WorldWideScience

Sample records for spray angle spray

  1. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  2. Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Pieters, Jan G; Nuyttens, David

    2014-03-01

    Spray boom systems, an alternative to the predominantly-used spray guns, have the potential to considerably improve crop protection management in glasshouses. Based on earlier experiments, the further optimization of the deposits of a medium spray quality extended range flat fan nozzle type using easy adjustable spray boom settings was examined. Using mineral chelate tracers and water sensitive papers, the spray results were monitored at three plant levels, on the upper side and the underside of the leaves, and on some off-target collectors. In addition, the deposition datasets of all tree experiments were compared. The data showed that the most efficient spray distribution with the medium spray quality flat fan nozzles was found with a 30° forward angled spray combined with air support and an application rate of 1000 L ha(-1) . This technique resulted in a more uniform deposition in the dense canopy and increased spray deposition on the lower side of the leaves compared with the a standard spray boom application. Applying 1000 L ha(-1) in two subsequent runs instead of one did not seem to show any added value. Spray deposition can be improved hugely simply by changing some spray boom settings like nozzle type, angling the spray, using air support and adjusting the spray volume to the crop. © 2013 Society of Chemical Industry.

  3. Effects of spray axis incident angle on heat transfer performance of rhombus-pitch shell-and-tube interior spray evaporator

    International Nuclear Information System (INIS)

    Lin, Ru-Li; Chang, Tong-Bou; Liang, Chih-Chang

    2012-01-01

    An interior spray method is proposed for enhancing the heat transfer performance of a compact rhombus-pitch shell-and-tube spray evaporator. The experimental results show that the shell-side heat transfer coefficient obtained using the proposed spray method is significantly higher than that achieved in a conventional flooded-type evaporator. Four different spray axis incident angles (0 .deg., 45 .deg., 60 .deg. and 75 .deg.) are tested in order to investigate the effect of the spray inclination angle on the heat transfer performance of the spray evaporator system. It is shown that the optimal heat transfer performance is obtained using a spray axis incident angle of 60 .deg.

  4. Increasing efficacy of graminicides with a forward angled spray

    DEFF Research Database (Denmark)

    Jensen, Peter Kryger

    2012-01-01

    Control of annual grass species with vertically oriented leaves in agricultural crops by application of foliar acting herbicides with conventional hydraulic sprayers can be increased using forward angled nozzles. Changing the spray angle from the normally predominantly vertical spray towards...... an angled spray increases the potential target size of vertically oriented targets. This theory was tested in field experiments from 2005 to 2009 investigating control of three different grass species and a dicotyledonous weed species at early growth stages using foliar acting herbicides. Lolium perenne...... efficacy on L. perenne at early growth stages using nozzles with different spray quality, at different driving speeds and in different wind conditions. Similarly graminicide efficacy was increased when nozzles were angled 60° forward controlling A. myosuroides. Experiments investigating control of the two...

  5. On the prediction of spray angle of liquid-liquid pintle injectors

    Science.gov (United States)

    Cheng, Peng; Li, Qinglian; Xu, Shun; Kang, Zhongtao

    2017-09-01

    The pintle injector is famous for its capability of deep throttling and low cost. However, the pintle injector has been seldom investigated. To get a good prediction of the spray angle of liquid-liquid pintle injectors, theoretical analysis, numerical simulations and experiments were conducted. Under the hypothesis of incompressible and inviscid flow, a spray angle formula was deduced from the continuity and momentum equations based on a control volume analysis. The formula was then validated by numerical and experimental data. The results indicates that both geometric and injection parameters affect the total momentum ratio (TMR) and then influence the spray angle formed by liquid-liquid pintle injectors. TMR is the pivotal non-dimensional number that dominates the spray angle. Compared with gas-gas pintle injectors, spray angle formed by liquid-liquid injectors is larger, which benefits from the local high pressure zone near the pintle wall caused by the impingement of radial and axial sheets.

  6. Effect of flow conditions on spray cone angle of a two-fluid atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Shafaee, Maziar; Banitabaei, Sayed Abdolhossein; Ashjaee, Mehdi; Esfahanian, Vahid [Tehran University, Tehran (Iran, Islamic Republic of)

    2011-02-15

    A visual study is conducted to determine the effects of operating conditions on the spray cone angle of a two-fluid atomizer. The liquid (water) jets exit from peripheral inclined orifices and are introduced into a high-speed gas (air) stream in the gravitational direction. Using a high-speed imaging system, the spray cone angle is determined for Reynolds numbers ranging from 4x10{sup 4} to 9x10{sup 4} and different Weber numbers up to 140. The droplet sizes (Sauter mean diameter) and their distributions are determined using a Malvern Mastersizer X. The results show that the spray cone angle depends on the operating conditions, especially in lower values of Reynolds and Weber numbers. An empirical correlation is also obtained to predict the spray cone angle in terms of these two parameters.

  7. Effect of Impact Angle on Ceramic Deposition Behavior in Composite Cold Spray: A Finite-Element Study

    Science.gov (United States)

    Chakrabarty, Rohan; Song, Jun

    2017-10-01

    During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.

  8. Optical fuel spray measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hillamo, H.

    2011-07-01

    Diesel fuel sprays, including fuel/air mixing and the physics of two-phase jet formation, are discussed in the thesis. The fuel/air mixing strongly affects emissions formation in spray combustion processes where the local combustion conditions dictate the emission formation. This study comprises optical measurements both in pressurized spray test rigs and in a running engine.The studied fuel injection was arranged with a common rail injection system and the injectors were operated with a solenoid-based injection valve. Both marine and heavy-duty diesel engine injectors were used in the study. Optical fuel spray measurements were carried out with a laser-based double-framing camera system. This kind of equipments is usually used for flow field measurements with Particle Image Velocimetry technique (PIV) as well as for backlight imaging. Fundamental fuel spray properties and spray formation were studied in spray test rigs. These measurements involved studies of mixing, atomization, and the flow field. Test rig measurements were used to study the effect of individual injection parameters and component designs. Measurements of the fuel spray flow field, spray penetration, spray tip velocity, spray angle, spray structure, droplet accumulation, and droplet size estimates are shown. Measurement campaign in a running optically accessible large-bore medium-speed engine was also carried out. The results from engine tests were compared with equivalent test rig measurements, as well as computational results, to evaluate the level of understanding of sprays. It was shown that transient spray has an acceleration and a deceleration phase. Successive flow field measurements (PIV) in optically dense diesel spray resulted in local and average velocity data of diesel sprays. Processing fuel spray generates a flow field to surrounding gas and entrainment of surrounding gas into fuel jet was also seen at the sides of the spray. Laser sheet imaging revealed the inner structure of diesel

  9. Characterization of the full cone pressure swirl spray nozzles for the nuclear reactor containment spray system

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Manish [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); John, Benny [Nuclear Power Corporation of India Limited, Mumbai (India); Iyer, K.N. [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Prabhu, S.V., E-mail: svprabhu@iitb.ac.in [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India)

    2014-07-01

    Highlights: • Full cone spray pressure swirl nozzle with X-Vane is studied. • Laser illuminated imaging technique is used. • Correlations for coefficient of discharge, spray cone angle and SMD are suggested. • Droplet size and mass fraction distribution is measured. • Inviscid theory predicts the coefficient of discharge. - Abstract: The objective of the present study is to characterize a full cone pressure swirl nozzle for the Containment Spray System (CSS) of Indian Pressurized heavy Water reactors (IPHWR). The influence of Reynolds number and geometric parameters on the coefficient of discharge, spray cone angle, mass flux density distribution, droplet size distribution, Sauter mean diameter (SMD is studied for full cone pressure swirl full cone nozzles. The nozzles of orifice diameter range from 1.3 to 7.2 mm are studied. Experiments are conducted with water at room temperature as the working medium. The nozzles are operated with the pressure ranging from 1 to 8 bar. The measurements of the drop size distributions are performed with laser illuminated imaging technique. The spray cone-angle of the full cone nozzles is measured by the evaluation of images recorded with a camera using IMAGE J software. Correlations for coefficient of discharge, spray cone angle and Sauter mean diameter are suggested on the basis of the experimental results. Rosin–Rammler model and Nukiyama–Tanasawa distributions predict the mass fraction distribution reasonably well. However, the droplet size distribution is predicted by Nukiyama-Tanasawa model only.

  10. The influence of spray properties on intranasal deposition.

    Science.gov (United States)

    Foo, Mow Yee; Cheng, Yung-Sung; Su, Wei-Chung; Donovan, Maureen D

    2007-01-01

    While numerous devices, formulations, and spray characteristics have been shown to influence nasal deposition efficiency, few studies have attempted to identify which of these interacting factors plays the greatest role in nasal spray deposition. The deposition patterns of solutions with a wide range of surface tensions and viscosities were measured using an MRI-derived nasal cavity replica. The resulting spray plumes had angles between 29 degrees and 80 degrees and contained droplet sizes (D(v50)) from 37-157 microm. Each formulation contained rhodamine 590 as a fluorescent marker for detection. Administration angles of 30 degrees , 40 degrees , or 50 degrees above horizontal were tested to investigate the role of user technique on nasal deposition. The amount of spray deposited within specific regions of the nasal cavity was determined by disassembling the replica and measuring the amount of rhodamine retained in each section. Most of the spray droplets were deposited onto the anterior region of the model, but sprays with small plume angles were capable of reaching the turbinate region with deposition efficiencies approaching 90%. Minimal dependence on droplet size, viscosity, or device was observed. Changes in inspiratory flow rate (0-60 L/min) had no significant effect on turbinate deposition efficiency. Both plume angle and administration angle were found to be important factors in determining deposition efficiency. For administration angles of 40 degrees or 50 degrees , maximal turbinate deposition efficiency (30-50%) occurred with plume angles of 55-65 degrees , whereas a 30 degrees administration angle gave an approximately 75% deposition efficiency for similar plume angles. Deposition efficiencies of approximately 90% could be achieved with plume angles deposition efficiency, while many other spray parameters, including particle size, have relatively minor influences on deposition within the nasal cavity.

  11. An investigation on effect of geometrical parameters on spray cone angle and droplet size distribution of a two-fluid atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Shafaee, Maziar; Banitabaei, Sayed Abdolhossein; Esfahanian, Vahid; Ashjaee, Mehdi [Tehran University, Tehran (Iran, Islamic Republic of)

    2011-12-15

    A visual study is conducted to determine the effect of geometrical parameters of a two-fluid atomizer on its spray cone angle. The liquid (water) jets exit from six peripheral inclined orifices and are introduced to a high speed gas (air) stream in the gravitational direction. Using a high speed imaging system, the spray cone angle has been determined in constant operational conditions, i.e., Reynolds and Weber numbers for different nozzle geometries. Also, the droplet sizes (Sauter mean diameter) and their distributions have been determined using Malvern Master Sizer x. The investigated geometrical parameters are the liquid jet diameter, liquid port angle and the length of the gas-liquid mixing chamber. The results show that among these parameters, the liquid jet diameter has a significant effect on spray cone angle. In addition, an empirical correlation has been obtained to predict the spray cone angle of the present two-fluid atomizer in terms of nozzle geometries.

  12. An investigation of the effects of droplet impact angle in thermal spray deposition

    International Nuclear Information System (INIS)

    Smith, M.F.; Neiser, R.A.; Dykhuizen, R.C.

    1994-01-01

    It is widely held that spraying at off-normal angles can influence deposition efficiency and the properties of the deposited material. However, little quantitative information on such effects has been published. This paper reports on a series of experiments to investigate the angular dependence of deposition efficiency, surface roughness, and porosity for several thermal spray materials and processes at incidence angles ranging from 90 degree to 30 degree relative to the substrate surface. At incidence angles from 90 degree out to 60 degree, the observed changes were small and often statistically insignificant. Some significant changes began to appear at 45 degree, and at 30 degree significant changes were observed for nearly all materials and processes: deposition efficiency decreased while surface roughness and porosity increased. It is proposed that droplet splashing may cause some of the observed effects

  13. A theoretical model for prediction of deposition efficiency in cold spraying

    International Nuclear Information System (INIS)

    Li Changjiu; Li Wenya; Wang Yuyue; Yang Guanjun; Fukanuma, H.

    2005-01-01

    The deposition behavior of a spray particle stream with a particle size distribution was theoretically examined for cold spraying in terms of deposition efficiency as a function of particle parameters and spray angle. The theoretical relation was established between the deposition efficiency and spray angle. The experiments were conducted by measuring deposition efficiency at different driving gas conditions and different spray angles using gas-atomized copper powder. It was found that the theoretically estimated results agreed reasonably well with the experimental ones. Based on the theoretical model and experimental results, it was revealed that the distribution of particle velocity resulting from particle size distribution influences significantly the deposition efficiency in cold spraying. It was necessary for the majority of particles to achieve a velocity higher than the critical velocity in order to improve the deposition efficiency. The normal component of particle velocity contributed to the deposition of the particle under the off-nomal spray condition. The deposition efficiency of sprayed particles decreased owing to the decrease of the normal velocity component as spray was performed at off-normal angle

  14. Numerical studies of spray breakup in a gasoline direct injection (GDI engine

    Directory of Open Access Journals (Sweden)

    Jafarmadar Samad

    2011-01-01

    Full Text Available The objective of this study is to investigate Spray Breakup process of sprays injected from single and two-hole nozzles for gasoline direct Injection (GDI engines by using three dimensional CFD code. Spray characteristics were examined for spray tip penetration and other characteristics including: the vapor phase concentration distribution and droplet spatial distribution, which were acquired using the computational fluid dynamics (CFD simulation. Results showed that as the hole-axis-angle (γ of the two-hole nozzle decreased, the droplet coalescence increased and vapor mass decreased. The spray with cone angle (θ0 5 deg for single hole nozzle has the longest spray tip penetration and the spray with the γ of 30 deg and spray cone angle θ0=30 deg for two hole nozzles had the shortest one. Also, when the spray cone angle (θ0 and hole-axis-angle (γ increased from 5 to 30 deg, the Sauter mean diameter (SMD decreased for both single-hole and two-hole nozzles used in this study. For a single-hole nozzle, when spray cone angle increased from 5 to 30 deg, the vaporization rate very much because of low level of coalescence. The result of model for tip penetration is good agreement with the corresponding experimental data in the literatures.

  15. Electrostatically atomised hydrocarbon sprays

    Energy Technology Data Exchange (ETDEWEB)

    Yule, A.J.; Shrimpton, J.S.; Watkins, A.P.; Balachandran, W.; Hu, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, Dept. of Mechanical Engineering

    1995-07-01

    A burner using an electrostatic method to produce and control a fuel spray is investigated for non-burning sprays. The burner has a charge injection nozzle and the liquid flow rate and charge injection rate are varied using hydrocarbon liquids of differing viscosities, surface tensions and electrical conductivities (kerosene, white spirit and diesel oil). Droplet size distributions are measured and it is shown how the dropsize, spray pattern, breakup mechanism and breakup length depend on the above variables, and in particular on the specific charge achieved in the spray. The data are valuable for validating two computer models under development. One predicts the electric field and flow field inside the nozzle as a function of emitter potential, geometry and flow rate. The other predicts the effect of charge on spray dispersion, with a view to optimizing spray combustion. It is shown that electrostatic disruptive forces can be used to atomize oils at flow rates commensurate with practical combustion systems and that the charge injection technique is particularly suitable for highly resistive liquids. Possible limitations requiring further research include the need to control the wide spray angle, which may provide fuel-air mixtures too lean near the nozzle, and the need to design for maximum charge injection rate, which is thought to be limited by corona breakdown in the gas near the nozzle orifice. 30 refs., 15 figs., 1 tab.

  16. Model of the macrostructure formation of plasma sprayed coatings

    International Nuclear Information System (INIS)

    Gnedovets, A.G.; Kalita, V.I.

    2007-01-01

    A 3D discrete ballistic model of plasma sprayed coatings structure formation is presented. The effect of a spraying angle on porous macrostructure of coatings is investigated by numerical computations.Computer simulation results as well as experimental data show that at a sputtering angle less than 45 deg the mechanism of surface relief formation is changed and the relief consists of valleys and ridges under such conditions of plasma spraying [ru

  17. Experimental study of spray characteristics of biodiesel derived from waste cooking oil

    International Nuclear Information System (INIS)

    Mohan, Balaji; Yang, Wenming; Tay, Kun Lin; Yu, Wenbin

    2014-01-01

    Highlights: • B20 and diesel exhibit similar spray tip penetration and angle. • Change in orientation of spray shapes observed with different fuels. • B100 shows poor air fuel mixing compared to B20 and diesel. • Diesel shows higher equivalence ratio compared to B20 and B100. - Abstract: In this study, the fuel spray characteristics and air-fuel mixing process of waste cooking oil biodiesel (B100) and its blend with diesel (B20) were investigated and compared with diesel fuel. Spray characteristics such as spray tip penetration, spray angle, spray velocity and spray morphology were investigated under high injection and ambient pressure conditions using a constant volume spray chamber. The air-fuel mixing process was analysed using empirical relations like fuel volume, mass of air entrained within the spray and equivalence ratio. The results shows that B100 has higher spray tip penetration and velocity but narrow spray angles due to high viscosity and large momentum possessed by B100 compared to B20 and diesel fuels. The deviation in spray tip penetration reduces under high ambient pressure. The spray angle shows no change under various injection pressures; however it increases significantly under high ambient pressure. The spray shape is affected by the cavitation inside the injector nozzle holes. The fuel volume and amount of air entrainment within the spray showed that B100 exhibits poor air-fuel mixing compared to B20 and diesel fuels. Nevertheless, the equivalence ratio along the axial direction of spray reveals that the B100 has lean equivalence ratio compared to B20 and diesel fuel due to the presence of inherent oxygen content in its structure. A numerical simulation was conducted using new hybrid spray model implemented in KIVA4 and found that the results obtained from the simulation were in good agreement with the empirical results calculated from the experiments

  18. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  19. SPRAY CASTING

    OpenAIRE

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and comp...

  20. Characteristics of combustion flame sprayed nickel aluminum using a Coanda Assisted Spray Manipulation collar for off-normal deposits

    Science.gov (United States)

    Archibald, Reid S.

    A novel flame spray collar called the Coanda Assisted Spray Manipulation collar (CSM) has been tested for use on the Sulzer Metco 5P II combustion flame spray gun. A comparison study of the stock nozzle and the CSM has been performed by evaluating the porosity, surface roughness, microhardness, tensile strength and microscopy of normal and off-normal sprayed NiAl deposits. The use of the CSM collar resulted in the need to position the sprayed coupons closer to the gun, which in turn affected the particle impact energy and particle temperatures of the NiAl powder. For the CSM, porosities had a larger scatterband, surface roughness was comparably the same, microhardness was lower, and tensile strength was higher. The microscopy analysis revealed a greater presence of unmelted particles and steeper intersplat boundaries for the CSM. For both processes, the porosity and surface roughness increased and the microhardness decreased as the spray angle decreased.

  1. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    KAUST Repository

    Sim, Jaeheon

    2016-04-05

    The outwardly-opening piezoelectric injector is gaining popularity as a high efficient spray injector due to its precise control of the spray. However, few modeling studies have been reported on these promising injectors. Furthermore, traditional linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide spray angles and string-like film structures. In this study, a new spray injection modeling was proposed for outwardly-opening hollow-cone injector. The injection velocities are computed from the given mass flow rate and injection pressure instead of ambiguous annular nozzle geometry. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like structure. Spray injection was modeled using a Lagrangian discrete parcel method within the framework of commercial CFD software CONVERGE, and the new model was implemented through the user-defined functions. A Siemens outwardly-opening hollow-cone spray injector was characterized and validated with existing experimental data at the injection pressure of 100 bar. It was found that the collision modeling becomes important in the current injector because of dense spray near nozzle. The injection distribution model showed insignificant effects on spray due to small initial droplets. It was demonstrated that the new model can predict the liquid penetration length and local SMD with improved accuracy for the injector under study.

  2. A study on the macroscopic spray behavior and atomization characteristics of biodiesel and dimethyl ether sprays under increased ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Jun; Park, Su Han [Graduate School of Hanyang University, 17 Haengdang-dong, Seoungdong-gu, Seoul 133-791 (Korea); Lee, Chang Sik [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea)

    2010-03-15

    The aim of this work is to investigate the spray behaviors of biodiesel and dimethyl ether (DME) fuels using image processing and atomization performance analysis of the two fuel sprays injected through a common-rail injection system under various ambient pressure conditions in a high pressure chamber. In order to observe the biodiesel and DME fuel spray behaviors under various ambient pressures, the spray images were analyzed at various times after the start of energization using a visualization system consisting of a high speed camera and two metal halide light sources. In addition, a high pressure chamber that can withstand a pressure of 4 MPa was used for adjusting the ambient pressure. From the spray images, spray characteristics such as the spray tip penetration, cone angle, area, and contour plot at various light intensity levels were analyzed using image conversion processing. Also, the local Sauter mean diameters (SMD) were measured at various axial/radial distances from the nozzle tip by a droplet measuring system to compare the atomization performances of the biodiesel and DME sprays. The results showed that the ambient pressure had a significant effect on the spray characteristics of the fuels at the various experimental conditions. The spray tip penetration and spray area decreased as the ambient pressure increased. The contour plot of the biodiesel and DME sprays showed a high light intensity level in the center regions of the sprays. In addition, it was revealed that the atomization performance of the biodiesel spray was inferior to that of the DME spray at the same injection and ambient conditions. (author)

  3. Comparison of the Characteristics and Performance of Flurbiprofen 8.75 mg Spray for Sore Throat.

    Science.gov (United States)

    Veale, David; Shephard, Adrian; Adams, Verity; Lidster, Charlotte

    2017-01-01

    Sore throat sprays provide targeted relief by delivering the active ingredient directly to the site of pain. Different sprays vary in characteristics, thus affecting delivery of the active ingredient to the throat, which can impact compliance. The characteristics and performance of FLURBIPROFEN 8.75 mg SPRAY were compared with 12 other sprays. Parameters assessed included spray angle and pattern, droplet size distribution, shot weight uniformity and shot weight throughout life. Among all sprays tested WICK Sulagil Halsspray had the smallest spray angle (46°) and also the smallest diameter spray pattern (X=32.8 mm; Y=34.4 mm). Thiovalone® Buccal Spray Suspension had both the largest spray angle (82°) and largest diameter spray pattern (X=62.6 mm; Y=78.0 mm). Hasco Sept® Aerosol Spray had the smallest droplet size (Dv90=118.4 μm) whereas OKi infiammazione e dolore® 0.16% spray had the largest (Dv90=214.34 μm). In terms of shot weight uniformity, TANTUM® VERDE GOLA 0.25% spray showed the least variation (2% RSD) between shots and UNIBEN Aerosol Spray the most (23.4% RSD). Shot weight throughout life studies showed that FLURBIPROFEN 8.75 mg SPRAY had the least deviation from shot weight (1.77%) whereas OKi infiammazione e dolore® 0.16% spray deviated the most (44.9%). FLURBIPROFEN 8.75 mg SPRAY had the second smallest spray angle/pattern and droplet size distribution and also the least variation in shot weight. Different sore throat sprays vary in different attributes, affecting delivery of the active ingredient. FLURBIPROFEN 8.75 mg SPRAY performed well overall, ranking first among all sprays tested, and providing a dose which is targeted and uniformly delivered throughout the life of the bottle. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber

    Directory of Open Access Journals (Sweden)

    Hongzhan Xie

    2015-06-01

    Full Text Available The objective of this study was to investigate the macroscopic spray characteristics of different 0%–100% blends of biodiesel derived from drainage oil and diesel (BD0, BD20, BD50, BD80, BD100, such as spray tip penetration, average tip velocity at penetration, spray angle, average spray angle, spray evolution process, spray area and spray volume under different injection pressures (60, 70, 80, 90, 100 MPa and ambient pressures (0.1, 0.3, 0.5, 0.7, 0.9 MPa using a common rail system equipped with a constant volume chamber. The characteristic data was extracted from spray images grabbed by a high speed visualization system. The results showed that the ambient pressure and injection pressure had significant effects on the spray characteristics. As the ambient pressure increased, the spray angle increased, while the spray tip penetration and the peak of average tip velocity decreased. As the injection pressure increased, the spray tip penetration, spray angle, spray area and spray volume increased. The increasing blend ratio of biodiesel brought about a shorter spray tip penetration and a smaller spray angle compared with those of diesel. This is due to the comparatively higher viscosity and surface tension of biodiesel, which enhanced the friction effect between fuel and the injector nozzle surface and inhibited the breakup of the liquid jet.

  5. An investigation of the effects of spray angle and injection strategy on dimethyl ether (DME) combustion and exhaust emission characteristics in a common-rail diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seung Hyun; Cha, June Pyo [Graduate School of Hanyang University, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-791 (Korea); Lee, Chang Sik [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791 (Korea)

    2010-11-15

    An experimental investigation was performed on the effects of spray angle and injection strategies (single and multiple) on the combustion characteristics, concentrations of exhaust emissions, and the particle size distribution in a direct-injection (DI) compression ignition engine fueled with dimethyl ether (DME) fuel. In this study, two types of narrow spray angle injectors ({theta}{sub spray} = 70 and 60 ) were examined and its results were compared with the results of conventional spray angle ({theta}{sub spray} = 156 ). In addition, to investigate the optimal operating conditions, early single-injection and multiple-injection strategies were employed to reduce cylinder wall-wetting of the injected fuels and to promote the ignition of premixed charge. The engine test was performed at 1400 rpm, and the injection timings were varied from TDC to BTDC 40 of the crank angle. The experimental results showed that the combustion pressure from single combustion for narrow-angle injectors ({theta}{sub spray} = 70 and 60 ) is increased, as compared to the results of the wide-angle injector ({theta}{sub spray} = 156 ) with advanced injection timing of BTDC 35 . In addition, two peaks of the rate of heat release (ROHR) are generated by the combustion of air-fuel premixed mixtures. DME combustion for all test injectors indicated low levels of soot emissions at all injection timings. The NO{sub x} emissions for narrow-angle injectors simultaneously increased in proportion to the advance in injection timing up to BTDC 25 , whereas BTDC 20 for the wide-angle injector. For multiple injections, the combustion pressure and ROHR of the first injection with narrow-angle injectors are combusted more actively, and the ignition delay of the second injected fuel is shorter than with the wide-angle injector. However, the second combustion pressure and ROHR were lower than during the first injection, and combustion durations are prolonged, as compared to the wide-angle injector. With

  6. An investigation of the effects of spray angle and injection strategy on dimethyl ether (DME) combustion and exhaust emission characteristics in a common-rail diesel engine

    International Nuclear Information System (INIS)

    Yoon, Seung Hyun; Cha, June Pyo; Lee, Chang Sik

    2010-01-01

    An experimental investigation was performed on the effects of spray angle and injection strategies (single and multiple) on the combustion characteristics, concentrations of exhaust emissions, and the particle size distribution in a direct-injection (DI) compression ignition engine fueled with dimethyl ether (DME) fuel. In this study, two types of narrow spray angle injectors (θ spray = 70 and 60 ) were examined and its results were compared with the results of conventional spray anglespray = 156 ). In addition, to investigate the optimal operating conditions, early single-injection and multiple-injection strategies were employed to reduce cylinder wall-wetting of the injected fuels and to promote the ignition of premixed charge. The engine test was performed at 1400 rpm, and the injection timings were varied from TDC to BTDC 40 of the crank angle. The experimental results showed that the combustion pressure from single combustion for narrow-angle injectors (θ spray = 70 and 60 ) is increased, as compared to the results of the wide-angle injector (θ spray = 156 ) with advanced injection timing of BTDC 35 . In addition, two peaks of the rate of heat release (ROHR) are generated by the combustion of air-fuel premixed mixtures. DME combustion for all test injectors indicated low levels of soot emissions at all injection timings. The NO x emissions for narrow-angle injectors simultaneously increased in proportion to the advance in injection timing up to BTDC 25 , whereas BTDC 20 for the wide-angle injector. For multiple injections, the combustion pressure and ROHR of the first injection with narrow-angle injectors are combusted more actively, and the ignition delay of the second injected fuel is shorter than with the wide-angle injector. However, the second combustion pressure and ROHR were lower than during the first injection, and combustion durations are prolonged, as compared to the wide-angle injector. With advanced timing of the first injection, narrow-angle

  7. Experimental characterization of gasoline sprays under highly evaporating conditions

    Science.gov (United States)

    Khan, Muhammad Mahabat; Sheikh, Nadeem Ahmed; Khalid, Azfar; Lughmani, Waqas Akbar

    2018-05-01

    An experimental investigation of multistream gasoline sprays under highly evaporating conditions is carried out in this paper. Temperature increase of fuel and low engine pressure could lead to flash boiling. The spray shape is normally modified significantly under flash boiling conditions. The spray plumes expansion along with reduction in the axial momentum causes the jets to merge and creates a low-pressure area below the injector's nozzle. These effects initiate the collapse of spray cone and lead to the formation of a single jet plume or a big cluster like structure. The collapsing sprays reduces exposed surface and therefore they last longer and subsequently penetrate more. Spray plume momentum increase, jet plume reduction and spray target widening could delay or prevent the closure condition and limit the penetration (delayed formation of the cluster promotes evaporation). These spray characteristics are investigated experimentally using shadowgraphy, for five and six hole injectors, under various boundary conditions. Six hole injectors produce more collapsing sprays in comparison to five hole injector due to enhanced jet to jet interactions. The spray collapse tendency reduces with increase in injection pressure due high axial momentum of spray plumes. The spray evaporation rates of five hole injector are observed to be higher than six hole injectors. Larger spray cone angles of the six hole injectors promote less penetrating and less collapsing sprays.

  8. Study of ethanol and gasoline fuel sprays using mie-scatter and schlieren imaging

    Science.gov (United States)

    Bouchard, Lauren; Bittle, Joshua; Puzinauskas, Paul

    2016-11-01

    Many cars today are capable of running on both gasoline and ethanol, however it is not clear how well optimized the engines are for the multiple fuels. This experiment looks specifically at the fuel spray in a direct injection system. The length and angle of direct injection sprays were characterized and a comparison between ethanol and gasoline sprays was made. Fuels were tested using a modified diesel injector in a test chamber at variable ambient pressures and temperatures in order to simulate both high and low load combustion chamber conditions. Rainbow schlieren and mie-scatter imaging were both used to investigate the liquid and vapor portions of the sprays. The sprays behaved as expected with temperature and pressure changes. There was no noticeable fuel effect on the liquid portion of the spray (mie-scatter), though the gasoline vapor spray angles were wider than ethanol spray angles (possible a result of the distillation curves of the two fuels). Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  9. An experimental study on atomizing formation process of diesel spray

    International Nuclear Information System (INIS)

    Kim, Ki Bong

    2000-02-01

    In this study, the experiment has, been conducted to investigate the spray characteristics under the parameter of an ambient pressure with a single hole nozzle having aspect ratio(L/D) of 5 and diameter of 0.45mm. Under the condition of the injection pressure of 14Mpa, the initial disintegrating process of a diesel spray is investigated and analysized according to change of the ambient pressures, 0.1, 1, 2 and 3Mpa. The double flash method has been employed to visualize the process of the diesel sprays. The results obtained in this study are as follows: 1) After spray starts, the spray is shown as non-disturbance liquid column within about 1∼2mm from the nozzle tip, whose diameter is similar to that of a nozzle. For the same injection pressure, the increase of the ambient pressure makes the length of the non-disturbance liquid column become short. 2) Due to the surface wave, ligaments of the shape thread appear at the boundary of liquid column right after spray. The more developed wave together the progress of spray transforms ligaments into droplets that have generally the uniformed size. 3) In case spraying into chambers having different ambient pressures, 1, 2, and 3Mpa, the spray tip velocities reach up to 1.5, 1.2, and 0.6ms, respectively, and decrease with lapse of time. The spray angle keeps increasing for 0.6, 1.2, and 1.4ms after spray under the various ambient pressures, 3, 2, and 1Mpa, respectively, and begins to decrease and maintains the constant value. Therefore, the transition points appear near the point where the velocity decreases and the spray angle increases, simultaneously. The higher ambient pressure leads to fast appearance of transition under the same spray pressure. 4) The disintegrating mechanism of the liquid spray is two combined effects: a) friction forces between the surface waves generated at the surface of the liquid column and the ambient gas, b) the collisions of liquid droplets and ligaments by spray were overtaking

  10. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  11. Droplets Behavior of Hollow-Cone Spray in a Non-Condensable Environment

    International Nuclear Information System (INIS)

    Minoru Takahashi; Shin-ichi Kitagawa; Suizheng Qiu

    2002-01-01

    The characteristics of droplets in a water hollow-cone spray from nozzles 1.1 mm and 3.6 mm in diameter in an air environment have been investigated experimentally. The dual phase Doppler anemometry (PDA) system was used to measure the size and two velocity components of individual spherical particles. The liquid spray geometry, including spray breakup length and spray angle were also obtained experimentally. The mechanism and the influence of these parameters on a hollow cone spray flow were described. (authors)

  12. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  13. Simulation of oblique evaporating diesel sprays, and comparison with empirical correlations and simulated straight sprays

    International Nuclear Information System (INIS)

    Chaudhry, I.A.; Mirza, M.R.; Rashid, M.J.

    2010-01-01

    The innovation in software analysis and various available programming facilities have urged the designers at various levels to do indispensable calculations for engine flows. Presently, the 3-D analysis approach is under practice to do simulations for various parameters involving engine operations using various soft wares, 'Fluent' being the trendiest at the moment for CFD modeling. The present work involves CFD modeling of diesel fuel sprays at a specified angle with cylinder axis. Fuel spray modeling includes sub-models for aerodynamic drag, droplet oscillation and distortion, turbulence effects, droplet breakup, evaporation, and droplet collision and coalescence. The data available from existing published work is used to model the fuel spray and the subsequent simulation results are compared to experimental results to test validity of the proposed models. (author)

  14. Spray characteristics and spray cooling heat transfer in the non-boiling regime

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Han, Feng-Yun; Liu, Qi-Nie; Fan, Han-Lin

    2011-01-01

    Spray cooling is an effective method for dissipating high heat fluxes in the field of electronics thermal control. In this study, experiments were performed with distilled water as a test liquid to study the spray cooling heat transfer in non-boiling regime. A Phase Doppler Anemometry (PDA) was used to study the spray characteristics. The effects of spray flow rate, spray height, and inlet temperature on spray cooling heat transfer were investigated. It was found that the parameters affect heat transfer of spray cooling in non-boiling regime by the spray characteristics and working fluid thermophysical properties. Then the corresponding droplet axial velocity and Sauter mean diameter (SMD) were successfully correlated with mean absolute error of 15%, which were based upon the orifice diameter, the Weber and Reynolds numbers of the orifice flow prior to liquid breakup, dimensionless spray height and spray cross-section radius. The heat transfer in non-boiling regime was correlated with a mean absolute error of 7%, which was mainly associated with the working fluid thermophysical properties, the Weber and Reynolds numbers hitting the heating surface, dimensionless heating surface temperature and diameter. -- Highlights: → The spray flow rate, spray height, and inlet temperature affect heat transfer of spray cooling in non-boiling regime by the spray characteristics and the working fluid thermophysical properties. → Then the corresponding droplet axial velocity and Sauer mean diameter (SMD) were successfully correlated with mean absolute error of 15%. → The heat transfer in non-boiling regime was correlated with a mean absolute error of 7%.

  15. CHARACTERIZATION OF DIESEL SPRAY IMAGES USING A SHAPE PROCESSING METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cecile Petit

    2011-05-01

    Full Text Available In Diesel engines, a key element in achieving a clean and efficient combustion process is a proper fuel-air mixing, which is a consequence of the fuel spray development and fuel-air interaction inside the engine combustion chamber. The spray structure and behavior are classically described by the length (penetration and width (angle of the spray plume but these parameters do not give any clue on the geometrical injection center and on the spray symmetry. The purpose of this paper is to find out original tools to characterize the Diesel spray: the virtual spray origin is the geometrical injection center, which may (or may not coincide with the injector axis. Another interesting point is the description of the Diesel spray in terms of symmetry: the spray plume internal and external symmetry characterize the spray and the injector performance. Our approach is first to find out the virtual spray origin: after the image segmentation, the spray is coded with the Freeman code and with an original shape coding from which the moments are derived. The symmetry axes are then computed and the spray plumes are discarded (or not for the virtual spray origin computation, which is derived from a Voronoi diagram. The last step is the internal and external spray plume symmetry characterization thanks to correlation and mathematical distances.

  16. Layered growth with bottom-spray granulation for spray deposition of drug.

    Science.gov (United States)

    Er, Dawn Z L; Liew, Celine V; Heng, Paul W S

    2009-07-30

    The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.

  17. Spray deposition and spray drift in orchard spraying by multiple row sprayers

    NARCIS (Netherlands)

    Wenneker, M.; Zande, van de J.C.; Michielsen, J.G.P.; Stallinga, H.; Velde, van P.

    2016-01-01

    The evaluation of the latest data on spray drift in orchard spraying in the Netherlands, and measurements of surface water quality parameters show that the current legislation and measures are insufficient to protect the surface water. To meet the national and European objectives regarding surface

  18. Laser-Based Spatio-Temporal Characterisation of Port Fuel Injection (PFI Sprays

    Directory of Open Access Journals (Sweden)

    C. T. N. Anand

    2010-06-01

    Full Text Available In the present work, detailed laser-based diagnostic experiments were conducted to characterise the spray from low pressure 2-hole and 4-hole Port Fuel Injection (PFI injectors. The main objective of the work included obtaining quantitative information of the spatio-temporal spray structure of such low-pressure gasoline sprays. A novel approach involving a combination of techniques such as Mie scattering, Granulometry, and Laser Sheet Dropsizing (LSD was used to study the spray structure. The droplet sizes, distributions with time, Sauter Mean Diameters (SMD, droplet velocities, cone angles and spray tip penetrations of the sprays from the injectors were determined. The spray from these injectors is found to be ‘pencil like’ and not dispersed as in high pressure sprays. The application of the above mentioned techniques provides two-dimensional SMD contours of the entire spray at different instants of time, with reasonable accuracy.

  19. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    Science.gov (United States)

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  20. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    Science.gov (United States)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  1. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  2. Experimental and analytical study on biodiesel and diesel spray characteristics under ultra-high injection pressure

    International Nuclear Information System (INIS)

    Wang Xiangang; Huang Zuohua; Kuti, Olawole Abiola; Zhang Wu; Nishida, Keiya

    2010-01-01

    Spray characteristics of biodiesels (from palm and cooked oil) and diesel under ultra-high injection pressures up to 300 MPa were studied experimentally and analytically. Injection delay, spray penetration, spray angle, spray projected area and spray volume were measured in a spray vessel using a high speed video camera. Air entrainment and atomization characteristics were analyzed with the quasi-steady jet theory and an atomization model respectively. The study shows that biodiesels give longer injection delay and spray tip penetration. Spray angle, projected area and volume of biodiesels are smaller than those of diesel fuel. The approximately linear relationship of non-dimensional spray tip penetration versus time suggests that the behavior of biodiesel and diesel sprays is similar to that of gaseous turbulent jets. Calculation from the quasi-steady jet theory shows that the air entrainment of palm oil is worse than that of diesel, while the cooked oil and diesel present comparable air entrainment characteristics. The estimation on spray droplet size shows that biodiesels generate larger Sauter mean diameter due to higher viscosity and surface tension.

  3. Effect of spray volume on the deposition, viability and infectivity of entomopathogenic nematodes in a foliar spray on vegetables.

    Science.gov (United States)

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-10-01

    Spray volume can influence the amount of free water on the leaf surface and subsequently the ability of entomopathogenic nematodes (EPNs) to move. In this study, an investigation was made of the effect of spray volume (548, 730 and 1095 L ha(-1) ) on the deposition, viability and infectivity of EPNs against Galleria mellonella on savoy cabbage, cauliflower and leek. Increasing spray volume decreased nematode deposition on 7.1 cm2 leek leaf discs at a 15° angle with the spray nozzle. Although the number of living nematodes observed on leek after 240 min of exposure was not significantly different between the low-volume application (548 L ha(-1) ) and the high-volume application (1095 L ha(-1) ), a greater infectivity was obtained in the latter application. The higher number of droplets deposited on the leek discs in the high-volume application may have stimulated nematode movement. No significant effect of spray volume was observed on the relative deposition of Steinernema carpocapsae on the bottom side of cauliflower and savoy cabbage leaf discs. In spite of the low S. carpocapsae deposition on the bottom side of the savoy cabbage discs, high infectivity was obtained against G. mellonella. Using the lowest spray volume on savoy cabbage, infectivity decreased with increasing exposure time, while infectivity was not affected by exposure time when a spray volume of 730 L ha(-1) or more was used. Spray volume is an important application parameter, as it affects nematode infectivity. Future research should investigate the effect of spray volume in the field and its influence on the effect of adjuvants. Copyright © 2012 Society of Chemical Industry.

  4. Effects of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector

    Science.gov (United States)

    Kang, Zhongtao; Li, Qinglian; Cheng, Peng; Zhang, Xinqiao; Wang, Zhen-guo

    2016-10-01

    To understand the influence of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector, a back-lighting photography technique has been employed to capture the instantaneous self-pulsated spray and stable spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of self-pulsation on the spray pattern, primary breakup, spray angle, diameter and velocity distribution and mass flow rate distribution are analyzed and discussed. The results show that the spray morphology is greatly influenced by self-pulsation. The stable spray has a cone shape, while the self-pulsated spray looks like a Christmas tree. The main difference of these two sprays is the primary breakup. The liquid film of stable spray keeps stable while that of self-pulsated spray oscillates periodically. The film width of self-pulsated spray varies in a large range with 'neck' and 'shoulder' features existing. The liquid film of self-pulsated spray breaks up at the second neck, and then the second shoulder begins to breakup into ligaments. The self-pulsated spray produces droplet clusters periodically, varies horizontal spray width and mass flux periodically. From the point of spatial distribution, self-pulsation is good for the spray, it uniformizes the mass flux along radius and increases the spray angle. However, when self-pulsation occurs, the SMD distribution varies from an inverted V shape to a hollow cone shape, and SMD increases at all the measuring points. Namely, from the point of atomization performance, self-pulsation has negative effects even when the breakup length is smaller. The effects of self-pulsation on the diameter and velocity distributions of the spray are mainly in the center part of the spray. The periphery of stable and self-pulsated spray has similar diameter and velocity distribution.

  5. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  6. Spray boom for selectively spraying a herbicidal composition onto dicots

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a method and spray boom for discriminating cereal crop (monocot) and weeds (dicots). The spray boom includes means for digitally recording an image of a selected area to be treated by a nozzle on the spray boom, whereby a plant material is identified based on a segmentation proc...

  7. Spray characteristics and liquid distribution of multi-hole effervescent atomisers for industrial burners

    International Nuclear Information System (INIS)

    Jedelský, Jan; Jícha, Miroslav

    2016-01-01

    Highlights: • The multi-hole (mh) spray morphology is very similar to that of single-hole nozzles. • Unsteady spray was found at low pressure and low gas-to-liquid-ratio (GLR) values. • Cone angle variation in mh spray with pressure and GLR depends on the exit nozzles angle. • A liquid–gas gravitational separation in horizontal atomiser operation was observed. • It causes up to 70% fuel supply variance into exit holes depending on design and regime. - Graphical Abstract: - Abstract: The present paper provides an experimental study and optimisation of multi-hole effervescent atomisers for industrial burners using oil-based fossil, bio- or waste fuels with prospects of emission reduction. Several multi-hole nozzles were designed based on our previous work. We probed the spray quality by phase-Doppler anemometry. 3-D plots of Sauter mean diameter and mean droplet velocity demonstrate their spatial distribution within the spray. The effect of geometrical and operational factors on the spray is discussed. Droplet size–velocity correlations as well as the size and velocity distributions are presented, and differences are found against other investigations. A spray macrostructure is photographically observed and spray cone angles of the multi-hole nozzles are analysed. An internal two-phase flow is estimated using the Baker's map for horizontal two-phase flow. Our previous two-phase flow visualisations suggested a liquid–gas gravitational separation when the multi-hole atomiser operated horizontally. This issue is addressed here; the results of spray heterogeneity measurements document that fuel flow rates through individual exit holes differ significantly. This difference spans between 0 and 70% depending on the nozzle design and flow regime. Effervescent sprays are unsteady under some operating conditions; spray unsteadiness was detected at low pressure and low gas-to-liquid-ratios.

  8. Reduction of spray pressure leads to less emission and better deposition of spray liquid at high-volume spraying in greenhouse tomato

    NARCIS (Netherlands)

    Os, van E.A.; Michielsen, J.M.G.P.; Corver, F.J.M.; Berg, van den J.V.; Bruins, M.A.; Porskamp, H.A.J.; Zande, van de J.C.

    2005-01-01

    In an experimental greenhouse, growing a tomato crop, it was investigated if a reduction in spray pressure could improve the spray result, while, simultaneously, emission to the ground could be reduced. Spray deposition on the leaves and the emission to the ground was evaluated at different spray

  9. Effect of Pressurized Metered Dose Inhaler Spray Characteristics and Particle Size Distribution on Drug Delivery Efficiency.

    Science.gov (United States)

    Yousefi, Morteza; Inthavong, Kiao; Tu, Jiyuan

    2017-10-01

    A key issue in pulmonary drug delivery is improvement of the delivery device for effective and targeted treatment. Pressurized metered dose inhalers (pMDIs) are the most popular aerosol therapy device for treating lung diseases. This article studies the effect of spray characteristics: injection velocity, spray cone angle, particle size distribution (PSD), and its mass median aerodynamic diameter (MMAD) on drug delivery. An idealized oral airway geometry, extending from mouth to the main bronchus, was connected to a pMDI device. Inhalation flow rates of 15, 30, and 60 L/min were used and drug particle tracking was a one-way coupled Lagrangian model. The results showed that most particles deposited in the pharynx, where the airway has a reduced cross-sectional area. Particle deposition generally decreased with initial spray velocity and with increased spray cone angle for 30 and 60 L/min flow rates. However, for 15 L/min flow rate, the deposition increased slightly with an increase in the spray velocity and cone angle. The effect of spray cone angle was more significant than the initial spray velocity on particle deposition. When the MMAD of a PSD was reduced, the deposition efficiency also reduces, suggesting greater rates of particle entry into the lung. The deposition rate showed negligible change when the MMAD was more than 8 μm. Spray injection angle and velocity change the drug delivery efficacy; however, the efficiency shows more sensitivity to the injection angle. The 30 L/min airflow rate delivers spray particles to the lung more efficiently than 15 and 60 L/min airflow rate, and reducing MMAD can help increase drug delivery to the lung.

  10. Micro-structural investigations of spray hydrolyzed TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lakhotiya, H. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Centre for Converging Technologies, University of Rajasthan, Jaipur (India); Singh, Ripandeep; Bahadur, J. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Sen, D., E-mail: debasis@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Das, Avik; Mazumder, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Paul, B. [Materials Processing Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Sastry, P.U. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Lemmel, H. [Atominstitut, Vienna University of Technology, 1020 Vienna (Austria); Institut Laue-Langevin, 38000 Grenoble (France)

    2014-01-25

    Highlights: • Titania microstructure formation by spray hydrolysis. • Morphological transition during spray hydrolysis process. • Hollow microspheres and fractal like grains depending on precursor concentration. • Use of scattering and microscopy techniques in probing mesoscopic structures. • A plausible mechanism regarding the morphological transition is also introduced. -- Abstract: Hydrolysis across tiny spray droplet allows a facile one step synthesis of interesting sub-micrometric structures owing to the large available surface area unlike bulk hydrolysis. In the present work, it has been demonstrated that titania precursor concentration plays a significant role in effecting morphological transformation during spray hydrolysis. While hollow microspheres are formed primarily at low precursor concentration, fractal like grains, having two levels of hierarchy, result at high precursor concentration. Mesoscopic structure of these spray hydrolyzed grains has been investigated by ultra small-angle neutron scattering, small-angle X-ray scattering and scanning electron microscopy. Thermal evolution of initial amorphous phase of titania into crystalline rutile phase, through intermediate anatase and brookite phases, is followed by high temperature X-ray diffraction. A plausible mechanism has been elucidated for the observed morphological transition with variation of precursor concentration.

  11. Effect of ambient gas density for diesel spray; Diesel funmu ni taisuru fun`iki mitsudo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yokohashi, M; Suzuki, T; Oshima, R [Tohokugakuin University, Sendai (Japan); Ono, A [Shinryo Corp., Tokyo (Japan)

    1997-10-01

    Effect of ambient gas density for fuel spray are measured to investigate the Diesel spray behavior. The change of ambient gas density has been given by pressuring N2 gas and using a high density atmospheric pressure SF6 gas. The measurement are performed for the spray penetration and angle. As a result, the spray penetration is confirmed same tendency at the change of density by pressuring N2 and using SF6. Though spray angle is required modification with viscosity. 2 refs., 11 figs.

  12. Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application

    Science.gov (United States)

    Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain

    2014-12-01

    Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.

  13. Estimation of equivalence ratio distribution in diesel spray using a computational fluid dynamics

    Science.gov (United States)

    Suzuki, Yasumasa; Tsujimura, Taku; Kusaka, Jin

    2014-08-01

    It is important to understand the mechanism of mixing and atomization of the diesel spray. In addition, the computational prediction of mixing behavior and internal structure of a diesel spray is expected to promote the further understanding about a diesel spray and development of the diesel engine including devices for fuel injection. In this study, we predicted the formation of diesel fuel spray with 3D-CFD code and validated the application by comparing experimental results of the fuel spray behavior and the equivalence ratio visualized by Layleigh-scatter imaging under some ambient, injection and fuel conditions. Using the applicable constants of KH-RT model, we can predict the liquid length spray on a quantitative level. under various fuel injection, ambient and fuel conditions. On the other hand, the change of the vapor penetration and the fuel mass fraction and equivalence ratio distribution with change of fuel injection and ambient conditions quantitatively. The 3D-CFD code used in this study predicts the spray cone angle and entrainment of ambient gas are predicted excessively, therefore there is the possibility of the improvement in the prediction accuracy by the refinement of fuel droplets breakup and evaporation model and the quantitative prediction of spray cone angle.

  14. Modeling the influence of nozzle-generated turbulence on diesel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Magnotti, G M; Matusik, K E; Duke, D J; Knox, B W; Martinez, G L; Powell, C F; Kastengren, A L; Genzale, C L

    2017-05-18

    The physical mechanisms governing spray breakup in direct injection engines, such as aerodynamic induced instabilities and nozzle-generated cavitation and turbulence, are not well understood due to the experimental and computational limitations in resolving these processes. Recent x-ray and visible extinction measurements have been con-ducted with a targeted interest in the spray formation region in order to characterize the distribution of droplet sizes throughout the spray. Detailed analysis of these measurements shows promise of yielding insight into likely mechanisms governing atomization, which can inform the improvement of spray models for engine computational fluid dynamic (CFD) codes. In order to investigate potential atomization mechanisms, we employ a joint experimental and computational approach to characterize the structure of the spray formation region using the Engine Combustion Network Spray D injector. X-ray tomography, radiography and ultra-small angle x-ray scattering measurements conducted at the Advanced Photon Source at Argonne National Laboratory quantify the injector geometry, liquid fuel mass and Sauter mean diameter (SMD) distributions under non-vaporizing conditions. Diffused back-illumination imaging measurements, conducted at the Georgia Institute of Technology, characterize the asymmetry of the spray structure. The selected range of injection pressures (50 – 150 MPa) and ambient densities (1.2 – 22.8 kg/m3) allow for the influence of aerodynamic forces on the spray to be studied in a controlled and systematic manner, while isolating the atomization process from the effects of vaporization. In comparison to high ambient density conditions, the spray is observed to be more asymmetric at low ambient density conditions. Although several mechanisms may cause asymmetries in the nozzle exit flow conditions and ultimately the spray distribution, irregularities in the internal nozzle geometry were identified, suggesting an increased

  15. Superhydrophobic hybrid inorganic-organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization.

    Science.gov (United States)

    Sparks, Bradley J; Hoff, Ethan F T; Xiong, Li; Goetz, James T; Patton, Derek L

    2013-03-13

    We report a simple and versatile method for the fabrication of superhydrophobic inorganic-organic thiol-ene coatings via sequential spray-deposition and photopolymerization under ambient conditions. The coatings are obtained by spray-deposition of UV-curable hybrid inorganic-organic thiol-ene resins consisting of pentaerythritol tetra(3-mercaptopropionate) (PETMP), triallyl isocyanurate (TTT), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (TMTVSi), and hydrophobic fumed silica nanoparticles. The spray-deposition process and nanoparticle agglomeration/dispersion provide surfaces with hierarchical morphologies exhibiting both micro- and nanoscale roughness. The wetting behavior, dependent on the concentration of TMTVSi and hydrophobic silica nanoparticles, can be varied over a broad range to ultimately provide coatings with high static water contact angles (>150°), low contact angle hysteresis, and low roll off angles (spray-deposition and UV-cure process on a variety of substrate surfaces including glass, paper, stone, and cotton fabric.

  16. Reactor container spray device

    International Nuclear Information System (INIS)

    Yanai, Ryoichi.

    1980-01-01

    Purpose: To enable decrease in the heat and the concentration of radioactive iodine released from the reactor vessel into the reactor container in the spray device of BWR type reactors. Constitution: A plurality of water receiving trays are disposed below the spray nozzle in the dry well and communicated to a pressure suppression chamber by way of drain pipeways passing through a diaphragm floor. When the recycling system is ruptured and coolants in the reactor vessel and radioactive iodine in the reactor core are released into the dry well, spray water is discharged from the spray nozzle to eliminate the heat and the radioactive iodine in the dry well. In this case, the receiving trays collect the portions of spray water whose absorption power for the heat and radioactive iodine is nearly saturated and falls them into the pool water of the pressure suppression chamber. Consequently, other portions of the spray water that still possess absorption power can be jetted with no hindrance, to increase the efficiency for the removal of the heat and iodine of the spray droplets. (Horiuchi, T.)

  17. Slurry spray distribution within a simulated laboratory scale spray dryer

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1979-01-01

    It was found that the distribution of liquid striking the sides of a simulated room temperature spray dryer was not significantly altered by the choice of nozles, nor by a variation in nozzle operating conditions. Instead, it was found to be a function of the spray dryer's configuration. A cocurrent flow of air down the drying cylinder, not possible with PNL's closed top, favorably altered the spray distribution by both decreasing the amount of liquid striking the interior of the cylinder from 72 to 26% of the feed supplied, and by shifting the zone of maximum impact from 1.0 to 1.7 feet from the nozzle. These findings led to the redesign of the laboratory scale spray dryer to be tested at the Savannah River Plant. The diameter of the drying chamber was increased from 5 to 8 inches, and a cocurrent flow of air was established with a closed recycle. Finally, this investigation suggested a drying scheme which offers all the advantages of spray drying without many of its limitations

  18. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    International Nuclear Information System (INIS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-01-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  19. An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system

    International Nuclear Information System (INIS)

    Han, Dong; Wang, Chunhai; Duan, Yaozong; Tian, Zhisong; Huang, Zhen

    2014-01-01

    The injection and spray characteristics of diesel and gasoline blends are investigated on a common rail injection system. The injection rate, fuel spray evolution process (tip penetration distance, spray cone angle, projected spray area and relative brightness intensity contour) and microscopic droplet features are analyzed. The results show that diesel and gasoline blends have higher volumetric injection rates, earlier starts of injection and shorter injection delays, but little variances are observed in the mass injection rates for different test fuels. Increased gasoline proportion in the test blends causes slightly decreased spray tip penetration distance but increased spray cone angle. Also, more smaller-size droplets are observed in the fuel jet of the diesel and gasoline blends, indicating that the spray breakup and atomization processes are promoted. - Highlights: • Injection rate and spray characteristics of diesel and gasoline blends are studied. • Diesel and gasoline blends have higher volumetric injection rates. • Earlier starts of injection are found when using diesel and gasoline blends. • Diesel and gasoline blends produce shorter spray penetration but higher cone angle. • The number of small droplets increases in the spray of diesel and gasoline blends

  20. CONCHAS-SPRAY, Reactive Flows with Fuel Sprays

    International Nuclear Information System (INIS)

    Cloutman, L.D.; Dukowicz, J.K.; Ramshaw, J.D.; Amsden, A.A.

    2001-01-01

    Description of program or function: CONCHAS-SPRAY solves the equations of transient, multicomponent, chemically reactive fluid dynamics, together with those for the dynamics of an evaporating liquid spray. The program was developed with applications to internal combustion engines in mind. The formulation is spatially two-dimensional, and encompasses both planar and axisymmetric geometries. In the latter case, the flow is permitted to swirl about the axis of symmetry. CONCHAS-SPRAY is a time-marching, finite- difference program that uses a partially implicit numerical scheme. Spatial differences are formed with respect to a generalized two- dimensional mesh of arbitrary quadrilaterals whose corner locations are specified functions of time. This feature allows a Lagrangian, Eulerian, or mixed description, and is particularly useful for representing curved or moving boundary surfaces. Arbitrary numbers of species and chemical reactions are allowed. The latter are subdivided into kinetic and equilibrium reactions, which are treated by different algorithms. A turbulent law-of-the-wall boundary layer option is provided. CONCHAS-SPRAY calls a number of LANL system subroutines to display graphic or numerical information on microfiche. These routines are not included, but are described in the reference report. Several routines called from LINPACK and SLATEC1.0 are included

  1. Macroscopic Properties of Hollow Cone Spray Using an Outwardly Opening Piezoelectric Injector in GCI Engine

    KAUST Repository

    Cheng, Penghui

    2016-07-01

    factor of reducing penetration length. Injection pressure contributes to a notable increase of liquid penetra- tion length under ambient pressure of 1 atm. However, the influence of injection pressure is substantially reduced under ambient pressures of 4 bar and 10.5 bar, which indicates that ambient pressure exerts much stronger influence than injection pressure on liquid penetra- tion length. Furthermore, it has been revealed that the increase of injection pressure and ambient pressure are the predominant sources contributing to the enlargement of spray cone angle. The effect of injection pressure on spray cone angle has been amplified by the increase of ambient pressure. With increasing ambient pressure, the penetration of injected fuel tends to propagate axially in a much slower manner that leads to wider fuel distribution in the radial direction. Ambient temperature exerts a similar influence on spray cone angle as on liquid penetration length. The spray cone angle experiences a noticeable decline when ambient gas is increased to 200 °C.

  2. Numerical modelling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, C.

    1999-06-01

    The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs

  3. Influence of angle between the nozzle and skin surface on the heat flux and overall heat extraction during cryogen spray cooling

    International Nuclear Information System (INIS)

    Aguilar, Guillermo; Vu, Henry; Nelson, J Stuart

    2004-01-01

    High speed video imaging and an inverse heat conduction problem algorithm were used to observe and measure the effect of the angle between the nozzle and surface of a skin phantom on: (a) surface temperature; (b) heat flux q; and (c) overall heat extraction Q during cryogen spray cooling (CSC). A skin phantom containing a fast-response temperature sensor was sprayed with 50 ms cryogen spurts from a commercial nozzle placed 30 mm from the surface. The nozzle was systematically positioned at angles ranging from 5 deg. to 90 deg. (perpendicular) with respect to the phantom surface. It is shown that angles as low as 15 deg. have an insignificant impact on the surface temperature, q and Q. Only exaggerated angles of 5 deg. show up to 10% lower q and 30% lower Q with respect to the maximal values measured when nozzles are aimed perpendicularly. This study proves that the slight angle that many commercial nozzles have does not affect significantly the CSC efficiency. (note)

  4. Hollow-Cone Spray Modeling for Outwardly Opening Piezoelectric Injector

    KAUST Repository

    Sim, Jaeheon

    2016-01-04

    Linear instability sheet atomization (LISA) breakup model has been widely used for modeling hollow-cone spray. However, the model was originally developed for inwardlyopening pressure-swirl injectors by assuming toroidal ligament breakups. Therefore, LISA model is not suitable for simulating outwardly opening injectors having string-like structures at wide spray angles. Furthermore, the varying area and shape of the annular nozzle exit makes the modeling difficult. In this study, a new spray modeling was proposed for outwardly opening hollow-cone injector. The injection velocities are computed from the given mas flow rate and injection pressure regardless of ambiguous nozzle exit geometries. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like liquid film spray. Liquid spray injection was modeled using Lagrangian discrete parcel method within the framework of commercial CFD software CONVERGE, and the detailed model was implemented by user defined functions. It was found that the new model predicted the liquid penetration length and local SMD accurately for various fuels and chamber conditions.

  5. Quantitative spray analysis of diesel fuel and its emulsions using digital image processing

    Directory of Open Access Journals (Sweden)

    Faik Ahmad Muneer El-Deen

    2015-01-01

    Full Text Available In the present work, an experimental investigation of spray atomization of different liquids has been carried out. An air-assist atomizer operating at low injection pressures valued (4 and 6 bar has been used to generate sprays of (diesel fuel, 5, 10, and 15% water-emulsified-diesel, respectively. A Photron-SA4 high speed camera has been used for spray imaging at 2000 fps. 20 time intervals (from 5 to 100 ms with 5 ms time difference are selected for analysis and comparison. Spray macroscopic characteristics (spray penetration, dispersion, cone angle, axial and dispersion velocities have been extracted by a proposed technique based on image processing using Matlab, where the maximum and minimum (horizontal and vertical boundaries of the spray are detected, from which the macroscopic spray characteristics are evaluated. The maximum error of this technique is (1.5% for diesel spray and a little bit higher for its emulsions.

  6. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  7. Thermal Arc Spray Overview

    International Nuclear Information System (INIS)

    Malek, Muhamad Hafiz Abd; Saad, Nor Hayati; Abas, Sunhaji Kiyai; Shah, Noriyati Mohd

    2013-01-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  8. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  9. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  10. Remotely controlled spray gun

    Science.gov (United States)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  11. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  12. Cold spray NDE for porosity and other process anomalies

    Science.gov (United States)

    Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.

    2018-04-01

    This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar

  13. Thermal spray for commercial shipbuilding

    Science.gov (United States)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  14. Flow regime effects on non-cavitating injection nozzles over spray behavior

    Energy Technology Data Exchange (ETDEWEB)

    Payri, R., E-mail: rpayri@mot.upv.e [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia E-46022 (Spain); Salvador, F.J.; Gimeno, J.; Novella, R. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia E-46022 (Spain)

    2011-02-15

    This paper deals with the influence of flow regime (laminar, transition or turbulent) on the internal flow behavior, and how it affects the spray development in diesel nozzles. In particular, the research described here aims at studying and quantifying the internal flow regime effects on the spray behavior. With this purpose, internal flow results, based on mass flow rate and momentum flux measurements performed on three different tapered nozzles and which helped to determine the flow regime, has been taken into account as a point of departure for the spray behavior analysis. Thus, in this work, spray macroscopic visualization tests have been performed and analyzed which clearly revealed a change in the behavior of the angle and penetration of the spray related to the change of the flow nature. Moreover, with all the experimental data available, it has been possible to relate macroscopic parameters of the spray with those describing the internal flow (momentum and effective velocity) or the geometry of the nozzle (length or diameter) through correlations.

  15. Visualization research on spray atomization, evaporation and combustion processes of ethanol–diesel blend under LTC conditions

    International Nuclear Information System (INIS)

    Huang, Sheng; Deng, Peng; Huang, Ronghua; Wang, Zhaowen; Ma, Yinjie; Dai, Hui

    2015-01-01

    Highlights: • Spray combustion of E20 diesel in LTC condition shows a U-shape flame structure. • The chasing behavior of fuel spray exists near the spray axis. • Fuel ignition doesn’t initiate at the spray tip but in peripheral regions behind it. • An improper chamber structure may lead to a long post-combustion duration. - Abstract: Utilization of ethanol in diesel engines has been widely studied by means of engine experiments and emission detection. However, pertinent studies on the spray combustion process of ethanol–diesel blends are scarce. In order to verify the effect of ethanol in modern diesel engines, an experiment is conducted to visualize the spray combustion process of ethanol–diesel blend under LTC conditions. Stages including atomization, evaporation and combustion, are investigated individually to realize synergistic analysis. Meanwhile, considering the long time scale of combustion after fuel injection finishes, characteristics during and after injection period are both targeted in this paper. Moreover, measurement of macroscopic characteristics, such as spray tip penetration, spray spreading cone angle and flame lift off length, provides a quantitative profile of the spray structure. Results show that, evaporation, different from atomization, has little influence on spray penetration, but promotes the spray spreading angle and spray projected area. So does combustion, which enlarges the spray projected area further. Ignition takes place on the periphery behind the spray tip, then quickly extends to the whole head of the spray and forms a U-shape diffusion structure. After the injection period, the residual spray tail develops into wavelike structures due to absence of subsequent entrainment force. Also, the penetration speed falls greatly to an extent much slower than flame propagation, which frees the flame from the lift-off effect. Subsequently, the flame propagates upstream towards the nozzle orifice. After consumed all fuel in

  16. Influence of spray parameters on the microstructure and mechanical properties of gas-tunnel plasma sprayed hydroxyapatite coatings

    International Nuclear Information System (INIS)

    Morks, M.F.; Kobayashi, Akira

    2007-01-01

    For biomedical applications, hydroxyapatite (HA) coatings were deposited on 304 stainless steel substrate by using a gas tunnel type plasma spraying process. The influences of spraying distances and plasma arc currents on the microstructure, hardness and adhesion properties of HA coatings were investigated. Microstructure observation by SEM showed that HA coatings sprayed at low plasma power have a porous structure and poor hardness. HA coatings sprayed at high plasma power and short spraying distance are characterized by good adhesion and low porosity with dense structure. Hardness increased for HA coatings sprayed at shorter spraying distance and higher plasma power, mainly due to the formation of dense coatings

  17. Particle size distribution of aerosols sprayed from household hand-pump sprays containing fluorine-based and silicone-based compounds.

    Science.gov (United States)

    Kawakami, Tsuyoshi; Isama, Kazuo; Ikarashi, Yoshiaki

    2015-01-01

    Japan has published safety guideline on waterproof aerosol sprays. Furthermore, the Aerosol Industry Association of Japan has adopted voluntary regulations on waterproof aerosol sprays. Aerosol particles of diameter less than 10 µm are considered as "fine particles". In order to avoid acute lung injury, this size fraction should account for less than 0.6% of the sprayed aerosol particles. In contrast, the particle size distribution of aerosols released by hand-pump sprays containing fluorine-based or silicone-based compounds have not been investigated in Japan. Thus, the present study investigated the aerosol particle size distribution of 16 household hand-pump sprays. In 4 samples, the ratio of fine particles in aerosols exceeded 0.6%. This study confirmed that several hand-pump sprays available in the Japanese market can spray fine particles. Since the hand-pump sprays use water as a solvent and their ingredients may be more hydrophilic than those of aerosol sprays, the concepts related to the safety of aerosol-sprays do not apply to the hand pump sprays. Therefore, it may be required for the hand-pump spray to develop a suitable method for evaluating the toxicity and to establish the safety guideline.

  18. Radiometric investigation of factors, influencing the spray characteristics of aerosol flasks filled with propellants

    International Nuclear Information System (INIS)

    Benkoe, Gy.; Stampf, Gy.; Csontos, A.; Gyarmati, L.

    1976-01-01

    The role of 16 sprayheads, 5 valve systems and 3 propellant mixtures has been investigated in influencing the spray characteristics of pharmaceuticals. The distribution of matter has been determined with the aid of radiometry. The 14 C activity of spray spots has been measured in a mosaic-like way determining the activity of each area of 1 cm 2 in the right-angles spot-coordinate system. A Frieseke-Hoepfner type, PB gas current scaler has been used for measuring activity. According to the results spray heads play a decisive role in influencing the spray characteristics of aerosol flasks filled with propellants. The different propellant mixtures and valve systems influence the spray characteristics only in a small degree and only when adjusted to a given spray head. The method is well applicable for qualification of spray heads in practice of both factories and hospitals. (K.A.)

  19. An experimental methodology to quantify the spray cooling event at intermittent spray impact

    International Nuclear Information System (INIS)

    Moreira, Antonio L.N.; Carvalho, Joao; Panao, Miguel R.O.

    2007-01-01

    The present paper describes an experimental methodology devised to study spray cooling with multiple-intermittent sprays as those found in fuel injection systems of spark-ignition and diesel engines, or in dermatologic surgery applications. The spray characteristics and the surface thermal behaviour are measured by combining a two-component phase-Doppler anemometer with fast response surface thermocouples. The hardware allows simultaneous acquisition of Doppler and thermocouple signals which are processed in Matlab to estimate the time-varying heat flux and fluid-dynamic characteristics of the spray during impact. The time resolution of the acquisition system is limited by the data rate of validation of the phase-Doppler anemometer, but it has been shown to be accurate for the characterization of spray-cooling processes with short spurt durations for which the transient period of spray injection plays an important role. The measurements are processed in terms of the instantaneous heat fluxes, from which phase-average values of the boiling curves are obtained. Two of the characteristic parameters used in the thermal analysis of stationary spray cooling events, the critical heat flux (CHF) and Leidenfrost phenomenon, are then inferred in terms of operating conditions of the multiple-intermittent injections, such as the frequency, duration and pressure of injection. An integral method is suggested to describe the overall process of heat transfer, which accounts for the fluid-dynamic heterogeneities induced by multiple and successive droplet interactions within the area of spray impact. The method considers overall boiling curves dependant on the injection conditions and provides an empirical tool to characterize the heat transfer processes on the impact of multiple-intermittent sprays. The methodology is tested in a preliminary study of the effect of injection conditions on the heat removed by a fuel spray striking the back surface of the intake valve as in spark

  20. Modifications Of A Commercial Spray Gun

    Science.gov (United States)

    Allen, Peter B.

    1993-01-01

    Commercial spray gun modified to increase spray rate and make sprayed coats more nearly uniform. Consists of gun head and pneumatic actuator. Actuator opens valves for two chemical components, called "A" and "B," that react to produce foam. Components flow through orifices, into mixing chamber in head. Mixture then flows through control orifice to spray tip. New spray tip tapered to reduce area available for accumulation of foam and makes tip easier to clean.

  1. Study on Electric field assisted low frequency (20 kHz) ultrasonic spray

    Science.gov (United States)

    Chae, Ilkyeong; Seong, Baekhoon; Marten, Darmawan; Byun, Doyoung

    2015-11-01

    Ultrasonic spray is one of the fabulous techniques to discharge small size of droplets because it utilizes ultrasonic vibration on nozzle. However, spray patterns and size of ejected droplet is hardly controlled in conventional ultrasonic spray method. Therefore, here we present electric field assisted ultrasonic spray, which combined conventional technique with electric field in order to control spray pattern and droplet size precisely. Six kinds of various liquid (D.I water, Ethanol, Acetone, Iso-propanol, Toluene, Hexane) with various dielectric constants were used to investigate the mechanism of this method. Also, PIV (Particle Image Velocimetry) was used and various variables were obtained including spray angle, amplitude of liquid vibration, current, and size distribution of ejected droplets. Our electric field assisted ultrasonic spray show that the standard deviation of atomized droplet was decreased up to 39.6%, and it shows the infinite possibility to be utilized in various applications which require precise control of high transfer efficiency. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2014-023284).

  2. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures

    KAUST Repository

    Wu, Zengyang; Wang, Libing; Badra, Jihad A.; Roberts, William L.; Fang, Tiegang

    2018-01-01

    This study investigates fuel sprays of light naphtha (LN), primary reference fuel (PRF) and gasoline under different ambient pressures with an outwardly opening piezo gasoline direct injection (GDI) fuel injector. The tested gasoline fuel (regular grade with up to 10% ethanol, E10) was obtained by mixing fuels with AKI (the average of the research octane number (RON) and the motor octane number (MON)) of 87 from three local gas stations. Primary reference fuel (PRF) is commonly used as gasoline surrogate fuel and is blended by iso-octane and n-heptane. PRF95 is the blend of 95% iso-octane and 5% n-heptane by volume. LN fuel was provided by Saudi Aramco Oil Company. Five different ambient pressure conditions varied from 1 bar to 10 bar were tested. The spray was visualized by applying a Mie-scattering technique and a high-speed camera was employed to capture the spray images. The spray structure, spray angle, spray penetration length and spray front fluctuation were analyzed and compared among three fuels. Spray images show that a clear filamentary hollow-cone spray structure is formed for all three fuels at atmospheric conditions, and toroidal recirculation vortexes are observed at the downstream spray edges. A higher ambient pressure leads to a stronger vortex located closer to the injector outlet. Generally speaking, larger spray angles are found under higher ambient pressure conditions for all three fuels. Gasoline fuel always has the largest spray angle for each ambient pressure, while PRF95 has the smallest at most time. For each fuel, the spray front penetration length and spray front penetration velocity decrease with increasing ambient pressure. LN, PRF95 and gasoline show similar penetration length and velocity under the tested conditions. A two-stage spray front fluctuation pattern is observed for all three fuels. Stage one begins from the start of the injection and ends at 450–500 μs after the start of the injection trigger (ASOIT) with a slow

  3. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures

    KAUST Repository

    Wu, Zengyang

    2018-03-20

    This study investigates fuel sprays of light naphtha (LN), primary reference fuel (PRF) and gasoline under different ambient pressures with an outwardly opening piezo gasoline direct injection (GDI) fuel injector. The tested gasoline fuel (regular grade with up to 10% ethanol, E10) was obtained by mixing fuels with AKI (the average of the research octane number (RON) and the motor octane number (MON)) of 87 from three local gas stations. Primary reference fuel (PRF) is commonly used as gasoline surrogate fuel and is blended by iso-octane and n-heptane. PRF95 is the blend of 95% iso-octane and 5% n-heptane by volume. LN fuel was provided by Saudi Aramco Oil Company. Five different ambient pressure conditions varied from 1 bar to 10 bar were tested. The spray was visualized by applying a Mie-scattering technique and a high-speed camera was employed to capture the spray images. The spray structure, spray angle, spray penetration length and spray front fluctuation were analyzed and compared among three fuels. Spray images show that a clear filamentary hollow-cone spray structure is formed for all three fuels at atmospheric conditions, and toroidal recirculation vortexes are observed at the downstream spray edges. A higher ambient pressure leads to a stronger vortex located closer to the injector outlet. Generally speaking, larger spray angles are found under higher ambient pressure conditions for all three fuels. Gasoline fuel always has the largest spray angle for each ambient pressure, while PRF95 has the smallest at most time. For each fuel, the spray front penetration length and spray front penetration velocity decrease with increasing ambient pressure. LN, PRF95 and gasoline show similar penetration length and velocity under the tested conditions. A two-stage spray front fluctuation pattern is observed for all three fuels. Stage one begins from the start of the injection and ends at 450–500 μs after the start of the injection trigger (ASOIT) with a slow

  4. Substrate system for spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Men G. (Export, PA); Chernicoff, William P. (Harrisburg, PA)

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  5. Characterization of Sodium Spray Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C. T.; Koontz, R. L.; Silberberg, M. [Atomics International, North American Rockwell Corporation, Canoga Park, CA (United States)

    1968-12-15

    The consequences of pool and spray fires require evaluation in the safety analysis of liquid metal-cooled fast breeder reactors. Sodium spray fires are characterized by high temperature and pressure, produced during the rapid combustion of sodium in air. Following the initial energy release, some fraction of the reaction products are available as aerosols which follow the normal laws of agglomeration, growth, settling, and plating. An experimental study is underway at Atomics International to study the characteristics of high concentration sprays of liquid sodium in reduced oxygen atmospheres and in air. The experiments are conducted in a 31.5 ft{sup 3} (2 ft diam. by 10 ft high) vessel, certified for a pressure of 100 lb/in{sup 2} (gauge). The spray injection apparatus consists of a heated sodium supply pot and a spray nozzle through which liquid sodium is driven by nitrogen pressure. Spray rate and droplet size can be varied by the injection velocity (nozzle size, nitrogen pressure, and sodium temperature). Aerosols produced in 0, 4, and 10 vol. % oxygen environments have been studied. The concentration and particle size distribution of the material remaining in the air after the spray injection and reaction period are measured. Fallout rates are found to be proportional to the concentration of aerosol which remains airborne following the spray period. (author)

  6. A spray flamelet/progress variable approach combined with a transported joint PDF model for turbulent spray flames

    Science.gov (United States)

    Hu, Yong; Olguin, Hernan; Gutheil, Eva

    2017-05-01

    A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new

  7. Characterization of fully functional spray-on antibody thin films

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Jhon [Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-5250 (United States); Magaña, Sonia; Lim, Daniel V. [Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-7115 (United States); Schlaf, Rudy, E-mail: schlaf@eng.usf.edu [Department of Electrical Engineering, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-5101 (United States)

    2014-02-15

    The authors recently demonstrated that fully functional Escherichia coli O157:H7 antibody thin films can be prepared using a simple pneumatic nebulizer on glass surface [1]. This paper focuses on the investigation of the morphology and physical properties of these films with the aim to better understand their performance. A series of E. coli O157:H7 antibody spray-on thin films were investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), immunoassays, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), fluorescence microscopy, atomic force microscope (AFM) and contact angle analysis. These data were compared to measurements on films prepared with the biotin–avidin covalent bonding scheme. The investigation showed that films created by a 2 min pneumatic spray deposition time can capture antigens similar as the avidin–biotin wet-chemical method. The results also suggests that an influential factor for the comparable capture cell ability between sprayed and covalent films is an increased antibody surface coverage for the sprayed films (non-equilibrium technique), which compensates for the lack of its antibody orientation. There was no significant antibody denaturation detected on any of the sprayed films. Both techniques led to the formation of cluster-aggregates, a factor that seems unavoidable due to the natural tendency of protein to cluster. The avidin–biotin bridge films generally had a higher roughness, which manifested itself in a higher wettability compared to the sprayed films.

  8. A Review on Atomization and Sprays of Biofuels for IC Engine Applications

    Directory of Open Access Journals (Sweden)

    Prasad Boggavarapu

    2013-06-01

    Full Text Available Ever increasing energy requirements, environmental concerns and energy security needs are strongly influencing engine researchers to consider renewable biofuels as alternatives to fossil fuels. Spray process being important in IC engine combustion, existing literature on various biofuel sprays is reviewed and summarized. Both experimental and computational research findings are reviewed in a detailed manner for compression ignition (CI engine sprays and briefly for spark ignition (SI engine sprays. The physics of basic atomization process of sprays from various injectors is included to highlight the most recent research findings followed by discussion highlighting the effect of physico-chemical properties on spray atomization for both biofuels and fossil fuels. Biodiesel sprays are found to penetrate faster and have narrow spray plume angle and larger droplet sizes compared to diesel. Results of analytical and computational models are shown to be useful in shedding light on the actual process of atomization. However, further studies on understanding primary atomization and the effect of fuel properties on primary atomization are required. As far as secondary atomization is concerned, changes in regimes are observed to occur at higher air-jet velocities for biodiesel compared to those of diesel. Evaporating sprays revealed that the liquid length is longer for biodiesel. Pure plant oil sprays with potential use in CI engines may require alternative injector technology due to slower breakup as compared to diesel. Application of ethanol to gasoline engines may be feasible without any modifications to port fuel injection (PFI engines. More studies are required on the application of alternative fuels to high pressure sprays used in Gasoline Direct Injection (GDI engines.

  9. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    KAUST Repository

    Sim, Jaeheon; Badra, Jihad; Elwardani, Ahmed Elsaid; Im, Hong G.

    2016-01-01

    linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide

  10. Dynamics of flare sprays

    International Nuclear Information System (INIS)

    Tandberg-Hanssen, E.; Hansen, R.T.

    1980-01-01

    During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable pass-band filters, multi-slit spectroscopy and extended angular field coronographs). From combined analysis of 13 well-observed sprays which occured between 1969-1974 we conclude that (i) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (ii) the spray material is confined within a steadily expanding, loop-shaped (presumably magnetically controlled) envelope with part of the material draining back down along one or both legs of the loop. (orig.)

  11. Absorption/desorption in sprays

    International Nuclear Information System (INIS)

    Naimpally, A.

    1987-01-01

    This survey paper shall seek to present the present state of knowledge concerning absorption and desorption in spray chambers. The first part of the paper presents the theories and formulas for the atomization and break-up of sprays in nozzles. Formulas for the average (sauter-mean) diameters are then presented. For the case of absorption processes, the formulas for the dimensionless mass transfer coefficients is in drops. The total; mass transfer is the total of the transfer in individual drops. For the case of desorption of sparingly soluble gases from liquids in a spray chamber, the mass transfer occurs in the spray just at the point of break-up of the jet. Formulas for the desorption of gases are presented

  12. Development of spraying methods for high density bentonite barriers. Part 3. Field investigation of spraying methods

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Nakajima, Makoto; Kobayashi, Ichizo; Toida, Masaru; Fukuda, Katsumi; Sato, Tatsuro; Nonaka, Katsumi; Gozu, Keisuke

    2007-01-01

    The authors have developed a new method of constructing high density bentonite barriers by means of a wet spraying method. Using this method, backfill material can be placed in narrow upper and side parts in a low-level radioactive waste disposal facility. Using a new supplying machine for bentonite, spraying tests were conducted to investigate the conditions during construction. On the basis of the test results, the various parameters for the spraying method were investigated. The test results are summarized as follows: 1. The new machine supplied about twice the weight of material supplied by a screw conveyor. A dry density of spraying bentonite 0.05 Mg/m 3 higher than that of a screw conveyor with the same water content could be achieved. 2. The dry density of sprayed bentonite at a boundary with concrete was the same as that at the center of the cross section. 3. The variation in densities of bentonite sprayed in the vertical downward and horizontal directions was small. Also, density reduction due to rebound during spraying was not seen. 4. Bentonite controlled by water content could be sprayed smoothly in the horizontal direction by a small machine. Also rebound could be collected by a machine conveying air. (author)

  13. 1994 Thermal spray industrial applications: Proceedings

    International Nuclear Information System (INIS)

    Berndt, C.C.; Sampath, S.

    1994-01-01

    The 7th National Thermal Spray Conference met on June 20--24, 1994, in Boston, Massachusetts. The conference was sponsored by the Thermal Spray Division of ASM International and co-sponsored by the American Welding Society, Deutscher Verband fur Schweisstechnik e.V., High Temperature Society of Japan, International Thermal Spray Association, and Japanese Thermal Spraying Society. The conference covered applications for automobiles, aerospace, petrochemicals, power generation, and biomedical needs. Materials included metals, ceramics, and composites with a broad range of process developments and diagnostics. Other sections included modeling and systems control; spray forming and reactive spraying; post treatment; process, structure and property relationships; mechanical properties; and testing, characterization and wear. One hundred and seventeen papers have been processed separately for inclusion on the data base

  14. Spray cone angle and air core diameter of hollow cone swirl rocket injector

    Directory of Open Access Journals (Sweden)

    Ahmad Hussein Abdul Hamid

    2011-12-01

    Full Text Available ABSTRACT : Fuel injector for liquid rocket is a very critical component since that small difference in its design can dramatically affect the combustion efficiency. The primary function of the injector is to break the fuel up into very small droplets. The smaller droplets are necessary for fast quiet ignition and to establish a flame front close to the injector head, thus shorter combustion chamber is possible to be utilized. This paper presents an experimetal investigation of a mono-propellant hollow cone swirl injector. Several injectors with different configuration were investigated under cold flow test, where water is used as simulation fluid. This investigation reveals that higher injection pressure leads to higher spray cone angle. The effect of injection pressure on spray cone angle is more prominent for injector with least number of tangential ports. Furthermore, it was found that injector with the most number of tangential ports and with the smallest tangential port diameter produces the widest resulting spray. Experimental data also tells that the diameter of an air core that forms inside the swirl chamber is largest for the injector with smallest tangential port diameter and least number of tangential ports.ABSTRAK : Injektor bahan api bagi roket cecair merupakan satu komponen yang amat kritikal memandangkan perbezaan kecil dalam reka bentuknya akan secara langsung mempengaruhi kecekapan pembakaran. Fungsi utama injektor adalah untuk memecahkan bahan api kepada titisan yang amat kecil. Titisan kecil penting untuk pembakaran pantas secara senyap dan untuk mewujudkan satu nyalaan di hadapan, berhampiran dengan kepala injektor, maka kebuk pembakaran yang lebih pendek berkemungkinan dapat digunakan. Kertas kerja ini mebentangkan satu penyelidikan eksperimental sebuah injektor ekabahan dorong geronggang kon pusar. Beberapa injektor dengan konfigurasi berbeza telah dikaji di bawah ujian aliran sejuk, di mana air digunakan sebagai bendalir

  15. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--cobalt permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high-temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating cobalt--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--cobalt magnets, sprayed from samarium-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million gauss-oersteds and coercive forces of approximately 6000 oersteds. Bar magnet arrays were constructed by depositing magnets on ceramic substrates. (auth)

  16. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--Co permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating Co--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--Co magnets, sprayed from Sm-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million G-Oe and coercive forces of approximately 6000 Oe. Bar magnet arrays were constructed by depositing magnets on ceramic substrates

  17. Spray Drift Reduction Evaluations of Spray Nozzles Using a Standardized Testing Protocol

    Science.gov (United States)

    2010-07-01

    Drop Size Characteristics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards, Vol. 14-02, ASTM...Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Non- imaging Light-Scattering Instruments 22. AGDISP Model

  18. Detailed assessment of diesel spray atomization models using visible and X-ray extinction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Magnotti, G.M.; Genzale, C.L. (GIT)

    2017-12-01

    The physical mechanisms characterizing the breakup of a diesel spray into droplets are still unknown. This gap in knowledge has largely been due to the challenges of directly imaging this process or quantitatively measuring the outcomes of spray breakup, such as droplet size. Recent x-ray measurements by Argonne National Laboratory, utilized in this work, provide needed information about the spatial evolution of droplet sizes in selected regions of the spray under a range of injection pressures (50–150 MPa) and ambient densities (7.6–22.8 kg/m3) relevant for diesel operating conditions. Ultra-small angle x-ray scattering (USAXS) measurements performed at the Advanced Photon Source are presented, which quantify Sauter mean diameters (SMD) within optically thick regions of the spray that are inaccessible by conventional droplet sizing measurement techniques, namely in the near-nozzle region, along the spray centerline, and within the core of the spray. To quantify droplet sizes along the periphery of the spray, a complementary technique is proposed and introduced, which leverages the ratio of path-integrated x-ray and visible laser extinction (SAMR) measurements to quantify SMD. The SAMR and USAXS measurements are then utilized to evaluate current spray models used for engine computational fluid dynamic (CFD) simulations. We explore the ability of a carefully calibrated spray model, premised on aerodynamic wave growth theory, to capture the experimentally observed trends of SMD throughout the spray. The spray structure is best predicted with an aerodynamic primary and secondary breakup process that is represented with a slower time constant and larger formed droplet size than conventionally recommended for diesel spray models. Additionally, spray model predictions suggest that droplet collisions may not influence the resultant droplet size distribution along the spray centerline in downstream regions of the spray.

  19. Fixed automated spray technology.

    Science.gov (United States)

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  20. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Da Sol; Jeong, Hae Do [Pusan National University, Busan (Korea, Republic of); Lee, Hyun Seop [Tongmyong University, Busan (Korea, Republic of)

    2015-12-15

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  1. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    International Nuclear Information System (INIS)

    Lee, Da Sol; Jeong, Hae Do; Lee, Hyun Seop

    2015-01-01

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  2. LSPRAY-IV: A Lagrangian Spray Module

    Science.gov (United States)

    Raju, M. S.

    2012-01-01

    LSPRAY-IV is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray. Some important research areas covered as a part of the code development are: (1) the extension of combined CFD/scalar-Monte- Carlo-PDF method to spray modeling, (2) the multi-component liquid spray modeling, and (3) the assessment of various atomization models used in spray calculations. The current version contains the extension to the modeling of superheated sprays. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers.

  3. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  4. Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A.I.; Som, S.; Aggarwal, Suresh K. [University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, Chicago, IL (United States); Kastengren, A.L.; El-Hannouny, E.M.; Longman, D.E.; Powell, C.F. [Argonne National Laboratory, Energy Systems Division, Argonne, IL (United States)

    2009-07-15

    A quantitative and time-resolved X-ray radiography technique has been used for detailed measurements of high-pressure fuel sprays in the near-nozzle region of a diesel engine injector. The technique provides high spatial and temporal resolution, especially in the relatively dense core region. A single spray plume from a hydraulically actuated electronically controlled unit injector model 315B injector with a 6-hole nozzle was isolated and studied at engine-like densities for two different injection pressures. Optical spray imaging was also employed to evaluate the effectiveness of the shield used to isolate a single spray plume. The steady state fuel distributions for both injection pressures are similar and show a dense spray region along the axis of the spray, with the on-axis spray density decreasing as the spray progresses downstream. The higher injection pressure case exhibits a larger cone angle and spray broadening at the exit of the nozzle. For some time periods, the near-nozzle penetration speed is lower for the high injection pressure case than the low injection pressure case, which is unexpected, but can be attributed to the needle and flow dynamics inside the injector causing slower pressure build-up for the former case. Rate of injection testing was performed to further understand near-nozzle behavior. Mass distribution data were obtained and used to find mass-averaged velocity of the spray. Comparisons of the radiography data with that from a common rail single-hole light duty injectors under similar injection conditions show several significant differences. The current data show a larger cone angle and lower penetration speed than that from the light-duty injector. Moreover, these data display a Gaussian mass distribution across the spray near the injector, whereas in previous light-duty injector measurements, the mass distribution had steeper sides and a flatter peak. Measurements are also used to examine the spray models in the STAR-CD software

  5. Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector

    Science.gov (United States)

    Ramírez, A. I.; Som, S.; Aggarwal, Suresh K.; Kastengren, A. L.; El-Hannouny, E. M.; Longman, D. E.; Powell, C. F.

    2009-07-01

    A quantitative and time-resolved X-ray radiography technique has been used for detailed measurements of high-pressure fuel sprays in the near-nozzle region of a diesel engine injector. The technique provides high spatial and temporal resolution, especially in the relatively dense core region. A single spray plume from a hydraulically actuated electronically controlled unit injector model 315B injector with a 6-hole nozzle was isolated and studied at engine-like densities for two different injection pressures. Optical spray imaging was also employed to evaluate the effectiveness of the shield used to isolate a single spray plume. The steady state fuel distributions for both injection pressures are similar and show a dense spray region along the axis of the spray, with the on-axis spray density decreasing as the spray progresses downstream. The higher injection pressure case exhibits a larger cone angle and spray broadening at the exit of the nozzle. For some time periods, the near-nozzle penetration speed is lower for the high injection pressure case than the low injection pressure case, which is unexpected, but can be attributed to the needle and flow dynamics inside the injector causing slower pressure build-up for the former case. Rate of injection testing was performed to further understand near-nozzle behavior. Mass distribution data were obtained and used to find mass-averaged velocity of the spray. Comparisons of the radiography data with that from a common rail single-hole light duty injectors under similar injection conditions show several significant differences. The current data show a larger cone angle and lower penetration speed than that from the light-duty injector. Moreover, these data display a Gaussian mass distribution across the spray near the injector, whereas in previous light-duty injector measurements, the mass distribution had steeper sides and a flatter peak. Measurements are also used to examine the spray models in the STAR-CD software.

  6. COUPLED ATOMIZATION AND SPRAY MODELLING IN THE SPRAY FORMING PROCESS USING OPENFOAM

    DEFF Research Database (Denmark)

    Gjesing, Rasmus; Hattel, Jesper Henri; Fritsching, Udo

    2009-01-01

    The paper presents a numerical model capable of simulating the atomization, break-up and in-flight spray phenomena in the spray forming process. The model is developed and implemented in the freeware code openFOAM. The focus is on studying the coupling effect of the melt break-up phenomena...

  7. Spray From a Rolling Tire: Mechanics of Droplet Formation

    Science.gov (United States)

    Plocher, Dennis; Browand, Fred

    2010-11-01

    The spray pattern immediately behind a single-groove tire rolling on a wet surface is produced in the laboratory using a specially designed tire spray simulator. The spray development is examined using high speed video. Water from the groove forms a liquid sheet as the tire-tread lifts away from the surface. The sheet is not of uniform thickness, but it remains attached to the tread. The thinner portions of the sheet become even thinner as the tire rotates, and eventually break to produce holes near the tire surface. The holes grow as the sheet margins surrounding the holes retract into the thicker portions of the sheet which become roughly cylindrical "ligaments" aligned at right angles to the direction of spray motion. The ligaments break into large droplets via a Rayleigh instability. The smallest droplets form when the margins of two holes collide. As Weber number, We = ρU^2w/2σ , based on tire groove half width, w/2, varies by a factor of 25, the sheet-ligament structure persists, but ligaments become less organized, and more small droplets appear in the pattern.

  8. Diesel spray characterization; Dieselmoottorin polttoainesuihkujen ominaisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.; Turunen, R.; Paloposki, T.; Rantanen, P.; Virolainen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Internal Combustion Engine Lab.

    1997-10-01

    Fuel injection of diesel engines will be studied using large-scale models of fuel injectors. The advantage of large-scale models is that the measurement of large-scale diesel sprays will be easier than the measurement of actual sprays. The objective is to study the break-up mechanism of diesel sprays and to measure drop size distributions in the inner part of the spray. The results will be used in the development of diesel engines and diesel fuels. (orig.)

  9. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition, absorption, and biologic response.

    Science.gov (United States)

    Suman, Julie D; Laube, Beth L; Dalby, Richard

    2006-01-01

    This research investigated the impact of the full range of in vitro spray characterization tests described in the FDA Draft Bioequivalence Guidance on nasal deposition pattern, pharmacokinetics, and biological response to nicotine administered by two aqueous nasal spray pumps in human volunteers. Nicotine was selected as a model drug (even though it is not locally acting) based on its ability to alter cardiac function and available plasma assay. Significant differences in pump performance-including mean volume diameters, spray angle, spray width, and ovality ratios-were observed between the two pumps. There were no significant differences in deposition pattern, or pharmacokinetic or pharmacodynamic response to the nasally administered nicotine. Although there were statistical differences in the in vitro tests between the two pumps, these differences did not result in significant alterations in the site of droplet deposition within the nose, the rate and extent of nicotine absorption, or the physiologic response it induced. These results suggest that current measures of in vitro performance, particularly spray angle and spray pattern (ovality), may not be clinically relevant. Additional research is needed to define what spray pump characteristics are likely to produce differences in deposition pattern and drug response.

  10. Multiple-Nozzle Spray Head Applies Foam Insulation

    Science.gov (United States)

    Walls, Joe T.

    1993-01-01

    Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.

  11. Spatio-temporal droplet size statistics in developing spray of starchy solution

    Science.gov (United States)

    Naz, Muhammad Yasin; Sulaiman, Shaharin Anwar; Ariwahjoedi, Bambang

    2015-07-01

    In the given research, the spray jet breakup of a modified starch solution was studied as a function of jet injection time and nozzle orifice diameter. The starch-urea-borax solution was prepared and tested with three axisymmetric full cone nozzles at service temperature of 80°C and the injection pressure of 5 bar. It is worth mentioning that no jet breakup was seen below these temperature and pressure values. The imaging studies on the time based spray evolution revealed monotonic increase in both; spray cone angle and tip penetration with an increase in injection time form 0-300 mm. Hereinafter, both parameters exhibited constants value over injection time. Phase Doppler Anemometry (PDA) measurements of the droplet size revealed significant decrease in the Sauter Mean Diameter (SMD) along the spray centerline. However, a steady decrease in SMD was seen towards the spray boundary. For fixed injection time of 300 ms, the overall SMD was decreased from 112 to 71 µm at 60 mm downstream, from 102 to 64 µm at 100 mm downstream and from 85 to 61 µm at 140 mm downstream with an increase in orifice diameter from 1.19 to 1.59 mm.

  12. Water spray interaction with air-steam mixtures under containment spray conditions: experimental study in the TOSQAN facility

    Energy Technology Data Exchange (ETDEWEB)

    Porcheron, E.; Lemaitre, P.; Malet, J.; Nuboer, A.; Brun, P.; Bouilloux, L.; Vendel, J. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Direction de la Surete des Usines, des laboratoires, des transports et des dechets, Saclay, BP 68 - 91192 Gif-sur-Yvette cedex (France)

    2005-07-01

    Full text of publication follows: During the course of an hypothetical severe accident in a Pressurized Water Reactor (PWR), hydrogen can be produced by the reactor core oxidation and distributed into the reactor containment according to convection flows and steam wall condensation. In order to assess the risk of detonation generated by a high local hydrogen concentration, hydrogen distribution in the containment has to be known. The TOSQAN experimental program has been created to simulate typical accidental thermal hydraulic flow conditions in the reactor containment. The present work is devoted to study the interaction of a water spray injection used as a mitigation mean in order to reduce containment pressure and to produce a mixing of air, steam and hydrogen induced by spray entrainment and condensation on droplet. In order to have a better understanding of physical phenomena, we need to make a detailed characterization of the spray and the gas. The TOSQAN facility that is highly instrumented with non-intrusive diagnostics consists in a closed cylindrical vessel (7 m{sup 3} volume, 4 m high, 1.5 m i.d.) into which steam is injected. Water droplets size is measured in the vessel by the Interferometric Laser Imaging for Droplet Sizing technique. Droplet velocity is obtained by Particle Image Velocimetry and Laser Doppler Velocimetry, and droplet temperature is measured by global rainbow refractometry. Gas concentration measurements are performed by Spontaneous Raman Scattering. The walls of the vessel are thermostatically controlled by heated oil circulation. Inner spray system that is located on the top of the enclosure on the vertical axis, is composed of a single nozzle producing a full cone water spray. Spray test scenario consists of water spray injection in TOSQAN that is first pressurized with a steam injection (steam injection is stopped before spray injection). Water spray falling into the sump is removed to avoid accumulation and evaporation

  13. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J., E-mail: jeanne.malet@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, Saclay (France); Mimouni, S., E-mail: stephane.mimouni@edf.fr [Electricité de France, EDF MF2E, Chatou (France); Manzini, G., E-mail: giovanni.manzini@rse-web.it [RSE, Milano (Italy); Xiao, J., E-mail: jianjun.xiao@kit.edu [IKET, KIT, Karlsruhe (Germany); Vyskocil, L., E-mail: vyl@ujv.cz [UJV Rez (Czech Republic); Siccama, N.B., E-mail: siccama@nrg.eu [NRG, Safety and Power (Netherlands); Huhtanen, R., E-mail: risto.huhtanen@vtt.fi [VTT, PO Box 1000, FI-02044 VTT (Finland)

    2015-02-15

    Highlights: • This paper presents a benchmark performed in the frame of the SARNET-2 EU project. • It concerns momentum transfer between a PWR spray and the surrounding gas. • The entrained gas velocities can vary up to 100% from one code to another. • Simplified boundary conditions for sprays are generally used by the code users. • It is shown how these simplified conditions impact the gas entrainment. - Abstract: This paper presents a benchmark performed in the frame of the SARNET-2 EU project, dealing with momentum transfer between a real-scale PWR spray and the surrounding gas. It presents a description of the IRSN tests on the CALIST facility, the participating codes (8 contributions), code-experiment and code-to-code comparisons. It is found that droplet velocities are almost well calculated one meter below the spray nozzle, even if the spread of the spray is not recovered and the values of the entrained gas velocity vary up to 100% from one code to another. Concerning sensitivity analysis, several ‘simplifications’ have been made by the contributors, especially based on the boundary conditions applied at the location where droplets are injected. It is shown here that such simplifications influence droplet and entrained gas characteristics. The next step will be to translate these conclusions in terms of variables representative of interesting parameters for nuclear safety.

  14. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark

    International Nuclear Information System (INIS)

    Malet, J.; Mimouni, S.; Manzini, G.; Xiao, J.; Vyskocil, L.; Siccama, N.B.; Huhtanen, R.

    2015-01-01

    Highlights: • This paper presents a benchmark performed in the frame of the SARNET-2 EU project. • It concerns momentum transfer between a PWR spray and the surrounding gas. • The entrained gas velocities can vary up to 100% from one code to another. • Simplified boundary conditions for sprays are generally used by the code users. • It is shown how these simplified conditions impact the gas entrainment. - Abstract: This paper presents a benchmark performed in the frame of the SARNET-2 EU project, dealing with momentum transfer between a real-scale PWR spray and the surrounding gas. It presents a description of the IRSN tests on the CALIST facility, the participating codes (8 contributions), code-experiment and code-to-code comparisons. It is found that droplet velocities are almost well calculated one meter below the spray nozzle, even if the spread of the spray is not recovered and the values of the entrained gas velocity vary up to 100% from one code to another. Concerning sensitivity analysis, several ‘simplifications’ have been made by the contributors, especially based on the boundary conditions applied at the location where droplets are injected. It is shown here that such simplifications influence droplet and entrained gas characteristics. The next step will be to translate these conclusions in terms of variables representative of interesting parameters for nuclear safety

  15. 14 CFR 23.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 23.239 Section 23.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Handling Characteristics § 23.239 Spray characteristics. Spray may not dangerously obscure the vision of...

  16. 14 CFR 29.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 29.239 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 29.239 Spray characteristics. If certification for water operation is requested, no spray characteristics...

  17. 14 CFR 27.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 27.239 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 27.239 Spray characteristics. If certification for water operation is requested, no spray characteristics...

  18. A comparison of biological effect and spray liquid distribution and deposition for different spray application techniques in different crops

    OpenAIRE

    Larsolle, Anders; Wretblad, Per; Westberg, Carl

    2002-01-01

    The objective of this study was to compare a selection of spray application techniques with different application volumes, with respect to the spray liquid distribution on flat surfaces, the deposition in fully developed crops and the biological effect. The spray application techniques in this study were conventional spray technique with three different nozzles: Teelet XR, Lechler ID and Lurmark DriftBeta, and also AirTec, Danfoil, Hardi Twin, Kyndestoit and Släpduk. The dynamic spray liquid ...

  19. Transient analysis of intermittent multijet sprays

    Energy Technology Data Exchange (ETDEWEB)

    Panao, Miguel R.O.; Moreira, Antonio Luis N. [Universidade Tecnica de Lisboa, IN, Center for Innovation, Technology and Policy Research, Instituto Superior Tecnico, Lisboa (Portugal); Durao, Diamantino G. [Universidade Lusiada, Lisboa (Portugal)

    2012-07-15

    This paper analyzes the transient characteristics of intermittent sprays produced by the single-point impact of multiple cylindrical jets. The aim is to perform a transient analysis of the intermittent atomization process to study the effect of varying the number of impinging jets in the hydrodynamic mechanisms of droplet formation. The results evidence that hydrodynamic mechanisms underlying the physics of ligament fragmentation in 2-impinging jets sprays also apply to sprays produced with more than 2 jets during the main period of injection. Ligaments detaching from the liquid sheet, as well as from its bounding rim, have been identified and associated with distinct droplet clusters, which become more evident as the number of impinging jets increases. Droplets produced by detached ligaments constitute the main spray, and their axial velocity becomes more uniformly distributed with 4-impinging jets because of a delayed ligament fragmentation. Multijet spray dispersion patterns are geometric depending on the number of impinging jets. Finally, an analysis on the Weber number of droplets suggests that multijet sprays are more likely to deposit on interposed surfaces, thus becoming a promising and competitive atomization solution for improving spray cooling. (orig.)

  20. Effectiveness of containment sprays in containment management

    International Nuclear Information System (INIS)

    Nourbakhsh, H.P.; Perez, S.E.; Lehner, J.R.

    1993-05-01

    A limited study has been performed assessing the effectiveness of containment sprays-to mitigate particular challenges which may occur during a severe accident. Certain aspects of three specific topics related to using sprays under severe accident conditions were investigated. The first was the effectiveness of sprays connected to an alternate water supple and pumping source because the actual containment spray pumps are inoperable. This situation could occur during a station blackout. The second topic concerned the adverse as well as beneficial effects of using containment sprays during severe accident scenario where the containment atmosphere contains substantial quantities of hydrogen along with steam. The third topic was the feasibility of using containment sprays to moderate the consequences of DCH

  1. Experiments and modeling of discharge characteristics in water-mist sprays generated by pressure-swirl atomizers

    Science.gov (United States)

    Santangelo, Paolo E.

    2012-12-01

    Pressure-swirl atomizers are often employed to generate a water-mist spray, typically employed in fire suppression. In the present study, an experimental characterization of dispersion (velocity and cone angle) and atomization (drop-size axial evolution) was carried out following a previously developed methodology, with specific reference to the initial region of the spray. Laser-based techniques were used to quantitatively evaluate the considered phenomena: velocity field was reconstructed through a Particle Image Velocimetry analysis; drop-size distribution was measured by a Malvern Spraytec device, highlighting secondary atomization and subsequent coalescence along the spray axis. Moreover, a comprehensive set of relations was validated as predictive of the involved parameters, following an inviscid-fluid approach. The proposed model pertains to early studies on pressure-swirl atomizers and primarily yields to determine both initial velocity and cone angle. The spray thickness is also predicted and a classic correlation for Sauter Mean Diameter is shown to provide good agreement with experimental results. The analysis was carried out at the operative pressure of 80 bar; two injectors were employed featuring different orifice diameters and flow numbers, as a sort of parametric approach to this spray typology.

  2. Preparation of cellulose based microspheres by combining spray coagulating with spray drying.

    Science.gov (United States)

    Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua

    2014-10-13

    Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The crush and spray: a patented design for herbicide application with less waste

    Science.gov (United States)

    Cherie LeBlanc Fisher; Adam H. Wiese

    2009-01-01

    The USDA Forest Service recently patented an equipment design to deliver herbicides more efficiently and cost-effectively. Towed by a standard all-terrain vehicle, the Crush and Spray can access out-of-the-way or wet locations. An adjustable roller first knocks down the unwanted plants. A low-set spray boom with wide angle sprayer nozzles then provides precise, close-...

  4. Digital image processing techniques for the analysis of fuel sprays global pattern

    Science.gov (United States)

    Zakaria, Rami; Bryanston-Cross, Peter; Timmerman, Brenda

    2017-12-01

    We studied the fuel atomization process of two fuel injectors to be fitted in a new small rotary engine design. The aim was to improve the efficiency of the engine by optimizing the fuel injection system. Fuel sprays were visualised by an optical diagnostic system. Images of fuel sprays were produced under various testing conditions, by changing the line pressure, nozzle size, injection frequency, etc. The atomisers were a high-frequency microfluidic dispensing system and a standard low flow-rate fuel injector. A series of image processing procedures were developed in order to acquire information from the laser-scattering images. This paper presents the macroscopic characterisation of Jet fuel (JP8) sprays. We observed the droplet density distribution, tip velocity, and spray-cone angle against line-pressure and nozzle-size. The analysis was performed for low line-pressure (up to 10 bar) and short injection period (1-2 ms). Local velocity components were measured by applying particle image velocimetry (PIV) on double-exposure images. The discharge velocity was lower in the micro dispensing nozzle sprays and the tip penetration slowed down at higher rates compared to the gasoline injector. The PIV test confirmed that the gasoline injector produced sprays with higher velocity elements at the centre and the tip regions.

  5. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    Science.gov (United States)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  6. Characteristics of spray from a GDI fuel injector for naphtha and surrogate fuels

    KAUST Repository

    Wang, Libing

    2016-11-18

    Characterization of the spray angle, penetration, and droplet size distribution is important to analyze the spray and atomization quality. In this paper, the spray structure development and atomization characterization of two naphtha fuels, namely light naphtha (LN) and whole naphtha (WN) and two reference fuel surrogates, i.e. toluene primary reference fuel (TPRF) and primary reference fuel (PRF) were investigated using a gasoline direct injection (GDI) fuel injector. The experimental setup included a fuel injection system, a high-speed imaging system, and a droplet size measurement system. Spray images were taken by using a high-speed camera for spray angle and penetration analysis. Sauter mean diameter, Dv(10), Dv(50), Dv(90), and particle size distribution were measured using a laser diffraction technique. Results show that the injection process is very consistent for different runs and the time averaged spray angles during the measuring period are 103.45°, 102.84°, 102.46° and 107.61° for LN, WN, TPRF and PRF, respectively. The spray front remains relatively flat during the early stage of the fuel injection process. The peak penetration velocities are 80 m/s, 75 m/s, 75 m/s and 79 m/s for LN, WN, TPRF and PRF, respectively. Then velocities decrease until the end of the injection and stay relatively stable. The transient particle size and the time-averaged particle size were also analyzed and discussed. The concentration weighted average value generally shows higher values than the arithmetic average results. The average data for WN is usually the second smallest except for Dv90, of which WN is the biggest. Generally the arithmetic average particle sizes of PRF are usually the smallest, and the sizes does not change much with the measuring locations. For droplet size distribution results, LN and WN show bimodal distributions for all the locations while TPRF and PRF shows both bimodal and single peak distribution patterns. The results imply that droplet size

  7. ROTARY SPRAY DUSTER

    Directory of Open Access Journals (Sweden)

    E. S. Nechaeva

    2013-01-01

    Full Text Available Results of researches of hydraulic resistance, ablation of splashes and efficiency of dedusting in the rotor spray dust collector are given. Influence of frequency of rotation of the spray, the specified speed of gas and diameter of spattering holes on hydraulic resistance, size ablation of splashes and efficiency of a dedusting the device by diameter 0,25 m is investigated. As model liquid water is used. Results of mathematical processing are presented.

  8. Characterization of the spray velocities from a pressurized metered-dose inhaler.

    Science.gov (United States)

    Crosland, Brian Michael; Johnson, Matthew Ronald; Matida, Edgar Akio

    2009-06-01

    Pressurized metered dose inhalers (pMDIs) are widely used to deliver aerosolized medications to the lungs, most often to relieve the symptoms of asthma. Over the past decade, pMDIs have been modified in several ways to eliminate the use of chlorofluorocarbons in their manufacture while increasing efficacy. Numerical simulations are being used more frequently to predict the flow and deposition of particles at various locations, both inside the respiratory tract as well as in pMDIs and add-on devices. These simulations require detailed information about the spray generated by a pMDI to ensure the validity of their results. This paper presents detailed, spatially resolved velocity measurements of the spray emitted from salbutamol sulfate pMDIs obtained using optically triggered particle image velocimetry (PIV). Instantaneous planar velocity measurements were taken and ensemble-averaged at nine different times during the spray event ranging from 1.3 to 100 msec after a pneumatically controlled actuation. The mean spray velocities were shown to be bimodal in time, with two velocity peaks and velocity magnitudes found to be much lower than published data from instantaneous single point measurements. Planar velocity data at each time step were analyzed to produce prescriptive velocity profiles suitable for use in numerical simulations. Spray geometry data are also reported. Statistical comparisons from several thousand individual spray events indicate that there is no significant difference in measured velocity among (1) two brands of pMDI canisters, (2) two pMDIs of the same brand but having different lot numbers, and (3) a full pMDI versus an almost empty pMDI. The addition of a secondary air flow of 30 SLPM (to represent simultaneous inhalation and spray actuation) deflected the spray downward but did not have a significant effect on flow velocity. Further experiments with an added cylindrical spacer revealed that within the spacer, the spray direction and cone angle

  9. On the modeling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Christer

    1997-12-01

    This report concerns on the modelling of fuel sprays in a non-combustible case using an own developed fuel spray code module. The spray code is made as an independent module to simplify the use of different gas flow solvers together with the spray module. This enables the possibility to use different turbulence models. In the report two turbulence models has been used, the standard k-{epsilon} and the LES (Large Eddy Simulation) model. The report presents results obtained from a sensitivity study of both numerical and physical parameters on an evaporating spray under diesel like conditions (light duty diesel engine) with the spray code module attached to a cylindrical gas phase flow solver. The results from the sensitivity analysis showed that these effects were not so pronounced as has been reported. It was suggested that this was due to the `easy` nature of the investigated case, where the flow field could be sufficiently resolved without violating the droplet void fraction criteria and break-up, collision and combustion that may increase the grid spacing sensitivity were not modelled. An investigation was performed to valuate the feasibility of using LES as turbulence model. Calculations of the initial phase of a developing jet were made and it was found that in the initial phase of the spray and the flow structure were similar to that of a spatially developing jet flow, which is in agreement with experimental observations. Results from LES calculations on a developing spray jet was also compared with k-{epsilon} based ones. This result showed that the spray-LES approach captured the transition from a laminar to a turbulent flow field with an increase in turbulent kinetic energy k along the injection direction 45 refs, 37 figs, 2 tabs

  10. Radio-frequency plasma spraying of ceramics

    International Nuclear Information System (INIS)

    Okada, T.; Hamatani, H.; Yoshida, T.

    1989-01-01

    This study was aimed at developing a novel spraying process using a radio-frequency (rf) plasma. Experiments of Al 2 O 3 and ZrO 2 - 8 wt% Y 2 O 3 spraying showed that the initial powder size was the most important parameter for depositing dense coatings. The optimum powder sizes of Al 2 O 3 and ZrO 2 - 8 wt% Y 2 O 3 were considered to be around 100 and 80 μm, respectively. The use of such large-size powders compared with those used by conventional dc plasma spraying made it possible to deposit adherent ceramics coatings of 150 to 300 μm on as-rolled SS304 substrates. It was also shown that low particle velocity of about 10 m/s, which is peculiar to rf plasma spraying, was sufficient for particle deformation, though it imposed a severe limitation on the substrate position. These experimental results prove that rf plasma spraying is an effective process and a strong candidate to open new fields of spraying applications

  11. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  12. Large Eddy Simulation of the spray formation in confinements

    International Nuclear Information System (INIS)

    Lampa, A.; Fritsching, U.

    2013-01-01

    Highlights: • Process stability of confined spray processes is affected by the geometric design of the spray confinement. • LES simulations of confined spray flow have been performed successfully. • Clustering processes of droplets is predicted in simulations and validated with experiments. • Criteria for specific coherent gas flow patterns and droplet clustering behaviour are found. -- Abstract: The particle and powder properties produced within spray drying processes are influenced by various unsteady transport phenomena in the dispersed multiphase spray flow in a confined spray chamber. In this context differently scaled spray structures in a confined spray environment have been analyzed in experiments and numerical simulations. The experimental investigations have been carried out with Particle-Image-Velocimetry to determine the velocity of the gas and the discrete phase. Large-Eddy-Simulations have been set up to predict the transient behaviour of the spray process and have given more insight into the sensitivity of the spray flow structures in dependency from the spray chamber design

  13. Atomization and spray characteristics of bioethanol and bioethanol blended gasoline fuel injected through a direct injection gasoline injector

    International Nuclear Information System (INIS)

    Park, Su Han; Kim, Hyung Jun; Suh, Hyun Kyu; Lee, Chang Sik

    2009-01-01

    The focus of this study was to investigate the spray characteristics and atomization performance of gasoline fuel (G100), bioethanol fuel (E100), and bioethanol blended gasoline fuel (E85) in a direct injection gasoline injector in a gasoline engine. The overall spray and atomization characteristics such as an axial spray tip penetration, spray width, and overall SMD were measured experimentally and predicted by using KIVA-3V code. The development process and the appearance timing of the vortices in the test fuels were very similar. In addition, the numerical results accurately described the experimentally observed spray development pattern and shape, the beginning position of the vortex, and the spray breakup on the spray surface. Moreover, the increased injection pressure induced the occurrence of a clear circular shape in the downstream spray and a uniform mixture between the injected spray droplets and ambient air. The axial spray tip penetrations of the test fuels were similar, while the spray width and spray cone angle of E100 were slightly larger than the other fuels. In terms of atomization performance, the E100 fuel among the tested fuels had the largest droplet size because E100 has a high kinematic viscosity and surface tension.

  14. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  15. Modeling of Thickness and Profile Uniformity of Thermally Sprayed Coatings Deposited on Cylinders

    Science.gov (United States)

    Yanjun, Zhang; Wenbo, Li; Dayu, Li; Jinkun, Xiao; Chao, Zhang

    2018-02-01

    In thermal spraying processes, kinematic parameters of the robot play a decisive role in the coating thickness and profile. In this regard, some achievements have been made to optimize the spray trajectory on flat surfaces. However, few reports have focused on nonholonomic or variable-curvature cylindrical surfaces. The aim of this study is to investigate the correlation between the coating profile, coating thickness, and scanning step, which is determined by the radius of curvature and scanning angle. A mathematical simulation model was developed to predict the thickness of thermally sprayed coatings. Experiments were performed on cylinders with different radiuses of curvature to evaluate the predictive ability of the model.

  16. Study of Multi-Function Micro-Plasma Spraying Technology

    International Nuclear Information System (INIS)

    Wang Liuying; Wang Hangong; Hua Shaochun; Cao Xiaoping

    2007-01-01

    A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al 2 O 3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended

  17. Study on Spray Characteristics and Spray Droplets Dynamic Behavior of Diesel Engine Fueled by Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Sapit Azwan

    2014-07-01

    Full Text Available Fuel-air mixing is important process in diesel combustion. It directly affects the combustion and emission of diesel engine. Biomass fuel needs great help to atomize because the fuel has high viscosity and high distillation temperature. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fueled by rapeseed oil (RO. Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the rapeseed oil spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. The results show that RO has very poor atomization due to the high viscosity nature of the fuel. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  18. Development of process data capturing, analysis and controlling for thermal spray techniques - SprayTracker

    Science.gov (United States)

    Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.

    2017-03-01

    Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.

  19. Spray characterization of a piezo pintle-type injector for gasoline direct injection engines

    Science.gov (United States)

    Nouri, J. M.; Hamid, M. A.; Yan, Y.; Arcoumanis, C.

    2007-10-01

    The sprays from a pintle-type nozzle injected into a constant volume chamber have been visualised by a high resolution CCD camera and quantified in terms of droplet velocity and diameter with a 2-D phase Doppler anemometry (PDA) system at an injection pressure of 200 bar and back-pressures varying from atmospheric to 12 bar. Spray visualization illustrated that the spray was string-structured, that the location of the strings remained constant from one injection to the next and that the spray structure was unaffected by back pressure. The overall spray cone angle was also stable and independent of back pressure whose effect was to reduce the spray tip penetration so that the averaged vertical spray tip velocity was reduced by 37% when the back-pressure increased from 1 to 12 bar. Detailed PDA measurements were carried out under atmospheric conditions at 2.5 and 10 mm from the injector exit with the results providing both the temporal and the spatial velocity and size distributions of the spray droplets. The maximum axial mean droplet velocity was 155 m/s at 2.5 mm from the injector which was reduced to 140 m/s at z = 10 mm. The string spacing determined from PDA measurements was around 0.375 mm and 0.6 mm at z=2.5 and 10 mm, respectively. The maximum mean droplet diameter was found to be in the core of the strings with values up to 40 μm at z=2.5 mm reducing to 20 μm at z=10 mm.

  20. Spray characterization of a piezo pintle-type injector for gasoline direct injection engines

    International Nuclear Information System (INIS)

    Nouri, J M; Hamid, M A; Yan, Y; Arcoumanis, C

    2007-01-01

    The sprays from a pintle-type nozzle injected into a constant volume chamber have been visualised by a high resolution CCD camera and quantified in terms of droplet velocity and diameter with a 2-D phase Doppler anemometry (PDA) system at an injection pressure of 200 bar and back-pressures varying from atmospheric to 12 bar. Spray visualization illustrated that the spray was string-structured, that the location of the strings remained constant from one injection to the next and that the spray structure was unaffected by back pressure. The overall spray cone angle was also stable and independent of back pressure whose effect was to reduce the spray tip penetration so that the averaged vertical spray tip velocity was reduced by 37% when the back-pressure increased from 1 to 12 bar. Detailed PDA measurements were carried out under atmospheric conditions at 2.5 and 10 mm from the injector exit with the results providing both the temporal and the spatial velocity and size distributions of the spray droplets. The maximum axial mean droplet velocity was 155 m/s at 2.5 mm from the injector which was reduced to 140 m/s at z = 10 mm. The string spacing determined from PDA measurements was around 0.375 mm and 0.6 mm at z=2.5 and 10 mm, respectively. The maximum mean droplet diameter was found to be in the core of the strings with values up to 40 μm at z=2.5 mm reducing to 20 μm at z=10 mm

  1. Fundamental Study on the Effect of Spray Parameters on Characteristics of P3HT:PCBM Active Layers Made by Spray Coating

    Directory of Open Access Journals (Sweden)

    Yu Xie

    2015-08-01

    Full Text Available This paper is an attempt to elucidate the effects of the important spray characteristics on the surface morphology and light absorbance of spray-on P3HT:PCBM thin-films, used as an active layer in polymer solar cells (PSCs. Spray coating or deposition is a viable scalable technique for the large-scale, fast, and low-cost fabrication of solution-processed solar cells, and has been widely used for device fabrication, although the fundamental understanding of the underlying and controlling parameters, such as spray characteristics, droplet dynamics, and surface wettability, is still limited, making the results on device fabrication not reproducible and unreliable. In this paper, following the conventional PSC architecture, a PEDOT:PSS layer is first spin-coated on glass substrates, followed by the deposition of P3HT:PCBM using an automatic ultrasonic spray coating system, with a movable nozzle tip, to mimic an industrial manufacturing process. To gain insight, the effects of the spray carrier air pressure, the number of spray passes, the precursor flow rate, and precursor concentration are studied on the surface topography and light absorbance spectra of the spray-on films. Among the results, it is found that despite the high roughness of spray-on films, the light absorbance of the film is satisfactory. It is also found that the absorbance of spray-on films is a linear function of the number of spray passes or deposition layers, based on which an effective film thickness is defined for rough spray-on films. The effective thickness of a rough spray-on P3HT:PCBM film was found to be one-quarter of that of a flat film predicted by a simple mass balance.

  2. Fine Sprays for Disinfection within Healthcare

    Directory of Open Access Journals (Sweden)

    G Nasr

    2016-09-01

    Full Text Available Problems exist worldwide with Hospital Acquired Infections (HAI's. The Spray Research Group (SRG have been working with relevant industries in developing a product which can provide a delivery system for treatment chemicals for surfaces, including the design and testing of a novel Spill-Return Atomiser (SRA for this purpose. A comprehensive description of this atomiser has already been given. This paper reports on a new application of this atomiser and discusses the problem of spray coating for disinfection that has been considered very little in previous work. The related spray coating performance tests in developing the product are thus provided. The experimental work includes determining the required spray duration and the coverage area produced by different sprays, including the analysis of the effects of atomiser positions, configurations, and the required number of atomisers. Comparison is made with the efficacy of an ultrasonic gas atomiser that is currently used for this purpose. The investigation has found that the utilisation of fine sprays (10μm>D32>25μm at high liquid pressure (<12MPa and low flow rates (<0.3 l/min is suitable for surface disinfection in healthcare applications (i.e. MRSA, VRSA etc.

  3. Multiphysics modelling of the spray forming process

    International Nuclear Information System (INIS)

    Mi, J.; Grant, P.S.; Fritsching, U.; Belkessam, O.; Garmendia, I.; Landaberea, A.

    2008-01-01

    An integrated, multiphysics numerical model has been developed through the joint efforts of the University of Oxford (UK), University of Bremen (Germany) and Inasmet (Spain) to simulate the spray forming process. The integrated model consisted of four sub-models: (1) an atomization model simulating the fragmentation of a continuous liquid metal stream into droplet spray during gas atomization; (2) a droplet spray model simulating the droplet spray mass and enthalpy evolution in the gas flow field prior to deposition; (3) a droplet deposition model simulating droplet deposition, splashing and re-deposition behavior and the resulting preform shape and heat flow; and (4) a porosity model simulating the porosity distribution inside a spray formed ring preform. The model has been validated against experiments of the spray forming of large diameter IN718 Ni superalloy rings. The modelled preform shape, surface temperature and final porosity distribution showed good agreement with experimental measurements

  4. Water spray interaction with air-steam mixtures under containment spray conditions: comparison of heat and mass transfer modelling with the TOSQAN spray tests

    International Nuclear Information System (INIS)

    Malet, J.; Lemaitre, P.; Porcheron, E.; Vendel, J.

    2005-01-01

    Full text of publication follows: During the course of a hypothetical severe accident in a Pressurized Water Reactor (PWR), hydrogen can be produced by the reactor core oxidation and distributed into the reactor containment according to convection flows and water steam wall condensation. In order to mitigate the risk of detonation generated by a high local hydrogen concentration, spray systems are used in the containment. The TOSQAN programme has been created to simulate separate-effect tests representative of typical accidental thermal-hydraulic flow conditions in the reactor containment. The present work concerns the interaction of a water spray, used at the top of the containment in order to reduce the steam partial pressure, with air-steam mixtures. The main phenomena occurring when water spray is used are the mixing induced by spray entrainment and the condensation on droplets. In order to improve the latter phenomena, different levels of modelling can be used. The objective of this paper is to analyze experimental results obtained for water spray interaction with air-steam mixtures using different heat and mass transfer modelling. For this purpose, two modelling issues have been used: the first one is devoted for the determination of the gas thermodynamical properties, and the second one concerns the droplets characterization. In the first one, the gas thermodynamical analysis is performed using depressurization, gas temperature variation and humidity decrease during the spray injection. In this modelling, heat and mass transfer between the spray and the surrounding gas is treated in a global way by energy balance between the total amount of water and the gas. In the second one, droplets characterization is obtained by means of droplet size, temperature and velocities evolutions. In this modelling, the spray is considered as a single droplet falling with an initial velocity. Droplet interactions are neglected. Assessment of these two modelling is performed

  5. Fluctuations of a spray generated by an airblast atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Batarseh, Feras Z.; Gnirss, Markus; Roisman, Ilia V.; Tropea, Cameron [Technische Universitaet Darmstadt (Germany). Chair of Fluid Mechanics and Aerodynamics

    2009-06-15

    This paper is devoted to the study of the aerodynamic instability of the spray generated by an airblast atomizer. As a result of this instability the spray shape and its velocity fluctuate with a certain frequency, which depends on the operational parameters of the atomizer. The effect of three parameters, namely; chamber pressure, liquid phase flow rate and the gas phase flow rate on the spray fluctuating frequency are investigated. The velocity vector of the drops in the spray and the arrival times to the detection volume are measured using the laser Doppler instrument. The slotting technique is applied to the data of axial velocity and arrival times of the drops in order to estimate the dominating spray frequencies. Additionally, the shape of the spray has been observed using the high-speed video system. The frequencies of the shape fluctuations are estimated using proper orthogonal decomposition of the time-resolved images of the spray. We show that the frequencies of the spray velocity and those exhibited by spray shape coincide over a wide range of spray parameters. Finally, a simple scaling for the spray frequency is proposed and validated by the experimental data. (orig.)

  6. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    International Nuclear Information System (INIS)

    Ramm, D.A.J.; Hutchings, I.M.; Clyne, T.W.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharply reducing the erosive wear at high erodent impact angles, whilst retaining the good erosion resistance of ceramics at low angles. It is shown that the proportion of metal and ceramic at the free surface can be specified so as to optimise the erosion resistance. Experiments have also been carried out on the resistance of the coatings to debonding during four-point bending of the coated substrate. Progress is being made towards the tailoring of composition profiles in graded coatings so as to optimise the combination of erosion resistance and adhesion. (orig.)

  7. Spray casting project final report

    International Nuclear Information System (INIS)

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step

  8. Thermally sprayed coatings: Aluminum on lead

    International Nuclear Information System (INIS)

    Usmani, S.; Czajkowski, C.J.; Zatorski, R.

    1999-01-01

    An experimental program to determine the feasibility of thermally spraying aluminum on a lead substrate was initiated in support of the accelerator production of tritium (APT) Project for the US Department of Energy. The program consisted of two distinct parts: (1) the characterization of the thermally sprayed coatings, including microhardness testing, effects of heating, and microstructure and porosity determinations, and (2) effects of mercury doping and heat treatments on the thermally sprayed composite. The project determined that aluminum could successfully be thermally sprayed onto the lead. The coatings had a dense microstructure, with a Vicker's Pyramid Hardness (VPH) of about 60, and a maximum porosity (found in strips on the samples) of 12%

  9. Structure of Non-evaporating diesel sprays

    International Nuclear Information System (INIS)

    Mirza, M.R.; Baluch, A.H.; Tahir, Z.R.

    2008-01-01

    Need is always felt of some rational experimental information on fuel spray jet formation, its development and dispersion in the combustion chamber of an internal combustion engine. The latest study uses computational fluid dynamics for the modeling of engine flows. The original experimental work of the present author on non-evaporating sprays produced by a single-hole orifice type nozzle using a distribution type commercial fuel injection pump forms the basis to derive correlations for penetration rates, break up times and lengths of non-evaporating diesel sprays. The correlations derived can be used to do CFD modeling of sprays under variable conditions of injector nozzle hole diameter, fuel injection pressure and combustion chamber pressure. (author)

  10. Water spray ventilator system for continuous mining machines

    Science.gov (United States)

    Page, Steven J.; Mal, Thomas

    1995-01-01

    The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

  11. Macroscale and Nanoscale Morphology Evolution during in Situ Spray Coating of Titania Films for Perovskite Solar Cells.

    Science.gov (United States)

    Su, Bo; Caller-Guzman, Herbert A; Körstgens, Volker; Rui, Yichuan; Yao, Yuan; Saxena, Nitin; Santoro, Gonzalo; Roth, Stephan V; Müller-Buschbaum, Peter

    2017-12-20

    Mesoporous titania is a cheap and widely used material for photovoltaic applications. To enable a large-scale fabrication and a controllable pore size, we combined a block copolymer-assisted sol-gel route with spray coating to fabricate titania films, in which the block copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) is used as a structure-directing template. Both the macroscale and nanoscale are studied. The kinetics and thermodynamics of the spray deposition processes are simulated on a macroscale, which shows a good agreement with the large-scale morphology of the spray-coated films obtained in practice. On the nanoscale, the structure evolution of the titania films is probed with in situ grazing incidence small-angle X-ray scattering (GISAXS) during the spray process. The changes of the PS domain size depend not only on micellization but also on solvent evaporation during the spray coating. Perovskite (CH 3 NH 3 PbI 3 ) solar cells (PSCs) based on sprayed titania film are fabricated, which showcases the suitability of spray-deposited titania films for PSCs.

  12. A new method for spray deposit assessment

    Science.gov (United States)

    Chester M. Himel; Leland Vaughn; Raymond P. Miskus; Arthur D. Moore

    1965-01-01

    Solid fluorescent particles suspended in a spray liquid are distributed in direct proportion to the size of the spray droplets. Use of solid fluorescent particles is the basis of a new method for visual recognition of the size and number of droplets impinging on target and nontarget portions of sprayed areas.

  13. A simplified model of aerosol removal by containment sprays

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A. (Sandia National Labs., Albuquerque, NM (United States)); Burson, S.B. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of Safety Issue Resolution)

    1993-06-01

    Spray systems in nuclear reactor containments are described. The scrubbing of aerosols from containment atmospheres by spray droplets is discussed. Uncertainties are identified in the prediction of spray performance when the sprays are used as a means for decontaminating containment atmospheres. A mechanistic model based on current knowledge of the physical phenomena involved in spray performance is developed. With this model, a quantitative uncertainty analysis of spray performance is conducted using a Monte Carlo method to sample 20 uncertain quantities related to phenomena of spray droplet behavior as well as the initial and boundary conditions expected to be associated with severe reactor accidents. Results of the uncertainty analysis are used to construct simplified expressions for spray decontamination coefficients. Two variables that affect aerosol capture by water droplets are not treated as uncertain; they are (1) [open quote]Q[close quote], spray water flux into the containment, and (2) [open quote]H[close quote], the total fall distance of spray droplets. The choice of values of these variables is left to the user since they are plant and accident specific. Also, they can usually be ascertained with some degree of certainty. The spray decontamination coefficients are found to be sufficiently dependent on the extent of decontamination that the fraction of the initial aerosol remaining in the atmosphere, m[sub f], is explicitly treated in the simplified expressions. The simplified expressions for the spray decontamination coefficient are given. Parametric values for these expressions are found for median, 10 percentile, and 90 percentile values in the uncertainty distribution for the spray decontamination coefficient. Examples are given to illustrate the utility of the simplified expressions to predict spray decontamination of an aerosol-laden atmosphere.

  14. Albendazole Microparticles Prepared by Spray Drying Technique ...

    African Journals Online (AJOL)

    Purpose: To enhance the dissolution of albendazole (ABZ) using spray-drying technique. Method: ABZ binary mixtures with Kollicoat IR® (KL) and polyvinyl pyrrolidone (PVP) in various drug to polymer ratios (1: 1, 1: 2 and 1; 4) were prepared by spray-drying. The spray-dried particles were characterized for particle shape, ...

  15. Quality characteristic of spray-drying egg white powders.

    Science.gov (United States)

    Ma, Shuang; Zhao, Songning; Zhang, Yan; Yu, Yiding; Liu, Jingbo; Xu, Menglei

    2013-10-01

    Spray drying is a useful method for developing egg process and utilization. The objective of this study was to evaluate effects on spray drying condition of egg white. The optimized conditions were spraying flow 22 mL/min, feeding temperature 39.8 °C and inlet-air temperature 178.2 °C. Results of sulfydryl (SH) groups measurement indicated conformation structure have changed resulting in protein molecule occur S-S crosslinking phenomenon when heating. It led to free SH content decreased during spray drying process. There was almost no change of differential scanning calorimetry between fresh egg white and spray-drying egg white powder (EWP). For a given protein, the apparent SH reactivity is in turn influenced by the physico-chemical characteristics of the reactant. The phenomenon illustrated the thermal denaturation of these proteins was unrelated to their free SH contents. Color measurement was used to study browning level. EWP in optimized conditions revealed insignificant brown stain. Swelling capacity and scanning electron micrograph both proved well quality characteristic of spray-drying EWP. Results suggested spray drying under the optimized conditions present suitable and alternative method for egg processing industrial implementation. Egg food industrialization needs new drying method to extend shelf-life. The purpose of the study was to provide optimal process of healthy and nutritional instant spray-drying EWP and study quality characteristic of spray-drying EWP.

  16. Experimental investigation of atomization characteristics of swirling spray by ADN gelled propellant

    Science.gov (United States)

    Guan, Hao-Sen; Li, Guo-Xiu; Zhang, Nai-Yuan

    2018-03-01

    Due to the current global energy shortage and increasingly serious environmental issues, green propellants are attracting more attention. In particular, the ammonium dinitramide (ADN)-based monopropellant thruster is gaining world-wide attention as a green, non-polluting and high specific impulse propellant. Gel propellants combine the advantages of liquid and solid propellants, and are becoming popular in the field of spaceflight. In this paper, a swirling atomization experimental study was carried out using an ADN aqueous gel propellant under different injection pressures. A high-speed camera and a Malvern laser particle size analyzer were used to study the spray process. The flow coefficient, cone angle of swirl atomizing spray, breakup length of spray membrane, and droplet size distribution were analyzed. Furthermore, the effects of different injection pressures on the swirling atomization characteristics were studied.

  17. Advanced Research in Diesel Fuel Sprays Using X-rays From The Advanced Photon Source

    International Nuclear Information System (INIS)

    Powell, C.

    2003-01-01

    The fuel distribution and degree of atomization in the combustion chamber is a primary factor in the formation of emissions in diesel engines. A number of diagnostics to study sprays have been developed over the last twenty years; these are primarily based on visible light measurement techniques. However, visible light scatters strongly from fuel droplets surrounding the spray, which prevents penetration of the light. This has made quantitative measurements of the spray core very difficult, particularly in the relatively dense near- nozzle region [1-3]. For this reason we developed the x-ray technique to study the properties of fuel sprays in a quantitative way [4]. The x-ray technique is not limited by scattering, which allows it to be used to make quantitative measurements of the fuel distribution. These measurements are particularly effective in the region near the nozzle where other techniques fail. This technique has led to a number of new insights into the structure of fuel sprays, including the discovery and quantitative measurement of shock waves generated under some conditions by high-pressure diesel sprays [5]. We also performed the first-ever quantitative measurements of the time-resolved mass distribution in the near-nozzle region, which demonstrated that the spray is atomized only a few nozzle diameters from the orifice [6]. Our recent work has focused on efforts to make measurements under pressurized ambient conditions. We have recently completed a series of measurements at pressures up to 5 bar and are looking at the effect of ambient pressure on the structure of the spray. The enclosed figure shows the mass distributions measured for 1,2, and 5 bar ambient pressures. As expected, the penetration decreases as the pressure increases. This leads to changes in the measured mass distribution, including an increase in the density at the leading edge of the spray. We have also observed a narrowing in the cone angle of the spray core as the pressure

  18. Spray drying of beryllium oxide powder

    International Nuclear Information System (INIS)

    Sepulveda, J.L.; Kahler, D.A.

    1991-01-01

    Forming of beryllia ceramics through dry pressing requires the agglomeration of the powder through spray drying. To produce high quality fired ceramics it is necessary to disperse/grind the primary powder prior to binder addition. Size reduction of the powder is accomplished using an aqueous system in Vibro-Energy mills (VEM) charged with beryllia media to minimize contamination. Two VEM mills of different size were used to characterize the grinding operation. Details of the grinding kinetics are described within the context of the Macroscopic Population Balance Model approach. Spray drying of the ceramic slurry was accomplished with both a centrifugal atomizer and a two fluid nozzle atomizer. Two different spray dryers were used. Important operating parameters affecting the size distribution of the spray dried powder are discussed

  19. LSPRAY-V: A Lagrangian Spray Module

    Science.gov (United States)

    Raju, M. S.

    2015-01-01

    LSPRAY-V is a Lagrangian spray solver developed for application with unstructured grids and massively parallel computers. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray encountered over a wide range of operating conditions in modern aircraft engine development. It could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-V, we have advanced the state-of-the-art in spray computations in several important ways.

  20. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    Science.gov (United States)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  1. Characterization of Modified Tapioca Starch Solutions and Their Sprays for High Temperature Coating Applications

    Science.gov (United States)

    Naz, M. Y.; Sulaiman, S. A.; Ariwahjoedi, B.; Shaari, Ku Zilati Ku

    2014-01-01

    The objective of the research was to understand and improve the unusual physical and atomization properties of the complexes/adhesives derived from the tapioca starch by addition of borate and urea. The characterization of physical properties of the synthesized adhesives was carried out by determining the effect of temperature, shear rate, and mass concentration of thickener/stabilizer on the complex viscosity, density, and surface tension. In later stage, phenomenological analyses of spray jet breakup of heated complexes were performed in still air. Using a high speed digital camera, the jet breakup dynamics were visualized as a function of the system input parameters. The further analysis of the grabbed images confirmed the strong influence of the input processing parameters on full cone spray patternation. It was also predicted that the heated starch adhesive solutions generate a dispersed spray pattern by utilizing the partial evaporation of the spraying medium. Below 40°C of heating temperature, the radial spray cone width and angle did not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity were significantly influenced by the load pressure but less affected by the temperature. PMID:24592165

  2. Plasma spraying process of disperse carbides for spraying and facing

    International Nuclear Information System (INIS)

    Blinkov, I.V.; Vishnevetskaya, I.A.; Kostyukovich, T.G.; Ostapovich, A.O.

    1989-01-01

    A possibility to metallize carbides in plasma of impulsing capacitor discharge is considered. Powders granulation occurs during plasma spraying process, ceramic core being completely capped. X-ray phase and chemical analyses of coatings did not show considerable changes of carbon content in carbides before and after plasma processing. This distinguishes the process of carbides metallization in impulsing plasma from the similar processing in arc and high-frequency plasma generator. Use of powder composites produced in the impulsing capacitor discharge, for plasma spraying and laser facing permits 2-3 times increasing wear resistance of the surface layer as against the coatings produced from mechanical powders mixtures

  3. Alignment Fixtures For Vacuum-Plasma-Spray Gun

    Science.gov (United States)

    Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.

    1993-01-01

    Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.

  4. Tungsten/copper composite deposits produced by a cold spray

    International Nuclear Information System (INIS)

    Kang, Hyun-Ki; Kang, Suk Bong

    2003-01-01

    An agglomerated tungsten/copper composite powder was both cold sprayed and plasma sprayed onto a mild steel substrate for electronic package applications. Most pores resulting from the spraying were found in the vicinity of the tungsten-rich regions of the final product. The levels of porosity varied with the amount of tungsten present. No copper oxidation was found at the cold-sprayed deposit, but relatively high copper oxidation was observed at the plasma-sprayed deposit

  5. Research Into Ni-Cr-Si-B Coating Sprayed Onto Aluminium Substrate Using the Method of Plasma Spray

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2013-02-01

    Full Text Available The article deals with Ni base coatings deposited on aluminium substrate applying the method of plasma spray. The purpose of the conducted research is to improve the physical and mechanical properties of coatings on the surface of aluminium alloy work pieces. Spraying on aluminium alloys encounters serious problems, and therefore this work analyses the ways to make the situation more favourable. Before spraying, the surfaces of substrates were modified employing chemical and mechanical pre-treatment methods. The aim of pre-treating aluminium alloys was to remove oxide layers from the aluminium surface. Coating microstructures and porosity were characterised applying optical microscopy. Differences in the roughness of pre-treated surfaces have been determined referring to profilometry. The paper investigates the influence of the adhesion of plasma spray coatings on aluminium surface pretreatment. Microhardness technique was applied for measuring the hardness of coatings. The study also describes and compares the mechanical properties of Ni base coatings deposited on different pre-treated aluminium substrates using plasma spray.Article in Lithuanian

  6. Research Into Ni-Cr-Si-B Coating Sprayed Onto Aluminium Substrate Using the Method of Plasma Spray

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2012-12-01

    Full Text Available The article deals with Ni base coatings deposited on aluminium substrate applying the method of plasma spray. The purpose of the conducted research is to improve the physical and mechanical properties of coatings on the surface of aluminium alloy work pieces. Spraying on aluminium alloys encounters serious problems, and therefore this work analyses the ways to make the situation more favourable. Before spraying, the surfaces of substrates were modified employing chemical and mechanical pre-treatment methods. The aim of pre-treating aluminium alloys was to remove oxide layers from the aluminium surface. Coating microstructures and porosity were characterised applying optical microscopy. Differences in the roughness of pre-treated surfaces have been determined referring to profilometry. The paper investigates the influence of the adhesion of plasma spray coatings on aluminium surface pretreatment. Microhardness technique was applied for measuring the hardness of coatings. The study also describes and compares the mechanical properties of Ni base coatings deposited on different pre-treated aluminium substrates using plasma spray.Article in Lithuanian

  7. Sprayed concrete linings

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-12-01

    Sprayed concrete, or shotcrete, was invented in the 1920s for preserving dinosaur skeletons and was used underground initially in coalmines for the preservation and fine proofing of timber supports. Its use as a support lining in rock tunnelling was developed in the 1950s and 60s. The article surveys equipment available from major manufacturers and suppliers of concrete spraying equipment (Aliva, Cifa, GIA, Industri, Ingersoll Rand, etc.), specialist cement and additive manufacturers (Castle, Cement, Moria Carbotech). manufacturers of lattice girders and fibre reinforcement, and manufacturers of instrumentation for tunnel linings. 5 tabs., 9 photos.

  8. Investigation of the spray characteristics for a secondary fuel injection nozzle using a digital image processing method

    Science.gov (United States)

    Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji

    2007-05-01

    There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.

  9. Computational Analysis of Spray Jet Flames

    Science.gov (United States)

    Jain, Utsav

    There is a boost in the utilization of renewable sources of energy but because of high energy density applications, combustion will never be obsolete. Spray combustion is a type of multiphase combustion which has tremendous engineering applications in different fields, varying from energy conversion devices to rocket propulsion system. Developing accurate computational models for turbulent spray combustion is vital for improving the design of combustors and making them energy efficient. Flamelet models have been extensively used for gas phase combustion because of their relatively low computational cost to model the turbulence-chemistry interaction using a low dimensional manifold approach. This framework is designed for gas phase non-premixed combustion and its implementation is not very straight forward for multiphase and multi-regime combustion such as spray combustion. This is because of the use of a conserved scalar and various flamelet related assumptions. Mixture fraction has been popularly employed as a conserved scalar and hence used to parameterize the characteristics of gaseous flamelets. However, for spray combustion, the mixture fraction is not monotonic and does not give a unique mapping in order to parameterize the structure of spray flames. In order to develop a flamelet type model for spray flames, a new variable called the mixing variable is introduced which acts as an ideal conserved scalar and takes into account the convection and evaporation of fuel droplets. In addition to the conserved scalar, it has been observed that though gaseous flamelets can be characterized by the conserved scalar and its dissipation, this might not be true for spray flamelets. Droplet dynamics has a significant influence on the spray flamelet and because of effects such as flame penetration of droplets and oscillation of droplets across the stagnation plane, it becomes important to accommodate their influence in the flamelet formulation. In order to recognize the

  10. Heat-Treated TiO2 Plasma Spray Deposition for Bioactivity Improvement in Ti-6Al-4V Alloy

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2017-12-01

    In the present study, titanium di-oxide (TiO2) coating has been developed on Ti-6Al-4V substrate by plasma spray deposition. Followed by plasma spraying, heat treatment of the sprayed sample has been carried out by isothermally holding it at 823 K (550 °C) for 2 h. Microstructural analysis shows the presence of porosity and unmelted particles on the as-sprayed surface, the area fraction of which reduces after heat treatment. X-ray diffraction analysis shows the phase transformation from anatase (in precursor powder) to rutile (in as-sprayed coating and the same after heat treatment). There is an improvement in nano-hardness, "Young's modulus" and wear resistance in plasma-sprayed TiO2 coating (as-sprayed as well as post-heat-treated condition) as compared to as-received Ti-6Al-4V, though post-heat treatment offers a superior hardness, "young's modulus" and wear resistance as compared to as-sprayed coating. The corrosion behavior in "hank's solution" shows decrease in corrosion resistance after plasma spraying and post-heat treatment as compared to as-received substrate. A significant decrease in contact angle and improvement in bioactivity (in terms of apatite deposition) were observed in TiO2-coated surface as compared to as-received Ti-6Al-4V.

  11. Spray-coatable negative photoresist for high topography MEMS applications

    International Nuclear Information System (INIS)

    Arnold, Markus; Haas, Sven; Schwenzer, Falk; Schwenzer, Gunther; Reuter, Danny; Geßner, Thomas; Voigt, Anja; Gruetzner, Gabi

    2017-01-01

    In microsystem technology, the lithographical processing of substrates with a topography is very important. Interconnecting lines, which are routed over sloped topography sidewalls from the top of the protecting wafer to the contact pads of the device wafer, are one example of patterning over a topography. For structuring such circuit paths, a photolithography process, and therefore a process for homogeneous photoresist coating, is required. The most flexible and advantageous way of depositing a homogeneous photoresist film over structures with high topography steps is spray-coating. As a pattern transfer process for circuit paths in cavities, the lift-off process is widely used. A negative resist, like ma-N (MRT) or AZnLOF (AZ) is favoured for lift-off processes due to the existing negative angle of the sidewalls. Only a few sprayable negative photoresists are commercially available. In this paper, the development of a novel negative resist spray-coating based on a commercially available single-layer lift-off resist for spin-coating, especially for the patterning of structures inside the cavity and on the cavity wall, is presented. A variety of parameters influences the spray-coating process, and therefore the patterning results. Besides the spray-coating tool and the parameters, the composition of the resist solution itself also influences the coating results. For homogeneous resist coverage over the topography of the substrate, different solvent combinations for diluting the resist solution, different chuck temperatures during the coating process, and also the softbake conditions, are all investigated. The solvent formulations and the process conditions are optimized with respect to the homogeneity of the resist coverage on the top edge of the cavities. Finally, the developed spray-coating process, the resist material and the process stability are demonstrated by the following applications: (i) lift-off, (ii) electroplating, (iii) the wet and (iv) the dry

  12. Experimental and numerical investigations on spray structure under the effect of cavitation phenomenon in a microchannel

    International Nuclear Information System (INIS)

    Ghorbani, Morteza; Sadaghiani, Abdolali Khalili; Yidiz, Mehmet; Kosar, Ali

    2017-01-01

    In this study, the effect of upstream pressure on cavitation flows inside a microchannel with an inner diameter of 152 μm and resulting spray structure were experimentally and numerically investigated. The effects of bubble number density on two-phase flow hydrodynamics were studied using the numerical approach, where transient model was utilized to obtain the changes in vapor quality inside the microchannel and velocity field near the inlet and outlet of the nozzle. Spray visualization was carried out at a distance of 4.5 mm from the tip of the microchannel using the high speed visualization system. The experimental results showed that the spray cone angle increased with upstream pressure, and beyond the upstream pressure of 50 bar, the liquid jet flow changed to the cloudy spray flow. The bubble collapse was recorded at upstream pressures of 100 and 120 bar, where the cavitation bubbles extended to the outlet of the microchannel, and their collapse took place around the spray

  13. Plasma sprayed coatings on crankshaft used steels

    Science.gov (United States)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  14. To spray or not to spray? Understanding participation in an indoor residual spray campaign in Arequipa, Peru.

    Science.gov (United States)

    Paz-Soldán, Valerie A; Bauer, Karin M; Hunter, Gabrielle C; Castillo-Neyra, Ricardo; Arriola, Vanessa D; Rivera-Lanas, Daniel; Rodriguez, Geoffrey H; Toledo Vizcarra, Amparo M; Mollesaca Riveros, Lina M; Levy, Michael Z; Buttenheim, Alison M

    2018-01-01

    Current low participation rates in vector control programmes in Arequipa, Peru complicate the control of Chagas disease. Using focus groups (n = 17 participants) and semi-structured interviews (n = 71) conducted in March and May 2013, respectively, we examined barriers to and motivators of household participation in an indoor residual spray (IRS) campaign that had taken place one year prior in Arequipa. The most common reported barriers to participation were inconvenient spray times due to work obligations, not considering the campaign to be necessary, concerns about secondary health impacts (e.g. allergic reactions to insecticides), and difficulties preparing the home for spraying (e.g. moving heavy furniture). There was also a low perception of risk for contracting Chagas disease that might affect participation. The main motivator to participate was to ensure personal health and well-being. Future IRS campaigns should incorporate more flexible hours, including weekends; provide appropriate educational messages to counter concerns about secondary health effects; incorporate peer educators to increase perceived risk to Chagas in community; obtain support from community members and leaders to build community trust and support for the campaign; and assist individuals in preparing their homes. Enhancing community trust in both the need for the campaign and its operations is key.

  15. Injector spray characterization of methanol in reciprocating engines

    Science.gov (United States)

    Dodge, L.; Naegeli, D.

    1994-06-01

    This report covers a study that addressed cold-starting problems in alcohol-fueled, spark-ignition engines by using fine-spray port-fuel injectors to inject fuel directly into the cylinder. This task included development and characterization of some very fine-spray, port-fuel injectors for a methanol-fueled spark-ignition engine. After determining the spray characteristics, a computational study was performed to estimate the evaporation rate of the methanol fuel spray under cold-starting and steady-state conditions.

  16. Development of cold sprayed Cu coating for canister

    International Nuclear Information System (INIS)

    Kim, Hyung Jun; Kang, Yoon Ha

    2010-01-01

    Cold sprayed Cu deposition was studied for the application of outer part of canister for high level nuclear waste. Five commercially available pure Cu powders were analyzed and sprayed by high pressure cold spray system. Electrochemical corrosion test using potentiostat in 3.5% NaCl solution was conducted as well as microstructural analysis including hardness and oxygen content measurements. Overall evaluation of corrosion performance of cold sprayed Cu deposition is inferior to forged and extruded Cu plates, but some of Cu depositions are comparable to Cu plates. The simulated corrosion test in 200m underground cave is still in progress. The effect of cold spray process parameters was also studied and the results show that the type of nozzle is the most important other than powder feed rate, spray distance, and scan speed. 1/10 scale miniature of canister was manufactured confirming that the production of full scale canister is possible

  17. Verification on spray simulation of a pintle injector for liquid rocket engine

    Science.gov (United States)

    Son, Min; Yu, Kijeong; Radhakrishnan, Kanmaniraja; Shin, Bongchul; Koo, Jaye

    2016-02-01

    The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.

  18. Research of Plasma Spraying Process on Aluminum-Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Patricija Kavaliauskaitė

    2016-04-01

    Full Text Available The article examines plasma sprayed 95Ni-5Al coatings on alu-minum-magnesium (Mg ≈ 2,6‒3,6 % alloy substrate. Alumi-num-magnesium samples prior spraying were prepared with mechanical treatment (blasting with Al2O3. 95Ni-5Al coatings on aluminum-magnesium alloys were sprayed with different parameters of process and coating‘s thickness, porosity, micro-hardness and microstructure were evaluated. Also numerical simulations in electric and magnetic phenomena of plasma spray-ing were carried out.

  19. A new method for thermal spraying of Zn-Al coatings

    International Nuclear Information System (INIS)

    Gorlach, I.A.

    2009-01-01

    This paper presents the development of the thermal spraying system built on the principles of the high velocity air flame (HVAF) process. HVAF sprayed coatings showed considerably higher bond strength than coatings obtained by the conventional methods, indicating the advantage of this method in areas where the adhesion strength is critically important. The highly dense structure of the coating obtained with HVAF eliminates a need for a top paint coat, which is typically applied on metal sprayed coatings to extend service life. The thermal sprayed coatings were characterized by the standard techniques, such as light microscopy, scanning electron microscopy with energy-dispersive spectroscopy, X-ray diffraction, salt spray and bond strength tests. The results show that thermal sprayed coatings have a dense structure, low presence of oxides and high resistance to corrosion. High spray rate and good coating quality make the HVAF thermal spray method a viable alternative to the conventional thermal spraying technologies, such as Wire Flame and Twin-Wire Arc.

  20. Fully-flexible supercapacitors using spray-deposited carbon-nanotube films as electrodes

    Science.gov (United States)

    Lee, Churl Seung; Bae, Joonho

    2013-12-01

    Fully-flexible carbon-nanotube-based supercapacitors were successfully fabricated using a spray method. For electrodes, multiwalled carbon-nanotube films sprayed on polyethylene terephthalate (PET) substrates were employed. Thin Al films on PET were used as current collectors. The electrolyte was 1 M KNO3. Cyclic voltammetry and galvanostatic charge-discharge measurements on the flexible supercapacitors revealed that the area-specific capacitance was 0.11 mF/cm2. Electrochemical impedance spectroscopy of the supercapacitors resulted in a low internal resistance (3.7 Ω). The energy density and the power density of the flexible supercapacitor were measured to be 3.06 × 10-8 Wh/cm2 and 2.65 × 10-7 W/cm2, respectively. The Bode | z| and phase-angle plots showed that the supercapacitors functioned close to ideal capacitors at the frequencies near 2 kHz. These results indicate that the spray deposition method of carbon nanotubes could be promising for fabricating flexible energy devices or electronics.

  1. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    Energy Technology Data Exchange (ETDEWEB)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    2018-02-06

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance against corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.

  2. Evaluation of mechanical properties of Aluminum-Copper cold sprayed and alloy 625 wire arc sprayed coatings

    Science.gov (United States)

    Bashirzadeh, Milad

    This study examines microstructural-based mechanical properties of Al-Cu composite deposited by cold spraying and wire arc sprayed nickel-based alloy 625 coating using numerical modeling and experimental techniques. The microhardness and elastic modulus of samples were determined using the Knoop hardness technique. Hardness in both transverse and longitudinal directions on the sample cross-sections has been measured. An image-based finite element simulation algorithm was employed to determine the mechanical properties through an inverse analysis. In addition mechanical tests including, tensile, bending, and nano-indentation tests were performed on alloy 625 wire arc sprayed samples. Overall, results from the experimental tests are in relatively good agreement for deposited Al-Cu composites and alloy 625 coating. However, results obtained from numerical simulation are significantly higher in value than experimentally obtained results. Examination and comparison of the results are strong indications of the influence of microstructure characteristics on the mechanical properties of thermally spray deposited coatings.

  3. Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions

    Directory of Open Access Journals (Sweden)

    Qiang WEI

    2017-08-01

    Full Text Available To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the jet impingement process and the ambient gas field. The new coupled model consists of the plain-orifice sub-model, the jet-jet impingement sub-model and the droplet collision sub-model. The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions. The overall model is benchmarked under various impingement angles, jet momentum and off-center ratios. Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics, such as the mass flux and mixture ratio distributions in quiescent air. Besides, impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions. First, a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile. The minimum average droplet diameter is achieved when the orifices work in cavitation state, and is about 30% smaller than the steady single phase state. Second, the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°. The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.

  4. Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions

    Institute of Scientific and Technical Information of China (English)

    Qiang WEI; Guozhu LIANG

    2017-01-01

    To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray,the conventional uncoupled spray model for impinging injectors is extended by considering the couplingof the jet impingement process and the ambient gas field.The new coupled model consists of the plain-orifice sub-model,the jet-jet impingement sub-model and the droplet collision sub-model.The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions.The overall model is benchmarked under various impingement angles,jet momentum and offcenter ratios.Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics,such as the mass flux and mixture ratio distributions in quiescent air.Besides,impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions.First,a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile.The minimum average droplet diameter is achieved when the orifices work in cavitation state,and is about 30% smaller than the steady single phase state.Second,the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°.The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.

  5. SPRAY code user's report

    International Nuclear Information System (INIS)

    Shire, P.R.

    1977-03-01

    The SPRAY computer code has been developed to model the effects of postulated sodium spray release from LMFBR piping within containment chambers. The calculation method utilizes gas convection, heat transfer and droplet combustion theory to calculate the pressure and temperature effects within the enclosure. The applicable range is 0-21 mol percent oxygen and .02-.30 inch droplets with or without humidity. Droplet motion and large sodium surface area combine to produce rapid heat release and pressure rise within the enclosed volume

  6. Influence of powder and spray parameters on erosion and corrosion properties of HVOF sprayed WC-Co-Cr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Berget, John

    1998-07-01

    Thermal spraying is a generic term including various processes used to deposit coatings on surfaces. The coating material is in the form of powder or a wire and is melted or softened by means of a heat source. A gas stream accelerates the material towards a prepared surface and deposits it there to form the coating. Examples of components being maintained by application of thermal spray coatings are gate valves and ball valves for the offshore industry and turbine blades in power generations installations. Recent investigation has shown that the commonly used coating material WC-Co is not corrosion resistant. But it can be improved by the addition of Cr. The main objective of this thesis is to study the influence of spray process control variables and powder characteristics on the erosion and erosion-corrosion properties of the coatings. Spray process variables investigated include energy input, powder feed rate and spray distance. Powder characteristics studied are average size of the WC particles, relative proportions of Co and Cr in the metal phase and powder grain size distribution.

  7. Experimental and theoretical study on spray behaviors of modified bio-ethanol fuel employing direct injection system

    Directory of Open Access Journals (Sweden)

    Ghahremani Amirreza

    2017-01-01

    Full Text Available One of the key solutions to improve engine performance and reduce exhaust emissions of internal combustion engines is direct injection of bio-fuels. A new modified bio-ethanol is produced to be substituted by fossil fuels in gasoline direct injection engines. The key advantages of modified bio-ethanol fuel as an alternative fuel are higher octane number and oxygen content, a long-chain hydro-carbon fuel, and lower emissions compared to fossil fuels. In the present study spray properties of a modified bio-ethanol and its atomization behaviors have been studied experimentally and theoretically. Based on atomization physics of droplets dimensional analysis has been performed to develop a new non-dimensional number namely atomization index. This number determines the atomization level of the spray. Applying quasi-steady jet theory, air entrainment and fuel-air mixing studies have been performed. The spray atomization behaviors such as atomization index number, Ohnesorge number, and Sauter mean diameter have been investigated employing atomization model. The influences of injection and ambient conditions on spray properties of different blends of modified bio-ethanol and gasoline fuels have been investigated performing high-speed visualization technique. Results indicate that decreasing the difference of injection and ambient pressures increases spray cone angle and projected area, and decreases spray tip penetration length. As expected, increasing injection pressure improves atomization behaviors of the spray. Increasing percentage of modified bio-ethanol in the blend, increases spray tip penetration and decreases the projected area as well.

  8. Cryogen spray cooling: Effects of droplet size and spray density on heat removal.

    Science.gov (United States)

    Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.

  9. Effect of formulation- and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast.

    Science.gov (United States)

    Kundoor, Vipra; Dalby, Richard N

    2011-08-01

    To systematically evaluate the effect of formulation- and administration-related variables on nasal spray deposition using a nasal cast. Deposition pattern was assessed by uniformly coating a transparent nose model with Sar-Gel®, which changes from white to purple on contact with water. Sprays were subsequently discharged into the cast, which was then digitally photographed. Images were quantified using Adobe® Photoshop. The effects of formulation viscosity (which influences droplet size), simulated administration techniques (head orientation, spray administration angle, spray nozzle insertion depth), spray pump design and metering volume on nasal deposition pattern were investigated. There was a significant decrease in the deposition area associated with sprays of increasing viscosity. This appeared to be mediated by an increase in droplet size and a narrowing of the spray plume. Administration techniques and nasal spray pump design also had a significant effect on the deposition pattern. This simple color-based method provides quantitative estimates of the effects that different formulation and administration variables may have on the nasal deposition area, and provides a rational basis on which manufacturers of nasal sprays can base their patient instructions or post approval changes when it is impractical to optimize these using a clinical study.

  10. Aluminium-12wt% silicon coating prepared by thermal spraying technique: Part 1 optimization of spray condition based on a design of experiment

    Directory of Open Access Journals (Sweden)

    Jiansirisomboon, S.

    2006-03-01

    Full Text Available At present, thermal spray technology is used for maintenance parts of various machines in many industries. This technology can be used to improve the surface wear resistance. Therefore, this technology can significantly reduce cost of manufacturing. Al-12wt%Si alloy is an interesting and popular material used in the automotive industry. This research studies the suitable condition for spraying of Al-12wt%Si powder. This powder was sprayed by a flame spray technique onto low carbon steel substrates. The suitable conditions for spraying can be achieved by a design of experiment (DOE principle, which provided statistical data defined at 90% confidence. This research used control factors, which were oxygen flow rate, acetylene flow rate and spray distance. The satisfaction levels of these factors were set at 3 levels, i.e. low, medium and high, in order to determine suitable responses, which were hardness, thickness, wear rate and percentage volume fraction of porosity. It was found that the optimized condition for spraying Al-12wt%Si powder consisted of 38 ft3/hr (1.026 m3/hr of oxygen flow rate, 27 ft3/hr (0.729 m3/hr of acetylene flow rate and 58 mm of spray distance.

  11. Plasma sprayed Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.; Bauser, S.; Liu, S.; Huang, M.

    2003-01-01

    This study demonstrated that the plasma spray deposition method is an alternative process for producing Nd-Fe-B magnets in addition to the two existing principal processes: the powder metallurgy process for producing sintered Nd-Fe-B magnets and the melt spinning process for bonded Nd-Fe-B magnets. Plasma spray is a potentially better process for producing magnetic parts with complicated shape, large area, thin thickness, small dimension, or unusual geometry. High intrinsic coercivity greater than 15 kOe was readily obtained for Nd 16 Dy 1 Fe 76 B 7 even in the as-deposited condition when the substrate was preheated. The plasma spray process contains only three steps: melting, crushing, and plasma spray, which is much simpler than the powder metallurgy and melt spinning processes. Without preheating the substrate, the coercivity was usually very low (∼0.1 kOe) in the as-deposited condition and it increased to 10 to >15 kOe after anneal. Evidence of magnetocrystalline anisotropy was observed in plasma sprayed Nd 15 Dy 1 Fe 77 B 7 magnets when the substrate was not preheated. It is believed that a crystal texture was developed during the plasma spray as a result of the existence of a temperature gradient in the solidifying melt

  12. Nano spray drying for encapsulation of pharmaceuticals.

    Science.gov (United States)

    Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi

    2018-05-17

    Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. 9 CFR 590.542 - Spray process drying operations.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Spray process drying operations. 590..., Processing, and Facility Requirements § 590.542 Spray process drying operations. (a) The drying room shall be... interrupted. (1) Spray nozzles, orifices, cores, or whizzers shall be cleaned immediately after cessation of...

  14. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity.

    Science.gov (United States)

    Tong, Xuwen; Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Tu, Jiyuan

    2016-10-01

    In this study, the effects of nasal drug delivery device and the spray nozzle orientation on sprayed droplets deposition in a realistic human nasal cavity were numerically studied. Prior to performing the numerical investigation, an in-house designed automated actuation system representing mean adults actuation force was developed to produce realistic spray plume. Then, the spray plume development was filmed by high speed photography system, and spray characteristics such as spray cone angle, break-up length, and average droplet velocity were obtained through off-line image analysis. Continuing studies utilizing those experimental data as boundary conditions were applied in the following numerical spray simulations using a commercially available nasal spray device, which was inserted into a realistic adult nasal passage with external facial features. Through varying the particle releasing direction, the deposition fractions of selected particle sizes on the main nasal passage for targeted drug delivery were compared. The results demonstrated that the middle spray direction showed superior spray efficiency compared with upper or lower directions, and the 10µm agents were the most suitable particle size as the majority of sprayed agents can be delivered to the targeted area, the main passage. This study elaborates a comprehensive approach to better understand nasal spray mechanism and evaluate its performance for existing nasal delivery practices. Results of this study can assist the pharmaceutical industry to improve the current design of nasal drug delivery device and ultimately benefit more patients through optimized medications delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. High-power electronics thermal management with intermittent multijet sprays

    International Nuclear Information System (INIS)

    Panão, Miguel R.O.; Correia, André M.; Moreira, António L.N.

    2012-01-01

    Thermal management plays a crucial role in the development of high-power electronics devices, e.g. in electric vehicles. The greatest energy demands occur during power peaks, implying dynamic thermal losses within the vehicle’s driving cycle. Therefore, the need for devising intelligent thermal management systems able to efficiently respond to these power peaks has become a technological challenge. Experiments have been performed with methanol in order to quantify the maximum heat flux removed by a multijet spray to keep the 4 cm 2 surface temperature stabilized and below the threshold of 125 °C. A multijet atomization strategy consists in producing a spray through the multiple and simultaneous impact of N j cylindrical jets. Moreover, the spray intermittency is expressed through the duty cycle (DC), which depends on the frequency and duration of injection. Results evidence that: i) a shorter time between consecutive injection cycles enables a better distribution of the mass flow rate, resulting in larger heat transfer coefficient values, as well as higher cooling efficiencies; ii) compared with continuous sprays, the analysis evidences that an intermittent spray allows benefiting more from phase-change convection. Moreover, the mass flux is mainly affecting heat transfer rather than differences induced in the spray structure by using different multijet configurations. - Highlights: ► Intermittent spray cooling (ISC) is advantageous for intelligent thermal management. ► Distributing the mass flow rate through ISC improves heat transfer. ► Multijet sprays with increasing number of jets have higher heat transfer rates. ► ISC with multijet sprays benefit more from phase-change than continuous sprays.

  16. Current implications of past DDT indoor spraying in Oman.

    Science.gov (United States)

    Booij, Petra; Holoubek, Ivan; Klánová, Jana; Kohoutek, Jiří; Dvorská, Alice; Magulová, Katarína; Al-Zadjali, Said; Čupr, Pavel

    2016-04-15

    In Oman, DDT was sprayed indoors during an intensive malaria eradication program between 1976 and 1992. DDT can remain for years after spraying and is associated with potential health risk. This raises the concern for human exposure in areas where DDT was used for indoor spraying. Twelve houses in three regions with a different history of DDT indoor spraying were chosen for a sampling campaign in 2005 to determine p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and p,p'-dichlorodiphenyldichloroethane (p,p'-DDD) levels in indoor air, dust, and outdoor soil. Although DDT was only sprayed indoor, p,p'-DDT, p,p'-DDE and p,p'-DDD were also found in outdoor soil. The results indicate that release and exposure continue for years after cessation of spraying. The predicted cancer risk based on concentrations determined in 2005, indicate that there was still a significant cancer risk up to 13 to 16years after indoor DDT spraying. A novel approach, based on region-specific half-lives, was used to predict concentrations in 2015 and showed that more than 21years after spraying, cancer risk for exposure to indoor air, dust, and outdoor soil are acceptable in Oman for adults and young children. The model can be used for other locations and countries to predict prospective exposure of contaminants based on indoor experimental measurements and knowledge about the spraying time-schedule to extrapolate region-specific half-lives and predict effects on the human population years after spraying. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Microcontainers as an oral delivery system for spray dried cubosomes containing ovalbumin

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Rades, Thomas; Boyd, Ben

    2017-01-01

    The purpose of this study was to prepare cubosomes encapsulating the model antigen ovalbumin (OVA) via spray drying, and to characterise such cubosomes with a view for their potential application in oral vaccine delivery. Furthermore the cubosome formulation was loaded into polymeric...... microcontainers intended as an oral drug delivery system. The cubosomes consisted of commercial glyceryl monooleate, Dimodan®, containing OVA and were surrounded with a dextran shell prepared by spray drying. Cryo-TEM was used to confirm that cubosomes were formed after hydration of the spray dried precursor...... the cubosomes and microcontainers occurred at pH 6.8, releasing 44.1±5.6% of the OVA in 96h. Small-angle X-ray scattering (SAXS) revealed that the 'dry' particles possessed an internal ordered lipid structure (lamellar and inverse micellar phase) by virtue of a small amount of residual water, and after...

  18. Polydisperse effects in jet spray flames

    Science.gov (United States)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  19. Spray deposition using impulse atomization technique

    International Nuclear Information System (INIS)

    Ellendt, N.; Schmidt, R.; Knabe, J.; Henein, H.; Uhlenwinkel, V.

    2004-01-01

    A novel technique, impulse atomization, has been used for spray deposition. This single fluid atomization technique leads to different spray characteristics and impact conditions of the droplets compared to gas atomization technique which is the common technique used for spray deposition. Deposition experiments with a Cu-6Sn alloy were conducted to evaluate the appropriateness of impulse atomization to produce dense material. Based on these experiments, a model has been developed to simulate the thermal history and the local solidification rates of the deposited material. A numerical study shows how different cooling conditions affect the solidification rate of the material

  20. Spray drying for processing of nanomaterials

    International Nuclear Information System (INIS)

    Lindeloev, Jesper Saederup; Wahlberg, Michael

    2009-01-01

    Consolidation of nano-particles into micron-sized granules reduces the potential risks associated with handling nano-powders in dry form. Spray drying is a one step granulation technique which can be designed for safe production of free flowing low dusty granules from suspensions of nano-particles. Spray dried granules are well suited for subsequent processing into final products where the superior properties given by the nano-particles are retained. A spray drier with bag filters inside the drying chamber and recycling of drying gas combined with containment valves are proposed as a safe process for granulation of potential hazardous nano-particles.

  1. Containment atmosphere response to external sprays

    International Nuclear Information System (INIS)

    Green, J.; Almenas, K.

    1995-01-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J 2 /He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated

  2. Containment atmosphere response to external sprays

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Almenas, K. [Univ. of Maryland, College Park, MD (United States)

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  3. A Grey-Box Model for Spray Drying Plants

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2013-01-01

    Multi-stage spray drying is an important and widely used unit operation in the production of food powders. In this paper we develop and present a dynamic model of the complete drying process in a multi-stage spray dryer. The dryer is divided into three stages: The spray stage and two fluid bed...

  4. Numerical Modeling of Diesel Spray Formation and Combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Somers, L.M.T.; Goey, de L.P.H.

    2009-01-01

    A study is presented on the modeling of fuel sprays in diesel engines. The objective of this study is in the first place to accurately and efficiently model non-reacting diesel spray formation, and secondly to include ignition and combustion. For that an efficient 1D Euler-Euler spray model [21] is

  5. Inhalational and dermal exposures during spray application of biocides.

    Science.gov (United States)

    Berger-Preiss, Edith; Boehncke, Andrea; Könnecker, Gustav; Mangelsdorf, Inge; Holthenrich, Dagmar; Koch, Wolfgang

    2005-01-01

    Data on inhalational and potential dermal exposures during spray application of liquid biocidal products were generated. On the one hand, model experiments with different spraying devices using fluorescent tracers were carried out to investigate the influence of parameters relevant to the exposure (e.g. spraying equipment, nozzle size, direction of application). On the other hand, measurements were performed at selected workplaces (during disinfection operations in food and feed areas; pest control operations for private, public and veterinary hygiene; wood protection and antifouling applications) after application of biocidal products such as Empire 20, Responsar SC, Omexan-forte, Actellic, Perma-forte; Fendona SC, Pyrethrum mist; CBM 8, Aldekol Des 03, TAD CID, Basileum, Basilit. The measurements taken in the model rooms demonstrated dependence of the inhalation exposure on the type of spraying device used, in the following order: "spraying with low pressure" < "airless spraying" < "fogging" indicating that the particle diameter of the released spray droplets is the most important parameter. In addition inhalation exposure was lowest when the spraying direction was downward. Also for the potential dermal exposure, the spraying direction was of particular importance: overhead spraying caused the highest contamination of body surfaces. The data of inhalational and potential dermal exposures gained through workplace measurements showed considerable variation. During spraying procedures with low-pressure equipments, dose rates of active substances inhaled by the operators ranged from 7 to 230 microg active substance (a.s.)/h. An increase in inhaled dose rates (6-33 mg a.s./h) was observed after use of high application volumes/time unit during wood protection applications indoors. Spraying in the veterinary sector using medium-pressure sprayers led to inhaled dose rates between 2 and 24mga.s./h. The highest inhaled dose rates were measured during fogging (114 mg a

  6. Automated Plasma Spray (APS) process feasibility study: Plasma spray process development and evaluation

    Science.gov (United States)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1979-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.

  7. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1994-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum-4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  8. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1993-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  9. Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting

    International Nuclear Information System (INIS)

    Hazra, S.; Das, J.; Bandyopadhyay, P.P.

    2015-01-01

    A mechanical mixture of alumina and pulverized zircon sand in 3:2 M ratio has been plasma sprayed to obtain mullite coating. Thereafter, the top layer of the coating has been remelted using laser. The presence of a mullite phase in the as-sprayed and laser remelted coatings has been confirmed qualitatively using X-ray diffraction. Both as-sprayed and laser remelted coatings have been characterized for their microstructure, hardness and porosity. The ultrafine grain structure of the coating produced by rapid quenching has been analyzed using transmission electron microscope. Presence of a mullite phase in the coatings has also been confirmed using small angle electron diffraction. Laser remelting has resulted in an appreciable reduction in porosity and increase in hardness in the coatings. - Highlights: • Mullite has been produced by plasma spraying of alumina–zircon powder mixture. • As sprayed coating shows good integrity. • Laser remelting reduced porosity and increased coating hardness

  10. Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, S. [Integrated Test Range, Chandipur, Balasore, Odisha 756025 (India); Das, J. [Department of Metallurgical and Materials Engineering, IIT Kharagpur, 721302 (India); Bandyopadhyay, P.P., E-mail: ppb@mech.iitkgp.ernet.in [Department of Mechanical Engineering, IIT Kharagpur, 721302 (India)

    2015-03-15

    A mechanical mixture of alumina and pulverized zircon sand in 3:2 M ratio has been plasma sprayed to obtain mullite coating. Thereafter, the top layer of the coating has been remelted using laser. The presence of a mullite phase in the as-sprayed and laser remelted coatings has been confirmed qualitatively using X-ray diffraction. Both as-sprayed and laser remelted coatings have been characterized for their microstructure, hardness and porosity. The ultrafine grain structure of the coating produced by rapid quenching has been analyzed using transmission electron microscope. Presence of a mullite phase in the coatings has also been confirmed using small angle electron diffraction. Laser remelting has resulted in an appreciable reduction in porosity and increase in hardness in the coatings. - Highlights: • Mullite has been produced by plasma spraying of alumina–zircon powder mixture. • As sprayed coating shows good integrity. • Laser remelting reduced porosity and increased coating hardness.

  11. Unit thermal performance of atmospheric spray cooling systems

    International Nuclear Information System (INIS)

    Porter, R.W.; Jain, M.; Chaturvedi, S.K.

    1980-01-01

    Thermal performance of an open atmospheric spray pond or canal depends on the direct-contact evaporative cooling of an individual spray unit (spray nozzle or module) and the interference caused by local heating and humidification. Droplet parameters may be combined into a dimensionless group, number of transfer units (NTU) or equivalent, whereas large-scale air-vapor dynamics determine interference through the local wet-bulb temperature. Quantity NTU were implied from field experiments for a floating module used in steam-condenser spray canals. Previous data were available for a fixed-pipe nozzle assembly used in spray ponds. Quantity NTU were also predicted using the Ranz-Marshall correlations with the Sauter-mean diameter used as the characteristic length. Good agreement with experiments was shown for diameters of 1--1.1 cm (module) and 1.9 mm

  12. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    Science.gov (United States)

    Cai, Yuxuan

    Superhydrophobic surfaces exhibit superior water repellent properties, and they have remarkable potential to improve current energy infrastructure. Substantial research has been performed on the production of superhydrophobic coatings. However, superhydrophobic coatings have not yet been adopted in many industries where potential applications exist due to the limited durability of the coating materials and the complex and costly fabrication processes. Here presented a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature and strong mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The as-sprayed coating demonstrated a hierarchically structured coating topography, which closely resembles superhydrophobic surfaces in nature. Compared to smooth REO surfaces, the SPPS superhydrophobic coating improved the water contact angle by as much as 65° after vacuum treatment at 1 Pa for 48 hours.

  13. Plasma spray technology process parameters and applications

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Karthikeyan, J.; Ananthapadmanabhan, P.V.; Venkatramani, N.; Chatterjee, U.K.

    1991-01-01

    The current trend in the structural design philosophy is based on the use of substrate with the necessary mechanical properties and a thin coating to exhibit surface properties. Plasma spray process is a versatile surface coating technique which finds extensive application in meeting advance technologies. This report describes the plasma spray technique and its use in developing coatings for various applications. The spray system is desribed in detail including the different variables such as power input to the torch, gas flow rate, powder properties, powder injection, etc. and their interrelation in deciding the quality of the coating. A brief write-up on the various plasma spray coatings developed for different applications is also included. (author). 15 refs., 15 figs., 2 tabs

  14. Uniform-droplet spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Blue, C.A.; Sikka, V.K. [Oak Ridge National Lab., TN (United States); Chun, Jung-Hoon [Massachusetts Institute of Technology, Cambridge, MA (United States); Ando, T. [Tufts Univ., Medford, MA (United States)

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.

  15. Emulsions from Aerosol Sprays

    Science.gov (United States)

    Hengelmolen; Vincent; Hassall

    1997-12-01

    An electrostatic emulsification apparatus has been designed for the purpose of studying diffusion from oil droplets which have a mean size in the range of approximately 1.5-3.5 &mgr;m, with standard deviations of 40-50%. The emulsification technique involves the collection of a spray of electrically charged oil droplets onto a rotating water film which is sustained from a reservoir. In this way, emulsions with volume fractions of approximately 10(-3) are produced within several minutes at oil flow rates of around 10(-2) ml min-1. Phase-Doppler anemometry (PDA) was used to assess droplet size distributions for the sprays and emulsions. Results show that the mean emulsion droplet size was smaller than the mean spray droplet size by several orders of magnitude. At flow rates around 10(-2) ml min-1, the spray droplet size distribution was little affected by the applied potential between about -4.20 and -4.65 kV (mean droplet size between approximately 7.6 and 7.8 &mgr;m, with standard deviations of approximately 20%), whereas the mean droplet size of the corresponding emulsion decreased more rapidly with applied potential. Above an applied potential of approximately -4.30 kV, which corresponded to an emulsion droplet size below approximately 2 &mgr;m, the measured volume fraction of the emulsion decreased with respect to the volume fraction as calculated on the basis of total amount of injected oil. Copyright 1997 Academic Press. Copyright 1997Academic Press

  16. Center for Cold Spray Research and Development

    Data.gov (United States)

    Federal Laboratory Consortium — This is the only DoD facility capable of cold spray research and development, production, and field-repair. It features three stationary cold spray systems used for...

  17. Spray characteristics of dimethyl ether (D.M.E.) as on alternative fuel for diesel engine; Daitai diesel nenryo to shite no dimethyl ether (D.M.E.) no funmu tokusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, K; Nishida, K; Yoshizaki, T; Hiroyasu, H [Hiroshima University, Hiroshima (Japan)

    1997-10-01

    D.M.E. which was paid attention to as on alternative fuel for a diesel engine, was injected by using Bosch type injection pump and a hole nozzle into a high pressure and high temperature vessel. The spray was observed by using schlieren photography. Spray characteristics, such as, the tip penetration, the cone angle and the volume of the spray were and were compared with a diesel fuel spray. The following thing, and so on were found out as a results. The spray angle of the DME spray of atmosphere pressure Pa=0.1Mpa spreads out large in comparison with the diesel fuel spray, and the way of the change by the pressure is contrary to the case of the diesel fuel spray. 3 refs., 6 figs., 1 tab.

  18. Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. Part I: Inert atmosphere

    International Nuclear Information System (INIS)

    Gimeno, Jaime; Bracho, Gabriela; Martí-Aldaraví, Pedro; Peraza, Jesús E.

    2016-01-01

    In this research, two Engine Combustion Network (ECN) mono-orifice nozzles, referred to as Spray C and Spray D respectively, were analyzed by performing visualization tests through Schlieren and Diffused Backlight Illumination (DBI) techniques under a wide range of ambient conditions in a non-reactive atmosphere. Spray C presents a straight nozzle designed with a sharp fillet in opposition to Spray D that has similar hydraulic properties, but with a convergent nozzle construction and a smoother corner. The experiments were carried out injecting two distinct fuels at different injection pressure ranges, from 50 MPa to 150 MPa with n-dodecane and to 200 MPa for diesel. The images were processed with Matlab home-built routines to calculate parameters as spray penetration, spreading angle, quasi-steady liquid length, as well as the spray penetration derivative respect to the square root of time, presented in this document as R-parameter. The results showed a clear influence of nozzle geometry in all measured parameters, due mainly to the nature of Spray C to cavitation, which increase the spreading angle and consequently a reduction in vapor penetration. On the other hand, fuel properties also affected spray penetration due to its dependency on viscous forces expressed in terms of the Reynolds number and its volatility in case of liquid length. This last parameter was calculated employing two processing methodologies, finding a good general agreement between them.

  19. User friendliness, efficiency & spray quality of stirrup pumps versus hand compression pumps for indoor residual spraying.

    Science.gov (United States)

    Kumar, Vijay; Kesari, Shreekant; Chowdhury, Rajib; Kumar, Sanjiv; Sinha, Gunjan; Hussain, Saddam; Huda, M Mamun; Kroeger, Axel; Das, Pradeep

    2013-01-01

    Indoor residual spraying (IRS) is a proven tool to reduce visceral leishmaniasis vectors in endemic villages. In India IRS is being done with stirrup pumps, whereas Nepal, Bangladesh, and other countries use compression pumps. The present study was conducted with the objectives to compare the efficiency, cost and user friendliness of stirrup and compression pumps. The study was carried out in Gorigawan village of the Vaishali district in north Bihar and included a total population of 3259 inhabitants in 605 households. Spraying with 50 per cent DDT was done by two teams with 6 persons per team under the supervision of investigators over 5 days with each type of pump (10 days in total using 2 stirrup pumps and 3 compression pumps) by the same sprayers in an alternate way. The spraying technique was observed using an observation check list, the number of houses and room surfaces sprayed was recorded and an interview with sprayers on their satisfaction with the two types of pumps was conducted. On average, 65 houses were covered per day with the compression pump and 56 houses were covered with the stirrup pump. The surface area sprayed per squad per day was higher for the compression pump (4636 m²) than for the stirrup pump (4102 m²). Observation showed that it was easy to maintain the spray swath with the compression pump but very difficult with the stirrup pump. The wastage of insecticide suspension was negligible for the compression pump but high for the stirrup pump. The compression pump was found to be more user friendly due to its lower weight, easier to operate, lower operation cost, higher safety and better efficiency in terms of discharge rate and higher area coverage than the stirrup pump.

  20. Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90.

    Science.gov (United States)

    Li, Xiang; Anton, Nicolas; Arpagaus, Cordin; Belleteix, Fabrice; Vandamme, Thierry F

    2010-10-15

    Spray drying technology is widely known and used to transform liquids (solutions, emulsions, suspension, slurries, pastes or even melts) into solid powders. Its main applications are found in the food, chemical and materials industries to enhance ingredient conservation, particle properties, powder handling and storage etc. However, spray drying can also be used for specific applications in the formulation of pharmaceuticals for drug delivery (e.g. particles for pulmonary delivery). Büchi is a reference in the development of spray drying technology, notably for laboratory scale devices. This study presents the Nano Spray Dryer B-90, a revolutionary new sprayer developed by Büchi, use of which can lower the size of the produced dried particles by an order of magnitude attaining submicron sizes. In this paper, results are presented with a panel of five representative polymeric wall materials (arabic gum, whey protein, polyvinyl alcohol, modified starch, and maltodextrin) and the potentials to encapsulate nano-emulsions, or to formulate nano-crystals (e.g. from furosemide) are also shown. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. [Research about effect of spray drying conditions on hygroscopicity of spray dry powder of gubi compound's water extract and its mechanism].

    Science.gov (United States)

    Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei

    2014-02-01

    To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).

  2. Spray pyrolysis process for preparing superconductive films

    International Nuclear Information System (INIS)

    Hsu, H.M.; Yee, I.Y.

    1991-01-01

    This paper describes a spray pyrolysis method for preparing thin superconductive film. It comprises: preparing a spray pyrolysis solution comprising Bi,Sr,Ca and Cu metals in a solvent; heating a substrate to a first temperature; spraying the solution onto the heated substrate to form a film thereon; heating the film and substrate to a second temperature of about 700 degrees-825 degrees C, the second temperature being higher than the first temperature; heating the film and substrate to a third temperature of about 870 degrees-890 degrees C to melt the film; once the film and substrate reach the third temperature, further heat treating the film and substrate; cooling the film and substrate to ambient temperature. This patent also describes a spray pyrolysis method for preparing thin superconductive films. It comprises: preparing a spray pyrolysis solution comprising Bi, Ca and Cu metals and fluxing agent in a solvent; heating a substrate to a first temperature; spraying the solution onto the heated substrate to form a film thereon; heating the film and substrate to a second temperature about 700 degrees-825 degrees C, the second temperature being higher than the first temperature; heating the film and substrate at a third temperature about 840 degrees-860 degrees C; and cooling the film and substrate to ambient temperature

  3. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    Czech Academy of Sciences Publication Activity Database

    Čížek, J.; Matejková, M.; Dlouhý, I.; Šiška, Filip; Kay, C.M.; Karthikeyan, J.; Kuroda, S.; Kovařík, O.; Siegl, J.; Loke, K.; Khor, K.A.

    2015-01-01

    Roč. 24, č. 5 (2015), s. 758-768 ISSN 1059-9630 Institutional support: RVO:68081723 Keywords : Cold spray * Fatigue * Grit-blast Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.568, year: 2015

  4. Aerial electrostatic spray deposition and canopy penetration in cotton

    Science.gov (United States)

    Spray deposition on abaxial and adaxial leaf surfaces along with canopy penetration are essential for insect control and foliage defoliation in cotton production agriculture. Researchers have reported that electrostatically charged sprays have increased spray deposit onto these surfaces under widel...

  5. Calculations for reproducible autologous skin cell-spray grafting.

    Science.gov (United States)

    Esteban-Vives, Roger; Young, Matthew T; Zhu, Toby; Beiriger, Justin; Pekor, Chris; Ziembicki, Jenny; Corcos, Alain; Rubin, Peter; Gerlach, Jörg C

    2016-12-01

    Non-cultured, autologous cell-spray grafting is an alternative to mesh grafting for larger partial- and deep partial-thickness burn wounds. The treatment uses a suspension of isolated cells, from a patient's donor site skin tissue, and cell-spray deposition onto the wound that facilitates re-epithelialization. Existing protocols for therapeutic autologous skin cell isolation and cell-spray grafting have defined the donor site area to treatment area ratio of 1:80, substantially exceeding the coverage of conventional mesh grafting. However, ratios of 1:100 are possible by maximizing the wound treatment area with harvested cells from a given donor site skin tissue according to a given burn area. Although cell isolation methods are very well described in the literature, a rational approach addressing critical aspects of these techniques are of interest in planning clinical study protocols. We considered in an experimental study the cell yield as a function of the donor site skin tissue, the cell density for spray grafting, the liquid spray volume, the sprayed distribution area, and the percentage of surface coverage. The experimental data was then used for the development of constants and mathematical equations to give a rationale for the cell isolation and cell-spray grafting processes and in planning for clinical studies. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  6. Spray drying of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Abrams, R.F.; Monat, J.P.

    1984-01-01

    Full scale performance tests of a Koch spray dryer were conducted on simulated liquid radioactive waste streams. The liquid feeds simulated the solutions that result from radwaste incineration of DAW an ion exchange resins, as well as evaporator bottoms. The integration of the spray dryer into a complete system is discussed

  7. CMFD simulation of ERCOSAM PANDA spray tests PE1 and PE2

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, A., E-mail: phil@ibrae.ac.ru [Nuclear Safety Institute of the Russian Academy of Sciences (IBRAE RAN) (Russian Federation); Moscow Institute of Physics and Technology (Russian Federation); Grigoryev, S. [Nuclear Safety Institute of the Russian Academy of Sciences (IBRAE RAN) (Russian Federation); Moscow Institute of Physics and Technology (Russian Federation); Drobyshevsky, N.; Kiselev, A.; Shyukin, A.; Yudina, T. [Nuclear Safety Institute of the Russian Academy of Sciences (IBRAE RAN) (Russian Federation)

    2016-04-01

    Highlights: • Successful modeling of gas mixtures and droplet flows in multicompartment system. • For pressure, modeling of gas-wall heat transfer (and heat radiation) is important. • Dependence of gas mixing time in spray vessel on the used nozzle may be essential. • Penetration of helium-enriched mixture into another vessel due to spray operation. • Effect on pressure of sump re-evaporation and gas heating (by walls) during spray. - Abstract: The ERCOSAM project (together with the SAMARA project) includes a set of multi-stage experiments carried out at different thermal-hydraulics facilities (TOSQAN, MISTRA, PANDA, SPOT) and their numerical simulation. The test sequences aim to investigate hydrogen concentration build-up and stratification during a postulated severe accident as well as the effect of activation of Severe Accident Management systems (SAMs) on stratification. At the initial Phases I–III of the tests stratification of the injected light gases (steam, helium) is established, pressure increases. The models of SAMs are activated at the final Phase IV. In the paper, two spray tests PE1 and PE2 performed at PANDA facility are numerically investigated aiming for code validation (FLUENT) and better understanding of physical processes. Phases I–IV of the tests were simulated. A satisfactory agreement with the experimental results on gas component mole fractions was obtained. The reasons of obtained some discrepancies in pressure and temperature were studied in multivariate calculations and discussed in the paper. The tests PE1 and PE2 were performed with different spray nozzles and initial conditions. In simulation that resulted in different flow patterns during spray operation. The sensitivity to nozzle angle and some other input parameters was investigated. Possible factors of depressurization rate caused by spray operation were also studied. The key features observed in the experiments and obtained numerically being of interest in terms of

  8. The influence of cavitation on the flow characteristics of liquid nitrogen through spray nozzles: A CFD study

    Science.gov (United States)

    Xue, Rong; Ruan, Yixiao; Liu, Xiufang; Cao, Feng; Hou, Yu

    2017-09-01

    Spray cooling with cryogen could achieve lower temperature level than refrigerant spray. The internal flow conditions within spray nozzles have crucial impacts on the mass flow rate, particle size, spray angle and spray penetration, thereby influencing the cooling performance. In this paper, CFD simulations based on mixture model are performed to study the cavitating flow of liquid nitrogen in spray nozzles. The cavitation model is verified using the experimental results of liquid nitrogen flow over hydrofoil. The numerical models of spray nozzle are validated against the experimental data of the mass flow rate of liquid nitrogen flow through different types of nozzles including the pressure swirl nozzle and the simple convergent nozzle. The numerical studies are performed under a wide range of pressure difference and inflow temperature, and the vapor volume fraction distribution, outlet vapor quality, mass flow rate and discharge coefficient are obtained. The results show that the outlet diameter, the pressure difference, and the inflow temperature significantly influence the mass flow rate of spray nozzles. The increase of the inflow temperature leads to higher saturation pressure, higher cavitation intensity, and more vapor at nozzle outlet, which can significantly reduce mass flow rate. While the discharge coefficient is mainly determined by the inflow temperature and has little dependence on the pressure difference and outlet diameter. Based on the numerical results, correlations of discharge coefficient are proposed for pressure swirl nozzle and simple convergent nozzles, respectively, and the deviation is less than 20% for 93% of data.

  9. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  10. Regimes of spray formation in gas-centered swirl coaxial atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, D.; Kulkarni, V. [Indian Institute of Science, Department of Aerospace Engineering, Bangalore (India)

    2011-09-15

    Spray formation in ambient atmosphere from gas-centered swirl coaxial atomizers is described by carrying out experiments in a spray test facility. The atomizer discharges a circular air jet and an axisymmetric swirling water sheet from its coaxially arranged inner and outer orifices. A high-speed digital imaging system along with a backlight illumination arrangement is employed to record the details of liquid sheet breakup and spray development. Spray regimes exhibiting different sheet breakup mechanisms are identified and their characteristic features presented. The identified spray regimes are wave-assisted sheet breakup, perforated sheet breakup, segmented sheet breakup, and pulsation spray regime. In the regime of wave-assisted sheet breakup, the sheet breakup shows features similar to the breakup of two-dimensional planar air-blasted liquid sheets. At high air-to-liquid momentum ratios, the interaction process between the axisymmetric swirling liquid sheet and the circular air jet develops spray processes which are more specific to the atomizer studied here. The spray exhibits a periodic ejection of liquid masses whose features are dominantly controlled by the central air jet. (orig.)

  11. Holodiscus (K. Koch) Maxim.: ocean-spray

    Science.gov (United States)

    Nancy L. Shaw; Emerenciana G. Hurd; Peter F. Stickney

    2008-01-01

    Holodiscus is a taxonomically complex genus including about 6 species of western North America and northern South America (Hitchcock and others 1961; Ley 1943). The 2 generally recognized North American species (table 1) - creambush ocean-spray and gland ocean-spray - are deciduous, multistemmed shrubs with simple, alternate, deciduous, toothed to shallowly lobed,...

  12. Autoignition of liquid-fuel sprays

    International Nuclear Information System (INIS)

    Mitzutani, Y.

    1991-01-01

    This paper reports on the published autoignition data of liquid fuel sprays that were extensively reviewed by classifying them into the following three categories; liquid fuels injected into a stagnant hot atmosphere, liquid fuels injected into a hot air stream (vitiated or unvitiated), and droplet cluster ignited behind an incident or reflected shock. Comparison of these data with the counterparts of gaseous fuels and single droplets revealed that it was the ignition process dominated by droplet evaporation whereas it was the one dominated by chemical kinetics. It consisted, depending on the experimental condition, of the data and of the ignition process dominated by the shattering of droplets by an incident shock. In addition, theoretical works on spray autoignition were reviewed, pointing out that they were still far from universally predicting the ignition delays of liquid fuel sprays

  13. The Influence of Spray Parameters on the Characteristics of Hydroxyapatite In-Flight Particles, Splats and Coatings by Micro-plasma Spraying

    Science.gov (United States)

    Liu, Xiao-mei; He, Ding-yong; Wang, Yi-ming; Zhou, Zheng; Wang, Guo-hong; Tan, Zhen; Wang, Zeng-jie

    2018-04-01

    Hydroxyapatite (HA) is one of the most important bioceramic materials used in medical implants. The structure of HA coatings is closely related to their manufacturing process. In the present study, HA coatings were deposited on Ti-6Al-4V substrate by micro-plasma spraying. Results show that three distinct HA coatings could be obtained by changing the spraying power from 0.5 to 1.0 kW and spraying stand-off distance from 60 to 110 mm: (1) high crystallinity (93.3%) coatings with porous structure, (2) high crystallinity coatings (86%) with columnar structure, (3) higher amorphous calcium phosphate (ACP, 50%) coatings with dense structure. The in-flight particles melting state and splat topography was analyzed to better understand the formation mechanism of three distinct HA coatings. Results show that HA coatings sprayed at low spraying power and short stand-off distance exhibit high crystallinity and porosity is attributed to the presence of partially melted particles. High crystallinity HA coatings with (002) crystallographic texture could be deposited due to the complete melting of the in-flight particles and low cooling rate of the disk shape splats under higher spraying power and shorter SOD. However, splashed shape splats with relative high cooling can be provided by increasing SOD, which leads to the formation of ACP.

  14. Generic selection criteria for safety and patient benefit [V]: Comparing the pharmaceutical properties and patient usability of original and generic nasal spray containing ketotifen fumarate.

    Science.gov (United States)

    Wada, Yuko; Ami, Shyoko; Nozawa, Mitsuru; Goto, Miho; Shimokawa, Ken-Ichi; Ishii, Fumiyoshi

    The pH, osmotic pressure (cryoscopy), viscosity, squeeze force, spray angle, and spraying frequency of nasal spray containing ketotifen fumarate (1 brand-name product and 8 generic products) were measured. Based on the results of pH measurement, all products were weakly acidic (4.0 to 5.1). For all products, the osmotic pressure ratio to physiological saline was approximately 1. The viscosity of various products ranged from approximately 1.0 to 1.5 mPa·s. The spray angle of drug solution differed among the products: minimum, 46 degrees (Sawai and Fusachol); and maximum, 68.7 degrees (Sekiton). In particular, TOA, Sawai, Fusachol, and TYK showed significantly smaller angles compared to Zaditen (brand-name product). Container properties varied among the products: minimum squeeze force, 19.0 N (Sekiton); and maximum squeeze force, 43.1 N (Sawai). Based on these results, although all the above products are identical in dosage form and active ingredient, the differences in pharmaceutical properties, such as container operations and drug-solution spraying/attachment, may markedly influence patients' subjective opinions.

  15. Efficient spray-coated colloidal quantum dot solar cells

    KAUST Repository

    Kramer, Illan J.

    2014-11-10

    (Figure Presented). A colloidal quantum dot solar cell is fabricated by spray-coating under ambient conditions. By developing a room-temperature spray-coating technique and implementing a fully automated process with near monolayer control - an approach termed as sprayLD - an electronic defect is eliminated resulting in solar cell performance and statistical distribution superior to prior batch-processed methods along with a hero performance of 8.1%.

  16. Efficient spray-coated colloidal quantum dot solar cells

    KAUST Repository

    Kramer, Illan J.; Minor, James C.; Moreno-Bautista, Gabriel; Rollny, Lisa R.; Kanjanaboos, Pongsakorn; Kopilovic, Damir; Thon, Susanna; Carey, Graham H.; Chou, Kang Wei; Zhitomirsky, David; Amassian, Aram; Sargent, E. H.

    2014-01-01

    (Figure Presented). A colloidal quantum dot solar cell is fabricated by spray-coating under ambient conditions. By developing a room-temperature spray-coating technique and implementing a fully automated process with near monolayer control - an approach termed as sprayLD - an electronic defect is eliminated resulting in solar cell performance and statistical distribution superior to prior batch-processed methods along with a hero performance of 8.1%.

  17. Shear Strengthening of RC Beams Using Sprayed Glass Fiber Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Sayed Mohamad Soleimani

    2012-01-01

    Full Text Available The effectiveness of externally bonded sprayed glass fiber reinforced polymer (Sprayed GFRP in shear strengthening of RC beams under quasi-static loading is investigated. Different techniques were utilized to enhance the bond between concrete and Sprayed GFRP, involving the use of through bolts and nuts paired with concrete surface preparation through sandblasting and through the use of a pneumatic chisel prior to Sprayed GFRP application. It was found that roughening the concrete surface using a pneumatic chisel and using through bolts and nuts were the most effective techniques. Also, Sprayed GFRP applied on 3 sides (U-shaped was found to be more effective than 2-sided Sprayed GFRP in shear strengthening. Sprayed GFRP increased the shear load-carrying capacity and energy absorption capacities of RC beams. It was found that the load-carrying capacity of strengthened RC beams was related to an effective strain of applied Sprayed GFRP. This strain was related to Sprayed GFRP configuration and the technique used to enhance the concrete-FRP bond. Finally, an equation was proposed to calculate the contribution of Sprayed GFRP in the shear strength of an RC beam.

  18. In situ grazing incidence small-angle X-ray scattering investigation of polystyrene nanoparticle spray deposition onto silicon.

    Science.gov (United States)

    Herzog, Gerd; Benecke, Gunthard; Buffet, Adeline; Heidmann, Berit; Perlich, Jan; Risch, Johannes F H; Santoro, Gonzalo; Schwartzkopf, Matthias; Yu, Shun; Wurth, Wilfried; Roth, Stephan V

    2013-09-10

    We investigated the spray deposition and subsequent self-assembly during drying of a polystyrene nanoparticle dispersion with in situ grazing incidence small-angle X-ray scattering at high time resolution. During the fast deposition of the dispersion and the subsequent evaporation of the solvent, different transient stages of nanoparticle assembly can be identified. In the first stage, the solvent starts to evaporate without ordering of the nanoparticles. During the second stage, large-scale structures imposed by the breakup of the liquid film are observable. In this stage, the solvent evaporates further and nanoparticle ordering starts. In the late third drying stage, the nanoparticles self-assemble into the final layer structure.

  19. Spray drying of bead resins: feasibility tests

    International Nuclear Information System (INIS)

    Gay, R.L.; Grantham, L.F.; Jones, L.J.

    1984-01-01

    Rockwell International has developed a volume reduction system for low-level reactor wastes based on drying the wastes in a heated-air spray dryer. The drying of slurries of sodium sulfate, boric acid, and powdered ion exchange resins was demonstrated in previous tests. The drying of bead ion exchange resins can be especially difficult due to the relatively large size of bead resins (about 500 to 800 microns) and their natural affinity for water. This water becomes part of the pore structure of the resins and normally comprises 50 t 60 wt % of the resin weight. A 76-cm-diameter spray dryer was used for feasibility tests of spray drying of cation and anion bead resins. These resins were fed to the dryer in the as-received form (similar to dewatered resins) and as slurries. A dry, free-flowing product was produced in all the tests. The volume of the spray-dried product was one-half to one-third the volume of the as-received material. An economic analysis was made of the potential cost savings that can be achieved using the Rockwel spray dryer system. In-plant costs, transportation costs, and burial costs of spray-dried resins were compared to similar costs for disposal of dewatered resins. A typical utility producing 170 m 3 (6,000 ft 3 ) per year of dewatered resins can save $600,000 to $700,000 per year using this volume reduction system

  20. Quantitative Assessment of Spray Deposition with Water-Sensitive Paper

    Science.gov (United States)

    Spray droplets, discharged from the lower six nozzles of an airblast sprayer, were sampled on pairs of absorbent filter and water-sensitive papers at nine distances from sprayer. Spray deposition on filter targets were measured by fluorometry and spray distribution on WSP targets were assessed by t...

  1. X-ray vision of fuel sprays

    International Nuclear Information System (INIS)

    Wang, J.

    2005-01-01

    With brilliant synchrotron X-ray sources, microsecond time-resolved synchrotron X-ray radiography and tomography have been used to elucidate the detailed three-dimensional structure and dynamics of high-pressure high-speed fuel sprays in the near-nozzle region. The measurement allows quantitative determination of the fuel distribution in the optically impenetrable region owing to the multiple scattering of visible light by small atomized fuel droplets surrounding the jet. X-radiographs of the jet-induced shock waves prove that the fuel jets become supersonic under appropriate injection conditions and that the quantitative analysis of the thermodynamic properties of the shock waves can also be derived from the most direct measurement. In other situations where extremely axial-asymmetric sprays are encountered, mass deconvolution and cross-sectional fuel distribution models can be computed based on the monochromatic and time-resolved X-radiographic images collected from various rotational orientations of the sprays. Such quantitative analysis reveals the never-before-reported characteristics and most detailed near-nozzle mass distribution of highly transient fuel sprays

  2. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation

    NARCIS (Netherlands)

    Saluja, V.; Amorij, J-P.; Kapteyn, J. C.; de Boer, A. H.; Frijlink, H. W.; Hinrichs, W. L. J.

    2010-01-01

    The aim of this study was to investigate two different processes to produce a stable influenza subunit vaccine powder for pulmonary immunization i.e. spray drying (SD) and spray freeze drying (SFD). The formulations were analyzed by proteolytic assay, single radial immunodiffusion assay (SRID),

  3. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    Science.gov (United States)

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.

  4. Spray drying of fruit and vegetable juices--a review.

    Science.gov (United States)

    Verma, Anjali; Singh, Satya Vir

    2015-01-01

    The main cause of spray drying is to increase the shelf life and easy handling of juices. In the present paper, the studies carried out so far on spray drying of various fruits and vegetables are reported. The major fruit juices dried are mango, banana, orange, guava, bayberry, watermelon, pineapple, etc. However, study on vegetable juices is limited. In spray drying, the major optimized parameters are inlet air temperature, relative humidity of air, outlet air temperature, and atomizer speed that are given for a particular study. The juices in spray drying require addition of drying agents that include matlodextrin, liquid glucose, etc. The drying agents are added to increase the glass transition temperature. Different approaches for spray dryer design have also been discussed in the present work.

  5. Integrated thermal control and system assessment in plug-chip spray cooling enclosure

    International Nuclear Information System (INIS)

    Zhang, Wei-Wei; Cheng, Wen-Long; Shao, Shi-Dong; Jiang, Li-Jia; Hong, Da-Liang

    2016-01-01

    Highlights: • A novel multi-heat source plug-chip spray cooling enclosure was designed. • Enhanced surfaces with different geometric were analyzed in integrated enclosure. • Overall thermal control with adjustable parameters in enclosure was studied. • Temperature disequilibrium of multi-heat source in enclosure was tested. • A comprehensive assessment system used to evaluate the practicality was proposed. - Abstract: Practical and integrated spray cooling system is urgently needed for the cooling of high-performance electronic chips due to the growth requirements of thermal management in workstation. The integration of multi heat sources and the management of integral system are particularly lacking. In order to fill the vacancies in the study of plug-chip spray cooling, an integrated cooling enclosure was designed in this paper. Multi heat sources were placed in sealed space and the heat was removed by spray. The printed circuit board plug-ins and radio frequency resistors were used as analog motherboards and chips, respectively. The enhanced surfaces with four different geometries and the plain surface were studied under the conditions of different inclination angles. The results were compared and the maximum critical heat flux (CHF) was obtained. Moreover, with the intention of the overall management of multi-heat source in integrated enclosure, the effect of the flow rate and the temperature disequilibrium, and the pulse heating in the process of transient cooling were also analyzed. In addition, a comprehensive assessment system, used to evaluate the practicality of spray cooling experimental devices, was proposed and the performance of enclosure was evaluated.

  6. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    International Nuclear Information System (INIS)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-01-01

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane

  7. Preparation of sustained-release coated particles by novel microencapsulation method using three-fluid nozzle spray drying technique.

    Science.gov (United States)

    Kondo, Keita; Niwa, Toshiyuki; Danjo, Kazumi

    2014-01-23

    We prepared sustained-release microcapsules using a three-fluid nozzle (3N) spray drying technique. The 3N has a unique, three-layered concentric structure composed of inner and outer liquid nozzles, and an outermost gas nozzle. Composite particles were prepared by spraying a drug suspension and an ethylcellulose solution via the inner and outer nozzles, respectively, and mixed at the nozzle tip (3N-PostMix). 3N-PostMix particles exhibited a corrugated surface and similar contact angles as ethylcellulose bulk, thus suggesting encapsulation with ethylcellulose, resulting in the achievement of sustained release. To investigate the microencapsulation process via this approach and its usability, methods through which the suspension and solution were sprayed separately via two of the four-fluid nozzle (4N) (4N-PostMix) and a mixture of the suspension and solution was sprayed via 3N (3N-PreMix) were used as references. It was found that 3N can obtain smaller particles than 4N. The results for contact angle and drug release corresponded, thus suggesting that 3N-PostMix particles are more effectively coated by ethylcellulose, and can achieve higher-level controlled release than 4N-PostMix particles, while 3N-PreMix particles are not encapsulated with pure ethylcellulose, leading to rapid release. This study demonstrated that the 3N spray drying technique is useful as a novel microencapsulation method. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction

    Science.gov (United States)

    Fritz, Bradley K.; Hoffmann, W. Clint

    2016-01-01

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected. PMID:27684589

  9. Triamcinolone Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... 5 sprays into the air away from the face. If you have not used it for 2 ...

  10. Beclomethasone Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... your thumb. Point the applicator away from your face. If you are using the spray for the ...

  11. Flunisolide Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... your thumb. Point the applicator away from your face. If you are using the spray for the ...

  12. Spray solidification of nuclear waste

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-08-01

    The spray calciner is a relatively simple machine. Operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of high-level and mixed high- and intermediate-level liquid wastes has been demonstrated. Waste concentrations of from near infinite dilution to less than 225 liters per tonne of fuel are calcinable. Wastes have been calcined containing over 2M sodium. Feed concentration, composition, and flowrate can vary rapidly by over a factor of two without requiring operator action. Wastes containing mainly sodium cations can be spray calcined by addition of finely divided silica to the feedstock. A remotely replaceable atomizing nozzle has been developed for use in plant-scale equipment. Calciner capacity of over 75 l/h has been demonstrated in pilot-scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. The volume of recycle required from the effluent treatment system is very small. Vibrator action maintains the calcine holdup in the calciner at less than 1 kg. Successful remote operation and maintenance of a heated-wall spray calciner have been demonstrated while processing high-level waste. Radionuclide volatilization was acceptably low

  13. Spray drying formulation of amorphous solid dispersions.

    Science.gov (United States)

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-05-25

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane.

  15. Microalgal cell disruption via ultrasonic nozzle spraying.

    Science.gov (United States)

    Wang, M; Yuan, W

    2015-01-01

    The objective of this study was to understand the effect of operating parameters, including ultrasound amplitude, spraying pressure, nozzle orifice diameter, and initial cell concentration on microalgal cell disruption and lipid extraction in an ultrasonic nozzle spraying system (UNSS). Two algal species including Scenedesmus dimorphus and Nannochloropsis oculata were evaluated. Experimental results demonstrated that the UNSS was effective in the disruption of microalgal cells indicated by significant changes in cell concentration and Nile red-stained lipid fluorescence density between all treatments and the control. It was found that increasing ultrasound amplitude generally enhanced cell disruption and lipid recovery although excessive input energy was not necessary for best results. The effect of spraying pressure and nozzle orifice diameter on cell disruption and lipid recovery was believed to be dependent on the competition between ultrasound-induced cavitation and spraying-generated shear forces. Optimal cell disruption was not always achieved at the highest spraying pressure or biggest nozzle orifice diameter; instead, they appeared at moderate levels depending on the algal strain and specific settings. Increasing initial algal cell concentration significantly reduced cell disruption efficiency. In all UNSS treatments, the effectiveness of cell disruption and lipid recovery was found to be dependent on the algal species treated.

  16. Effect of the borax mass and pre-spray medium temperature on droplet size and velocity vector distributions of intermittently sprayed starchy solutions.

    Science.gov (United States)

    Naz, Muhammad Yasin; Sulaiman, Shaharin Anwar; Ariwahjoedi, Bambang

    2015-02-07

    Spray coating technology has demonstrated great potential in the slow release fertilizers industry. The better understanding of the key spray parameters benefits both the environment and low cost coating processes. The use of starch based materials to coat the slow release fertilizers is a new development. However, the hydraulic spray jet breakup of the non-Newtonian starchy solutions is a complex phenomenon and very little known. The aim of this research was to study the axial and radial distributions of the Sauter Mean Diameter (SMD) and velocity vectors in pulsing spray patterns of native and modified tapioca starch solutions. To meet the objective, high speed imaging and Phase Doppler Anemometry (PDA) techniques were employed to characterize the four compositions of the starch-urea-borax complex namely S0, S1, S2 and S3. The unheated solutions exhibited very high viscosities ranging from 2035 to 3030 cP. No jet breakup was seen at any stage of the nozzle operation at an injection pressure of 1-5 bar. However, at 80 °C temperature and 5 bar pressure, the viscosity was reduced to 455 to 638 cP and dense spray patterns emerged from the nozzle obscuring the PDA signals. The axial size distribution revealed a significant decrease in SMD along the spray centreline. The smallest axial SMD (51 to 79 μm) was noticed in S0 spray followed by S1, S2 and S3. Unlikely, the radial SMD in S0 spray did not vary significantly at any stage of the spray injection. This trend was attributed to the continuous growth of the surface wave instabilities on the native starch sheet. However, SMD obtained with S1, S2 and S3 varied appreciably along the radial direction. The mean velocity vector profiles followed the non-Gaussian distribution. The constant vector distributions were seen in the near nozzle regions, where the spray was in the phase of development. In far regions, the velocity vectors were poly-dispersed and a series of ups and downs were seen in the respective radial

  17. Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner

    Science.gov (United States)

    Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan

    2002-01-01

    An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.

  18. Developments in the formulation and delivery of spray dried vaccines.

    Science.gov (United States)

    Kanojia, Gaurav; Have, Rimko Ten; Soema, Peter C; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-10-03

    Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery.

  19. Developments in the formulation and delivery of spray dried vaccines

    Science.gov (United States)

    Kanojia, Gaurav; Have, Rimko ten; Soema, Peter C.; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-01-01

    ABSTRACT Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery. PMID:28925794

  20. Spray and Combustion Characteristics of a Novel Multi-circular Jet Plate in Air-assisted Atomizer

    Directory of Open Access Journals (Sweden)

    Hisham Amirnordin Shahrin

    2017-01-01

    Full Text Available Atomization of liquid fuel in air-assisted atomizer is highly dependent on air mixing, which can be enhanced using turbulent generators, such as multi-circular jet (MCJ plates and swirler. This study aims to determine the effects of novel MCJ plates on the spray and combustion characteristics of an air-assisted atomizer by evaluating spray and flame parameters, such as penetration length, cone angle, and cone area. MCJ 30 and MCJ 45, with inclined jets at 30° and 45°, respectively, were used in the experiment. A swirler was also used for comparison. The spray and flame images were recorded at different equivalence ratios through direct photography and analyzed using image J software. Flame temperature was determined using a thermal infrared camera, and burning chamber and flue gas temperatures were measured using thermocouples. The spray and flame characteristics of MCJ 30 exhibited performance comparable with those of the MCJ 45 and swirler. The integration of turbulence and swirling motion concept into the novel MCJ plates can enhance the mixing formation and thus improve the performance of burner combustion.

  1. Applications of thermal spraying for automotive parts. Jidosha ni okeru yosha no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Mori, K [Toyota Motor Co. Ltd., Aichi (Japan)

    1992-10-31

    Application of thermal spraying for automotive parts is described. Outlines of the spraying types that are materialized recently, like 'gel-double spraying of turbo-compressor housing part' and 'iron alloy spraying to outer portion of valve lifter made with Al alloy', are introduced. Gel-double spraying technology is widely used in the jet engine of aeroplane, however its use in automotive turbo was difficult from the reason like quality assurance relating to continuous production of automotives. As a result of the research and development based on the above reasons, a low speed torque is confirmed by the formation of gel-double spray layer. Spraying to the outer part of the valve lifter made from Al alloy is cited as the best example of thermal spraying. Relation between flying speed of spraying particles and degree of flattening, etc., relating to the conformity of adhesion power of coated layer, is explained. Further research topics are given as; improvement of spraying efficiency, improvement of resistance of spraying equipments, unification of equipments standards, quantification of spray coatings, design of spray materials, etc. 9 refs., 8 figs., 1 tab.

  2. Micrometeorological measurements during the Blackmo 88 spray trials

    Science.gov (United States)

    D. E. Anderson; D. R. Miller; Y. S. Wang; W. E. Yendol; M. L. McManus

    1991-01-01

    Instrumentation was arrayed on a 120 foot tower to detail the local atmospheric conditions during the Blackmo 88 spray experiment. Measurements were continuous for 30 minute periods encompassing each spray pass.

  3. Suspension plasma sprayed composite coating using amorphous powder feedstock

    International Nuclear Information System (INIS)

    Chen Dianying; Jordan, Eric H.; Gell, Maurice

    2009-01-01

    Al 2 O 3 -ZrO 2 composite coatings were deposited by the suspension plasma spray process using molecularly mixed amorphous powders. X-ray diffraction (XRD) analysis shows that the as-sprayed coating is composed of α-Al 2 O 3 and tetragonal ZrO 2 phases with grain sizes of 26 nm and 18 nm, respectively. The as-sprayed coating has 93% density with a hardness of 9.9 GPa. Heat treatment of the as-sprayed coating reveals that the Al 2 O 3 and ZrO 2 phases are homogeneously distributed in the composite coating

  4. Experimental Analysis of Tensile Mechanical Properties of Sprayed FRP

    Directory of Open Access Journals (Sweden)

    Zhao Yang

    2016-01-01

    Full Text Available To study the tensile mechanical properties of sprayed FRP, 13 groups of specimens were tested through uniaxial tensile experiments, being analyzed about stress-strain curve, tensile strength, elastic modulus, breaking elongation, and other mechanical properties. Influencing factors on tensile mechanical properties of sprayed FRP such as fiber type, resin type, fiber volume ratio, fiber length, and composite thickness were studied in the paper too. The results show that both fiber type and resin type have an obvious influence on tensile mechanical properties of sprayed FRP. There will be a specific fiber volume ratio for sprayed FRP to obtain the best tensile mechanical property. The increase of fiber length can lead to better tensile performance, while that of composite thickness results in property degradation. The study can provide reference to popularization and application of sprayed FRP material used in structure reinforcement.

  5. Automatic targeting of plasma spray gun

    Science.gov (United States)

    Abbatiello, Leonard A.; Neal, Richard E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.

  6. Automatic targeting of plasma spray gun

    International Nuclear Information System (INIS)

    Abbatiello, L.A.; Neal, R.E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is described. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun

  7. Experimental investigation of spray characteristics of alternative aviation fuels

    International Nuclear Information System (INIS)

    Kannaiyan, Kumaran; Sadr, Reza

    2014-01-01

    Highlights: • Physical properties of GTL fuel are different from those of conventional jet fuels. • Spray characteristics of GTL and Jet A-1 fuels are experimentally investigated using phase Doppler anemometry. • Regions near the nozzle are influenced by differences in fuel physical properties. • Spray characteristics of GTL can be predicted by empirical relations developed for conventional jet fuels. - Abstract: Synthetic fuels derived from non-oil feedstock are gaining importance due to their cleaner combustion characteristics. This work investigates spray characteristics of two Gas-to-Liquid (GTL) synthetic jet fuels from a pilot-scale pressure swirl nozzle and compares them with those of the conventional Jet A-1 fuel. The microscopic spray parameters are measured at 0.3 and 0.9 MPa injection pressures at several points in the spray using phase Doppler anemometry. The results show that the effect of fuel physical properties on the spray characteristics is predominantly evident in the regions close to the nozzle exit at the higher injection pressure. The lower viscosity and surface tension of GTL fuel seems to lead to faster disintegration and dispersion of the droplets when compared to those of Jet A-1 fuel under atmospheric conditions. Although the global characteristics of the fuels are similar, the effects of fuel properties are evident on the local spray characteristics at the higher injection pressure

  8. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  9. Experiments on aerosol removal by high-pressure water spray

    International Nuclear Information System (INIS)

    Corno, Ada del; Morandi, Sonia; Parozzi, Flavio; Araneo, Lucio; Casella, Francesco

    2017-01-01

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m"3. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m"3. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was detected with 1

  10. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  11. Mechanisms of spray formation and combustion from a multi-hole injector with E85 and gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Aleiferis, P.G.; Serras-Pereira, J.; van Romunde, Z. [Department of Mechanical Engineering, University College London (United Kingdom); Caine, J. [Ford Motor Company, Dunton Engineering Centre (United Kingdom); Wirth, M. [Ford Werke GmbH, Merkenich, Cologne (Germany)

    2010-04-15

    The spray formation and combustion characteristics of gasoline and E85 (85% ethanol, 15% gasoline) have been investigated using a multi-hole injector with asymmetric nozzle-hole arrangement. Experiments were carried out in a quiescent optical chamber using high-speed shadowgraphy (9 kHz) to characterise the spray sensitivity to both injector temperature and ambient pressure in the range of 20-120 C and 0.5, 1.0 bar. Spray-tip penetrations and 'umbrella' spray cone angles were calculated for all conditions. Phase Doppler Anemometry was also used to measure droplet sizes in the core of one of the spray plumes, 25 mm below the injector tip. To study the effect of fuel properties on vaporisation and mixture preparation under realistic operating conditions, a separate set of experiments was carried out in a direct-injection spark-ignition optical engine. The engine was run at 1500 RPM under cold and fully warmed-up conditions (20 C and 90 C) at part load and full load (0.5 and 1.0 bar intake pressure). Floodlit laser Mie-scattering images of the sprays on two orthogonal planes corresponding to the swirl and tumble planes of in-cylinder flow motion were acquired to study the full injection event and post-injection mixing stage. These were used to make comparisons with the static chamber sprays and to quantify the liquid-to-vapour phase evaporation process for both fuels by calculating the projected 'footprint' of the sprays at different conditions. Analysis of the macroscopic structure and turbulent primary break-up properties of the sprays was undertaken in light of jet exit conditions described in terms of non-dimensional numbers. The effects on stoichiometric combustion were investigated by imaging the natural flame chemiluminescence through the engine's piston crown (swirl plane) and by post-processing to derive flame growth rates and trajectories of flame motion. (author)

  12. Experiments on the spray nozzles used in the pressurizer of power reactor

    International Nuclear Information System (INIS)

    Diao Wentang

    1989-04-01

    The spray nozzle, which is used in the pressurizer of pressurized water reactor system, usually uses a less differential pressure between the reactor inlet and outlet as the spray drive pressure, but its flow rate is relatively larger. It is difficult to obtain a optimum spray performance of such a nozzle. The experimental results of five types of twenty seven spray nozzles in different structures and sizes with the range of the spray drive pressure from 0.127 to 0.245 MPa and the flow rates from 5 to 50 t/h are given. The main factors affecting spray performances and their distribution characteristics have been found. And some relatively suitable spray structures have been recommended, which can be used as references for improving the spray nozzles used in the pressurizers of existing PWRs or of the PWRs to be built

  13. Experimental characterisation of sprays resulting from impacts of liquid-containing projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Hostikka, Simo, E-mail: simo.hostikka@aalto.fi [Aalto University, Espoo (Finland); Silde, Ari; Sikanen, Topi; Vepsä, Ari; Paajanen, Antti [VTT Technical Research Centre of Finland Ltd, Espoo (Finland); Honkanen, Markus [Pixact Oy, Tampere (Finland)

    2015-12-15

    Highlights: • Detailed characterisation of sprays resulting from the impacts of water-filled metal projectiles on a hard wall. • Experimental measurements of spray speed, direction and droplet size. • Detailed analysis of overall spray evolution. • The spray characterisation information can be used in CFD analyses of aircraft impact fires. - Abstract: Modelling and analysing fires following aircraft impacts requires information about the behaviour of liquid fuel. In this study, we investigated sprays resulting from the impacts of water-filled metal projectiles on a hard wall. The weights of the projectiles were in the range of 38–110 kg, with 8.6–68 kg water, and the impact speeds varied between 96 and 169 m/s. The overall spray behaviour was observed with high-speed video cameras. Ultra-high-speed cameras were used in backlight configuration for measuring the droplet size and velocity distributions. The results indicate that the liquid leaves the impact position as a thin sheet of spray in a direction perpendicular to the projectile velocity. The initial spray speeds were 1.5–2.5 times the impact speed, and the Sauter mean diameters were in the 147–344 μm range. This data can be used as boundary conditions in CFD fire analyses, considering the two-phase fuel flow. The overall spray observations, including the spray deceleration rate, can be used for validating the model.

  14. Agricultural sprays in cross-flow and drift

    DEFF Research Database (Denmark)

    Farooq, M.; Balachandar, R.; Wulfsohn, Dvoralai

    2001-01-01

    The droplet size and velocity characteristics of an agricultural spray were studied in a wind tunnel in the presence of a non-uniform cross-flow. The spray was generated at three nozzle-operating pressures. The droplet size and velocity was measured in both the cross-flow direction and the vertical...

  15. Preliminary Design of Aerial Spraying System for Microlight Aircraft

    Science.gov (United States)

    Omar, Zamri; Idris, Nurfazliawati; Rahim, M. Zulafif

    2017-10-01

    Undoubtedly agricultural is an important sector because it provides essential nutrients for human, and consequently is among the biggest sector for economic growth worldwide. It is crucial to ensure crops production is protected from any plant diseases and pests. Thus aerial spraying system on crops is developed to facilitate farmers to for crops pests control and it is very effective spraying method especially for large and hilly crop areas. However, the use of large aircraft for aerial spaying has a relatively high operational cost. Therefore, microlight aircraft is proposed to be used for crops aerial spraying works for several good reasons. In this paper, a preliminary design of aerial spraying system for microlight aircraft is proposed. Engineering design methodology is adopted in the development of the aerial sprayer and steps involved design are discussed thoroughly. A preliminary design for the microlight to be attached with an aerial spraying system is proposed.

  16. A user-friendly model for spray drying to aid pharmaceutical product development.

    Science.gov (United States)

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach.

  17. Spray structure of a pressure-swirl atomizer for combustion applications

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available In the present work, global as well as spatially resolved parameters of a spray produced by a pressure-swirl atomizer are obtained. Small pressure-swirl atomizer for aircraft combustion chambers was run on a newly designed test bench with Jet A-1 kerosene type aviation fuel. The atomizer was tested in four regimes based on typical operation conditions of the engine. Spray characteristics were studied using two optical measurement systems, Particle Image velocimetry (PIV and Phase-Doppler Particle Analyzer (P/DPA. The results obtained with P/DPA include information about Sauter Mean Diameter of droplets and spray velocity profiles in one plane perpendicular to the spray axis. Velocity magnitudes of droplets in an axial section of the spray were obtained using PIV. The experimental outputs also show a good confirmation of velocity profiles obtained with both instruments in the test plane. These data together will elucidate impact of the spray quality on the whole combustion process, its efficiency and exhaust gas emissions.

  18. Spray structure of a pressure-swirl atomizer for combustion applications

    Science.gov (United States)

    Durdina, Lukas; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    In the present work, global as well as spatially resolved parameters of a spray produced by a pressure-swirl atomizer are obtained. Small pressure-swirl atomizer for aircraft combustion chambers was run on a newly designed test bench with Jet A-1 kerosene type aviation fuel. The atomizer was tested in four regimes based on typical operation conditions of the engine. Spray characteristics were studied using two optical measurement systems, Particle Image velocimetry (PIV) and Phase-Doppler Particle Analyzer (P/DPA). The results obtained with P/DPA include information about Sauter Mean Diameter of droplets and spray velocity profiles in one plane perpendicular to the spray axis. Velocity magnitudes of droplets in an axial section of the spray were obtained using PIV. The experimental outputs also show a good confirmation of velocity profiles obtained with both instruments in the test plane. These data together will elucidate impact of the spray quality on the whole combustion process, its efficiency and exhaust gas emissions.

  19. Defect-Free Large-Area (25 cm2 Light Absorbing Perovskite Thin Films Made by Spray Coating

    Directory of Open Access Journals (Sweden)

    Mehran Habibi

    2017-03-01

    Full Text Available In this work, we report on reproducible fabrication of defect-free large-area mixed halide perovskite (CH3NH3PbI3−xClx thin films by scalable spray coating with the area of 25 cm2. This is essential for the commercialization of the perovskite solar cell technology. Using an automated spray coater, the film thickness and roughness were optimized by controlling the solution concentration and substrate temperature. For the first time, the surface tension, contact angle, and viscosity of mixed halide perovskite dissolved in dimethylformamide (DMF are reported as a function of the solution concentration. A low perovskite solution concentration of 10% was selected as an acceptable value to avoid crystallization dewetting. The determined optimum substrate temperature of 150 °C, followed by annealing at 100 °C render the highest perovskite precursor conversion, as well as the highest possible droplet spreading, desired to achieve a continuous thin film. The number of spray passes was also tuned to achieve a fully-covered film, for the condition of the spray nozzle used in this work. This work demonstrates that applying the optimum substrate temperature decreases the standard deviation of the film thickness and roughness, leading to an increase in the quality and reproducibility of the large-area spray-on films. The optimum perovskite solution concentration and the substrate temperature are universally applicable to other spray coating systems.

  20. Visible Photodetectors Based on Organic-Inorganic Hybrids Using Electrostatic Spraying Technology

    Directory of Open Access Journals (Sweden)

    Liang-Wen Ji

    2013-12-01

    Full Text Available This paper discusses an organic-inorganic hybrid white photodetector with the structure of ITO /AZO/ZnO NWs:P3HT: PCBM/PEDOT: PSS/Al produced with an electrostatic spraying method. The method of production was as follows: First, different spraying methods (continuous spraying, discontinuous spraying and different spraying times were tested before the final electrostatic spraying. Then, different annealing times (10 min and 20 min were tested to anneal the coated film. Lastly, we investigated the photoelectric properties, including transparency analysis of the film surface topography through XRD, OM, FE-SEM, AFM and UV-VIS. The results showed that the detector with discontinuous spraying and 20 mins annealing had a photocurrent of approx. 22.1×10-4A, dark current (drain current of approx. 1.94×10-7A, and a ratio of photocurrent to dark current of approximately 1.14×104, which produced optimal photoelectric characteristics.

  1. Sequential cryogen spraying for heat flux control at the skin surface

    Science.gov (United States)

    Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart

    2001-05-01

    Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.

  2. Characteristics of spray from a GDI fuel injector for naphtha and surrogate fuels

    KAUST Repository

    Wang, Libing; Badra, Jihad A.; Roberts, William L.; Fang, Tiegang

    2016-01-01

    size distribution were measured using a laser diffraction technique. Results show that the injection process is very consistent for different runs and the time averaged spray angles during the measuring period are 103.45°, 102.84°, 102.46° and 107

  3. Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating

    Directory of Open Access Journals (Sweden)

    Rui Weng

    2014-03-01

    Full Text Available In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE-poly-phenylene sulphide (PPS composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.

  4. Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating

    Science.gov (United States)

    Weng, Rui; Zhang, Haifeng; Liu, Xiaowei

    2014-03-01

    In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE)-poly-phenylene sulphide (PPS) composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.

  5. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Voort, D. D. van der, E-mail: d.d.v.d.voort@tue.nl; Water, W. van de; Kunnen, R. P. J.; Clercx, H. J. H.; Heijst, G. J. F. van [Applied Physics Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Maes, N. C. J.; Sweep, A. M.; Dam, N. J. [Mechanical Engineering Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Lamberts, T. [Institute of Theoretical Chemistry, University of Stuttgart, D-70569 Stuttgart (Germany)

    2016-03-15

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.

  6. NACOM - a code for sodium spray fire analysis

    International Nuclear Information System (INIS)

    Rao, P.M.; Kannan, S.E.

    2002-01-01

    Full text: In liquid metal fast breeder reactors (LMFBR), leakage of sodium can result in a spray fire. Because of higher burning rates in droplet form combustion of sodium in spray fire, thermal consequences are more severe than that in a sodium pool fire. The code NACOM was developed for the analysis of sodium spray fires in LMFBRs facilities. The code uses the validated model for estimating the falling droplet burning rates in pre-ignition and vapour phase combustion stages. It uses a distribution system to generate the droplet groups of different diameters that represent the spray. The code requires about 20 input parameters like sodium leak rates, sodium temperature, initial cell conditions like oxygen concentration, temperature and dimensions. NACOM is a validated code based on experiments with sodium inventory up to 650 kg in 0 to 21 % O 2 atmospheres. The paper brings out the salient features of the code along with the sensitivity analysis of the main input parameters like spray volume mean diameter, oxygen concentration etc. based on the results obtained. The limitations of the code and the confidence margins applicable to results obtained are also brought out

  7. Photoelectrode Fabrication of Dye-Sensitized Nanosolar Cells Using Multiple Spray Coating Technique

    Directory of Open Access Journals (Sweden)

    Chien-Chih Chen

    2013-01-01

    Full Text Available This paper presents a spray coating technique for fabricating nanoporous film of photoelectrode in dye-sensitized nanosolar cells (DSSCs. Spray coating can quickly fabricate nanoporous film of the photoelectrode with lower cost, which can further help the DSSCs to be commercialized in the future. This paper analyzed photoelectric conversion efficiency of the DSSCs using spray coated photoelectrode in comparison with the photoelectrode made with the doctor blade method. Spray coating can easily control transmittance of the photoelectrode through the multiple spray coating process. This work mainly used a dispersant with help of ultrasonic oscillation to prepare the required nano-TiO2 solution and then sprayed it on the ITO glasses. In this work, a motor-operated conveyor belt was built to transport the ITO glasses automatically for multiple spray coating and drying alternately. Experiments used transmittance of the photoelectrode as a fabrication parameter to analyze photoelectric conversion efficiency of the DSSCs. The influencing factors of the photoelectrode transmittance during fabrication are the spray flow rate, the spray distance, and the moving speed of the conveyor belt. The results show that DSSC with the photoelectrode transmittance of ca. 68.0 ± 1.5% and coated by the spray coating technique has the best photoelectric conversion efficiency in this work.

  8. Coupled calculation of diesel injection, primary spray propagation and spray formation using a multifluid approach and comparison with experiments in transparent model nozzles; Gekoppelte Berechnung von Dieseleinspritzung, primaerem Strahlzerfall und Spraybildung mit dem Multifluid-Ansatz und Vergleich mit Experimenten in transparenten Modellduesen

    Energy Technology Data Exchange (ETDEWEB)

    Berg, E. von; Edelbauer, W.; Alajbegovic, A.; Tatschl, R. [AVL List GmbH, Graz (Austria)

    2004-07-01

    Based on the Eulerian multi-fluid approach cavitating nozzle flow in Diesel injectors as well as spray formation downstream of the nozzle orifice can be simulated in a single calculation. Fuel liquid, fuel vapor, spray droplets, and air are treated as interpenetrating phases. For each of the phases separate sets of conservation equations are solved. Different flow regimes such as cavitating nozzle flow and spray regions are described by using appropriate interfacial exchange terms between the phases. Besides a simplified calculation procedure the main advantage of this methodology is the direct coupling of the different flow regimes. Thus, effects of the cavitating nozzle flow can directly enter the primary break-up model, which is based on locally resolved nozzle flow turbulence. This new approach is applied for single- and multi-hole full scale Diesel injectors as well as for a large-scale model injector operated with water. The results obtained on the basis of the CFD code FIRE show good agreement compared to experimental data and yield the correct trends for both spray penetration and spray angle for increasing injection pressure. (orig.)

  9. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    International Nuclear Information System (INIS)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-01-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared

  10. [Investigation on Spray Drying Technology of Auricularia auricular Extract].

    Science.gov (United States)

    Zhou, Rong; Chen, Hui; Xie, Yuan; Chen, Peng; Wang, Luo-lin

    2015-07-01

    To investigate the feasibility of spray drying technology of Auricularia auricular extract and its optimum process. On the basis of single factor test, with the yield of dry extract and the content of polysaccharide as indexes, orthogonal test method was used to optimize the spray drying technology on the inlet air temperature, injection speed and crude drug content. Using ultraviolet spectrophotometry, thin layer chromatography(TLC) and pharmacodynamics as indicators, extracts prepared by traditional alcohol precipitation drying process and spray drying process were compared. Compared with the traditional preparation method, the extract prepared by spray drying had little differences from the polysaccharide content, TLC and the function of reducing TG and TC, and its optimum technology condition were as follows: The inlet air temperature was 180 °C, injection speed was 10 ml/min and crude drugs content was 0. 4 g/mL. Auricularia auricular extract by spray drying technology is stable and feasible with high economic benefit.

  11. Fundamental Study of a Single Point Lean Direct Injector. Part I: Effect of Air Swirler Angle and Injector Tip Location on Spray Characteristics

    Science.gov (United States)

    Tedder, Sarah A.; Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2015-01-01

    Lean direct injection (LDI) is a combustion concept to reduce oxides of nitrogen (NOx) for next generation aircraft gas turbine engines. These newer engines have cycles that increase fuel efficiency through increased operating pressures, which increase combustor inlet temperatures. NOx formation rates increase with higher temperatures; the LDI strategy avoids high temperature by staying fuel lean and away from stoichiometric burning. Thus, LDI relies on rapid and uniform fuel/air mixing. To understand this mixing process, a series of fundamental experiments are underway in the Combustion and Dynamics Facility at NASA Glenn Research Center. This first set of experiments examines cold flow (non-combusting) mixing using air and water. Using laser diagnostics, the effects of air swirler angle and injector tip location on the spray distribution, recirculation zone, and droplet size distribution are examined. Of the three swirler angles examined, 60 degrees is determined to have the most even spray distribution. The injector tip location primarily shifts the flow without changing the structure, unless the flow includes a recirculation zone. When a recirculation zone is present, minimum axial velocity decreases as the injector tip moves downstream towards the venturi exit; also the droplets become more uniform in size and angular distribution.

  12. Investigation of vortex clouds and droplet sizes in heated water spray patterns generated by axisymmetric full cone nozzles.

    Science.gov (United States)

    Naz, M Y; Sulaiman, S A; Ariwahjoedi, B; Ku Shaari, Ku Zilati

    2013-01-01

    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit.

  13. Investigation of Vortex Clouds and Droplet Sizes in Heated Water Spray Patterns Generated by Axisymmetric Full Cone Nozzles

    Directory of Open Access Journals (Sweden)

    M. Y. Naz

    2013-01-01

    Full Text Available The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm, these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD of the spray droplets was also measured by using Phase Doppler Anemometry (PDA at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit.

  14. Hydrogen permeation properties of plasma-sprayed tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Pawelko, R.J.; Hankins, M.R.; Longhurst, G.R.; Neiser, R.A.

    1994-01-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D + 3 ion beam with fluxes of similar 6.5x10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  15. Hydrogen permeation properties of plasma-sprayed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Hankins, M.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Longhurst, G.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Neiser, R.A. (Sandia National Laboratories, Albuquerque, NM 87185 (United States))

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D[sup +][sub 3] ion beam with fluxes of similar 6.5x10[sup 19] D/m[sup 2] s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  16. Metallization of Various Polymers by Cold Spray

    Science.gov (United States)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  17. On reactive suspension plasma spraying of calcium titanate

    OpenAIRE

    Kotlan, J. (Jiří); Pala, Z. (Zdeněk); Mušálek, R. (Radek); Ctibor, P. (Pavel)

    2016-01-01

    This study shows possibility of preparation of calcium titanate powder and coatings by reactive suspension plasma spraying. Suspension of mixture of calcium carbonate (CaCO3) and titanium dioxide (TiO2) powders in ethanol was fed into hybrid plasma torch with a DC-arc stabilized by a water–argon mixture (WSP-H 500). Various feeding distances and angles were used in order to optimize suspension feeding conditions. In the next step, the coatings were deposited on stainless steel substrates and ...

  18. Current situation and development tendency of thermal spraying materials in China

    Institute of Scientific and Technical Information of China (English)

    YU; Yue-guang

    2005-01-01

    The current situations of thermal spraying materials in China are described in this paper.The thermal spraying technology in China has a great progress over tens of years. More than one hundred varieties of material products serve thermal spraying producing now. They belong to three kinds, powders,wires and rods. Technologies for producing alloy, ceramic and composite powders, alloy and cored wires,and oxide ceramic rods are applied to large-scale production. Many research and development works on advanced materials for thermal spraying are carrying out recent years. They show that the general tendencies of thermal spraying materials in China are composite or low-impurity component, ultrafine or nanosized microstructure, high properties, and specialized and systematized applications. Thermal spraying materials have great prospects with the development of saving society in China.

  19. Spray Drying of Mosambi Juice in Lab

    Science.gov (United States)

    Singh, S. V.; Verma, A.

    2014-01-01

    The studies on spray drying of mosambi juice were carried out with Laboratory spray dryer set-up (LSD-48 MINI SPRAY DRYER-JISL). Inlet and outlet air temperature and maltodextrin (drying agent) concentration was taken as variable parameters. Experiments were conducted by using 110 °C to 140 °C inlet air temperature, 60 °C to 70 °C outlet air temperature and 5-7 % maltodextrin concentration. The free flow powder of mosambi juice was obtained with 7 % maltodextrin at 140 °C inlet air temperature and 60 °C outlet air temperature. Fresh and reconstituted juices were evaluated for vitamin C, titrable acidity and sensory characteristics. The reconstituted juice was found slightly acceptable by taste panel.

  20. Spray-formed tooling

    Science.gov (United States)

    McHugh, K. M.; Key, J. F.

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  1. Elastic response of thermal spray deposits under indentation tests

    International Nuclear Information System (INIS)

    Leigh, S.H.; Lin, C.K.; Berndt, C.C.

    1997-01-01

    The elastic response behavior of thermal spray deposits at Knoop indentations has been investigated using indentation techniques. The ration of hardness to elastic modulus, which is an important prerequisite for the evaluation of indentation fracture toughness, is determined by measuring the elastic recovery of the in-surface dimensions of Knoop indentations. The elastic moduli of thermal spray deposits are in the range of 12%--78% of the comparable bulk materials and reveal the anisotropic behavior of thermal spray deposits. A variety of thermal spray deposits has been examined, including Al 2 O 3 , yttria-stabilized ZrO 2 (YSZ), and NiAl. Statistical tools have been used to evaluate the error estimates of the data

  2. Quantitative and economical assessment of effectiveness of electrostatic pesticide spraying

    International Nuclear Information System (INIS)

    Nishimura, Ryo; Fujita, Satoko; Michihara, Shota; Masuoka, Takashi; Kimura, Toshihiro; Yatsuzuka, Shinji; Anaguchi, Shinobu

    2013-01-01

    Electrostatic pesticide spraying (EPS) improves the adhesion characteristics of the pesticide solution to agricultural crops. If the adhesion characteristics are improved, the requisite amount of the pesticide to be sprayed can be reduced in comparison with the conventional spraying method that uses non-charged pesticide. In this research, disease (rust) control experiments were carried out to substantiate the effectiveness of the EPS from a statistical point of view. We sprayed pesticide to potted Japanese pear trees under calm condition. The numbers of the rust lesions on the pear leaves were counted at fixed intervals after spraying to investigate the difference of the results of the disease control. The t-tests were carried out for the populations of the various spraying times and applied voltages. It was statistically-derived that EPS can reduce the amounts of pesticide to be sprayed by 50 % in comparison with the non-EPS method. It is also estimated from the results that about 55,000 kL year −1 of pesticides can be reduced for the Japanese pear cultivation in Tottori prefecture. Also, this means that the expense of the pear cultivation can be reduced by about 240 million yen (3 million USD) every year in Tottori prefecture by introducing EPS.

  3. Hard tissue ablation with a spray-assisted mid-IR laser

    International Nuclear Information System (INIS)

    Kang, H W; Rizoiu, I; Welch, A J

    2007-01-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment

  4. Hard tissue ablation with a spray-assisted mid-IR laser

    Science.gov (United States)

    Kang, H. W.; Rizoiu, I.; Welch, A. J.

    2007-12-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  5. Plasma spraying of refractory metals and refractory hard materials. State of the art

    International Nuclear Information System (INIS)

    Eschnauer, H.; Lugscheider, E.; Jaeger, D.

    1989-01-01

    Suitable spraying processes for manufacturing refractory metals, refractory hard materials as well as spray materials with refractory components are the VPS- and IPS-spraying techniques. The advantages of these special spraying process variations are described. The reactive spraying materials are systematically organized. The characteristical properties used in purpose of improving the substrate surfaces are explained. Finally some examples of the latest results of research concerning plasma spraying of reactive materials are shown. 16 refs., 10 figs. (Author)

  6. Influence of fuel temperature on dispersion and decay of BDE sprays; Einfluss der Kraftstofftemperatur auf die Ausbreitung und den Zerfall von BDE-Sprays

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, I.; Beyrau, F.; Leipertz, A. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Technische Thermodynamik

    2007-07-01

    As an example for a highly - developed technical spray system, the spray vaporization of a multi - hole injector used for the gasoline direct injection (GDI) has been investigated. Experiments were conducted in a heated injection chamber for different chamber pressures, fuels and fuel temperatures. In this investigation pure rotational coherent anti-Stokes Raman spectroscopy (RCARS) has been applied to the study of vaporizing sprays in combination with other laser techniques. Gas phase temperatures inside the sprays have been determined with high spatial and temporal resolution. A temperature drop of about 30 K was measured for all fuel temperatures studied. Droplet sizes and number densities have been measured using phase Doppler anemometry, and the correlation of these results with two - dimensional laser sheet Mie scattering images and laser-induced exciplex fluorescence allows an improved interpretation of the spray vaporization process. Furthermore under the influence of flash boiling a reduction of the mean drop size D10 up to 30% could be observed. (orig.)

  7. Summary of the Blackmo 88 spray experiment

    Science.gov (United States)

    D. R. Miller; W. E. Yendol; M. L. McManus; D. E. Anderson; K. Mierzejewski

    1991-01-01

    The Blackmo 88 spray trial experiment was conducted for two primary purposes: To quantify the effects of local micrometeorological processes, in and near the canopy, on the deposition patterns of aerially applied BT in a mature oak forest; To generate a data set containing simultaneous measurements of spray deposition and detailed micrometeorology, in a canopy of known...

  8. Gene Expression, Bacteria Viability and Survivability Following Spray Drying of Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Elizabeth Hunter Lauten

    2010-04-01

    Full Text Available We find that Mycobacterium smegmatis survives spray drying and retains cell viability in accelerated temperature stress (40 °C conditions with a success rate that increases with increasing thermal, osmotic, and nutrient-restriction stresses applied to the mycobacterium prior to spray drying. M.smegmatis that are spray dried during log growth phase, where they suffer little or no nutrient-reduction stress, survive for less than 7 days in the dry powder state at accelerated temperature stress conditions, whereas M. smegmatis that are spray dried during stationary phase, where cells do suffer nutrient reduction, survive for up to 14 days. M. smegmatis that are spray dried from stationary phase, subjected to accelerated temperature stress conditions, regrown to stationary phase, spray dried again, and resubmitted to this same process four consecutive times, display, on the fourth spray drying iteration, an approximate ten-fold increase in stability during accelerated temperature stress testing, surviving up to 105 days. Microarray tests revealed significant differences in genetic expression of M. smegmatis between log phase and stationary phase conditions, between naïve (non spray-dried and multiply cycled dried M. smegmatis (in log and stationary phase, and between M. smegmatis in the dry powder state following a single spray drying operation and after four consecutive spray drying operations. These differences, and other phenotypical differences, point to the carotenoid biosynthetic pathway as a probable pathway contributing to bacteria survival in the spray-dried state and suggests strategies for spray drying that may lead to significantly greater room-temperature stability of mycobacteria, including mycobacterium bovis bacille Calmette-Guerin (BCG, the current TB vaccine.

  9. Optimization of spray deposition and Tetranychus urticae control with air assisted and electrostatic sprayer

    Directory of Open Access Journals (Sweden)

    Denise Tourino Rezende de Cerqueira

    Full Text Available ABSTRACT: Improved spray deposition can be attained by electrostatically charging spray droplets, which increases the attraction of droplets to plants and decreases operator exposure to pesticide and losses to the environment. However, this technique alone is not sufficient to achieve desirable penetration of the spray solution into the crop canopy; thus, air assistance can be added to the electrostatic spraying to further improve spray deposition. This study was conducted to compare different spraying technologies on spray deposition and two-spotted spider mite control in cut chrysanthemum. Treatments included in the study were: conventional TJ 8003 double flat fan nozzles, conventional TXVK-3 hollow cone nozzles, semi-stationary motorized jet launched spray with electrostatic spray system (ESS and air assistance (AA, and semi-stationary motorized jet launched spray with AA only (no ESS. To evaluate the effect of these spraying technologies on the control of two-spotted spider mite, a control treatment was included that did not receive an acaricide application. The AA spraying technology, with or without ESS, optimized spray deposition and provided satisfactory two-spotted spider mite control up to 4 days after application.

  10. Release mitigation spray safety systems for chemical demilitarization applications.

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  11. Production of press moulds by plasma spray forming process

    International Nuclear Information System (INIS)

    Borisov, Y.; Myakota, I.; Polyakov, S.

    2001-01-01

    Plasma spray forming process for production of press moulds which are used for manufacture of articles from plastics was developed. The press moulds were produced by plasma spraying of Cu-Al-Fe-alloy powder on surface of a master model. The master models were made from non-metallic materials with heat resistance below 70 C (wood, gypsum etc). Double cooling system which provides for a control of surface model temperature and quenching conditions of sprayed material was designed. It made possible on the one hand to support model surface temperature below 70 C and on the other hand to provide for temperature conditions of martensite transformation in Cu-Al-system with a fixation of metastable ductile α + β 1 -phase. This allowed to decrease residual stresses in sprayed layer (up to 0,5-2,5 MPa), to increase microhardness of the coating material (up to 1200-1800 MPa) and its ductility (σ B = 70-105 MPa, δ = 6-12 %). This plasma spray forming process makes possible to spray thick layers (5-20 mm and more) without their cracking and deformation. The process is used for a production of press moulds which are applied in shoes industry, for fabrication of toys, souvenirs etc. (author)

  12. Heat removal tests for pressurized water reactor containment spray by largescale facility

    International Nuclear Information System (INIS)

    Motoki, Y.; Hashimoto, K.; Kitani, S.; Naritomi, M.; Nishio, G.; Tanaka, M.

    1983-01-01

    Heat removal tests for pressurized water reactor (PWR) containment spray were carried out to investigate effectiveness of the depressurization by Japan Atomic Energy Research Institute model containment (7-m diameter, 20 m high, and 708-m 3 volume) with PWR spray nozzles. The depressurization rate is influenced by the spray heat transfer efficiency and the containment wall surface heat transfer coefficient. The overall spray heat transfer efficiency was investigated with respect to spray flow rate, weight ratio of steam/air, and spray height. The spray droplet heat transfer efficiency was investigated whether the overlapping of spray patterns gives effect or not. The effect was not detectable in the range of large value of steam/air, however, it was better in the range of small value of it. The experimental results were compared with the calculated results by computer code CONTEMPT-LT/022. The overall spray heat transfer efficiency was almost 100% in the containment pressure, ranging from 2.5 to 0.9 kg/cm 2 X G, so that the code was useful on the prediction of the thermal hydraulic behavior of containment atmosphere in a PWR accident condition

  13. Development of construction methods for high-density bentonite barriers using premixed spraying. Part 1. Laboratory tests on methods of spraying roughly crushed bentonite and investigation of mixing methods

    International Nuclear Information System (INIS)

    Kobayashi, Ichizo; Tanaka, Toshiyuki; Nakajima, Makoto; Toida, Masaru

    2006-01-01

    According to the present concept of geological disposal of radioactive waste, a disposal facility should consist of a bentonite-engineered barrier, a cementitious-engineered barrier, and natural barriers. To guarantee the validity of the geological disposal concept, the bentonite-engineered barrier must have high impermeability. However, an effective construction method for high-density bentonite-engineered barriers in narrow spaces such as those in radioactive waste geological disposal sites has not been developed. Therefore, the authors have developed a spraying method that has high workability in narrow spaces as a method of constructing bentonite-engineered barriers in narrow spaces. This paper describes the production method for a spraying material and an examination through spraying tests of the spraying distance, the shapes of the spray nozzles, and the ratio of spraying material to air. The test results confirmed that a bentonite-engineered barrier of dry density 1.6 Mg/m 3 could be constructed using the spraying method developed and that the appropriate spraying conditions for the construction of high-density bentonite barriers were obtained. Moreover, the authors developed a construction quality management method using the silicon oil specific-gravity method that can clearly and promptly indicate the dry density of the sprayed bentonite. (author)

  14. Regional deposition of nasal sprays in adults: A wide ranging computational study.

    Science.gov (United States)

    Kiaee, Milad; Wachtel, Herbert; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H

    2018-05-01

    The present work examines regional deposition within the nose for nasal sprays over a large and wide ranging parameter space by using numerical simulation. A set of 7 realistic adult nasal airway geometries was defined based on computed tomography images. Deposition in 6 regions of each nasal airway geometry (the vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was determined for varying particle diameter, spray cone angle, spray release direction, particle injection speed, and particle injection location. Penetration of nasal spray particles through the airway geometries represented unintended lung exposure. Penetration was found to be relatively insensitive to injection velocity, but highly sensitive to particle size. Penetration remained at or above 30% for particles exceeding 10 μm in diameter for several airway geometries studied. Deposition in the turbinates, viewed as desirable for both local and systemic nasal drug delivery, was on average maximized for particles ranging from ~20 to 30 μm in diameter, and for low to zero injection velocity. Similar values of particle diameter and injection velocity were found to maximize deposition in the olfactory region, a potential target for nose-to-brain drug delivery. However, olfactory deposition was highly variable between airway geometries, with maximum olfactory deposition ranging over 2 orders of magnitude between geometries. This variability is an obstacle to overcome if consistent dosing between subjects is to be achieved for nose-to-brain drug delivery. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Paper Spray and Extraction Spray Mass Spectrometry for the Direct and Simultaneous Quantification of Eight Drugs of Abuse in Whole Blood

    NARCIS (Netherlands)

    Espy, R.D.; Teunissen, S.F.; Manicke, N.E.; Ren, Y.; Ouyang, Z.; van Asten, A.; Cooks, R.G.

    2014-01-01

    Determination of eight drugs of abuse in blood has been performed using paper spray or extraction spray mass spectrometry in under 2 min with minimal sample preparation. A method has been optimized for quantification of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA),

  16. SprayWall, Cured-In-Placed Method for Manhole Rehabilitation

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Manholes and other underground structures commonly account for 25-30 % of infiltration and up to 70% of inflow in sanitary sewer collection systems. These will cause sewer overflow and endanger the nearby environment. SprayWall is a spray-applied, cured-in-place method of construction and is primarily used in manholes. It uses urethane material that provides excellent corrosion resistance. SprayWall is structural and can withstand ground water loads on a long-term basis.

  17. Plasma-sprayed tantalum/alumina cermets

    International Nuclear Information System (INIS)

    Kramer, C.M.

    1977-12-01

    Cermets of tantalum and alumina were fabricated by plasma spraying, with the amount of alumina varied from 0 to 65 percent (by volume). Each of four compositions was then measured for tensile strength, elastic modulus, and coefficient of thermal expansion. In general, strength and strain to failure decreased with increasing alumina content: 62 MPa for 100 percent Ta to 19 MPa for 35 v percent Ta. A maximum of 0.1 percent strain was observed for the sprayed 100 percent Ta specimens. The coefficient of thermal expansion measured for the pure Ta was 6.2 (10 -6 )/K

  18. From drop impact physics to spray cooling models: a critical review

    Science.gov (United States)

    Breitenbach, Jan; Roisman, Ilia V.; Tropea, Cameron

    2018-03-01

    Spray-wall interaction is an important process encountered in a large number of existing and emerging technologies and is the underlying phenomenon associated with spray cooling. Spray cooling is a very efficient technology, surpassing all other conventional cooling methods, especially those not involving phase change and not exploiting the latent heat of vaporization. However, the effectiveness of spray cooling is dependent on a large number of parameters, including spray characteristics like drop size, velocity and number density, the surface morphology, but also on the temperature range and thermal properties of the materials involved. Indeed, the temperature of the substrate can have significant influence on the hydrodynamics of drop and spray impact, an aspect which is seldom considered in model formulation. This process is extremely complex, thus most design rules to date are highly empirical in nature. On the other hand, significant theoretical progress has been made in recent years about the interaction of single drops with heated walls and improvements to the fundamentals of spray cooling can now be anticipated. The present review has the objective of summarizing some of these recent advances and to establish a framework for future development of more reliable and universal physics-based correlations to describe quantities involved in spray cooling.

  19. Sustainability assessment of heat exchanger units for spray dryers

    International Nuclear Information System (INIS)

    Caglayan, Hasan; Caliskan, Hakan

    2017-01-01

    In this study, the sustainability assessment is performed to the system known as heat exchanger unit with spray dryer. The five-different dead state temperatures (0-5-10-15-20 °C) are considered. It is found that the heat exchanger has the highest energy efficiency (63.32%), while the overall system has the lowest one (5.56%). So, the combination of the spray dryer with the heat exchanger is more effective. On the other hand, the overall exergy efficiency of the system is lower than the heat exchanger and spray dryer for all of the dead state (environmental) temperatures. The exergy efficiency of the heat exchanger is inversely proportional to the dead state temperature, and the maximum rate is found as 49.65% at 0 °C. Furthermore, the exergy efficiencies of the spray dryer and overall system are directly proportional to the dead state temperatures, and the corresponding maximum rates are found to be 26.41% and 24.32% at 20 °C, respectively. Also, the exergy destruction is directly proportional to the dead state temperatures. The minimum and maximum exergy destruction rates are found at the dead state temperatures of 0 °C and 20 °C, respectively. Furthermore, the most sustainable system is found as the heat exchanger unit. - Highlights: • Thermodynamic analyses of industrial heat exchangers and spray dryers. • Sustainability of heat exchangers for spray dryers. • Dead state temperature effects on exergy efficiencies of heat exchangers and spray dryers.

  20. Identifying Indicators of Progress in Thermal Spray Research Using Bibliometrics Analysis

    Science.gov (United States)

    Li, R.-T.; Khor, K. A.; Yu, L.-G.

    2016-12-01

    We investigated the research publications on thermal spray in the period of 1985-2015 using the data from Web of Science, Scopus and SciVal®. Bibliometrics analysis was employed to elucidate the country and institution distribution in various thermal spray research areas and to characterize the trends of topic change and technology progress. Results show that China, USA, Japan, Germany, India and France were the top countries in thermal spray research, and Xi'an Jiaotong University, Universite de Technologie Belfort-Montbeliard, Shanghai Institute of Ceramics, ETH Zurich, National Research Council of Canada, University of Limoges were among the top institutions that had high scholarly research output during 2005-2015. The terms of the titles, keywords and abstracts of the publications were analyzed by the Latent Dirichlet Allocation model and visually mapped using the VOSviewer software to reveal the progress of thermal spray technology. It is found that thermal barrier coating was consistently the main research area in thermal spray, and high-velocity oxy-fuel spray and cold spray developed rapidly in the last 10 years.

  1. THE INTERACTION OF A COLD ATOMISED SPRAY WITH A CIRCULAR CYLINDER

    Directory of Open Access Journals (Sweden)

    A. AROUSSI

    2010-09-01

    Full Text Available The development of non-intrusive diagnostic techniques has significantly increased with the introduction of lasers. Laser based anemometry, such as Laser Doppler (LDA, Phase Doppler (PDA, and Particle Image Velocimetery (PIV can provide an accurate description of flows without interference. This study determines experimentally the fluid motion resulting from the interaction of a liquid spray with a circular cylinder. Two experimental settings were examined: the first is a discharging spray into free air and the second is a spray impinging on a circular cylinder placed 25 cylinder diameters downstream of the nozzle. These sprays were quantified using PIV. A non-intrusive droplet sizing technique was used to characterise the spray. This has shown that, within the spray, the average droplet diameter increases when the circular cylinder is introduced and so does the frequency of occurrence of these large droplets. In the wake behind the cylinder, the smaller droplets were quickly entrained and recirculated, while the larger droplets continued in the general direction of the spray cone.

  2. Spray drying of fenofibrate loaded nanostructured lipid carriers

    DEFF Research Database (Denmark)

    Xia, Dengning; Shrestha, Neha; van de Streek, Jacco

    2016-01-01

    into dry, easily reconstitutable powder using spray drying. A central composite face centered design (CCFD) was used to investigate the influence of the ratio of lipid to protectant (mannitol and trehalose) and crystallinity of spray-dried powder on the particle size, yield and residual moisture content...... of the dried powder. A linear relationship (R2 = 0.9915) was established between the crystalline content of the spray-dried powders against the ratio of mannitol to trehalose from 3:7 to 10:0 (w/w). Spray drying of NLC aqueous dispersion using a mannitol and trehalose mixture resulted in an increase...... in particle size of the NLCs after reconstitution in water as compared to that in the initial aqueous dispersion. The decrease in crystallinity of the dry powder by reducing the ratio of mannitol to trehalose could improve the reconstitution of the NLCs in water. However the yield and residual moisture...

  3. Fine Sprays for Disinfection within Healthcare

    OpenAIRE

    G Nasr; A Whitehead; A Yule

    2016-01-01

    Problems exist worldwide with Hospital Acquired Infections (HAI's). The Spray Research Group (SRG) have been working with relevant industries in developing a product which can provide a delivery system for treatment chemicals for surfaces, including the design and testing of a novel Spill-Return Atomiser (SRA) for this purpose. A comprehensive description of this atomiser has already been given. This paper reports on a new application of this atomiser and discusses the problem of spray coatin...

  4. Correlation for predicting aerosol concentration in sodium spray fires

    International Nuclear Information System (INIS)

    Marimuthu, K.

    2001-01-01

    Aerosol behaviour computer codes are reported for the study of time-dependent airborne aerosol concentration in a containment. The use of available computer codes requires a thorough knowledge of the various rate processes employed to describe the aerosol behaviour. The present work describes a simple empirical equation to calculate sodium fire aerosol concentration with respect to time in a containment and is applicable to sodium spray fire conditions. Sodium spray fire aerosol concentration values obtained using this simplified approach agree reasonably well with experimental results. The empirical equation described in the present work is incorporated in the spray fire code NACOM and the code calculated values of aerosol concentration agreement with the sodium spray fire experimental results is reasonably good. (author)

  5. An assessment of thermal spray coating technologies for high temperature corrosion protection

    International Nuclear Information System (INIS)

    Heath, G.R.; Heimgartner, P.; Gustafsson, S.; Irons, G.; Miller, R.

    1997-01-01

    The use of thermally sprayed coatings in combating high temperature corrosion continues to grow in the major industries of chemical, waste incineration, power generation and pulp and paper. This has been driven partially by the development of corrosion resistant alloys, improved knowledge and quality in the thermal spray industry and continued innovation in thermal spray equipment. There exists today an extensive range of thermal spray process options, often with the same alloy solution. In demanding corrosion applications it is not sufficient to just specify alloy and coating method. For the production of reliable coatings the whole coating production envelope needs to be considered, including alloy selection, spray parameters, surface preparation, base metal properties, heat input etc. Combustion, arc-wire, plasma, HVOF and spray+fuse techniques are reviewed and compared in terms of their strengths and limitations to provide cost-effective solutions for high temperature corrosion protection. Arc wire spraying, HP/HVOF and spray+fuse are emerging as the most promising techniques to optimise both coating properties and economic/practical aspects. (orig.)

  6. Erosion protection of carbon-epoxy composites by plasma-sprayed coatings

    International Nuclear Information System (INIS)

    Alonso, F.; Fagoaga, I.; Oregui, P.

    1991-01-01

    This paper deals with the production of plasma-sprayed erosion-resistant coatings on carbon-fibre - epoxy composites, and the study of their erosion behaviour. The heat sensitivity of the composite substrate requires a specific spraying procedure in order to avoid its degradation. In addition, several bonding layers were studied to allow spraying of the protective coatings. Two different functional coatings were sprayed onto an aluminium-glass bonding layer, a WC-12Co cermet and an Al 2 O 3 ceramic oxide. The microstructure and properties of these coatings were studied and their erosion behaviour determined experimentally in an erosion-testing device. (orig.)

  7. Thermal Spray Coating of Tungsten for Tokamak Device

    International Nuclear Information System (INIS)

    Jiang Xianliang; Gitzhofer, F; Boulos, M I

    2006-01-01

    Thermal spray, such as direct current (d.c.) plasma spray or radio frequency induced plasma spray, was used to deposit tungsten coatings on the copper electrodes of a tokamak device. The tungsten coating on the outer surface of one copper electrode was formed directly through d.c. plasma spraying of fine tungsten powder. The tungsten coating/lining on the inner surface of another copper electrode could be formed indirectly through induced plasma spraying of coarse tungsten powder. Scanning electron microscopy (SEM) was used to examine the cross section and the interface of the tungsten coating. Energy Dispersive Analysis of X-ray (EDAX) was used to analyze the metallic elements attached to a separated interface. The influence of the particle size of the tungsten powder on the density, cracking behavior and adhesion of the coating is discussed. It is found that the coarse tungsten powder with the particle size of 45 ∼ 75 μm can be melted and the coating can be formed only by using induced plasma. The coating deposited from the coarse powder has much higher cohesive strength, adhesive strength and crack resistance than the coating made from the fine powder with a particle size of 5 μm

  8. Note: Automatic layer-by-layer spraying system for functional thin film coatings

    Science.gov (United States)

    Seo, Seongmin; Lee, Sangmin; Park, Yong Tae

    2016-03-01

    In this study, we have constructed an automatic spray machine for producing polyelectrolyte multilayer films containing various functional materials on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits advantages in terms of automation, process speed, and versatility. Furthermore, it has several features that allow a fully automated spraying operation, such as various two-dimensional spraying paths, control of the flow rate and operating speed, air-assist fan-shaped twin-fluid nozzles, and an optical display. The robot uniformly sprays aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species onto a large-area substrate. Between each deposition of opposite species, samples are spray-rinsed with deionized water and blow-dried with air. The spraying, rinsing, and drying areas and times are adjustable by a computer program. Twenty-bilayer flame-retardant thin films were prepared in order to compare the performance of the spray-assisted LbL assembly with a sample produced by conventional dipping. The spray-coated film exhibited a reduction of afterglow time in vertical flame tests, indicating that the spray-LbL technique is a simple method to produce functional thin film coatings.

  9. Skin Sterility After Application of a Vapocoolant Spray Part 2.

    Science.gov (United States)

    Mlynek, Karolina; Lyahn, Hwang; Richards, Bryson; Schleicher, William; Bassiri Gharb, Bahar; Procop, Gary; Tuohy, Marion; Zins, James

    2015-08-01

    Refrigerant sprays have been used for pain relief at the time of minor office procedures. However, their sterility remains in question. This study investigates the microbiologic effect of this vapocoolant when sprayed after 70 % isopropyl alcohol skin preparation. In 50 healthy volunteers, three skin culture samples were collected: Group 1 prior to alcohol application; Group 2 after preparation with alcohol, and Group 3 after preparation with alcohol followed with vapocoolant spray. Samples were cultured in a blinded fashion and analyzed after 5 days of incubation. Gram staining was performed when cultures were positive. Bacterial growth was found in 98 % of samples prior to any skin preparation. This was reduced to 54 % after alcohol use (Group 2). Spraying with the skin refrigerant further reduced bacterial growth to 46 % (Group 3). The results showed a significant reduction in the number of positive bacterial cultures following skin preparation with alcohol and when alcohol prep was followed by vapocoolant spray (p < 0.001) compared to initial cultures. No statistical difference was observed between Groups 2 and 3 (p = 0.74). The use of the vapocoolant spray does not compromise the sterility of the skin following alcohol prep. Both 70 % isopropyl alcohol antiseptic preparation and skin preparation followed by vapocoolant spray significantly reduce skin colonization when compared to unprepared skin (p < 0.001).

  10. MELCOR 1.8.3 assessment: CSE containment spray experiments

    International Nuclear Information System (INIS)

    Kmetyk, L.N.

    1994-12-01

    MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRS. As part, of an ongoing assessment program, the MELCOR computer code has been used to analyze a series of containment spray tests performed in the Containment Systems Experiment (CSE) vessel to evaluate the performance of aqueous sprays as a means of decontaminating containment atmospheres. Basecase MELCOR results are compared with test data, and a number of sensitivity studies on input modelling parameters and options in both the spray package and the associated aerosol washout and atmosphere decontamination by sprays modelled in the radionuclide package have been done. Time-step and machine-dependency calculations were done to identify whether any numeric effects exist in these CSE assessment analyses. A significant time-step dependency due to an error in the spray package coding was identified and eliminated. A number of other code deficiencies and inconveniences also are noted

  11. Risk of contamination of nasal sprays in otolaryngologic practice

    Directory of Open Access Journals (Sweden)

    Akkuzu Babur

    2007-03-01

    Full Text Available Abstract Background Reusable nasal-spray devices are frequently used in otolaryngologic examinations, and there is an increasing concern about the risk of cross-contamination from these devices. The aim of our study was to determine, by means of microbiologic analysis, the safety of a positive-displacement or pump-type atomizer after multiple uses. Methods A reusable nasal spray bottle, pump, and tips were used in the nasal physical examination of 282 patients admitted to a tertiary otolaryngology clinic. The effectiveness of 2 different methods of prophylaxis against microbiologic contamination (the use of protective punched caps or rinsing the bottle tip with alcohol was compared with that of a control procedure. Results Although there was no statistically significant difference in positive culture rates among the types of nasal spray bottles tested, methicillin-resistant coagulase-negative staphylococci were isolated in 4 of 198 cultures. Conclusion Given these findings, we concluded that additional precautions (such as the use of an autoclave between sprays, disposable tips, or disposable devices are warranted to avoid interpatient cross-contamination from a reusable nasal spray device.

  12. PLASMA SPRAYING OF REFRACTORY CERMETS BY THE WATER-STABILIZED SPRAY (WSP®) SYSTEM

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Brožek, V.; Cheong, D.-I.; Chráska, Pavel

    2009-01-01

    Roč. 54, č. 3 (2009), s. 241-253 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * tungsten Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  13. Single droplet analysis for spray drying of foods

    NARCIS (Netherlands)

    Perdana, J.A.

    2013-01-01

    Many food ingredients, such as enzymes and probiotics, are spray dried to provide shelf-life. Major hurdle to apply spray drying is the lack of scientific insight on the inactivation mechanisms of components and the extensive optimization required for formulation and drying conditions to obtain

  14. Tableting properties of an improved spray-dried lactose

    NARCIS (Netherlands)

    Rassu, G.; Eissens, A. C.; Bolhuis, G. K.

    2006-01-01

    Spray-dried lactose is one of the most widely used filler-binders for direct compaction. The compactibility is a function of both primary particle size and the presence of amorphous lactose. Commercially available spray-dried lactose contains 15-20% amorphous lactose and 80-85% alpha-lactose

  15. Theoretical analysis and experimental study of spray degassing method

    International Nuclear Information System (INIS)

    Wu Ruizhi; Shu Da; Sun Baode; Wang Jun; Li Fei; Chen Haiyan; Lu YanLing

    2005-01-01

    A new hydrogen-removal method of aluminum melt, spray degassing, is presented. The thermodynamic and kinetic analysis of the method are discussed. A comparison between the thermodynamics and kinetics of the spray degassing method and rotary impellor degassing method is made. The thermodynamic analysis shows that the relationship between the final hydrogen content of the aluminum melt and the ratio of purge gas flow rate to melt flow rate is linear. The result of thermodynamic calculation shows that, in spray degassing, when the ratio of G/q is larger than 2.2 x 10 -6 , the final hydrogen content will be less than 0.1 ml/100 g Al. From the kinetic analysis, the degassing effect is affected by both the size of melt droplets and the time that melt droplets move from sprayer to the bottom of the treatment tank. In numerical calculation, the hydrogen in aluminum melt can be degassed to 0.05 ml/100 g Al from 0.2 ml/100 g Al in 0.02 s with the spray degassing method. Finally, the water-model experiments are presented with the spray degassing method and rotary impellor degassing method. Melt experiments are also presented. Both the water-model experiments and the melt experiments show that the degassing effect of the spray degassing method is better than that of the rotary impeller method

  16. Spray Forming Aluminum - Final Report (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    D. D. Leon

    1999-07-08

    The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Inc developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.

  17. ZrO2 coatings on stainless steel by aerosol thermal spraying

    International Nuclear Information System (INIS)

    Di Giampaolo, A.R.; Reveron, H.; Ruiz, H.; Poirier, T.; Lira, J.

    1998-01-01

    Zirconia coatings, with a wide range of thickness (1 to 80 μ) have been obtained by spraying a ZrO 2 sol with an oxyacetylenic flame, on stainless steel substrates. The sol was prepared by mixing Zr-n-propoxide and acetic acid in order to obtain a zirconium oxyacetate precipitate, which was filtrated, washed with 1-propanol, dryed and subjected to an hydrothermal treatment. A new sol-gel based ceramic deposition process , aerosol thermal spraying was developed based on previous thermal spray work. A compressed air spray gun was used to produce a fine aerosol flow which was injected in the flame of the thermal spray torch and deposited on polished and sand blasted substrates. This original technique allows simultaneous spraying, drying and partial sintering of the zirconia nanometric particles. The maximum working temperature necessary to yield a resistant coating is 1000 deg C. This method produced crack-free homogeneous layers of monoclinic ZrO 2 with good adhesion to the substrate and low porosity, as shown by X-ray diffraction and scanning electron microscopy. Oxidation test, carried out by heat treatments in air atmosphere at 800 deg C indicated good protection, mainly for low thickness coatings deposited in polished substrates. This original deposition technique offers several advantages when compared with classical thermal spraying techniques, such as plasma spraying. Copyright (1998) AD-TECH - International Foundation for the Advancement of Technology Ltd

  18. Clay as a matrix former for spray drying of drug nanosuspensions.

    Science.gov (United States)

    Dong, Yuancai; Ng, Wai Kiong; Hu, Jun; Shen, Shoucang; Tan, Reginald B H

    2014-04-25

    Utilization of sugars (e.g. lactose, sucrose) as matrix formers for spray drying of drug nanosuspensions is associated with two drawbacks: (1) sugars are incapable of preventing agglomeration of drug nanoparticles (NPs) in the suspension state; and (2) the spray-dried sugars are usually amorphous and hygroscopic. This work aimed to apply a clay, montmorillonite (MMT) as an alternative matrix former for spray drying of drug nanosuspensions with fenofibrate (feno) as a model compound. Drug nanosuspensions were synthesized by liquid antisolvent precipitation with different amount of MMT followed by spray drying. It is found that MMT is able to reduce the agglomeration of drug nanoparticles in the suspension state, as observed from the gradual alleviation of the clogging with the increased clay during the spray drying. The spray-dried feno NPs/MMT powders exhibited a much lower moisture sorption than spray-dried feno NPs/lactose powders as evidenced by the dynamic vapor sorption (DVS) analysis. The dissolution within 5 min for the spray-dried feno NPs/MMT powders at drug:MMT weight ratio of 1:3 was 81.4 ± 1.8% and the total dissolution within 60 min was 93.4 ± 0.9%. Our results demonstrate that MMT is a useful matrix former for preservation of the high dissolution rate of nanosized drug particles after drying. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Development & characterization of alumina coating by atmospheric plasma spraying

    Science.gov (United States)

    Sebastian, Jobin; Scaria, Abyson; Kurian, Don George

    2018-03-01

    Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.

  20. Silver nasal sprays: misleading Internet marketing.

    Science.gov (United States)

    Gaslin, Michael T; Rubin, Cory; Pribitkin, Edmund A

    2008-04-01

    Long-term use of silver-containing products is associated with a permanent bluish-gray discoloration of the skin known as argyria, but they remain widely available despite several measures by the FDA to regulate them. Several recent case reports have described the occurrence of argyria as a result of using these "natural" products. We used the five most common Internet search engines to find Web sites providing information on silver-containing nasal sprays. Of 49 Web sites analyzed, only 2 (4%) mentioned argyria as a possible complication, although 30 (61%) did caution against long-term use. Eight sites (16%) made specific claims about the health benefits of the product. All 49 sites (100%) provided direct or indirect links to buy silver-containing nasal sprays. We conclude that information about silver-containing nasal sprays on the Internet is misleading and inaccurate. Therefore, otolaryngologists should be aware of the misinformation their patients may be receiving about these products.

  1. Sprayed films of europium complexes toward light conversion devices

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, Sabrina A.; Aoki, Pedro H.B.; Constantino, Carlos J.L.; Pires, Ana Maria, E-mail: anapires@fct.unesp.br

    2014-09-15

    Rare-earth complexes have become subject of intensive research due to the high quantum efficiency of their emission, very narrow bands, and excellent fluorescence monochromaticity. The chemical design and characterization of Eu complexes based on β-diketone ligands hexafluoroacetylacetate (hfac) and dibenzoylmetanate (dbm) is reported here. K[Eu(dbm){sub 4}] and K[Eu(hfac){sub 4}] complexes were immobilized as thin films by using the spray technique, a promising methodology for practical applications. The latter provides not only a faster layer deposition but also larger coated areas compared to conventional methods, such as layer-by-layer (LbL) and Langmuir–Blodgett (LB). The growth of the sprayed films was monitored through microbalance (QCM) and ultraviolet–visible (UV–Vis) absorption spectroscopy, which reveal a higher mass and absorbance per deposited layer of K[Eu(dbm){sub 4}] film. Micro-Raman images display a more homogeneous spatial distribution of the K[Eu(dbm){sub 4}] complex throughout the film, when compared to K[Eu(hfac){sub 4}] film. At nanometer scale, atomic force microscopy (AFM) images indicate that the roughness of the K[Eu(hfac){sub 4}] film is approximately one order of magnitude higher than that for the K[Eu(dbm){sub 4}] film, which pattern is kept at micrometer scale according to micro-Raman measurements. The photoluminescence data show that the complexes remain as pure red emitters upon spray immobilization. Besides, the quantum efficiency for the sprayed films are found equivalent to the values achieved for the powders, highlighting the potential of the films for application in light conversion devices. - Highlights: • Rare earth complexes thin films based on β-diketone ligands. • Spraying procedures to fabricate layer-by-layer (LbL) luminescent thin films. • Chemical design of Eu complexes based on hfac and dbm β-diketones ligands immobilized as sprayed films. • Pure red emitters upon spray immobilization. • Sprayed

  2. The preparation of steatite suspension for spray drying

    Science.gov (United States)

    Jirousek, L.; Spicak, K.

    1983-01-01

    Liquifying agents were investigated for preparation of highly concentrated steatite suspensions which are to be spray-dried. Organic additives for improving the molding properties and strength of green compacts are described. Demands on properties of the spray-dried granules are defined with regard to shrinkage of the molded compacts.

  3. Status of emergency spray modelling in the integral code ASTEC

    International Nuclear Information System (INIS)

    Plumecocq, W.; Passalacqua, R.

    2001-01-01

    Containment spray systems are emergency systems that would be used in very low probability events which may lead to severe accidents in Light Water Reactors. In most cases, the primary function of the spray would be to remove heat and condense steam in order to reduce pressure and temperature in the containment building. Spray would also wash out fission products (aerosols and gaseous species) from the containment atmosphere. The efficiency of the spray system in the containment depressurization as well as in the removal of aerosols, during a severe accident, depends on the evolution of the spray droplet size distribution with the height in the containment, due to kinetic and thermal relaxation, gravitational agglomeration and mass transfer with the gas. A model has been developed taking into account all of these phenomena. This model has been implemented in the ASTEC code with a validation of the droplets relaxation against the CARAIDAS experiment (IPSN). Applications of this modelling to a PWR 900, during a severe accident, with special emphasis on the effect of spray on containment hydrogen distribution have been performed in multi-compartment configuration with the ASTEC V0.3 code. (author)

  4. Spray structure as generated under homogeneous flash boiling nucleation regime

    International Nuclear Information System (INIS)

    Levy, M.; Levy, Y.; Sher, E.

    2014-01-01

    We show the effect of the initial pressure and temperature on the spatial distribution of droplets size and their velocity profile inside a spray cloud that is generated by a flash boiling mechanism under homogeneous nucleation regime. We used TSI's Phase Doppler Particle Analyzer (PDPA) to characterize the spray. We conclude that the homogeneous nucleation process is strongly affected by the initial liquid temperature while the initial pressure has only a minor effect. The spray shape is not affected by temperature or pressure under homogeneous nucleation regime. We noted that the only visible effect is in the spray opacity. Finally, homogeneous nucleation may be easily achieved by using a simple atomizer construction, and thus is potentially suitable for fuel injection systems in combustors and engines. - Highlights: • We study the characteristics of a spray that is generated by a flash boiling process. • In this study, the flash boiling process occurs under homogeneous nucleation regime. • We used Phase Doppler Particle Analyzer (PDPA) to characterize the spray. • The SMD has been found to be strongly affected by the initial liquid temperature. • Homogeneous nucleation may be easily achieved by using a simple atomizer unit

  5. 29 CFR 1910.107 - Spray finishing using flammable and combustible materials.

    Science.gov (United States)

    2010-07-01

    ... drying apparatus and electrical connections and wiring thereto shall not be located within spray... apparatus, the drying apparatus, and the ventilating system of the spray enclosure shall be equipped with... 29 Labor 5 2010-07-01 2010-07-01 false Spray finishing using flammable and combustible materials...

  6. Analysis of inadvertent containment spray actuation for NPP Krsko

    International Nuclear Information System (INIS)

    Grgic, D.; Spalj, S.; Fancev, T.

    2000-01-01

    Refueling Water Storage Tank (RWST) supplies borated water to the Chemical and Volume Control System, Emergency Core Cooling System and Containment Spray System. In the analyses of the containment external pressure the spray temperature is assumed to be equal to the RWST lower temperature limit. This value ensures that the design negative containment pressure will not be exceeded in the event of inadvertent actuation of the Containment Spray. For NPP Kriko the negative containment pressure has to be kept below 0.1 kp/cm2 to avoid the loss of containment integrity. This paper pursuents the analysis of Inadvertent Containment Spray Actuation in order to check the influence of change in RWST water temperature on containment negative pressure. GOTHIC computer code was used for calculation of containment thermal hydraulic behavior during this accident. (author)

  7. The Influence of Shaping Air Pressure of Pneumatic Spray Gun

    Science.gov (United States)

    Chen, Wenzhuo; Chen, Yan; Pan, Haiwei; Zhang, Weiming; Li, Bo

    2018-02-01

    The shaping air pressure is a very important parameter in the application of pneumatic spray gun, and studying its influence on spray flow field and film thickness distribution has practical values. In this paper, Euler-Lagrangian method is adopted to describe the two-phase spray flow of pneumatic painting process, and the air flow fields, spray patterns and dynamic film thickness distributions were obtained with the help of the computational fluid dynamics code—ANSYS Fluent. Results show that with the increase of the shaping air pressure, the air phase flow field spreads in the plane perpendicular to the shaping air hole plane, the spray pattern becomes narrower and flatter, and the width of the dynamic film increases with the reduced maximum value of the film thickness. But the film thickness distribution seems to change little with the shaping air pressure decreasing from 0.6bar to 0.9bar.

  8. Aerial spraying to capture released radioactivity from NPP in a severe accident

    International Nuclear Information System (INIS)

    Younus, Irfan; Yim, Man Sung; Medard, Thiphaine

    2016-01-01

    The proposed strategy in this paper is the use of aqueous spray (water/foam) mixed with suitable chemical additives to capture, dissolve and stabilize the radioactive gases and aerosol particles released from leaked reactor containment and auxiliary building. The spray system can be approached to the leaked reactor building through the use of a truck with high rising cranes, unmanned aerial vehicles (UAVs, such as helicopters), aerostats, or by installing fixed piping structure around the containment building depending on the accident situation. Laboratory-scale experimental system was setup to examine the performance of such systems. The alkaline water (aqueous NaOH.Na_2S_2O_3) and foam-based spray material (sodium lauryl sulphate) were used to examine capture efficiency of gaseous iodine and aerosol particles. The gaseous iodine and aerosol removal efficiency of foam-based spray is higher when compared with alkaline water-based spray. 2. The nozzle producing full cone spray provides the better removal efficiency than nozzle producing hollow cone spray patterns.

  9. Spray drying of lipid-based systems loaded with Camellia sinensis polyphenols.

    Science.gov (United States)

    Secolin, Vanessa A; Souza, Claudia R F; Oliveira, Wanderley P

    2017-03-01

    In this work, spray-dried lipid systems based on soy phosphatidylcholine, cholesterol and lauroyl polyoxylglycerides for entrapping Green tea polyphenols were produced. The aim was to study the effects of the encapsulating composition and spray drying conditions on the system performance and physicochemical product properties. The spray dryer powder production yield falls around 50.7 ± 2.8%, which is typical for lab scale spray dryers. Wrinkled and rounded particles, with low surface porosities were generated, independent of the drying carriers (trehalose or lactose) used. The product showed high encapsulation efficiency of Green tea polyphenols, which was promptly redispersible in water. It presented low density, and good compressive and flow properties. The results herein reported confirm the feasibility of the entrapment of Green tea polyphenols in lipid-based compositions by spray drying in presence of the drying carriers evaluated. The spray-dried microparticles show high potential to be used as additive in food, nutraceutical and pharmaceutical products.

  10. Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.

    2018-01-01

    Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.

  11. Spray Behavior and Atomization Characteristics of Biodiesel

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Biodiesel has large amount of oxygen in itself, which make it very efficient in reducing exhaust emission by improving combustion inside an engine. But biodiesel has a low temperature flow problem because it has a high viscosity. In this study, the spray behavior and atomization characteristics were investigated to confirm of some effect for the combination of non-esterification biodiesel and fuel additive WDP and IPA. The process of spray was visualized through the visualization system composed of a halogen lamp and high speed camera, and atomization characteristics were investigated through LDPA. When blending WDP and IPA with biodiesel, atomization and spray characteristics were improved. Through this experimental result, SMD of blended fuel, WDP 25% and biodiesel 75%, was 33.9% reduced at distance 6cm from a nozzle tip under injection pressure 30MPa.

  12. 9 CFR 590.540 - Spray process drying facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Spray process drying facilities. 590.540 Section 590.540 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF..., Processing, and Facility Requirements § 590.540 Spray process drying facilities. (a) Driers shall be of a...

  13. Solid-state, triboelectrostatic and dissolution characteristics of spray-dried piroxicam-glucosamine solid dispersions.

    Science.gov (United States)

    Adebisi, Adeola O; Kaialy, Waseem; Hussain, Tariq; Al-Hamidi, Hiba; Nokhodchi, Ali; Conway, Barbara R; Asare-Addo, Kofi

    2016-10-01

    This work explores the use of both spray drying and d-glucosamine HCl (GLU) as a hydrophilic carrier to improve the dissolution rate of piroxicam (PXM) whilst investigating the electrostatic charges associated with the spray drying process. Spray dried PXM:GLU solid dispersions were prepared and characterised (XRPD, DSC, SEM). Dissolution and triboelectric charging were also conducted. The results showed that the spray dried PXM alone, without GLU produced some PXM form II (DSC results) with no enhancement in solubility relative to that of the parent PXM. XRPD results also showed the spray drying process to decrease the crystallinity of GLU and solid dispersions produced. The presence of GLU improved the dissolution rate of PXM. Spray dried PXM: GLU at a ratio of 2:1 had the most improved dissolution. The spray drying process generally yielded PXM-GLU spherical particles of around 2.5μm which may have contributed to the improved dissolution. PXM showed a higher tendency for charging in comparison to the carrier GLU (-3.8 versus 0.5nC/g for untreated material and -7.5 versus 3.1nC/g for spray dried materials). Spray dried PXM and spray dried GLU demonstrated higher charge densities than untreated PXM and untreated GLU, respectively. Regardless of PXM:GLU ratio, all spray dried PXM:GLU solid dispersions showed a negligible charge density (net-CMR: 0.1-0.3nC/g). Spray drying of PXM:GLU solid dispersions can be used to produce formulation powders with practically no charge and thereby improving handling as well as dissolution behaviour of PXM. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Cold Spray for Repair of Magnesium Components

    Science.gov (United States)

    2011-11-01

    Readiness Center East GM General Motors He helium hex-Cr hexavalent chromium HP-Al High Purity Aluminum HVOF High Velocity Oxygen Fuel ID inner...process is the hexavalent chromium (hex-Cr) permissible exposure limit (PEL) as established by the Occupational Safety and Health Administration (OSHA...project related to replacement of hard chrome plating on helicopter dynamic components using HVOF thermal spray coatings. FRC-E has a thermal spray

  15. Modeling the Spray Forming of H13 Steel Tooling

    Science.gov (United States)

    Lin, Yaojun; McHugh, Kevin M.; Zhou, Yizhang; Lavernia, Enrique J.

    2007-07-01

    On the basis of a numerical model, the temperature and liquid fraction of spray-formed H13 tool steel are calculated as a function of time. Results show that a preheated substrate at the appropriate temperature can lead to very low porosity by increasing the liquid fraction in the deposited steel. The calculated cooling rate can lead to a microstructure consisting of martensite, lower bainite, retained austenite, and proeutectoid carbides in as-spray-formed material. In the temperature range between the solidus and liquidus temperatures, the calculated temperature of the spray-formed material increases with increasing substrate preheat temperature, resulting in a very low porosity by increasing the liquid fraction of the deposited steel. In the temperature region where austenite decomposition occurs, the substrate preheat temperature has a negligible influence on the cooling rate of the spray-formed material. On the basis of the calculated results, it is possible to generate sufficient liquid fraction during spray forming by using a high growth rate of the deposit without preheating the substrate, and the growth rate of the deposit has almost no influence on the cooling rate in the temperature region of austenite decomposition.

  16. On the texture of spray formed gamma titanium aluminide

    International Nuclear Information System (INIS)

    Staron, P.; Bartels, A.; Brokmeier, H.-G.; Gerling, R.; Schimansky, F.P.; Clemens, H.

    2006-01-01

    Spray forming is an attractive processing route for titanium aluminides that combines advantages both of ingot and powder metallurgy. Spray formed deposits were produced using the electrode induction melting gas atomization technique. The texture of a spray formed Ti-48.9 at.% Al deposit in the as-sprayed state and after isothermal forging as well as after isothermal forging and a subsequent stress relief heat treatment was analysed by means of neutron diffraction. The spray formed deposit was found to have a very weak -fibre texture with a maximum pole density of 1.12 multiples of random distribution. After isothermal forging of cylinders to 77% reduction at an initial strain rate of 2 x 10 -3 s -1 at 1150 deg. C, a band of orientations from to with a maximum close to was found. A Zener-Hollomon parameter of 12.6 is estimated, which indicates that during isothermal forging dynamic recrystallization is governed by nucleation of new grains. A subsequent stress relief treatment at 1030 deg. C for 2 h caused additional grain growth, after which the maximum pole density is increased from 3.3 to 3.8 times random

  17. [A microbiological investigation of the effectiveness of Micro Megas E-spray].

    Science.gov (United States)

    Kardel, K; Hegna, I K; Kardel, M

    1976-06-01

    The disinfecting effect of Micro Megas E-spray was tested using a microbiological technique which also included a practical test. Contra-angels and straight handpieces which were sprayed after being used for treatment on patients, and then dried and incubated in a liquid medium, showed a marked growth of microorganisms. The spray had a weak and barely significant growth inhibiting effect on contaminated, simulated instrument surfaces. using Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as test bacteria. It is concluded that the spray is not suitable for distinfection of contra-angels and straight handpieces.

  18. Optimization of Pesticide Spraying Tasks via Multi-UAVs Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    He Luo

    2017-01-01

    Full Text Available Task allocation is the key factor in the spraying pesticides process using unmanned aerial vehicles (UAVs, and maximizing the effects of pesticide spraying is the goal of optimizing UAV pesticide spraying. In this study, we first introduce each UAV’s kinematic constraint and extend the Euclidean distance between fields to the Dubins path distance. We then analyze the two factors affecting the pesticide spraying effects, which are the type of pesticides and the temperature during the pesticide spraying. The time window of the pesticide spraying is dynamically generated according to the temperature and is introduced to the pesticide spraying efficacy function. Finally, according to the extensions, we propose a team orienteering problem with variable time windows and variable profits model. We propose the genetic algorithm to solve the above model and give the methods of encoding, crossover, and mutation in the algorithm. The experimental results show that this model and its solution method have clear advantages over the common manual allocation strategy and can provide the same results as those of the enumeration method in small-scale scenarios. In addition, the results also show that the algorithm parameter can affect the solution, and we provide the optimal parameters configuration for the algorithm.

  19. Electro Spray Method for Flexible Display

    Science.gov (United States)

    2016-05-12

    AFRL-AFOSR-JP-TR-2016-0095 Electro Spray Method for Flexible Display Yukiharu Uraoka NARA INSTITUTE OF SCIENCE AND TECHNOLOGY Final Report 11/26/2016...DATES COVERED (From - To)  20 Mar 2013 to 19 May 2016 4. TITLE AND SUBTITLE Electro Spray Method for Flexible Display 5a.  CONTRACT NUMBER 5b.  GRANT...NUMBER FA2386-13-1-4024 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Yukiharu Uraoka 5d.  PROJECT NUMBER 5e.  TASK NUMBER 5f.   WORK UNIT NUMBER 7

  20. Performances and reliability of WC based thermal spray coatings

    International Nuclear Information System (INIS)

    Scrivani, A.; Rosso, M.; Salvarani, L.

    2001-01-01

    Thermal spray processes are used for a lot of traditional and innovative applications and their importance is becoming higher and higher. WC/CoCr based thermal spray coatings represent one of the most important class of coatings that find application in a wide range of industrial sectors. This paper will address a review of current applications and characteristics of this kind of coating. The most important spraying processes, namely HVOF (high velocity oxygen fuel) are examined, the characterization of the coatings from the point of view of corrosion and wear resistance is considered. (author)

  1. Spray calcination of nuclear wastes

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-01-01

    The spray calciner is a relatively simple machine; operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of all commercial fuel reprocessor high-level liquid wastes and mixed high and intermediate-level wastes have been demonstrated. Wastes have been calcined containing over 2M sodium. Thus waste generated during plant startup and shutdown can be blended with normal waste and calcined. Spray calcination of ILLW has also been demonstrated. A remotely replaceable atomizing nozzle has been developed for use in plant scale equipment. The 6 mm (0.25 inch) orifice and ceramic tip offer freedom from plugging and erosion thus nozzle replacement should be required only after several months operation. Calciner capacity of over 75 l/h (20 gal/h) has been demonstrated in pilot scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. Since such a small amount of radionuclides escape the calciner the volume of recycle required from the effluent treatment system is very small. The noncondensable off-gas volume is also low, less than 0.5 m 3 /min (15 scfm) for a liquid feedrate of 75 l/hr (20 gal/hr). Calcine holdup in the calciner is less than 1 kg, thus the liquid feedrate is directly relatable to calcine flowrate. The calcine produced is very fine and reactive. Successful remote operation and maintenance of a heated wall spray calciner has been demonstrated while processing actual high-level waste. During these operations radionuclide volatilization from the calciner was acceptably low. 8 figures

  2. Aerial spraying to capture released radioactivity from NPP in a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Younus, Irfan; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of); Medard, Thiphaine [Ecole des Mines de Saint-Etienne, Daejeon (Korea, Republic of)

    2016-05-15

    The proposed strategy in this paper is the use of aqueous spray (water/foam) mixed with suitable chemical additives to capture, dissolve and stabilize the radioactive gases and aerosol particles released from leaked reactor containment and auxiliary building. The spray system can be approached to the leaked reactor building through the use of a truck with high rising cranes, unmanned aerial vehicles (UAVs, such as helicopters), aerostats, or by installing fixed piping structure around the containment building depending on the accident situation. Laboratory-scale experimental system was setup to examine the performance of such systems. The alkaline water (aqueous NaOH.Na{sub 2}S{sub 2}O{sub 3}) and foam-based spray material (sodium lauryl sulphate) were used to examine capture efficiency of gaseous iodine and aerosol particles. The gaseous iodine and aerosol removal efficiency of foam-based spray is higher when compared with alkaline water-based spray. 2. The nozzle producing full cone spray provides the better removal efficiency than nozzle producing hollow cone spray patterns.

  3. Influence of geometric and hydro-dynamic parameters of injector on calculation of spray characteristics of diesel engines

    Directory of Open Access Journals (Sweden)

    Filipović Ivan

    2011-01-01

    Full Text Available The main role in air/fuel mixture formation at the IC diesel engines has the energy introduced by fuel into the IC engine that is the characteristics of spraying fuel into the combustion chamber. The characteristic can be defined by the spray length, the spray cone angle, the physical and the chemical structure of fuel spray by different sections. Having in mind very complex experimental setups for researching in this field, the mentioned characteristics are mostly analyzed by calculations. There are two methods in the literature, the first based on use of the semi-empirical expressions (correlations and the second, the calculations of spray characteristics by use of very complex mathematical methods. The second method is dominant in the modern literature. The main disadvantage of the calculation methods is a correct definition of real state at the end of the nozzle orifice (real boundary conditions. The majority of the researchers in this field use most frequently the coefficient of total losses inside the injector. This coefficient depends on injector design, as well as depends on the level of fuel energy and fuel energy transformation along the injector. Having in mind the importance of the real boundary conditions, the complex methods for calculation of the fuel spray characteristics should have the calculation of fuel flows inside the injector and the calculation of spray characteristics together. This approach is a very complex numerical problem and there are no existing computer programs with satisfactory calculation results. Analysis of spray characteristics by use of the semi-empirical expressions (correlations is presented in this paper. The special attention is dedicated to the analysis of the constant in the semi-empirical expressions and influence parameters on this constant. Also, the method for definition of realistic boundary condition at the end of the nozzle orifice is presented in the paper. By use of this method completely

  4. Hydrogen permeation properties of plasma-sprayed tungsten*1

    Science.gov (United States)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  5. Spray droplet velocity characterization for convergent nozzles with three different diameters

    Energy Technology Data Exchange (ETDEWEB)

    R. Payri; B. Tormos; F.J. Salvador; L. Araneo [Universidad Politecnica de Valencia, Valencia (Spain). CMT-Motores Termicos

    2008-11-15

    The core of the present work consists of the phase-Doppler anemometry non-intrusive measurements performed at various points of diesel direct injection sprays in order to obtain the local speed of fuel droplets. The main objective was to perform extensive sets of measurements on convergent nozzles with various orifices diameters, observe and justify the differences and compare the experimental data with a theoretical approach derived by the authors in a previous work which takes into account the spray momentum flux. Experimental axial velocity profiles in different sections of the spray showed a radial distribution that was fitted with a high level of agreement to a Gaussian profile and so proving that this type of profile is a reasonable approach for the type of sprays within the scope of the present work. The experimental results showed that the velocity in the spray's axis inversely depends on axial position and that for a given axial position; higher axial velocity has been measured for the nozzles with higher spray momentum. 16 refs., 5 figs., 5 tabs.

  6. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-01

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  7. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology.

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-10

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  8. Systematic Investigation on the Influence of Spray Parameters on the Mechanical Properties of Atmospheric Plasma-Sprayed YSZ Coatings

    Science.gov (United States)

    Mutter, Markus; Mauer, Georg; Mücke, Robert; Guillon, Olivier; Vaßen, Robert

    2018-04-01

    In the atmospheric plasma spray (APS) process, micro-sized ceramic powder is injected into a thermal plasma where it is rapidly heated and propelled toward the substrate. The coating formation is characterized by the subsequent impingement of a large number of more or less molten particles forming the so-called splats and eventually the coating. In this study, a systematic investigation on the influence of selected spray parameters on the coating microstructure and the coating properties was conducted. The investigation thereby comprised the coating porosity, the elastic modulus, and the residual stress evolution within the coating. The melting status of the particles at the impingement on the substrate in combination with the substrate surface condition is crucial for the coating formation. Single splats were collected on mirror-polished substrates for selected spray conditions and evaluated by identifying different types of splats (ideal, distorted, weakly bonded, and partially molten) and their relative fractions. In a previous study, these splat types were evaluated in terms of their effect on the above-mentioned coating properties. The particle melting status, which serves as a measure for the particle spreading behavior, was determined by in-flight particle temperature measurements and correlated to the coating properties. It was found that the gun power and the spray distance have a strong effect on the investigated coating properties, whereas the feed rate and the cooling show minor influence.

  9. SPRAYTRAN USER'S GUIDE: A GIS-BASED ATMOSPHERIC SPRAY DROPLET DISPERSION MODELING SYSTEM

    Science.gov (United States)

    The offsite drift of pesticide from spray operations is an ongoing source of concern. The SPRAY TRANsport (SPRAYTRAN) system, documented in this report, incorporates the near-field spray application model, AGDISP, into a meso-scale atmospheric transport model. The AGDISP model ...

  10. A comparison of different spray chemical vapour deposition methods for the production of undoped ZnO thin films

    International Nuclear Information System (INIS)

    Garnier, Jerome; Bouteville, Anne; Hamilton, Jeff; Pemble, Martyn E.; Povey, Ian M.

    2009-01-01

    Two different methods of spray chemical vapour deposition have been used to grow ZnO thin films on glass substrates from zinc acetate solution over the temperature range 400 o C to 550 o C. The first of these is named InfraRed Assisted Spray Chemical Vapour Deposition (IRAS-CVD). This method uses intense IR radiation to heat not only the substrate but also the gaseous species entering the reactor. The second method is a more conventional approach known simply as ultrasonic spray CVD, which utilises IR lamps to heat the substrate only. By way of comparing these two approaches we present data obtained from contact angle measurements, crystallinity and mean crystallite size, photoluminescence, electrical and optical properties. Additionally we have examined the role of annealing within the IRAS-CVD reactor environment.

  11. Effects of spray parameters on the microstructure and property of Al2O3 coatings sprayed by a low power plasma torch with a novel hollow cathode

    International Nuclear Information System (INIS)

    Li Changjiu; Sun Bo

    2004-01-01

    Al 2 O 3 coating is deposited using a low power plasma torch with a novel hollow cathode through axial powder injection under a plasma power up to several kilowatts. The effects of the main processing parameters including plasma arc power, operating gas flow and spray distance on particle velocity during spraying, and the microstructure and property of the coating are investigated. The microstructure of the Al 2 O 3 coating is examined using optical microscopy and X-ray diffraction analysis. The property of the coating is characterized by dry rubber wheel abrasive wear test. The velocity of in-flight particle is measured using a velocity/temperature measurement system for spray particle based on thermal radiation from the particle. The dependency of the microstructure and property of the coating on spray particle conditions are examined by comparing the particle velocity, and microstructure and abrasive wear weight loss of subsequent coating deposited by low power plasma spray with those of the coating by conventional plasma spray at a power one order higher. X-ray diffraction analysis of the coating revealed that Al 2 O 3 particles during low power plasma spraying reach to sufficiently melting state prior to impact on the substrate with a velocity comparable to that in conventional plasma spraying. The experiment results have shown that processing parameters have significant influence on the particle conditions and performance of deposited Al 2 O 3 coating. The coating of comparable microstructure and properties to that deposited by conventional plasma spray can be produced under a power one order lower. From the present study, it can be suggested that a comparable coating can be produced despite plasma power level if the comparable particle velocity and molten state are achieved

  12. Understanding Factors that Influence Protective Glove Use among Automotive Spray Painters

    Science.gov (United States)

    Ceballos, Diana; Reeb-Whitaker, Carolyn; Glazer, Patricia; Murphy-Robinson, Helen; Yost, Michael

    2017-01-01

    Dermal contact with isocyanate-based coatings may lead to systemic respiratory sensitization. The most common isocyanates found in sprayed automotive coatings are monomeric and oligomeric 1,6-hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI). Most spray painters use thin (4–5 mil) latex gloves that are not effective at preventing dermal exposures when spraying isocyanate paints. Personal interviews with collision repair industry personnel and focus groups with spray painters were held to characterize risk awareness, to examine perceptions and challenges concerning protective glove use and selection, and to generate ideas for protective glove use interventions. The most popular gloves among spray painters were thin (4–5 mil) and thick (14 mil) latex. We found that medium to thick (6–8 mil) nitrile were not always perceived as comfortable and were expected to be more expensive than thin (4–5 mil) latex gloves. Of concern is the users’ difficulty to distinguish between nitrile and latex gloves; latex gloves are now sold in different colors including blue, which has traditionally been associated with nitrile gloves. Even though spray painters were familiar with the health hazards related to working with isocyanate paints; most were not always aware that dermal exposure to isocyanates could contribute to the development of occupational asthma. There is a need for more research to identify dermal materials that are protective against sprayed automotive coatings. Automotive spray painters and their employers need to be educated in the selection and use of protective gloves, specifically on attributes such as glove material, color, and thickness. PMID:24215135

  13. Two intelligent spraying systems developed for tree crop production

    Science.gov (United States)

    Precision pesticide application technologies are needed to achieve efficient and effective spray deposition on target areas and minimize off-target losses. Two variable-rate intelligent sprayers were developed as an introduction of new generation sprayers for tree crop applications. The first spraye...

  14. Production of amorphous starch powders by solution spray drying

    NARCIS (Netherlands)

    Niazi, Muhammad B. K.; Broekhuis, Antonius A.

    2012-01-01

    The spray drying of starch/maltodextrin formulations was evaluated as a potential technology for the manufacturing of amorphous thermoplastic starches. Mixtures of starches with high to low amylose (Am)amylopectin (Ap) ratios were spray-dried from water-based solutions and granular dispersions. The

  15. Process optimization of ultrasonic spray coating of polymer films

    DEFF Research Database (Denmark)

    Bose, Sanjukta; Keller, Stephan Sylvest; Boisen, Anja

    2013-01-01

    is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between...... these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating......In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect...

  16. Structure of steam water mixture spray

    International Nuclear Information System (INIS)

    Mitsuhashi, Yuki; Mizutani, Hiroya; Sanada, Toshiyuki; Saito, Takayuki

    2008-01-01

    The flow structure of steam and water mixture spray is studied both numerically and experimentally. The velocity and pressure profiles of the single phase flow are calculated using numerical methods. Using calculated flow fields, the droplet behavior is predicted by the one-way interaction model. This numerical analysis clarifies that the droplets are still accelerated after they are sprayed from the nozzle. In the experiments, the spray of the mixture is observed by using ultra high-speed video camera, and the velocity field is measured by using PIV technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, mixing process of steam and water, and atomization process of liquid film are observed through the transparent nozzle. The high-speed photography observation reveals that the flow inside the nozzle forms the annular flow and the most of the liquid film is atomized at the nozzle outlet. Finally, the optimum method of processing mixture of steam and water is proposed. (author)

  17. Modeling of Diesel Fuel Spray Formation and Combustion in OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Koesters, Anne

    2012-07-01

    The formation, ignition, and combustion of fuel sprays are highly complex processes and the available models have various shortcomings. The development and application of multidimensional CFD models, that describe the different phenomena have rapidly increased through the use of commercial and public software (e.g. Star-CD, KIVA, FIRE and OpenFOAM). The general approach to spray modeling is given by the Eulerian-Lagrangian method, where the gas phase is modeled as a continuum and the droplets are tracked in a Lagrangian way. The accuracy and robustness of today's spray models vary substantially and spray penetration simulations and the levels of spray-generated turbulence are dependent on the discretization. The work presented here deals with the prediction of spray formation and combustion with improved models implemented in the free, open source software package OpenFOAM. The VSB2 spray model was implemented and tested under varying ambient conditions. The design criteria of the model were to be unconditionally robust, have a minimal number of tuning parameters, and be implementable in any CFD software package supporting particle tracking. The main difference between the VSB2 spray model and standard spray models is how the interaction between the liquid fuel and hot gas phase is modeled. In the VSB2 spray model, a 'blob' is defined, containing differently sized droplets; instead of a parcel containing equally sized droplets. Another feature is the definition of a bubble surrounding the blob. The blob just interacts with the gas phase in the bubble instead of with the gas phase in the whole grid cell. The idea is to reduce grid dependency. Furthermore, equilibrium between the blob and the bubble is ensured, which makes the model very robust. Results of spray penetration simulations are compared with data obtained from experiments done at Chalmers Univ. of Technology and with experimental data published by Siebers and Naber from Sandia National

  18. Wind tunnel measurement of spray drift from on-off controlled sprayer nozzles

    DEFF Research Database (Denmark)

    Lund, Ivar; Jensen, Peter Kryger; Miller, Paul

    wide surface area with a length of 200 mm. The test was conducted in the wind tunnel at Silsoe Spray Applications Unit in the UK. The measurements consisted of two test series; airborne drift was collected on polyethylene lines more than 375 mm away from the centerline of the nozzle and ground deposits...... and arranged to deliver a pulse of spray using the WeedSeeker valve. The tests were conducted to determine accumulated spray deposit at different crosswind and forward speeds. In general, the deposits, especially those measured downwind close to the target zone showed significant increase as the crosswind......Sensor-based precision weed control system at a high resolution requires a high spray application accuracy to keep the spray in a small target zone. The objective of this research was to investigate the target accuracy and spray drift from individual controlled sprayer nozzles targeting a 250 mm...

  19. Experimental and numerical investigation of sprays in two stroke diesel Engines

    DEFF Research Database (Denmark)

    Dam, Bjarke Skovgård

    2007-01-01

    . The latter is the subject of this dissertation. The theory and experimental findings on diesel sprays are investigated, including e.g. spray parameters and droplet break up. It is found that no complete theory is yet present and large challenges lie ahead. Generally, there is fairly good consensus on which......The control of the injected spray is important when optimizing performance and reducing emissions from diesel engines. The research community has conducted extensive research especially on smaller four stroke engines, but so far only little has been done on sprays in large two stroke engines...... have different scales and other designs than those used in the literature, so extending results from the literature will require experiments on this particular type of setup. Numerical investigations of diesel sprays are performed using the Eulerian/Lagrangian engine CFD code Kiva. In agreement...

  20. MODELING OF FUEL SPRAY CHARACTERISTICS AND DIESEL COMBUSTION CHAMBER PARAMETERS

    Directory of Open Access Journals (Sweden)

    G. M. Kukharonak

    2011-01-01

    Full Text Available The computer model for coordination of fuel spray characteristics with diesel combustion chamber parameters has been created in the paper.  The model allows to observe fuel sprays  develоpment in diesel cylinder at any moment of injection, to calculate characteristics of fuel sprays with due account of a shape and dimensions of a combustion chamber, timely to change fuel injection characteristics and supercharging parameters, shape and dimensions of a combustion chamber. Moreover the computer model permits to determine parameters of holes in an injector nozzle that provides the required fuel sprays characteristics at the stage of designing a diesel engine. Combustion chamber parameters for 4ЧН11/12.5 diesel engine have been determined in the paper.

  1. Presence of electrostatically adsorbed polysaccharides improves spray drying of liposomes.

    Science.gov (United States)

    Karadag, Ayse; Özçelik, Beraat; Sramek, Martin; Gibis, Monika; Kohlus, Reinhard; Weiss, Jochen

    2013-02-01

    Spray drying of liposomes with conventional wall materials such as maltodextrins often yields nonfunctional powders, that is, liposomes break down during drying and rehydration. Electrostatically coating the surface of liposomes with a charged polymer prior to spray drying may help solve this problem. Anionic lecithin liposomes (approximately 400 nm) were coated with lower (approximately 500 kDa, LMW-C) or higher (approximately 900 kDa, HMW-C) molecular weight cationic chitosan using the layer-by-layer depositing method. Low (DE20, LMW-MD) or high molecular weight (DE2, HMW-MD) maltodextrin was added as wall material to facilitate spray drying. If surfaces of liposomes (1%) were completely covered with chitosan (0.4%), no bridging or depletion flocculation would occur, and mean particle diameters would be approximately 500 nm. If maltodextrins (20%) were added to uncoated liposomes, extensive liposomal breakdown would occur making the system unsuitable for spray drying. No such aggregation or breakdown was observed when maltodextrin was added to chitosan-coated liposomes. Size changed little or even decreased slightly depending on the molecular weight of maltodextrin added. Scanning electron microscopy images of powders containing chitosan-coated liposomes revealed that their morphologies depended on the type of maltodextrin added. Powders prepared with LMW-MD contained mostly spherical particles while HMW-MD powders contained particles with concavities and dents. Upon redispersion, coated liposomes yielded back dispersions with particle size distributions similar to the original ones, except for LMW-C coated samples that had been spray dried with HMW-MD which yielded aggregates (approximately 30 μm). Results show that coating of liposomes with an absorbing polymer allows them to be spray dried with conventional maltodextrin wall materials. Liposomes have attracted considerable attention in the food and agricultural, biomedical industries for the delivery of

  2. Governing parameters and dynamics of turbulent spray atomization from modern GDI injectors

    International Nuclear Information System (INIS)

    Moon, Seoksu; Li, Tianyun; Sato, Kiyotaka; Yokohata, Hideaki

    2017-01-01

    Understanding the governing parameters and dynamics of turbulent spray atomization is essential for the advancement of fuel injection technologies, but no concrete understandings have been derived previously. The current study investigates the governing parameters and dynamics of turbulent spray atomization by experimental observations of near-nozzle spray phenomena using an X-ray imaging technique. The effects of critical injection parameters such as fuel property, injection pressure and ambient density on near-nozzle liquid feature size and velocity distributions were extensively studied using three injection nozzles having different levels of initial flow turbulence and dispersion. Based on the results, the governing parameters and dynamics of turbulent spray atomization and the issues on the advanced fuel injection control of modern engines were thoroughly discussed. The results showed that fuel and injection pressure effects on spray atomization became insignificant from a critical Weber number which decreased upon the increase in initial flow turbulence and dispersion. The increase in ambient density increased the resultant droplet size at downstream due to the faster deceleration of spray which brought the atomization termination location closer to the nozzle exit. The spray atomization was terminated at the location of ca. 72% exit velocity regardless of the injection condition. - Highlights: • Governing parameters and dynamics of turbulent spray atomization are investigated. • Fuel and injection pressure effects on atomization are saturated from critical We. • High ambient density increases drop sizes due to faster termination of atomization. • Atomization terminates when the spray velocity decays to ca. 72% of exit velocity. • Strategies for improvement of current injection technologies are discussed.

  3. Theophylline cocrystals prepared by spray drying: physicochemical properties and aerosolization performance.

    Science.gov (United States)

    Alhalaweh, Amjad; Kaialy, Waseem; Buckton, Graham; Gill, Hardyal; Nokhodchi, Ali; Velaga, Sitaram P

    2013-03-01

    The purpose of this work was to characterize theophylline (THF) cocrystals prepared by spray drying in terms of the physicochemical properties and inhalation performance when aerosolized from a dry powder inhaler. Cocrystals of theophylline with urea (THF-URE), saccharin (THF-SAC) and nicotinamide (THF-NIC) were prepared by spray drying. Milled THF and THF-SAC cocrystals were also used for comparison. The physical purity, particle size, particle morphology and surface energy of the materials were determined. The in vitro aerosol performance of the spray-dried cocrystals, drug-alone and a drug-carrier aerosol, was assessed. The spray-dried particles had different size distributions, morphologies and surface energies. The milled samples had higher surface energy than those prepared by spray drying. Good agreement was observed between multi-stage liquid impinger and next-generation impactor in terms of assessing spray-dried THF particles. The fine particle fractions of both formulations were similar for THF, but drug-alone formulations outperformed drug-carrier formulations for the THF cocrystals. The aerosolization performance of different THF cocrystals was within the following rank order as obtained from both drug-alone and drug-carrier formulations: THF-NIC>THF-URE>THF-SAC. It was proposed that micromeritic properties dominate over particle surface energy in terms of determining the aerosol performance of THF cocrystals. Spray drying could be a potential technique for preparing cocrystals with modified physical properties.

  4. Mechanical Properties of Spray Cast 7XXX Series Aluminium Alloys

    OpenAIRE

    SALAMCI, Elmas

    2014-01-01

    Mechanical properties of spray deposited and extruded 7xxx series aluminium alloys were investigated in peak aged condition. To study the influence of Zn additions on the mechanical behaviour of spray deposited materials, three alloy compositions were selected, namely: SS70 (11.5% Zn), N707 (10.9% Zn) and 7075 (5.6% Zn). After ageing treatment, notched and unnotched specimens of spray deposited alloys were subjected to tensile tests at room temperature. Experimental results showed...

  5. Assessment of spray deposition with water-sensitive paper cards

    Science.gov (United States)

    Spatial distributions of spray droplets discharged from an airblast sprayer, were sampled on pairs of absorbent paper (AP) and water-sensitive paper (WSP) targets at several distances from the sprayer. Spray solutions, containing a fluorescent tracer, were discharged from two size nozzles to achiev...

  6. 29 CFR 1926.66 - Criteria for design and construction of spray booths.

    Science.gov (United States)

    2010-07-01

    ...) Conformance. Drying, curing, or fusion apparatus in connection with spray application of flammable and... drying apparatus and electrical connections and wiring thereto shall not be located within spray... apparatus, the drying apparatus, and the ventilating system of the spray enclosure shall be equipped with...

  7. Application of Constrained Linear MPC to a Spray Dryer

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2014-01-01

    In this paper we develop a linear model predictive control (MPC) algorithm for control of a two stage spray dryer. The states are estimated by a stationary Kalman filter. A non-linear first-principle engineering model is developed to simulate the spray drying process. The model is validated against...... experimental data and able to precisely predict the temperatures, the air humidity and the residual moisture in the dryer. The MPC controls these variables to the target and reject disturbances. Spray drying is a cost-effective method to evaporate water from liquid foods and produces a free flowing powder...

  8. Programmable Ultrasonic Sensing System for Targeted Spraying in Orchards

    Directory of Open Access Journals (Sweden)

    Marko Hočevar

    2012-11-01

    Full Text Available This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits.

  9. Programmable Ultrasonic Sensing System for Targeted Spraying in Orchards

    Science.gov (United States)

    Stajnko, Denis; Berk, Peter; Lešnik, Mario; Jejčič, Viktor; Lakota, Miran; Štrancar, Andrej; Hočevar, Marko; Rakun, Jurij

    2012-01-01

    This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD) on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits. PMID:23202220

  10. Development of corrosion and wear resistant coatings by an improved HVOF spraying process

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Y.; Kawakita, J.; Kuroda, S. [National Inst. for Materials Science, Tsukuba (Japan)

    2005-07-01

    We have developed an improved HVOF spray process called ''Gas-shrouded HVOF'' (GS-HVOF) over the past several years. By using an extension nozzle at the exit of a commercial HVOF spray gun, GS-HVOF is capable of controlling the oxidation of sprayed materials during flight as well as achieving higher velocity of sprayed particles. These features result in extremely dense and clean microstructure of the sprayed coatings. The process has been successfully applied to corrosion resistant alloys such as SUS316L, Hastelloy C, and alloy 625 as well as cermets such as WC-Cr{sub 3}C{sub 2}-Ni. The spray process, coatings microstructure and property evaluation will be discussed with potential industrial applications in the near future. (orig.)

  11. Evaluation of effervescent atomizer internal design on the spray unsteadiness using a phase/Doppler particle analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Meng; Duan, YuFeng; Zhang, TieNan [School of Energy and Environment, Southeast University, Sipailou 2, Nanjing 210096 (China)

    2010-09-15

    The purpose of this research was to investigate the dependence of effervescent spray unsteadiness on operational conditions and atomizer internal design by the ideal spray theory of Edwards and Marx. The convergent-divergent effervescent atomizer spraying water with air as atomizing medium in the ''outside-in'' gas injection was used in this study. Results demonstrated that droplet formation process at various air to liquid ratio (ALR) led to the spray unsteadiness and all droplet size classes exhibited unsteadiness behavior in spray. The spray unsteadiness reduced quickly at ALR of 3% and decreased moderately at ALR of other values as the axial distance increased. When the axial distance was 200 mm, the spray unsteadiness reduced dramatically with the increase in radial distance, but lower spray unsteadiness at the center of spray and higher spray unsteadiness at the edge of spray were shown as the axial distance increased. The spray unsteadiness at the center region of spray increased with the injection pressure. Low spray unsteadiness and good atomization performance can be obtained when the diameter of incline aeration holes increased at ALR of 10%. Although short mixing chamber with large discharge orifice diameter for convergent-divergent effervescent atomizer produced good atomization, the center region of spay showed high spray unsteadiness and maybe formed the droplet clustering. (author)

  12. Water spray assisted ultrashort laser pulse ablation

    International Nuclear Information System (INIS)

    Silvennoinen, M.; Kaakkunen, J.J.J.; Paivasaari, K.; Vahimaa, P.

    2013-01-01

    Highlights: ► We show the novel method to use multibeam processing with ultrashort pulses efficiently. ► Sprayed thin water layer on ablation zone enhances ablation rate and quality. ► In some cases this method also enables ablation of the deeper and straighter holes compared to ones made without the water layer. ► Method also makes possible to directly write features without the self-organizing structures. - Abstract: We have studied femtosecond ablation under sprayed thin water film and its influence and benefits compared with ablation in the air atmosphere. These have been studied in case of the hole and the groove ablation using IR femtosecond laser. Water enhances the ablation rate and in some situations it makes possible to ablate the holes with a higher aspect ratio. While ablating the grooves, the water spray allows using the high fluences without the generation of the self-organized structures.

  13. Flame spraying of polymers

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-01-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs

  14. Measurement of Ambient Air Motion of D. I. Gasoline Spray by LIF-PIV

    Science.gov (United States)

    Yamakawa, Masahisa; Isshiki, Seiji; Yoshizaki, Takuo; Nishida, Keiya

    Ambient air velocity distributions in and around a D. I. gasoline spray were measured using a combination of LIF and PIV techniques. A rhodamine and water solution was injected into ambient air to disperse the fine fluorescent liquid particles used as tracers. A fuel spray was injected into the fluorescent tracer cloud and was illuminated by an Nd: YAG laser light sheet (532nm). The scattered light from the spray droplets and tracers was cut off by a high-pass filter (>560nm). As the fluorescence (>600nm) was transmitted through the high-pass filter, the tracer images were captured using a CCD camera and the ambient air velocity distribution could be obtained by PIV based on the images. This technique was applied to a D. I. gasoline spray. The ambient air flowed up around the spray and entered into the tail of the spray. Furthermore, the relative velocity between the spray and ambient air was investigated.

  15. Influences of spray parameters on the structure and corrosion resistance of stainless steel layers coated on carbon steel by plasma spray treatment

    International Nuclear Information System (INIS)

    Yeom, Kyong An; Lee, Sang Dong; Kwon, Hyuk Sang; Shur, Dong Soo; Kim, Joung Soo

    1996-01-01

    Stainless steel powders were sprayed on the grit-blasted SM45C carbon steel substrates using a plasma spray method. The influences of the spray parameters on the structure and corrosion resistance of the layers coated on the carbon steel were investigated. Corrosion behavior of the layers were analyzed by the anodic polarization tests in deaerated 0.1 M NaCl + 0.01 M NaOH solution at 80 deg C. The surface roughness and porosity were observed to decrease with decreasing the particle size. The surface hardness of the coating was always higher than that of the matrix, SM45C, implying that the higher resistance of the coating to erosion-corrosion than that of matrix, and increased as the spray power and the spray distance increase. Stainless steel coats showed more corrosion resistance than the carbon steel did, due to their passivity. The corrosion resistance of the coats, however, were inferior to that of the bulk stainless steels due to the inherent defects formed in the coats. The defects such as rough surface and pores provided the occluded sites favorable for the initiation of localized corrosion, resulting in the conclusion that finer the powder is, higher the corrosion resistance is. And the Cr oxides formation resulting in Cr depletion around the oxides reduced the corrosion resistance of the coats. (author)

  16. In-nozzle flow and spray characteristics for mineral diesel, Karanja, and Jatropha biodiesels

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Som, Sibendu; Shukla, Pravesh Chandra; Goyal, Harsh; Longman, Douglas

    2015-01-01

    Highlights: • In-nozzle flow characterization for biodiesel sprays. • Comparison of experimental spray parameters and nozzle hole simulations. • Effect of Karanja and Jatropha biodiesel on in-nozzle cavitation. • Cavitation formation investigation with diesel and biodiesels. • Nozzle hole outlet fuel velocity profile determination for test fuels. - Abstract: Superior spray behavior of fuels in internal combustion engines lead to improved combustion and emission characteristics therefore it is necessary to investigate fuel spray behavior of new alternative fuels. This study discusses the evolution of the in-nozzle orifice parameters of a numerical simulation and the evolution of spray parameters of fuel spray in a constant-volume spray chamber during an experiment. This study compares mineral diesel, biodiesels (Karanja-and Jatropha-based), and their blends with mineral diesel. The results show that mineral diesel provides superior atomization and evaporation behavior compared to the biodiesel test fuels. Karanja biodiesel provides superior atomization and evaporation characteristics compared to Jatropha biodiesel. The qualitative comparison of simulation and experimental results in tandem shows that nozzle-hole design is a critical parameter for obtaining optimum spray behavior in the engine combustion chamber

  17. Further Evaluation of Spray Characterization of Sprayers Typically Used in Vector Control

    Science.gov (United States)

    2012-01-01

    E1260. Standard test method for determining liquid drop size characteristics in a spray using optical nonimaging light-scattering instru- ments...The time that the spray cloud was directed through the optical path of the laser varied between sprayers depending on the width of the spray plume

  18. Microstructure evolution during spray rolling and heat treatment of 2124 Al

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.M. [Industrial Technology Department, Idaho National Laboratory, Idaho Falls, ID 83415-2050 (United States)], E-mail: kevin.mchugh@inl.gov; Lin, Y.; Zhou, Y.; Johnson, S.B.; Delplanque, J.-P.; Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2008-03-25

    Spray rolling is a strip-casting technology that combines elements of spray forming and twin-roll casting. It consists of atomizing molten metal with a high velocity inert gas, quenching the resultant droplets in flight, and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets and conduction heat transfer at the rolls rapidly remove the metal's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly-solidified strip. Spray rolling operates at a higher solidification rate than conventional twin-roll casting and is able to process a broader range of alloys at high production rates. A laboratory-scale strip caster was constructed and used to evaluate the interplay of processing parameters and strip quality for strips up to 200 mm wide and 1.6-6.4 mm thick. This paper examines microstructure evolution during spray rolling and explores how gas-to-metal mass flow ratio influences the microstructure and mechanical properties of spray-rolled 2124 Al. The influences of solution heat treatment and cold rolling on grain structure and constituent particle spheroidization are also examined.

  19. Image processing of vaporizing GDI sprays: a new curvature-based approach

    Science.gov (United States)

    Lazzaro, Maurizio; Ianniello, Roberto

    2018-01-01

    This article introduces an innovative method for the segmentation of Mie-scattering and schlieren images of GDI sprays. The contours of the liquid phase are obtained by segmenting the scattering images of the spray by means of optimal filtering of the image, relying on variational methods, and an original thresholding procedure based on an iterative application of Otsu’s method. The segmentation of schlieren images, to get the contours of the spray vapour phase, is obtained by exploiting the surface curvature of the image to strongly enhance the intensity texture due to the vapour density gradients. This approach allows one to unambiguously discern the whole vapour phase of the spray from the background. Additional information about the spray liquid phase can be obtained by thresholding filtered schlieren images. The potential of this method has been substantiated in the segmentation of schlieren and scattering images of a GDI spray of isooctane. The fuel, heated to 363 K, was injected into nitrogen at a density of 1.12 and 3.5 kg m-3 with temperatures of 333 K and 573 K.

  20. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    Science.gov (United States)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  1. 3-Dimensional numerical simulation of sodium spray fire accidents in LMFBRs

    International Nuclear Information System (INIS)

    Zhang Bin; Zhu Jizhou; Han Lang

    2005-01-01

    In order to estimate and foresee the sequence of sodium spray fires that may occur in the liquid metal cooled fast breeder reactors (LMFBRs), this paper develops a program to analyze such sodium fire accidents. The present study gives a 3-dimensional numerical analysis code for sodium spray fires. The spatial distributions of gas temperature and chemical species concentrations in the cell that sodium spray fires happened are given. This paper gives detailed explanation of combustion models and heat transfer models that applied in the program. And the calculation procedure and method in solving the fluid field are narrated in detail. Good agreements of an overall transient behavior are obtained in a sodium spray combustion test analysis. The comparison between the analytical and experimental results shows that the program presented in this paper is creditable and reasonable for simulating the sodium spray fires. (author)

  2. Economic Optimization of Spray Dryer Operation using Nonlinear Model Predictive Control

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2014-01-01

    In this paper we investigate an economically optimizing Nonlinear Model Predictive Control (E-NMPC) for a spray drying process. By simulation we evaluate the economic potential of this E-NMPC compared to a conventional PID based control strategy. Spray drying is the preferred process to reduce...... the water content for many liquid foodstuffs and produces a free flowing powder. The main challenge in controlling the spray drying process is to meet the residual moisture specifications and avoid that the powder sticks to the chamber walls of the spray dryer. We present a model for a spray dryer that has...... been validated on experimental data from a pilot plant. We use this model for simulation as well as for prediction in the E-NMPC. The E-NMPC is designed with hard input constraints and soft output constraints. The open-loop optimal control problem in the E-NMPC is solved using the single...

  3. Sprays and Cartan projective connections

    Science.gov (United States)

    Saunders, D. J.

    2004-10-01

    Around 80 years ago, several authors (for instance H. Weyl, T.Y. Thomas, J. Douglas and J.H.C. Whitehead) studied the projective geometry of paths, using the methods of tensor calculus. The principal object of study was a spray, namely a homogeneous second-order differential equation, or more generally a projective equivalence class of sprays. At around the same time, E. Cartan studied the same topic from a different point of view, by imagining a projective space attached to a manifold, or, more generally, attached to a `manifold of elements'; the infinitesimal `glue' may be interpreted in modern language as a Cartan projective connection on a principal bundle. This paper describes the geometrical relationship between these two points of view.

  4. Spray swath patterns of small aircraft and vertical distribution of microbial spray deposits

    Science.gov (United States)

    W. G. Yendol

    1985-01-01

    Each year in Northeastern United States over 500,000 acres of oak forests are aerially sprayed to prevent massive defoliation by the gypsy moth. In Pennsylvania alone 400,000 acres were proposed for treatment in 1983 with commercial preparation of Bacillus thuringiensis (Bt).

  5. Planning calculations of spray tests for the ERCOSAM-SAMARA project

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Andreani, M. [Paul Scherrer Institut, Laboratory for Thermal-Hydraulics, Villigen (Switzerland)

    2012-07-01

    Within the framework of the ERCOSAM-SAMARA project, co-funded by the European Union and the Russian State Atomic Energy Corporation, planning and pre-test calculations are performed to examine sensitivity parameters that can affect the break-up (erosion) of a helium (substitute for hydrogen) layer by mitigation devices (i.e., cooler, spray, or Passive Autocatalytic Recombiner - PAR). This paper reports the GOTHIC analysis results for the spray tests to be performed in the PANDA facility. The effects of spray flow rate, temperature and injection height on depressurization, erosion of helium cloud and gas transport behavior are studied. This analysis is valuable because only a limited number of conditions will be examined in the planned experiments. The study provides a useful understanding of the interaction of spray with a stratified atmosphere. (author)

  6. Fabrication of Hybrid Organic Photovoltaic Devices Using Electrostatic Spray Method

    Directory of Open Access Journals (Sweden)

    Zhe-Wei Chiu

    2014-01-01

    Full Text Available Hybrid organic photovoltaic devices (OPVDs are fabricated using the electrostatic spray (e-spray method and their optical and electrical properties are investigated. E-spray is used to deposit a hybrid film (P3HT: PCBM/nanodiamond with morphology and optical characteristics onto OPVDs. The root-mean-square roughness and optical absorption increase with increasing nanodiamond content. The performance of e-spray is comparable to that of the spin-coating method under uniform conditions. The device takes advantage of the high current density, power conversion efficiency, and low cost. Nanodiamond improves the short-circuit current density and power conversion efficiency. The best performance was obtained with 1.5 wt% nanodiamond content, with a current density of 7.28 mA/cm2 and a power conversion efficiency of 2.25%.

  7. Drop formation of black liquor spraying; Mustalipeaen pisaroituminen

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C J; Kankkunen, A; Nieminen, K; Laine, J; Miikkulainen, P [Helsinki Univ. of Technology, Otaniemi (Finland): Lab. of Energy Technology and Environmental Protection

    1997-10-01

    Black liquor is a spent liquor of the pulp and paper industry. It is burned in kraft recovery boilers for chemical and energy recovery. The high dry solids content and viscosity of black liquor require a high spraying temperature. This affects the performance of the boiler. Kraft recovery boiler deposit formation, emissions and chemical recovery are strongly affected by the drop size and the velocity of the black liquor spray formed by a splashplate nozzle. The sheet breakup mechanism is studied with a system based on a video and image-analysis. The drop size of mill-scale nozzles was measured also with an image-analysis-system. Measurements were carried out in a spray test chamber. The sheet breakup mechanism and drop size tests were carried out both below and over the boiling point of black liquor. Special attention was paid to the effect of flashing on drop formation. Temperature increase normally decreases drop size. In the temperature where the wavy-sheet disintegration changes to perforated-sheet disintegration the drop size increases. Spray velocity rises when the temperature is increased above the boiling point. (orig.)

  8. Standard practice for modified salt spray (fog) testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice covers and sets forth conditions for five modifications in salt spray (fog) testing for specification purposes. These are in chronological order of their development: 1.1.1 Annex A1, acetic acid-salt spray test, continuous. 1.1.2 Annex A2, cyclic acidified salt spray test. 1.1.3 Annex A3, seawater acidified test, cyclic (SWAAT). 1.1.4 Annex A4, SO2 salt spray test, cyclic. 1.1.5 Annex A5, dilute electrolyte cyclic fog dry test. 1.2 This practice does not prescribe the type of modification, test specimen or exposure periods to be used for a specific product, nor the interpretation to be given to the results. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to consult and establish appropriate safety and health practices and determine the applicabilit...

  9. Magnesium Repair by Cold Spray

    National Research Council Canada - National Science Library

    Champagne, V. K; Leyman, P.F; Helfritch, D. J

    2008-01-01

    .... Army Research Laboratory has developed a cold spray process to reclaim magnesium components that shows significant improvement over existing methods and is in the process of qualification for use on rotorcraft...

  10. Numerical Study on Fan Spray for Gasoline Direct Injection Engines

    OpenAIRE

    Shirabe, Naotaka; Sato, Takaaki; Murase, Eiichi

    2003-01-01

    In gasoline direct injection engines, it is important to optimize fuel spray characteristics, which strongly affect stratified combustion process. Spray simulation is expected as a tool for optimizing the nozzle design. Conventional simulation method, how

  11. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    Science.gov (United States)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  12. Study on the spray characteristics of methyl esters from waste cooking oil at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yung-Sung [Department of Mechanical and Automation Engineering, Da-Yeh University, 168 University Road, Dacun, Changhua 51591 (China); Department of Mechanical Engineering, Hsiuping Institute of Technology, No.11, Gongye Rd., Dali City, Taichung County 412-80 (China); Lin, Hai-Ping [Department of Mechanical and Automation Engineering, Da-Yeh University, 168 University Road, Dacun, Changhua 51591 (China)

    2010-09-15

    In Taiwan, millions of tons of waste cooking oil are produced each year, and less than 20% of it, about 150,000 ton/a, is reclaimed and reused. Most waste oil is flushed down the drain. Utilizing waste cooking oil to make biodiesel not only reduces engine exhaust gas pollution, but also replaces food-derived fuels, and reduces ecologic river pollution. This study employed two-stage transesterification to lower the high viscosity of waste oil, utilized emulsion to reduce the methyl ester NOx pollution, and used methanol to enhance the stability and viscosity of emulsified fuel. To further analyze spray characteristics of fuels, this experiment built a constant volume bomb under high temperature, used high speed photography to analyze spray tip penetration, spray angle, and the Sauter mean diameter (SMD) of fuel droplets, and compared the results with fossil diesel. The experimental results suggested that, two-stage transesterification can significantly lower waste oil viscosity to that which is close to fossil diesel viscosity. At a temperature above 300 C, waste cooking oil methyl esters had a water content of 20%, spray droplet characteristics were significantly improved, and NOx emission dropped significantly. The optimal fuel ratio suggested in this experiment was waste cooking oil methyl ester 74.5%, methanol 5%, water 20%, and composite surfactant Span-Tween 0.5%. (author)

  13. Microstructure formation and corrosion behaviour in HVOF-sprayed Inconel 625 coatings

    International Nuclear Information System (INIS)

    Zhang, D.; Harris, S.J.; McCartney, D.G.

    2003-01-01

    The nickel-based alloy Inconel 625 was thermally sprayed by two different variants of the high velocity oxy-fuel process. In this study, coatings deposited by a liquid-fuelled gun were compared with those produced by a gas-fuelled system; in general, the former generates higher particle velocities but lower particle temperatures. Investigations into the microstructural evolution of the coatings, using scanning electron microscopy and X-ray diffraction, are presented along with results on their aqueous corrosion behaviour, obtained from salt spray and potentiodynamic tests. It is inferred from coating microstructures that, during spraying, powder particles generally comprised three separate zones as follows: fully melted regions; partially melted zones; and an unmelted core. However, the relative proportions formed in an individual powder particle depended on its size, trajectory through the gun, the gas dynamics (velocity/temperature) of the thermal spray gun and the type of gun employed. Cr 2 O 3 was the principal oxide phase formed during spraying and the quantity appeared to be directly related to the degree to which particles were melted. The salt spray test provides a sensitive means of determining the presence of interconnected porosity in coatings and those produced with the liquid-fuelled gun exhibited reduced interconnected porosity and increased corrosion resistance compared with deposits obtained from the gas-fuelled system. In addition, potentiodynamic tests revealed that passive current densities are 10-20 times lower in liquid-fuel coatings than in those sprayed with the gas-fuelled gun

  14. Macro controlling of copper oxide deposition processes and spray mode by using home-made fully computerized spray pyrolysis system

    Science.gov (United States)

    Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.

    2017-09-01

    Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.

  15. Retort Racks for Polymeric Trays in 1400 Style Spray Retorts

    National Research Council Canada - National Science Library

    Bruins, Henderikus B

    2003-01-01

    The objective of this project was to design a retort rack that would maximize the retort capacity of a 1400 style spray retort and to select a material that would withstand the harsh retort spray environment...

  16. Investigation of the temporal evolution and spatial variation of in-cylinder engine fuel spray characteristics

    International Nuclear Information System (INIS)

    Qin, Wenjin; Hung, David L.S.; Xu, Min

    2015-01-01

    Highlights: • POD quadruple decomposition can reconstruct spray structure into different parts. • Different quadruple POD parts reveal different levels of spay field intensity. • Large scale structure part dominates the CCV of the entire spray. • In-cylinder flow field has the strongest effect on CCV of spray structure. - Abstract: The proper orthogonal decomposition (POD) method is applied to analyze the pulsing spray characteristics of the fuel injection inside a four-valve optical spark-ignition direct-injection (SIDI) engine. The instantaneous spray structures are decomposed into four parts, namely the mean structure, large scale structure, transition structure and small scale structure, respectively, by using POD quadruple decomposition. The cycle-to-cycle variations (CCV) of the in-cylinder pulsing spray structure are examined separately based on the four parts. Analysis results indicate that the four parts have different characteristics, and each individual part represents a specific instantaneous spray structure. First, the mean part contains more than 90% of the total intensity of the spray field throughout the whole injection process. Moreover, the large scale structure part has the highest CCV level among all four parts, and it dominates the CCV of the entire spray field. The CCV of spray can be influenced by different engine operating conditions. In particular, the in-cylinder flow field has the strongest effect on the spray CCV. The varying motion of the in-cylinder flow field significantly influences the CCV of the large scale spray part, which in turn affects the CCV characteristics of the whole spray field

  17. Small-Scale Spray Releases: Additional Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, G. N.; Mahoney, Lenna A.; Tran, Diana N.; Burns, Carolyn A.; Kurath, Dean E.

    2013-08-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are largely absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale. The small-scale testing and resultant data are described in Mahoney et al. (2012b) and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the

  18. Large-Scale Spray Releases: Additional Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used

  19. Radio frequency induction plasma spraying of molybdenum

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2003-01-01

    Radio frequency (RF) induction plasma was used to make free-standing deposition of molybdenum (Mo). The phenomena of particle melting, flattening, and stacking were investigated. The effect of process parameters such as plasma power, chamber pressure, and spray distance on the phenomena mentioned above was studied. Scanning electron microscopy (SEM) was used to analyze the plasma-processed powder, splats formed, and deposits obtained. Experimental results show that less Mo particles are spheroidized when compared to the number of spheroidized tungsten (W) particles at the same powder feed rate under the same plasma spray condition. Molten Mo particles can be sufficiently flattened on substrate. The influence of the process parameters on the flattening behavior is not significant. Mo deposit is not as dense as W deposit, due to the splash and low impact of molten Mo particles. Oxidation of the Mo powder with a large particle size is not evident under the low pressure plasma spray

  20. Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future

    Science.gov (United States)

    Sampath, Sanjay

    2010-09-01

    Thermal spray has enjoyed unprecedented growth and has emerged as an innovative and multifaceted deposition technology. Thermal spray coatings are crucial to the enhanced utilization of various engineering systems. Industries, in recognition of thermal spray's versatility and economics, have introduced it into manufacturing environments. The majority of modern thermal spray applications are "passive" protective coatings, and they rarely perform an electronic function. The ability to consolidate dissimilar material multilayers without substrate thermal loading has long been considered a virtue for thick-film electronics. However, the complexity of understanding/controlling materials functions especially those resulting from rapid solidification and layered assemblage has stymied expansion into electronics. That situation is changing: enhancements in process/material science are allowing reconsideration for novel electronic/sensor devices. This review critically examines past efforts in terms of materials functionality from a device perspective, along with ongoing/future concepts addressing the aforementioned deficiencies. The analysis points to intriguing future possibilities for thermal spray technology in the world of thick-film sensors.

  1. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    CERN Document Server

    Jiang Xian Liang

    2002-01-01

    nano-crystalline powders of omega(Al sub 2 O sub 3) = 95%, omega(TiO sub 2) = 3%, and omega(SiO sub 2) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) mu m. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lo...

  2. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    Directory of Open Access Journals (Sweden)

    Goedele Craye

    2015-12-01

    Full Text Available In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS as a solubilizer, was explored as a production method for co-amorphous simvastatin–lysine (SVS-LYS at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD and differential scanning calorimetry (DSC showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a “spring and parachute” effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions was observed when SLS was spray-dried with SVS (and LYS. In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  3. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

    Science.gov (United States)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka

    2015-12-03

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  4. Processamento de achocolatado de cupuaçu por spray-dryer Cupuassu chocolate drink powder processed by spray-dryer

    Directory of Open Access Journals (Sweden)

    Suzana Caetano da Silva Lannes

    2003-03-01

    Full Text Available O achocolatado de cupuaçu é uma mistura do pó de cupuaçu, açúcar, aroma e outros ingredientes constantes da formulação. Este produto formulado foi processado por spray-dryer, gerando um produto seco, pulverizado e instantaneizado. O achocolatado acrescido de água (concentrado passa pelo spray-dryer formando glóbulos de pequeno diâmetro que são arrastados por uma corrente de ar quente. A rápida evaporação de líquido permite manter baixa a temperatura do ar na secagem, não afetando o produto. O pó de cupuaçu não dispersa prontamente em água devido ao seu conteúdo de óleo. Conseqüentemente, necessita-se de uma forma desengordurada para se obter instantaneização. A secagem por spray-dryer reúne as melhores condições de rendimento técnico em comparação com outros processos. Obtiveram rendimentos de processo acima de 20% e a instantaneização completa do produto.Cupuassu chocolate drink powder is a mixture of cupuassu powder, sugar, flavour and other ingredients of formulation. The product was processed by spray-dryer, leading a dry, pulverized and instantised product. The chocolate drink powder with water (concentrated pass through spray-dryer forming small diameter globules that are arrested by a hot air stream. The rapid evaporation allows keeping low temperature at drying air, and no affecting the product. The process is a set of better conditions of technique and economical efficiency in comparison to other process. Cupuassu powder does not disperse readily in water owing to its oil content. Consequently, a form of cocoa with the oil removed is needed to produce an acceptably instant drink. The results obtained were satisfactory, due to the complete instantisation of the product after processing.

  5. Optimization of the spray application technology in bay laurel (Laurus nobilis).

    Science.gov (United States)

    Nuyttens, D; Braekman, P; Foque, D

    2009-01-01

    Bay laurel is an evergreen, commercially grown and expensive ornamental pot plant, which is susceptible to different pests like aphids, scale and lerp insects, thrips, caterpillars of codling moth and sooty moulds. Recently, caterpillars of the Mediterranean carnation leafroller (Cacoecimorpha pronubana) cause more and more problems. These pests can lead to important financial losses for the growers. During summer the individual pot plants are placed on a field-container in a fairly dense configuration. Crop protection is traditionally done by moving with a spray lance between the rows of pot plants and treating each individual plant from bottom to top. Good penetration is clearly an important advantages of this spray technique but it is very time-consuming, unhealthy and laborious. Some other growers use a 'spray platform' on a high-clearance tractor. Plants sprayed from this platform are exclusively approached from above resulting in an inferior spray deposition on the lower parts of the plants. To overcome the disadvantages of both available techniques, the potential of an automated tunnel sprayer was investigated. Five different nozzle types were evaluated under laboratory conditions i.e. hollow cone, standard flat fan, air inclusion flat fan, deflector flat fan and twin air inclusion flat fan at spray pressures varying from 3.0 to 7.0 bar depending on the type of nozzle. For each nozzle type, three nozzle sizes were included in the experiments which resulted in 15 different spray application techniques. All experiments were done at a speed of 2.5 km x h(-1). This resulted in three different application volumes: 2450, 4900 and 7300 l x ha(-1). After optimizing the nozzle configuration (distance and orientation) using water-sensitive paper, deposition tests with five different mineral chelates as tracer elements were performed. Filter papers were used as collectors at 20 different positions to measure spray deposition, distribution and penetration in the canopy

  6. Experimental Study on Diesel Spray Characteristics and Autoignition Process

    Directory of Open Access Journals (Sweden)

    Özgür Oğuz Taşkiran

    2011-01-01

    Full Text Available The main goal of this study is to get the temporal and spatial spray evolution under diesel-like conditions and to investigate autoignition process of sprays which are injected from different nozzle geometries. A constant volume combustion chamber was manufactured and heated internally up to 825 K at 3.5 MPa for experiments. Macroscopic properties of diesel spray were recorded via a high-speed CCD camera by using shadowgraphy technique, and the images were analyzed by using a digital image processing program. To investigate the influence of nozzle geometry, 4 different types of divergent, straight, straight-rounded, convergent-rounded nozzles, were manufactured and used in both spray evolution and autoignition experiments. The internal geometry of the injector nozzles were obtained by using silicone mold method. The macroscopic properties of the nozzles are presented in the study. Ignition behaviour of different nozzle types was observed in terms of ignition delay time and ignition location. A commercial Diesel fuel, n-heptane, and a mixture of hexadecane-heptamethylnonane (CN65—cetane number 65 were used as fuels at ignition experiments. The similar macroscopic properties of different nozzles were searched for observing ignition time and ignition location differences. Though spray and ignition characteristics revealed very similar results, the dissimilarities are presented in the study.

  7. Simulation of exhaust gas heat recovery from a spray dryer

    International Nuclear Information System (INIS)

    Golman, Boris; Julklang, Wittaya

    2014-01-01

    This study explored various alternatives in improving the energy utilization of spray drying process through the exhaust gas heat recovery. Extensible and user-friendly simulation code was written in Visual Basic for Applications within Microsoft Excel for this purpose. The effects of process parameters were analyzed on the energy efficiency and energy saving in the industrial-scale spray drying system with exhaust gas heat recovery in an air-to-air heat exchanger and in the system with partial recirculation of exhaust air. The spray dryer is equipped with an indirect heater for heating the drying air. The maximum gains of 16% in energy efficiency and 50% in energy saving were obtained for spray drying system equipped with heat exchanger for exhaust air heat recovery. In addition, 34% in energy efficiency and 61% in energy saving for system with recirculation of exhaust air in the present range of process parameters. The high energy efficiency was obtained during drying of large amount of dilute slurry. The energy saving was increased using the large amount of hot drying air. - Highlights: • We model industrial-scale spray drying process with the exhaust gas heat recovery. • We develop an Excel VBA computer program to simulate spray dryer with heat recovery. • We examine effects of process parameters on energy efficiency and energy saving. • High energy efficiency is obtained during drying of large amount of dilute slurry. • Energy saving is increased using the large amount of hot drying air

  8. Generation of 1:1 Carbamazepine:Nicotinamide cocrystals by spray drying.

    Science.gov (United States)

    Patil, Shashank P; Modi, Sameer R; Bansal, Arvind K

    2014-10-01

    The present study investigates the potential of spray drying as a technique for generation of pharmaceutical cocrystals. Carbamazepine-Nicotinamide cocrystal (CNC) was chosen as model cocrystal system for this study. Firstly, CNC was generated using liquid assisted grinding and used for generation of phase solubility diagram (PSD) and ternary phase diagram (TPD). Both PSD and TPD were carefully evaluated for phase behavior of CNC when equilibrated with solvent. The undersaturated region with respect to CNC, as depicted by TPD, was selected as target region to initiate cocrystallization experiments. Various points in this region, representative of different compositions of Carbamazepine, Nicotinamide and CNC, were selected and spray drying was carried out. The spray dried product was characterized for solid state properties and was compared with CNC generated by liquid assisted grinding. Spray drying successfully generated CNC of similar quality as those generated by liquid assisted grinding. Moreover, there was no significant impact of process variables on formation of CNC. Spray drying, owing to its simplicity and industrial scalability, can be a promising method for large scale cocrystal generation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Numerical model of sprayed air cooled condenser coupled to refrigerating system

    International Nuclear Information System (INIS)

    Youbi-Idrissi, M.; Macchi-Tejeda, H.; Fournaison, L.; Guilpart, J.

    2007-01-01

    Because of technological, economic and environmental constraints, many refrigeration and air conditioning units are equipped with a simple air cooled condenser. Spraying the condenser seems to be an original solution to improve the energetic performances of such systems. To characterise this energetic benefit, a semi-local mathematical model was developed and applied to a refrigerating machine with and without spraying its air cooled condenser. It is found that, compared to a dry air cooled condenser, both the calorific capacity and machine COP increase by 13% and 55%, respectively. Furthermore, the model shows that a spray flow rate threshold occurs. It should not be exceeded to assure an effective and rational spray use

  10. Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing

    Science.gov (United States)

    Aldwell, Barry; Kelly, Elaine; Wall, Ronan; Amaldi, Andrea; O'Donnell, Garret E.; Lupoi, Rocco

    2017-10-01

    Additive manufacturing techniques such as cold spray are translating from research laboratories into more mainstream high-end production systems. Similar to many additive processes, finishing still depends on removal processes. This research presents the results from investigations into aspects of the machinability of aluminum 6061 tubes manufactured with cold spray. Through the analysis of cutting forces and observations on chip formation and surface morphology, the effect of cutting speed, feed rate, and heat treatment was quantified, for both cold-sprayed and bulk aluminum 6061. High-speed video of chip formation shows changes in chip form for varying material and heat treatment, which is supported by the force data and quantitative imaging of the machined surface. The results shown in this paper demonstrate that parameters involved in cold spray directly impact on machinability and therefore have implications for machining parameters and strategy.

  11. [Experimental evaluation of the spraying disinfection efficiency on dental models].

    Science.gov (United States)

    Zhang, Yi; Fu, Yuan-fei; Xu, Kan

    2013-08-01

    To evaluate the disinfect effect after spraying a new kind of disinfectant on the dental plaster models. The germ-free plaster samples, which were smeared with bacteria compound including Staphylococcus aureus, Escherichia coli, Saccharomyces albicans, Streptococcus mutans and Actinomyces viscosus were sprayed with disinfectants (CaviCide) and glutaraldehyde individually. In one group(5 minutes later) and another group(15 minutes later), the colonies were counted for statistical analysis after sampling, inoculating, and culturing which were used for evaluation of disinfecting efficiency. ANOVA was performed using SPSS12.0 software package. All sample bacteria were eradicated after spraying disinfectants(CaviCide) within 5 minutes and effective bacteria control was retained after 15 minutes. There was significant difference between the disinfecting efficiency of CaviCide and glutaraldehyde. The effect of disinfection with spraying disinfectants (CaviCide) on dental models is quick and effective.

  12. Low pressure plasma spray deposition of W-Ni-Fe alloy

    International Nuclear Information System (INIS)

    Mutasim, Z.Z.; Smith, R.W.

    1991-01-01

    The production of net shape refractory metal structural preforms are increasing in importance in chemical processing, defense and aerospace applications. Conventional methods become limited for refractory metal processing due to the high melting temperatures and fabrication difficulties. Plasma spray forming, a high temperature process, has been shown to be capable of refractory metal powder consolidation in net shape products. The research reported here has evaluated this method for the deposition of heavy tungsten alloys. Plasma Melted Rapidly Solidified (PMRS) W 8%Ni-2%Fe refractory metal powders were spray formed using vacuum plasma spray (VPS) process and produced 99% dense, fine grain and homogeneous microstructures. In this paper plasma operating parameters (plasma arc gas type and flowrate plasma gun nozzle size and spray distance) were studied and their effects on deposit's density and microstructure are reported

  13. WWER-type NPP spray ponds screen

    International Nuclear Information System (INIS)

    Nikolova, M.; Jordanov, M.; Denev, J.; Markov, D.

    2003-01-01

    The objective of this study is to develop a protection screen of WWER-type NPP spray ponds. The screen design is to ensure reduction of the water droplets blown by the wind and, if possible, their return back to the spray ponds. The cooling capacity of the ponds is not to be changed below the design level for safety reasons. Computational fluid dynamics analysis is used to assess the influence of each design variant on the behavior of the water droplets distribution. Two variants are presented here. The one with plants is found not feasible. The second variant, with steel screen and terrain profile modification is selected for implementation. (author)

  14. Assessment of differences between products obtained in conventional and vacuum spray dryer

    Directory of Open Access Journals (Sweden)

    Fernanda de Melo RAMOS

    Full Text Available Abstract In this work, an experimental unit of a vacuum spray dryer was built. This prototype attempted to combine the advantages of freeze-drying (drying at low temperatures due to vacuum and spray drying (increase of surface area aiming the improvement of heat transfer efficiency. Maltodextrin solutions were dried in the vacuum operated equipment and in conventional spray dryer. The vacuum spray dryer system allowed obtaining powder at low temperatures due to the lowering of pressure conditions (2-5 kPa inside the drying chamber. The products obtained in the two systems were characterized and compared for particle size distribution, moisture content, water activity, bulk density and solubility in water. The processes yields were also evaluated and compared. The vacuum spray dryer system allowed the production of larger, more soluble and less dense particles than those obtained in the conventional configuration of the equipment, resulting in drier and, therefore, with lower water activity particles. Thus, the use of the vacuum spray dryer as a drying technique may be an alternative for the production of powder rich in thermosensitive compounds.

  15. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters.

    Science.gov (United States)

    Lanjekar, R D; Deshmukh, D

    2018-02-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n -heptane, n -dodecane and n -tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n -heptane fuel is closely following diesel spray tip penetration along with that of n -tetradecane and n -dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.

  16. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters

    Science.gov (United States)

    Lanjekar, R. D.; Deshmukh, D.

    2018-02-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n-heptane, n-dodecane and n-tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.

  17. Automatic macroscopic characterization of diesel sprays by means of a new image processing algorithm

    Science.gov (United States)

    Rubio-Gómez, Guillermo; Martínez-Martínez, S.; Rua-Mojica, Luis F.; Gómez-Gordo, Pablo; de la Garza, Oscar A.

    2018-05-01

    A novel algorithm is proposed for the automatic segmentation of diesel spray images and the calculation of their macroscopic parameters. The algorithm automatically detects each spray present in an image, and therefore it is able to work with diesel injectors with a different number of nozzle holes without any modification. The main characteristic of the algorithm is that it splits each spray into three different regions and then segments each one with an individually calculated binarization threshold. Each threshold level is calculated from the analysis of a representative luminosity profile of each region. This approach makes it robust to irregular light distribution along a single spray and between different sprays of an image. Once the sprays are segmented, the macroscopic parameters of each one are calculated. The algorithm is tested with two sets of diesel spray images taken under normal and irregular illumination setups.

  18. Research into Thermal Sprayed Coatings with Ultrasonic Methods

    Directory of Open Access Journals (Sweden)

    Justinas Gargasas

    2012-01-01

    Full Text Available Research on thermal sprayed coatings with ultrasonic methods is the main object of this thesis. Metal surface coating was applied to modify its mechanical and physical-chemical properties and resistance to external impact and improve aesthetics. Spraying was carried out by scanning the rotating sample of 30 cm/s speed. Surface microstructure, ultrasonic thickness, porosity, micro hardness and surface modulus tests performed. Conclusions were formulated.Article in Lithuanian

  19. Effects of spray drying on antioxidant capacity and anthocyanidin content of blueberry by-products.

    Science.gov (United States)

    Lim, Kar; Ma, Mitzi; Dolan, Kirk D

    2011-09-01

    The effect of spray drying on degradation of nutraceutical components in cull blueberry extract was investigated. Samples collected before and after spray drying were tested for antioxidant capacity using oxygen radical absorbance capacity (ORAC(FL) ) and total phenolics; and for individual anthocyanidins. In Study 1, four different levels of maltodextrin (blueberry solids to maltodextrin ratios of 5: 95, 10: 90, 30: 70, and 50: 50) were spray dried a pilot-scale spray dryer. There was significantly higher retention of nutraceutical components with increased levels of maltodextrin indicating a protective effect of maltodextrin on the nutraceutical components during spray drying. In Study 2, the air inlet temperature of the spray dryer was kept constant for all runs at 150 °C, with 2 different outlet temperatures of 80 and 90 °C. The degradation of nutraceutical components was not significantly different at the 2 selected outlet temperatures. ORAC(FL) reduction for blueberry samples after spray drying was 66.3% to 69.6%. After spray drying, total phenolics reduction for blueberry was 8.2% to 17.5%. Individual anthocyanidin reduction for blueberry was 50% to 70%. The experimental spray dried powders compared favorably to commercial blueberry powders. Results of the study show that use of blueberry by-products is feasible to make a value-added powder. Results can be used by producers to estimate final nutraceutical content of spray-dried blueberry by-products. © 2011 Institute of Food Technologists®

  20. Design and performance of a full-scale spray calciner for nonradioactive high-level-waste-vitrification studies

    International Nuclear Information System (INIS)

    Miller, F.A.

    1981-06-01

    In the spray calcination process, liquid waste is spray-dried in a heated-wall spray dryer (termed a spray calciner), and then it may be combined in solid form with a glass-forming frit. This mixture is then melted in a continuous ceramic melter or in an in-can melter. Several sizes of spray calciners have been tested at PNL- laboratory scale, pilot scale and full scale. Summarized here is the experience gained during the operation of PNL's full-scale spray calciner, which has solidified approx. 38,000 L of simulated acid wastes and approx. 352,000 L of simulated neutralized wastes in 1830 h of processing time. Operating principles, operating experience, design aspects, and system descriptions of a full-scale spray calciner are discussed. Individual test run summaries are given in Appendix A. Appendices B and C are studies made by Bechtel Inc., under contract by PNL. These studies concern, respectively, feed systems for the spray calciner process and a spray calciner vibration analysis. Appendix D is a detailed structural analysis made at PNL of the spray calciner. These appendices are included in the report to provide a complete description of the spray calciner and to include all major studies made concerning PNL's full-scale spray calciner

  1. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    Science.gov (United States)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  2. Application of laser assisted cold spraying process for metal deposition

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-02-01

    Full Text Available Laser assisted cold spraying (LACS) process is a hybrid technique that uses laser and cold spray to deposit solid powders on metal substrates. For bonding to occur, the particle velocities must be supersonic which are achieved by entraining...

  3. Residual stress measurements of 2-phase sprayed coating layer

    International Nuclear Information System (INIS)

    Nishida, Masayuki; Hanabusa, Takao

    1997-01-01

    In a series of the already reported single phase metal and ceramic melt sprayed films, on two phase melt sprayed films, their stress and thermal stress changes due to their bending load are tried to test. In order to prepare two phase state, austenitic stainless steel wire is used by a laser melt spraying method. In this method, CO 2 laser is used for a thermal source, and proceeding direction of its laser is selected to cross melt spraying direction. As a result, the following facts can be elucidated. The stress values at α- and γ-phase in the stainless steel film are linearly responsive to the bending load, and the stress change in α-phase is smaller than that in γ-phase. In a heat and cool cycle, α-phase shows a trend of extension with increasing temperature but γ-phase shows a trend of compression inversely. And, stress behavior at α- and γ-phases in the stainless steel film does not agree with a mixing rule in common two-phase materials. (G.K.)

  4. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses.

    Science.gov (United States)

    Garcerá, Cruz; Moltó, Enrique; Chueca, Patricia

    2017-12-01

    Only a portion of the water volume sprayed is deposited on the target when applying plant protection products with air-assisted axial-fan airblast sprayers in high growing crops. A fraction of the off-target losses deposits on the ground, but droplets also drift away from the site. This work aimed at assessing the spray distribution to different compartments (tree canopy, ground and air) during pesticide applications in a Mediterranean citrus orchard. Standard cone nozzles (Teejet D3 DC35) and venturi drift reducing nozzles (Albuz TVI 80 03) were compared. Applications were performed with a conventional air-assisted sprayer, with a spray volume of around 3000lha -1 in a Navel orange orchard. Brilliant Sulfoflavine (BSF) was used as a tracer. Results showed that only around 46% of the applied spray was deposited on the target trees and around 4% of the spray was deposited on adjacent trees from adjoining rows independently of the nozzle type. Applications with standard nozzles produced more potential airborne spray drift (23%) than those with the drift reducing nozzles (17%) but fewer direct losses to the ground (22% vs. 27%). Indirect losses (sedimenting spray drift) to the ground of adjacent paths were around 7-9% in both cases. The important data set of spray distribution in the different compartments around sprayed orchard (air, ground, vegetation) generated in this work is highly useful as input source of exposure to take into account for the risk assessment in Mediterranean citrus scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Electroform/Plasma-Spray Laminates for X-Ray Optics

    Science.gov (United States)

    Ulmer, Melville P.; Graham, Michael; Vaynman, Semyon

    2007-01-01

    Electroform/plasma-spray laminates have shown promise as lightweight, strong, low-thermal-expansion components for xray optics. The basic idea is to exploit both (1) the well-established art of fabrication of optical components by replication and (2) plasma spraying as a means of reinforcing a thin replica optic with one or more backing layer(s) having tailorable thermomechanical properties. In x-ray optics as in other applications, replication reduces the time and cost of fabrication because grinding and polishing can be limited to a few thick masters, from which many lightweight replicas can thereafter be made. The first step in the fabrication of a component of the type in question is to make a replica optic by electroforming a thin layer of nickel on a master. Through proper control of the electroforming process conditions, it is possible to minimize residual stress and, hence, to minimize distortion in the replica. Next, a powder comprising ceramic particles coated with a metal compatible with the electroformed nickel is plasma-sprayed onto the backside of the nickel replica. Then through several repetitions and variations of the preceding steps or perhaps a small compressive stress, alternating layers of electroformed nickel and plasma-sprayed metal-coated ceramic powder are deposited. The thicknesses of the layers and the composition of the metal-coated ceramic powder are chosen to optimize the strength, areal mass density, and toughness of the finished component. An important benefit of using both electroforming and plasma spraying is the possibility of balancing stresses to a minimum level, which could be zero or perhaps a small net compressive stress designed to enhance the function of the component in its intended application.

  6. Effect of nozzle geometry for swirl type twin-fluid water mist nozzle on the spray characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Soon Hyun; Kim, Do Yeon; Kim, Dong Keon [Pusan National University, Busan (Korea, Republic of); Kim, Bong Hwan [Jinju National University, Jinju (Korea, Republic of)

    2011-07-15

    Experimental investigations on the atomization characteristics of twin-fluid water mist nozzle were conducted using particle image velocimetry (PIV) system and particle motion analysis system (PMAS). The twin-fluid water mist nozzles with swirlers designed two types of swirl angles such as 0 .deg. , 90 .deg. and three different size nozzle hole diameters such as 0.5mm, 1mm, 1.5mm were employed. The experiments were carried out by the injection pressure of water and air divided into 1bar, 2bar respectively. The droplet size of the spray was measured using PMAS. The velocity and turbulence intensity were measured using PIV. The velocity, turbulence intensity and SMD distributions of the sprays were measured along the centerline and radial direction. As the experimental results, swirl angle controlled to droplet sizes. It was found that SMD distribution decreases with the increase of swirl angle. The developed twin-fluid water mist nozzle was satisfied to the criteria of NFPA 750, Class 1. It was proven that the developed nozzle under low pressures could be applied to fire protection system.

  7. Effect of nozzle geometry for swirl type twin-fluid water mist nozzle on the spray characteristic

    International Nuclear Information System (INIS)

    Yoon, Soon Hyun; Kim, Do Yeon; Kim, Dong Keon; Kim, Bong Hwan

    2011-01-01

    Experimental investigations on the atomization characteristics of twin-fluid water mist nozzle were conducted using particle image velocimetry (PIV) system and particle motion analysis system (PMAS). The twin-fluid water mist nozzles with swirlers designed two types of swirl angles such as 0 .deg. , 90 .deg. and three different size nozzle hole diameters such as 0.5mm, 1mm, 1.5mm were employed. The experiments were carried out by the injection pressure of water and air divided into 1bar, 2bar respectively. The droplet size of the spray was measured using PMAS. The velocity and turbulence intensity were measured using PIV. The velocity, turbulence intensity and SMD distributions of the sprays were measured along the centerline and radial direction. As the experimental results, swirl angle controlled to droplet sizes. It was found that SMD distribution decreases with the increase of swirl angle. The developed twin-fluid water mist nozzle was satisfied to the criteria of NFPA 750, Class 1. It was proven that the developed nozzle under low pressures could be applied to fire protection system

  8. Some features of spray breakup in effervescent atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Gadgil, Hrishikesh P.; Raghunandan, B.N. [Indian Institute of Science, Department of Aerospace Engineering, Bangalore (India)

    2011-02-15

    The near orifice spray breakup at low GLR (gas to liquid ratio by mass) values in an effervescent atomizer is studied experimentally using water as a simulant and air as atomizing gas. From the visualizations, the near orifice spray structures are classified into three modes: discrete bubble explosions, continuous bubble explosions and annular conical spray. The breakup of the spray is quantified in terms of the mean bubble bursting distance from the orifice. The parametric study indicates that the mean bubble bursting distance mainly depends on airflow rate, jet diameter and mixture velocity. It is also observed that the jet diameter has a dominant effect on the bubble bursting distance when compared to mixture velocity at a given airflow rate. The mean bubble bursting distance is shown to be governed by a nondimensional two-phase flow number consisting of all the aforementioned parameters. The location of bubble bursting is found to be highly unsteady spatially, which is influenced by flow dynamics inside the injector. It is proposed that this unsteadiness in jet breakup length is a consequence of varying degree of bubble expansion caused due to the intermittent occurrence of single phase and two-phase flow inside the orifice. (orig.)

  9. Spray drying test of simulated borated waste solutions

    International Nuclear Information System (INIS)

    An Hongxiang; Zhou Lianquan; Fan Zhiwen; Sun Qi; Lin Xiaolong

    2007-01-01

    Performance and the effecting factors of spray drying of simulated borated waste solutions is studied for three contaeting methods between the atomized beads and the heated air, in which boron concentration is around 21000 ppm. The contacting modes are centrifugal atomizing co-current flow, pneumatic atomizing co-current flow and mixed flow. The results show that a free-flowing product in all these tests when the temperature of the solutions is between 62 degree C and 64 degree C, the inlet temperature of the spray drying chamber is between 210 degree C and 220 degree C, the temperature of the outlet of the spray drying chamber is between 110 and 120 degree C, the flow rate of the pressure air is 8.0 m 3 /h, the rotational speed of the centrifugal atomizer is 73.0 m/s. The diameters of the powder product which account for 95% of the feed range from 0.356 mm to 0.061 mm. The production capacity and water content in the powder increase in the order of pneumatic atomizing co-current flow, mixed flow and centrifugal atomizing co-current flow. The volume reduction coeffecient of spray drying is in the ranged of 0.22 and 0.27. (authors)

  10. Development of Process for Plasma Spray:Case Study for Molybdenum

    Czech Academy of Sciences Publication Activity Database

    Sampath, S.; Jiang, X.; Kulkarni, A.; Matějíček, Jiří; Gilmore, D. L.; Neiser, R. A.

    2003-01-01

    Roč. 348, 1-2 (2003), s. 54-66 ISSN 0921-5093 Grant - others:NSF(US) DMR9632570 Institutional research plan: CEZ:AV0Z2043910 Keywords : process maps, plasma spray, thermal spray Subject RIV: JG - Metallurgy Impact factor: 1.365, year: 2003

  11. 21 CFR 524.1662a - Oxytetracycline hydrochloride and hydrocortisone spray.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Oxytetracycline hydrochloride and hydrocortisone... NEW ANIMAL DRUGS § 524.1662a Oxytetracycline hydrochloride and hydrocortisone spray. (a) Specifications. Each 3-ounce unit of oxytetracycline hydrochloride and hydrocortisone spray contains 300...

  12. Spray drying for preservation of erythrocytes: effect of atomization on hemolysis.

    Science.gov (United States)

    McLean, Mary; Han, Xiao-Yue; Higgins, Adam Z

    2013-04-01

    Spray drying has the potential to enable storage of erythrocytes at room temperature in the dry state. The spray drying process involves atomization of a liquid into small droplets and drying of the droplets in a gas stream. In this short report, we focus on the atomization process. To decouple atomization from drying, erythrocyte suspensions were sprayed with a two-fluid atomizer nozzle using humid nitrogen as the atomizing gas. The median droplet size was less than 100 μm for all of the spray conditions investigated, indicating that the suspensions were successfully atomized. Hemolysis was significantly affected by the hematocrit of the erythrocyte suspension, the suspension flow rate, and the atomizing gas flow rate (pspray drying may be a feasible option for erythrocyte biopreservation.

  13. Powder consolidation using cold spray process modeling and emerging applications

    CERN Document Server

    Moridi, Atieh

    2017-01-01

    This book first presents different approaches to modeling of the cold spray process with the aim of extending current understanding of its fundamental principles and then describes emerging applications of cold spray. In the coverage of modeling, careful attention is devoted to the assessment of critical and erosion velocities. In order to reveal the phenomenological characteristics of interface bonding, severe, localized plastic deformation and material jet formation are studied. Detailed consideration is also given to the effect of macroscopic defects such as interparticle boundaries and subsequent splat boundary cracking on the mechanical behavior of cold spray coatings. The discussion of applications focuses in particular on the repair of damaged parts and additive manufacturing in various disciplines from aerospace to biomedical engineering. Key aspects include a systematic study of defect shape and the ability of cold spray to fill the defect, examination of the fatigue behavior of coatings for structur...

  14. Factors affecting the development of sprays produced by multihole injectors for direct-injection engine applications

    OpenAIRE

    Van Romunde, R. Z.

    2011-01-01

    The spray form development from a state of the art multi-hole injector for gasoline direct injection internal combustion engines is examined to attempt to determine the thermo-fluid dynamics affecting the spray development. The current state of knowledge regarding spray break-up and the interactivity of the factors on spray form are detailed. The spray under investigation was injected into purposely designed quiescent chambers to decouple the effects of the fluid mechanics on s...

  15. A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties.

    Science.gov (United States)

    Krishnaiah, Duduku; Nithyanandam, Rajesh; Sarbatly, Rosalam

    2014-01-01

    Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.

  16. Stochastic model of the near-to-injector spray formation assisted by a high-speed coaxial gas jet

    Energy Technology Data Exchange (ETDEWEB)

    Gorokhovski, M [Laboratoire de Mecanique des Fluides et d' Acoustique, CNRS-Ecole Centrale de Lyon-INSA Lyon-Universite Claude Bernard Lyon 1, 36 Avenue Guy de Collongue, 69131 Ecully Cedex (France); Jouanguy, J [Laboratoire de Mecanique de Lille, Ecole Centrale de Lille, Blvd Paul Langevin, 59655 Villeneuve d' Ascq Cedex (France); Chtab-Desportes, A [CD-adapco, 31 rue Delizy 93698 Pantin Cedex (France)], E-mail: mikhael.gorokhovski@ec-lyon.fr

    2009-06-01

    The stochastic model of spray formation in the vicinity of the air-blast atomizer has been described and assessed by comparison with measurements. In this model, the 3D configuration of a continuous liquid core is simulated by spatial trajectories of specifically introduced stochastic particles. The stochastic process is based on the assumption that due to a high Weber number, the exiting continuous liquid jet is depleted in the framework of statistical universalities of a cascade fragmentation under scaling symmetry. The parameters of the stochastic process have been determined according to observations from Lasheras's, Hopfinger's and Villermaux's scientific groups. The spray formation model, based on the computation of spatial distribution of the probability of finding the non-fragmented liquid jet in the near-to-injector region, is combined with the large-eddy simulation (LES) in the coaxial gas jet. Comparison with measurements reported in the literature for different values of the gas-to-liquid dynamic pressure ratio showed that the model predicts correctly the distribution of liquid in the close-to-injector region, the mean length of the liquid core, the spray angle and the typical size of droplets in the far field of spray.

  17. Thermodynamic consequences of sodium spray fires in closed containments. Pt. 1

    International Nuclear Information System (INIS)

    Cherdron, W.

    1985-06-01

    With respect to core disruptive accidents in LMFBR's liquid sodium might be sprayed with high pressure through the head of the tank into oxygen-containing atmosphere. A series of large spray fire experiments has been performed under accident conditions in the FAUNA facility of LAF I in the KfK. The experimental results showed that the overpressure did not exceed 1.8 bar at the experiment, spraying 60 kg Na in 1.5 seconds. (orig.) [de

  18. Effects of Spray Drying on Physicochemical Properties of Chitosan Acid Salts

    OpenAIRE

    Cervera, Mirna Fernández; Heinämäki, Jyrki; de la Paz, Nilia; López, Orestes; Maunu, Sirkka Liisa; Virtanen, Tommi; Hatanpää, Timo; Antikainen, Osmo; Nogueira, Antonio; Fundora, Jorge; Yliruusi, Jouko

    2011-01-01

    The effects of spray-drying process and acidic solvent system on physicochemical properties of chitosan salts were investigated. Chitosan used in spray dryings was obtained by deacetylation of chitin from lobster (Panulirus argus) origin. The chitosan acid salts were prepared in a laboratory-scale spray drier, and organic acetic acid, lactic acid, and citric acid were used as solvents in the process. The physicochemical properties of chitosan salts were investigated by means of solid-state CP...

  19. Online characterization of nano-aerosols released by commercial spray products using SMPS–ICPMS coupling

    Energy Technology Data Exchange (ETDEWEB)

    Losert, Sabrina; Hess, Adrian [Empa Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Analytical Chemistry (Switzerland); Ilari, Gabriele [Empa Swiss Federal Laboratories for Materials Science and Technology, Electron Microscopy Center (Switzerland); Goetz, Natalie von, E-mail: natalie.von.goetz@chem.ethz.ch; Hungerbuehler, Konrad [ETH Zürich Swiss Federal Institute of Technology Zürich, Institute for Chemical and Bioengineering (Switzerland)

    2015-07-15

    Nanoparticle-containing sprays are a critical class of consumer products, since human exposure may occur by inhalation of nanoparticles (NP) in the generated aerosols. In this work, the suspension and the released aerosol of six different commercially available consumer spray products were analyzed. Next to a broad spectrum of analytical methods for the characterization of the suspension, a standardized setup for the analysis of aerosol has been used. In addition, a new online coupling technique (SMPS–ICPMS) for the simultaneous analysis of particle size and elemental composition of aerosol particles has been applied. Results obtained with this new method were confirmed by other well-established techniques. Comparison of particles in the original suspensions and in the generated aerosol showed that during spraying single particles of size less than 20 nm had been formed, even though in none of the suspensions particles of size less than 280 nm were present (Aerosol size range scanned: 7–300 nm). Both pump sprays and propellant gas sprays were analyzed and both released particles in the nm size range. Also, both water-based and organic solvent-based sprays released NP. However, a trend was observed that spraying an aqueous suspension contained in a pump spray dispenser after drying resulted in bigger agglomerates than spraying organic suspensions in propellant gas dispensers.

  20. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M T; Kaario, O T [VTT Energy, Espoo (Finland)

    1998-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  1. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  2. Impact of nanocrystal spray deposition on inorganic solar cells.

    Science.gov (United States)

    Townsend, Troy K; Yoon, Woojun; Foos, Edward E; Tischler, Joseph G

    2014-05-28

    Solution-synthesized inorganic cadmium telluride nanocrystals (∼4 nm; 1.45 eV band gap) are attractive elements for the fabrication of thin-film-based low-cost photovoltaic (PV) devices. Their encapsulating organic ligand shell enables them to be easily dissolved in organic solvents, and the resulting solutions can be spray-cast onto indium-tin oxide (ITO)-coated glass under ambient conditions to produce photoactive thin films of CdTe. Following annealing at 380 °C in the presence of CdCl2(s) and evaporation of metal electrode contacts (glass/ITO/CdTe/Ca/Al), Schottky-junction PV devices were tested under simulated 1 sun conditions. An improved PV performance was found to be directly tied to control over the film morphology obtained by the adjustment of spray parameters such as the solution concentration, delivery pressure, substrate distance, and surface temperature. Higher spray pressures produced thinner layers (spray-cast Schottky devices rivaled those prepared by conventional spin-coating, showing Jsc = 14.6 ± 2.7 mA cm(-2), Voc = 428 ± 11 mV, FF = 42.8 ± 1.4%, and Eff. = 2.7 ± 0.5% under 1 sun illumination. This optimized condition of CdTe spray deposition was then applied to heterojunction devices (ITO/CdTe/ZnO/Al) to reach 3.0% efficiency after light soaking under forward bias. The film thickness, surface morphology, and light absorption were examined with scanning electron microscopy, optical profilometry, and UV/vis spectroscopy.

  3. Plasma-spraying synthesis of high-performance photocatalytic TiO2 coatings

    International Nuclear Information System (INIS)

    Takahashi, Yasuo; Maeda, Masakatsu; Ohmori, Akira; Shibata, Yoshitaka; Miyano, Yasuyuki; Murai, Kensuke

    2014-01-01

    Anatase (A-) TiO 2 is a photocatalytic material that can decompose air-pollutants, acetaldehyde, bacteria, and so on. In this study, three kinds of powder (A-TiO 2 without HAp, TiO 2 + 10mass%HAp, and TiO 2 +30mass%HAp, where HAp is hydroxyapatite and PBS is polybutylene succinate) were plasma sprayed on biodegradable PBS substrates. HAp powder was mixed with A-TiO 2 powder by spray granulation in order to facilitate adsorption of acetaldehyde and bacteria. The crystal structure was almost completely maintained during the plasma spray process. HAp enhanced the decomposition of acetaldehyde and bacteria by promoting adsorption. A 10mass% HAp content was the most effective for decomposing acetaldehyde when plasma preheating of the PBS was not carried out before the plasma spraying. The plasma preheating of PBS increased the yield rate of the spray process and facilitated the decomposition of acetaldehyde by A-TiO 2 coatings without HAp. HAp addition improved photocatalytic sterilization when plasma preheating of the PBS was performed

  4. Controlling in situ crystallization of pharmaceutical particles within the spray dryer.

    Science.gov (United States)

    Woo, Meng Wai; Lee, May Ginn; Shakiba, Soroush; Mansouri, Shahnaz

    2017-11-01

    Simultaneous solidification and in situ crystallization (or partial crystallization) of droplets within the drying chamber are commonly encountered in the spray drying of pharmaceuticals. The crystallinity developed will determine the functionality of the powder and its stability during storage. This review discusses strategies that can be used to control the in situ crystallization process. Areas covered: The premise of the strategies discussed focuses on the manipulation of the droplet drying rate relative to the timescale of crystallization. This can be undertaken by the control of the spray drying operation, by the use of volatile materials and by the inclusion of additives. Several predictive approaches for in situ crystallization control and new spray dryer configuration strategies are further discussed. Expert opinion: Most reports, hitherto, have focused on the crystallinity of the spray dried material or the development of crystallinity during storage. More mechanistic understanding of the in situ crystallization process during spray drying is required to guide product formulation trials. The key challenge will be in adapting the mechanistic approach to the myriad possible formulations in the pharmaceutical industry.

  5. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2002-01-01

    nano-crystalline powders of ω(Al 2 O 3 ) = 95%, ω(TiO 2 ) = 3%, and ω(SiO 2 ) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) μm. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nano-structured ceramic coatings is significantly improved

  6. Ballistic Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies

    Science.gov (United States)

    2016-04-01

    3mm) of diesel sprays from a high-pressure single-hole fuel injector . Ballistic imaging of dodecane and methyl oleate sprays are reported...Porter, Sean P. Duran, Terence E. Parker. Picosecond Ballistic Imaging of Ligament Structures in the Near- Nozzle Region of Diesel Sprays, ILASS...Experiments in Fluids (12 2014) Sean Duran, Jason Porter, Terence Parker. Ballistic Imaging of a Diesel Injector Spray at High Temperature and

  7. A Two-Continua Approach to Eulerian Simulation of Water Spray

    DEFF Research Database (Denmark)

    Nielsen, Michael Bang; Østerby, Ole

    2013-01-01

    Physics based simulation of the dynamics of water spray - water droplets dispersed in air - is a means to increase the visual plausibility of computer graphics modeled phenomena such as waterfalls, water jets and stormy seas. Spray phenomena are frequently encountered by the visual effects industry...

  8. New generation of plasma-sprayed mullite coatings on silicon carbide

    Science.gov (United States)

    Lee, Kang N.; Miller, Robert A.; Jacobson, Nathan S.

    1995-01-01

    Mullite is promising as a protective coating for silicon-based ceramics in aggressive high-temperature environments. Conventionally plasma-sprayed mullite on SiC tends to crack and debond on thermal cycling. It is shown that this behavior is due to the presence of amorphous mullite in the conventionally sprayed mullite. Heating the SiC substrate during the plasma spraying eliminated the amorphous phase and produced coatings with dramatically improved properties. The new coating exhibits excellent adherence and crack resistance under thermal cycling between room temperature and 1000 to 1400 C. Preliminary tests showed good resistance to Na2CO3-induced hot corrosion.

  9. Exergy analysis of encapsulation of photochromic dye by spray drying

    Science.gov (United States)

    Çay, A.; Akçakoca Kumbasar, E. P.; Morsunbul, S.

    2017-10-01

    Application of exergy analysis methodology for encapsulation of photochromic dyes by spray drying was presented. Spray drying system was investigated considering two subsystems, the heater and the dryer sections. Exergy models for each subsystem were proposed and exergy destruction rate and exergy efficiency of each subsystem and the whole system were computed. Energy and exergy efficiency of the system were calculated to be 5.28% and 3.40%, respectively. It was found that 90% of the total exergy inlet was destroyed during encapsulation by spray drying and the exergy destruction of the heater was found to be higher.

  10. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques

    Science.gov (United States)

    Lu, Chun [Monroeville, PA

    2012-04-24

    A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.

  11. Measurement of Spray Drift with a Specifically Designed Lidar System.

    Science.gov (United States)

    Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R

    2016-04-08

    Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R² > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift.

  12. Vapocoolant Spray Effectiveness on Arterial Puncture Pain: A Randomized Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Shervin Farahmand

    2017-02-01

    Full Text Available Arterial blood gas (ABG sampling is a painful procedure with no perfect technique for quelling the discomfort. An ideal local anesthesia should be rapid, easy to learn, inexpensive, and noninvasive. This study was aimed to compare pain levels from ABG sampling performed with vapocoolant spray in comparison to placebo. We hypothesized that pretreatment with the vapocoolant would reduce the pain of arterial puncture by at least 1 point on a 10 point verbal numeric scale. We have evaluated the effectiveness of a vapocoolant spray in achieving satisfactory pain control in patients undergoing ABG sampling in this randomized placebo controlled trial. Eighty patients were randomized to 2 groups: group A, who received vapocoolant spray, and group B, who received water spray as placebo (Control group. Puncture and spray application pain was assessed with numerical rating scale (0, the absence of pain; 10, greatest imaginable pain and number of attempts was recorded. The pain score during ABG sampling was not lower in group A compared with group B significantly (4.78±1.761 vs. 4.90±1.837; P:0.945. This study showed that while the spray exerts more application pain, the number of attempts required for ABG sampling was not significantly lower in group A compared with group B (1.38±0.54 vs. 1.53±0.68; P=0.372. Vapocoolant spray was not effective in ABG pain reduction, had milder application pain compared to placebo (P<0.05, but did not reduce sampling attempts. At present, this spray cannot be recommended for arterial puncture anesthesia, and further study on different timing is necessary.

  13. Effect of the number of calcium chloride sprays on 'Jonagold' apple quality

    Directory of Open Access Journals (Sweden)

    Paweł Wójcik

    2013-12-01

    Full Text Available The aim of this study was to examine effect of frequency of calcium chloride (CaCl2 sprays on 'Jonagold' apple (Malus domestica Borkh. quality. The experiment was carried out in 1996-1998 in the Experimental Orchard of the Research Institute of Pomology and Floriculture in Skierniewice. Apple trees were grafied on M.26 rootstock and planted in 1992 at a distance of 4 x 2 m on a sandy loam soil with high available phosphorus, potassium and magnesium contents. Four experimental treatments were applied: (i three sprays with CaCl2 solutions at 2, 10 and 18 weeks after full bloom, (ii six sprays with CaCl2 at 2, 6, 10, 14, 16 and 18 weeks after full bloom, (iii nine sprays with CaCl2 at 2, 4, 6, 8, 10, 12, 14, 16 and 18 weeks after full bloom and (iv control plot - trees unsprayed with CaCl2. The results showed that fruit Ca concentration increased with the number of CaCl2 sprays during the growing season. Apples nine-times sprayed with CaCl2 solutions were smaller, less mature at harvest and after storage, had lower titratable acidity and soluble solids contents after storage and were less sensitive to bitter pit, internal breakdown and Gloeosporium-rot compared to other treatments; however these effects were influenced by the growing season. Six CaCl2 sprays only in one year of the study increased fruit firmness after storage, fruit resistance to bitter pit and internal breakdown. Three CaCl2 sprays decreased bitter pit incidence; however this effect was found only in one investigated year.

  14. Nano crystalline high energy milled 5083 Al powder deposited using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.R., E-mail: mohammadreza.rokni@mines.sdsmt.edu [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Widener, C.A. [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Nardi, A.T. [United Technologies Research Center, East Hartford, CT (United States); Champagne, V.K. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD (United States)

    2014-06-01

    Electron microscopy and nanoindentation are used to investigate the relationship between microstructure and nanohardness of a non-cryomilled, nanocrystalline 5083 Al alloy powder before and after being deposited by cold spray. Microstructural investigations observed the presence of nano grains in the powder microstructure, ranging from 20 to 80 nm and with a typical grain size of 40–50 nm. It was also revealed that the nanocrystalline structure of the powder is retained after cold spraying. As a result, almost no change in nanohardness was indicated between the powder and the particles interior in the cold sprayed layer. However, hardness was substantially higher in some regions in the cold sprayed layer, which was attributed to the particle–particle interfaces or other areas with very small nano grain size. The presence of some un-joined particle remnant lines was also found in the deposition and explained through Critical Velocity Ratio (CVR) of powder particles. Although cold spray is a high deformation process, there is little evidence of dislocations within the nanograins of the cold sprayed layer. The latter observation is rationalized through intragranular dislocation slip and recovery mechanisms.

  15. The feasibility study of hot cell decontamination by the PFC spray method

    International Nuclear Information System (INIS)

    Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon

    2008-01-01

    The characteristics of per-fluorocarbon compounds (PFC) are colorless, non-toxic, easily vaporized and nonflammable. Also, some of them are liquids of a high density, low surface tension, low latent heat and low specific heat. These particular chemical and physical properties of fluoro-organic compounds permit their use in very different fields such as electronics, medicine, tribology, nuclear and material science. The Sonatol process was developed under a contract with the DOE. The Sonatol process uses an ultrasonic agitation in a PFC solution that contains a fluorinated surfactant to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to be reused indefinitely. They applied the Sonatol process to the decontamination of a heterogeneous legacy Pu-238 waste that exhibited an excessive hydrogen gas generation, which prevents a transportation of such a waste to a Waste Isolation Pilot Plant. Korea Atomic Energy Research Institute (KAERI) is developing dry decontamination technologies applicable to a decontamination of a highly radioactive area loosely contaminated with radioactive particles. This contamination has occurred as a result of an examination of a post-irradiated material or the development of the DUPIC process. The dry decontamination technologies developed are the carbon dioxide pellet spray method and the PFC spray method. As a part of the project, PFC ultrasonic decontamination technology was developed in 2004. The PFC spray decontamination method which is based on the test results of the PFC ultrasonic method has been under development since 2005. The developed PFC spray decontamination equipment consists of four modules (spray, collection, filtration and distillation). Vacuum cup of the collection module gathers the contaminated PFC solution, then the solution is moved to the filtration module and it is recycled. After a multiple recycling of the spent PFC solution, it is purified in the distillation

  16. Trajectory and velocity measurement of a particle in spray by digital holography

    Energy Technology Data Exchange (ETDEWEB)

    Lue Qieni; Chen Yiliang; Yuan Rui; Ge Baozhen; Gao Yan; Zhang Yimo

    2009-12-20

    We present a method for the trajectory and the velocity measurement of a particle in spray by digital holography. Based on multiple exposure digital in-line holography, a sequence of digital holograms of a dynamic spray particle field at different times are recorded with a CW laser and a high-speed CCD. The time evolution of the serial positions of particles, i.e., the motion trajectories of the particles, is obtained by numerically reconstructing the synthetic hologram of a sequence of digital holograms. The center coordinate (x,y) of each particle image can be extracted using a Hough transform and subpixel precision computing, and the velocity of an individual particle can also be obtained, which is then applied to measuring the velocity of diesel spray and alcohol spray. The research shows that the method presented in this paper for measuring spray field is feasible.

  17. Plasma sprayed alumina-titania coatings

    International Nuclear Information System (INIS)

    Steeper, T.J.; Rotolico, A.J.; Nerz, J.E.; Riggs, W.L. II; Varacalle, D.J. Jr.; Wilson, G.C.

    1992-01-01

    This paper presents an experimental study of the air plasma spraying (APS) of alumina-titania powder using argon-hydrogen working gases. This powder system is being used in the fabrication of heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic testing. Experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical spray parameters in a systematic design of experiments in order to display the range of plasma processing conditions and their effect on the resultant coatings. The coatings were characterized by hardness and electrical tests, surface profilometry, image analysis, optical metallography, and x-ray diffraction. Coating qualities are discussed with respect to dielectric strength, hardness, porosity, surface roughness, deposition efficiency, and microstructure. attempts are made to correlate the features of the coatings with the changes in operating parameters

  18. Flow structure of steam-water mixed spray

    International Nuclear Information System (INIS)

    Sanada, Toshiyuki; Mitsuhashi, Yuki; Mizutani, Hiroya; Saito, Takayuki

    2010-01-01

    In this study, the flow structure of a steam-water mixed spray is studied both numerically and experimentally. The velocity and pressure profiles of single-phase flow are calculated using numerical methods. On the basis of the calculated flow fields, the droplet behavior is predicted by a one-way interaction model. This numerical analysis reveals that the droplets are accelerated even after they are sprayed from the nozzle. Experimentally, the mixed spray is observed using an ultra-high-speed video camera, and the velocity field is measured by using the oarticle image velocimetry (PIV) technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, the mixing process of steam and water and the atomization process of a liquid film are observed using a transparent nozzle. High-speed photography observations reveal that the flow inside the nozzle is annular flow and that most of the liquid film is atomized at the nozzle throat and nozzle outlet. Finally, the optimum mixing method for steam and water is determined.

  19. Flow structure of steam-water mixed spray

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Toshiyuki, E-mail: ttsanad@ipc.shizuoka.ac.j [Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka (Japan); Mitsuhashi, Yuki; Mizutani, Hiroya; Saito, Takayuki [Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka (Japan)

    2010-12-15

    In this study, the flow structure of a steam-water mixed spray is studied both numerically and experimentally. The velocity and pressure profiles of single-phase flow are calculated using numerical methods. On the basis of the calculated flow fields, the droplet behavior is predicted by a one-way interaction model. This numerical analysis reveals that the droplets are accelerated even after they are sprayed from the nozzle. Experimentally, the mixed spray is observed using an ultra-high-speed video camera, and the velocity field is measured by using the oarticle image velocimetry (PIV) technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, the mixing process of steam and water and the atomization process of a liquid film are observed using a transparent nozzle. High-speed photography observations reveal that the flow inside the nozzle is annular flow and that most of the liquid film is atomized at the nozzle throat and nozzle outlet. Finally, the optimum mixing method for steam and water is determined.

  20. Some aspects of numerical analysis of turbulent gaseous and spray combustion

    International Nuclear Information System (INIS)

    Takagi, T.

    1991-01-01

    In this paper numerical calculations and analysis on turbulent non-premixed gaseous and spray combustion are reviewed. Attentions were paid to the turbulent flow and combustion modeling applicable to predicting the flow, mixing and combustion of gaseous fuels and sprays. Some of the computed results of turbulent gaseous non-premixed (diffusion) flames with and without swirl and transient spray combustion were compared with experimental ones to understand the processes in the flame and to assure how the computations predict the experiments

  1. PDF modelling and particle-turbulence interaction of turbulent spray flames

    NARCIS (Netherlands)

    Beishuizen, N.A.

    2008-01-01

    Turbulent spray flames can be found in many applications, such as Diesel engines, rocket engines and power plants. The many practical applications are a motivation to investigate the physical phenomena occurring in turbulent spray flames in detail in order to be able to understand, predict and

  2. DepositScan, a Scanning Program to Measure Spray Deposition Distributions

    Science.gov (United States)

    DepositScan, a scanning program was developed to quickly measure spray deposit distributions on water sensitive papers or Kromekote cards which are widely used for determinations of pesticide spray deposition quality on target areas. The program is installed in a portable computer and works with a ...

  3. Application of High Performance Computing for Simulations of N-Dodecane Jet Spray with Evaporation

    Science.gov (United States)

    2016-11-01

    is unlimited. 10 6. References 1. Malbec L-M, Egúsquiza J, Bruneaux G, Meijer M. Characterization of a set of ECN spray A injectors : nozzle to...sprays and develop a predictive theory for comparison to measurements in the laboratory of turbulent diesel sprays. 15. SUBJECT TERMS high...models into future simulations of turbulent jet sprays and develop a predictive theory for comparison to measurements in the lab of turbulent diesel

  4. Measuring water ingestion from spray exposures.

    Science.gov (United States)

    Sinclair, Martha; Roddick, Felicity; Nguyen, Thang; O'Toole, Joanne; Leder, Karin

    2016-08-01

    Characterisation of exposure levels is an essential requirement of health risk assessment; however for water exposures other than drinking, few quantitative exposure data exist. Thus, regulatory agencies must use estimates to formulate policy on treatment requirements for non-potable recycled water. We adapted the use of the swimming pool chemical cyanuric acid as a tracer of recreational water ingestion to permit detection of small water volumes inadvertently ingested from spray exposures. By using solutions of 700-1000 mg/L cyanuric acid in an experimental spray exposure scenario, we were able to quantify inadvertent water ingestion in almost 70% of participants undertaking a 10 min car wash activity using a high pressure spray device. Skin absorption was demonstrated to be negligible under the experimental conditions, and the measured ingestion volumes ranged from 0.06 to 3.79 mL. This method could be applied to a range of non-potable water use activities to generate exposure data for risk assessment processes. The availability of such empirical measurements will provide greater assurance to regulatory agencies and industry that potential health risks from exposure to non-potable water supplies are well understood and adequately managed to protect public health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Spray Drying Processing: granules production and drying kinetics of droplets

    International Nuclear Information System (INIS)

    Mondragon, R.; Julia, J. E.; Barba, A.; Jarque, J. C.

    2013-01-01

    Spray drying is a unit operation very common in many industrial processes. For each particular application, the resulting granulated material must possess determined properties that depend on the conditions in which the spray drying processing has been carried out, and whose dependence must be known in order to optimize the quality of the material obtained. The large number of variables that influence on the processes of matter and energy transfer and on the formation of granular material has required a detailed analysis of the drying process. Over the years there have been many studies on the spray drying processing of all kind of materials and the influence of process variables on the drying kinetics of the granulated material properties obtained. This article lists the most important works published for both the spray drying processing and the drying of individual droplets, as well as studies aimed at modeling the drying kinetics of drops. (Author)

  6. The Report of Suicide by Ingestion of Lidocaine Topical Spray

    Directory of Open Access Journals (Sweden)

    Hossein Hassanian-Moghaddam

    2014-09-01

    Full Text Available Background: Lidocaine is a local anesthetic and antiarrhythmic agent. There are reports on accidental and intentional cases of poisoning following injection of lidocaine while rare are the fatal cases realized after oral ingestion of lidocaine. Suicidal poisoning with lidocaine pharmaceutical formulations is rare since no pharmaceutical dosage forms for oral use are available except gels and sprays used as local anesthetics in dentistry. Cases: Three cases of suicidal poisoning by ingestion of the content of lidocaine topical spray are reported in the present study. The cases developed episodes of seizure requiring diazepam and other therapeutic modalities upon admission. Eventually, one of the cases expired. Conclusion: To the best of our knowledge, this study is the first reported case of suicidal poisoning after ingestion of this formulation which highlights the fact that lidocaine topical spray formulation may be used for committing suicide. Ingestion of lidocaine present in topical spray can induce varying levels of toxicity that can even be fatal.

  7. Detection of Corrosion Resistance of Components in Cyclic Salt Spray

    Directory of Open Access Journals (Sweden)

    Štefan Álló

    2015-01-01

    Full Text Available The aim of this research is, to investigate the influence of two types of cyclic salt spray tests on parts surface treated with galvanizing. On the selected components was performed the method Zn-Ni surface treating on the bath line. Subsequently were the components embedded in the corrosion chamber, where was performed two types of cyclic salt test. In the first test was performed 4 hour salt spray, 8 hours drying, 60 hours condensation and 24 hours drying. Once cycle lasted 96 hours, and it was repeated 4 times. During the second test was performed 2 hours salt spray, 2 hours condensation. The cycle was repeated 4 times, that means 96 hours. After the cycle was performed 72 hours free relaxation in the corrosion chamber, on 20–25 °C temperature. As the research showed, after the cyclic salt spray was no red corrosion on the selected components. The white corrosion appeared only slightly.

  8. Fabrication of polyacrylate core–shell nanoparticles via spray drying method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pengpeng, E-mail: chenpp@ahu.edu.cn [Anhui University, College of Chemistry and Chemical Engineering (China); Cheng, Zenghui; Chu, Fuxiang; Xu, Yuzhi; Wang, Chunpeng, E-mail: wangcpg@163.com [Chinese Academy of Forestry, Institute of Chemical Industry of Forest Products (China)

    2016-05-15

    Fine polyacrylate particles are thought to be environmental plastisols for car industry. However, these particles are mainly dried through demulsification of the latexes, which is not reproducible and hard to be scaled up. In this work, a spray drying method had been applied to the plastisols-used acrylate latex. By adjusting the core/shell ratio, spray drying process of the latex was fully studied. Scanning electronic microscopy observation of the nanoparticles before and after spray drying indicated that the core–shell structures could be well preserved and particles were well separated by spray drying if the shell was thick enough. Otherwise, the particles fused into each other and core–shell structures were destroyed. Polyacrylate plastisols were developed using diisononylphthalate as a plasticizer, and plastigels were obtained after heat treatment of the sols. Results showed that the shell thickness also had a great influence on the storage stability of the plastisols and mechanical properties of the plastigels.Graphical Abstract.

  9. Measurements and predictions for nonevaporating sprays in a quiescent environment

    Science.gov (United States)

    Solomon, A. S. P.; Shuen, J.-S.; Faeth, G. M.; Zhang, Q.-F.

    1983-01-01

    Yule et al. (1982) have conducted a study of vaporizing sprays with the aid of laser techniques. The present investigation has the objective to supplement the measurements performed by Yule et al., by considering the limiting case of a spray in a stagnant environment. Mean and fluctuating velocities of the continuous phase are measured by means of laser Doppler anemometry (LDA) techniques, while Fraunhofer diffraction and slide impaction methods are employed to determine drop sizes. Liquid fluxes in the spray are found by making use of an isokinetic sampling probe. The obtained data are used as a basis for the evaluation of three models of the process, including a locally homogeneous flow (LHF) model, a deterministic separated flow (DSF) model, and a stochastic separated flow (SSF) model. It is found that the LHF and DSF models do not provide very satisfactory predictions for the test sprays, while the SSF model does provide reasonably good predictions of the observed structure.

  10. Fabrication of polyacrylate core–shell nanoparticles via spray drying method

    International Nuclear Information System (INIS)

    Chen, Pengpeng; Cheng, Zenghui; Chu, Fuxiang; Xu, Yuzhi; Wang, Chunpeng

    2016-01-01

    Fine polyacrylate particles are thought to be environmental plastisols for car industry. However, these particles are mainly dried through demulsification of the latexes, which is not reproducible and hard to be scaled up. In this work, a spray drying method had been applied to the plastisols-used acrylate latex. By adjusting the core/shell ratio, spray drying process of the latex was fully studied. Scanning electronic microscopy observation of the nanoparticles before and after spray drying indicated that the core–shell structures could be well preserved and particles were well separated by spray drying if the shell was thick enough. Otherwise, the particles fused into each other and core–shell structures were destroyed. Polyacrylate plastisols were developed using diisononylphthalate as a plasticizer, and plastigels were obtained after heat treatment of the sols. Results showed that the shell thickness also had a great influence on the storage stability of the plastisols and mechanical properties of the plastigels.Graphical Abstract

  11. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate to...

  12. The Properties of Arc-Sprayed Aluminum Coatings on Armor-Grade Steel

    Directory of Open Access Journals (Sweden)

    Marcin Adamiak

    2018-02-01

    Full Text Available This article presents the results of an examination of the properties of arc-sprayed aluminum on alloyed armor-grade steel. Thermal arc spraying was conducted with a EuTronic Arc Spray 4 wire arc sprayer. Aluminum wire 1.6 mm in diameter was used to produce dense, abrasion- and erosion-resistant coatings approx. 1.0 mm thick with and without nickel/5% aluminum-buffered subcoating. Aluminum coatings were characterized in accordance with ASTM G 65-00 abrasion resistance test, ASTM G 76-95 erosion resistance tests, ASTM C 633-01 adhesion strength, HV0.1 hardness tests and metallographic analyses. Results demonstrate properties of arc-sprayed aluminum and aluminum-nickel material coatings that are especially promising in industrial applications where erosion-, abrasion- and corrosion-resistant coating properties are required.

  13. Vibrant Energy Aware Spray and Wait Routing in Delay Tolerant Network

    Directory of Open Access Journals (Sweden)

    Viren G. Patel

    2013-01-01

    Full Text Available Delay tolerant networks (DTN are wireless networks where disconnections arise often due to the mobility of nodes, failures of energy, the low density of nodes, or when the network extends over long distances. In these situations, traditional routing protocols that have been developed for mobile ad hoc networks prove to be unsuccessful to the scope of transmitting messages between nodes. The Spray and Wait routing may achieve low routing and energy efficiency due to the blindness in the spray phase. To deal with this situation, we propose an opportunistic routing with enclosed message copies, called the Vibrant Energy aware Spray and Wait (VESW, which utilizes the information about vibrancy of node and remaining energy to allocate the number of copies between the corresponding pair nodes in the spray phase.

  14. High-T/sub c/ oxide superconductors prepared by spray-drying method

    International Nuclear Information System (INIS)

    Nakamura, N.; Nakano, T.; Goth, S.; Shimotomai, M.

    1988-01-01

    A spray-drying method has been worked out to prepare the superconducting oxide YBa/sub 2/Cu/sub 3/O/sub x/ by using aqueous solution of acetates of the component metals. Spray-dried powders have shown to be very reactive and full calcination has been easily attained at 900 0 C for 12 hrs. The density of the ceramics sintered at 950 0 C for 12 hrs has reached a value of 98% of the theoretical density. The resistivity of the spray-dry processed sample is 150μΩ-cm at the onset temperature and the residual resistivity extrapolated to O K is almost zero. It is also found that degradation of the superconducting state by application of magnetic field is much improved for the spray-dry processed samples

  15. Babbitt Casting and Babbitt Spraying Processes Case Study

    OpenAIRE

    M. Jalali Azizpour; S.Norouzi H. Mohammadi Majd

    2011-01-01

    In this paper, the babbitting of a bearing in boiler feed pump of an electromotor has been studied. These bearings have an important role in reducing the shut down times in the pumps, compressors and turbines. The most conventional method in babbitting is casting as a melting method. The comparison between thermal spray and casting methods in babbitting shows that the thermal spraying babbitt layer has better performance and tribological behavior. The metallurgical and tribological analysis s...

  16. Inorganic photovoltaic devices fabricated using nanocrystal spray deposition.

    Science.gov (United States)

    Foos, Edward E; Yoon, Woojun; Lumb, Matthew P; Tischler, Joseph G; Townsend, Troy K

    2013-09-25

    Soluble inorganic nanocrystals offer a potential route to the fabrication of all-inorganic devices using solution deposition techniques. Spray processing offers several advantages over the more common spin- and dip-coating procedures, including reduced material loss during fabrication, higher sample throughput, and deposition over a larger area. The primary difference observed, however, is an overall increase in the film roughness. In an attempt to quantify the impact of this morphology change on the devices, we compare the overall performance of spray-deposited versus spin-coated CdTe-based Schottky junction solar cells and model their dark current-voltage characteristics. Spray deposition of the active layer results in a power conversion efficiency of 2.3 ± 0.3% with a fill factor of 45.7 ± 3.4%, Voc of 0.39 ± 0.06 V, and Jsc of 13.3 ± 3.0 mA/cm(2) under one sun illumination.

  17. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  18. Modification of the solid-state nature of sulfathiazole and sulfathiazole sodium by spray drying.

    Science.gov (United States)

    Bianco, Stefano; Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Nolan, Lorraine; Hu, Yun; Healy, Anne Marie

    2012-06-01

    Solid-state characterisation of a drug following pharmaceutical processing and upon storage is fundamental to successful dosage form development. The aim of the study was to investigate the effects of using different solvents, feed concentrations and spray drier configuration on the solid-state nature of the highly polymorphic model drug, sulfathiazole (ST) and its sodium salt (STNa). The drugs were spray-dried from ethanol, acetone and mixtures of these organic solvents with water. Additionally, STNa was spray-dried from pure water. The physicochemical properties including the physical stability of the spray-dried powders were compared to the unprocessed materials. Spray drying of ST from either acetonic or ethanolic solutions with the spray drier operating in a closed cycle mode yielded crystalline powders. In contrast, the powders obtained from ethanolic solutions with the spray drier operating in an open cycle mode were amorphous. Amorphous ST crystallised to pure form I at ≤35 % relative humidity (RH) or to polymorphic mixtures at higher RH values. The usual crystal habit of form I is needle-like, but spherical particles of this polymorph were generated by spray drying. STNa solutions resulted in an amorphous material upon processing, regardless of the solvent and the spray drier configuration employed. Moisture induced crystallisation of amorphous STNa to a sesquihydrate, whilst crystallisation upon heating gave rise to a new anhydrous polymorph. This study indicated that control of processing and storage parameters can be exploited to produce drugs with a specific/desired solid-state nature.

  19. Developments in the formulation and delivery of spray dried vaccines

    NARCIS (Netherlands)

    Kanojia, Gaurav; Have, Rimko Ten; Soema, Peter C; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-01-01

    Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this

  20. Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Zabihi, F.; Xie, Y.; Gao, S.; Eslamian, M., E-mail: Morteza.Eslamian@sjtu.edu.cn

    2015-05-30

    Highlights: • Nanostructure of spun-on and spray-on PEDOT:PSS thin films is studied. • A correlation is established between the film nanostructure and electrical conductivity. • Effect of process parameters is studied on the film characteristics. • A high solution concentration, high process temperature and multiple deposition layers are recommended. - Abstract: The goal of this paper is to study the characteristics of PEDOT:PSS thin films and the effects of varying the processing parameters on the structure, functionality, and surface wetting of spun-on and spray-on PEDOT:PSS thin films. PEDOT:PSS is a polymer mixture, which is electrically conductive and transparent and, therefore, is an attractive material for some optoelectronic applications, such as organic and perovskite solar cells. In this work, the films are fabricated using spin coating (a lab-scale method) and spray coating (an up-scalable method). The effects of spinning speed, drying time, and post-annealing temperature on spun-on samples and the effects of the substrate temperature and number of spray passes (deposition layers) on spray-on samples, as well as the effect of precursor solution concentration on both cases are investigated. Various characterization tools, such as AFM, SEM, XRD, confocal laser scanning microscopy (CLSM), and electrical conductivity measurements are used to determine the film roughness, thickness, structure, and morphology. The solution precursor physical data, such as contact angle on glass substrates, viscosity, and interfacial tension, are also obtained within a practical range of temperatures and concentrations. It is found that in both spin and spray coating routes, only well-controlled operating conditions result in the formation of conductive and defect-free PEDOT:PSS films. The formation of PEDOT:PSS thin films with small grains composed of PEDOT forming the core of the grains and PSS forming a shell or coating, which are evenly distributed in a PSS