu; Tong, Xuwen; Yang, William; Tu, Jiyuan

    2014-08-01

    Effective nasal drug delivery of new-generation systemic drugs requires efficient devices that can achieve targeted drug delivery. It has been established that droplet size, spray plume, and droplet velocity are major contributors to drug deposition. Continual effort is needed to better understand and characterise the physical mechanisms underpinning droplet formation from nasal spray devices. High speed laser photography combined with an in-house designed automated actuation system, and a highly precise traversing unit, measurements and images magnified in small field-of-view regions within the spray was performed. The qualitative results showed a swirling liquid sheet at the near-nozzle region as the liquid is discharged before ligaments of fluid are separated off the liquid sheet. Droplets are formed and continue to deform as they travel downstream at velocities of up to 20 m/s. Increase in actuation pressure produces more rapid atomization and discharge time where finer droplets are produced. The results suggest that device designs should consider reducing droplet inertia to penetrate the nasal valve region, but find a way to deposit in the main nasal passage and not escape through to the lungs.

  19. Effect of calcinations temperature of CuO nanoparticle on the kinetics of decontamination and decontamination products of sulphur mustard.

    Science.gov (United States)

    Mahato, T H; Singh, Beer; Srivastava, A K; Prasad, G K; Srivastava, A R; Ganesan, K; Vijayaraghavan, R

    2011-09-15

    Present study investigates the potential of CuO nanoparticles calcined at different temperature for the decontamination of persistent chemical warfare agent sulphur mustard (HD) at room temperature (30 ± 2 °C). Nanoparticles were synthesized by precipitation method and characterized by using SEM, EDAX, XRD, and Raman Spectroscopy. Synthesized nanoparticles were tested as destructive adsorbents for the degradation of HD. Reactions were monitored by GC-FID technique and the reaction products characterized by GC-MS. It was observed that the rate of degradation of HD decreases with the increase in calcination temperature and there is a change in the percentage of product of HD degradation. GC-MS data indicated that the elimination product increases with increase in calcination temperature whereas the hydrolysis product decreases. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials

    International Nuclear Information System (INIS)

    Sun, Zhiming; Zhang, Yuzhong; Zheng, Shuilin; Park, Yuri; Frost, Ray L.

    2013-01-01

    Highlights: ► Composite phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite. ► The optimum mixed proportion was obtained through differential scanning calorimetry. ► Thermal energy storage properties of the composite PCMs were determined by DSC. ► Thermal cycling test showed that the prepared PCMs are thermally reliable and chemically stable. - Abstract: A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 °C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value

  1. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhiming [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Zhang, Yuzhong [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Zheng, Shuilin, E-mail: shuilinzh@yahoo.com.cn [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Park, Yuri [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Frost, Ray L., E-mail: r.frost@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2013-04-20

    Highlights: ► Composite phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite. ► The optimum mixed proportion was obtained through differential scanning calorimetry. ► Thermal energy storage properties of the composite PCMs were determined by DSC. ► Thermal cycling test showed that the prepared PCMs are thermally reliable and chemically stable. - Abstract: A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 °C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value.

  2. Scalable synthesis of mesoporous titania microspheres via spray-drying method.

    Science.gov (United States)

    Pal, Manas; Wan, Li; Zhu, Yongheng; Liu, Yupu; Liu, Yang; Gao, Wenjun; Li, Yuhui; Zheng, Gengfeng; Elzatahry, Ahmed A; Alghamdi, Abdulaziz; Deng, Yonghui; Zhao, Dongyuan

    2016-10-01

    Mesoporous TiO2 has several potential applications due to its unique electronic and optical properties, although its structures and morphologies are typically difficult to tune because of its uncontrollable and fast sol-gel reaction. In this study we have coupled the template-directed-sol-gel-chemistry with the low-cost, scalable, and environmentally benign aerosol (spray-drying) one-pot preparation technique for the fabrication of hierarchically mesoporous TiO2 microspheres and Fe3O4@mesoporous TiO2-x microspheres in a large scale. Parameters during the pre-hydrolysis and spray-drying treatment were varied to successfully control the bead diameter, morphology, monodispersity, surface area and pore size for improving their effectiveness for better application. Unlike to the previous aerosol synthetic approaches, where mainly quite a high temperature gradient with the strict control of spray-drying precursor concentration is implied, our strategy is lying on comparatively low drying temperature with an additional post-ultrasonication (further hydrolysis and condensation) route of the pre-calcined TiO2 samples. As-synthesized mesoporous microspheres have a size distribution from 500nm to 5μm, specific surface areas ranging from 150 to 162m(2)g(-1) and mean pore sizes of several nanometers (4-6nm). Further Fe3O4@mesoporous TiO2-x microspheres were observed to show remarkable selective phosphopeptide-enrichment activity which might have significant importance in disease diagnosis and other biomedical applications. Copyright © 2016. Published by Elsevier Inc.

  3. Physical and chemical characteristics of fluorinel/sodium calcine generated during 30 cm Pilot-Plant Run 17

    International Nuclear Information System (INIS)

    Brewer, K.N.; Kessinger, G.F.; Littleton, L.L.; Olson, A.L.

    1993-07-01

    The 30 centimeter (cm) pilot plant calciner Run 17, of March 9, 1987, was performed to study the calcination of fluroinel-sodium blended waste blended at the ratio 3.5:1 fluorinel to sodium, respectively. The product of the run was analyzed by a variety of analytical techniques that included X-ray powder diffraction (XRD), inductively coupled plasma spectroscopy (ICP), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) to deduce physical and chemical characteristics. The analytical data, as well as data analyses and conclusions drawn from the data, are presented

  4. Modeling the influence of nozzle-generated turbulence on diesel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Magnotti, G M; Matusik, K E; Duke, D J; Knox, B W; Martinez, G L; Powell, C F; Kastengren, A L; Genzale, C L

    2017-05-18

    The physical mechanisms governing spray breakup in direct injection engines, such as aerodynamic induced instabilities and nozzle-generated cavitation and turbulence, are not well understood due to the experimental and computational limitations in resolving these processes. Recent x-ray and visible extinction measurements have been con-ducted with a targeted interest in the spray formation region in order to characterize the distribution of droplet sizes throughout the spray. Detailed analysis of these measurements shows promise of yielding insight into likely mechanisms governing atomization, which can inform the improvement of spray models for engine computational fluid dynamic (CFD) codes. In order to investigate potential atomization mechanisms, we employ a joint experimental and computational approach to characterize the structure of the spray formation region using the Engine Combustion Network Spray D injector. X-ray tomography, radiography and ultra-small angle x-ray scattering measurements conducted at the Advanced Photon Source at Argonne National Laboratory quantify the injector geometry, liquid fuel mass and Sauter mean diameter (SMD) distributions under non-vaporizing conditions. Diffused back-illumination imaging measurements, conducted at the Georgia Institute of Technology, characterize the asymmetry of the spray structure. The selected range of injection pressures (50 – 150 MPa) and ambient densities (1.2 – 22.8 kg/m3) allow for the influence of aerodynamic forces on the spray to be studied in a controlled and systematic manner, while isolating the atomization process from the effects of vaporization. In comparison to high ambient density conditions, the spray is observed to be more asymmetric at low ambient density conditions. Although several mechanisms may cause asymmetries in the nozzle exit flow conditions and ultimately the spray distribution, irregularities in the internal nozzle geometry were identified, suggesting an increased

  5. Transient analysis of intermittent multijet sprays

    Energy Technology Data Exchange (ETDEWEB)

    Panao, Miguel R.O.; Moreira, Antonio Luis N. [Universidade Tecnica de Lisboa, IN, Center for Innovation, Technology and Policy Research, Instituto Superior Tecnico, Lisboa (Portugal); Durao, Diamantino G. [Universidade Lusiada, Lisboa (Portugal)

    2012-07-15

    This paper analyzes the transient characteristics of intermittent sprays produced by the single-point impact of multiple cylindrical jets. The aim is to perform a transient analysis of the intermittent atomization process to study the effect of varying the number of impinging jets in the hydrodynamic mechanisms of droplet formation. The results evidence that hydrodynamic mechanisms underlying the physics of ligament fragmentation in 2-impinging jets sprays also apply to sprays produced with more than 2 jets during the main period of injection. Ligaments detaching from the liquid sheet, as well as from its bounding rim, have been identified and associated with distinct droplet clusters, which become more evident as the number of impinging jets increases. Droplets produced by detached ligaments constitute the main spray, and their axial velocity becomes more uniformly distributed with 4-impinging jets because of a delayed ligament fragmentation. Multijet spray dispersion patterns are geometric depending on the number of impinging jets. Finally, an analysis on the Weber number of droplets suggests that multijet sprays are more likely to deposit on interposed surfaces, thus becoming a promising and competitive atomization solution for improving spray cooling. (orig.)

  6. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--cobalt permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high-temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating cobalt--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--cobalt magnets, sprayed from samarium-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million gauss-oersteds and coercive forces of approximately 6000 oersteds. Bar magnet arrays were constructed by depositing magnets on ceramic substrates. (auth)

  7. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--Co permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating Co--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--Co magnets, sprayed from Sm-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million G-Oe and coercive forces of approximately 6000 Oe. Bar magnet arrays were constructed by depositing magnets on ceramic substrates

  8. LSPRAY-IV: A Lagrangian Spray Module

    Science.gov (United States)

    Raju, M. S.

    2012-01-01

    LSPRAY-IV is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray. Some important research areas covered as a part of the code development are: (1) the extension of combined CFD/scalar-Monte- Carlo-PDF method to spray modeling, (2) the multi-component liquid spray modeling, and (3) the assessment of various atomization models used in spray calculations. The current version contains the extension to the modeling of superheated sprays. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers.

  9. Twofold role of calcined hydrotalcites in the degradation of methyl parathion pesticide

    Directory of Open Access Journals (Sweden)

    Alvaro Sampieri

    2011-02-01

    Full Text Available Methyl parathion (MP is a very toxic organophosphate pesticide used as a non-systematic insecticide and acaricide on many corps. As MP and its by-products are highly toxic, they have to be retained to avoid pollution of rivers and lakes. Highly efficient sorbents are hydrotalcites (HTs (or anionic clays. We have correlated the degradation of an aqueous solution of MP at room temperature, with the basicity of the adsorbing materials. It was found that the metal composition of hydrotalcites determines both the surface electronic properties (basic or acidic and the sorption capacity. Depending on the basic strength, some calcined hydrotalcites can catalyze the transformation of MP to p-nitrophenol (p-NP and retain its by-products. Such a process has the advantage of being able to be carried out at room temperature and at the pH of the pesticide solution.

  10. Influence of temperature on the synthesis of calcining cement α--tricalcium phosphate

    International Nuclear Information System (INIS)

    Vieira, R.S.; Thurmer, M.B.; Coelho, W.T.; Fernandes, J.M.; Santos, L.A.

    2011-01-01

    The calcium phosphate cement (CFCs) bone substitutes are of great potential use in medical and dental. However, one of the great difficulties of using this type of cement is its low mechanical strength due to the presence of undesirable phases, such as beta-tricalcium phosphate. The step of obtaining this compound is done at high temperature by solid state reaction. With the aim of obtaining calcium phosphate cements more resistant, we studied the conditions for obtaining an alpha-TCP at temperatures of 1300, 1400 and 1500 ° C with time 2h calcination. The samples were analyzed for crystalline phases, density, porosity and mechanical strength. The results show that the synthesis parameters studied strongly influence the obtained phases and the mechanical properties of cement. (author)

  11. Distance based control system for machine vision-based selective spraying

    NARCIS (Netherlands)

    Steward, B.L.; Tian, L.F.; Tang, L.

    2002-01-01

    For effective operation of a selective sprayer with real-time local weed sensing, herbicides must be delivered, accurately to weed targets in the field. With a machine vision-based selective spraying system, acquiring sequential images and switching nozzles on and off at the correct locations are

  12. Log-normal spray drop distribution...analyzed by two new computer programs

    Science.gov (United States)

    Gerald S. Walton

    1968-01-01

    Results of U.S. Forest Service research on chemical insecticides suggest that large drops are not as effective as small drops in carrying insecticides to target insects. Two new computer programs have been written to analyze size distribution properties of drops from spray nozzles. Coded in Fortran IV, the programs have been tested on both the CDC 6400 and the IBM 7094...

  13. Evaluation of non-invasive trunk sprays and trunk-injected emamectic benzoate

    Science.gov (United States)

    Deborah G. McCullough; D.L. Cappaert; T.M. Poland; A.C. Anulewicz; P. Lewis; J. Molongoski

    2008-01-01

    In 2007, we continued to evaluate two neo-nicotinoid insecticides, imidacloprid and dinotefuron, applied as non-invasive trunk sprays to control emerald ash borer (EAB), Agrilus planipennis Fairmaire. Neo-nicotinoid products are widely used to protect landscape ash trees because they are relatively safe for humans and non-target species. These...

  14. Spray deposition inside tree canopies from a newly developed variable-rate air assisted sprayer

    Science.gov (United States)

    Conventional spray applications in orchards and ornamental nurseries are not target-oriented, resulting in significant waste of pesticides and contamination of the environment. To address this problem, a variable-rate air-assisted sprayer implementing laser scanning technology was developed to apply...

  15. On the modeling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Christer

    1997-12-01

    This report concerns on the modelling of fuel sprays in a non-combustible case using an own developed fuel spray code module. The spray code is made as an independent module to simplify the use of different gas flow solvers together with the spray module. This enables the possibility to use different turbulence models. In the report two turbulence models has been used, the standard k-{epsilon} and the LES (Large Eddy Simulation) model. The report presents results obtained from a sensitivity study of both numerical and physical parameters on an evaporating spray under diesel like conditions (light duty diesel engine) with the spray code module attached to a cylindrical gas phase flow solver. The results from the sensitivity analysis showed that these effects were not so pronounced as has been reported. It was suggested that this was due to the `easy` nature of the investigated case, where the flow field could be sufficiently resolved without violating the droplet void fraction criteria and break-up, collision and combustion that may increase the grid spacing sensitivity were not modelled. An investigation was performed to valuate the feasibility of using LES as turbulence model. Calculations of the initial phase of a developing jet were made and it was found that in the initial phase of the spray and the flow structure were similar to that of a spatially developing jet flow, which is in agreement with experimental observations. Results from LES calculations on a developing spray jet was also compared with k-{epsilon} based ones. This result showed that the spray-LES approach captured the transition from a laminar to a turbulent flow field with an increase in turbulent kinetic energy k along the injection direction 45 refs, 37 figs, 2 tabs

  16. Reactor Containment Spray Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Row, T. H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1968-12-15

    The design basis accident in water moderated power reactors is a loss-of-coolant accident in which water sprays are generally employed to control the containment pressure transient by condensing the released steam-air mixture. Additives to the spray have been proposed as a way to increase their usefulness by enhancing the removal of various forms of radioiodine from the containment atmosphere. A program to investigate the gas-liquid systems involved is co-ordinated by ORNL for the US Atomic Energy Commission. A basic part of the program is the search for various chemical additives that will increase the spray affinity for molecular iodine and methyl iodide. A method for evaluating additives was developed that measures equilibrium distribution coefficients for iodine between air and aqueous solutions. Additives selected are used in single drop-wind tunnel experiments where the circulating gas contains iodine or CH{sub 3}I. Mass transfer coefficients and transient distribution coefficients have been determined as a function of relative humidity, temperature, drop size, and solution pH and concentration. Tests have shown that surfactants and organic amines increase the solution ability to getter CH{sub 3}l. Results from single drop tests help in planning spray experiments in the Nuclear Safety Pilot Plant, a large ({approx}38 m{sup 3}) facility, where accident conditions are closely simulated. Iodine and CH{sub 3}I removal rates have been determined for a number of solutions, including 1 wt% Na{sub 2}S{sub 2}O{sub 3} + 3000 ppm B + 0.153 M NaOH and 3000 ppm B + 0.153 M NaOH. The additive has very little effect in removal of I{sub 2} with half-lives of less than 1 mm typical for any aqueous solution. These same solutions remove CH{sub 3}I with a half-life of one hour. Analytical models for the removal processes have been developed. Consideration is also being given to corrosion, thermal and radiation stability of the solutions. Radiation studies have indicated the loss

  17. Chemistry of application of calcination/dissolution to the Hanford tank waste inventory

    International Nuclear Information System (INIS)

    Delegard, C.H.; Elcan, T.D.; Hey, B.E.

    1994-05-01

    Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs

  18. Synthesis of Cd/(Al+Fe) layered double hydroxides and characterization of the calcination products

    International Nuclear Information System (INIS)

    Perez, M.R.; Barriga, C.; Fernandez, J.M.; Rives, V.; Ulibarri, M.A.

    2007-01-01

    Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method at a constant pH value of 8. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange at pH 9. The samples have been characterized by elemental chemical analysis, powder X-ray diffraction (PXRD), and FT-IR spectroscopy. Their thermal stability has been assessed by thermogravimetric and differential thermal analyses (TG-DTA) and mass spectrometric analysis of the evolved gases. The PXRD patterns of the solids calcined at 800 deg. C show diffraction lines corresponding to Cd(Al)O and spinel-type materials, which precise nature (CdAl 2 O 4 , Cd 1-x Fe 2+x O 4 , or Cd x Fe 2.66 O 4 ) depends on location and concentration of iron in the parent material or precursor. - Graphical abstract: Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange. Calcination at 800 deg. C shows diffraction lines corresponding to CdO and to spinel-type materials. SEM micrograph of sample CdAlFe-N-0

  19. Development of mesoporosity in scandia-stabilized zirconia: particle size, solvent, and calcination effects.

    Science.gov (United States)

    Cahill, James T; Ruppert, Jesse N; Wallis, Bryce; Liu, Yanming; Graeve, Olivia A

    2014-05-20

    We present the mechanisms of formation of mesoporous scandia-stabilized zirconia using a surfactant-assisted process and the effects of solvent and thermal treatments on the resulting particle size of the powders. We determined that cleaning the powders with water resulted in better formation of a mesoporous structure because higher amounts of surfactant were preserved on the powders after washing. Nonetheless, this resulted in agglomerate sizes that were larger. The water-washed powders had particle sizes of >5 μm in the as-synthesized state. Calcination at 450 and 600 °C reduced the particle size to ∼1-2 and 0.5 μm, respectively. Cleaning with ethanol resulted in a mesoporous morphology that was less well-defined compared to the water-washed powders, but the agglomerate size was smaller and had an average size of ∼250 nm that did not vary with calcination temperature. Our analysis showed that surfactant-assisted formation of mesoporous structures can be a compromise between achieving a stable mesoporous architecture and material purity. We contend that removal of the surfactant in many mesoporous materials presented in the literature is not completely achieved, and the presence of these organics has to be considered during subsequent processing of the powders and/or for their use in industrial applications. The issue of material purity in mesoporous materials is one that has not been fully explored. In addition, knowledge of the particle (agglomerate) size is essential for powder handling during a variety of manufacturing techniques. Thus, the use of dynamic light scattering or any other technique that can elucidate particle size is essential if a full characterization of the powders is needed for achieving postprocessing effectiveness.

  20. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite

    Science.gov (United States)

    Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-12-01

    Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.

  1. Chemistry of application of calcination/dissolution to the Hanford tank waste inventory

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H.; Elcan, T.D.; Hey, B.E.

    1994-05-01

    Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs.

  2. Polydisperse effects in jet spray flames

    Science.gov (United States)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  3. Spray drying for processing of nanomaterials

    International Nuclear Information System (INIS)

    Lindeloev, Jesper Saederup; Wahlberg, Michael

    2009-01-01

    Consolidation of nano-particles into micron-sized granules reduces the potential risks associated with handling nano-powders in dry form. Spray drying is a one step granulation technique which can be designed for safe production of free flowing low dusty granules from suspensions of nano-particles. Spray dried granules are well suited for subsequent processing into final products where the superior properties given by the nano-particles are retained. A spray drier with bag filters inside the drying chamber and recycling of drying gas combined with containment valves are proposed as a safe process for granulation of potential hazardous nano-particles.

  4. Spray deposition using impulse atomization technique

    International Nuclear Information System (INIS)

    Ellendt, N.; Schmidt, R.; Knabe, J.; Henein, H.; Uhlenwinkel, V.

    2004-01-01

    A novel technique, impulse atomization, has been used for spray deposition. This single fluid atomization technique leads to different spray characteristics and impact conditions of the droplets compared to gas atomization technique which is the common technique used for spray deposition. Deposition experiments with a Cu-6Sn alloy were conducted to evaluate the appropriateness of impulse atomization to produce dense material. Based on these experiments, a model has been developed to simulate the thermal history and the local solidification rates of the deposited material. A numerical study shows how different cooling conditions affect the solidification rate of the material

  5. The electrodeposition of 149Sm targets for (n,α) studies

    International Nuclear Information System (INIS)

    Ingelbrecht, C.; Ambeck-Madsen, J.; Teipel, K.; Robouch, P.; Arana, G.; Pomme, S.

    1999-01-01

    A method of electrodeposition from ethanol was developed for the production of 149 Sm targets of area 50x60 mm 2 to be used for (n,α) experiments. Targets of 60 μg cm -2 Sm were obtained with a Sm yield of 50% and a Sm mass fraction of 35% after calcination of the layers at 450 deg. C. Target substrates were 20 μm aluminium foils mounted on brass frames. A water cooling jig was constructed to protect the glue used for mounting during the calcination process. The layers were characterized by inductively coupled plasma source mass spectrometry (ICP-MS) and by neutron activation analysis (NAA)

  6. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    Czech Academy of Sciences Publication Activity Database

    Čížek, J.; Matejková, M.; Dlouhý, I.; Šiška, Filip; Kay, C.M.; Karthikeyan, J.; Kuroda, S.; Kovařík, O.; Siegl, J.; Loke, K.; Khor, K.A.

    2015-01-01

    Roč. 24, č. 5 (2015), s. 758-768 ISSN 1059-9630 Institutional support: RVO:68081723 Keywords : Cold spray * Fatigue * Grit-blast Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.568, year: 2015

  7. Tungsten/copper composite deposits produced by a cold spray

    International Nuclear Information System (INIS)

    Kang, Hyun-Ki; Kang, Suk Bong

    2003-01-01

    An agglomerated tungsten/copper composite powder was both cold sprayed and plasma sprayed onto a mild steel substrate for electronic package applications. Most pores resulting from the spraying were found in the vicinity of the tungsten-rich regions of the final product. The levels of porosity varied with the amount of tungsten present. No copper oxidation was found at the cold-sprayed deposit, but relatively high copper oxidation was observed at the plasma-sprayed deposit

  8. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  9. Layered growth with bottom-spray granulation for spray deposition of drug.

    Science.gov (United States)

    Er, Dawn Z L; Liew, Celine V; Heng, Paul W S

    2009-07-30

    The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.

  10. Stabilized γ-BIMNVOX solid electrolyte: Ethylene glycol–citrate sol–gel synthesis, microwave-assisted calcination, and structural and electrical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Al-Areqi, Niyazi A.S., E-mail: niyazi.alareqi@gmail.com [Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Republic of Yemen (Yemen); Beg, Saba [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Al-Alas, Ahlam [Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Republic of Yemen (Yemen); Hafeez, Shehla [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India)

    2013-12-25

    Highlights: •γ-BIMNVOX was synthesized by ethylene glycol–citrate sol–gel route. •γ-BIMNVOX crystallizes by 25-min microwave-assisted calcination. •Smaller particle sizes for microwave calcined BIMNVOX samples. •Best oxide-ion performance for microwave calcined BIMNVOX samples. -- Abstract: Samples of γ-BIMNVOX (Bi{sub 2}V{sub 1−x}Mn{sub x}O{sub 5.5−x/2}; 0.13 ⩽ x ⩽ 0.20) system were synthesized by an ethylene glycol–citrate sol–gel route. The resulting xerogels were then calcined by the microwave heating using a modified domestic microwave oven operated at 2.45 GHz. Microwave-assisted calcination samples in comparison with other conventionally calcined samples were characterized in terms of phase crystallization, stabilization and particle size using simultaneous thermogravimetric–differential thermal analysis (TG–DTA), X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). The AC impedance spectroscopy was employed for electrical characterization. It was found that the microwave-assisted calcination route successfully produces better crystalline stabilized γ-BIMNVOX samples with appreciably small average particle sizes after only 25 min of microwave heating. The electrical properties of microwave calcined γ-BIMNVOX system make it an advanced low-temperature solid electrolyte suitable for use in oxide-ion based electrochemical applications.

  11. To study the effect of dopant NiO concentration and duration of calcinations on structural and optical properties of MgO-NiO nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh, E-mail: rkkaushik06@gmail.com [Deptt. of Physics, M.D. University, Rohtak-124001, Haryana (India); Deptt. of Physics,Vaish College of Engineering, Rohtak-124001, Haryana (India); Praveen,; Sharma, Ashwani; Parmar, R.; Dahiya, S. [Deptt. of Physics, M.D. University, Rohtak-124001, Haryana (India); Kishor, N. [Deptt. of Physics, Central University of Haryana (India)

    2016-05-06

    In present work Magnesium oxide (MgO) samples were doped with different concentration of Transition metal Nickel Oxide(NiO) by using Chemical co-precipitation method. The doping levels were varied from NiO (5%, 10%, 15%) and all the samples were calcined at 600°C for 4hrs and 8hrs respectively. Structural analysis of these calcined materials is carried out by X-ray diffraction (XRD) techniques which reveals that average crystalline sizes are in nano region i.e. 21.77nm-31.13 nm and tabulated in table 1. The powder of calcined samples were also characterized by using various other techniques i.e. Scanning Electron Microscopy (SEM), Fourier Transformation Infrared Spectroscopy (FTIR), UV-Visible spectroscopy, Transmission Electron Microscopy (TEM) etc. The effects of dopant concentration, calcined temperature, calcinations duration on samples were studied and also investigate the effect of varying dopant concentration on morphology and optical properties of calcined nanomaterials. From results it was observed that the crystallite size of nanocomposites increases with increases dopant concentration or increases calcinations duration. The optical band gap decreases with increases sintering time and increase with increases dopant concentrations. TEM results coincide with XRD results and show that particles are polycrystalline in nature. FTIR spectra show that for all samples particles are pure in composition and transmission rate increases with calcinations duration.

  12. Moessbauer characterization of calcium-ferrite oxides prepared by calcining Fe2O3 and CaO

    International Nuclear Information System (INIS)

    Hirabayashi, Daisuke; Sakai, Yoichi; Yoshikawa, Takeshi; Mochizuki, Kazuhiro; Kojima, Yoshihiro; Suzuki, Kenzi; Ohshita, Kazumasa; Watanabe, Yasuo

    2006-01-01

    Calcium ferrite oxides were prepared by calcining a mixture powder of iron- and calcium oxide. The 57 Fe-Moessbauer spectra of the calcium ferrites oxides were measured, revealing that the products should be Ca 2 Fe 2 O 5 and CaFe 2 O 4 , the ratio of which was dependent of the Fe/Ca atomic ratio of the mixture powder.

  13. Improvement of Gold Leaching from a Refractory Gold Concentrate Calcine by Separate Pretreatment of Coarse and Fine Size Fractions

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-05-01

    Full Text Available A total gold extraction of 70.2% could only be reached via direct cyanidation from a refractory As-, S- and C-bearing gold concentrate calcine, and the gold extraction varied noticeably with different size fractions. The reasons for unsatisfactory gold extraction from the calcine were studied through analyses of chemical composition, chemical phase and SEM-EDS of different sizes of particles. It was found that a significant segregation of compositions occurred during the grinding of gold ore before flotation. As a result, for the calcine obtained after oxidative roasting, the encapsulation of gold by iron oxides was easily engendered in finer particles, whilst in coarser particles the gold encapsulation by silicates was inclined to occur likely due to melted silicates blocking the porosity of particles. The improvement of gold leaching from different size fractions was further investigated through pretreatments with alkali washing, acid pickling or sulfuric acid curing-water leaching. Finally, a novel process was recommended and the total gold extraction from the calcine could be increased substantially to 93.6% by the purposeful pretreatment with alkali washing for the relatively coarse size fraction (+37 μm and sulfuric acid curing–water leaching for the fine size fraction (−37 μm.

  14. Influence of calcination temperature on sol-gel synthesized single-phase bismuth titanate for high dielectric capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Thiruramanathan, Pandirengan; Marikani, Arumugam [Mepco Schlenk Engineering College, Tamil Nadu (India). Dept. of Physics; Madhavan, Durairaj [Mepco Schlenk Engineering College, Tamil Nadu (India). Dept. of Chemistry; Bharadwaj, Suresh; Awasthi, Anand Mohan [UGC-DAE Consortium for Scientific Research, Indore (India). Thermodynamics Lab.

    2016-05-15

    An inexpensive sol-gel combustion method using citric acid as fuel has been used to synthesize bismuth titanate, Bi{sub 4}Ti{sub 3}O{sub 12} nanopowders. Thermogravimetric analysis proved that a calcination temperature of 900 C is sufficient for the preparation of single-phase bismuth titanate. X-ray diffraction and Fourier transform infrared spectroscopy are used to examine the influence of calcination temperature on the structural growth of the Bi{sub 4}Ti{sub 3}O{sub 12} nanopowder. The average crystallite size estimated by using the Scherrer method and the Williamson-Hall method was found to increase with calcination temperature. Photoluminescence behavior as a function of calcination temperature was observed at two different excitation wavelengths of 300 nm and 420 nm. The morphology of the particles analyzed using images obtained from field emission scanning electron microscopy displayed irregular, random sized, and spherical-shaped structures. The stoichiometry and purity of the nanopowder are confirmed by energy-dispersive spectroscopy. The broadband dielectric results established the highest dielectric constant (ε{sub r} = 450) for a frequency of 100 Hz achieved with a potential capacitance of 138 pF m{sup -2}. This establishes Bi{sub 4}Ti{sub 3}O{sub 12} as a promising dielectric material for achieving high energy density capacitors for the next-generation passive devices.

  15. Prediction model of ammonium uranyl carbonate calcination by microwave heating using incremental improved Back-Propagation neural network

    Energy Technology Data Exchange (ETDEWEB)

    Li Yingwei [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Peng Jinhui, E-mail: jhpeng@kmust.edu.c [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Liu Bingguo [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Li Wei [Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Huang Daifu [No. 272 Nuclear Industry Factory, China National Nuclear Corporation, Hengyang, Hunan Province 421002 (China); Zhang Libo [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China)

    2011-05-15

    Research highlights: The incremental improved Back-Propagation neural network prediction model using the Levenberg-Marquardt algorithm based on optimizing theory is put forward. The prediction model of the nonlinear system is built, which can effectively predict the experiment of microwave calcining of ammonium uranyl carbonate (AUC). AUC can accept the microwave energy and microwave heating can quickly decompose AUC. In the experiment of microwave calcining of AUC, the contents of U and U{sup 4+} increased with increasing of microwave power and irradiation time, and decreased with increasing of the material average depth. - Abstract: The incremental improved Back-Propagation (BP) neural network prediction model was put forward, which was very useful in overcoming the problems, such as long testing cycle, high testing quantity, difficulty of optimization for process parameters, many training data probably were offered by the way of increment batch and the limitation of the system memory could make the training data infeasible, which existed in the process of calcinations for ammonium uranyl carbonate (AUC) by microwave heating. The prediction model of the nonlinear system was built, which could effectively predict the experiment of microwave calcining of AUC. The predicted results indicated that the contents of U and U{sup 4+} were increased with increasing of microwave power and irradiation time, and decreased with increasing of the material average depth.

  16. Prediction model of ammonium uranyl carbonate calcination by microwave heating using incremental improved Back-Propagation neural network

    International Nuclear Information System (INIS)

    Li Yingwei; Peng Jinhui; Liu Bingguo; Li Wei; Huang Daifu; Zhang Libo

    2011-01-01

    Research highlights: → The incremental improved Back-Propagation neural network prediction model using the Levenberg-Marquardt algorithm based on optimizing theory is put forward. → The prediction model of the nonlinear system is built, which can effectively predict the experiment of microwave calcining of ammonium uranyl carbonate (AUC). → AUC can accept the microwave energy and microwave heating can quickly decompose AUC. → In the experiment of microwave calcining of AUC, the contents of U and U 4+ increased with increasing of microwave power and irradiation time, and decreased with increasing of the material average depth. - Abstract: The incremental improved Back-Propagation (BP) neural network prediction model was put forward, which was very useful in overcoming the problems, such as long testing cycle, high testing quantity, difficulty of optimization for process parameters, many training data probably were offered by the way of increment batch and the limitation of the system memory could make the training data infeasible, which existed in the process of calcinations for ammonium uranyl carbonate (AUC) by microwave heating. The prediction model of the nonlinear system was built, which could effectively predict the experiment of microwave calcining of AUC. The predicted results indicated that the contents of U and U 4+ were increased with increasing of microwave power and irradiation time, and decreased with increasing of the material average depth.

  17. Influence of calcination temperature on the zirconia microstructure synthesized by complex polymerization method (CPM): a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.L.P.; Mota, F.V.; Nascimento, R.M.; Henriques, B.P.; Silva, F.S.; Assis, R. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2016-07-01

    Full text: The aim of this study was to accomplish a previous characterization of the zirconia synthesized by Complex Polymerization Method (CPM) using yttria as stabilizing agent and different calcination temperatures. The powders were crystallized at 800, 900 and 1000 °C for 2h. The structural evolution Y-TZP powders were characterized by X-Ray Diffraction (XRD) and Micro-Raman Spectroscopy. The thermal properties of the calcined pre-pyrolyzed (350 °C for 4 h), samples were investigated by simultaneous thermo analysis (TGA/DTA). After heat treatment the phase Y-TZP was obtained of a single-phase, with absence of the deleterious phases. The results show that average crystallite size of the powder synthesized with 3% of Yttria dopant, increased from 11.5 to 27.9 nm when the calcination temperature increased from 800 to 1000 °C. This behavior was observed for all specimens independent of the Yttria content. The micro-Raman indicate the presence of the tetragonal phase for all samples independent of the calcination temperature employed. (author)

  18. Influence of spray parameters on the microstructure and mechanical properties of gas-tunnel plasma sprayed hydroxyapatite coatings

    International Nuclear Information System (INIS)

    Morks, M.F.; Kobayashi, Akira

    2007-01-01

    For biomedical applications, hydroxyapatite (HA) coatings were deposited on 304 stainless steel substrate by using a gas tunnel type plasma spraying process. The influences of spraying distances and plasma arc currents on the microstructure, hardness and adhesion properties of HA coatings were investigated. Microstructure observation by SEM showed that HA coatings sprayed at low plasma power have a porous structure and poor hardness. HA coatings sprayed at high plasma power and short spraying distance are characterized by good adhesion and low porosity with dense structure. Hardness increased for HA coatings sprayed at shorter spraying distance and higher plasma power, mainly due to the formation of dense coatings

  19. Industrial application of model predictive control to a milk powder spray drying plant

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2016-01-01

    In this paper, we present our first results from an industrial application of model predictive control (MPC) with real-time steady-state target optimization (RTO) for control of an industrial spray dryer that produces enriched milk powder. The MPC algorithm is based on a continuous-time transfer...... provides significantly better control of the residual moisture content, increases the throughput and decreases the energy consumption compared to conventional PI-control. The MPC operates the spray dryer closer to the residual moisture constraint of the powder product. Thus, the same amount of feed...

  20. Plasma spray technology process parameters and applications

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Karthikeyan, J.; Ananthapadmanabhan, P.V.; Venkatramani, N.; Chatterjee, U.K.

    1991-01-01

    The current trend in the structural design philosophy is based on the use of substrate with the necessary mechanical properties and a thin coating to exhibit surface properties. Plasma spray process is a versatile surface coating technique which finds extensive application in meeting advance technologies. This report describes the plasma spray technique and its use in developing coatings for various applications. The spray system is desribed in detail including the different variables such as power input to the torch, gas flow rate, powder properties, powder injection, etc. and their interrelation in deciding the quality of the coating. A brief write-up on the various plasma spray coatings developed for different applications is also included. (author). 15 refs., 15 figs., 2 tabs

  1. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    Science.gov (United States)

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.

  2. Water Reclamation using Spray Drying, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a new spray drying technology for the recovery and recycle of water while stabilizing the solid wastes or residues as found in advanced life support...

  3. Ventilation Guidance for Spray Polyurethane Foam Application

    Science.gov (United States)

    Properly designed ventilation can reduce airborne levels of aerosols, mists, and vapors generated during spray application and can help protect SPF applicators, helpers, and others who may be working in adjacent areas.

  4. Spray drying formulation of amorphous solid dispersions.

    Science.gov (United States)

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Spray drying of beryllium oxide powder

    International Nuclear Information System (INIS)

    Sepulveda, J.L.; Kahler, D.A.

    1991-01-01

    Forming of beryllia ceramics through dry pressing requires the agglomeration of the powder through spray drying. To produce high quality fired ceramics it is necessary to disperse/grind the primary powder prior to binder addition. Size reduction of the powder is accomplished using an aqueous system in Vibro-Energy mills (VEM) charged with beryllia media to minimize contamination. Two VEM mills of different size were used to characterize the grinding operation. Details of the grinding kinetics are described within the context of the Macroscopic Population Balance Model approach. Spray drying of the ceramic slurry was accomplished with both a centrifugal atomizer and a two fluid nozzle atomizer. Two different spray dryers were used. Important operating parameters affecting the size distribution of the spray dried powder are discussed

  6. LSPRAY-V: A Lagrangian Spray Module

    Science.gov (United States)

    Raju, M. S.

    2015-01-01

    LSPRAY-V is a Lagrangian spray solver developed for application with unstructured grids and massively parallel computers. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray encountered over a wide range of operating conditions in modern aircraft engine development. It could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-V, we have advanced the state-of-the-art in spray computations in several important ways.

  7. Structure of Non-evaporating diesel sprays

    International Nuclear Information System (INIS)

    Mirza, M.R.; Baluch, A.H.; Tahir, Z.R.

    2008-01-01

    Need is always felt of some rational experimental information on fuel spray jet formation, its development and dispersion in the combustion chamber of an internal combustion engine. The latest study uses computational fluid dynamics for the modeling of engine flows. The original experimental work of the present author on non-evaporating sprays produced by a single-hole orifice type nozzle using a distribution type commercial fuel injection pump forms the basis to derive correlations for penetration rates, break up times and lengths of non-evaporating diesel sprays. The correlations derived can be used to do CFD modeling of sprays under variable conditions of injector nozzle hole diameter, fuel injection pressure and combustion chamber pressure. (author)

  8. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Yaroslav [Gas Technology Inst., Des Plaines, IL (United States); Kozlov, Aleksandr [Gas Technology Inst., Des Plaines, IL (United States)

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel

  9. Fine Sprays for Disinfection within Healthcare

    OpenAIRE

    G Nasr; A Whitehead; A Yule

    2016-01-01

    Problems exist worldwide with Hospital Acquired Infections (HAI's). The Spray Research Group (SRG) have been working with relevant industries in developing a product which can provide a delivery system for treatment chemicals for surfaces, including the design and testing of a novel Spill-Return Atomiser (SRA) for this purpose. A comprehensive description of this atomiser has already been given. This paper reports on a new application of this atomiser and discusses the problem of spray coatin...

  10. Plasma sprayed coatings on crankshaft used steels

    Science.gov (United States)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  11. Cold Spray for Repair of Magnesium Components

    Science.gov (United States)

    2011-11-01

    Readiness Center East GM General Motors He helium hex-Cr hexavalent chromium HP-Al High Purity Aluminum HVOF High Velocity Oxygen Fuel ID inner...process is the hexavalent chromium (hex-Cr) permissible exposure limit (PEL) as established by the Occupational Safety and Health Administration (OSHA...project related to replacement of hard chrome plating on helicopter dynamic components using HVOF thermal spray coatings. FRC-E has a thermal spray

  12. A comparison of biological effect and spray liquid distribution and deposition for different spray application techniques in different crops

    OpenAIRE

    Larsolle, Anders; Wretblad, Per; Westberg, Carl

    2002-01-01

    The objective of this study was to compare a selection of spray application techniques with different application volumes, with respect to the spray liquid distribution on flat surfaces, the deposition in fully developed crops and the biological effect. The spray application techniques in this study were conventional spray technique with three different nozzles: Teelet XR, Lechler ID and Lurmark DriftBeta, and also AirTec, Danfoil, Hardi Twin, Kyndestoit and Släpduk. The dynamic spray liquid ...

  13. Fine Sprays for Disinfection within Healthcare

    Directory of Open Access Journals (Sweden)

    G Nasr

    2016-09-01

    Full Text Available Problems exist worldwide with Hospital Acquired Infections (HAI's. The Spray Research Group (SRG have been working with relevant industries in developing a product which can provide a delivery system for treatment chemicals for surfaces, including the design and testing of a novel Spill-Return Atomiser (SRA for this purpose. A comprehensive description of this atomiser has already been given. This paper reports on a new application of this atomiser and discusses the problem of spray coating for disinfection that has been considered very little in previous work. The related spray coating performance tests in developing the product are thus provided. The experimental work includes determining the required spray duration and the coverage area produced by different sprays, including the analysis of the effects of atomiser positions, configurations, and the required number of atomisers. Comparison is made with the efficacy of an ultrasonic gas atomiser that is currently used for this purpose. The investigation has found that the utilisation of fine sprays (10μm>D32>25μm at high liquid pressure (<12MPa and low flow rates (<0.3 l/min is suitable for surface disinfection in healthcare applications (i.e. MRSA, VRSA etc.

  14. Spray pyrolysis process for preparing superconductive films

    International Nuclear Information System (INIS)

    Hsu, H.M.; Yee, I.Y.

    1991-01-01

    This paper describes a spray pyrolysis method for preparing thin superconductive film. It comprises: preparing a spray pyrolysis solution comprising Bi,Sr,Ca and Cu metals in a solvent; heating a substrate to a first temperature; spraying the solution onto the heated substrate to form a film thereon; heating the film and substrate to a second temperature of about 700 degrees-825 degrees C, the second temperature being higher than the first temperature; heating the film and substrate to a third temperature of about 870 degrees-890 degrees C to melt the film; once the film and substrate reach the third temperature, further heat treating the film and substrate; cooling the film and substrate to ambient temperature. This patent also describes a spray pyrolysis method for preparing thin superconductive films. It comprises: preparing a spray pyrolysis solution comprising Bi, Ca and Cu metals and fluxing agent in a solvent; heating a substrate to a first temperature; spraying the solution onto the heated substrate to form a film thereon; heating the film and substrate to a second temperature about 700 degrees-825 degrees C, the second temperature being higher than the first temperature; heating the film and substrate at a third temperature about 840 degrees-860 degrees C; and cooling the film and substrate to ambient temperature

  15. Spray drying of bead resins: feasibility tests

    International Nuclear Information System (INIS)

    Gay, R.L.; Grantham, L.F.; Jones, L.J.

    1984-01-01

    Rockwell International has developed a volume reduction system for low-level reactor wastes based on drying the wastes in a heated-air spray dryer. The drying of slurries of sodium sulfate, boric acid, and powdered ion exchange resins was demonstrated in previous tests. The drying of bead ion exchange resins can be especially difficult due to the relatively large size of bead resins (about 500 to 800 microns) and their natural affinity for water. This water becomes part of the pore structure of the resins and normally comprises 50 t 60 wt % of the resin weight. A 76-cm-diameter spray dryer was used for feasibility tests of spray drying of cation and anion bead resins. These resins were fed to the dryer in the as-received form (similar to dewatered resins) and as slurries. A dry, free-flowing product was produced in all the tests. The volume of the spray-dried product was one-half to one-third the volume of the as-received material. An economic analysis was made of the potential cost savings that can be achieved using the Rockwel spray dryer system. In-plant costs, transportation costs, and burial costs of spray-dried resins were compared to similar costs for disposal of dewatered resins. A typical utility producing 170 m 3 (6,000 ft 3 ) per year of dewatered resins can save $600,000 to $700,000 per year using this volume reduction system

  16. Nano spray drying for encapsulation of pharmaceuticals.

    Science.gov (United States)

    Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi

    2018-05-17

    Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Radio-frequency plasma spraying of ceramics

    International Nuclear Information System (INIS)

    Okada, T.; Hamatani, H.; Yoshida, T.

    1989-01-01

    This study was aimed at developing a novel spraying process using a radio-frequency (rf) plasma. Experiments of Al 2 O 3 and ZrO 2 - 8 wt% Y 2 O 3 spraying showed that the initial powder size was the most important parameter for depositing dense coatings. The optimum powder sizes of Al 2 O 3 and ZrO 2 - 8 wt% Y 2 O 3 were considered to be around 100 and 80 μm, respectively. The use of such large-size powders compared with those used by conventional dc plasma spraying made it possible to deposit adherent ceramics coatings of 150 to 300 μm on as-rolled SS304 substrates. It was also shown that low particle velocity of about 10 m/s, which is peculiar to rf plasma spraying, was sufficient for particle deformation, though it imposed a severe limitation on the substrate position. These experimental results prove that rf plasma spraying is an effective process and a strong candidate to open new fields of spraying applications

  18. Pharmaceutical spray drying: solid-dose process technology platform for the 21st century.

    Science.gov (United States)

    Snyder, Herman E

    2012-07-01

    Requirement for precise control of solid-dosage particle properties created with a scalable process technology are continuing to expand in the pharmaceutical industry. Alternate methods of drug delivery, limited active drug substance solubility and the need to improve drug product stability under room-temperature conditions are some of the pharmaceutical applications that can benefit from spray-drying technology. Used widely for decades in other industries with production rates up to several tons per hour, pharmaceutical uses for spray drying are expanding beyond excipient production and solvent removal from crystalline material. Creation of active pharmaceutical-ingredient particles with combinations of unique target properties are now more common. This review of spray-drying technology fundamentals provides a brief perspective on the internal process 'mechanics', which combine with both the liquid and solid properties of a formulation to enable high-throughput, continuous manufacturing of precision powder properties.

  19. Generation of 1:1 Carbamazepine:Nicotinamide cocrystals by spray drying.

    Science.gov (United States)

    Patil, Shashank P; Modi, Sameer R; Bansal, Arvind K

    2014-10-01

    The present study investigates the potential of spray drying as a technique for generation of pharmaceutical cocrystals. Carbamazepine-Nicotinamide cocrystal (CNC) was chosen as model cocrystal system for this study. Firstly, CNC was generated using liquid assisted grinding and used for generation of phase solubility diagram (PSD) and ternary phase diagram (TPD). Both PSD and TPD were carefully evaluated for phase behavior of CNC when equilibrated with solvent. The undersaturated region with respect to CNC, as depicted by TPD, was selected as target region to initiate cocrystallization experiments. Various points in this region, representative of different compositions of Carbamazepine, Nicotinamide and CNC, were selected and spray drying was carried out. The spray dried product was characterized for solid state properties and was compared with CNC generated by liquid assisted grinding. Spray drying successfully generated CNC of similar quality as those generated by liquid assisted grinding. Moreover, there was no significant impact of process variables on formation of CNC. Spray drying, owing to its simplicity and industrial scalability, can be a promising method for large scale cocrystal generation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment

    Science.gov (United States)

    Majaron, Boris; Svaasand, Lars O.; Aguilar, Guillermo; Nelson, J. Stuart

    2002-09-01

    Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.

  1. Adsorption behavior of calcined layered double hydroxides towards removal of iodide contaminants

    International Nuclear Information System (INIS)

    Lu Liang; He Jing; Wei Min; Evans, D.G.; Duan Xue

    2005-01-01

    Layered double hydroxides (LDHs), are a class of synthetic anionic clays whose structure can be described as containing brucite-like layers in which some of the divalent cations have been replaced by trivalent ions giving positively-charged sheets. This charge is balanced by intercalation of anions in the hydrated interlayer regions. The general formula is EM 2+ 1-x M 3+ x (OH) 2 ] x+ (A n- ) x/n · mH 2 O, where M 2+ and M 3+ are metal cations for example Mg 2+ and Al 3+ , that occupy octahedral sites in the hydroxide layers, A n- is an exchangeable anion, and x is the ratio M 3+ /(M 2+ + M 3+ ) and the layer charge will depend on the M 2+ /M 3+ ratio. LDHs act as sorbents of anionic species through two types of reactions, namely, anion exchange and reconstruction, which further adds the possibility of recycling and reuse. The sorption of anions from aqueous solutions by structural reconstruction of a calcined LDH is based on a very interesting property of these materials, the so-called memory effect: Calcination of LDHs produces intermediate non-stoichiometric oxides (CLDH) which undergo rehydration in aqueous medium and give back the hydroxide structure with different anions in the interlayers. Radioactive iodide is widely used in biological experiments, medical treatments and in diagnosis. During fission of uranium several iodine species are produced. All the short lived isotopes of iodine, including 1311 (half life 8.04 days), decay and only 127 I (stable) and 129 I (half life 1.59 x 10 7 years) remain as a problem. 129 I is especially considered as one of the key radionuclides that dominate the long-term radiation in underground radioactive waste stores. Iodine is one of the nuclides causing most concern among radioactive anions. Different adsorbents such as zeolites, silica gel, anion exchange paper membrane, activated carbon and activated carbon fibers, have been investigated as potential materials for elimination of iodide from liquid wastes. In this work

  2. Infrared detection of the mineralogical aspects that influence the processing of calcined kaolin

    Science.gov (United States)

    Groenheide, Stefan; Guatame-Garcia, Adriana; Buxton, Mike; van der Werff, Harald

    2017-04-01

    Calcined kaolin is an industrial minerals product used in the production of paper, paint, rubber and other specialty applications. It is produced from kaolinite through a series of refinement steps and final calcination at temperatures of above 900°C, with the aim of generating a whiter and more abrasive material. The raw kaolin ore is a mixture of clay minerals, quartz and feldspars, where kaolinite is the main constituent. The optimal kaolin ores to feed the processing plant should ideally have high kaolinite abundance, be free in Fe-bearing mineralogy (to avoid influence in the colour of the product), and the kaolinite itself should be of high crystallinity (to ensure the correct abrasiveness after calcination). This work presents a case study from the kaolin deposits in the St. Austell Granite (South-West England), which are known for their high quality and world-class size. In this area, the kaolin is of primary-hydrothermal origin, with mineral associations that are related to the genetic history. The eventual depletion of the high-quality reserves is bringing now the attention to the lower grade zones, where the amount of impurities increases. As a consequence, it is critical to developing strategies that ensure the supply of high-quality ore to the processing plant. For this, it is necessary to acquire a thorough knowledge of the ore, including relative abundance of the minerals and their textural relationships. Hyperspectral images in the visible-near infrared (VNIR) and short-wave infrared (SWIR) ranges were collected from drill cores and run-off-mine (ROM) samples, obtained from one of the kaolin pits in the St. Austell area, where the kaolin quality is known to be lower than in the rest of the deposit. A series of mineral maps were generated to assess the distribution, texture and abundance of the Fe-bearing mineralogy and the other kaolin-associated minerals, as well as the variations in the crystallinity of kaolinite. The mineral maps enabled the

  3. Heavy duty plasma spray gun

    International Nuclear Information System (INIS)

    Irons, G.C.; Klein, J.F.; Lander, R.D.; Thompson, H.C.; Trapani, R.D.

    1984-01-01

    A heavy duty plasma spray gun for extended industrial service is disclosed. The gun includes a gas distribution member made of a material having a coefficient of expansion different from that of the parts surrounding it. The gas distribution member is forcibly urged by a resilient member such as a coiled spring against a seal so as to assure the plasma gas is introduced into the gun arc in a manner only defined by the gas distribution member. The gun has liquid cooling for the nozzle (anode) and the cathode. Double seals are provided between the coolant and the arc region and a vent is provided between the seals which provides an indication when a seal has failed. Some parts of the gun are electrically isolated from others by an intermediate member which is formed as a sandwich of two rigid metal face pieces and an insulator disposed between them. The metal face pieces provide a rigid body to attach the remaining parts in proper alignment therewith

  4. CHARACTERIZATION OF DIESEL SPRAY IMAGES USING A SHAPE PROCESSING METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cecile Petit

    2011-05-01

    Full Text Available In Diesel engines, a key element in achieving a clean and efficient combustion process is a proper fuel-air mixing, which is a consequence of the fuel spray development and fuel-air interaction inside the engine combustion chamber. The spray structure and behavior are classically described by the length (penetration and width (angle of the spray plume but these parameters do not give any clue on the geometrical injection center and on the spray symmetry. The purpose of this paper is to find out original tools to characterize the Diesel spray: the virtual spray origin is the geometrical injection center, which may (or may not coincide with the injector axis. Another interesting point is the description of the Diesel spray in terms of symmetry: the spray plume internal and external symmetry characterize the spray and the injector performance. Our approach is first to find out the virtual spray origin: after the image segmentation, the spray is coded with the Freeman code and with an original shape coding from which the moments are derived. The symmetry axes are then computed and the spray plumes are discarded (or not for the virtual spray origin computation, which is derived from a Voronoi diagram. The last step is the internal and external spray plume symmetry characterization thanks to correlation and mathematical distances.

  5. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  6. Development of spraying methods for high density bentonite barriers. Part 3. Field investigation of spraying methods

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Nakajima, Makoto; Kobayashi, Ichizo; Toida, Masaru; Fukuda, Katsumi; Sato, Tatsuro; Nonaka, Katsumi; Gozu, Keisuke

    2007-01-01

    The authors have developed a new method of constructing high density bentonite barriers by means of a wet spraying method. Using this method, backfill material can be placed in narrow upper and side parts in a low-level radioactive waste disposal facility. Using a new supplying machine for bentonite, spraying tests were conducted to investigate the conditions during construction. On the basis of the test results, the various parameters for the spraying method were investigated. The test results are summarized as follows: 1. The new machine supplied about twice the weight of material supplied by a screw conveyor. A dry density of spraying bentonite 0.05 Mg/m 3 higher than that of a screw conveyor with the same water content could be achieved. 2. The dry density of sprayed bentonite at a boundary with concrete was the same as that at the center of the cross section. 3. The variation in densities of bentonite sprayed in the vertical downward and horizontal directions was small. Also, density reduction due to rebound during spraying was not seen. 4. Bentonite controlled by water content could be sprayed smoothly in the horizontal direction by a small machine. Also rebound could be collected by a machine conveying air. (author)

  7. COUPLED ATOMIZATION AND SPRAY MODELLING IN THE SPRAY FORMING PROCESS USING OPENFOAM

    DEFF Research Database (Denmark)

    Gjesing, Rasmus; Hattel, Jesper Henri; Fritsching, Udo

    2009-01-01

    The paper presents a numerical model capable of simulating the atomization, break-up and in-flight spray phenomena in the spray forming process. The model is developed and implemented in the freeware code openFOAM. The focus is on studying the coupling effect of the melt break-up phenomena...

  8. Spray Drift Reduction Evaluations of Spray Nozzles Using a Standardized Testing Protocol

    Science.gov (United States)

    2010-07-01

    Drop Size Characteristics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards, Vol. 14-02, ASTM...Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Non- imaging Light-Scattering Instruments 22. AGDISP Model

  9. Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratory's Bench -Scale Cold Crucible Induction Melter

    International Nuclear Information System (INIS)

    Maio, Vince

    2011-01-01

    This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing

  10. Study on Spray Characteristics and Spray Droplets Dynamic Behavior of Diesel Engine Fueled by Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Sapit Azwan

    2014-07-01

    Full Text Available Fuel-air mixing is important process in diesel combustion. It directly affects the combustion and emission of diesel engine. Biomass fuel needs great help to atomize because the fuel has high viscosity and high distillation temperature. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fueled by rapeseed oil (RO. Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the rapeseed oil spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. The results show that RO has very poor atomization due to the high viscosity nature of the fuel. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  11. Multiple-Nozzle Spray Head Applies Foam Insulation

    Science.gov (United States)

    Walls, Joe T.

    1993-01-01

    Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.

  12. Research about the pozzolanic activity of waste materials from calcined clay

    Directory of Open Access Journals (Sweden)

    Sánchez de Rojas, M. I.

    2001-03-01

    Full Text Available To recycle and reutilise waste materials and find definite applications for their use, it is necessary to have a deep knowledge of them. The aim of this study is to study the possibility of using waste materials from calcined clay, actually ceramic tile, once crushed and grounded, as pozzolanic material. For this purpose, different tests are carried out in order to establish the pozzolanic activity of this material. At the same time, these results are compared to those of other industrial by-products, fly ash and silica fume, which are pozzolanic materials usually employed to elaborate mortars and concretes.

    Para llevar a cabo labores encaminadas al reciclado y revalorización de residuos es necesario un conocimiento profundo de los mismos, de forma que se busquen aplicaciones concretas de uso. El objetivo de este estudio es investigar la posibilidad de utilizar materiales de desecho procedentes de arcilla cocida, concretamente teja cerámica, una vez triturada y molida, como puzolana. Para ello, se efectúan diferentes ensayos dirigidos a establecer la actividad puzolanica del material. A su vez, estos resultados son comparados con otros residuos industriales, ceniza volante y humo de sílice, habituales en la elaboración de morteros y hormigones.

  13. Stabilization of lead and copper contaminated firing range soil using calcined oyster shells and fly ash.

    Science.gov (United States)

    Moon, Deok Hyun; Park, Jae-Woo; Cheong, Kyung Hoon; Hyun, Seunghun; Koutsospyros, Agamemnon; Park, Jeong-Hun; Ok, Yong Sik

    2013-12-01

    A stabilization/solidification treatment scheme was devised to stabilize Pb and Cu contaminated soil from a firing range using renewable waste resources as additives, namely waste oyster shells (WOS) and fly ash (FA). The WOS, serving as the primary stabilizing agent, was pre-treated at a high temperature to activate quicklime from calcite. Class C FA was used as a secondary additive along with the calcined oyster shells (COS). The effectiveness of the treatment was evaluated by means of the toxicity characteristic leaching procedure (TCLP) and the 0.1 M HCl extraction tests following a curing period of 28 days. The combined treatment with 10 wt% COS and 5 wt% FA cause a significant reduction in Pb (>98 %) and Cu (>96 %) leachability which was indicated by the results from both extraction tests (TCLP and 0.1 M HCl). Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) analyses are used to investigate the mechanism responsible for Pb and Cu stabilization. SEM-EDX results indicate that effective Pb and Cu immobilization using the combined COS-FA treatment is most probably associated with ettringite and pozzolanic reaction products. The treatment results suggest that the combined COS-FA treatment is a cost effective method for the stabilization of firing range soil.

  14. Heavy metal stabilization in contaminated soil by treatment with calcined cockle shell.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Taki, Golam; Nguyen, Xuan Phuc; Jo, Young-Tae; Kim, Jun; Park, Jeong-Hun

    2017-03-01

    In several previous studies, the efficacy of various liming waste materials on the immobilization of heavy metals has been tested and it was found that soils contaminated with heavy metals can be stabilized using this technique. Since lime (CaO) has been identified as the main phase of calcined cockle shell (CCS), it was hypothesized that CCS could be used as a soil amendment to immobilize heavy metals in soil. However, to date, no studies have been conducted using CCS. In this study, the effectiveness of CCS powder on the immobilization of Cd, Pb, and Zn in mine tailing soil was evaluated. After 28 days of incubation, the treated soil samples were exposed to weathering (four cycles of freezing-thawing and four cycles of wetting-drying) for 8 days before being subjected to a leaching test. The results of this study revealed that the soil pH increased from 7.5 to 12.2 with the addition of 5% CCS. A similar soil pH was obtained when the soil was amended with 5% pure CaO. By leaching with 0.1 M HCl, extracted Cd, Pb, and Zn were reduced by up to 85, 85, and 91%, respectively. Therefore, CCS is suggested as a low-cost lime-based soil amendment for stabilizing heavy metals in abandoned mining sites.

  15. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    KAUST Repository

    Yoon, Seyoon

    2014-06-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g -1 and 257 mg g-1, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel\\'s salt (2 mol mol-1 or 121 mg g-1), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. © 2014 Published by Elsevier B.V. All rights reserved.

  16. Thermokinetic study of the rehydration process of a calcined MgAl-layered double hydroxide.

    Science.gov (United States)

    Pfeiffer, Heriberto; Lima, Enrique; Lara, Víctor; Valente, Jaime S

    2010-03-16

    The rehydration process of a calcined MgAl-layered double hydroxide (LDH) with a Mg/Al molar ratio of 3 was systematically analyzed at different temperatures and relative humidity. Qualitative and quantitative experiments were done. In the first set of samples, the temperature or the relative humidity was varied, fixing the second variable. Both adsorption and absorption phenomena were present; absorption process was associated to the LDH regeneration. Of course, in all cases the LDH regeneration was confirmed by other techniques such as TGA, solid state NMR, and SAXS. In the second set of experiments, a kinetic analysis was performed, the results allowed to obtain different activation enthalpies for the LDH regeneration as a function of the relative humidity. The activation enthalpies varied from 137.6 to 83.3 kJ/mol as a function of the relative humidity (50 and 80%, respectively). All these experiments showed that LDH regeneration is highly dependent on the temperature and relative humidity.

  17. Effects of Calcined clay minerals and Silica fume on the compressive strength of concrete

    Directory of Open Access Journals (Sweden)

    Abolfazl Soltani

    2017-05-01

    Full Text Available Pozzolanic materials are well known as potential replacements for cement manufacturing in order to increase compressive strength and improve durability of concrete in different environments and leading to save energy particularly reducing global warming effect. The present study reveals the effect of calcined clay minerals as natural pozzolanic material, separately and in combination with and without silica fume. To achieve this aim, 15 mixed designs with a constant water to cementitious ratio of  0.38 is made. In six mixed designs only metakaolin, zeolite or silica fume  and in eight other designs metakaolin and silica fume or zeolite and silica fume have been combined. Mixes containing metakaolin or zeolite with ratio of 10 or 20 percent and silica fume with 7 or 10 percent show significant increasing in compressive strength and improving durability, being valuable replacement for cement (in percentages. In particular, the best practice is attributed to the age of 28 days for compressive strength the replacement of the composition is 10% zeolite with 7% of silica fume and for electrical resistance the replacement of the composition is 10% zeolite with 7% of silica fume.

  18. Production of hydrogen through the carbonation-calcination reaction applied to CH4/CO2 mixtures

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Corradetti, A.; Desideri, U.

    2007-01-01

    The production of hydrogen combined with carbon capture represents a possible option for reducing CO 2 emissions in atmosphere and anthropogenic greenhouse effect. Nowadays the worldwide hydrogen production is based mainly on natural gas reforming, but the attention of the scientific community is focused also on other gas mixtures with significant methane content. In particular mixtures constituted mainly by methane and carbon dioxide are extensively used in energy conversion applications, as they include land-fill gas, digester gas and natural gas. The present paper addresses the development of an innovative system for hydrogen production and CO 2 capture starting from these mixtures. The plant is based on steam methane reforming, coupled with the carbonation and calcination reactions for CO 2 absorption and desorption, respectively. A thermodynamic approach is proposed to investigate the plant performance in relation to the CH 4 content in the feeding gas. The results suggest that, in order to optimize the hydrogen purity and the efficiency, two different methodologies can be adopted involving both the system layout and operating parameters. In particular such methodologies are suitable for a methane content, respectively, higher and lower than 65%

  19. Regeneration of Waste Edible Oil by the Use of Virgin and Calcined Magnesium Hydroxide as Adsorbents.

    Science.gov (United States)

    Ogata, Fumihiko; Kawasaki, Naohito

    2016-01-01

    In this study, we prepared virgin (S, L) and calcined (S-380, S-1000, L-380, L-1000) magnesium hydroxide for regeneration of waste edible oil. Deterioration of soybean oil, rapeseed oil, and olive oil was achieved by heat and aeration treatment. The properties of the different adsorbents were investigated using specific surface area measurements, scanning electron microscopy, X-ray diffraction analysis, thermogravimetric-differential thermal analysis, and surface pH measurement. Moreover, the relationship between the changes in acid value (AV) and carbonyl value (CV) and the adsorbent properties were evaluated. The specific surface areas of S-380 and L-380 were greater than that of other adsorbents. In addition, the XRD results show that S-380 and L-380 contain both magnesium hydroxide and magnesium oxide structures. The decreases in AV and CV using S-380 and L-380 were greater than achieved using other adsorbents. The correlation coefficients between the decrease in AV and CV and specific surface area were 0.947 for soybean oil, 0.649 for rapeseed oil, and 0.773 for olive oil, respectively. The results obtained in this study suggest that a physical property of the adsorbent, namely specific surface area, was primarily responsible for the observed decreases in AV and CV. Overall, the results suggest that S-380 and L-380 are useful for the regeneration of waste edible oil.

  20. Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud

    International Nuclear Information System (INIS)

    Jalil, Aishah A.; Triwahyono, Sugeng; Adam, S. Hazirah; Rahim, N. Diana; Aziz, M. Arif A.; Hairom, N. Hanis H.; Razali, N. Aini M.; Abidin, Mahani A.Z.; Mohamadiah, M. Khairul A.

    2010-01-01

    In this study, calcined Lapindo volcanic mud (LVM) was used as an adsorbent to remove an anionic dye, methyl orange (MO), from an aqueous solution by the batch adsorption technique. Various conditions were evaluated, including initial dye concentration, adsorbent dosage, contact time, solution pH, and temperature. The adsorption kinetics and equilibrium isotherms of the LVM were studied using pseudo-first-order and -second-order kinetic equations, as well as the Freundlich and Langmuir models. The experimental data obtained with LVM fits best to the Langmuir isotherm model and exhibited a maximum adsorption capacity (q max ) of 333.3 mg g -1 ; the data followed the second-order equation. The intraparticle diffusion studies revealed that the adsorption rates were not controlled only by the diffusion step. The thermodynamic parameters, such as the changes in enthalpy, entropy, and Gibbs free energy, showed that the adsorption is endothermic, random and spontaneous at high temperature. The results indicate that LVM adsorbs MO efficiently and could be utilized as a low-cost alternative adsorbent for the removal of anionic dyes in wastewater treatment.

  1. An acetylcholinesterase biosensor based on graphene-gold nanocomposite and calcined layered double hydroxide.

    Science.gov (United States)

    Zhai, Chen; Guo, Yemin; Sun, Xia; Zheng, Yuhe; Wang, Xiangyou

    2014-05-10

    In this study, a novel acetylcholinesterase-based biosensor was fabricated. Acetylcholinesterase (AChE) was immobilized onto a glassy carbon electrode (GCE) with the aid of Cu-Mg-Al calcined layered double hydroxide (CLDH). CLDH can provide a bigger effective surface area for AChE loading, which could improve the precision and stability of AChE biosensor. However, the poor electroconductibility of CLDHs could lead to the low sensitivity of AChE biosensor. In order to effectively compensate the disadvantages of CLDHs, graphene-gold nanocomposites were used for improving the electron transfer rate. Thus, the graphene-gold nanocomposite (GN-AuNPs) was firstly modified onto the GCE, and then the prepared CLDH-AChE composite was immobilized onto the modified GCE to construct a sensitive AChE biosensor for pesticides detection. Relevant parameters were studied in detail and optimized, including the pH of the acetylthiocholine chloride (ATCl) solution, the amount of AChE immobilized on the biosensor and the inhibition time governing the analytical performance of the biosensor. The biosensor detected chlorpyrifos at concentrations ranging from 0.05 to 150μg/L. The detection limit for chlorpyrifos was 0.05μg/L. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1996-07-01

    The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements

  3. Surface modification of calcined kaolin with toluene diisocyanate based on high energy ball milling

    International Nuclear Information System (INIS)

    Yuan, Yongbing; Chen, Hongling; Lin, Jinbin; Ji, Yan

    2013-01-01

    The surface of calcined kaolin particle was modified with toluene diisocyanate (TDI) by using high energy ball milling. The prepared hybrids were characterized by FT-IR, MAS NMR, thermal analysis (TGA-DSC), static water contact angle (CA), apparent viscosity and transmission electron microscopy (TEM). FT-IR and MAS NMR spectra demonstrated that TDI molecules were chemically anchored to kaolin surface after modification. The results of thermal analysis showed that the maximum grafting ratio reached up to 446.61% when the mass ratio of TDI/kaolin was 0.5:1.0, and CA measurements revealed that the resultant hybrids exhibited strong hydrophobicity (148.82°). Apparent viscosity and TEM were employed to examine the dispersion properties of blank and modified kaolin particles in poly (dimenthylsiloxane) matrix. The results illustrated that the dispersion stability depended strongly on the grafting ratio of TDI, neither too low nor too high achieved uniform and stable dispersion, and the favorable grafting ratio was obtained when the mass ratio of TDI/kaolin was 0.2:1.0. Further modification of TDI/kaolin (mass ration of TDI/kaolin, 1.0:1.0) particles with bis(aminopropyl)-terminated-poly(dimethylsiloxane) (APS) was also investigated. TEM evidenced that the dispersion properties of the obtained TDI/APS/kaolin particles were remarkably improved in octamethyl cyclotetrasiloxane compared with the original TDI/kaolin particles.

  4. Surface modification of calcined kaolin with toluene diisocyanate based on high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yongbing; Chen, Hongling, E-mail: hlchen@njut.edu.cn; Lin, Jinbin; Ji, Yan

    2013-11-01

    The surface of calcined kaolin particle was modified with toluene diisocyanate (TDI) by using high energy ball milling. The prepared hybrids were characterized by FT-IR, MAS NMR, thermal analysis (TGA-DSC), static water contact angle (CA), apparent viscosity and transmission electron microscopy (TEM). FT-IR and MAS NMR spectra demonstrated that TDI molecules were chemically anchored to kaolin surface after modification. The results of thermal analysis showed that the maximum grafting ratio reached up to 446.61% when the mass ratio of TDI/kaolin was 0.5:1.0, and CA measurements revealed that the resultant hybrids exhibited strong hydrophobicity (148.82°). Apparent viscosity and TEM were employed to examine the dispersion properties of blank and modified kaolin particles in poly (dimenthylsiloxane) matrix. The results illustrated that the dispersion stability depended strongly on the grafting ratio of TDI, neither too low nor too high achieved uniform and stable dispersion, and the favorable grafting ratio was obtained when the mass ratio of TDI/kaolin was 0.2:1.0. Further modification of TDI/kaolin (mass ration of TDI/kaolin, 1.0:1.0) particles with bis(aminopropyl)-terminated-poly(dimethylsiloxane) (APS) was also investigated. TEM evidenced that the dispersion properties of the obtained TDI/APS/kaolin particles were remarkably improved in octamethyl cyclotetrasiloxane compared with the original TDI/kaolin particles.

  5. Phase and morphology evolution of (Na1-xKxNbO3 powders related to calcinations and K2CO3 content

    Directory of Open Access Journals (Sweden)

    Steven J. Milne

    2007-03-01

    Full Text Available Sodium-potassium niobate ((Na1-xKxNbO3 powders with x = 0.2, 0.4, 0.6 and 0.8 were prepared following the conventional mixed oxide method and characterized by TG-DTA, XRD and SEM techniques.The effects of calcination temperature, dwell time and K2CO3 content on phase formation behavior and morphology of the powders were investigated. The calcination temperature and dwell time were found tohave a pronounced effect on the phase formation of the calcined sodium-potassium niobate powders. It was found that the crystallized phase depended on calcination conditions. The high calcination temperature andlong dwell time clearly favored particle growth and the formation of large and hard agglomerates. All the (Na1-xKxNbO3 powders showed a similar orthorhombic phase structure. The K2CO3 content significantlyaffected the calcination temperature and particle size and shape. Large particle size, cubic shape and a lower calcined condition were observed in (Na1-xKxNbO3 powder with low K2CO3 content (x = 0.2.

  6. Thin films by metal-organic precursor plasma spray

    International Nuclear Information System (INIS)

    Schulz, Douglas L.; Sailer, Robert A.; Payne, Scott; Leach, James; Molz, Ronald J.

    2009-01-01

    While most plasma spray routes to coatings utilize solids as the precursor feedstock, metal-organic precursor plasma spray (MOPPS) is an area that the authors have investigated recently as a novel route to thin film materials. Very thin films are possible via MOPPS and the technology offers the possibility of forming graded structures by metering the liquid feed. The current work employs metal-organic compounds that are liquids at standard temperature-pressure conditions. In addition, these complexes contain chemical functionality that allows straightforward thermolytic transformation to targeted phases of interest. Toward that end, aluminum 3,5-heptanedionate (Al(hd) 3 ), triethylsilane (HSi(C 2 H 5 ) 3 or HSiEt 3 ), and titanium tetrakisdiethylamide (Ti(N(C 2 H 5 ) 2 ) 4 or Ti(NEt 2 ) 4 ) were employed as precursors to aluminum oxide, silicon carbide, and titanium nitride, respectively. In all instances, the liquids contain metal-heteroatom bonds envisioned to provide atomic concentrations of the appropriate reagents at the film growth surface, thus promoting phase formation (e.g., Si-C bond in triethylsilane, Ti-N bond in titanium amide, etc.). Films were deposited using a Sulzer Metco TriplexPro-200 plasma spray system under various experimental conditions using design of experiment principles. Film compositions were analyzed by glazing incidence x-ray diffraction and elemental determination by x-ray spectroscopy. MOPPS films from HSiEt 3 showed the formation of SiC phase but Al(hd) 3 -derived films were amorphous. The Ti(NEt 2 ) 4 precursor gave MOPPS films that appear to consist of nanosized splats of TiOCN with spheres of TiO 2 anatase. While all films in this study suffered from poor adhesion, it is anticipated that the use of heated substrates will aid in the formation of dense, adherent films.

  7. Containment atmosphere response to external sprays

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Almenas, K. [Univ. of Maryland, College Park, MD (United States)

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  8. Containment atmosphere response to external sprays

    International Nuclear Information System (INIS)

    Green, J.; Almenas, K.

    1995-01-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J 2 /He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated

  9. Microalgal cell disruption via ultrasonic nozzle spraying.

    Science.gov (United States)

    Wang, M; Yuan, W

    2015-01-01

    The objective of this study was to understand the effect of operating parameters, including ultrasound amplitude, spraying pressure, nozzle orifice diameter, and initial cell concentration on microalgal cell disruption and lipid extraction in an ultrasonic nozzle spraying system (UNSS). Two algal species including Scenedesmus dimorphus and Nannochloropsis oculata were evaluated. Experimental results demonstrated that the UNSS was effective in the disruption of microalgal cells indicated by significant changes in cell concentration and Nile red-stained lipid fluorescence density between all treatments and the control. It was found that increasing ultrasound amplitude generally enhanced cell disruption and lipid recovery although excessive input energy was not necessary for best results. The effect of spraying pressure and nozzle orifice diameter on cell disruption and lipid recovery was believed to be dependent on the competition between ultrasound-induced cavitation and spraying-generated shear forces. Optimal cell disruption was not always achieved at the highest spraying pressure or biggest nozzle orifice diameter; instead, they appeared at moderate levels depending on the algal strain and specific settings. Increasing initial algal cell concentration significantly reduced cell disruption efficiency. In all UNSS treatments, the effectiveness of cell disruption and lipid recovery was found to be dependent on the algal species treated.

  10. Effects of nozzle types and 2,4-D formulations on spray deposition.

    Science.gov (United States)

    Contiero, Robinson L; Biffe, Denis F; Constantin, Jamil; de Oliveira, Rubem S; Braz, Guilherme B P; Lucio, Felipe R; Schleier, Jerome J

    2016-12-01

    The objective of this study was to evaluate the effects of nozzle types and 2,4-D formulations on spray deposition on different targets. Two field experiments were carried out in a completely randomized design, and treatments were arranged in a factorial scheme. Species in experiment 1 were Sumatran fleabane (Conyza sumatrensis) and Brazil pusley (Richardia brasiliensis) and in experiment 2 were soybeans (Glycine max) and Benghal dayflower (Commelina benghalensis). For both experiments, the first factor corresponded to spray nozzles with different settings (AD 110.015 - 61 and 105 L ha -1 ; AD 015-D - 75 and 146 L ha -1 ; XR 110.0202 - 200 L ha -1 ; and ADIA-D 110.02 - 208 L ha -1 ) and the second factor consisted of two formulations of 2,4-D (amine and choline). The formulation of 2,4-D choline has contained Colex-D™ Technology. Similar or higher spray deposition was observed on the leaves and artificial targets when using 2,4-D choline as compared to the 2,4-D amine formulation, and these differences in deposition were more evident for nozzles applying lower spray volumes. Deposition was more affected by nozzle type when amine formulation was used, compared to choline formulation.

  11. A mineralogical investigation of a refractory gold ore, and of a sulphide concentrate and calcined tailing from that ore

    International Nuclear Information System (INIS)

    Ollila, J.T.

    1983-01-01

    This report covers an investigation into the manner of occurrence of gold in an old mine dump of calcined tailings at the Fairview Mine. Previous investigations had not revealed the whereabouts of the gold still present in this dump, which amounts to between 10 and 12p.p.m. In the present investigation, in which heavy-liquid separation was combined with X-ray, microscope, and electron-microprobe investigations, it was found that a significant proportion of the gold is adsorbed on carbon, and that a smaller proportion is present in pyrite that escaped complete calcination. An enigma is the occurrence of ferrosilicon, some of which contains gold. Although this study produced new information, a more detailed quantitative investigation is required in which an image analyser should be used to provide reliable quantitative data

  12. Synthesis and characterization of ZSM-5 and calcined kaolin evaluation using the content of structure-directing

    International Nuclear Information System (INIS)

    Rodrigues, J.J.; Silva, V.J. da; Rodrigues, M.G.F.

    2012-01-01

    This study aims to evaluate the effect of the structure-directing content, tetrapropylammonium bromide, on the structural and morphological characteristics of ZSM-5 zeolite obtained using calcined kaolin as silicon and aluminum. The samples were characterized by XRD, EDX, SEM and Physics Adsorption N 2 . Trough X ray diffraction patterns was possible to observed the formation of the structure of ZSM-5 with intense peaks and well-defined characteristic of crystalline. The micrographs showed that the samples consist of agglomerates and/or aggregates of particles characteristic of the MFI structure typical of ZSM-5 zeolite. And through the adsorption-desorption isotherms physical N2 was possible to observe that the samples show hysteresis type I typical of microporous materials with specific surface areas of 218 and 222 m 2 /g. Therefore, the use of calcined kaolin to obtain ZSM-5 zeolite was effective. (author)

  13. The Effect of Calcination Temperature on the Performance of TiO2 Aggregates-based Dye Solar Cells (DSCs)

    International Nuclear Information System (INIS)

    Siti Nur Azella Zaine; Norani Muti Mohamed; Mohamad Azmi Bustam

    2011-01-01

    In this paper, the effect of calcination temperature on the physicochemical properties of synthesized TiO 2 aggregates and their influence on overall light conversion efficiency of dye solar cell (DSc) were investigated. Samples of TiO 2 aggregates (mean size of 0.45 μm) composing of nano crystallites (10-40 nm) were synthesized through hydrolysis of dilute titanium alkoxide in ethanol. Phase and microstructure of the TiO 2 obtained have been characterized using FESEM, XRD and UV-Vis spectroscopy. I-V characterization shows that TiO 2 aggregates based DSC demonstrated better performance compared to nanoparticles (P-25)-based DSC. The optimum calcination temperature was found to be about 500 degree Celsius with efficiency of 4.456 %, which is 30 % increment compared to P-25-based DSC under the same condition. (author)

  14. Comparative studies on physico-mechanical properties of composite materials of low density polyethylene and raw/calcined kaolin

    Directory of Open Access Journals (Sweden)

    Amit Mallik

    2015-06-01

    Full Text Available The paper describes the preparation of the composite materials of low density polyethylene (LDPE as the base mixed separately with raw kaolin and the same calcined at 800 °C under the same variation in weight percentage using single-screw extruder and a mixing machine operated at a temperature between 190 and 200 °C. Some of the mechanical and physical properties such as Young's modulus, elongation at break, shore hardness and water absorption were determined at different weight fractions of filler (0, 2, 7, 10 and 15%. It was found that the addition of filler increases the mechanical properties. Absorption test was done in water at different immersion times for different composites. The degree of water absorption of composite materials was found to decrease with increasing wt% of kaolin filler (0–15% according to Fick's law. Calcined kaolin produces better mechanical properties than raw kaolin.

  15. Effect of K3PO4 addition as sintering inhibitor during calcination of Y2O3 nanoparticles

    Science.gov (United States)

    Soga, K.; Okumura, Y.; Tsuji, K.; Venkatachalam, N.

    2009-11-01

    Erbium-doped yttrium oxide nanoparticle is one of the most important for fluorescence bioimaging under near infrared excitation. Particle size of it below 100 nm is an important requirement for a cellular bioimaging. However, the synthesis with such small particles is difficult at the calcination temperature above 1200 °C due to the sintering and crystal growth of the particles. In this study, yttrium oxide nanoparticles with average size of 30 nm were successfully synthesized by using K3PO4 as a sintering inhibitor during the calcination. A single phase of cubic Y2O3 as the resultant material was confirmed by XRD, which was also confirmed to emit a bright upconversion emission under 980-nm excitation. Improvement of chemical durability due to the introduction of phosphate group on the surface of the Y2O3 particles is also reported.

  16. Effect of the calcining temperature on the porosity of the titanium dioxide powders obtained by Polymeric Precursor Method

    International Nuclear Information System (INIS)

    Silva, D.W.; Granado, S.R.; Ciola, R.A.; Cavalheiro, A.A.

    2011-01-01

    Ceramics materials obtained by Polymeric Precursor Method exhibit mechanisms of the pore formation and elimination dependents on the decomposition kinetics of the residual organic matter of the polyester. The mechanism of pore elimination seems to occur by disrupting of the wall among the pores because it leads to the consequent pore coalescence and increasing in pore volume, which posses higher pore diameters. In this case, it was observed that the porosity decreasing occurs by pore wall moving after that the residual organic matter is eliminated from the pore inside. The pore diameter associated to the highest volume desorption occurred for the material obtained after calcining at 450°C is approximately 1,7 nm, what seems to be related to the amorphous carbon accumulated inside the pores, once that the pore volume decreases more effectively for the material obtained by calcining at 550°C, making the maximum volume situates at 2,0 nm. (author)

  17. The influence of calcination temperature on catalytic activities in a Co based catalyst for CO2 dry reforming

    International Nuclear Information System (INIS)

    Song, Sang-Hoon; Son, Ju-Hee; Budiman, Anatta Wahyu; Choi, Myoung-Jae; Chang, Tae-Sun; Shin, Chae-Ho

    2014-01-01

    The carbon dioxide dry reforming of methane (CDR) reaction could be thermodynamically favored in the range of 800 to 1,000 .deg. C. However, the catalyst in this reaction should be avoided at the calcination temperature over 800 .deg. C since strong metal support interaction (SMSI) in this temperature range can decrease activity due to loss of active sites. Therefore, we focused on optimizing the temperature of pretreatment and a comparison of surface characterization results for CDR. Results related to metal sintering over support, re-dispersion by changing of particle size of metal-support, and strong metal support interaction were observed and confirmed in this work. In our conclusion, optimum calcination temperature for a preparation of catalyst was proposed that 400 .deg. C showed a higher and more stable catalytic activity without changing of support characteristics

  18. Evaluation of kaolinite clays of Moa for the production of cement based clinker-calcined clay-limestone (LC3

    Directory of Open Access Journals (Sweden)

    Roger S. Almenares-Reyes

    2016-12-01

    Full Text Available Clay materials from two outcrops of the Moa region were analyzed to determine their potential use as supplementary cementitious material in the production of ternary cements based on limestone-calcined clay. The clays were characterized by atomic absorption spectroscopy (EAA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (ATG. These methods revealed high aluminum in clays, moderate kaolinite content, a disordered structure and the presence of impurities. The solubility of aluminum and silicon in alkali and the compressive strength of LC3 systems is proportional to their content in clay, being higher for the one with higher kaolinite content and greater structural disorder (outcrop D1, although the clay of both outcrops may constitute supplementary cementitious materials in the production of ternary cements based clinker-calcined clay-limestone. The suitable thermal activation range for both clays is between 650 ° C and 850 ° C.

  19. Characterization and use of in natura and calcined rice husks for biosorption of heavy metals ions from aqueous effluents

    Directory of Open Access Journals (Sweden)

    M. G. A. Vieira

    2012-09-01

    Full Text Available Heavy metal removal by adsorption using rice husks as a bioadsorbent was evaluated as an alternative for wastewater treatment. Batch equilibrium experiments and kinetic sorption studies were performed using monocomponent solutions of Ni(II, Cd(II, Zn(II, Pb(II and Cu(II in surface samples of in natura(RH and calcined rice husks (RHA. RHA showed higher potential for removing lead and copper. Experimental data for adsorption isotherms of lead and copper were adjusted by Langmuir, Freundlich and Dubinin-Radushkevick (D-R models, being better represented by the Langmuir model. The calcination of RH increased its surface area, improving its adsorption properties. From a morphological analysis obtained by SEM and diffraction patterns (XRD, a longitudinal fibrous and amorphous structure was observed for RH. TGA resultsindicated a total mass loss of around 60% for RH and 24.5% for RHA.

  20. Silica Supported Platinum Catalysts for Total Oxidation of the Polyaromatic Hydrocarbon Naphthalene: An Investigation of Metal Loading and Calcination Temperature

    Directory of Open Access Journals (Sweden)

    David R. Sellick

    2015-04-01

    Full Text Available A range of catalysts comprising of platinum supported on silica, prepared by an impregnation method, have been studied for the total oxidation of naphthalene, which is a representative Polycyclic Aromatic Hydrocarbon. The influence of platinum loading and calcination temperature on oxidation activity was evaluated. Increasing the platinum loading up to 2.5 wt.% increased the catalyst activity, whilst a 5.0 wt.% catalyst was slightly less active. The catalyst containing the optimum 2.5 wt.% loading was most active after calcination in air at 550 °C. Characterisation by carbon monoxide chemisorption and X-ray photoelectron spectroscopy showed that low platinum dispersion to form large platinum particles, in combination with platinum in metallic and oxidised states was important for high catalyst activity. Catalyst performance improved after initial use in repeat cycles, whilst there was slight deactivation after prolonged time-on-stream.