WorldWideScience

Sample records for spot x-ray tube

  1. Determination of the size of X-ray tube focal spots: direct digitalization vs optical evaluation

    International Nuclear Information System (INIS)

    Furquim, Tania A.C.; Yanikian, Denise; Costa, Paulo R.

    1996-01-01

    A comparative study between standard techniques for evaluation of X-ray tubes focal spots and a newer one which uses digital resources for image acquisition is presented. Results from measurements by using both methods are presented

  2. Evaluation of dimensions of diagnostic X-ray tube focal spots using direct digitalization

    International Nuclear Information System (INIS)

    Costa, Paulo R.; Furquim, Tania A.C.

    1996-01-01

    An image digitalization system is proposed as an alternative method for replacing direct exposure X-ray films on the evaluation of dimensions of diagnostic X-ray tube focal spots. Results of measurements are presented and compared to nominal values

  3. Methods for studying the focal spot size and resolution of diagnostic X-ray tubes

    International Nuclear Information System (INIS)

    Fairbanks, R.; Doust, C.

    1979-01-01

    Attention is given to techniques appropriate for use in the clinical situation. The focal spot size is critical to geometric unsharpness and hence the quality of the finished radiograph, but pinhole imaging of the focal spot is extremely difficult in clinical practice. The resolution of an X-ray tube, although a function of focal spot size, is of more importance in radiography. A comparison is made of various resolution grids suitable for quality control use in X-ray departments. (U.K.)

  4. X-ray phase imaging using a X-ray tube with a small focal spot. Improvement of image quality in mammography

    International Nuclear Information System (INIS)

    Honda, Chika; Ohara, Hiromu; Ishisaka, Akira; Shimada, Fumio

    2002-01-01

    Phase contrast X-ray imaging has been studied intensively using X-rays from synchrotron radiation and micro-focus X-ray tubes. However, these studies have revealed the difficulty of this technique's application to practical medical imaging. We have created a phase contrast imaging technique using a molybdenum X-ray tube with a small focal spot size for mammography. We identified the radiographic conditions in phase contrast magnification mammography with a screen-film system, where edge effect due to phase contrast overcomes geometrical unsharpness caused by the 0.1 mm-focal spot of a molybdenum X-ray tube. The edge enhancement due to phase imaging was observed in an image of a plastic tube, and then geometrical configuration of the X-ray tube, the object and the screen-film system was determined for phase imaging of mammography. In order to investigate a potential for medical application of this method, we conducted evaluation of the images of the American Collage of Radiology (ACR) 156 mammography phantom. We obtained higher scores for phase imaging using high speed screen-film systems without any increase of X-ray dose than the score for contract imaging using a standard speed screen-film system. (author)

  5. X-ray tubes

    International Nuclear Information System (INIS)

    Young, R.W.

    1979-01-01

    A form of x-ray tube is described which provides satisfactory focussing of the electron beam when the beam extends for several feet from gun to target. Such a tube can be used for computerised tomographic scanning. (UK)

  6. Comparison of different methods for determining the size of a focal spot of microfocus X-ray tubes

    International Nuclear Information System (INIS)

    Salamon, M.; Hanke, R.; Krueger, P.; Sukowski, F.; Uhlmann, N.; Voland, V.

    2008-01-01

    The EN 12543-5 describes a method for determining the focal spot size of microfocus X-ray tubes up to a minimum spot size of 5 μm. The wide application of X-ray tubes with even smaller focal spot sizes in computed tomography and radioscopy applications requires the evaluation of existing methods for focal spot sizes below 5 μm. In addition, new methods and conditions for determining submicron focal spot sizes have to be developed. For the evaluation and extension of the present methods to smaller focal spot sizes, different procedures in comparison with the existing EN 12543-5 were analyzed and applied, and the results are presented

  7. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  8. CRL X-ray tube

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed. (authors)

  9. X-ray tube focal spot sizes: comprehensive studies of their measurement and effect of measured size in angiography

    International Nuclear Information System (INIS)

    Doi, K.; Loo, L.N.; Chan, H.P.

    1982-01-01

    Thirty-two focal spot sizes of four x-ray tubes were measured by the pinhole, star pattern, slit, and root-mean-square (RMS) methods under various exposure conditions. The modulation transfer functions (MTFs) and line spread functions (LSFs) were also determined. The star pattern focal spot sizes agreed with the effective sizes calculated from the frequencies at the first minimum of the MTF within 0.04 mm for large focal spots and within 0.01 mm for small focal spots. The focal spot size determined by the slit method was approximately equal to the width of the LSF at the cutoff level of 0.15 +/- 0.06 of the peak value. The RMS method provided the best correlation between the measured focal spot sizes and the corresponding image distributions of blood vessels. The pinhole and slit methods tended to overestimate the focal spot size, but the star pattern method tended to underestimate it. For approximately 90% of the focal spots, the average of the star and slit (or pinhole) focal spot sizes agreed with the RMS focal spot size within +/- 0.1 mm

  10. X-ray tube technology update

    International Nuclear Information System (INIS)

    Rehani, M.M.

    1997-01-01

    During the 100 years since the discovery of x-rays, the x-ray tube has undergone significant improvements to meet the demand of shorter exposure time and frequent exposures as in angiography. This has been achieved by multiple focal spots, rotating anodes, design consideration of the anode and the tube assembly. While physical improvements have resulted in improved performance, the principle has remained the same, as also has the problem of massive heat generation which consumes almost 99% of the energy. This article traces the history of tubes and current perspectives. (author). 3 refs., 3 figs., 2 tabs

  11. A new measurement method of actual focal spot position of an x-ray tube using a high-precision carbon-interspaced grid

    Science.gov (United States)

    Lee, H. W.; Lim, H. W.; Jeon, D. H.; Park, C. K.; Cho, H. S.; Seo, C. W.; Lee, D. Y.; Kim, K. S.; Kim, G. A.; Park, S. Y.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Woo, T. H.; Oh, J. E.

    2018-06-01

    This study investigated the effectiveness of a new method for measuring the actual focal spot position of a diagnostic x-ray tube using a high-precision antiscatter grid and a digital x-ray detector in which grid magnification, which is directly related to the focal spot position, was determined from the Fourier spectrum of the acquired x-ray grid’s image. A systematic experiment was performed to demonstrate the viability of the proposed measurement method. The hardware system used in the experiment consisted of an x-ray tube run at 50 kVp and 1 mA, a flat-panel detector with a pixel size of 49.5 µm, and a high-precision carbon-interspaced grid with a strip density of 200 lines/inch. The results indicated that the focal spot of the x-ray tube (Jupiter 5000, Oxford Instruments) used in the experiment was located approximately 31.10 mm inside from the exit flange, well agreed with the nominal value of 31.05 mm, which demonstrates the viability of the proposed measurement method. Thus, the proposed method can be utilized for system’s performance optimization in many x-ray imaging applications.

  12. X-ray imaging with compound refractive lens and microfocus X-ray tube

    OpenAIRE

    Pina, Ladislav; Dudchik, Yury; Jelinek, Vaclav; Sveda, Libor; Marsik, Jiri; Horvath, Martin; Petr, Ondrej

    2008-01-01

    Compound refractive lenses (CRL), consisting of a lot number in-line concave microlenses made of low-Z material were studied. Lenses with focal length 109 mm and 41 mm for 8-keV X-rays, microfocus X-ray tube and X-ray CCD camera were used in experiments. Obtained images show intensity distribution of magnified microfocus X-ray source focal spot. Within the experiments, one lens was also used as an objective lens of the X-ray microscope, where the copper anode X-ray microfocus tube served as a...

  13. X-ray tube target

    International Nuclear Information System (INIS)

    Weber, R.G.

    1980-01-01

    A target with an improved heat emissive surface for use in a rotating anode type x-ray tube is described. The target consists of a body having a first surface portion made of x-ray emissive material and a second surface portion made of a heat emissive material comprising at least one of hafnium boride, hafnium oxide, hafnium nitride, hafnium silicide, and hafnium aluminide. (U.K.)

  14. X-ray tube targets

    International Nuclear Information System (INIS)

    Hirsch, H.H.

    1980-01-01

    In rotary targets for X-ray tubes warping is a problem which causes X-ray deficiency. A rotary target is described in which warping is reduced by using alloys of molybdenum with 0.05 to 10% iron, silicon, cobalt, tantalum, niobium, hafnium, stable metal oxide or mixture thereof. Suitable mixtures are 0.5 to 10% of tantalum, niobium or hafnium with from 0.5 to 5% yttrium oxide, or 0.05 to 0.3% of cobalt or silicon. Optionally 0.1 to 5% by weight of additional material may be alloyed with the molybdenum, such as tantalum or hafnium carbides. (author)

  15. X-ray tube transformer

    International Nuclear Information System (INIS)

    1980-01-01

    An X-ray generator is described which comprises a transmission line transformer including an electrical conductor with a cavity and a second electrical conductor including helical windings disposed along a longitudinal axis within the cavity of the first conductor. The windings have a pitch which varies per unit length along the axis. There is dielectric material in the cavity for insulation and to couple electromagnetically the two conductors in response to an electric current flowing through the conductors, which have an impedance between them; this varies with distance along the axis of the helix of the second conductor. An X-ray tube is disposed along the longitudinal axis within the cavity, for radiating X-rays. The invention increases the voltage of applied voltage pulses at the remote tube-head with a transformer formed by using a spiral delay line geometry to give a tapered-impedance coaxial high voltage multiplier for pulse voltage operation. This transformer is smaller and lighter than previous designs for the same high peak voltage and power ratings. This is important because the penetration capabilities of Flash X-ray equipment increase with voltage, particularly in heavy materials such as steel. (U.K.)

  16. X-ray spot filmer

    International Nuclear Information System (INIS)

    1975-01-01

    An X-ray apparatus is described which includes a spot filmer for feeding sheets of unexposed film one at a time into a vacuum evacuable cassette for exposure, and for returning exposed film sheets to an exposed film magazine. The spot filmer has a housing defining a light-tight enclosure. The film magazines are insertable through a door into the housing and into a film feed mechanism. The film feed mechanism unlatches, opens and positions the magazines; it then feeds a sheet of unexposed film into the vacuum evacuable cassette, releases the film sheet so the cassette can position the film sheet for exposure, and closes the film magazines. An orthogonal drive system positions the vacuum evacuable cassette to expose selected film sheet portions and returns the cassette to a retracted position. The film feed mechanism opens the magazines, feeds the exposed film sheet into the exposed film magazine, and closes the magazines. A film identification system is provided for forming an identifying image on a marginal portion of each film sheet

  17. X-ray spot film device

    International Nuclear Information System (INIS)

    1981-01-01

    Improvements are described in an X-ray spot film device which is used in conjunction with an X-ray table to make a selected number of radiographic exposures on a single film and to perform fluoroscopic examinations. To date, the spot film devices consist of two X-ray field defining masks, one of which is moved manually. The present device is more convenient to use and speeds up the procedure. (U.K.)

  18. Method for measuring the focal spot size of an x-ray tube using a coded aperture mask and a digital detector.

    Science.gov (United States)

    Russo, Paolo; Mettivier, Giovanni

    2011-04-01

    The goal of this study is to evaluate a new method based on a coded aperture mask combined with a digital x-ray imaging detector for measurements of the focal spot sizes of diagnostic x-ray tubes. Common techniques for focal spot size measurements employ a pinhole camera, a slit camera, or a star resolution pattern. The coded aperture mask is a radiation collimator consisting of a large number of apertures disposed on a predetermined grid in an array, through which the radiation source is imaged onto a digital x-ray detector. The method of the coded mask camera allows one to obtain a one-shot accurate and direct measurement of the two dimensions of the focal spot (like that for a pinhole camera) but at a low tube loading (like that for a slit camera). A large number of small apertures in the coded mask operate as a "multipinhole" with greater efficiency than a single pinhole, but keeping the resolution of a single pinhole. X-ray images result from the multiplexed output on the detector image plane of such a multiple aperture array, and the image of the source is digitally reconstructed with a deconvolution algorithm. Images of the focal spot of a laboratory x-ray tube (W anode: 35-80 kVp; focal spot size of 0.04 mm) were acquired at different geometrical magnifications with two different types of digital detector (a photon counting hybrid silicon pixel detector with 0.055 mm pitch and a flat panel CMOS digital detector with 0.05 mm pitch) using a high resolution coded mask (type no-two-holes-touching modified uniformly redundant array) with 480 0.07 mm apertures, designed for imaging at energies below 35 keV. Measurements with a slit camera were performed for comparison. A test with a pinhole camera and with the coded mask on a computed radiography mammography unit with 0.3 mm focal spot was also carried out. The full width at half maximum focal spot sizes were obtained from the line profiles of the decoded images, showing a focal spot of 0.120 mm x 0.105 mm at 35

  19. Focal spot size reduction using asymmetric collimation to enable reduced anode angles with a conventional angiographic x-ray tube for use with high resolution detectors

    Science.gov (United States)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.

  20. X-ray image intensifier tube

    International Nuclear Information System (INIS)

    1981-01-01

    An improved real-time x-ray image intensifier tube of the proximity type used for medical x-ray fluoroscopy is described. It is claimed that this intensifier is of sufficient gain and resolution whilst remaining convenient to use and that the design is such that the patient dosage is minimized whilst the x-ray image information content at the scintillator-photocathode screen is maximized. (U.K.)

  1. X-ray tube current control

    International Nuclear Information System (INIS)

    Dupuis, W.A.; Resnick, T.A.

    1982-01-01

    A closed loop feedback system for controlling the current output of an x-ray tube. The system has circuitry for improving the transient response and stability of the x-ray tube current over a substantial nonlinear portion of the tube current production characteristic. The system includes a reference generator for applying adjustable step function reference signals representing desired tube currents. The system also includes means for instantaneous sensing of actual tube current. An error detector compares the value of actual and reference tube current and produces an error signal as a function of their difference. The system feedback loop includes amplification circuitry for controlling x-ray tube filament dc voltage to regulate tube current as a function of the error signal value. The system also includes compensation circuitry, between the reference generator and the amplification circuitry, to vary the loop gain of the feedback control system as a function of the reference magnitude

  2. An automatic and accurate x-ray tube focal spot/grid alignment system for mobile radiography: System description and alignment accuracy

    International Nuclear Information System (INIS)

    Gauntt, David M.; Barnes, Gary T.

    2010-01-01

    Purpose: A mobile radiography automatic grid alignment system (AGAS) has been developed by modifying a commercially available mobile unit. The objectives of this article are to describe the modifications and operation and to report on the accuracy with which the focal spot is aligned to the grid and the time required to achieve the alignment. Methods: The modifications include an optical target arm attached to the grid tunnel, a video camera attached to the collimator, a motion control system with six degrees of freedom to position the collimator and x-ray tube, and a computer to control the system. The video camera and computer determine the grid position, and then the motion control system drives the x-ray focal spot to the center of the grid focal axis. The accuracy of the alignment of the focal spot with the grid and the time required to achieve alignment were measured both in laboratory tests and in clinical use. Results: For a typical exam, the modified unit automatically aligns the focal spot with the grid in less than 10 s, with an accuracy of better than 4 mm. The results of the speed and accuracy tests in clinical use were similar to the results in laboratory tests. Comparison patient chest images are presented--one obtained with a standard mobile radiographic unit without a grid and the other obtained with the modified unit and a 15:1 grid. The 15:1 grid images demonstrate a marked improvement in image quality compared to the nongrid images with no increase in patient dose. Conclusions: The mobile radiography AGAS produces images of significantly improved quality compared to nongrid images with alignment times of less than 10 s and no increase in patient dose.

  3. X-ray tube arrangements

    International Nuclear Information System (INIS)

    Gillard, R.G.

    1980-01-01

    A technique for ensuring the rapid correction of both amplitude and offset errors in the deflectional movement of an electron beam along an X-ray emissive target is described. The movement is monitored at at least two positions during a sweep and differences, between the two movements and a desired movement, at these positions are combined in different proportions to produce a corrective servo signal. Such arrangements find application, for example, in computerised tomographic scanners. (author)

  4. X-ray diffraction device comprising cooling medium connections provided on the x-ray tube

    NARCIS (Netherlands)

    1996-01-01

    An X-ray diffraction device comprises a water-cooled X-ray tube which exhibits a line focus as well as, after rotation through 90 DEG , a point focus. Contrary to customary X-ray tubes, the cooling water is not supplied via the housing (12) in which the X-ray tube is mounted, but the cooling water

  5. Correction of the X-ray tube spot movement as a tool for improvement of the micro-tomography quality

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jandejsek, Ivan; Pichotka, M.

    2016-01-01

    Roč. 11, č. 1 (2016), C01029 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LO1219 Keywords : computerized tomography (CT) * computed radiography (CR) * inspection with x-rays * detector alignment and calibration methods Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/11/01/C01029

  6. X-ray tube monitor apparatus

    International Nuclear Information System (INIS)

    Holland, W.P.; Pellergrino, A.

    1981-01-01

    An x-ray tube with a rotating anode target is provided with a detector of x-rays located outside a port of a housing of the tube and positioned at or near a tangent line to the radiating surface for observing variations in the radiation intensity due to rotation of the target, the variations being pronounced due to the heel effect of the radiation pattern. The x-ray detector can employ a scintillation material and be coupled by a light guide to a photodetector which is removed from the path of the radiation and detects scintillations of the x-ray detector. Alternatively, the photodetector and light pipe may be replaced by a detector of germanium, silicon or an ion chamber which converts x-ray photons directly to an electric current. An electronic unit determines the speed of rotation from the electric signal and can also, by fourier transform and signature analysis techniques, monitor the state of the radiating surface. (author)

  7. X-ray tube rotating anode

    International Nuclear Information System (INIS)

    Friedel, R.

    1979-01-01

    The anode disk of the X-ray rotating anode is blackened on the surface outside the focal spot tracks in order to improve the heat radiation. In particular the side opposite the focal spot tracks is provided with many small holes, the ratio of depth to cross-section ('pit ratio') being as large as possible: ranging from 2:1 to 10:1. They are arranged so densely that the radiating surface will nearly have the effect of a black body. (RW) [de

  8. Gridded X-ray tube gun

    International Nuclear Information System (INIS)

    1975-01-01

    An X-ray generator has a Pierce type electron gun comprising an electron emissive cathode with field shaping electrodes, a first accelerating anode spaced from the cathode, and an X-ray target anode spaced from the accelerating anode for being impinged upon by a focused electron beam. Control grid means are disposed between the cathode and the first anode. The grid means are constructed such that with use of proper grid potentials, the electron beam may be selectively biased to cutoff, or electrons can be withdrawn from selected areas of the cathode or from the entire cathode to produce focal spots of different sizes and various electron current magnitudes on the target anode

  9. Rotating anode X-ray tubes

    International Nuclear Information System (INIS)

    Webley, R.S.

    1981-01-01

    In a rotating anode x-ray tube it is proposed to mount the rotating anode, or means such as a shaft affixed to it, to rotate on bearings in a race the seating for which is cooled by a suitable coolant flow. A suitable bellows arrangement allows the coolant pressure to determine the contact pressure of the seating on the bearings. This allows the thermal impedance to be varied and the bearing wear to be optimised therewith as well as allowing adjustment for wear. The use of two bellows allows the seating section therebetween to move towards the other section as the rollers wear. (author)

  10. Application of low power X-ray tubes in geology

    International Nuclear Information System (INIS)

    Massalski, J.M.; Zaraska, W.

    1981-01-01

    Low power X-ray tubes with transmission anodes for X-ray fluorescence analysis with energy dispersion were elaborated. Paper contains experimental results of application of X-ray tubes in the apparatus for nondestructive measurements of the concentration of some elements in borehole cores. (author)

  11. Time Resolved X-Ray Spot Size Diagnostic

    CERN Document Server

    Richardson, Roger; Falabella, Steven; Guethlein, Gary; Raymond, Brett; Weir, John

    2005-01-01

    A diagnostic was developed for the determination of temporal history of an X-ray spot. A pair of thin (0.5 mm) slits image the x-ray spot to a fast scintillator which is coupled to a fast detector, thus sampling a slice of the X-Ray spot. Two other scintillator/detectors are used to determine the position of the spot and total forward dose. The slit signal is normalized to the dose and the resulting signal is analyzed to get the spot size. The position information is used to compensate for small changes due to spot motion and misalignment. The time resolution of the diagnostic is about 1 ns and measures spots from 0.5 mm to over 3 mm. The theory and equations used to calculate spot size and position are presented, as well as data. The calculations assume a symmetric, Gaussian spot. The spot data is generated by the ETA II accelerator, a 2kA, 5.5 MeV, 60ns electron beam focused on a Tantalum target. The spot generated is typically about 1 mm FWHM. Comparisons are made to an X-ray pinhole camera which images th...

  12. Line focus x-ray tubes-a new concept to produce high brilliance x-rays.

    Science.gov (United States)

    Bartzsch, Stefan; Oelfke, Uwe

    2017-10-27

    Currently hard coherent x-ray radiation at high photon fluxes can only be produced with large and expensive radiation sources, such as 3[Formula: see text] generation synchrotrons. Especially in medicine, this limitation prevents various promising developments in imaging and therapy from being translated into clinical practice. Here we present a new concept of highly brilliant x-ray sources, line focus x-ray tubes (LFXTs), which may serve as a powerful and cheap alternative to synchrotrons and a range of other existing technologies. LFXTs employ an extremely thin focal spot and a rapidly rotating target for the electron beam which causes a change in the physical mechanism of target heating, allowing higher electron beam intensities at the focal spot. Monte Carlo simulations and numeric solutions of the heat equation are used to predict the characteristics of the LFXT. In terms of photon flux and coherence length, the performance of the line focus x-ray tube compares with inverse Compton scattering sources. Dose rates of up to 180 Gy [Formula: see text] can be reached in 50 cm distance from the focal spot. The results demonstrate that the line focus tube can serve as a powerful compact source for phase contrast imaging and microbeam radiation therapy. The production of a prototype seems technically feasible.

  13. Portable X-ray fluorescence analyzer of high sensitivity using X-ray tube excitation

    International Nuclear Information System (INIS)

    Vatai, E.; Ando, L.

    1982-01-01

    A review of the three main methods of X-ray fluorescence analysis and their problems is given. The attainable accuracy and effectiveness of each method are discussed. The main properties of portable X-ray analyzers required by the industry are described. The results and experiences of R and D activities in ATOMKI (Debrecen, Hungary) for developing portable X-ray analyzers are presented. The only way for increasing the accuracy and decreasing the measuring time is the application of X-ray tube excitation instead of radioactive sources. The new ATOMKI equipment presently under construction and patenting uses X-ray tube excitation; it will increase the accuracy of concentration determination by one order of magnitude. (D.Gy.)

  14. A portable tube exciting X-ray fluorescence analysis system

    International Nuclear Information System (INIS)

    Yang Qiang; Lai Wanchang; Ge Liangquan

    2009-01-01

    Article introduced a portable tube exciting X-ray fluorescence analysis system which is based on arm architecture. Also, we designed Tube control circuit and finished preliminary application. The energy and the intensity of the photon can be adjusted continuously by using the tube. Experiments show that high excitation efficiency obtained by setting the appropriate parameters of the tube for the various elements. (authors)

  15. Effects of X-ray tube parameters on thickness measure precision in X-ray profile gauge

    International Nuclear Information System (INIS)

    Miao Jichen; Wu Zhifang; Xing Guilai

    2011-01-01

    Instantaneous profile gauge technology has been widely used in metallurgy industry because it can on-line get the profile of steel strip. It has characters of high measure precision and wide measure range, but the X-ray tube parameters only can be set few different values during measurement. The relations of thickness measure precision and X-ray tube current, X-ray tube voltage were analyzed. The results show that the X-ray tube current affects the thickness measure precision and the X-ray tube voltage determines the thickness measure range. The method of estimating the X-ray current by thickness measure precision was provided in the end. This method is the base of X-ray source selection and X-ray source parameter's setting in the instantaneous profile gauge. (authors)

  16. X-ray fluorescence (XRF) set-up with a low power X-ray tube

    International Nuclear Information System (INIS)

    Gupta, Sheenu; Deep, Kanan; Jain, Lalita; Ansari, M.A.; Mittal, Vijay Kumar; Mittal, Raj

    2010-01-01

    The X-ray fluorescence set-up with a 100 W X-ray tube comprises a computer controlled system developed for remote operation and monitoring of tube and an adjustable stable 3D arrangement to procure variable excitation energies with low scattered background. The system was tested at different filament currents/anode voltages. The MDL of the set-up at 0.05-1.00 mA/4-12 kV is found ∼(1-100) ppm for K and L excitations and ∼(200-700) ppm for M excitations of elements and improves with filament current and anode voltage. Moreover, L measurements for Sm and Eu at five K X-ray energies of elements(Z=29-40) and analytical determination in some synthetic samples were undertaken.

  17. Studies of X-ray tube aging by non-invasive methods

    International Nuclear Information System (INIS)

    Bottaro, Marcio.

    2007-01-01

    The objective of the present work was the evaluation of an x ray tube aging with an anode made of tungsten, used in radio diagnostic. Workloads were applied, in accordance with Brazilian workload distribution, and periodic measurements of quantities related to the radiation quality of the beam were performed. For the purpose of this work, a single phase, full bridge clinical system was employed. For the long term x ray tube characteristics evaluation related to the applied workload, it was necessary to measure parameters that could quantitatively represent the tube aging, with special attention to the anode roughening. For the indirect measurement of tube aging, four parameters were chosen, some of them normally applied in x ray diagnostic quality control: first and second half value layers (HVL), focal spot dimensions, non invasive measurement of Practical Peak Voltage (PPV) and x ray spectroscopy. These parameters were measured before any workload and after each workload intervals. To assure confidence of the results reproducibility conditions were stated to each evaluated parameter. The uncertainties involved in all measurement processes were calculated to evaluate the real contributions of x ray tube aging effects on non invasive parameters. Within all evaluated parameters, the most sensitive to long term workload were the mean energy obtained from spectroscopy and half value layers. A model related to these parameters was applied and estimates of x ray tube aging rate for different acceleration voltages and anodic currents were calculated. (author)

  18. Rotating anode x-ray tube

    International Nuclear Information System (INIS)

    Hueschen, R.E.; Jens, R.A.

    1980-01-01

    A solid low thermal conductivity columbium metal stem supports heavy refractory metal x-ray target and adjoins high thermal conductivity rotor hub fastened to rotor with low thermally conductive bearing hub fastened to a shaft journaled for rotation in bearings. The rotor is coated to enhance heat dissipation and the arrangement promotes thermal isolation of the bearings from the hot rotor hub and hot target. The hub is of Mo or Mo based alloy, and hub of Ni based alloy. Specific compositions with additives are detailed. Hub additionally restricts heat flow due to its maximised length and minimised cross-section, the reduced area bosses further restricting surface contact. (author)

  19. Closed-bore XMR (CBXMR) systems for aortic valve replacement: X-ray tube imaging performance

    International Nuclear Information System (INIS)

    Bracken, John A.; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2009-01-01

    A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation.

  20. Application of X-ray CCD camera in X-ray spot diagnosis of rod-pinch diode

    International Nuclear Information System (INIS)

    Song Yan; Zhou Ming; Song Guzhou; Ma Jiming; Duan Baojun; Han Changcai; Yao Zhiming

    2015-01-01

    The pinhole imaging technique is widely used in the measurement of X-ray spot of rod-pinch diode. The X-ray CCD camera, which was composed of film, fiber optic taper and CCD camera, was employed to replace the imaging system based on scintillator, lens and CCD camera in the diagnosis of X-ray spot. The resolution of the X-ray CCD camera was studied. The resolution is restricted by the film and is 5 lp/mm in the test with Pb resolution chart. The frequency is 1.5 lp/mm when the MTF is 0.5 in the test with edge image. The resolution tests indicate that the X-ray CCD camera can meet the requirement of the diagnosis of X-ray spot whose scale is about 1.5 mm when the pinhole imaging magnification is 0.5. At last, the image of X-ray spot was gained and the restoration was implemented in the diagnosis of X-ray spot of rod-pinch diode. (authors)

  1. A new family of ceramic X-ray tubes

    International Nuclear Information System (INIS)

    Berger, E.; Reiprich, S.

    1976-01-01

    The construction and performance of a family of metal-ceramic X-ray tubes are described. Four of these incorporate slanting anodes and one a plane anode giving directional and omnidirectional radiation characteristics respectively. The particular advantages of these tubes are their compactness, low weight, flash-over immunity and high thermal and mechanical stress tolerance. (orig.) [de

  2. Panel type X-ray image intensifier tube

    International Nuclear Information System (INIS)

    Wang, S.P.

    1977-01-01

    A panel shaped, proximity type, X-ray image intensifier tube for medical X-ray diagnostic is disclosed. It has all linear components and yet a high brightness gain, in the range of 500 to 20,000 cd-sec/m 2 -R, the tube being comprised of a rugged metallic tube envelope, an inwardly concave metallic input window of full size output display screen, an alkaline-halide scintillator photocathode screen suspended on insulators within the envelope and in between the input window and the output screen, and a high Z glass output window to reduce X-ray backscatter inside and outside of the tube. An X-ray sensitive photographic camera for medical diagnostic use is also disclosed which includes an X-ray sensitive image intensifier means of the proximity type and a reduction type optical system having an effective foral length in excess of 100mm for focusing the emage generated on the output display screen of the image intensifier tube onto a small size but directly viewable photographic film. The parameters of the image intensifier, the optics and the film are specified and linked to each other in a manner which maximizes the image quality for a camera system of this type and at the same time restricts the system speed of the camera to a range of 500 to 5,000 R -1 for the film to achieve a net density of 1.0. (Auth.)

  3. 21 CFR 892.1620 - Cine or spot fluorographic x-ray camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cine or spot fluorographic x-ray camera. 892.1620... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1620 Cine or spot fluorographic x-ray camera. (a) Identification. A cine or spot fluorographic x-ray camera is a device intended to photograph...

  4. Electron emission regulator for an x-ray tube filament

    International Nuclear Information System (INIS)

    Daniels, H.E.; Randall, H.G.

    1982-01-01

    An x-ray tube ma regulator has an scr phase shift voltage regulator supplying the primary winding of a transformer whose secondary is coupled to the x-ray tube filament. Prior to initiation of an x-ray exposure, the filament is preheated to a temperature corresponding substantially to the electron emissivity needed for obtaining the desired tube ma during an exposure. During the preexposure interval, the phase shift regulator is controlled by a signal corresponding to the sum of signals representative of the voltage applied to the filament transformer, the desired filament voltage and the space charge compensation needed for the selected x-ray tube anode to cathode voltage. When an exposure is initiated, control of the voltage regulator is switched to a circuit that responds to the tube current by controlling the amount of phase shift and, hence, the voltage supplied to the transformer. Transformer leakage current compensation is provided during the exposure interval with a circuit that includes an element whose impedance is varied in accordance with the anode-to-cathode voltage setting so the element drains off tube current as required to cancel the effect of leakage current variations

  5. Analytical Approximation of Spectrum for Pulse X-ray Tubes

    International Nuclear Information System (INIS)

    Vavilov, S; Fofanof, O; Koshkin, G; Udod, V

    2016-01-01

    Among the main characteristics of the pulsed X-ray apparatuses the spectral energy characteristics are the most important ones: the spectral distribution of the photon energy, effective and maximum energy of quanta. Knowing the spectral characteristics of the radiation of pulse sources is very important for the practical use of them in non-destructive testing. We have attempted on the analytical approximation of the pulsed X-ray apparatuses spectra obtained in the different experimental papers. The results of the analytical approximation of energy spectrum for pulse X-ray tube are presented. Obtained formulas are adequate to experimental data and can be used by designing pulsed X-ray apparatuses. (paper)

  6. Building lab-scale x-ray tube based irradiators

    International Nuclear Information System (INIS)

    Haff, Ron; Jackson, Eric; Gomez, Joseph; Light, Doug; Follett, Peter; Simmons, Greg; Higbee, Brad

    2016-01-01

    Here we report the use of x-ray tube based irradiators as alternatives to gamma sources for laboratory scale irradiation. Irradiators were designed with sample placement in closest possible proximity to the source, allowing high dose rates for small samples. Designs using 1000 W x-ray tubes in single tube, double tube, and four tube configurations are described, as well as various cabinet construction techniques. Relatively high dose rates were achieved for small samples, demonstrating feasibility for laboratory based irradiators for research purposes. Dose rates of 9.76, 5.45, and 1.7 Gy/min/tube were measured at the center of a 12.7 cm container of instant rice at 100 keV, 70 keV, and 40 keV, respectively. Dose uniformity varies dramatically as the distance from source to container. For 2.54 cm diameter sample containers containing adult Navel Orangeworm, dose rates of 50–60 Gy/min were measured in the four tube system. - Highlights: • X-ray is demonstrated as an alternative to gamma for lab-based irradiation. • Cabinets using one, two, and four 1000 W tubes are reported. • Dose rate of 9.8 Gy/min/tube at the center of a 12.7 cm container of instant rice. • Dose uniformity varies dramatically as the distance from source to container.

  7. Effective high voltage at X-ray tube in hard X-ray chest imaging

    International Nuclear Information System (INIS)

    Klein, J.

    1987-01-01

    The FRG standard TGL 36 661 (March 1980) for synoptical chest pictures of large size in adults specifies the 120 kV voltage at the X-ray tube together with maximal, 100% use of the capacity of the tube (hard picture, short exposure time). By means of circular recording and by measuring the high voltage at the X-ray tube it was quantitatively shown that the effective voltage during exposure is (according to the exposure time and the attenuation phase of the generator) always lower than the set-up voltage of 120 kV. This phenomenon is the more marked the shorter the actual exposure time in comparison with the attenuation phase of the generator. The typical characteristic of a hard X-ray chest picture is thus not given only by the setting-up of voltage. The impact of the reduction in voltage is thus quantitatively shown also from the aspect of the radiation burden for the patient. (author). 7 figs., 8 refs

  8. Thermal analysis on x-ray tube for exhaust process

    Science.gov (United States)

    Kumar, Rakesh; Rao Ratnala, Srinivas; Veeresh Kumar, G. B.; Shivakumar Gouda, P. S.

    2018-02-01

    It is great importance in the use of X-rays for medical purposes that the dose given to both the patient and the operator is carefully controlled. There are many types of the X- ray tubes used for different applications based on their capacity and power supplied. In present thesis maxi ray 165 tube is analysed for thermal exhaust processes with ±5% accuracy. Exhaust process is usually done to remove all the air particles and to degasify the insert under high vacuum at 2e-05Torr. The tube glass is made up of Pyrex material, 95%Tungsten and 5%rhenium is used as target material for which the melting point temperature is 3350°C. Various materials are used for various parts; during the operation of X- ray tube these waste gases are released due to high temperature which in turn disturbs the flow of electrons. Thus, before using the X-ray tube for practical applications it has to undergo exhaust processes. Initially we build MX 165 model to carry out thermal analysis, and then we simulate the bearing temperature profiles with FE model to match with test results with ±5%accuracy. At last implement the critical protocols required for manufacturing processes like MF Heating, E-beam, Seasoning and FT.

  9. Direct view panel type X-ray image intensifier tube

    International Nuclear Information System (INIS)

    Yang, S.-P.; Robbins, C.D.; Merrit, E.

    1977-01-01

    A panel shaped, proximity type, X-ray image intensifier tube for medical X-ray fluoroscopy use is described. It has all linear components and yet a high brightness gain, in excess of 4,000 cd-sec/m 2 -R, the tube being comprised of a rugged metallic tube envelope, an inwardly concave metallic input window, a directly viewable full size output display screen, and a scintillator-photocathode screen having a thickness of at least 200 microns for a high X-ray photon utilization ability as well as X-ray stopping power, the scintillator-photocathode screen being suspended on insulators within the envelope and in between the input window and the output screen. The scintillator-photocathode screen is spaced from the output screen by at least 8mm to allow the application of a high negative potential at the scintillator-photocathode screen with respect to the output screen for high gain with low field emission, since all of the remaining components within the tube envelope are at neutral potential with respect to the output display screen. (Auth.)

  10. Preparation of exposures charts for X-ray tubes

    International Nuclear Information System (INIS)

    Zoofan, B.

    1988-01-01

    An exposure chart is a fundamental graph which provides guidance of the exposure conditions in relation to the thickness for a given specimen. It must be prepared specially for the X-ray unit and the type of the film to be used. Although exposure charts are available for each particular X-ray tube from its manufacturer, individual radiographic laboratory should be able to prepare its own exposure charts in a precise manner. Here a typical procedure to prepare such a chart is provided in a practical way with some necessary recommendations

  11. An Intraoral Miniature X-ray Tube Based on Carbon Nanotubes for Dental Radiography

    OpenAIRE

    Hyun Jin Kim; Hyun Nam Kim; Hamid Saeed Raza; Han Beom Park; Sung Oh Cho

    2016-01-01

    A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be ...

  12. Characteristics of Transmission-type Microfocus X-ray Tube based-on Carbon Nanotube Field Emitter

    International Nuclear Information System (INIS)

    Heo, Sung Hwan; Ihsan, Aamir; Cho, Sung Oh

    2007-01-01

    A high resolution microfocus x-ray source is widely applied to noninvasive detection for industrial demands, material science and engineering, and to diagnostic study of microbiology and micro-tomography. Carbon nanotube (CNT) is regarded as an excellent electron emitter, which outperforms conventional electron sources in point of brightness. It has been suggested that CNT is used as an electron source of a high resolution x-ray tube according to their low threshold field with atomically sharp geometry, chemically robust structure, and electric conductivity. Several researchers have reported miniaturized x-ray tube based on diode structure and micro x-ray radiography and computed tomography systems using triode types with precise emission control and electrostatic focusing. Especially, a microfocus x-ray source of 30 μm resolution has been demonstrated recently using an elliptical CNT cathode and asymmetrical Eingel lens. However, to increase the spatial resolution of x-ray source, a smaller CNT emitter is desired. Electron focusing optics must be corrected to reduce aberrations. A thin wire tip end can provide a micro-area of CNT substrate, and a magnetic lens and transmission x-ray target are proper to reduce the lens aberration and a focal length. Until now, CNT based microfocus x-ray source with less than 10 um resolution has not been shown. Here we report a microfocus x-ray source with 4.7 μm x-ray focal spot consisted of a conical CNT tip, a single solenoid lens, and a transmission type x-ray target. A magnified x-ray image larger than 230 times was resolved with advantage of microfocused focal spot and transmission x-ray target

  13. X-ray beam generator

    International Nuclear Information System (INIS)

    Koller, T.J.; Randmer, J.A.

    1977-01-01

    A method of minimizing the preferential angular absorption of the divergent beam from an X-ray generator is described. The generator consists of an X-ray shielded housing with an X-ray transmissive window symmetrically placed in radial alignment with a focal spot area on a sloped target surface of an X-ray tube in the housing. The X-ray tube may be of the stationary anode type or of the rotating anode type. (U.K.)

  14. A low power x-ray tube for use in energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Kataria, S.K.; Govil, Rekha; Lal, M.

    1980-01-01

    A low power X-ray tube with thin molybdenum transmission target for use in energy dispersive X-ray fluorescence (ENDXRF) element analysis has been indigenously built, along with its power supply. The X-ray tube has been in operation since August 1979, and it has been operated upto maximum target voltage of 35 KV and tube current upto 200 μA which is more than sufficient for trace element analysis. This X-ray tube has been used alongwith the indigenously built Si(Li) detector X-ray spectrometer with an energy resolution of 200 eV at 5.9 Kev MnKsub(α) X-ray peak for ENDXRF analysis. A simple procedure of calibration has been developed for thin samples based on the cellulose diluted, thin multielement standard pellets. Analytical sensitivities of the order of a few p.p.m. have been obtained with the experimental setup for elements with 20 < = Z < = 38 and 60 < = Z < = 90. A number of X-ray spectra for samples of environmental, biological, agricultural, industrial and metallurgical interest are presented to demonstrate the salient features of the experimental sep up. (auth.)

  15. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won [Wonkwang University School of Medicine, Iksan (Korea, Republic of); Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man [Jeonbuk Technopark, Iksan (Korea, Republic of); Park, Mi-Ran; Cho, Seung-Ryong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chon, Kwon-Su [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2014-12-15

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics.

  16. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    International Nuclear Information System (INIS)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won; Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man; Park, Mi-Ran; Cho, Seung-Ryong; Chon, Kwon-Su

    2014-01-01

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics

  17. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    Hodoroaba, V.-D.; Radtke, M.; Vincze, L.; Rackwitz, V.; Reuter, D.

    2010-01-01

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  18. X-ray focal spot reconstruction by circular penumbra analysis-Application to digital radiography systems.

    Science.gov (United States)

    Di Domenico, Giovanni; Cardarelli, Paolo; Contillo, Adriano; Taibi, Angelo; Gambaccini, Mauro

    2016-01-01

    The quality of a radiography system is affected by several factors, a major one being the focal spot size of the x-ray tube. In fact, the measurement of such size is recognized to be of primary importance during acceptance tests and image quality evaluations of clinical radiography systems. The most common device providing an image of the focal spot emission distribution is a pin-hole camera, which requires a high tube loading in order to produce a measurable signal. This work introduces an alternative technique to obtain an image of the focal spot, through the processing of a single radiograph of a simple test object, acquired with a suitable magnification. The radiograph of a magnified sharp edge is a well-established method to evaluate the extension of the focal spot profile along the direction perpendicular to the edge. From a single radiograph of a circular x-ray absorber, it is possible to extract simultaneously the radial profiles of several sharp edges with different orientations. The authors propose a technique that allows to obtain an image of the focal spot through the processing of these radial profiles by means of a pseudo-CT reconstruction technique. In order to validate this technique, the reconstruction has been applied to the simulated radiographs of an ideal disk-shaped absorber, generated by various simulated focal spot distributions. Furthermore, the method has been applied to the focal spot of a commercially available mammography unit. In the case of simulated radiographs, the results of the reconstructions have been compared to the original distributions, showing an excellent agreement for what regards both the overall distribution and the full width at half maximum measurements. In the case of the experimental test, the method allowed to obtain images of the focal spot that have been compared with the results obtained through standard techniques, namely, pin-hole camera and slit camera. The method was proven to be effective for simulated

  19. X-ray focal spot reconstruction by circular penumbra analysis—Application to digital radiography systems

    Energy Technology Data Exchange (ETDEWEB)

    Di Domenico, Giovanni, E-mail: didomenico@fe.infn.it; Cardarelli, Paolo; Taibi, Angelo; Gambaccini, Mauro [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, via Saragat 1, FE I-44122, Italy and INFN - sezione di Ferrara, via Saragat 1, FE I-44122 (Italy); Contillo, Adriano [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, via Saragat 1, FE I-44122 (Italy)

    2016-01-15

    Purpose: The quality of a radiography system is affected by several factors, a major one being the focal spot size of the x-ray tube. In fact, the measurement of such size is recognized to be of primary importance during acceptance tests and image quality evaluations of clinical radiography systems. The most common device providing an image of the focal spot emission distribution is a pin-hole camera, which requires a high tube loading in order to produce a measurable signal. This work introduces an alternative technique to obtain an image of the focal spot, through the processing of a single radiograph of a simple test object, acquired with a suitable magnification. Methods: The radiograph of a magnified sharp edge is a well-established method to evaluate the extension of the focal spot profile along the direction perpendicular to the edge. From a single radiograph of a circular x-ray absorber, it is possible to extract simultaneously the radial profiles of several sharp edges with different orientations. The authors propose a technique that allows to obtain an image of the focal spot through the processing of these radial profiles by means of a pseudo-CT reconstruction technique. In order to validate this technique, the reconstruction has been applied to the simulated radiographs of an ideal disk-shaped absorber, generated by various simulated focal spot distributions. Furthermore, the method has been applied to the focal spot of a commercially available mammography unit. Results: In the case of simulated radiographs, the results of the reconstructions have been compared to the original distributions, showing an excellent agreement for what regards both the overall distribution and the full width at half maximum measurements. In the case of the experimental test, the method allowed to obtain images of the focal spot that have been compared with the results obtained through standard techniques, namely, pin-hole camera and slit camera. Conclusions: The method was

  20. A miniature X-ray tube based on carbon nanotube for an intraoral dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Park, Han Beom; Lee, Ju Hyuk; Cho, Sung Oh [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The number of human teeth that can be radiographically taken is limited. Moreover, at least two X-ray shots are required to get images of teeth from both sides of the mouth. In order to overcome the disadvantages of conventional dental radiography, a dental radiograph has been proposed in which an X-ray tube is inserted into the mouth while an X-ray detector is placed outside the mouth. The miniature X-ray tube is required small size to insert into the mouth. Recently, we have fabricated a miniature x-ray tube with the diameter of 7 mm using a carbon nanotube (CNT) field. But, commercialized miniature X-ray tube were adopted a thermionic type using tungsten filament. The X-ray tubes adopted thermionic emission has a disadvantage of increasing temperature of x-ray tube. So it need to cooling system to cool x-ray tube. On the other hands, X-ray tubes adopted CNT field emitters don't need cooling systems because electrons are emitted from CNT by applying high voltage without heating. We have developed the miniature x-ray tube that produce x-ray with uniform spatial distribution based on carbon nanotube field emitters. The fabricated miniature x-ray tube can be stably and reliably operated at 50kV without any vacuum pump. The developed miniature X-ray tube was applied for intraoral dental radiography that employs an intra-oral CNT-based miniature X-ray tube and extra-oral X-ray detectors. An X-ray image of many teeth was successfully obtained by a single X-ray shot using the intra-oral miniature X-ray tube system. Furthermore, images of both molar teeth of pig were simultaneously obtained by a single X-ray shot. These results show that the intraoral dental radiography, which employs an intraoral miniature X-ray tube and an extraoral X-ray detector, performs better than conventional dental radiography.

  1. A miniature X-ray tube based on carbon nanotube for an intraoral dental radiography

    International Nuclear Information System (INIS)

    Kim, Hyun Jin; Park, Han Beom; Lee, Ju Hyuk; Cho, Sung Oh

    2016-01-01

    The number of human teeth that can be radiographically taken is limited. Moreover, at least two X-ray shots are required to get images of teeth from both sides of the mouth. In order to overcome the disadvantages of conventional dental radiography, a dental radiograph has been proposed in which an X-ray tube is inserted into the mouth while an X-ray detector is placed outside the mouth. The miniature X-ray tube is required small size to insert into the mouth. Recently, we have fabricated a miniature x-ray tube with the diameter of 7 mm using a carbon nanotube (CNT) field. But, commercialized miniature X-ray tube were adopted a thermionic type using tungsten filament. The X-ray tubes adopted thermionic emission has a disadvantage of increasing temperature of x-ray tube. So it need to cooling system to cool x-ray tube. On the other hands, X-ray tubes adopted CNT field emitters don't need cooling systems because electrons are emitted from CNT by applying high voltage without heating. We have developed the miniature x-ray tube that produce x-ray with uniform spatial distribution based on carbon nanotube field emitters. The fabricated miniature x-ray tube can be stably and reliably operated at 50kV without any vacuum pump. The developed miniature X-ray tube was applied for intraoral dental radiography that employs an intra-oral CNT-based miniature X-ray tube and extra-oral X-ray detectors. An X-ray image of many teeth was successfully obtained by a single X-ray shot using the intra-oral miniature X-ray tube system. Furthermore, images of both molar teeth of pig were simultaneously obtained by a single X-ray shot. These results show that the intraoral dental radiography, which employs an intraoral miniature X-ray tube and an extraoral X-ray detector, performs better than conventional dental radiography

  2. X-ray image intensifier camera tubes and semiconductor targets

    International Nuclear Information System (INIS)

    1979-01-01

    A semiconductor target for use in an image intensifier camera tube and a camera using the target are described. The semiconductor wafer for converting an electron image onto electrical signal consists mainly of a collector region, preferably n-type silicon. It has one side for receiving the electron image and an opposite side for storing charge carriers generated in the collector region by high energy electrons forming a charge image. The first side comprises a highly doped surface layer covered with a metal buffer layer permeable to the incident electrons and thick enough to dissipate some of the incident electron energy thereby improving the signal-to-noise ratio. This layer comprises beryllium on niobium on the highly doped silicon surface zone. Low energy Kα X-ray radiation is generated in the first layer, the radiation generated in the second layer (mainly Lα radiation) is strongly absorbed in the silicon layer. A camera tube using such a target with a photocathode for converting an X-ray image into an electron image, means to project this image onto the first side of the semiconductor wafer and means to read out the charge pattern on the second side are also described. (U.K.)

  3. An Intraoral Miniature X-ray Tube Based on Carbon Nanotubes for Dental Radiography

    Directory of Open Access Journals (Sweden)

    Hyun Jin Kim

    2016-06-01

    Full Text Available A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube.

  4. An intraoral miniature x-ray tube based on carbon nanotubes for dental radiography

    International Nuclear Information System (INIS)

    Kim, Hyun Jin; Kim, Hyun Nam; Raza, Hamid Saeed; Park, Han Beom; Cho, Sung Oh

    2016-01-01

    A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube

  5. An intraoral miniature x-ray tube based on carbon nanotubes for dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Kim, Hyun Nam; Raza, Hamid Saeed; Park, Han Beom; Cho, Sung Oh [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-06-15

    A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube.

  6. Angle dependent focal spot size of a conical X-ray target

    International Nuclear Information System (INIS)

    Saeed Raza, Hamid; Jin Kim, Hyun; Nam Kim, Hyun; Oh Cho, Sung

    2015-01-01

    Misaligned phantoms may severely affect the focal spot calculations. A method is proposed to determine the geometry of the X-ray target and the position of the image radiograph around the X-ray target to get a relatively smaller focal spot size. Results reveal that the focal spot size is not always isotropic around the target but it decreases as the point of observation shifts radially away from the center line of the conical X-ray target. This research will help in producing high quality X-ray images in multi-directions by properly aligning the phantoms and the radiograph tallies. - Highlights: • Misaligned phantoms may severely affect the focal spot calculations. • The aim of this research is to analyze systematically the angle dependent behavior of the focal spot size around a conical shaped X-ray target. • A general purpose Monte Carlo (MCNP5) computer code is used to achieve a relatively small focal spot size. • Angular distribution of the X-ray focal spot size mainly depends on the angular orientation of the phantom and its aligned FIR tally. • This research will help in producing high quality X-ray images in multi-directions

  7. Miniature X-ray Tube for Electric Brachytherapy using Carbon Nanotube Field Emitter

    International Nuclear Information System (INIS)

    Heo, Sung Hwan; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2011-01-01

    An electric brachytherapy using a miniature x-ray tube has a major advantage to reduce the x-ray exposure of human body during the cancer radiation therapy by optimal positioning of x-ray radiation source and treatment objectives. In the view of a smaller electronic x-ray source, the CNT field emitter based xray tube can be more minimized than thermionic filament emitter based one because of a simple power supplier connection of cold field emission in diode type as well as a higher electron emission brightness of CNT. This abstract is for introducing the design of a prototype CNT field emitter based miniature x-ray tube. We have vacuum sealed CNT miniature x-ray tube with 7∼10 mm diameter, and characteristics of electron emission and x-ray transportation using MCNP5 code are surveyed

  8. Automatic film loader for X-ray spot film device

    International Nuclear Information System (INIS)

    1975-01-01

    A light tight tunnel extends over the top of a diagnostic X-ray table. A film cassette is mounted for reciprocating in the tunnel between an X-ray exposure position and a position in which the cassette is unloaded or loaded with film automatically. Unexposed films are dispensed one at a time into the cassette from a feed magazine at one end of the tunnel. After exposure, the film is ejected from the cassette into a receiving magazine at the same end of the tunnel. (Auth.)

  9. Experimental investigation of bright spots in broadband, gated x-ray images of ignition-scale implosions on the National Ignition Facility

    International Nuclear Information System (INIS)

    Barrios, M. A.; Suter, L. J.; Glenn, S.; Benedetti, L. R.; Bradley, D. K.; Collins, G. W.; Hammel, B. A.; Izumi, N.; Ma, T.; Scott, H.; Smalyuk, V. A.; Regan, S. P.; Epstein, R.; Kyrala, G. A.

    2013-01-01

    Bright spots in the hot spot intensity profile of gated x-ray images of ignition-scale implosions at the National Ignition Facility [G. H. Miller et al., Opt. Eng. 443, (2004)] are observed. X-ray images of cryogenically layered deuterium-tritium (DT) and tritium-hydrogen-deuterium (THD) ice capsules, and gas filled plastic shell capsules (Symcap) were recorded along the hohlraum symmetry axis. Heterogeneous mixing of ablator material and fuel into the hot spot (i.e., hot-spot mix) by hydrodynamic instabilities causes the bright spots. Hot-spot mix increases the radiative cooling of the hot spot. Fourier analysis of the x-ray images is used to quantify the evolution of bright spots in both x- and k-space. Bright spot images were azimuthally binned to characterize bright spot location relative to known isolated defects on the capsule surface. A strong correlation is observed between bright spot location and the fill tube for both Symcap and cryogenically layered DT and THD ice targets, indicating the fill tube is a significant seed for the ablation front instability causing hot-spot mix. The fill tube is the predominant seed for Symcaps, while other capsule non-uniformities are dominant seeds for the cryogenically layered DT and THD ice targets. A comparison of the bright spot power observed for Si- and Ge-doped ablator targets shows heterogeneous mix in Symcap targets is mostly material from the doped ablator layer

  10. Pick up screens for x-ray image intensifier tubes employing evaporated activated scintillator layer

    International Nuclear Information System (INIS)

    Spicer, W.E.

    1976-01-01

    The present invention relates in general to methods for making pick-up screens for x-ray image intensifier tubes and, more particularly, to an improved method wherein the x-ray fluorescent phosphor screen element is formed by evaporation of an alkali metal halide material in vacuum and condensing the evaporated material on an x-ray transparent portion of the x-ray intensifier tube, whereby a curved x-ray image pick-up screen is formed which has improved quantum efficiency and resolution. Such improved x-ray image intensifier tubes are especially useful for, but not limited in use to x-ray systems and for intensifying gamma ray images obtained in applications of nuclear medicine. 7 claims, 5 drawing figures

  11. Automated analysis of hot spot X-ray images at the National Ignition Facility

    Science.gov (United States)

    Khan, S. F.; Izumi, N.; Glenn, S.; Tommasini, R.; Benedetti, L. R.; Ma, T.; Pak, A.; Kyrala, G. A.; Springer, P.; Bradley, D. K.; Town, R. P. J.

    2016-11-01

    At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ˜4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.

  12. Automated analysis of hot spot X-ray images at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S. F., E-mail: khan9@llnl.gov; Izumi, N.; Glenn, S.; Tommasini, R.; Benedetti, L. R.; Ma, T.; Pak, A.; Springer, P.; Bradley, D. K.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kyrala, G. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ∼4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.

  13. Using computational modeling to compare X-ray tube Practical Peak Voltage for Dental Radiology

    International Nuclear Information System (INIS)

    Holanda Cassiano, Deisemar; Arruda Correa, Samanda Cristine; Monteiro de Souza, Edmilson; Silva, Ademir Xaxier da; Pereira Peixoto, José Guilherme; Tadeu Lopes, Ricardo

    2014-01-01

    The Practical Peak Voltage-PPV has been adopted to measure the voltage applied to an X-ray tube. The PPV was recommended by the IEC document and accepted and published in the TRS no. 457 code of practice. The PPV is defined and applied to all forms of waves and is related to the spectral distribution of X-rays and to the properties of the image. The calibration of X-rays tubes was performed using the MCNPX Monte Carlo code. An X-ray tube for Dental Radiology (operated from a single phase power supply) and an X-ray tube used as a reference (supplied from a constant potential power supply) were used in simulations across the energy range of interest of 40 kV to 100 kV. Results obtained indicated a linear relationship between the tubes involved. - Highlights: • Computational Model was developed to X-ray tube Practical Peak Voltage for Dental Radiology. • The calibration of X-rays tubes was performed using the MCNPX Monte Carlo code. • The energy range was 40–100 kV. • Results obtained indicated a linear relationship between the Dental Radiology and reference X-ray tubes

  14. Construction of x-ray Kβ filters to monochromatize the radiation of a conventional x-ray tube

    International Nuclear Information System (INIS)

    Moreira, M.V.B.; Oliveira, A.G.

    1987-01-01

    The construction of Zr and Nb Kβ filters to produce monochromatic radiation of a conventional X-ray Mo-tube (λK a = 0.7107 A) is described. Disks of NB and Zr, 6.4 mm in diameter and 0.03 to 0.06 mm thick, were prepared. The filters performance was tested by means of NaCl powder difraction patterns. (author) [pt

  15. Resolving hot spot microstructure using x-ray penumbral imaging (invited)

    Science.gov (United States)

    Bachmann, B.; Hilsabeck, T.; Field, J.; Masters, N.; Reed, C.; Pardini, T.; Rygg, J. R.; Alexander, N.; Benedetti, L. R.; Döppner, T.; Forsman, A.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L.

    2016-11-01

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  16. Resolving hot spot microstructure using x-ray penumbral imaging (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, B., E-mail: bachmann2@llnl.gov; Field, J.; Masters, N.; Pardini, T.; Rygg, J. R.; Benedetti, L. R.; Döppner, T.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hilsabeck, T.; Reed, C.; Alexander, N.; Forsman, A. [General Atomics, San Diego, California 92186 (United States)

    2016-11-15

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  17. Resolving hot spot microstructure using x-ray penumbral imaging (invited).

    Science.gov (United States)

    Bachmann, B; Hilsabeck, T; Field, J; Masters, N; Reed, C; Pardini, T; Rygg, J R; Alexander, N; Benedetti, L R; Döppner, T; Forsman, A; Izumi, N; LePape, S; Ma, T; MacPhee, A G; Nagel, S; Patel, P; Spears, B; Landen, O L

    2016-11-01

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  18. Resolving hot spot microstructure using x-ray penumbral imaging (invited)

    International Nuclear Information System (INIS)

    Bachmann, B.; Field, J.; Masters, N.; Pardini, T.; Rygg, J. R.; Benedetti, L. R.; Döppner, T.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L.; Hilsabeck, T.; Reed, C.; Alexander, N.; Forsman, A.

    2016-01-01

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  19. Settling time of dental x-ray tube head after positioning

    International Nuclear Information System (INIS)

    Yun, Suk Ja; Kang, Byung Cheol; Wang, Se Myung; Koh, Chang Sung

    2002-01-01

    The aim of this study was to introduce a method of obtaining the oscillation graphs of the dental x-ray tube heads relative to time using an accelerometer. An Accelerometer, Piezotron type 8704B25 (Kistler Instrument Co., Amherst, NY, USA) was utilized to measure the horizontal oscillation of the x-ray tube head immediately after positioning the tube head for an intraoral radiograph. The signal from the sensor was transferred to a dynamic signal analyzer, which displayed the magnitude of the acceleration on the Y-axis and time lapse on the X-axis. The horizontal oscillation of the tube head was measured relative to time, and the settling time was also determined on the basis of the acceleration graphs for 6 wall type, 5 floor-fixed type, and 4 mobile type dental x-ray machines. The oscillation graphs showed that tube head movement decreased rapidly over time. The settling time varied with x-ray machine types. Wall-type x-ray machines had a settling time of up to 6 seconds, 5 seconds for fixed floor-types, and 11 seconds for the mobile-types. Using an accelerometer, we obtained the oscillation graphs of the dental x-ray tube head relative to time. The oscillation graph with time can guide the operator to decide upon the optimum exposure moment after xray tube head positioning for better radiographic resolution.

  20. Settling time of dental x-ray tube head after positioning

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Suk Ja; Kang, Byung Cheol [Department of Oral and Maxillofacial Radiology, Chonnam National University, Gwangju (Korea, Republic of); Wang, Se Myung; Koh, Chang Sung [Department of Mechatronics, Kwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2002-09-15

    The aim of this study was to introduce a method of obtaining the oscillation graphs of the dental x-ray tube heads relative to time using an accelerometer. An Accelerometer, Piezotron type 8704B25 (Kistler Instrument Co., Amherst, NY, USA) was utilized to measure the horizontal oscillation of the x-ray tube head immediately after positioning the tube head for an intraoral radiograph. The signal from the sensor was transferred to a dynamic signal analyzer, which displayed the magnitude of the acceleration on the Y-axis and time lapse on the X-axis. The horizontal oscillation of the tube head was measured relative to time, and the settling time was also determined on the basis of the acceleration graphs for 6 wall type, 5 floor-fixed type, and 4 mobile type dental x-ray machines. The oscillation graphs showed that tube head movement decreased rapidly over time. The settling time varied with x-ray machine types. Wall-type x-ray machines had a settling time of up to 6 seconds, 5 seconds for fixed floor-types, and 11 seconds for the mobile-types. Using an accelerometer, we obtained the oscillation graphs of the dental x-ray tube head relative to time. The oscillation graph with time can guide the operator to decide upon the optimum exposure moment after xray tube head positioning for better radiographic resolution.

  1. X-ray Radiation Mechanisms and the Beaming Effect of Hot Spots ...

    Indian Academy of Sciences (India)

    Astr. (2011) 32, 193–196 c Indian Academy of Sciences. X-ray Radiation Mechanisms and the Beaming Effect of Hot Spots and Knots in AGN Jets. Jin Zhang1,∗. , Jin-Ming Bai2, Liang Chen2 & Enwei Liang3. 1College of Physics and Electronic Engineering, Guangxi Teachers Education University,. Nanning 530001, China.

  2. X-ray polarization studies of plasma focus experiments with a single hot spots

    International Nuclear Information System (INIS)

    Jakubowski, L.; Sadowski, M.J.; Baronova, E.O.

    2004-01-01

    In high current pulse discharges of the plasma focus (PF) type, inside the collapsing pinch column, there are formed local micro-regions of high-density and high-temperature plasma, so-called hot spots. Individual hot spots are separated in space and time. Each hot spot is characterized by its specific electron concentration and temperature, as well as by the emission of x-ray lines with different polarization. When numerous hot spots are produced it is impossible to determine local plasma parameters and to interpret the polarization effects. To eliminate this problem this study was devoted to the realization of PF-type discharges with single hot spot only. It has been achieved by a choice of the electrode configuration, which facilitated the formation of a single hot spot emitting intense x-ray lines. At the chosen experimental conditions it was possible to determine local plasma parameters and to demonstrate evident differences in the polarization of the observed x-ray lines. (author)

  3. Investigation of a novel x-ray tube for the calibration of the x-ray crystal spectrometer in the KSTAR machine

    International Nuclear Information System (INIS)

    Bak, J.G.; Lee, S.G.

    2007-01-01

    A novel x-ray tube with a line filament has been developed for the in-situ calibration of the x-ray crystal spectrometer (XCS) in the KSTAR machine. The characteristics of the x-ray tube are investigated from the x-ray images obtained by using a pinhole and a CCD detector. It is found that the image has the width of about 0.1 mm, which is much improved as compared with the previous experimental results. In addition, there is a uniform region around the center of the image within its full length of 13.5 mm. This work may lead to the development of a novel x-ray tube with a line focus, which is required for the calibration of the XCS. Experimental results from the investigation of the x-ray tube are presented and the technical issues in a design of the in-situ calibration system using the x-ray tube for the KSTAR XCS are discussed. (author)

  4. Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide—epoxy composites

    International Nuclear Information System (INIS)

    Noor Azman, N.Z.; Siddiqui, S.A.; Hart, R.; Low, I.M.

    2013-01-01

    The effect of particle size, filler loadings and x-ray tube voltage on the x-ray transmission in WO 3 -epoxy composites has been investigated using the mammography unit and a general radiography unit. Results indicate that nano-sized WO 3 has a better ability to attenuate the x-ray beam generated by lower tube voltages (25–35 kV) when compared to micro-sized WO 3 of the same filler loading. However, the effect of particle size on x-ray transmission was negligible at the higher x-ray tube voltages (40–120 kV). - Highlights: ► Investigated the effect of particle size of WO 3 on the x-ray attenuation ability. ► Nano-sized WO 3 has a better ability to attenuate lower x-ray energies (22–49 kV p ). ► Particle size has negligible effect at the higher x-ray energy range (40–120 kV p ).

  5. Effective prefiltration of X-ray tube assemblies and its specification in aluminium equivalents

    International Nuclear Information System (INIS)

    Meiler, J.

    1984-01-01

    It is shown that the Al equivalent of the prefiltration of an X-ray tube assembly varies significantly with the tube voltage, and hence the usual quotation of only one value without further specifications cannot suffice for the definition of the Al equivalent. The knowledge of the tube voltage, with which the equivalent was determined, is also important. The equivalent relationships can then be indicated for the total tube voltage range which is of interest. (orig.) [de

  6. Fabrication of applicator system of miniature X-ray tube based on carbon nanotubes for a skin cancer therapy

    International Nuclear Information System (INIS)

    Park, Han Beom; Kim, Hyun Jin; Lee, Ju Hyuk; Ha, Jun Mok; Cho, Sung Oh

    2016-01-01

    A miniature X-ray tube is a small X-ray generation device generally with a diameter of less than 10 mm. Because of the feasible installation in a spatially constrained area and the possibility of electrical on/off control, miniature X-ray tubes can be widely used for nondestructive X-ray radiography, hand held X-ray spectrometers, electric brachytherapy, and interstitial or intracavitary radiation therapy or imaging with the substitution of radioactive isotopes. Miniature X-ray tubes have been developed mostly using thermionic electron sources or secondary X-ray emission. The X-ray tube show excellent field emission properties and good X-ray spectrum. Also, the flattening filter was made to irradiate uniformly. The X-ray dose radial uniformities between installed flattening filter and non-installed flattening filter were measured. When flattening filter is equipped, X-ray uniformity was improved from higher than 20% to lower than 10%. As a result, the fabricated applicator system of the miniature X-ray tube using optimized flattening filter exhibited fairly excellent properties

  7. X-ray cine magnification angiography by 0.6 mm focal spot

    International Nuclear Information System (INIS)

    Tanaka, Isao; Wakamatsu, Takashi; Sano, Toshiya

    1983-01-01

    To observe microstructures on the X-ray cinematography by 0.6 mm focal spot, usefulness of enlarged shooting was studied. As a result, even at a focus of 0.6 mm, the enlarged shooting (ca. 1.7-fold) revealed the superior total M.T.F. than that of contact photography. Furthermore, Groedel effect upon magnification was as good as the grid system. In the cardiac catheterization by 0.6 mm focal spot being employed most frequently at present, the enlarged shooting without using grid is a useful method. Thus, it is considered to take up this method as much as possible. (author)

  8. Maximization of bremsstrahlung and K-series production efficiencies in flash x-ray tubes

    International Nuclear Information System (INIS)

    Krehl, P.

    1986-01-01

    Historically, x-ray output of flash x-ray tubes was maximized empirically by changing the electrode geometry and varying the capacitance of the pulse generator. With the advent of high-voltage, low-impedance transmission lines, short-duration, high-current pulses could be generated with ease. An appropriate line scaling should assure that dose maximization is not reached at the expense of pulse prolongation which would reduce stop motion capability, but rather that dose rate should be maximized. Additionally, anode evaporation in the arc phase should be minimized to enhance tube life

  9. New tubes and techniques for flash X-ray diffraction and high contrast radiography

    International Nuclear Information System (INIS)

    Charbonnier, F.M.; Barbour, J.P.; Brewster, J.L.

    High energy electrons are particularly efficient in producing characteristic X-rays and soft polychromatic. A line of wide spectrum beryllium window flash X-ray tubes, ranging from 150 to 600kV, has been developed to exploit this property. Laue and Debye Scherrer flash X-ray diffraction patterns have been obtained using a single 30 ns pulse exposure. X-ray diffraction tests obtained are shown. Extremely high contrast flash radiography of small, low density objects has been obtained using industrial film without screen. Alternatively, particularly at high voltages and for subjects which include a broad range of materials and thicknesses, special film techniques can be used to produce extremely wide latitudes. Equipment, techniques and results are discussed

  10. Development of confocal micro X-ray fluorescence instrument using two X-ray beams

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Nakano, Kazuhiko; Ding Xunliang

    2007-01-01

    A new confocal micro X-ray fluorescence instrument was developed. This instrument has two independent micro X-ray tubes with Mo targets. A full polycapillary X-ray lens was attached to each X-ray tube. Another half polycapillary lens was attached to a silicon drift X-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The effects of the excitation of two X-ray beams were investigated. The instrument enabled highly sensitive three-dimensional X-ray fluorescence analysis. We confirmed that the X-ray fluorescence intensity from the sample increased by applying the two independent X-ray tubes in confocal configuration. Elemental depth profiling of black wheat was demonstrated with the result that each element in the surface coat of a wheat grain showed unique distribution

  11. The concordance of ultrasound technique versus X-ray to confirm endotracheal tube position in neonates.

    Science.gov (United States)

    Chowdhry, R; Dangman, B; Pinheiro, J M B

    2015-07-01

    Given the distressingly high incidence of ETT malposition in the neonatal population, patients are exposed to ionizing radiation to confirm endotracheal tube (ETT) position. Our objective is to determine if ultrasound technique is concordant with X-ray in determining whether an ETT is deeply positioned or not. Prospective observational clinical trial. After obtaining informed consent, patients with an ETT who required X-ray for clinical reasons underwent sonographic evaluation of the ETT by an ultrasound technologist or pediatric radiologist, usually within the hour. A total of 56 image pairs were obtained from 29 patients. Ninety-eight percent of the ultrasound/X-ray image pairs were suitable for analysis. The concordance of ultrasound with X-ray to identify deeply and not deeply positioned ETTs was 95% (53/56). The sensitivity of ultrasound to detect deeply positioned ETTs on X-ray was 86% (6/7). The specificity of ultrasound to detect ETTs that were not deeply positioned on X-ray was 96% (47/49). As the largest clinical trial of its kind to date, with the greatest number of ultrasound operators, we have further established US as a feasible imaging modality to determine whether an ETT is deeply positioned or not.

  12. Study tube housing leakage of 111 conventional diagnostic X-ray machines using ion chamber survey meter

    International Nuclear Information System (INIS)

    Lalrinmawia, Jonathan; Tiwari, Ramesh Chandra; Pau, Kham Suan

    2018-01-01

    This study aims at measuring the leakage radiation from X-ray tube and compare to national and international safety standard. The leakage radiation is formed at the anode inside the X-ray tube and transmitted through the tube housing. The tube housing is proposed to protect both patients and workers from leakage radiation. To the best of the authors' knowledge, no tube housing leakage measurements have been done so far in the present study area

  13. Evaluated Plan Stress Of Weld In Pressure Tube Using X Ray Diffraction Technique

    International Nuclear Information System (INIS)

    Phan Trong Phuc; Nguyen Duc Thanh; Luu Anh Tuyen

    2011-01-01

    X ray diffraction is a fundamental technique measuring stress, this technique has determined crystal strain in materials, from that determined stress in materials. This paper presents study of evaluating plane stress of weld in pressure tube, using modern XRD apparatus: X Pert Pro. (author)

  14. Analysis of the design of an X-ray tube using Monte Carlo

    International Nuclear Information System (INIS)

    Pena V, J. D.; Sosa A, M. A.; Ceron, P. V.; Vallejo, M. A.; Vega C, H. R.

    2017-10-01

    In this paper we present the Monte Carlo analysis of the X-rays produced by a rotating X-ray tube of the Siemens brand that is used in tomographs for clinical use. The work was done with the MCNP6 code with which the tube was modeled and the primary X-ray spectra produced during the interaction of monoenergetic electrons of 130 keV were calculated. The X-ray spectra were obtained by varying some parameters such as: the angle of the anode (15 to 20 degrees), the type of target (Tungsten, Molybdenum and Rhodium) and the thickness of the filter (3, 5, 10 and 15 mm). In order to have a good statistic 10 7 stories were used. Though the estimators f2 and f5 the X-ray spectra and the total fluencies were estimated. This information will be used to calculate the dose absorbed in the lens and the thyroid gland in patients undergoing radio diagnosis procedures. (Author)

  15. Clinical assessment compared with chest X-Ray after removal of chest tube to diagnose pneumothorax

    International Nuclear Information System (INIS)

    Majeed, F. A.; Noor, Q. U. H.; Mehmood, U.; Imtiaz, T.; Zafar, U.

    2017-01-01

    Objective: To evaluate clinical judgment in ruling out pneumothorax during the removal of the chest tube by auscultating the chest before removal and after the extubation of the chest tube in comparison to x ray radiological results. Study Design: Descriptive cross sectional study. Place and Duration of Study: Combined Military Hospital (CMH) Lahore Pakistan, from August 2015 to March 2016. Material and Methods: A sample size of 100 was calculated. Patients were selected via non probability purposive sampling. Children under 14 years were not included. The patients with mal-positioned chest tube, surgical site infection, air leak and the patients with more than one chest tube on one side were excluded. A proforma was made and filled by one person. Chest tubes were removed by two trained senior registrars according to a protocol devised. It was ensured that there was no air leak present before removal clinically and radiologically. Another chest x-ray was done within 24 hours of extubation to detect any pathology that might have occurred during the process. Any complication in the patient clinically was observed till the x-ray film became available. Two sets of readings were obtained. Set A included auscultation findings and set B included x ray results. Results: Out of 100 patients, 60 (60 percent) were males and 40 (40 percent) females. The ages of the patients ranged between 17-77 years. Mean age of the patient was 43.27 ± 17.05 years. In set A out of 100 (100 percent) no pneumothorax developed clinically. In set B out of 100 patients 99 (99 percent) showed no pneumothorax on chest x ray, only 1 (1 percent) showed pneumothorax which was not significant (less than 15 percent on X ray). However, the patient remained asymptomatic clinically and there was no need of reinsertion of the chest tube. Conclusion: Auscultatory findings in diagnosing a significant pneumothorax are justified. Hence, if the chest tube is removed according to the protocol, clinically by

  16. X-ray image intensifier tube and radiographic camera incorporating same

    International Nuclear Information System (INIS)

    1981-01-01

    An X-ray sensitive image intensifier tube is described. It has an input window comprising at least one of iron, chromium and nickel for receiving an X-ray image. There is a flat scintillator screen adjacent for converting the X-ray image into a light pattern image. Adjacent to this is a flat photocathode layer for emitting photoelectrons in a pattern corresponding to the light pattern image. Parallel to this and spaced from it is a flat phosphor display screen. Electrostatic voltage is applied to the display screen and the photocathode layer to create an electric field between them to accelerate the photoelectrons towards the display screen. The paths of such parallel straight trajectories are governed solely by the electrostatic voltage applied, the image at the display screen being substantially equal in size to that of the X-ray image received at the input window. The tube envelope is preferably metallic to enable the basic components to be kept at a neutral potential and avoid spurious emissions. A radiographic camera with such an intensifier tube is also described. (U.K.)

  17. SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes

    International Nuclear Information System (INIS)

    Poludniowski, G; Evans, P M; Landry, G; DeBlois, F; Verhaegen, F

    2009-01-01

    A software program, SpekCalc, is presented for the calculation of x-ray spectra from tungsten anode x-ray tubes. SpekCalc was designed primarily for use in a medical physics context, for both research and education purposes, but may also be of interest to those working with x-ray tubes in industry. Noteworthy is the particularly wide range of tube potentials (40-300 kVp) and anode angles (recommended: 6-30 deg.) that can be modelled: the program is therefore potentially of use to those working in superficial/orthovoltage radiotherapy, as well as diagnostic radiology. The utility is free to download and is based on a deterministic model of x-ray spectrum generation (Poludniowski 2007 Med. Phys. 34 2175). Filtration can be applied for seven materials (air, water, Be, Al, Cu, Sn and W). In this note SpekCalc is described and illustrative examples are shown. Predictions are compared to those of a state-of-the-art Monte Carlo code (BEAMnrc) and, where possible, to an alternative, widely-used, spectrum calculation program (IPEM78). (note)

  18. Optimizing abdominal CT dose and image quality with respect to x-ray tube voltage

    Science.gov (United States)

    Huda, Walter; Ogden, Kent M.

    2004-05-01

    The objective of this study was to identify the x-ray tube voltage that results in optimum performance for abdominal CT imaging for a range of imaging tasks and patient sizes. Theoretical calculations were performed of the contrast to noise ratio (CNR) for disk shaped lesions of muscle, fat, bone and iodine embedded in a uniform water background. Lesion contrast was the mean Hounsfield Unit value at the effective photon energy, and image noise was determined from the total radiation intensity incident on the CT x-ray detector. Patient size ranging from young infants (10 kg) to oversized adults (120 kg), with CNR values obtained for x-ray tube voltages ranging from 80 to 140 kV. Patients of varying sizes were modeled as an equivalent cylinder of water, and the mean section dose (D) was determined for each selected x-ray tube kV value at a constant mAs. For each patient size and lesion type, we identified an optimal kV as the x-ray tube voltage that yields a maximum value of the figure of merit (CNR2/D). Increasing the x-ray tube voltage from 80 to 140 kV reduced lesion contrast by 11% for muscle, 21% for fat, 35% for bone and 52% for iodine, and these reductions were approximately independent of patient size. Increasing the x-ray tube voltage from 80 to 140 kV increased a muscle lesion CNR relative to a uniform water background by a factor of 2.6, with similar trends observed for fat (2.3), bone (1.9) and iodine (1.4). The improvement in lesion CNR with increasing x-ray tube voltage was highest for the largest sized patients. Increasing the x-ray tube voltage from 80 to 140 kV increased the patient dose by a factor of between 5.0 and 6.2 depending on the patient size. For small sized patients (10 and 30 kg) and muscle lesions, best performance is obtained at 80 kV; however, for adults (70 kg) and oversized adults (120 kg), the best performance would be obtained at 140 kV. Imaging fat lesions was best performed at 80 kV for all patients except for oversized adults

  19. Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source

    International Nuclear Information System (INIS)

    Donath, Tilman; Bunk, Oliver; Groot, Waldemar; Bednarzik, Martin; Gruenzweig, Christian; David, Christian; Pfeiffer, Franz; Hempel, Eckhard; Popescu, Stefan; Hoheisel, Martin

    2009-01-01

    Phase-contrast imaging at laboratory-based x-ray sources using grating interferometers has been developed over the last few years for x-ray energies of up to 28 keV. Here, we show first phase-contrast projection and tomographic images recorded at significantly higher x-ray energies, produced by an x-ray tube source operated at 100 kV acceleration voltage. We find our measured tomographic phase images in good agreement with tabulated data. The extension of phase-contrast imaging to this significantly higher x-ray energy opens up many applications of the technique in medicine and industrial nondestructive testing.

  20. Partial body irradiation of small laboratory animals with an industrial X-ray tube

    International Nuclear Information System (INIS)

    Frenzel, Thorsten; Kruell, Andreas; Grohmann, Carsten; Schumacher, Udo

    2014-01-01

    Dedicated precise small laboratory animal irradiation sources are needed for basic cancer research and to meet this need expensive high precision radiation devices have been developed. To avoid such expenses a cost efficient way is presented to construct a device for partial body irradiation of small laboratory animals by adding specific components to an industrial X-ray tube. A custom made radiation field tube was added to an industrial 200 kV X-ray tube. A light field display as well as a monitor ionization chamber were implemented. The field size can rapidly be changed by individual inserts of MCP96 that are used for secondary collimation of the beam. Depth dose curves and cross sectional profiles were determined with the use of a custom made water phantom. More components like positioning lasers, a custom made treatment couch, and a commercial isoflurane anesthesia unit were added to complete the system. With the accessories described secondary small field sizes down to 10 by 10 mm 2 (secondary collimator size) could be achieved. The dosimetry of the beam was constructed like those for conventional stereotactical clinical linear accelerators. The water phantom created showed an accuracy of 1 mm and was well suited for all measurements. With the anesthesia unit attached to the custom made treatment couch the system is ideal for the radiation treatment of small laboratory animals like mice. It was feasible to shrink the field size of an industrial X-ray tube from whole animal irradiation to precise partial body irradiation of small laboratory animals. Even smaller secondary collimator sizes than 10 by 10 mm 2 are feasible with adequate secondary collimator inserts. Our custom made water phantom was well suited for the basic dosimetry of the X-ray tube.

  1. Design of high voltage power supply of miniature X-ray tube based on resonant Royer

    International Nuclear Information System (INIS)

    Liu Xiyao; Zeng Guoqiang; Tan Chengjun; Luo Qun; Gong Chunhui; Huang Rui

    2013-01-01

    Background: In recent years, X rays are widely used in various fields. With the rapid development of national economy, the demand of high quality, high reliability, and high stability miniature X-ray tube has grown rapidly. As an important core component of miniature X-ray tube, high voltage power supply has attracted wide attention. Purpose: To match miniature, the high voltage power supply should be small, lightweight, good quality, etc. Based on the basic performance requirements of existing micro-X-ray tube high voltage power supply, this paper designs an output from 0 to -30 kV adjustable miniature X-ray tube voltage DC power supply. Compared to half-bridge and full-bridge switching-mode power supply, its driving circuit is simple. With working on the linear condition, it has no switching noise. Methods: The main circuit makes use of DC power supply to provide the energy. The resonant Royer circuit supplies sine wave which drives to the high frequency transformer's primary winding with resultant sine-like high voltage appearing across the secondary winding. Then, the voltage doubling rectifying circuit would achieve further boost. In the regulator circuit, a feedback control resonant transistor base current is adopted. In order to insulate air, a silicone rubber is used for high pressure part packaging, and the output voltage is measured by the dividing voltage below -5 kV. Results: The stability of circuit is better than 0.2%/6 h and the percent of the output ripple voltage is less than 0.3%. Keeping the output voltage constant, the output current can reach 57 μA by changing the size of load resistor. This high voltage power supply based on resonant Royer can meet the requirement of miniature X-ray tube. Conclusions: The circuit can satisfy low noise, low ripple, low power and high voltage regulator power supply design. However, its efficiency is not high enough because of the linear condition. In the next design, to further reduce power consumption, we

  2. A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications

    Science.gov (United States)

    Walker, Brandon J.; Radtke, Jeff; Chen, Guang-Hong; Eliceiri, Kevin W.; Mackie, Thomas R.

    2017-10-01

    A modular implementation of a scanning multi-source X-ray tube is designed for the increasing number of multi-source imaging applications in computed tomography (CT). An electron beam array coupled with an oscillating magnetic deflector is proposed as a means for producing an X-ray focal spot at any position along a line. The preliminary multi-source model includes three thermionic electron guns that are deflected in tandem by a slowly varying magnetic field and pulsed according to a scanning sequence that is dependent on the intended imaging application. Particle tracking simulations with particle dynamics analysis software demonstrate that three 100 keV electron beams are laterally swept a combined distance of 15 cm over a stationary target with an oscillating magnetic field of 102 G perpendicular to the beam axis. Beam modulation is accomplished using 25 μs pulse widths to a grid electrode with a reverse gate bias of -500 V and an extraction voltage of +1000 V. Projected focal spot diameters are approximately 1 mm for 138 mA electron beams and the stationary target stays within thermal limits for the 14 kW module. This concept could be used as a research platform for investigating high-speed stationary CT scanners, for lowering dose with virtual fan beam formation, for reducing scatter radiation in cone-beam CT, or for other industrial applications.

  3. Peak potential meter applied to X-ray tubes in mammal radiography systems

    International Nuclear Information System (INIS)

    Schiabel, Homero; Frere, Annie F.; Andreeta, Jose P.

    1989-01-01

    It is of a great importance to identify accurately the real peak potential (or simply, KVp) applied to a X-ray tube purposed to medical diagnosis, since it defines the beam energetic quality in terms of photons penetration power. Mainly in mammographic systems. it is of fundamental relevance the KVp accurate measurement because the soft tissues involved in this kind of examination provides different absorption - and, hence, clear contrast on mammographic film - just in a very restrict energetic range. Thus a device to measure KVp with adequate accuracy in mammographic units, using the basic principles of scintillation detection, was developed. This system is therefore composed of a NaI(Tl) crystal which is a X-ray sensor - replacing radiographic films which usually are a source of errors in these measurements - , a photo multiplier tube and changed into amplified electric pulses. Finally the electronic circuit, after adequate pulses treatment, shows instantaneously the actual KVp value in the test on displays. (author)

  4. Determination of dislocation density in Zr-2.5Nb pressure tubes by x-ray

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Isaenkova, Perlovich; Cheong, Y. M.; Kim, S. S.; Yim, K. S.; Kwon, Sang Chul

    2000-11-01

    For X-ray determination of the dislocation density in CANDU Zr-2.5%Nb pressure tubes, a program was developed, using the Fourier analysis of X-ray line profiles and calculation of dislocation density by values of the coherent block size and the lattice distortion. The coincidence of obtained values of c- and a-dislocations with those, determined by the X-ray method for the same tube in AECL, was assumed to be the main criterion of validity of the developed program. The final variant of the program allowed to attain a rather close coincidence of calculated dislocation densities with results of AECL. The dislocation density was determined in all the zirconium grains with different orientations based on the texture of the stree-relieved CANDU tube. The complete distribution of c-dislocation density in -Zr grains depecding on their crystallographic orientations was constructed. The distribution of a-dislocation density within the texture maximum at L-direction, containing prismatic axes of all grains, was constructed as well. The analysis of obtained distributions testifies that -Zr grains of the stree-relieved CANDU tube significantly differ in their dislocation densities. Plotted diagrams of correlation between the dislocation density and the pole density allow to estimate the actual connection between texture and dislocation distribution in the studied tube. The distributions of volume fractions of all the zirconium grains depending on their dislocation density were calculated both for c- and a-dislocations. The distributions characterizes quantitatively the inhomogeneity of substructure conditions in the stress-relieved CANDU tube. the optimal procedure for determination of Nb content in {beta}-phases of CANDU Zr-2.5%Nb pressure tubes was also established.

  5. X-ray tube incorporating a rotating anode with magnetic bearings

    International Nuclear Information System (INIS)

    1979-01-01

    This patent describes an X-ray tube incorporating a rotating anode. The rotor consists of a single, soft-magnetic dish which is fixed on the axis and which seals the magnetic yoke of the stator. Looking in the direction of the axis, one side is equipped with two circular pole surfaces, one at least of which is provided with circular pole-shoes, separated from one another by concentric grooves. (T.P.)

  6. Fast GPU-based spot extraction for energy-dispersive X-ray Laue diffraction

    International Nuclear Information System (INIS)

    Alghabi, F.; Schipper, U.; Kolb, A.; Send, S.; Abboud, A.; Pashniak, N.; Pietsch, U.

    2014-01-01

    This paper describes a novel method for fast online analysis of X-ray Laue spots taken by means of an energy-dispersive X-ray 2D detector. Current pnCCD detectors typically operate at some 100 Hz (up to a maximum of 400 Hz) and have a resolution of 384 × 384 pixels, future devices head for even higher pixel counts and frame rates. The proposed online data analysis is based on a computer utilizing multiple Graphics Processing Units (GPUs), which allow for fast and parallel data processing. Our multi-GPU based algorithm is compliant with the rules of stream-based data processing, for which GPUs are optimized. The paper's main contribution is therefore an alternative algorithm for the determination of spot positions and energies over the full sequence of pnCCD data frames. Furthermore, an improved background suppression algorithm is presented.The resulting system is able to process data at the maximum acquisition rate of 400 Hz. We present a detailed analysis of the spot positions and energies deduced from a prior (single-core) CPU-based and the novel GPU-based data processing, showing that the parallel computed results using the GPU implementation are at least of the same quality as prior CPU-based results. Furthermore, the GPU-based algorithm is able to speed up the data processing by a factor of 7 (in comparison to single-core CPU-based algorithm) which effectively makes the detector system more suitable for online data processing

  7. Optimization of a spectrometry for energy-dispersive x-ray fluorescence analysis by x-ray tube in combination with secondary target for multielements determination of sediment samples

    International Nuclear Information System (INIS)

    Zaidi Embong; Husin Wagiran

    1997-01-01

    The design of an energy-dispersive X-ray fluorescence spectrometer equipped with a conventional X-ray tube and secondary target is described. The spectrometer system constructed in our laboratory consists of a semiconductor detector system, irradiation chamber and X-ray tube. Primary source from X-ray tube was used to produced secondary X-ray from selenium, molybdenum and cadmium targets. The fluorescence X-ray from the sample was detected using Si(Li) detector with resolution of 0. 175 keV (Mn-K(x). The spectrometer was used for determination of multi-elements with atomic number between 20 to 44 in river sediment samples. The X-ray spectrum, from the samples were analysed using computer software which was developed based on Marquardt method. Optimal conditions and detection limits are determined experimentally by variation of excitation parameters for each combination of secondary target and tube voltage

  8. Spot size characterization of focused non-Gaussian X-ray laser beams.

    Science.gov (United States)

    Chalupský, J; Krzywinski, J; Juha, L; Hájková, V; Cihelka, J; Burian, T; Vysín, L; Gaudin, J; Gleeson, A; Jurek, M; Khorsand, A R; Klinger, D; Wabnitz, H; Sobierajski, R; Störmer, M; Tiedtke, K; Toleikis, S

    2010-12-20

    We present a new technique for the characterization of non-Gaussian laser beams which cannot be described by an analytical formula. As a generalization of the beam spot area we apply and refine the definition of so called effective area (A(eff)) [1] in order to avoid using the full-width at half maximum (FWHM) parameter which is inappropriate for non-Gaussian beams. Furthermore, we demonstrate a practical utilization of our technique for a femtosecond soft X-ray free-electron laser. The ablative imprints in poly(methyl methacrylate) - PMMA and amorphous carbon (a-C) are used to characterize the spatial beam profile and to determine the effective area. Two procedures of the effective area determination are presented in this work. An F-scan method, newly developed in this paper, appears to be a good candidate for the spatial beam diagnostics applicable to lasers of various kinds.

  9. Development of a Dynamic Spot Size Diagnostic for Flash Radiographic X-Ray Sources

    International Nuclear Information System (INIS)

    Droemer, D. W.; Lutz, S.; Devore, D.; Rovang, D.; Portillo, S.; Maenchen, J.

    2003-01-01

    There has been considerable work in recent years in the development of high-brightness, high-dose flash x-ray radiographic sources. Spot size is one of several parameters that helps characterize source performance and provides a figure of merit to assess the suitability of various sources to specific experimental requirements. Time-integrated spot-size measurements using radiographic film and a high-Z rolled-edge object have been used for several years with great success. The Advanced Radiographic Technologies program thrust to improve diode performance requires extending both modeling and experimental measurements into the transient time domain. A new Time Resolved Spot Detector (TRSD) is under development to provide this information. In this paper we report the initial results of the performance of a 148-element scintillating fiber array that is fiber-optically coupled to a gated streak camera. Spatial and temporal resolution results are discussed and the data obtained FR-om the Sand ia National Laboratories (SNL) RITS-3 (Radiographic Integrated Test Stand) accelerator are presented

  10. Computed tomographic images using tube source of x rays: interior properties of the material

    Science.gov (United States)

    Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.

    2002-01-01

    An image intensifier based computed tomography scanner and a tube source of x-rays are used to obtain the images of small objects, plastics, wood and soft materials in order to know the interior properties of the material. A new method is developed to estimate the degree of monochromacy, total solid angle, efficiency and geometrical effects of the measuring system and the way to produce monoenergetic radiation. The flux emitted by the x-ray tube is filtered using the appropriate filters at the chosen optimum energy and reasonable monochromacy is achieved and the images are acceptably distinct. Much attention has been focused on the imaging of small objects of weakly attenuating materials at optimum value. At optimum value it is possible to calculate the three-dimensional representation of inner and outer surfaces of the object. The image contrast between soft materials could be significantly enhanced by optimal selection of the energy of the x-rays by Monte Carlo methods. The imaging system is compact, reasonably economic, has a good contrast resolution, simple operation and routine availability and explores the use of optimizing tomography for various applications.

  11. A comparative study of x-ray emission from laser spots in laser-heated hohlraums relative to spots on simple disk targets

    International Nuclear Information System (INIS)

    Ze, F.; Langer, S.H.; Kauffman, R.L.; Kilkenny, J.D.; Landen, O.; Ress, D.; Rosen, M.D.; Suter, L.J.; Wallace, R.J.; Wiedwald, J.D.

    1997-01-01

    In this paper we report the results of experiments that compare the x-ray emission from a laser spot in a radiation-filled hohlraum to that from a similar laser spot on a simple disk target. The studies were done using the Nova laser facility [J. D. Lindl, Phys. Plasmas 2, 3933 (1995)] in its 0.35 μm wavelength, 1 ns square pulse configuration. Focal spot intensities were 2 endash 3.5x10 15 W/cm 2 . X-ray images measured x-ray conversion in a hohlraum and from an isolated disk simultaneously. A laser spot inside a hohlraum emitted more x rays, after subtracting the background emission from the hohlraum walls, than a spot on a disk. Numerical models suggest the enhanced spot emission inside the hohlraum is due to an increase in lateral transport relative to the disk. Filamentation in the hohlraum will also increase the spot size. The models agree fairly well with the results on spot spreading but do not explain the overall increase in conversion efficiency. copyright 1997 American Institute of Physics

  12. X-ray topography with scintillators coupled to image intensifiers or camera tubes

    International Nuclear Information System (INIS)

    Beauvais, Yves; Mathiot, Alain.

    1978-01-01

    The possibility of imaging topographic figures in real time by using a thin scintillator coupled to either a high-gain image intensifier or a camera tube is investigated. The camera tube must have a high gain because of the low photon fluxes that are encountered in practice, and because of the relatively low quantum yield of thin phosphors. With conventional X-ray generators, the resolution is photon-noise limited. With more powerful generators like synchrotrons, real-time imaging appears possible, and the resolution is limited by the modulation transfer function of the image tube. Higher resolution can be reached by increasing the magnification between the screen and the image tube. When doing so, the input field is reduced and thinner phosphor screens must be used, resulting in a lower yield. Each time the magnification is doubled, the minimum required photon flux is multiplier by about 8, so that the advantages of increasing the magnification are rapidly limited, so far as real-time imaging is concerned. Because image tube resolution is mainly limited by the modulation transfer function of the phosphor for image intensifiers, and by that of the target for camera tubes, improvement of photocathode resolution can be obtained by magnifying electron optics. A zooming electron optic would permit the field and the resolution of the tube to be adapted to the observed subject. Unfortunately such tubes do not exist at present for this type of application, and in the required size

  13. A digital miniature x-ray tube with a high-density triode carbon nanotube field emitter

    International Nuclear Information System (INIS)

    Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Kim, Jae-Woo; Song, Yoon-Ho; Ahn, Seungjoon

    2013-01-01

    We have fabricated a digital miniature x-ray tube (6 mm in diameter and 32 mm in length) with a high-density triode carbon nanotube (CNT) field emitter for special x-ray applications. The triode CNT emitter was densely formed within a diameter of below 4 mm with the focusing-functional gate. The brazing process enables us to obtain and maintain a desired vacuum level for the reliable electron emission from the CNT emitters after the vacuum packaging. The miniature x-ray tube exhibited a stable and reliable operation over 250 h in a pulse mode at an anode voltage of above 25 kV.

  14. Panoramic dental radiography with an intra-oral X-ray tube

    International Nuclear Information System (INIS)

    Hollender, L.

    1980-01-01

    Surveys of the complete dentition and jaws can be obtained in various ways. Panoramic radiography with an intra-oral X-ray tube results in a lower radiation exposure than other methods, and is less time-consuming. However, the symmetrical views generally employed result in relatively poor imaging of the molars. This disadvantage can be overcome by using lateral projections which also cause less discomfort for the patient and, particularly in combination with intensifying screens, a further reduction in radiation exposure. Some possible future trends are suggested. (Auth.)

  15. X-ray study of texture in zirconium alloy tubes and in graphite

    International Nuclear Information System (INIS)

    Skvortsov, V.V.; Alekseev, S.I.

    1987-01-01

    X-ray study of texture in zirconium alloy tubes and in graphite has been developed. The method is based on constructing coordinate grid of stereographic projection determining quantity and coordinates of points where measurements should be performed depending on a specimen slope pitch. Complete stereographic projection obtained so is a base both for constructing pole figures showing distribution normales of plane system being studied and for calculating texture coefficients determining property anisotropy in materials under investigation. This method can be applied to study texture in items of any materials independent of the item shape

  16. Design optimization of MR-compatible rotating anode x-ray tubes for stable operation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Mihye [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Lillaney, Prasheel [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States); Hinshaw, Waldo; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2013-11-15

    Purpose: Hybrid x-ray/MR systems can enhance the diagnosis and treatment of endovascular, cardiac, and neurologic disorders by using the complementary advantages of both modalities for image guidance during interventional procedures. Conventional rotating anode x-ray tubes fail near an MR imaging system, since MR fringe fields create eddy currents in the metal rotor which cause a reduction in the rotation speed of the x-ray tube motor. A new x-ray tube motor prototype has been designed and built to be operated close to a magnet. To ensure the stability and safety of the motor operation, dynamic characteristics must be analyzed to identify possible modes of mechanical failure. In this study a 3D finite element method (FEM) model was developed in order to explore possible modifications, and to optimize the motor design. The FEM provides a valuable tool that permits testing and evaluation using numerical simulation instead of building multiple prototypes.Methods: Two experimental approaches were used to measure resonance characteristics: the first obtained the angular speed curves of the x-ray tube motor employing an angle encoder; the second measured the power spectrum using a spectrum analyzer, in which the large amplitude of peaks indicates large vibrations. An estimate of the bearing stiffness is required to generate an accurate FEM model of motor operation. This stiffness depends on both the bearing geometry and adjacent structures (e.g., the number of balls, clearances, preload, etc.) in an assembly, and is therefore unknown. This parameter was set by matching the FEM results to measurements carried out with the anode attached to the motor, and verified by comparing FEM predictions and measurements with the anode removed. The validated FEM model was then used to sweep through design parameters [bearing stiffness (1×10{sup 5}–5×10{sup 7} N/m), shaft diameter (0.372–0.625 in.), rotor diameter (2.4–2.9 in.), and total length of motor (5.66–7.36 in.)] to

  17. Design optimization of MR-compatible rotating anode x-ray tubes for stable operation

    International Nuclear Information System (INIS)

    Shin, Mihye; Lillaney, Prasheel; Hinshaw, Waldo; Fahrig, Rebecca

    2013-01-01

    Purpose: Hybrid x-ray/MR systems can enhance the diagnosis and treatment of endovascular, cardiac, and neurologic disorders by using the complementary advantages of both modalities for image guidance during interventional procedures. Conventional rotating anode x-ray tubes fail near an MR imaging system, since MR fringe fields create eddy currents in the metal rotor which cause a reduction in the rotation speed of the x-ray tube motor. A new x-ray tube motor prototype has been designed and built to be operated close to a magnet. To ensure the stability and safety of the motor operation, dynamic characteristics must be analyzed to identify possible modes of mechanical failure. In this study a 3D finite element method (FEM) model was developed in order to explore possible modifications, and to optimize the motor design. The FEM provides a valuable tool that permits testing and evaluation using numerical simulation instead of building multiple prototypes.Methods: Two experimental approaches were used to measure resonance characteristics: the first obtained the angular speed curves of the x-ray tube motor employing an angle encoder; the second measured the power spectrum using a spectrum analyzer, in which the large amplitude of peaks indicates large vibrations. An estimate of the bearing stiffness is required to generate an accurate FEM model of motor operation. This stiffness depends on both the bearing geometry and adjacent structures (e.g., the number of balls, clearances, preload, etc.) in an assembly, and is therefore unknown. This parameter was set by matching the FEM results to measurements carried out with the anode attached to the motor, and verified by comparing FEM predictions and measurements with the anode removed. The validated FEM model was then used to sweep through design parameters [bearing stiffness (1×10 5 –5×10 7 N/m), shaft diameter (0.372–0.625 in.), rotor diameter (2.4–2.9 in.), and total length of motor (5.66–7.36 in.)] to increase

  18. MO-AB-BRA-08: A Modular Multi-Source X-Ray Tube for Novel Computed Tomography Applications

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B; Radtke, J; Chen, G; Mackie, T [University of Wisconsin Madison, Madison, WI (United States); Petry, G; Swader, R; Eliceiri, K [Morgridge Institute for Research, Madison, WI (United States)

    2016-06-15

    Purpose: To develop and build a practical implementation of an x-ray line source for the rapidly increasing number of multi-source imaging applications in CT. Methods: An innovative x-ray tube was designed using CST Particle Studio, ANSYS, and SolidWorks. A slowly varying magnetic field is synchronized with microsecond gating of multiple thermionic electron sources. Electrostatic simulations were run to optimize the geometry of the optics and prevent electrode arcing. Magnetostatic simulations were used for beam deflection studies and solenoid design. Particle beam trajectories were explored with an emphasis on focusing, acceleration, deflection, and space charge effects. Thermal constraints were analyzed for both transient and steady-state regimes. Electromagnetic simulations informed the design of a prototype unit under construction. Results: Particle tracking simulations for a benchtop system demonstrate that three 80 keV electron beams are able to be finely controlled and laterally swept a combined distance of 15 cm over a stationary target with an oscillating magnetic field in the hundreds of gauss. The beams are pulsed according to scanning sequences developed for implementation in a mock stationary CT scanner capable of a 30 ms temporal resolution. Beam spot diameters are approximately 1 mm for 30 mA beams and the stationary target stays well within thermal limits. The relevant hardware and control circuits were developed for incorporation into a physical prototype. Conclusion: A new multi-source x-ray tube was designed in a modular form factor to push the barriers of high-speed CT and spur growth in emerging imaging applications. This technology can be used as the basis for a stationary high-speed CT scanner, a system for generating a virtual fan-beam for dose reduction, or for reducing scatter radiation in cone-beam CT utilizing a tetrahedron beam CT geometry. A 2.4 kW benchtop system is currently being built to show proof of concept for the tube. Support

  19. Elemental analysis of the ancient bronze coins by x-ray fluorescence technique using simultaneously radioisotope source and x-ray tube

    International Nuclear Information System (INIS)

    Nguyen The Quynh; Truong Thi An; Tran Duc Thiep; Nguyen Dinh Chien; Dao Tran Cao; Nguyen Quang Liem

    2004-01-01

    The results on elemental analysis of the Vietnamese ancient bronze coins during the time of the Nguyen dynasty (19th century) are presented. The samples were provided by the vietnam National Historical Museum and the elemental analysis was performed on the home-made model EDS-XT-99-01 X-ray fluorescence spectrometer in the Institute of Materials Science, NCST of Vietnam. The samples exited simultaneously by radioisotope source and X-ray tube. The analytical results show the similarity in the elemental composition of the coins issued by different kings of the Nguyen dynasty, but there is the difference in the concentration of the used elements. Another interesting point is that all the coins have zinc (Zn) in their composition, which shows clearly the influence of the occidental metallurgical technology on the money-making technique in Vietnam during the 19th century. (author)

  20. Calculation of x-ray spectra emerging from an x-ray tube. Part I. Electron penetration characteristics in x-ray targets

    International Nuclear Information System (INIS)

    Poludniowski, Gavin G.; Evans, Philip M.

    2007-01-01

    The penetration characteristics of electron beams into x-ray targets are investigated for incident electron kinetic energies in the range 50-150 keV. The frequency densities of electrons penetrating to a depth x in a target, with a fraction of initial kinetic energy, u, are calculated using Monte Carlo methods for beam energies of 50, 80, 100, 120 and 150 keV in a tungsten target. The frequency densities for 100 keV electrons in Al, Mo and Re targets are also calculated. A mixture of simple modeling with equations and interpolation from data is used to generalize the calculations in tungsten. Where possible, parameters derived from the Monte Carlo data are compared to experimental measurements. Previous electron transport approximations in the semiempirical models of other authors are discussed and related to this work. In particular, the crudity of the use of the Thomson-Whiddington law to describe electron penetration and energy loss is highlighted. The results presented here may be used towards calculating the target self-attenuation correction for bremsstrahlung photons emitted within a tungsten target

  1. Irradiating cell samples in an x-ray radiation cabinet-the effect of tube filtration

    International Nuclear Information System (INIS)

    Parkin, Adrian; Wright, Ian; Yates, Stuart; Goldstone, Karen E; Russell, Paul; Starr, Christy

    2004-01-01

    The cell irradiation cabinet described is used for creating DNA damage in cell samples in order to study tumourigenesis. The medical research laboratory involved was using the manufacturer's quoted dose rate (32.2 mGy s -1 ) to determine the required exposure time to impart a dose of 10 Gy. The x-ray output was investigated when the exposure failed to produce cell cycle arrest. The x-ray tube was fitted with only a 0.76 mm beryllium filter, and the spectrum therefore contained a high proportion of low energy photons which were being removed by the polystyrene sample flask as demonstrated by dose measurements in air and through the sample flask. Incorporation of a 0.5 mm aluminium filter removed most of these low energy photons but greatly reduced the dose rate to 3.8 mGy s -1 . The manufacturer's quoted dose rates from a lightly filtered tube are misleading: the contribution of the very low energy component of the spectrum to the dose is not relevant since it will be removed by a sample flask. (note)

  2. Determination of tungsten target parameters for transmission X-ray tube: A simulation study using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Nasseri, Mohammad M. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology (AEOI), Tehran (Iran, Islamic Republic of)

    2016-06-15

    Transmission X-ray tubes based on carbon nanotube have attracted significant attention recently. In most of these tubes, tungsten is used as the target material. In this article, the well-known simulator Geant4 was used to obtain some of the tungsten target parameters. The optimal thickness for maximum production of usable X-rays when the target is exposed to electron beams of different energies was obtained. The linear variation of optimal thickness of the target for different electron energies was also obtained. The data obtained in this study can be used to design X-ray tubes. A beryllium window was considered for the X-ray tube. The X-ray energy spectra at the moment of production and after passing through the target and window for different electron energies in the 30-110 keV range were also obtained. The results obtained show that with a specific thickness, the target material itself can act as filter, which enables generation of X-rays with a limited energy.

  3. X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Zucarias, A; Shepherd, J W

    1982-09-08

    An X-ray tube has a tubular envelope with a cathode for directing an electron beam onto a focal spot area of a spaced anode target to generate X-rays. The target is mounted for axial rotation on one end of a rotor disposed in an end portion of the envelope and encircled by a stator of an alternating current induction motor. An annular shield of high permeability magnetic material extends transversely between the electron beam and the stator of the induction motor for shunting stray or fringe electromagnetic fields established by the stator away from the electron beam to avoid consequent lateral deflections of the electron and corresponding lateral movements of the focal spot area.

  4. Vacuum Enhanced X-Ray Florescent Scanner Allows On-The-Spot Chemical Analysis

    Science.gov (United States)

    2004-01-01

    Marshall Space Flight Center engineers have teamed with KeyMaster Technologies, Kennewick, Washington, to develop a portable vacuum analyzer that performs on-the-spot chemical analyses under field conditions, a task previously only possible in a chemical laboratory. The new capability is important not only to the aerospace industry, but holds potential for broad applications in any industry that depends on materials analysis, such as the automotive and pharmaceutical industries. Weighing in at a mere 4 pounds, the newly developed handheld vacuum X-ray fluorescent analyzer can identify and characterize a wide range of elements, and is capable of detecting chemical elements with low atomic numbers, such as sodium, aluminum and silicon. It is the only handheld product on the market with that capability. Aluminum alloy verification is of particular interest to NASA because vast amounts of high-strength aluminum alloys are used in the Space Shuttle propulsion system such as the External Tank, Main Engine, and Solid Rocket Boosters. This capability promises to be a boom to the aerospace community because of unique requirements, for instance, the need to analyze Space Shuttle propulsion systems on the launch pad. Those systems provide the awe-inspiring rocket power that propels the Space Shuttle from Earth into orbit in mere minutes. The scanner development also marks a major improvement in the quality assurance field, because screws, nuts, bolts, fasteners, and other items can now be evaluated upon receipt and rejected if found to be substandard. The same holds true for aluminum weld rods. The ability to validate the integrity of raw materials and partially finished products before adding value to them in the manufacturing process will be of benefit not only to businesses, but also to the consumer, who will have access to a higher value product at a cheaper price. Three vacuum X-ray scanners are already being used in the Space Shuttle Program. The External Tank Project

  5. Dynamics of hot spots in the DPF-78 plasma focus from x-ray spectra and REB emission

    International Nuclear Information System (INIS)

    Schmidt, H.; Wang, X.X.

    1995-01-01

    The X-ray emission from hot spots in the plasma focus DPF-78 was investigated with the help of two X-ray quartz crystal spectrometers of the Johann type and a 4 fold magnifying X-ray pinhole camera. In the experiments the working gas was chosen to be 300 Pa deuterium with 20 Pa argon admixture. X-ray spectra in the wavelength range from 3.55 angstrom to 4.0 angstrom, including H-like and He-like Argon lines, were recorded on Kodak DEF-2 film. From the spatially resolved spectra recorded side-on, a relative spectral shift between different hot spots of the same shot was often observed. The shift could be attributed to the Doppler shift. From spectral characteristics such as intensities and FWHM of Ar resonant and intercombination lines electron densities of up to 3 x 10 27 m -3 were determined. Radial dimensions of the hot spots ranging from about 140 microm to 300 microm were found from pinhole pictures applying the penumbra method. Usually two pulses of relativistic electron beams were observed using Cherenkov detectors in a magnetic spectrometer. The energy of the first pulse, which was emitted at the time of maximum compression, was higher than that of the second pulse. The measured FWHM of the REB pulses ranges from 3 ns to about 10 ns. The characteristics of the time-integrated X-ray spectra and the time resolved REB spectra and their dependence on the composition of the filling gas are discussed

  6. Focusing X-rays to a 1-{mu}m spot using elastically bent, graded multilayer coated mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, J.H.; Thompson, A.C.; Kortright, J.B. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    In the x-ray fluorescent microprobe at beamline 10.3.1, the ALS bending magnet source is demagnified by a factor of several hundred using a pair of mirrors arranged in the Kirkpatrick-Baez (K-B) configuration. These are coated with multilayers to increase reflectivity and limit the pass band of the x-rays striking the sample. The x-rays excite characteristic fluorescent x-rays of elements in the sample, which are analyzed by an energy dispersive Si-Li detector, for a sensitive assay of the elemental content. By scanning the focal spot the spatial distribution of the elements is determined; the spatial resolution depends on the size of this spot. When spherical mirrors are used, the spatial resolution is limited by aberrations to 5 or 10 {mu}m. This has been improved to 1 {mu}m through the use of an elliptical mirror formed by elastically bending a plane mirror of uniform width and thickness with the optimum combination of end couples.

  7. Focusing X-rays to a 1-μm spot using elastically bent, graded multilayer coated mirrors

    International Nuclear Information System (INIS)

    Underwood, J.H.; Thompson, A.C.; Kortright, J.B.

    1997-01-01

    In the x-ray fluorescent microprobe at beamline 10.3.1, the ALS bending magnet source is demagnified by a factor of several hundred using a pair of mirrors arranged in the Kirkpatrick-Baez (K-B) configuration. These are coated with multilayers to increase reflectivity and limit the pass band of the x-rays striking the sample. The x-rays excite characteristic fluorescent x-rays of elements in the sample, which are analyzed by an energy dispersive Si-Li detector, for a sensitive assay of the elemental content. By scanning the focal spot the spatial distribution of the elements is determined; the spatial resolution depends on the size of this spot. When spherical mirrors are used, the spatial resolution is limited by aberrations to 5 or 10 μm. This has been improved to 1 μm through the use of an elliptical mirror formed by elastically bending a plane mirror of uniform width and thickness with the optimum combination of end couples

  8. X-RAY RADIATION MECHANISMS AND BEAMING EFFECT OF HOT SPOTS AND KNOTS IN ACTIVE GALACTIC NUCLEAR JETS

    International Nuclear Information System (INIS)

    Zhang Jin; Bai, J. M.; Chen Liang; Liang Enwei

    2010-01-01

    The observed radio-optical-X-ray spectral energy distributions (SEDs) of 22 hot spots and 45 knots in the jets of 35 active galactic nuclei are complied from the literature and modeled with single-zone lepton models. It is found that the observed luminosities at 5 GHz (L 5 G Hz ) and at 1 keV (L 1 k eV ) are tightly correlated, and the two kinds of sources can be roughly separated with a division of L 1 k eV = L 5 G Hz . Our SED fits show that the mechanisms of the X-rays are diverse. While the X-ray emission of a small fraction of the sources is a simple extrapolation of the synchrotron radiation for the radio-to-optical emission, an inverse Compton (IC) scattering component is necessary to model the X-rays for most of the sources. Considering the sources at rest (the Doppler factor δ = 1), the synchrotron-self-Compton (SSC) scattering would dominate the IC process. This model can interpret the X-rays of some hot spots with a magnetic field strength (B δ= 1 ssc ) being consistent with the equipartition magnetic field (B δ= 1 eq ) in 1 order of magnitude, but an unreasonably low B δ= 1 ssc is required to model the X-rays for all knots. Measuring the deviation between B δ= 1 ssc and B δ= 1 eq with ratio R B ≡ B δ= 1 eq /B δ= 1 ssc , we find that R B is greater than 1 and it is tightly anti-correlated with ratio R L ≡ L 1 k eV /L 5 G Hz for both the knots and the hot spots. We propose that the deviation may be due to the neglect of the relativistic bulk motion for these sources. Considering this effect, the IC/cosmic microwave background (CMB) component would dominate the IC process. We show that the IC/CMB model well explains the X-ray emission for most sources under the equipartition condition. Although the derived beaming factor (δ) and co-moving equipartition magnetic field (B' eq ) of some hot spots are comparable to the knots, the δ values of the hot spots tend to be smaller and their B' eq values tend to be larger than that of the knots, favoring

  9. Disappearance of the laue spots of the downward X-ray diffraction and huge recoil Thomson scattering in solid helium as some prominent peculiarities of a quantum crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Tetsuo

    1996-02-01

    In topographs of the downward X-ray diffraction, no Laue spots could be observed using a horizontally thin line-focussed beam. The disappearance of the Laue spots by the downward X-ray diffraction could be explained by two main factors besides a synergistic effect of the smallness of the atomic-scattering factors, the absorption coefficients, the densities etc. One is that the downward X-ray diffraction is completely inelastic scattering, and, as a result, diffracted X-ray beams may become entirely diffuse scattering. The other is that the great difference in the linear scatterer density between the forward and downward directions resulted from the fact that the irradiation of a line-focussed X-ray beam to take section topographs weakens the downward X-ray diffraction. The main reason is not due to the zero-point vibration. (J.P.N.).

  10. Disappearance of the laue spots of the downward X-ray diffraction and huge recoil Thomson scattering in solid helium as some prominent peculiarities of a quantum crystal

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo.

    1996-02-01

    In topographs of the downward X-ray diffraction, no Laue spots could be observed using a horizontally thin line-focussed beam. The disappearance of the Laue spots by the downward X-ray diffraction could be explained by two main factors besides a synergistic effect of the smallness of the atomic-scattering factors, the absorption coefficients, the densities etc. One is that the downward X-ray diffraction is completely inelastic scattering, and, as a result, diffracted X-ray beams may become entirely diffuse scattering. The other is that the great difference in the linear scatterer density between the forward and downward directions resulted from the fact that the irradiation of a line-focussed X-ray beam to take section topographs weakens the downward X-ray diffraction. The main reason is not due to the zero-point vibration. (J.P.N.)

  11. Comparison of pulsed fluoroscopy by direct control using a grid-controlled x-ray tube with pulsed fluoroscopy by primary control

    International Nuclear Information System (INIS)

    Chida, Koichi; Zuguchi, Masayuki; Ito, Daisuke; Sato, Kunihiko; Shimura, Hirotaka; Sasaki, Masatoshi

    2001-01-01

    Interventional radiology (IVR) procedures may involve high radiation doses that are potentially harmful to the patient. In IVR procedures, pulsed fluoroscopy can greatly decrease the radiation that the physician and patient receive. There are two types of pulsed fluoroscopy: direct control and primary (indirect) control. The purpose of this study was to compare pulsed fluoroscopy by direct control, using a grid-controlled x-ray tube, with pulsed fluoroscopy using primary control. For both types of pulsed fluoroscopy, we measured the waveforms (x-ray tube voltage, x-ray tube current, and x-ray output) and the relative radiation dose. In addition, we compared the decrease in radiation during pulsed fluoroscopy using a care filter. The studies were performed using a Siemens Bicor Plus x-ray System (direct control) and a Siemens Multistar Plus x-ray System (primary control). Using primary pulse control, a 50% decrease in the x-ray output waveform took approximately 0.5-1.0 msec, or longer with a lower x-ray tube current. Using direct pulse control, a 50% decrease in the x-ray output waveform took approximately 0.1 msec, and was independent of x-ray tube current. The rate of radiation reduction with primary pulse control using the care filter with a lower x-ray tube current had a slope exceeding 10%. Pulsed fluoroscopy by direct control using a grid-controlled x-ray tube permits an optimal radiation dose. To decrease the radiation in primary pulse control, a care filter must be used, particularly with a lower x-ray tube current. (author)

  12. Design Improvement of an X-ray Tube Applicator to Reduce ORE

    International Nuclear Information System (INIS)

    Lee, Juhyuk; Kim, Hyun Nam; Park, Han Beom; Cho, Sung Oh

    2017-01-01

    Radiation therapy has many advantages to treat cancer relative to other therapies. It does not induce scar or hair loss, and could can cover larger area than others. However, one the most critical issues about radiation therapy is shielding. Not only unnecessary exposure to patients but also those to doctors or nurses who participate in the treatment have to be lowered as possible. Occupational radiation exposure (ORE) is limited to 50 mSv per year by NCRP's recommendation. In this study, MC simulations were performed to evaluate the effective dose induced by the miniature x-ray tube. It was confirmed that when the applicator is adopted to the tube, the effective dose to doctor is less than the occupational radiation exposure limit recommended by ICRP. All assumptions used in this calculation were too highly conservative enough to have reliability. However some limitations still exist; for example, the more accurate results could be obtained if most recent version of conversion factors was used or we specified the organs irradiated and weighted the values by the radiation sensitivity.

  13. Determination of half value layer and applied voltage from emitted spectra by an X-ray tube

    International Nuclear Information System (INIS)

    Santos, Josilene C.; Gonzales, Alejandro H.L.; Terini, Ricardo A.; Costa, Paulo R.

    2016-01-01

    This work describes a method for assessment of half value layer (HVL) and peak tube voltage (kVp) applied in an X-ray tube by means of experimental X-ray spectra measured using a CdTe detector. It was assessed some parameters that can affect the evaluation of these quantities such as dead time, count rate and tube current (mA). For this study, two sets of X-ray spectra were measured: Set A), spectra measurements using Cu filters with different thicknesses (1.8 - 5.4 mm) and fixed tube current; Set B), spectra measurements keeping a fixed Cu filtration and varying tube current (0.5 - 3.0 mA). The experimental setup for the Set A spectra measurements allowed the assessment of the HVL and kVp for different count rates and dead time in the detection system, while the Set B setup allowed to assess the dependence of these quantities with the tube current. The spectrometer was energy calibrated using standard X/γ rays radioactive sources. The tube voltage values were estimated by means of experimental measured X-ray spectra, using linear regression in order to search the end point of each spectrum. The spectra correction was performed using the stripping procedure developed for the Matlab® software and the HVL values were derived from these corrected spectra. For comparison, HVL was also determined using a 30 cm"3 ion chamber and high purity Al filters. The results show that it is possible to determine the kVp with accuracy and reproducibility using spectra with dead time of up to 10%. In spite of this, the values obtained showed a deviation of up to 7 kV, for spectra measured using the same nominal tube voltage different tube current values, indicating dependence between these two parameters. (author)

  14. Adjustable lead glass shielding device for use with a over-the-table x-ray tube

    International Nuclear Information System (INIS)

    Eubig, C.; Groves, B.M.; Davey, G.

    1978-01-01

    Sources of scattered radiation exposure to personnel from a ceiling-mounted x-ray tube were examined at the side of cardiac catheterization patients. A fully adjustable mounting for a lead glass shield was designed to afford maximum radiation protection to the attending physician's head and neck area, while minimizing interference with the procedure

  15. Determination of semi-reducing layer and applied stress through spectra emitted by an X-ray tube

    International Nuclear Information System (INIS)

    Santos, Josilene C.; Gonzalez, Alejandro H.L.; Terini, Ricardo A.; Costa, Paulo R.

    2016-01-01

    This work describes a method for assessment of half value layer (HVL) and peak tube voltage (kVp) by means of experimental x-ray spectra measured using a CdTe detector. The work also evaluated spectrometry parameters such as dead time and count rate, and x-ray tube characteristics that can affect the assessment of these quantities. Two sets of x-ray spectra were measured: A) using Cu filters with different thicknesses and fixed tube current, and B) keeping a fixed Cu filtration and different tube current and, so, ranging the count rates. The spectrometer was energy calibrated using standard radioactive sources. kVp value was estimated by means of experimental measured x-ray spectra, using linear regression in order to search the end point of each spectrum. HVL was estimated after the correction of the measured spectra, using an analytical method implemented using Matlab® software. For comparison, HVL was also determined using a 30 cm"3 ion chamber and high purity Al filters. (author)

  16. Adjustable lead glass shielding device for use with an over-the-table x-ray tube.

    Science.gov (United States)

    Eubig, C; Groves, B M; Davey, G

    1978-12-01

    Sources of scattered radiation exposure to personnel from a ceiling-mounted x-ray tube were examined at the side of cardiac catheterization patients. A fully adjustable mounting for a lead glass shield was designed to afford maximum radiation protection to the attending physician's head and neck area, while minimizing interference with the procedure.

  17. Computer simulation for the effect of target angle in diagnostic x-ray tube output and half-value layer

    International Nuclear Information System (INIS)

    Hayami, Akimune; Fuchihata, Hajime; Yamazaki, Takeshi; Mori, Yoshinobu; Ozeki, Syuji.

    1980-01-01

    The change of target angle of X-ray tube plays an important role in changing both the output and the quality of X-rays. A computer simulation was made to estimate the effect of target angle on the output and the quality (half-value layer: HVL) in the central ray using Storm's semiempirical formula. The data here presented are the values of output and HVL for the target angles of 10, 15, 20 and 30 degrees and for the total filtrations of 1, 2, 3 and 4 mm Al eq., at an increment of 10 kV steps of applied voltage between 50 and 150 kV. The output values and HVL's as a function of target angle, applied voltage and total filtration are shown for a full-wave rectified diagnostic X-ray generator. As a result, changes ranging from 17 to 76% in the output and 5 to 66% in the HVL were noted by varying the target angle from 10 to 30 degrees. Therefore, the target angle of X-ray tube should be clearly stated whenever the output and the quality (HVL) of X-ray generator are discussed. (author)

  18. Optimization of tube parameters in a tube excited X-ray fluorescence (TEXRF) system using secondary fluorescers

    International Nuclear Information System (INIS)

    Islam, A.; Biswas, S.K.

    1995-12-01

    A study of the optimization of excitation parameters in a tube excited X-ray fluorescence system (TEXRF) having Mo as the primary target has been carried out for biological matrix. Fe, Zn and Mo were used as the secondary fluorecers. For the present investigation a cellulose based synthetic standard containing K, Cr, Ni, Zn, Se and Y was excited with the TEXRF system. All experiments were carried out under the same experimental conditions except the tube potential. For each fluorescer the minimum detection limits (MDL) of excited elements were calculated for the corresponding tube voltage. The MDLs were found to be increasing with decreasing atomic number and it was also observed that the maximum sensitivity with Fe and Zn secondary fluorescers for elements analyzed occurred around 35 kV of the excitation potential. For Mo secondary fluorescer maximum sensitivity was found at higher excitation potential. In most cases MDLs were minimum at 40-45 kV of the excitation potential. 5 refs., 12 figs

  19. Investigations on microstructure of Chinese traditional medicine using phase-contrast imaging with microfocus X-ray tube

    International Nuclear Information System (INIS)

    Wei Xun; Chinese Academy of Sciences, Beijing; Xiao Tiqiao; Chen Min; Liu Lixiang; Luo Yuyu; Du Guohao; Xu Hongjie

    2005-01-01

    The microscopic morphology of plant cells and their ergastic substances is an important standard for the identification of Chinese traditional medicine. The authors have developed a new method, X-ray phase-contrast imaging (XPCI) based on the microfocus X-ray tube, to explore microstructures of Chinese herbal medicine. The results indicate that XPCI is capable of distinguishing the structures commonly used in the identification. Non-destructive detection and high sensibility are counted among the major advantages of XPCI. The possibility of future applications of XPCI in the field of medicine identification is discussed. (authors)

  20. Study on the influence of X-ray tube spectral distribution on the analysis of bulk samples and thin films: Fundamental parameters method and theoretical coefficient algorithms

    International Nuclear Information System (INIS)

    Sitko, Rafal

    2008-01-01

    Knowledge of X-ray tube spectral distribution is necessary in theoretical methods of matrix correction, i.e. in both fundamental parameter (FP) methods and theoretical influence coefficient algorithms. Thus, the influence of X-ray tube distribution on the accuracy of the analysis of thin films and bulk samples is presented. The calculations are performed using experimental X-ray tube spectra taken from the literature and theoretical X-ray tube spectra evaluated by three different algorithms proposed by Pella et al. (X-Ray Spectrom. 14 (1985) 125-135), Ebel (X-Ray Spectrom. 28 (1999) 255-266), and Finkelshtein and Pavlova (X-Ray Spectrom. 28 (1999) 27-32). In this study, Fe-Cr-Ni system is selected as an example and the calculations are performed for X-ray tubes commonly applied in X-ray fluorescence analysis (XRF), i.e., Cr, Mo, Rh and W. The influence of X-ray tube spectra on FP analysis is evaluated when quantification is performed using various types of calibration samples. FP analysis of bulk samples is performed using pure-element bulk standards and multielement bulk standards similar to the analyzed material, whereas for FP analysis of thin films, the bulk and thin pure-element standards are used. For the evaluation of the influence of X-ray tube spectra on XRF analysis performed by theoretical influence coefficient methods, two algorithms for bulk samples are selected, i.e. Claisse-Quintin (Can. Spectrosc. 12 (1967) 129-134) and COLA algorithms (G.R. Lachance, Paper Presented at the International Conference on Industrial Inorganic Elemental Analysis, Metz, France, June 3, 1981) and two algorithms (constant and linear coefficients) for thin films recently proposed by Sitko (X-Ray Spectrom. 37 (2008) 265-272)

  1. Characterization of the development of miniature X-ray tubes Moxtek

    International Nuclear Information System (INIS)

    Daniska, M.; Necas, V.

    2008-01-01

    This thesis addresses the sources of X-rays, the principle of their function and basic skills associated with their operation. It emphasis on the development of X-ray sources in the company Magnum Series Moxtek, because one of them became part of the instrumentation laboratory of the Department of Nuclear Physics and Technology. (authors)

  2. Practical consideration in the selection of X-ray fluorescence tube targets for analysis of geological materials

    International Nuclear Information System (INIS)

    Attawiya, M.Y.; El-Behay, A.Z.; Khattab, F.M.

    1985-01-01

    Four X-ray fluorescence tubes with different targets (Cr, W, Mo and Rh) were compared for their suitability to analyze twelve of the most common major and trace elements in some geological samples. The major elements and Si, Al, Ca, K, Ti, and S. All elements having wavelengths higher than that of the iron K-absorption edge, gave significantly higher intensities of their characteristic fluorescence radiations when using a Cr-anode tube compared to W, Mo and Rh anode tubes. However, for the light elements (Si and Al) the Rh-anode tube of equal efficiency as the Cr-anode tube. The highest Ka-line intensity of Fe was obtained by the W-anode tube. The lowest detection limits (highest sensitivity) for the trace elements Rb, Sr, Zr, and Nb are obtained using both the Mo and Rh tubes. (author)

  3. Development of miniaturized proximity focused streak tubes for visible light and x-ray applications. Final report and progress, April-September 1977

    International Nuclear Information System (INIS)

    Cuny, J.J.; Knight, A.J.

    1978-02-01

    Research performed to develop miniaturized proximity focused streak camera tubes (PFST) for application in the visible and the x-ray modes of operation is described. The objective of this research was to provide an engineering design and to fabricate a visible and an x-ray prototype tube to be provided to LASL for test and evaluation. Materials selection and fabrication procedures, particularly the joining of beryllium to a suitable support ring for use as the x-ray window, are described in detail. The visible and x-ray PFST's were successfully fabricated

  4. Spot size characterization of focused non-Gaussian X-ray laser beams

    Czech Academy of Sciences Publication Activity Database

    Chalupský, Jaromír; Krzywinski, J.; Juha, Libor; Hájková, Věra; Cihelka, Jaroslav; Burian, Tomáš; Vyšín, Luděk; Gaudin, J.; Gleeson, A.; Jurek, M.; Khorsand, A.R.; Klinger, D.; Wabnitz, H.; Sobierajski, R.; Störmer, M.; Tiedtke, K.; Toleikis, S.

    2010-01-01

    Roč. 18, č. 26 (2010), s. 27836-27845 ISSN 1094-4087 R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA ČR GAP208/10/2302; GA MŠk LA08024; GA AV ČR IAAX00100903; GA MŠk(CZ) ME10046 Institutional research plan: CEZ:AV0Z10100523 Keywords : X-ray laser * free-electron laser * beam characterization * ablation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.749, year: 2010

  5. X-ray topographic investigation of the deformation field around spots irradiated by FLASH single pulses

    Czech Academy of Sciences Publication Activity Database

    Wierzchowski, W.; Wieteska, K.; Balcer, T.; Klinger, D.; Sobierajski, R.; Zymierska, D.; Chalupský, Jaromír; Hájková, Věra; Burian, Tomáš; Gleeson, A.J.; Juha, Libor; Tiedtke, K.; Toleikis, S.; Vyšín, Luděk; Wabnitz, H.; Gaudin, J.

    2011-01-01

    Roč. 80, č. 10 (2011), s. 1036-1040 ISSN 0969-806X R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA ČR(CZ) GAP108/11/1312; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAAX00100903; GA MŠk(CZ) ME10046 Institutional research plan: CEZ:AV0Z10100523 Keywords : silicon * FLASH irradiation * x-ray topography * deformation fields Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.227, year: 2011

  6. The impact of x-ray tube configuration on the eye lens and extremity doses received by cardiologists in electrophysiology room

    International Nuclear Information System (INIS)

    Domienik, J; Zmyślony, M; Bissinger, A

    2014-01-01

    The aim of the study was to analyse the influence of the x-ray tube configuration on the radiation doses to eye lens and extremities of cardiologists performing pacemaker implantation procedures in electrophysiology laboratory. The measurements were performed on one, widely used, portable C-arm system, first with x-ray tube mounted above the patient table and image intensifier below it and then on a reinstalled (but essentially the same) system with under-table x-ray tube configuration. Thermoluminescent dosimeters, placed in various positions near the eye lens, on the hands and ankle, were used during every procedure. The comparison of doses received by cardiologists after changing the x-ray tube configuration from over- to under-table shows statistically significant dose reduction (p < 0.009) for the eye lens closest to the x-ray tube, left finger, left wrist, while for the ankle a dose increase is observed. The corresponding over- to under-table x-ray tube median dose ratios are 4.1 for the right eye, 4.8 for the left finger, 3.0 for left wrist and, finally, 0.13 for the right ankle. Systems with under-table x-ray tube are preferable from a radiation protection point of view. The observed significant increase in doses to the legs should be partially compensated by the use of a protective lead curtain. (note)

  7. Sensor device for X-ray beam to evaluate the radiation focal spot

    International Nuclear Information System (INIS)

    Santos, Lara H.E. dos; Schiabel, Homero; Silva, Aderbal A.B. da; Marques, Paulo M.A.; Campos, Marcelo; Slaets, Annie F.F.

    1996-01-01

    A new electronic device to determine the position of the central ray of the radiation beam is proposed. The device aims to provide a perfect alignment of test objects used for evaluating focal spots with this reference axis

  8. Device for the automatic X-ray testing of welded joints of pipes

    International Nuclear Information System (INIS)

    Ries, K.; Hannoschieck, K.; Rozic, K.M.; Basler, G.

    1979-01-01

    The notification flows of the tested pipes determined by the ultrasonic inspection are transmitted to the X-ray film automatic charger in the X-ray test room. The roll table for the pipes from the ultrasonic inspection to the X-ray test room is provided with an arrangement for weld detection and tube lathe, so that the X-ray films can be set on the corresponding spot by means of a cantilever. (RW) [de

  9. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  10. Effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies

    International Nuclear Information System (INIS)

    Murase, Kenya; Nanjo, Takafumi; Ii, Satoshi; Miyazaki, Shohei; Hirata, Masaaki; Sugawara, Yoshifumi; Kudo, Masayuki; Sasaki, Kousuke; Mochizuki, Teruhito

    2005-01-01

    The purpose of this study was to investigate the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using multi-detector row CT (MDCT). Following the standard CT perfusion study protocol, continuous (cine) scans (1 s/rotation x 60 s) consisting of four 5 mm thick contiguous slices were performed using an MDCT scanner with a tube voltage of 80 kVp and a tube current of 200 mA. We generated the simulated images with tube currents of 50 mA, 100 mA and 150 mA by adding the corresponding noise to the raw scan data of the original image acquired above using a noise simulation tool. From the original and simulated images, we generated the functional images of cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in seven patients with cerebrovascular disease, and compared the correlation coefficients (CCs) between the perfusion parameter values obtained from the original and simulated images. The coefficients of variation (CVs) in the white matter were also compared. The CC values deteriorated with decreasing tube current. There was a significant difference between 50 mA and 100 mA for all perfusion parameters. The CV values increased with decreasing tube current. There were significant differences between 50 mA and 100 mA and between 100 mA and 150 mA for CBF. For CBV and MTT, there was also a significant difference between 150 mA and 200 mA. This study will be useful for understanding the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using MDCT, and for selecting the tube current

  11. Errors in the determination of the total filtration of diagnostic x-ray tubes by the HVL method

    International Nuclear Information System (INIS)

    Gilmore, B.J.; Cranley, K.

    1990-01-01

    Optimal technique and an analysis of errors are essential for interpreting whether the total filtration of a diagnostic x-ray tube is acceptable. The study discusses this problem from a theoretical viewpoint utilising recent theoretical HVL-total-filtration data relating to 10 0 and 16 0 tungsten target angles and 0-30% kilovoltage ripples. The theory indicates the typical accuracy to which each appropriate parameter must be determined to maintain acceptable errors in total filtration. A quantitative approach is taken to evaluate systematic errors in a technique for interpolation of HVL from raw attenuation curve data. A theoretical derivation is presented to enable random errors in HVL due to x-ray set inconsistency to be estimated for particular experimental techniques and data analysis procedures. Further formulae are presented to enable errors in the total filtration estimate to be readily determined from those in the individual parameters. (author)

  12. Screening of foods and related products for toxic elements with a portable X-ray tube analyzer

    International Nuclear Information System (INIS)

    Anderson, D.L.

    2009-01-01

    Capabilities of a portable X-ray tube-based analyzer were evaluated for screening foods, thin films, and ceramic glazes for toxic elements. A beverage spiked with Cr, Cu, and As and cocoa powder spiked with As and Pb could easily be distinguished from unadulterated products when analyzed through their original container walls. With calibration, results for thin films and ceramic glazes yielded accurate Pb results. Limits of detection (LODs) were 0.2-15 and 15 μg cm -2 , respectively, for Pb and Cd in thin films and about 2 μg cm -2 for Pb in glazes. With analysis times of 0.5-1 min, sensitivities and LODs were superior to those obtained with radioisotopic X-ray fluorescence analysis. (author)

  13. Spot size characterization of focused non-Gaussian X-ray laser beams

    NARCIS (Netherlands)

    Chalupsky, J.; Krzywinski, J.; Juha, L.; Hajkova, V.; Cihelka, J.; Burian, T.; Vysin, L.; Gaudin, J.; Gleeson, A.; Jurek, M.; Khorsand, A. R.; Klinger, D.; Wabnitz, H.; Sobierajski, R.; Stormer, M.; Tiedtke, K.; Toleikis, S.

    2010-01-01

    We present a new technique for the characterization of non-Gaussian laser beams which cannot be described by an analytical formula. As a generalization of the beam spot area we apply and refine the definition of so called effective area (A(eff)) [1] in order to avoid using the full-width at half

  14. WE-H-204-01: William D. Coolidge, Inventor of the Modern X-Ray Tube

    Energy Technology Data Exchange (ETDEWEB)

    Allard, D. [PA Dept. of Environmental Protection (United States)

    2016-06-15

    “William D. Coolidge, Inventor of the Modern X-ray Tube” David J. Allard, M.S., CHP - Director, PA DEP Bureau of Radiation Protection William David Coolidge 1873–1975 was a research scientist and inventor of the modern X-ray tube. Besides Roentgen, with his 1895 discovery and subsequent studies of X-rays, perhaps no other individual contributed more to the advancement of X-ray technology than did Coolidge. He was born in Hudson, MA and received his Bachelor of Science degree from MIT in 1896. That same year he went to Europe to study under renowned physicists of the time. Coolidge received his Ph.D. summa cum laude from the University of Leipzig in 1899 and soon after joined the staff of MIT. While studying at Leipzig, he met Roentgen. In 1905 he was asked to join the newly established General Electric Research Laboratory in Schenectady, NY. He promptly began fundamental work on the production of ductile tungsten filaments as a replacement for fragile carbon filaments used in incandescent light bulbs. This improved light bulb was brought to market by GE in 1911. It was subsequent application of his tungsten work that led Coolidge to his studies in X ray production. Circa 1910, the state-of-the-art X-ray tube was a “gas tube” or “cold cathode” type tube. These crude X-ray tubes relied on residual gas molecules as a source of electrons for bombardment of low to medium atomic number metal targets. In 1912 Coolidge described the use of tungsten as an improved anode target material for X-ray tubes. Shortly after in 1913 he published a paper in Physical Review describing “A Powerful Roentgen Ray Tube With a Pure Electron Discharge.” This tube used a tungsten filament as a thermionic source of electrons under high vacuum to bombard a tungsten anode target. Great improvements in X-ray tube stability, output and performance were obtained with the “hot cathode” or “Coolidge tube.” With some variation in filament and target geometry, this 100 year

  15. WE-H-204-01: William D. Coolidge, Inventor of the Modern X-Ray Tube

    International Nuclear Information System (INIS)

    Allard, D.

    2016-01-01

    “William D. Coolidge, Inventor of the Modern X-ray Tube” David J. Allard, M.S., CHP - Director, PA DEP Bureau of Radiation Protection William David Coolidge 1873–1975 was a research scientist and inventor of the modern X-ray tube. Besides Roentgen, with his 1895 discovery and subsequent studies of X-rays, perhaps no other individual contributed more to the advancement of X-ray technology than did Coolidge. He was born in Hudson, MA and received his Bachelor of Science degree from MIT in 1896. That same year he went to Europe to study under renowned physicists of the time. Coolidge received his Ph.D. summa cum laude from the University of Leipzig in 1899 and soon after joined the staff of MIT. While studying at Leipzig, he met Roentgen. In 1905 he was asked to join the newly established General Electric Research Laboratory in Schenectady, NY. He promptly began fundamental work on the production of ductile tungsten filaments as a replacement for fragile carbon filaments used in incandescent light bulbs. This improved light bulb was brought to market by GE in 1911. It was subsequent application of his tungsten work that led Coolidge to his studies in X ray production. Circa 1910, the state-of-the-art X-ray tube was a “gas tube” or “cold cathode” type tube. These crude X-ray tubes relied on residual gas molecules as a source of electrons for bombardment of low to medium atomic number metal targets. In 1912 Coolidge described the use of tungsten as an improved anode target material for X-ray tubes. Shortly after in 1913 he published a paper in Physical Review describing “A Powerful Roentgen Ray Tube With a Pure Electron Discharge.” This tube used a tungsten filament as a thermionic source of electrons under high vacuum to bombard a tungsten anode target. Great improvements in X-ray tube stability, output and performance were obtained with the “hot cathode” or “Coolidge tube.” With some variation in filament and target geometry, this 100 year

  16. Inspection of small multi-layered plastic tubing during extrusion, using low-energy X-ray beams

    International Nuclear Information System (INIS)

    Armentrout, C.; Basinger, T.; Beyer, J.; Colesa, B.; Olsztyn, P.; Smith, K.; Strandberg, C.; Sullivan, D.; Thomson, J.

    1999-01-01

    The automotive industry uses nylon tubing with a thin ETFE (ethylene-tetrafluroethylene) inner layer to carry fuel from the tank to the engine. This fluorocarbon inner barrier layer is important to reduce the migration of hydrocarbons into the environment. Pilot Industries has developed a series of real-time inspection stations for dimensional measurements and flaw detection during the extrusion of this tubing. These stations are named LERA TM (low-energy radioscopic analysis), use a low energy X-ray source, a special high-resolution image converter and intensifier (ICI) stage, image capture hardware, a personal computer, and software that was specially designed to meet this task. Each LERA TM station operates up to 20 h a day, 6 days a week and nearly every week of the year. The tubing walls are 1-2 mm thick and the outer layer is nylon and the inner 0.2 mm thick layer is ethylene-tetrafluroethylene

  17. Phase identification and internal stress analysis of steamside oxides on superheater tubes by means of X-ray diffraction

    DEFF Research Database (Denmark)

    Pantleon, Karen; Montgomery, Melanie

    Steamside oxides formed on plant exposed superheated tubes were investigated using X-ray diffraction. Phase identification and stress analysis revealed that on ferritic X20CrMoV12-1 pure Hematite and pure Magnetite formed and both phases are under tensile stress. IN contrast, on austenitic TP347H...... Mn-, Cr- and/or Ni-containing oxides are observed, instead of pure Magnetite, underneath a pure Hematite surface layer. Oxides on the austenitic steel are under compressive stress or even stress-free....

  18. Grazing incidence x-ray diffraction analysis of zeolite NaA membranes on porous alumina tubes.

    Science.gov (United States)

    Kyotani, Tomohiro

    2006-07-01

    Zeolite NaA-type membranes hydrothermally synthesized on porous alumina tubes, for dehydration process, were characterized by grazing incidence 2 theta scan X-ray diffraction analysis (GIXRD). The fine structure of the membrane was studied fractionally for surface layer and for materials embedded in the porous alumina tube. The thickness of the surface layer on the porous alumina tube in the membranes used in this study was approximately 2-3 microm as determined from transmission electron microscopy with focused ion beam thin-layer specimen preparation technique (FIB-TEM). To discuss the effects of the membrane surface morphology on the GIXRD measurements, CaA-type membrane prepared by ion exchange from the NaA-type membrane and surface-damaged NaA-type membrane prepared by water leaching were also studied. For the original NaA-type membrane, 2 theta scan GIXRD patterns could be clearly measured at X-ray incidence angles (alpha) ranging from 0.1 to 2.0 deg in increments of 0.1 deg. The surface layers of the 2 - 3 microm on the porous alumina tube correspond to the alpha values up to ca. 0.2 deg. For the CaA-type and the surface-damaged NaA-type membranes, however, diffraction patterns from the surface layer could not be successfully detected and the others were somewhat broad. For all the three samples, diffraction intensities of both zeolite and alumina increased with depth (X-ray incidence angle, alpha) in the porous alumina tube region. The depth profile analysis of the membranes based on the GIXRD first revealed that amount of zeolite crystal embedded in the porous alumina tube is much larger than that in the surface layer. Thus, the 2 theta scan GIXRD is a useful method to study zeolite crystal growth mechanism around (both inside and outside) the porous alumina support during hydrothermal synthesis and to study water permeation behavior in the dehydration process.

  19. X ray Production. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Nowotny, R. [Medical University of Vienna, Vienna (Austria)

    2014-09-15

    The differential absorption of X rays in tissues and organs, owing to their atomic composition, is the basis for the various imaging methods used in diagnostic radiology. The principles in the production of X rays have remained the same since their discovery. However, much refinement has gone into the design of X ray tubes to achieve the performance required for today’s radiological examinations. In this chapter, an outline of the principles of X ray production and a characterization of the radiation output of X ray tubes will be given. The basic processes producing X rays are dealt with in Section 1.4.

  20. Chest tube placement in thorax trauma - comparison chest X-ray and computed tomography (CT)

    International Nuclear Information System (INIS)

    Heim, P.; Maas, R.; Buecheler, E.; Tesch, C.

    1998-01-01

    Estimation of chest tube placement in patients with thoracic trauma with regard to chest tube malposition in chest radiography in the supine position compared to additional computed tomography of the thorax. Material and methods: Apart from compulsory chest radiography after one or multiple chest tube insertions, 31 severely injured patients with thoracic trauma underwent a CT scan of the thorax. These 31 patients with 40 chest tubes constituted the basis for the present analysis. Results: In chest radiography in the supine position there were no chest tube malpositions (n=40); In the CT scans 25 correct positions, 7 pseudo-malpositions, 6 intrafissural and 2 intrapulmonary malpositions were identified. Moreover 16 sufficient, 18 insufficient and 6 indifferent functions of the chest tubes were seen. Conclusion: In case of lasting clinical problems and questionable function of the chest tube, chest radiography should be supplemented by a CT scan of the thorax in order to estimate the position of the chest tube. (orig.) [de

  1. Determination of the diagnostic x-ray tube practical peak voltage (PPV) from average or average peak voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hourdakis, C J, E-mail: khour@gaec.gr [Ionizing Radiation Calibration Laboratory-Greek Atomic Energy Commission, PO Box 60092, 15310 Agia Paraskevi, Athens, Attiki (Greece)

    2011-04-07

    The practical peak voltage (PPV) has been adopted as the reference measuring quantity for the x-ray tube voltage. However, the majority of commercial kV-meter models measure the average peak, U-bar{sub P}, the average, U-bar, the effective, U{sub eff} or the maximum peak, U{sub P} tube voltage. This work proposed a method for determination of the PPV from measurements with a kV-meter that measures the average U-bar or the average peak, U-bar{sub p} voltage. The kV-meter reading can be converted to the PPV by applying appropriate calibration coefficients and conversion factors. The average peak k{sub PPV,kVp} and the average k{sub PPV,Uav} conversion factors were calculated from virtual voltage waveforms for conventional diagnostic radiology (50-150 kV) and mammography (22-35 kV) tube voltages and for voltage ripples from 0% to 100%. Regression equation and coefficients provide the appropriate conversion factors at any given tube voltage and ripple. The influence of voltage waveform irregularities, like 'spikes' and pulse amplitude variations, on the conversion factors was investigated and discussed. The proposed method and the conversion factors were tested using six commercial kV-meters at several x-ray units. The deviations between the reference and the calculated - according to the proposed method - PPV values were less than 2%. Practical aspects on the voltage ripple measurement were addressed and discussed. The proposed method provides a rigorous base to determine the PPV with kV-meters from U-bar{sub p} and U-bar measurement. Users can benefit, since all kV-meters, irrespective of their measuring quantity, can be used to determine the PPV, complying with the IEC standard requirements.

  2. X-ray sources

    International Nuclear Information System (INIS)

    Masswig, I.

    1986-01-01

    The tkb market survey comparatively evaluates the X-ray sources and replacement tubes for stationary equipment currently available on the German market. It lists the equipment parameters of 235 commercially available X-ray sources and their replacement tubes and gives the criteria for purchase decisions. The survey has been completed with December 1985, and offers good information concerning medical and technical aspects as well as those of safety and maintenance. (orig.) [de

  3. Instrumental aspects of tube-excited energy-dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Adams, F.; Nullens, H.; Espen, P. van

    1983-01-01

    Energy-dispersive X-ray fluorescence spectrometry is an attractive and widely used method for sensitive multi-element analysis. The method suffers from the extreme density of spectral components in a rather limited energy range which implies the need for computer based spectrum analysis. The method of iterative least squares analysis is the most powerful tool for this. It requires a systematic and accurate description of the spectral features. Other important necessities for accurate analysis are the calibration of the spectrometer and the correction for matrix absorption effects in the sample; they can be calculated from available physical constants. Ours and similar procedures prove that semi-automatic analyses are possible with an accuracy of the order of 5%. (author)

  4. Feasibility of employing thick microbeams from superficial and orthovoltage kVp x-ray tubes for radiotherapy of superficial cancers

    Science.gov (United States)

    Kamali-Zonouzi, P.; Shutt, A.; Nisbet, A.; Bradley, D. A.

    2017-11-01

    Preclinical investigations of thick microbeams show these to be feasible for use in radiotherapeutic dose delivery. To create the beams we access a radiotherapy x-ray tube that is familiarly used within a conventional clinical environment, coupling this with beam-defining grids. Beam characterisation, both single and in the form of arrays, has been by use of both MCNP simulation and direct Gafchromic EBT film dosimetry. As a first step in defining optimal exit-beam profiles over a range of beam energies, simulation has been made of the x-ray tube and numbers of beam-defining parallel geometry grids, the latter being made to vary in thickness, slit separation and material composition. For a grid positioned after the treatment applicator, and of similar design to those used in the first part of the study, MCNP simulation and Gafchromic EBT film were then applied in examining the resultant radiation profiles. MCNP simulations and direct dosimetry both show useful thick microbeams to be produced from the x-ray tube, with peak-to-valley dose ratios (PVDRs) in the approximate range 8.8-13.9. Although the potential to create thick microbeams using radiotherapy x-ray tubes and a grid has been demonstrated, Microbeam Radiation Therapy (MRT) would still need to be approved outside of the preclinical setting, a viable treatment technique of clinical interest needing to benefit for instance from substantially improved x-ray tube dose rates.

  5. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications

    International Nuclear Information System (INIS)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-01

    Highlights: ► It is feasible to use recycled CRT glass in mortar as shield against X-ray radiation. ► Shielding properties of CRT mortar is strongly depended on CRT content. ► Linear attenuation coefficient was reduced by 142% upon 100% CRT glass in mortar. ► Effect of mortar thickness and irradiation energies on shielding was investigated. - Abstract: Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm 3 can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement–sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy.

  6. User certification of hand-held x-ray tube based analytical fluorescent devices in a canadian context

    International Nuclear Information System (INIS)

    Maharaj, H.P.

    2005-01-01

    Safety education aims to reduce personal injury and improve well being. This health promotion principle is applied in the case of hand-held open beam x-ray tube based analytical x-ray devices. Such devices not only are light weight and portable, but also present high radiation exposure levels at the beam exit port and potentially can be used in a variety of industrial applications for determination of material composition. There is much potential for radiation risks to occur with resultant adverse effects if such devices are not used by trained individuals within controlled environments. A level of radiation safety knowledge and understanding of the device design, construction and performance characteristics appear warranted. To reduce radiation risks, user certification at a federal level was introduced in 2004 based on International Standards Organization 20807, since that standard comprises elements commensurate with risk reduction strategies. Within these contexts, a federally certified user is deemed to have acquired a level of safety knowledge and skills to facilitate safe use of the device. Certification, however, does not absolve the holder from obligations of compliance with applicable provincial, territorial or federal laws respecting device operation. The union of federal certification and applicable legislative mandated operational criteria reduces radiation risks overall. (author)

  7. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-15

    Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Design of large-format X-ray framing image tube

    International Nuclear Information System (INIS)

    Zong Fangke; Yang Qinlao; Gu Li; Li Xiang; Zhang Jingjin

    2012-01-01

    An implementation method of large-format framing image tube is proposed. An electrostatic focusing image tube with large input photocathode and small output image is designed. Coupling with common small-format microchannel plate (MCP) gated framing unit, image gating and enhancement can be realized. Compared to the tube with large-format MCP, this kind of framing tube avoids the high manufacturing cost of lager-format MCP and overcomes the transmission voltage loss and gain uniformity caused by long micro strips. The framing image tube has an effective input working diameter of 100 mm, an output image diameter of 40 mm, and a magnification of 0.4. The centre spatial resolution is 14.4 lp/mm, the marginal spatial resolution is 11.2 lp/mm, and the the geometric distortion is less than 15%. The framing characteristics is determined by the MCP framing unit. This method is an effective way for expanding the work area of framing image tubes. (authors)

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The x-ray tube is connected to a flexible arm that is extended over the patient while an x-ray film holder or image recording plate is placed beneath the patient. top of page How does the procedure work? X-rays are a form of radiation like ...

  10. A high-precision X-ray tomograph for quality control of the ATLAS Muon Monitored Drift Tube Chambers

    CERN Document Server

    Schuh, S; Banhidi, Z; Fabjan, Christian Wolfgang; Lampl, W; Marchesotti, M; Rangod, Stephane; Sbrissa, E; Smirnov, Y; Voss, Rüdiger; Woudstra, M; Zhuravlov, V

    2004-01-01

    A dedicated X-ray tomograph has been developed at CERN to control the required wire placement accuracy of better than 20mum of the 1200 Monitored Drift Tube Chambers which make up most of the precision chamber part of the ATLAS Muon Spectrometer. The tomograph allows the chamber wire positions to be measured with a 2mum statistical and 2mum systematic uncertainty over the full chamber cross-section of 2.2 multiplied by 0.6m**2. Consistent chamber production quality over the 4-year construction phase is ensured with a similar to 15% sampling rate. Measurements of about 70 of the 650 MDT chambers so far produced have been essential in assessing the validity and consistency of the various construction procedures.

  11. The effects of voltage of x-ray tube on fractal dimension and anisotropy of diagnostic image

    International Nuclear Information System (INIS)

    Baik, Jee Seon; Lee, Sam Sun; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Choi, Soon Chul; Park, Kwan Soo

    2007-01-01

    The purpose of this study was to evaluate the effect of the kV on fractal dimension of trabecular bone in digital radiographs. 16 bone cores were obtained from patients who had taken partial resection of tibia due to accidents. Each bone core along with an aluminum step wedge was radiographed with an occlusal film at 0.08 sec and with the constant film-focus distance (32 cm). All radiographs were acquired at 60, 75, and 90 kV. A rectangular ROI was drawn at medial part, distal part, and the bone defect area of each bone core image according to each kV. The directional fractal dimension was measured using Fourier Transform spectrum, and the anisotropy was obtained using directional fractal dimension. The values were compared by the repeated measures ANOVA. The fractal dimensions increased along with kV increase (p<0.05). The anisotropy measurements did not show statistically significant difference according to kV change. The fractal dimensions of the bone defect areas of the bone cores have low values contrast to the non-defect areas of the bone cores. The anisotropy measurements of the bone defect areas were lower than those of the non-defect areas of the bone cores, but not statistically significant. Fractal analysis can notice a difference of a change of voltage of x-ray tube and bone defect or not. And anisotropy of a trabecular bone is coherent even with change of the voltage of x-ray tube or defecting off a part of bone

  12. Experimental investigation for determination of optimal X-ray beam tube voltages in a newly developed digital breast tomosynthesis system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Suk, E-mail: radiosugar@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Kim, Ye-Seul, E-mail: radiohesugar@gmail.com [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Choi, Young-Wook, E-mail: ywchoi@keri.re.kr [Korea Electrotechnology Research Institute (KERI), Ansan, Geongki 426-170 (Korea, Republic of); Choi, JaeGu, E-mail: jgchoi88@paran.com [Korea Electrotechnology Research Institute (KERI), Ansan, Geongki 426-170 (Korea, Republic of); Rhee, Yong-Chun, E-mail: ycrhee@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of)

    2014-11-01

    Our purpose was to investigate optimal tube voltages (kVp) for a newly developed digital breast tomosynthesis (DBT) process and to determine tube current–exposure time products (mA s) for the average glandular dose (AGD), which is similar to that of the two views in conventional mammography (CM). In addition, the optimal acquisition parameters for this system were compared with those of CM. The analysis was based on the contrast-to-noise ratio (CNR) from the simulated micro-calcifications on homogeneous phantoms, and the figure of merit (FOM) was retrieved from the CNR and AGD at X-ray tube voltages ranging from 24 to 40 kVp at intervals of 2 kV. The optimal kVp increased more than 2 kV with increasing glandularity for thicker (≥50 mm) breast phantoms. The optimal kVp for DBT was found to be 4–7 kV higher than that calculated for CM with breast phantoms thicker than 50 mm. This is likely due to the greater effect of noise and dose reduction by kVp increment when using the lower dose per projection in DBT. It is important to determine optimum acquisition conditions for a maximally effective DBT system. The results of our study provide useful information to further improve DBT for high quality imaging.

  13. Energy dispersive X-ray fluorescence spectrometry for the direct multi-element analysis of dried blood spots

    Science.gov (United States)

    Marguí, E.; Queralt, I.; García-Ruiz, E.; García-González, E.; Rello, L.; Resano, M.

    2018-01-01

    Home-based collection protocols for clinical specimens are actively pursued as a means of improving life quality of patients. In this sense, dried blood spots (DBS) are proposed as a non-invasive and even self-administered alternative to sampling whole venous blood. This contribution explores the potential of energy dispersive X-ray fluorescence spectrometry for the simultaneous and direct determination of some major (S, Cl, K, Na), minor (P, Fe) and trace (Ca, Cu, Zn) elements in blood, after its deposition onto clinical filter papers, thus giving rise to DBS. For quantification purposes the best strategy was to use matrix-matched blood samples of known analyte concentrations. The accuracy and precision of the method were evaluated by analysis of a blood reference material (Seronorm™ trace elements whole blood L3). Quantitative results were obtained for the determination of P, S, Cl, K and Fe, and limits of detection for these elements were adequate, taking into account their typical concentrations in real blood samples. Determination of Na, Ca, Cu and Zn was hampered by the occurrence of high sample support (Na, Ca) and instrumental blanks (Cu, Zn). Therefore, the quantitative determination of these elements at the levels expected in blood samples was not feasible. The methodology developed was applied to the analysis of several blood samples and the results obtained were compared with those reported by standard techniques. Overall, the performance of the method developed is promising and it could be used to determine the aforementioned elements in blood samples in a simple, fast and economic way. Furthermore, its non-destructive nature enables further analyses by means of complementary techniques to be carried out.

  14. Realization of radiobiological in vitro cell experiments at conventional X-ray tubes and unconventional radiation sources

    International Nuclear Information System (INIS)

    Beyreuther, Elke

    2010-01-01

    More than hundred years after the discovery of X-rays different kinds of ionizing radiation are ubiquitous in medicine, applied to clinical diagnostics and cancer treatment as well. Irrespective of their nature, the widespread application of radiation implies its precise dosimetric characterization and detailed knowledge of the radiobiological effects induced in cancerous and normal tissue. Starting with in vitro cell irradiation experiments, which define basic parameters for the subsequent tissue and animal studies, the whole multi-stage process is completed by clinical trials that translate the results of fundamental research into clinical application. In this context, the present dissertation focuses on the establishment of radiobiological in vitro cell experiments at unconventional, but clinical relevant radiation qualities. In the first part of the present work the energy dependent biological effectiveness of photons was studied examining low-energy X-rays (≤ 50 keV), as used for mammography, and high-energy photons (≥ 20 MeV) as proposed for future radiotherapy. Cell irradiation experiments have been performed at conventional X-ray tubes providing low-energy photons and 200 kV reference radiation as well. In parallel, unconventional quasi-monochromatic channeling X-rays and high-energy bremsstrahlung available at the radiation source ELBE of the Forschungszentrum Dresden-Rossendorf were considered for radiobiological experimentation. For their precise dosimetric characterization dosimeters based on the thermally stimulated emission of exoelectrons and on radiochromic films were evaluated, whereas just the latter was found to be suitable for the determination of absolute doses and spatial dose distributions at cell position. Standard ionization chambers were deployed for the online control of cell irradiation experiments. Radiobiological effects were analyzed in human mammary epithelial cells on different subcellular levels revealing an increasing amount

  15. Realization of radiobiological in vitro cell experiments at conventional X-ray tubes and unconventional radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Beyreuther, Elke

    2010-09-10

    More than hundred years after the discovery of X-rays different kinds of ionizing radiation are ubiquitous in medicine, applied to clinical diagnostics and cancer treatment as well. Irrespective of their nature, the widespread application of radiation implies its precise dosimetric characterization and detailed knowledge of the radiobiological effects induced in cancerous and normal tissue. Starting with in vitro cell irradiation experiments, which define basic parameters for the subsequent tissue and animal studies, the whole multi-stage process is completed by clinical trials that translate the results of fundamental research into clinical application. In this context, the present dissertation focuses on the establishment of radiobiological in vitro cell experiments at unconventional, but clinical relevant radiation qualities. In the first part of the present work the energy dependent biological effectiveness of photons was studied examining low-energy X-rays (≤ 50 keV), as used for mammography, and high-energy photons (≥ 20 MeV) as proposed for future radiotherapy. Cell irradiation experiments have been performed at conventional X-ray tubes providing low-energy photons and 200 kV reference radiation as well. In parallel, unconventional quasi-monochromatic channeling X-rays and high-energy bremsstrahlung available at the radiation source ELBE of the Forschungszentrum Dresden-Rossendorf were considered for radiobiological experimentation. For their precise dosimetric characterization dosimeters based on the thermally stimulated emission of exoelectrons and on radiochromic films were evaluated, whereas just the latter was found to be suitable for the determination of absolute doses and spatial dose distributions at cell position. Standard ionization chambers were deployed for the online control of cell irradiation experiments. Radiobiological effects were analyzed in human mammary epithelial cells on different subcellular levels revealing an increasing amount

  16. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source

    Science.gov (United States)

    Sun, Xuepeng; zhang, Xiaoyun; Zhu, Yu; Wang, Yabing; Shang, Hongzhong; Zhang, Fengshou; Liu, Zhiguo; Sun, Tianxi

    2018-04-01

    A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.

  17. Limitations of Routine Verification of Nasogastric Tube Insertion Using X-Ray and Auscultation: Two Case Reports of Life-Threatening Complications.

    Science.gov (United States)

    Nejo, Takahide; Oya, Soichi; Tsukasa, Tsuchiya; Yamaguchi, Naomi; Matsui, Toru

    2016-12-01

    Several bedside approaches used in combination with thoracoabdominal X-ray are widely used to avoid severe complications that have been reported during nasogastric tube management. Although confirmation by X-ray is considered the gold standard, it is not yet perfect. We present 2 cases of rare complications in which the routine verification methods could not detect all the complications related to the nasogastric tube placement. Case 1 was a 17-year-old male who presented with a brain tumor and repeatedly required nasogastric tube placement. Despite normal auscultatory and X-ray findings, the patient's condition deteriorated rapidly after resuming the enteral nutrition (EN). Computed tomography images showed the presence of hepatic portal venous gas (HPVG). Urgent upper gastrointestinal endoscopy showed esophagogastric submucosal tunneling of the tube that required an emergency open total gastrectomy. Case 2 was a 76-year-old man with long-term EN after stroke. While the last auscultatory verification was normal, he suddenly developed extensive HPVG due to gastric mucosal injury following EN, which resulted in progressive intestinal necrosis, general peritonitis, and death. These 2 cases indicated that routine verification methods consisting of auscultation and X-ray may not be completely reliable, and the awareness of the limitations of these methods should be reaffirmed because expeditious examinations and necessary interventions are critical in preventing life-threatening complications.

  18. Phase identification and internal stress analysis of steamside oxides on superheater tubes by means of X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, Karen; Montgomery, Melanie [Technical Univ. of Denmark, Lyngby (Denmark). Inst. of Manufacturing Engineering and Management

    2005-05-01

    For superheater tubes, the adherence of the inner steamside oxide is especially important as spallation of this oxide results in a) blockage of loops which cause insufficient steam flow through the superheaters and subsequently overheating and tube failure and b) spalled oxide can cause erosion of turbine blades. Oxide spallation is a serious problem for austenitic steels where the significant differences of the thermal expansion coefficients of steel and oxide cause relatively high thermal stresses. Usually, various oxides layered within the scale are suggested from microscopical observations of the morphology and/or topography of the oxide scale accompanied by the analysis of chemical elements present. Reports about the application of X-ray diffraction on the study of steamside oxide formation are very scarce in literature. If applied at all, XRD-studies are restricted to ideally flat samples oxidized under laboratory conditions, but relation to real operating conditions and the effect of the real sample geometry is missing. Within the frame of the project, steamside oxides on plant exposed components of ferritic/ martensitic X20CrMoV12-1 as well as fine- and coarse-grained austenitic TP347H were studied by means of X-ray diffraction. Depth dependent phase analysis on sample segments cut from the tubes was carried out by means of grazing incidence diffraction and, in order to obtain information from a larger depth, conventional XRD was combination with stepwise mechanical removal of the steamside oxides. After each removal step phase analysis was performed both on the segments and on the removed powders. Phase specific stress analysis was carried out on rings cut from the tube. Results show that steamside oxides on X20CrMoV12-1 consist of pure Hematite at the surface followed by a relatively thick layer of pure Magnetite. Both phases are under relatively high tensile stresses. While the phase composition of the Hematite layer appears to be the same for all

  19. Analysis of the design of an X-ray tube using Monte Carlo; Analisis del diseno de un tubo de rayos X mediante Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Pena V, J. D.; Sosa A, M. A.; Ceron, P. V.; Vallejo, M. A. [Universidad de Guanajuato, Division de Ciencias e Ingenierias, Loma del Bosque No. 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Vega C, H. R., E-mail: jd.penavidal@ugto.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico)

    2017-10-15

    In this paper we present the Monte Carlo analysis of the X-rays produced by a rotating X-ray tube of the Siemens brand that is used in tomographs for clinical use. The work was done with the MCNP6 code with which the tube was modeled and the primary X-ray spectra produced during the interaction of monoenergetic electrons of 130 keV were calculated. The X-ray spectra were obtained by varying some parameters such as: the angle of the anode (15 to 20 degrees), the type of target (Tungsten, Molybdenum and Rhodium) and the thickness of the filter (3, 5, 10 and 15 mm). In order to have a good statistic 10{sup 7} stories were used. Though the estimators f2 and f5 the X-ray spectra and the total fluencies were estimated. This information will be used to calculate the dose absorbed in the lens and the thyroid gland in patients undergoing radio diagnosis procedures. (Author)

  20. Comparative study of the Quality Control of x-ray tubes and generators in hospital assistance and primary assistance in Galician autonomous community

    International Nuclear Information System (INIS)

    Pombar Camean, M.; Lobato Busto, R.

    1992-01-01

    The quality guarantee in Diagnostic Radiology is defined as the organized effort of surgical staff to guarantee sufficient quality images, which provide the correct diagnostic information, as cheaply as possible and with the least exposure to radiation for the patient. In this paper a comparative study about the quality control of x-ray tube and generators in hospital assistance and primary assistance is present. In the conclusions, it is confirmed that the antiquity and poor conservation of the primary attendance x-ray equipment, have influence on the studied constants and therefore, influence the doses received by the patients. (author)

  1. Basic studies in X-ray radiography and imaging techniques

    International Nuclear Information System (INIS)

    Vaidya, Paresh R.

    2000-01-01

    The aim of this research was to study the basic characteristics related to a new branch of radiography viz. the micro-focal radiography. The most important among them was to find methods of measurement of focal spot size of these X-ray sources. It is important to accomplish this because the design of such units is specifically meant to produce very fine source size. To this end. first the process of radiography test was introduced. Among other things. various properties of an image and image forming systems (like PSF, LSF, MTF etc.) were introduced and explained. Methods used for microfocus measurement of focal spot size in conventional units were reviewed. It was shown how they are not suitable for microfocal tubes. Next the microfocus X-ray unit meant for the study was installed and commissioned. Features which are different from conventional X-ray units were observed more carefully. Data was collected and analyzed for various aspects. Procedure for focussing the electron beam while getting the feed back about beam diameter from the oscilloscope was established by experiments. In addition, influence of change in tube voltage and tube current on the focal spot size was studied. Relationship between tube current and target current vis-a-vis focus size was established. Radiation zone was determined. Focal spot size was qualitatively compared with that of a conventional X-ray unit by taking radiographs of different wire meshes at different magnifications by both the units

  2. Application of an expectation maximization method to the reconstruction of X-ray-tube spectra from transmission data

    International Nuclear Information System (INIS)

    Endrizzi, M.; Delogu, P.; Oliva, P.

    2014-01-01

    An expectation maximization method is applied to the reconstruction of X-ray tube spectra from transmission measurements in the energy range 7–40 keV. A semiconductor single-photon counting detector, ionization chambers and a scintillator-based detector are used for the experimental measurement of the transmission. The number of iterations required to reach an approximate solution is estimated on the basis of the measurement error, according to the discrepancy principle. The effectiveness of the stopping rule is studied on simulated data and validated with experiments. The quality of the reconstruction depends on the information available on the source itself and the possibility to add this knowledge to the solution process is investigated. The method can produce good approximations provided that the amount of noise in the data can be estimated. - Highlights: • An expectation maximization method was used together with the discrepancy principle. • The discrepancy principle is a suitable criterion for stopping the iteration. • The method can be applied to a variety of detectors/experimental conditions. • The minimum information required is the amount of noise that affects the data. • Improved results are achieved by inserting more information when available

  3. Possible use of CdTe detectors in kVp monitoring of diagnostic X-ray tubes

    International Nuclear Information System (INIS)

    Krmar, M.; Bucalovic, N.; Baucal, M.; Jovancevic, N.

    2010-01-01

    It has been suggested that kVp of diagnostic X-ray devices (or maximal energy of X-ray photon spectra) should be monitored routinely; however a standardized non-invasive technique has yet to be developed and proposed. It is well known that the integral number of Compton scattered photons and the intensities of fluorescent X-ray lines registered after irradiation of some material by an X-ray beam are a function of the maximal beam energy. CdTe detectors have sufficient energy resolution to distinguish individual X-ray fluorescence lines and high efficiency for the photon energies in the diagnostic region. Our initial measurements have demonstrated that the different ratios of the integral number of Compton scattered photons and intensities of K and L fluorescent lines detected by CdTe detector are sensitive function of maximal photon energy and could be successfully applied for kVp monitoring.

  4. Equipment, components and production of x-ray

    International Nuclear Information System (INIS)

    Idris Besar

    2004-01-01

    The contents of this chapter are follows - Equipment, Components and Production of x-Ray: x-ray system, generator, control panel. x-ray tube, cathode, anode, envelope, housing, collimator, other components, x-ray production, Bremsstrahlung x-ray, characteristic x-ray, heat production

  5. Millianalyser by x-ray fluorescence

    International Nuclear Information System (INIS)

    Kawamoto, A.; Hirao, O.; Kashiwakura, J.; Gohshi, Y.

    1976-01-01

    Research on the possibility of mm-size nondestructive analysis was carried out by the fluorescent x-ray method. With 0.2 mm pin-hole slit, source x-rays from a Cu target diffraction tube were collimated to a spot smaller than 1 mm phi at a slide stage placed about 5 cm distant from the pin-hole slit. Resultant x-rays from a sample placed on the slide stage, which is excited by the collimated x-ray, were detected with a head-on-type 6 mm SSD, placed so that its 12.5 micron Be window was about 5 cm beneath the stage. X-ray intensities sufficient for analysis (500 to 5000 CPS) could be obtained for various metallic samples with up to 40 kV-10 mA excitation. This instrument proved to be useful for mm-size qualitative analysis in measurements of tiny samples. Furthermore, the possibility of distribution analysis is expected based on the result of an investigation on c.a. 0.1 percent Cr in LiNbO 3 , where the ratios of Cr-Kα intensity to scattered Cu-Kα intensity varied between 0.094 and 0.19, with deviations of less than 7.5 percent at five successive points located at 2 mm intervals along the direction of growth

  6. Characterisation of the rare cadmium chromate pigment in a 19th century tube colour by Raman, FTIR, X-ray and EPR

    DEFF Research Database (Denmark)

    Christiansen, Marie Bitsch; Sørensen, Mikkel Agerbæk; Sanyova, Jana

    2017-01-01

    . However, in one of the tube colours labelled “Jaune de Cadmium Citron” (cadmium lemon yellow) an extremely rare cadmium chromate pigment was found. The pigment was analysed and characterised by Raman microscopy (MRS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), attenuated...... chromate, and the resulting yellow crystals proved identical to the pigment found in the tube colour “Jaune de Cadmium Citron”. The structure determined by single-crystal X-ray diffraction identified the pigment as 2CdCrO4·KOH·H2O or more accurately as KCd2(CrO4)2(H3O2) illustrating the μ-H3O2– species...

  7. Proposal of a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography

    International Nuclear Information System (INIS)

    Hattori, Hitoshi; Fukushima, Harunobu; Yoshii, Yasuo; Nakamuta, Hironori; Iwase, Mitsuo; Kitade, Koichi

    2009-01-01

    In this paper, a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography is proposed. In order to obtain both the stability and the high load carrying capacity, the hydrodynamic bearing lubricated by liquid metal (Gallium alloy), named as the hybrid hydrodynamic bearing generates the lubricating film by wedge effect on the plane region between the spiral grooves under high loading condition. The parallelism between the bearing and the rotating body can be secured by optimizing the rigidity distribution of stationary shaft in the proposed rotating mechanism. By carrying out the fundamental design by numerical analyses, it has been made clear that the hybrid hydrodynamic bearing and the rotating mechanism are suitable for the X-ray tube used in the CT with ever-increasingly scanning speed. (author)

  8. Stabilized x-ray generator power supply

    International Nuclear Information System (INIS)

    Saha, Subimal; Purushotham, K.V.; Bose, S.K.

    1986-01-01

    X-ray diffraction and X-ray fluorescence analysis are very much adopted in laboratories to determine the type and structure of the constituent compounds in solid materials, chemical composition of materials, stress developed on metals etc. These experiments need X-ray beam of fixed intensity and wave length. This can only be achieved by X-ray generator having highly stabilized tube voltage and tube current. This paper describes how X-ray tube high voltage and electron beam current are stabilized. This paper also highlights generation of X-rays, diffractometry and X-ray fluorescence analysis and their wide applications. Principle of operation for stabilizing the X-ray tube voltage and current, different protection circuits adopted, special features of the mains H.V. transformer and H.T. tank are described in this report. (author)

  9. A coherent/Compton scattering method employing an x-ray tube for measurement of trabecular bone mineral content

    International Nuclear Information System (INIS)

    Puumalainen, P.; Uimarihuhta, A.; Olkkonen, H.

    1982-01-01

    Results showed that the x-ray generator could be used as a radiation source in the coherent/Compton scattering method of measuring trabecular bone mineral content. The quasimonoenergetic x-ray beam was produced from the continuous bremsstrahlung radiation with the aid of a spectral filter. Of the two measuring arrangements that were tested, the semiconductor detector geometry appeared to give distinctly more reproducible results than the two NaI detector system. However, to improve the counting efficiency of the coherent radiation, the 'coherent' NaI detector could be replaced by a bore-through scintillation probe (bore diameter about 10mm). By placing the x-ray fluorescence target inside the bore, the yield would be considerably higher. The present method is suitable for TBMC measurements of small animal and human peripheral bones. Errors are discussed in relation to increase of bone size. (U.K.)

  10. Optimization of protocols and increase the life of the tube of X rays in computer tomography;Otimizacao de protocolos e aumento dsa vida util do tubo de raios X em tomografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Viero, A.P. [Centro Universitario Franciscano, Santa Maria, RS (Brazil); Botelho, Marcel Z.; Torunsky, Caroline G. [STAFF - Solucoes em Fisica Medica e Radioprotecao, Santa Maria, RS (Brazil); Paula, V. [Clinica Radiologica Caridade (DIX), Santa Maria, RS (Brazil)

    2009-07-01

    The objective of this study was to evaluate the reduction of the radiation dose and X-ray tube heating in computed tomography exams. Exams of the skull, abdomen and thorax were evaluated. It was verified that the technique used could be changed, suggesting new protocols and comparing image quality, radiation dose and X-ray tube heating. A mAs reduction could be done without compromising the diagnostic quality bringing a decrease up to 21,92% in the dose of skull exams, 20,25% for the examinations, abdomen and 22,06% for the examinations of thorax. The reduction on the X-ray tube heating for skull, abdomen and thorax exams was approximately 22,2%, 20,0% and 22,2% respectively. It is concluded that a change on the described protocols will cause a significant reduction dose delivered to patients and on X-ray tube heating without compromising the diagnosis. (author)

  11. X-Ray Flare Oscillations Track Plasma Sloshing along Star-disk Magnetic Tubes in the Orion Star-forming Region

    Science.gov (United States)

    Reale, Fabio; Lopez-Santiago, Javier; Flaccomio, Ettore; Petralia, Antonino; Sciortino, Salvatore

    2018-03-01

    Pulsing X-ray emission tracks the plasma “echo” traveling in an extremely long magnetic tube that flares in an Orion pre-main sequence (PMS) star. On the Sun, flares last from minutes to a few hours and the longest-lasting ones typically involve arcades of closed magnetic tubes. Long-lasting X-ray flares are observed in PMS stars. Large-amplitude (∼20%), long-period (∼3 hr) pulsations are detected in the light curve of day-long flares observed by the Advanced CCD Imaging Spectrometer on-board Chandra from PMS stars in the Orion cluster. Detailed hydrodynamic modeling of two flares observed on V772 Ori and OW Ori shows that these pulsations may track the sloshing of plasma along a single long magnetic tube, triggered by a sufficiently short (∼1 hr) heat pulse. These magnetic tubes are ≥20 solar radii long, enough to connect the star with the surrounding disk.

  12. The effects of primary beam filters on the analysis of rhodium and cadmium using a rhodium target x-ray tube

    International Nuclear Information System (INIS)

    Anzelmo, J.A.; Boyer, B.W.

    1986-01-01

    Since its introduction in 1964, the thin end-window rhodium target x-ray tube has been considered to be an excellent general purpose source of excitation. Heavy elements are efficiently excited by high Bremsstrahlung and the K lines of rhodium while the light elements are excited by the L lines of rhodium. The ability to efficiently excite both heavy and light elements is essential to special applications such as auto catalysts, which are composed of precious metals in a clay-like matrix. Close control of the light elements, including sodium, phosphorous, aluminum and silicon, and the heavy element precious metals, such as rhodium, are necessary to keep operating characteristics and manufacturing expense at desired levels. A quick survey of typical x-ray tube targets shows that some targets are more efficient for light elements while others are more efficient for heavy elements. The few general purpose x-ray tubes that are available have characteristic lines which overlap on elements to be determined. The rhodium target, which is a good excitation source for most of the elements mentioned, contains line overlaps on cadmium (RHKB) and rhodium (RHKA). When using a sequential wavelength dispersive XRF spectrometer, the characteristic lines of the tube scattered from the sample can be removed by a programmable primary beam filter having an absorption edge just higher in wavelength than the wavelengths to be removed. The thickness and composition of the filter, as well as the choice of KV and MA, will determine the operating parameter necessary to achieve the optimum precision and lowest limits of detection. For this study, synthetic samples are made up using Kaolin as the matrix

  13. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Lillaney, Prasheel; Pelc, Norbert [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States); Shin Mihye [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Hinshaw, Waldo; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Bennett, N. Robert [Department of Radiology, Stanford University, Stanford, California 94305 and Qualcomm MEMS Technologies, San Jose, California 95134 (United States)

    2013-02-15

    Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also

  14. Characterization of a multi-keV x-ray source produced by nanosecond laser irradiation of a solid target: The influence of laser focus spot and target thickness

    International Nuclear Information System (INIS)

    Hu Guangyue; Zheng Jian; Shen Baifei; Lei Anle; Xu Zhizhan; Liu Shenye; Zhang Jiyan; Yang Jiamin; Ding Yongkun; Hu Xin; Huang Yixiang; Du Huabing; Yi Rongqing

    2008-01-01

    The influence of focus spot and target thickness on multi-keV x-ray sources generated by 2 ns duration laser heated solid targets are investigated on the Shenguang II laser facility. In the case of thick-foil targets, the experimental data and theoretical analysis show that the emission volume of the x-ray sources is sensitive to the laser focus spot and proportional to the 3 power of the focus spot size. The steady x-ray flux is proportional to the 5/3 power of the focus spot size of the given laser beam in our experimental condition. In the case of thin-foil targets, experimental data show that there is an optimal foil thickness corresponding to the given laser parameters. With the given laser beam, the optimal thin-foil thickness is proportional to the -2/3 power of the focus spot size, and the optimal x-ray energy of thin foil is independent of focus spot size

  15. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  16. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  17. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic dental radiography is described in detail. It comprises an electron gun having an elongated tubular target carrier extending into the patient's mouth. The carrier supports an inclined target for direction of an X-ray pattern towards a film positioned externally of the patient's mouth. Image definition is improved by a focusing anode which focuses the electron beam into a sharp spot (0.05 to 0.10 mm diameter) on the target. The potential on the focusing anode is adjustable to vary the size of the spot. An X-ray transmitting ceramic (oxides of Be, Al and Si) window is positioned adjacent to the front face of the target. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  18. Automatic weld joint X-ray inspection

    International Nuclear Information System (INIS)

    Richter, H.U.; Linke, D.; Siems, K.D.; Kruse, H.; Schuetze, E.

    1990-01-01

    A gantry mounted robotic x-ray inspection unit has been developed for the series testing of small and medium sized welded components (pipe bends and nozzles). The unit features computer controlled positioning of the x-ray tube and x-ray image amplifier. Image quality classes 2 and even 1 could be achieved without difficulty. (author)

  19. Calculation of concrete shielding wall thickness for 450kVp X-ray tube with MCNP simulation and result comparison with half value layer method calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Heon; Lee, Eun Joong; Kim, Chan Kyu; Cho, Gyu Seong [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Hur, Sam Suk [Sam Yong Inspection Engineering Co., Ltd., Seoul (Korea, Republic of)

    2016-11-15

    Radiation generating devices must be properly shielded for their safe application. Although institutes such as US National Bureau of Standards and National Council on Radiation Protection and Measurements (NCRP) have provided guidelines for shielding X-ray tube of various purposes, industry people tend to rely on 'Half Value Layer (HVL) method' which requires relatively simple calculation compared to the case of those guidelines. The method is based on the fact that the intensity, dose, and air kerma of narrow beam incident on shielding wall decreases by about half as the beam penetrates the HVL thickness of the wall. One can adjust shielding wall thickness to satisfy outside wall dose or air kerma requirements with this calculation. However, this may not always be the case because 1) The strict definition of HVL deals with only Intensity, 2) The situation is different when the beam is not 'narrow'; the beam quality inside the wall is distorted and related changes on outside wall dose or air kerma such as buildup effect occurs. Therefore, sometimes more careful research should be done in order to verify the effect of shielding specific radiation generating device. High energy X-ray tubes which is operated at the voltage above 400 kV that are used for 'heavy' nondestructive inspection is an example. People have less experience in running and shielding such device than in the case of widely-used low energy X-ray tubes operated at the voltage below 300 kV. In this study, Air Kerma value per week, outside concrete shielding wall of various thickness surrounding 450 kVp X-ray tube were calculated using MCNP simulation with the aid of Geometry Splitting method which is a famous Variance Reduction technique. The comparison between simulated result, HVL method result, and NCRP Report 147 safety goal 0.02 mGy wk-1 on Air Kerma for the place where the public are free to pass showed that concrete wall of thickness 80 cm is needed to achieve the

  20. Calculation of concrete shielding wall thickness for 450kVp X-ray tube with MCNP simulation and result comparison with half value layer method calculation

    International Nuclear Information System (INIS)

    Lee, Sang Heon; Lee, Eun Joong; Kim, Chan Kyu; Cho, Gyu Seong; Hur, Sam Suk

    2016-01-01

    Radiation generating devices must be properly shielded for their safe application. Although institutes such as US National Bureau of Standards and National Council on Radiation Protection and Measurements (NCRP) have provided guidelines for shielding X-ray tube of various purposes, industry people tend to rely on 'Half Value Layer (HVL) method' which requires relatively simple calculation compared to the case of those guidelines. The method is based on the fact that the intensity, dose, and air kerma of narrow beam incident on shielding wall decreases by about half as the beam penetrates the HVL thickness of the wall. One can adjust shielding wall thickness to satisfy outside wall dose or air kerma requirements with this calculation. However, this may not always be the case because 1) The strict definition of HVL deals with only Intensity, 2) The situation is different when the beam is not 'narrow'; the beam quality inside the wall is distorted and related changes on outside wall dose or air kerma such as buildup effect occurs. Therefore, sometimes more careful research should be done in order to verify the effect of shielding specific radiation generating device. High energy X-ray tubes which is operated at the voltage above 400 kV that are used for 'heavy' nondestructive inspection is an example. People have less experience in running and shielding such device than in the case of widely-used low energy X-ray tubes operated at the voltage below 300 kV. In this study, Air Kerma value per week, outside concrete shielding wall of various thickness surrounding 450 kVp X-ray tube were calculated using MCNP simulation with the aid of Geometry Splitting method which is a famous Variance Reduction technique. The comparison between simulated result, HVL method result, and NCRP Report 147 safety goal 0.02 mGy wk-1 on Air Kerma for the place where the public are free to pass showed that concrete wall of thickness 80 cm is needed to achieve the safety goal

  1. Study of the experimental parameters associated to the determination of residual macro stresses in stainless steel tubes, through x-ray diffraction method

    International Nuclear Information System (INIS)

    Guimaraes, L.R.

    1990-01-01

    The basic principles related to the determination of residual macro stresses by X-rays diffractometry are present, whereas different techniques associated with the respective experimental errors are discussed. The residual stresses in two 304 L stainless steel tubes were measured using three models of diffractometers, Rigaku SG-8, Jeol JDX-11PA and Rigaku Strainflex. The measured values of stresses as well as the reproducibilities are examined. The suitability of peak location method, by fitting three data points to the parabolic function, is discussed through values of position and intensity obtained by two of the above diffractometers. (author)

  2. Study of the experimental parameters associated to the determination of residual macro stresses in stainless steel tubes through x-rays diffraction method

    International Nuclear Information System (INIS)

    Guimaraes, L.R.

    1990-01-01

    The basic principles related to the determination of residual macro stresses by X-rays diffractometry are present, whereas different techniques associated with the respective experimental errors are discussed. The residual stresses in two 304 L stainless steel tubes were measured using three models of diffractometers, Rigaku SG-8, Jeol JDX-11PA and Rigaku Strainflex. The measured values of stresses as well as the reproducibilities are examined. The suitability of peak location method, by fitting three data points to the parabolic function, is discussed through values of position and intensity obtained by two of the above diffractometers. (author)

  3. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system.

    Science.gov (United States)

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Bennett, N Robert; Pelc, Norbert; Fahrig, Rebecca

    2013-02-01

    Using hybrid x-ray∕MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also evaluated to determine

  4. Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum

    Science.gov (United States)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-02-01

    The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.

  5. Miniature x-ray source

    Science.gov (United States)

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  6. Electromechanical x-ray generator

    Science.gov (United States)

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  7. Peak potential meter applied to X-ray tubes in mammal radiography systems; Medidor do potencial de pico aplicado em tubos de raio-X de sistemas mamograficos

    Energy Technology Data Exchange (ETDEWEB)

    Schiabel, Homero; Frere, Annie F [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia; Andreeta, Jose P [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica e Quimica

    1990-12-31

    It is of a great importance to identify accurately the real peak potential (or simply, KVp) applied to a X-ray tube purposed to medical diagnosis, since it defines the beam energetic quality in terms of photons penetration power. Mainly in mammographic systems. it is of fundamental relevance the KVp accurate measurement because the soft tissues involved in this kind of examination provides different absorption - and, hence, clear contrast on mammographic film - just in a very restrict energetic range. Thus a device to measure KVp with adequate accuracy in mammographic units, using the basic principles of scintillation detection, was developed. This system is therefore composed of a NaI(Tl) crystal which is a X-ray sensor - replacing radiographic films which usually are a source of errors in these measurements - , a photo multiplier tube and changed into amplified electric pulses. Finally the electronic circuit, after adequate pulses treatment, shows instantaneously the actual KVp value in the test on displays. (author) 2 refs.

  8. Confirming nasogastric tube placement: Is the colorimeter as sensitive and specific as X-ray? A diagnostic accuracy study.

    Science.gov (United States)

    Mordiffi, Siti Zubaidah; Goh, Mien Li; Phua, Jason; Chan, Yiong-Huak

    2016-09-01

    The effect of delivering enteral nutrition or medications via a nasogastric tube that is inadvertently located in the tracheobronchial tract can cause respiratory complications. Although radiographic examination is accepted as the gold standard for confirming the position of patients' enteral tubes, it is costly, involves risks of radiation, and is not failsafe. Studies using carbon dioxide sensors to detect inadvertent nasogastric tube placements have been conducted in intensive care settings. However, none involved patients in general wards. The objective of this study was to ascertain the diagnostic measure of colorimeter, with radiographic examination as the reference standard, to confirm the location of nasogastric tubes in patients. A prospective observational study of a diagnostic test. This study was conducted in the general wards of an approximately 1100-bed acute care tertiary hospital of an Academic Medical Center in Singapore. Adult patients with nasogastric tubes admitted to the general wards were recruited into the study. The colorimeter was attached to the nasogastric tube to detect for the presence of carbon dioxide, suggestive of a tracheobronchial placement. The exact location of the nasogastric tube was subsequently confirmed by a radiographic examination. A total of 192 tests were undertaken. The colorimeter detected carbon dioxide in 29 tested nasogastric tubes, of which radiographic examination confirmed that four tubes were located in the tracheobronchial tract. The colorimeter failed to detect carbon dioxide in one nasogastric tube that was located in the tracheobronchial tract, thus, demonstrating a sensitivity of 0.80 [95% CI (0.376, 0.964)]. The colorimeter detected absence of carbon dioxide in 163 tested nasogastric tubes in which radiographic examination confirmed 160 gastrointestinal and one tracheobronchial placements, demonstrating a specificity of 0.865 [95% CI (0.808, 0.907)]. The colorimeter detected one tracheobronchial

  9. X-ray and gamma radiography devices

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    When we are using this technique, we also must familiar with the device and instrument that used such as gamma projector, crawler, x-ray tubes and others. So this chapter discussed detailed on device used for radiography work. For the x-ray and gamma, their characteristics are same but the source to produce is a big different. X-ray produced from the machine meanwhile, gamma produce from the source such as Co-60 and IR-192. Both are electromagnetic waves. So, the reader can have some knowledge on what is x-ray tube, discrete x-ray and characteristic x-ray, how the machine works and how to control a machine, what is source for gamma emitter, how to handle the projector and lastly difference between x-ray and gamma. Of course this cannot be with the theory only, so detailed must be learned practically.

  10. Effects of X-rays on seed setting and pollen tube growth in self-incompatible petunia

    International Nuclear Information System (INIS)

    Gilissen, L.J.W.

    1978-01-01

    The high sensitivity of seed setting and the relative insensitivity of pollen tube growth in the style to X-irradiation of pollen of Petunia hybrida L. indicated that pollen tube growth is independent of activities of the pollen genome. The S-specificity of the pollen grain in relation to incompatibility must, therefore, have built up during maturation of the pollen grain. X-irradiation of styles caused changes in some enzymes essential for basic metabolism, without affecting the pattern of compatible or incompatible pollen tube growth. Compatible and incompatible pollen tube growth in the style appeared to be independent of the metabolic state of the stylar cells and their simultaneous gene-activity. It is suggested that the S-specificity of the style, which is responsible for pollen tube growth regulation, is expressed at a very young stage of flower development. (Auth.)

  11. X-Ray

    Science.gov (United States)

    ... enema. What you can expect During the X-ray X-rays are performed at doctors' offices, dentists' offices, ... as those using a contrast medium. Your child's X-ray Restraints or other techniques may be used to ...

  12. Abdominal x-ray

    Science.gov (United States)

    Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  13. Chest X-Ray

    Medline Plus

    Full Text Available ... talk with you about chest radiography also known as chest x-rays. Chest x-rays are the ... treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray ...

  14. Reduction of radiation exposure while maintaining high-quality fluoroscopic images during interventional cardiology using novel x-ray tube technology with extra beam filtering.

    Science.gov (United States)

    den Boer, A; de Feyter, P J; Hummel, W A; Keane, D; Roelandt, J R

    1994-06-01

    Radiographic technology plays an integral role in interventional cardiology. The number of interventions continues to increase, and the associated radiation exposure to patients and personnel is of major concern. This study was undertaken to determine whether a newly developed x-ray tube deploying grid-switched pulsed fluoroscopy and extra beam filtering can achieve a reduction in radiation exposure while maintaining fluoroscopic images of high quality. Three fluoroscopic techniques were compared: continuous fluoroscopy, pulsed fluoroscopy, and a newly developed high-output pulsed fluoroscopy with extra filtering. To ascertain differences in the quality of images and to determine differences in patient entrance and investigator radiation exposure, the radiated volume curve was measured to determine the required high voltage levels (kVpeak) for different object sizes for each fluoroscopic mode. The fluoroscopic data of 124 patient procedures were combined. The data were analyzed for radiographic projections, image intensifier field size, and x-ray tube kilovoltage levels (kVpeak). On the basis of this analysis, a reference procedure was constructed. The reference procedure was tested on a phantom or dummy patient by all three fluoroscopic modes. The phantom was so designed that the kilovoltage requirements for each projection were comparable to those needed for the average patient. Radiation exposure of the operator and patient was measured during each mode. The patient entrance dose was measured in air, and the operator dose was measured by 18 dosimeters on a dummy operator. Pulsed compared with continuous fluoroscopy could be performed with improved image quality at lower kilovoltages. The patient entrance dose was reduced by 21% and the operator dose by 54%. High-output pulsed fluoroscopy with extra beam filtering compared with continuous fluoroscopy improved the image quality, lowered the kilovoltage requirements, and reduced the patient entrance dose by 55% and

  15. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  16. Picosecond x-ray streak camera studies

    International Nuclear Information System (INIS)

    Kasyanov, Yu.S.; Malyutin, A.A.; Richardson, M.C.; Chevokin, V.K.

    1975-01-01

    Some initial results of direct measurement of picosecond x-ray emission from laser-produced plasmas are presented. A PIM-UMI 93 image converter tube, incorporating an x-ray sensitive photocathode, linear deflection, and three stages of image amplification was used to analyse the x-ray radiation emanating from plasmas produced from solid Ti targets by single high-intensity picosecond laser pulses. From such plasmas, the x-ray emission typically persisted for times of 60psec. However, it is shown that this detection system should be capable of resolving x-ray phenomena of much shorter duration. (author)

  17. Characteristics of specifications of transportable inverter-type X-ray equipment

    CERN Document Server

    Yamamoto, K; Asano, H

    2003-01-01

    Our X-ray systems study group measured and examined the characteristics of four transportable inverter-type X-ray equipments. X-ray tube voltage and X-ray tube current were measured with the X-ray tube voltage and the X-ray tube current measurement terminals provided with the equipment. X-ray tube voltage, irradiation time, and dose were measured with a non-invasive X-ray tube voltage-measuring device, and X-ray output was measured by fluorescence meter. The items investigated were the reproducibility and linearity of X-ray output, error of pre-set X-ray tube voltage and X-ray tube current, and X-ray tube voltage ripple percentage. The waveforms of X-ray tube voltage, the X-ray tube current, and fluorescence intensity draw were analyzed using the oscilloscope gram and a personal computer. All of the equipment had a preset error of X-ray tube voltage and X-ray tube current that met Japanese Industrial Standards (JIS) standards. The X-ray tube voltage ripple percentage of each equipment conformed to the tendenc...

  18. Bulging of pressure tubes at hot spots under LOCA conditions

    International Nuclear Information System (INIS)

    Manu, C.; Shewfelt, R.S.W.; Wright, A.C.D.; Aboud, R.; Lau, J.H.K.; Sanderson, D.B.

    1996-01-01

    During certain postulated loss-of-coolant accidents (LOCA) in a CANDU reactor, some fuel channels can become highly voided within a very short time. Although the pressure tubes are heated mainly by convection and thermal radiation during the LOCA transient, additional heat flow occurs through the bearing pads that are in contact with the pressure tribe. This contact can lead to local hot spots and associated thermal stresses in the pressure tube wall. The two factors that affects the behavior of the pressure tubes during LOCA conditions are the internal pressure and the local heating. Although the effect of internal pressure and of axially uniform temperature has been studied elsewhere, the effect of the local heating on the pressure tube behavior has not been modelled before. This paper shows that the bulging of a pressure tube at a hot spot is the result of the thermal stresses that are developed in a pressure tube during a LOCA transient. To isolate the local heating effect from the internal pressure, a series of single-effect experiments was performed. In these experiments, sections of a CANDU pressure tube were subjected to local heating only. The thermal profile and the local deformation were measured function of time. To quantify the effect of the thermal stresses on the bulging of pressure tubes at hot spots and to develop numerical tools that can predict such bulging, finite element analyses were performed rising the ABAQUS finite element computer code. Use of the measured thermal profiles in the ABAQUS finite element analysis, resulted in very good agreement between the predicted and measured displacements. (author)

  19. Quality assurance and image improvement in diagnostic radiology with X-rays

    International Nuclear Information System (INIS)

    Evans, S.H.

    1988-01-01

    Basic quality assurance tests for x-ray sets are considered (tube potential, timing, output, H-V layer, focal-spot size, alignment and perpendicularity of the light-beam diaphragm) together with more specific quality-assurance tests such as tomographic tests, image intensifier and mammographic tests. (UK)

  20. Deep Convolutional Neural Networks for Endotracheal Tube Position and X-ray Image Classification: Challenges and Opportunities.

    Science.gov (United States)

    Lakhani, Paras

    2017-08-01

    The goal of this study is to evaluate the efficacy of deep convolutional neural networks (DCNNs) in differentiating subtle, intermediate, and more obvious image differences in radiography. Three different datasets were created, which included presence/absence of the endotracheal (ET) tube (n = 300), low/normal position of the ET tube (n = 300), and chest/abdominal radiographs (n = 120). The datasets were split into training, validation, and test. Both untrained and pre-trained deep neural networks were employed, including AlexNet and GoogLeNet classifiers, using the Caffe framework. Data augmentation was performed for the presence/absence and low/normal ET tube datasets. Receiver operating characteristic (ROC), area under the curves (AUC), and 95% confidence intervals were calculated. Statistical differences of the AUCs were determined using a non-parametric approach. The pre-trained AlexNet and GoogLeNet classifiers had perfect accuracy (AUC 1.00) in differentiating chest vs. abdominal radiographs, using only 45 training cases. For more difficult datasets, including the presence/absence and low/normal position endotracheal tubes, more training cases, pre-trained networks, and data-augmentation approaches were helpful to increase accuracy. The best-performing network for classifying presence vs. absence of an ET tube was still very accurate with an AUC of 0.99. However, for the most difficult dataset, such as low vs. normal position of the endotracheal tube, DCNNs did not perform as well, but achieved a reasonable AUC of 0.81.

  1. TU-AB-BRC-07: Efficiency of An IAEA Phase-Space Source for a Low Energy X-Ray Tube Using Egs++

    Energy Technology Data Exchange (ETDEWEB)

    Watson, PGF; Renaud, MA; Seuntjens, J [McGill University, Montreal, Quebec (Canada)

    2016-06-15

    Purpose: To extend the capability of the EGSnrc C++ class library (egs++) to write and read IAEA phase-space files as a particle source, and to assess the relative efficiency gain in dose calculation using an IAEA phase-space source for modelling a miniature low energy x-ray source. Methods: We created a new ausgab object to score particles exiting a user-defined geometry and write them to an IAEA phase-space file. A new particle source was created to read from IAEA phase-space data. With these tools, a phase-space file was generated for particles exiting a miniature 50 kVp x-ray tube (The INTRABEAM System, Carl Zeiss). The phase-space source was validated by comparing calculated PDDs with a full electron source simulation of the INTRABEAM. The dose calculation efficiency gain of the phase-space source was determined relative to the full simulation. The efficiency gain as a function of i) depth in water, and ii) job parallelization was investigated. Results: The phase-space and electron source PDDs were found to agree to 0.5% RMS, comparable to statistical uncertainties. The use of a phase-space source for the INTRABEAM led to a relative efficiency gain of greater than 20 over the full electron source simulation, with an increase of up to a factor of 196. The efficiency gain was found to decrease with depth in water, due to the influence of scattering. Job parallelization (across 2 to 256 cores) was not found to have any detrimental effect on efficiency gain. Conclusion: A set of tools has been developed for writing and reading IAEA phase-space files, which can be used with any egs++ user code. For simulation of a low energy x-ray tube, the use of a phase-space source was found to increase the relative dose calculation efficiency by factor of up to 196. The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant No. 432290).

  2. X-ray diffraction residual stress measurement in the rolled-joint zone of Zr - 2.5 % Nb pressure tube

    International Nuclear Information System (INIS)

    Dinu, A.; Nedelcu, L.

    1995-01-01

    The in-service experience of Zr - 2.5 % Nb pressure tubes in CANDU-type nuclear reactors has demonstrated very good performance over a long period of time. However, analyses done by AECL specialists on most failure cases, showed that a big percentage of defects are manufacturing defects, which appear mostly at the beginning of the rolled-joint zone. It has been observed that a correct rolling ensures an acceptable distribution of residual stress, but an incorrect one leads to an accumulation of big values of residual stress. This determines a preferential radial orientation of hydrides, which during operation in the reactor can produce DHC. To ensure a suitable performance of the Zr - 2.5 % Nb pressure tubes in the CANDU reactor, it is very important to have a correct rolling as mentioned in the procedure. This work presents a methodology for the measurement of the stressing state in the surfaces layers of the rolled-joint zone. The X-ray diffraction method can also be used for establishing the residual stress distribution across the tub wall, in order to ensure a good performance at Cernavoda nuclear plant. The results obtained for the investigated tube have led to the conclusion that the rolling process was correctly applied in this case, the values obtained for the residual stress being in good agreement with those accepted in literature. (Author) 2 Figs., 2 Tabs

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed x-ray exams and use a very small dose of ... of the inside of the chest. A chest x-ray is used to evaluate the lungs, heart and ...

  4. Control of an X-ray cine radiography apparatus

    International Nuclear Information System (INIS)

    Nishio, K.

    1982-01-01

    This patent application describes an X-ray cine radiography apparatus comprising an X-ray tube, an image intensifier for converting the X-rays transmitted through an object into a visual image and a cine camera for picking up the visual image, a photomultiplier detects the brightness of the visual image to produce a brightness signal and a potentiometer detects the actual tube voltage of said X-ray tube. (author)

  5. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  6. Polymer Compund Refractive Lenses for Hard X-ray Nanofocusing

    OpenAIRE

    Krywka, Christina; Last, Arndt; Marschall, Felix; Markus, Otto; Georgi, Sebastian; Mueller, Martin; Mohr, Jürgen

    2016-01-01

    Compound refractive lenses fabricated out of SU-8 negative photoresist have been used to generate a nanofocused, i.e. sub-μm sized X-ray focal spot at an X-ray nanodiffraction setup. X-ray microscopy and X-ray diffraction techniques have conceptually different demands on nanofocusing optical elements and so with the application of X-ray nanodiffraction in mind, this paper presents the results of an initial characterization of polymer lenses used as primary focusin...

  7. Adenocarcinoma - chest x-ray (image)

    Science.gov (United States)

    This chest x-ray shows adenocarcinoma of the lung. There is a rounded light spot in the right upper lung (left side ... density. Diseases that may cause this type of x-ray result would be tuberculous or fungal granuloma, and ...

  8. High-speed X-ray topography

    International Nuclear Information System (INIS)

    Eckers, W.; Oppolzer, H.

    1977-01-01

    The investigation of lattice defects in semiconductor crystals by conventional X-ray diffraction topography is very time-consuming. Exposure times can be reduced by using high-intensity X-rays and X-ray image intensifiers. The described system comprises a high-power rotating-anode X-ray tube, a remote-controlled X-ray topography camera, and a television system operating with an X-ray sensing VIDICON. System performance is demonstrated with reference to exploratory examples. The exposure time for photographic plates is reduced to 1/20 and for the X-ray TV system (resolution of the order of 30 μm) to 1/100 relative to that required when using a conventional topography system. (orig.) [de

  9. Low energy (soft) x rays

    International Nuclear Information System (INIS)

    Hoshi, Masaharu; Antoku, Shigetoshi; Russell, W.J.; Miller, R.C.; Nakamura, Nori; Mizuno, Masayoshi; Nishio, Shoji.

    1987-05-01

    Dosimetry of low-energy (soft) X rays produced by the SOFTEX Model CMBW-2 was performed using Nuclear Associates Type 30 - 330 PTW, Exradin Type A2, and Shonka-Wyckoff ionization chambers with a Keithley Model 602 electrometer. Thermoluminescent (BeO chip) dosimeters were used with a Harshaw Detector 2000-A and Picoammeter-B readout system. Beam quality measurements were made using aluminum absorbers; exposure rates were assessed by the current of the X-ray tube and by exposure times. Dose distributions were established, and the average factors for non-uniformity were calculated. The means of obtaining accurate absorbed and exposed doses using these methods are discussed. Survival of V79 cells was assessed by irradiating them with soft X rays, 200 kVp X rays, and 60 Co gamma rays. The relative biological effectiveness (RBE) values for soft X rays with 0, 0.2, 0.7 mm added thicknesses of aluminum were 1.6, which were compared to 60 Co. The RBE of 200 kVp X rays relative to 60 Co was 1.3. Results of this study are available for reference in future RERF studies of cell survival. (author)

  10. Milli X-Ray Fluorescence Spectrometer

    Data.gov (United States)

    Federal Laboratory Consortium — The Eagle III Micro XRF unit is similar to a traditional XRF unit, with the primary difference being that the X-rays are focused by a polycapillary optic into a spot...

  11. Individual selection of X-ray tube settings in computed tomography coronary angiography: Reliability of an automated software algorithm to maintain constant image quality.

    Science.gov (United States)

    Durmus, Tahir; Luhur, Reny; Daqqaq, Tareef; Schwenke, Carsten; Knobloch, Gesine; Huppertz, Alexander; Hamm, Bernd; Lembcke, Alexander

    2016-05-01

    To evaluate a software tool that claims to maintain a constant contrast-to-noise ratio (CNR) in high-pitch dual-source computed tomography coronary angiography (CTCA) by automatically selecting both X-ray tube voltage and current. A total of 302 patients (171 males; age 61±12years; body weight 82±17kg, body mass index 27.3±4.6kg/cm(2)) underwent CTCA with a topogram-based, automatic selection of both tube voltage and current using dedicated software with quality reference values of 100kV and 250mAs/rotation (i.e., standard values for an average adult weighing 75kg) and an injected iodine load of 222mg/kg. The average radiation dose was estimated to be 1.02±0.64mSv. All data sets had adequate contrast enhancement. Average CNR in the aortic root, left ventricle, and left and right coronary artery was 15.7±4.5, 8.3±2.9, 16.1±4.3 and 15.3±3.9 respectively. Individual CNR values were independent of patients' body size and radiation dose. However, individual CNR values may vary considerably between subjects as reflected by interquartile ranges of 12.6-18.6, 6.2-9.9, 12.8-18.9 and 12.5-17.9 respectively. Moreover, average CNR values were significantly lower in males than females (15.1±4.1 vs. 16.6±11.7 and 7.9±2.7 vs. 8.9±3.0, 15.5±3.9 vs. 16.9±4.6 and 14.7±3.6 vs. 16.0±4.1 respectively). A topogram-based automatic selection of X-ray tube settings in CTCA provides diagnostic image quality independent of patients' body size. Nevertheless, considerable variation of individual CNR values between patients and significant differences of CNR values between males and females occur which questions the reliability of this approach. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. The Evaluation of Conventional X-ray Exposure Parameters Including Tube Voltage and Exposure Time in Private and Governmental Hospitals of Lorestan Province, Iran

    Directory of Open Access Journals (Sweden)

    Mehrdad Gholami

    2015-07-01

    Full Text Available Introduction In radiography, dose and image quality are dependent on radiographic parameters. The problem is caused from incorrect use of radiography equipment and from the radiation exposure to patients much more than required. Therefore, the aim of this study was to implement a quality-control program to detect changes in exposure parameters, which may affect diagnosis or patient radiation dose. Materials and Methods This cross-sectional study was performed on seven stationary X-ray units in sixhospitals of Lorestan province. The measurements were performed, using a factory-calibrated Barracuda dosimeter (model: SE-43137. Results According to the results, the highest output was obtained in A Hospital (M1 device, ranging from 107×10-3 to 147×10-3 mGy/mAs. The evaluation of tube voltage accuracy showed a deviation from the standard value, which ranged between 0.81% (M1 device and 17.94% (M2 device at A Hospital. The deviation ranges at other hospitals were as follows: 0.30-27.52% in B Hospital (the highest in this study, 8.11-20.34% in C Hospital, 1.68-2.58% in D Hospital, 0.90-2.42% in E Hospital and 0.10-1.63% in F Hospital. The evaluation of exposure time accuracy showed that E, C, D and A (M2 device hospitals complied with the requirements (allowing a deviation of ±5%, whereas A (M1 device, F and B hospitals exceeded the permitted limit. Conclusion The results of this study showed that old X-ray equipments with poor or no maintenance are probably the main sources of reducing radiographic image quality and increasing patient radiation dose.

  13. X-ray examination equipment for heart diagnostics

    International Nuclear Information System (INIS)

    Kok, P.W.

    1979-01-01

    For heart catheterization the X-ray tube and the image intensifier can be shifted parallel to the scanning plane. Without moving the patient it is also possible to displace the system X-ray tube/image intensifier arbitrarily in space, while keeping up the direction of the X-ray beam. (RW) [de

  14. Ultra fast x-ray streak camera

    International Nuclear Information System (INIS)

    Coleman, L.W.; McConaghy, C.F.

    1975-01-01

    A unique ultrafast x-ray sensitive streak camera, with a time resolution of 50psec, has been built and operated. A 100A thick gold photocathode on a beryllium vacuum window is used in a modified commerical image converter tube. The X-ray streak camera has been used in experiments to observe time resolved emission from laser-produced plasmas. (author)

  15. SU-E-J-06: Additional Imaging Guidance Dose to Patient Organs Resulting From X-Ray Tubes Used in CyberKnife Image Guidance System

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, A; Ding, G [Vanderbilt University, Nashville, TN (United States)

    2015-06-15

    Purpose: The use of image-guided radiation therapy (IGRT) has become increasingly common, but the additional radiation exposure resulting from repeated image guidance procedures raises concerns. Although there are many studies reporting imaging dose from different image guidance devices, imaging dose for the CyberKnife Robotic Radiosurgery System is not available. This study provides estimated organ doses resulting from image guidance procedures on the CyberKnife system. Methods: Commercially available Monte Carlo software, PCXMC, was used to calculate average organ doses resulting from x-ray tubes used in the CyberKnife system. There are seven imaging protocols with kVp ranging from 60 – 120 kV and 15 mAs for treatment sites in the Cranium, Head and Neck, Thorax, and Abdomen. The output of each image protocol was measured at treatment isocenter. For each site and protocol, Adult body sizes ranging from anorexic to extremely obese were simulated since organ dose depends on patient size. Doses for all organs within the imaging field-of-view of each site were calculated for a single image acquisition from both of the orthogonal x-ray tubes. Results: Average organ doses were <1.0 mGy for every treatment site and imaging protocol. For a given organ, dose increases as kV increases or body size decreases. Higher doses are typically reported for skeletal components, such as the skull, ribs, or clavicles, than for softtissue organs. Typical organ doses due to a single exposure are estimated as 0.23 mGy to the brain, 0.29 mGy to the heart, 0.08 mGy to the kidneys, etc., depending on the imaging protocol and site. Conclusion: The organ doses vary with treatment site, imaging protocol and patient size. Although the organ dose from a single image acquisition resulting from two orthogonal beams is generally insignificant, the sum of repeated image acquisitions (>100) could reach 10–20 cGy for a typical treatment fraction.

  16. Effect of two X-ray tube voltages on detection of approximal caries in digital radiographs. An in vitro study.

    Science.gov (United States)

    Hellén-Halme, Kristina

    2011-04-01

    This study evaluated the effect of two different tube voltages on clinicians' ability to diagnose approximal carious lesions in digital radiographs. One hundred extracted teeth were radiographed twice at two voltage settings, 60 and 70 kV, using a standardized procedure. Seven observers evaluated the radiographs on a standard color monitor pre-calibrated according to DICOM part 14. Evaluations were made at ambient light levels below 50 lx. All observations were analyzed with receiver operating characteristic curves. A histological examination of the teeth served as the criterion standard. A paired t test compared the effects of the two voltages. The significance level was set to p < 0.05. Weighted kappa statistics estimated intra-observer agreement. No significant difference in accuracy of approximal carious lesion diagnosis was found between the two voltage settings. But five observers rated dentin lesions on radiographs exposed at 70 kV better than on radiographs exposed at 60 kV. Intra-observer agreement differed from fair to moderate. There was no significant difference in accuracy of approximal carious lesion diagnosis between digital radiographs exposed with 60 or 70 kV.

  17. Chest X-Ray

    Medline Plus

    Full Text Available ... some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a ... posted: How to Obtain and Share ...

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, a radiologist ... about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  19. X-ray apparatus

    International Nuclear Information System (INIS)

    Sell, L.J.

    1981-01-01

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  20. X-ray - skeleton

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003381.htm X-ray - skeleton To use the sharing features on this ... Degenerative bone conditions Osteomyelitis Risks There is low radiation exposure. X-rays machines are set to provide the smallest ...

  1. X-ray fluorescence in geology

    International Nuclear Information System (INIS)

    Dutra, C.V.; Gomes, C.B.

    1990-01-01

    This work is about the X-ray fluorescence aplication in geology. It's showing the X-ray origin and excitation. About the instrumentation this work shows the following: X-ray tubes, colimators, analysers crystals, detectors, amplifiers, pulse height selector, and others electronic components. By X-ray fluorescente are done quantitative and qualitative geological analysis and this work shows this analysis and its detection limits. The problems determination is the example. In this work was done yet the comparative analysis of the various instrumental methods in geochemistry. (C.G.) [pt

  2. Chest X-Ray

    Medline Plus

    Full Text Available ... I’d like to talk with you about chest radiography also known as chest x-rays. Chest x-rays are the most ... far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  4. Diffracted X-ray tracking: new system for single molecular detection with X-rays

    CERN Document Server

    Sasaki, Y C; Adachi, S; Suzuki, Y; Yagi, N

    2001-01-01

    We propose a new X-ray methodology for direct observations of the behaviors of single molecular units in real time and real space. This new system, which we call Diffracted X-ray Tracking (DXT), monitors the Brownian motions of a single molecular unit by observations of X-ray diffracted spots from a nanocrystal, tightly bound to the individual single molecular unit in bio-systems. DXT does not determine any translational movements, but only orientational movements.

  5. Diffracted X-ray tracking: new system for single molecular detection with X-rays

    International Nuclear Information System (INIS)

    Sasaki, Y.C.; Okumura, Y.; Adachi, S.; Suzuki, Y.; Yagi, N.

    2001-01-01

    We propose a new X-ray methodology for direct observations of the behaviors of single molecular units in real time and real space. This new system, which we call Diffracted X-ray Tracking (DXT), monitors the Brownian motions of a single molecular unit by observations of X-ray diffracted spots from a nanocrystal, tightly bound to the individual single molecular unit in bio-systems. DXT does not determine any translational movements, but only orientational movements

  6. Simulation of transmitted X-rays in a polycapillary X-ray lens

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shiqi [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Liu, Zhiguo, E-mail: liuzhiguo512@126.com [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi; Wang, Kai; Yi, Longtao; Yang, Kui; Chen, Man; Wang, Jinbang [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-09-21

    The geometrical description of capillary systems adjusted for the controlled guiding of X-rays and the basic theory of the transmission of X-rays are presented. A method of numerical calculation, based on Ray-Tracing theory, is developed to simulate the transmission efficiency of an X-ray parallel lens and the shape and size of the light spot gain from it. The simulation results for two half-lenses are in good agreement with the experimental results.

  7. Soft x-ray streak cameras

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1988-01-01

    This paper is a discussion of the development and of the current state of the art in picosecond soft x-ray streak camera technology. Accomplishments from a number of institutions are discussed. X-ray streak cameras vary from standard visible streak camera designs in the use of an x-ray transmitting window and an x-ray sensitive photocathode. The spectral sensitivity range of these instruments includes portions of the near UV and extends from the subkilovolt x- ray region to several tens of kilovolts. Attendant challenges encountered in the design and use of x-ray streak cameras include the accommodation of high-voltage and vacuum requirements, as well as manipulation of a photocathode structure which is often fragile. The x-ray transmitting window is generally too fragile to withstand atmospheric pressure, necessitating active vacuum pumping and a vacuum line of sight to the x-ray signal source. Because of the difficulty of manipulating x-ray beams with conventional optics, as is done with visible light, the size of the photocathode sensing area, access to the front of the tube, the ability to insert the streak tube into a vacuum chamber and the capability to trigger the sweep with very short internal delay times are issues uniquely relevant to x-ray streak camera use. The physics of electron imaging may place more stringent limitations on the temporal and spatial resolution obtainable with x-ray photocathodes than with the visible counterpart. Other issues which are common to the entire streak camera community also concern the x-ray streak camera users and manufacturers

  8. Comparison of x-ray output of inverter-type x-ray equipment

    International Nuclear Information System (INIS)

    Asano, Hiroshi; Miyake, Hiroyuki; Yamamoto, Keiichi

    2000-01-01

    The x-ray output of 54 inverter-type x-ray apparatuses used at 18 institutions was investigated. The reproducibility and linearity of x-ray output and variations among the x-ray equipment were evaluated using the same fluorescence meter. In addition, the x-ray apparatuses were re-measured using the same non-invasive instrument to check for variations in tube voltage, tube current, and irradiation time. The non-invasive instrument was calibrated by simultaneously obtaining measurements with an invasive instrument, employing the tube voltage and current used for the invasive instrument, and the difference was calculated. Reproducibility of x-ray output was satisfactory for all x-ray apparatuses. The coefficient of variation was 0.04 or less for irradiation times of 5 ms or longer. In 84.3% of all x-ray equipment, variation in the linearity of x-ray output was 15% or less for an irradiation time of 5 ms. However, for all the apparatuses, the figure was 50% when irradiation time was the shortest (1 to 3 ms). Variation in x-ray output increased as irradiation time decreased. Variation in x-ray output ranged between 1.8 and 2.5 compared with the maximum and minimum values, excluding those obtained at the shortest irradiation time. The relative standard deviation ranged from ±15.5% to ±21.0%. The largest variation in x-ray output was confirmed in regions irradiated for the shortest time, with smaller variations observed for longer irradiation times. The major factor responsible for variation in x-ray output in regions irradiated for 10 ms or longer, which is a relatively long irradiation time, was variation in tube current. Variation in tube current was slightly greater than 30% at maximum, with an average value of 7% compared with the preset tube current. Variations in x-ray output in regions irradiated for the shortest time were due to photographic effects related to the rise and fall times of the tube voltage waveform. Accordingly, in order to obtain constant x-ray

  9. Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging

    International Nuclear Information System (INIS)

    Dong Xue; Niu Tianye; Jia Xun; Zhu Lei

    2012-01-01

    Purpose: X-ray cone-beam CT (CBCT) is being increasingly used for various clinical applications, while its performance is still hindered by image artifacts. This work investigates a new source of reconstruction error, which is often overlooked in the current CBCT imaging. The authors find that the x-ray flat field intensity (I 0 ) varies significantly as the illumination volume size changes at different collimator settings. A wrong I 0 value leads to inaccurate CT numbers of reconstructed images as well as wrong scatter measurements in the CBCT research. Methods: The authors argue that the finite size of x-ray focal spot together with the detector glare effect cause the I 0 variation at different illumination sizes. Although the focal spot of commercial x-ray tubes typically has a nominal size of less than 1 mm, the off-focal-spot radiation covers an area of several millimeters on the tungsten target. Due to the large magnification factor from the field collimator to the detector, the penumbra effects of the collimator blades result in different I 0 values for different illumination field sizes. Detector glare further increases the variation, since one pencil beam of incident x-ray is scattered into an area of several centimeters on the detector. In this paper, the authors study these two effects by measuring the focal spot distribution with a pinhole assembly and the detector point spread function (PSF) with an edge-spread function method. The authors then derive a formula to estimate the I 0 value for different illumination field sizes, using the measured focal spot distribution and the detector PSF. Phantom studies are carried out to investigate the accuracy of scatter measurements and CT images with and without considering the I 0 variation effects. Results: On our tabletop system with a Varian Paxscan 4030CB flat-panel detector and a Varian RAD-94 x-ray tube as used on a clinical CBCT system, the focal spot distribution has a measured full

  10. X-ray pickup device for dental radiography

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    The X-ray tube has got a tubular extension within which a W-shaped target is arranged and which can be inserted into the mouth opening of the patient. The target is inclined with respect to the axis of the beam of electrons striking it in such a way, that the X-radiation emitted by it is received either by the upper or the lower row of teeth, including the root area. A screen mounted on the extension causes only these semicircular areas to be irradiated. An X-ray film holder is also fastened to the extension and covers mouth and cheeks of the patient from outside. The focal spot on the target is adjustable so that a sharp picture can be produced. (RW) [de

  11. Results of a second questionnaire on pediatric X-ray examinations

    International Nuclear Information System (INIS)

    Ishikawa, Mitsuo; Kubota, Katsumi

    1999-01-01

    Radiographic conditions (x-ray tube voltage, irradiation time, etc.) differ among medical facilities. A second questionnaires was sent out to determine the current state of pediatric radiography and eventually provide reference materials for the standardization of radiographic parameters used in pediatric x-ray examinations. The questionnaire, which was sent in 1996, targeted 161 facilities that belong to the Society for Pediatric Radiological Technology. The objects of examination were the chest, upper airway, abdomen, hip joint, skull, and knee joint. The questionnaire investigated age (children of six months, three years, and seven years), type of x-ray generator, radiographic conditions, etc. Moreover, this time the items head x-ray computed tomography (X-CT) and abdominal X-CT were added. Completed questionnaires were received from 79 facilities, for a recovery of 49.1%. Compared with the previous investigation, inverter-type high-voltage assemblies increased, whereas twelve-peak high-voltage assemblies decreased. The focal spot of the x-ray tube assembly was smaller, and maximum anode heat content had increased. CR systems and green luminescence-orthochromatic systems were increasingly being used as image receptors. Advances in x-ray generators and the image receptor systems created reductions in the time required for radiography, which was possible at as short a time as 1 msec. Moreover, image quality was also improved by these advances. However, no major changes were observed in the conditions of radiography. (author)

  12. X-ray astronomy

    International Nuclear Information System (INIS)

    Culhane, J.L.; Sanford, P.W.

    1981-01-01

    X-ray astronomy has been established as a powerful means of observing matter in its most extreme form. The energy liberated by sources discovered in our Galaxy has confirmed that collapsed stars of great density, and with intense gravitational fields, can be studied by making observations in the X-ray part of the electromagnetic spectrum. The astronomical objects which emit detectable X-rays include our own Sun and extend to quasars at the edge of the Universe. This book describes the history, techniques and results obtained in the first twenty-five years of exploration. Space rockets and satellites are essential for carrying the instruments above the Earth's atmosphere where it becomes possible to view the X-rays from stars and nebulae. The subject is covered in chapters, entitled: the birth of X-ray astronomy; the nature of X-radiation; X-rays from the Sun; solar-flare X-rays; X-rays from beyond the solar system; supernovae and their remnants; X-rays from binary stars; white dwarfs and neutron stars; black holes; X-rays from galaxies and quasars; clusters of galaxies; the observatories of the future. (author)

  13. Effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral pediatric and adult CT angiography: a phantom study.

    Science.gov (United States)

    Papadakis, Antonios E; Perisinakis, Kostas; Raissaki, Maria; Damilakis, John

    2013-04-01

    The aim of the present phantom study was to investigate the effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral computed tomographic (CT) angiographic examinations of pediatric and adult individuals. Four physical anthropomorphic phantoms that represent the average individual as neonate, 1-year-old, 5-year-old, and 10-year-old children and the RANDO phantom that simulates the average adult individual were used. Cylindrical vessels were bored along the brain-equivalent plugs of each physical phantom. To simulate the brain vasculature, vessels of 0.6, 1, 2, and 3 mm in diameter were created. These vessels were filled with contrast medium (CM) solutions at different iodine concentrations, that is, 5.6, 4.2, 2.7, and 1.4 mg I/mL. The phantom heads were scanned at 120, 100, and 80 kV. The applied quality reference tube current-time product values ranged from a minimum of 45 to a maximum of 680. The CT acquisitions were performed on a 16-slice CT scanner using the automatic exposure control system. Image quality was evaluated on the basis of image noise and contrast-to-noise ratio (CNR) between the contrast-enhanced iodinated vessels and the unenhanced regions of interest. Dose reduction was calculated as the percentage difference of the CT dose index value at the quality reference tube current-time product and the CT dose index at the mean modulated tube current-time product. Image noise that was measured using the preset tube current-time product settings varied significantly among the different phantoms (P Hounsfield unit number of iodinated vessels was linearly related to CM concentration (r² = 0.907) and vessel diameter (r² = 0.918). The Hounsfield unit number of iodinated vessels followed a decreasing trend from the neonate phantom to the adult phantom at all kilovoltage settings. For the same image noise level, a CNR improvement of up to 69% and a dose reduction of up to 61% may be achieved when CT acquisition

  14. Characteristics of specifications of transportable inverter-type X-ray equipment

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Miyazaki, Shigeru

    2003-01-01

    Our X-ray systems study group measured and examined the characteristics of four transportable inverter-type X-ray equipments. X-ray tube voltage and X-ray tube current were measured with the X-ray tube voltage and the X-ray tube current measurement terminals provided with the equipment. X-ray tube voltage, irradiation time, and dose were measured with a non-invasive X-ray tube voltage-measuring device, and X-ray output was measured by fluorescence meter. The items investigated were the reproducibility and linearity of X-ray output, error of pre-set X-ray tube voltage and X-ray tube current, and X-ray tube voltage ripple percentage. The waveforms of X-ray tube voltage, the X-ray tube current, and fluorescence intensity draw were analyzed using the oscilloscope gram and a personal computer. All of the equipment had a preset error of X-ray tube voltage and X-ray tube current that met Japanese Industrial Standards (JIS) standards. The X-ray tube voltage ripple percentage of each equipment conformed to the tendency to decrease when X-ray tube voltage increased. Although the X-ray output reproducibility of system A exceeded the JIS standard, the other systems were within the JIS standard. Equipment A required 40 ms for X-ray tube current to reach the target value, and there was some X-ray output loss because of a trough in X-ray tube current. Owing to the influence of the ripple in X-ray tube current, the strength of the fluorescence waveform rippled in equipments B and C. Waveform analysis could not be done by aliasing of the recording device in equipment D. The maximum X-ray tube current of transportable inverter-type X-ray equipment is as low as 10-20 mA, and the irradiation time of chest X-ray photography exceeds 0.1 sec. However, improvement of the radiophotographic technique is required for patients who cannot move their bodies or halt respiration. It is necessary to make the irradiation time of the equipments shorter for remote medical treatment. (author)

  15. X-ray holography

    International Nuclear Information System (INIS)

    Faigel, G.; Tegze, M.; Belakhovsky, M.; Marchesini, S.; Bortel, G.

    2003-01-01

    In the last decade holographic methods using hard X-rays were developed. They are able to resolve atomic distances, and can give the 3D arrangement of atoms around a selected element. Therefore, hard X-ray holography has potential applications in chemistry, biology and physics. In this article we give a general description of these methods and discuss the developments in the experimental technique. The capabilities of hard X-ray holography are demonstrated by examples

  16. X-ray generator for radiographs of seeds

    International Nuclear Information System (INIS)

    Suarez Canner, E.

    1996-01-01

    It is presented an X-ray generator which is destined to obtaining X-ray radiographs of seeds. It utilizes a low power X-ray tube with fine focal point. It consist of an electronic block and an irradiation chamber

  17. Providing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.

    1985-01-01

    This invention provides an apparatus for providing x-rays to an object that may be in an ordinary environment such as air at approximately atmospheric pressure. The apparatus comprises: means (typically a laser beam) for directing energy onto a target to produce x-rays of a selected spectrum and intensity at the target; a fluid-tight enclosure around the target; means for maintaining the pressure in the first enclosure substantially below atmospheric pressure; a fluid-tight second enclosure adjoining the first enclosure, the common wall portion having an opening large enough to permit x-rays to pass through but small enough to allow the pressure reducing means to evacuate gas from the first enclosure at least as fast as it enters through the opening; the second enclosure filled with a gas that is highly transparent to x-rays; the wall of the second enclosure to which the x-rays travel having a portion that is highly transparent to x-rays (usually a beryllium or plastic foil), so that the object to which the x-rays are to be provided may be located outside the second enclosure and adjacent thereto and thus receive the x-rays substantially unimpeded by air or other intervening matter. The apparatus is particularly suited to obtaining EXAFS (extended x-ray fine structure spectroscopy) data on a material

  18. The "Air in the CT X-ray Tube Oil" Artifact-Examples of the Quality Control Images and the Evaluation of Four Potential Clinical Patients' Head Computed Tomography Cases.

    Science.gov (United States)

    Törmänen, Juhani; Rautiainen, Jari; Tahvonen, Pirita; Leinonen, Kimmo; Nieminen, Miika T; Tervonen, Osmo

    We present a newly reposted scanner-based artifact-with 4 potential patients' head computed tomography (CT) cases-the "Air in the CT X-ray Tube Oil" artifact with a 64-slice multidetector CT. This artifact mimics diseases, which cause hypodense findings in CT images. It can be difficult to notice in the clinical patient imaging but can be also very difficult to verify in quality control tests.

  19. Experimental studies on pulse soft X-ray generator

    International Nuclear Information System (INIS)

    Li Chengrong; Yang Qinchi; Luo Chengmu; Han Min

    1990-01-01

    Emission sources of soft x rays (2 keV < hv < 6 keV) from hot plasmas have been studied in a small gas-puff Z-pinch. The emission sources are a group of uncontinuous hot spots. The output of soft x rays from the hot spots have been measured and the effect of the initial gas density on the yield of soft x rays has been investigated

  20. X-ray interferometers

    International Nuclear Information System (INIS)

    Franks, A.

    1980-01-01

    An improved type of amplitude-division x-ray interferometer is described. The wavelength at which the interferometer can operate is variable, allowing the instrument to be used to measure x-ray wavelength, and the angle of inclination is variable for sample investigation. (U.K.)

  1. Extremity x-ray

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003461.htm Extremity x-ray To use the sharing features on this page, ... in the body Risks There is low-level radiation exposure. X-rays are monitored and regulated to provide the ...

  2. X-rays utilization

    International Nuclear Information System (INIS)

    Rebigan, F.

    1979-03-01

    The modality of X-ray utilization in different activities and economy is given. One presents firstly quantities and units used in radiation dosimetry and other fields. One gives the generation of X-rays, their properties as well as the elements of radiation protection. The utilization characteristics of these radiations in different fields are finally given. (author)

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  4. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  5. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    International Nuclear Information System (INIS)

    Mertens, J.C.E.; Williams, J.J.; Chawla, Nikhilesh

    2014-01-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution

  6. Sources of linear polarized x-rays

    International Nuclear Information System (INIS)

    Aiginger, H.; Wobrauschek, P.

    1989-01-01

    Linear polarized X-rays are used in X-ray fluorescence analysis to decrease the background caused by scattered photons. Various experiments, calculations and constructions have demonstrated the possibility to produce polarized radiation in an analytical laboratory with an X-ray tube and polarizer-analyzer facilities as auxiliary equipment. The results obtained with Bragg-polarizers of flat and curved focussing geometry and of Barkla-polarizers are presented. The advantages and disadvantages of the method are discussed and compared with the respective quality of synchrotron radiation. Polarization by scattering reduces the intensity of the primary radiation. Recently much effort is devoted to the construction of integrated high power X-ray tube polarizer-analyzer arrangements. The detailed design, geometry and performance of such a facility is described. (author)

  7. X-ray diffraction imaging of material microstructures

    KAUST Repository

    Varga, Laszlo

    2016-10-20

    Various examples are provided for x-ray imaging of the microstructure of materials. In one example, a system for non-destructive material testing includes an x-ray source configured to generate a beam spot on a test item; a grid detector configured to receive x- rays diffracted from the test object; and a computing device configured to determine a microstructure image based at least in part upon a diffraction pattern of the x-rays diffracted from the test object. In another example, a method for determining a microstructure of a material includes illuminating a beam spot on the material with a beam of incident x-rays; detecting, with a grid detector, x-rays diffracted from the material; and determining, by a computing device, a microstructure image based at least in part upon a diffraction pattern of the x-rays diffracted from the material.

  8. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  9. Picosecond x-ray streak cameras

    Science.gov (United States)

    Averin, V. I.; Bryukhnevich, Gennadii I.; Kolesov, G. V.; Lebedev, Vitaly B.; Miller, V. A.; Saulevich, S. V.; Shulika, A. N.

    1991-04-01

    The first multistage image converter with an X-ray photocathode (UMI-93 SR) was designed in VNIIOFI in 1974 [1]. The experiments carried out in IOFAN pointed out that X-ray electron-optical cameras using the tube provided temporal resolution up to 12 picoseconds [2]. The later work has developed into the creation of the separate streak and intensifying tubes. Thus, PV-003R tube has been built on base of UMI-93SR design, fibre optically connected to PMU-2V image intensifier carrying microchannel plate.

  10. High resolution x-ray microscope

    OpenAIRE

    Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.

    2007-01-01

    The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens CRL made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, com...

  11. Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w

  12. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  13. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  14. X-ray apparatus

    International Nuclear Information System (INIS)

    Bernstein, S.; Stagg, L.; Lambert, T.W.; Griswa, P.J.

    1976-01-01

    A patient support system for X-ray equipment in arteriographic studies of the heart is described in detail. The support system has been designed to overcome many of the practical problems encountered in using previous types of arteriographic X-ray equipment. The support system is capable of horizontal movement and, by a series of shafts attached to the main support system, the X-ray source and image intensifier or detector may be rotated through the same angle. The system is highly flexible and details are given of several possible operational modes. (U.K.)

  15. X-ray detector

    International Nuclear Information System (INIS)

    Whetten, N.R.; Houston, J.M.

    1977-01-01

    An ionization chamber for use in determining the spatial distribution of x-ray photons in tomography systems comprises a plurality of substantially parallel, planar anodes separated by parallel, planar cathodes and enclosed in a gas of high atomic weight at a pressure from approximately 10 atmospheres to approximately 50 atmospheres. The cathode and anode structures comprise metals which are substantially opaque to x-ray radiation and thereby tend to reduce the resolution limiting effects of x-ray fluoresence in the gas. In another embodiment of the invention the anodes comprise parallel conductive bars disposed between two planar cathodes. Guard rings eliminate surface leakage currents between adjacent electrodes. 8 figures

  16. X-ray apparatus

    International Nuclear Information System (INIS)

    Grady, J.K.

    1985-01-01

    X-ray apparatus is described which has a shutter between the X-ray source and the patient. The shutter controls the level of radiation to which the patient is exposed instead of merely discontinuing the electric power supplied to the source. When the shutter is opened a radiation sensor senses the level of X-radiation. When a preset quantity of X-radiation has been measured an exposure control closes the shutter. Instead of using the radiation sensor, the integrated power supplied to the anode of the X-ray source may be measured. (author)

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  19. X-ray examination apparatus

    NARCIS (Netherlands)

    2000-01-01

    The invention relates to an X-ray apparatus which includes an adjustable X-ray filter. In order to adjust an intensity profile of the X-ray beam, an X-ray absorbing liquid is transported to filter elements of the X-ray filter. Such transport is susceptible to gravitational forces which lead to an

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  1. Bone X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  3. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  4. Achromatic X-ray lenses

    International Nuclear Information System (INIS)

    Umbach, Marion

    2009-01-01

    This thesis presents first results on the development of achromatic refractive X-ray lenses which can be used for scientific experiments at synchrotron sources. First of all the different requirements for achromatic X-ray lenses have been worked out. There are different types of lenses, one type can be used for monochromatized sources when the energy is scanned while the spot size should be constant. The other type can be used at beamlines providing a broad energy band. By a combination of focusing and defocusing elements we have developed a lens system that strongly reduces the chromatic aberration of a refractive lens in a given energy range. The great challenge in the X-ray case - in contrast to the visible range - the complex refractive index, which is very similar for the possible materials in the X-ray spectrum. For precise studies a numerical code has been developed, which calculates the different rays on their way through the lenses to the detector plane via raytracing. In this numerical code the intensity distribution in the detector plane has been analyzed for a chromatic and the corresponding achromatic system. By optimization routines for the two different fields of applications specific parameter combinations were found. For the experimental verification an achromatic system has been developed, consisting of biconcave SU-8 lenses and biconvex Nickel Fresnel lenses. Their fabrication was based on the LIGA-process, including a further innovative development, namely the fabrication of two different materials on one wafer. In the experiment at the synchrotron source ANKA the energy was varied in a specific energy range in steps of 0.1 keV. The intensity distribution for the different energies was detected at a certain focal length. For the achromatic system a reduction of the chromatic aberration could be clearly shown. Achromatic refractive X-ray lenses, especially for the use at synchrotron sources, have not been developed so far. As a consequence of the

  5. Condenser discharge system mobile x-ray apparatus MC 125L-30

    International Nuclear Information System (INIS)

    Kohsaka, Mitsuo; Sasaki, Masahiro; Ozawa, Yasushi; Nakanishi, Takeshi; Matsushita, Yoshiyuki

    1978-01-01

    Improvement of x-ray image quality and safety are strongly required of the x-ray system. This applies equally in the case of the mobile type x-ray system. To satisfy the requirements, the new mobile type x-ray system equipped with the improved x-ray tube unit, collimator, mobile unit and x-ray high tension unit has been developed. In this unit mobility and maneuverability are also improved by introducing a new method. (author)

  6. Repeated pulsed x-ray emission equipment

    International Nuclear Information System (INIS)

    Terauchi, Hikaru; Iida, Satoshi

    1982-01-01

    X-ray diffraction technique has been applied to determine the spatial positions of atoms which compose a material, and it is needless to say that the technique is a fundamental means regardless of the fields of research. However, the application of X-ray diffraction to the research on physical properties has been so far limited to know the spatial positions of atoms or molecules under thermal equilibrium condition. The addition of time element to the conventional technique, that is, the analysis of material structure including the time-varying processes under non-equilibrium conditions, is considered to approach the elucidation of the essence of materials. The authors call this dynamic structural analysis. The authors have planned to analyze X-ray diffraction intensity which has the resolution of about 10 -8 s in the real time which is conjugate with energy. However, present pulsed X-ray sources are not suitable for diffraction experiment because the pulse width is too long or X-ray wavelength is too short. Accordingly, the authors have made for trial a pulsed X-ray source for diffraction experiment. Its specifications are: diode voltage (X-ray tube voltage) from 200 to 300 kV, diode current from 2 to 5 kA, pulse width of about 30ns, maximum repetition frequency 10 pps, and X-ray focus size of 2 mm diameter. One of the features of this source is the repeated generation of pulsed X-ray. This is the first trial in the world, and is indispensable to the dynamic structural analysis described above. The quality of the emitted X-ray is also written. (Wakatsuki, Y.)

  7. A fast and reliable approach to simulating the output from an x-ray tube used for developing security backscatter imaging

    Science.gov (United States)

    Vella, A.; Munoz, A.; Healy, M. J. F.; Lane, D. W.; Lockley, D.; Zhou, J.

    2017-08-01

    The PENELOPE Monte Carlo simulation code was used alongside the SpekCalc code to simulate X-ray energy spectra from a VJ Technologies' X-ray generator at a range of anode voltages. The PENELOPE code is often utilised in medicine but is here applied to develop coded aperture and pinhole imaging systems for security purposes. The greater computational burden of PENELOPE over SpekCalc is warranted by its greater flexibility and output information. The model was designed using the PENGEOM sub-tool and consists of a tungsten anode and five layers of window materials. The photons generated by a mono-energetic electron beam are collected by a virtual detector placed after the last window layer, and this records the spatial, angular and energy distributions which are then used as the X-ray source for subsequent simulations. The process of storing X-ray outputs and using them as a virtual photon source can then be used efficiently for exploring a range of imaging conditions as the computationally expensive electron interactions in the anode need not be repeated. The modelled spectra were validated with experimentally determined spectra collected with an Amptek X-123 Cadmium Telluride detector placed in front of the source.

  8. Calculation of characteristics of X-ray devices

    Directory of Open Access Journals (Sweden)

    Orobinskyi A. N.

    2015-12-01

    Full Text Available Actuality of this work is related to human radiation safety during tuning and regulation of X-ray devices in the process of their development and production. The more precise the calculations for the device are, the less time is required for its tuning and regulation, and thus people are less exposed to radiation. When developing an X-ray device, it is necessary to choose an X-ray tube and filters taking into account the application domain of the device. In order to do this, one should know anode voltage, X-ray tube anode current, material and thickness of filters, i.e. to calculate these characteristics at the set quality of X-ray radiation. The known published studies do not give any solution to this problem. The scientific novelty of this work is that it establishes the interdependence between main characteristics of the X-ray device: the function of the device defines the quality of X-ray radiation (mean photon energy and air kerma power; mean photon energy depends on the X-ray anode tube voltage and spectral resolution; air kerma power depends on anode tube voltage, current of X-ray tube anode, spectral resolution, thicknesses of the filters and their materials; spectral resolution depends on thicknesses of filters and their materials; thickness of filters depends on the material of the filter (the linear coefficient of weakening of X-ray radiation. Knowledge of interdependence of basic characteristics of the X-ray devices allowes developing simple algorithm for their calculation at the values of homogeneity coefficient from 0,8 to 1, which makes it possible to choose an X-ray tube and filters with the purpose of obtaining X-ray radiation of the set quality.

  9. Characterization of Beryllium Windows for Coherent X-ray Optics

    International Nuclear Information System (INIS)

    Goto, Shunji; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya

    2007-01-01

    Beryllium foils fabricated by several processes were characterized using spatially coherent x rays at 1-km beamline of SPring-8. By thickness dependence of bright x-ray spot density due to Fresnel diffraction from several-micron deficiencies, we found that speckles (bright x-ray spots) were due to voids with densities 103-104 mm-3 in powder foils and ingot foils. Compared with powder and ingot foils, a polished physical-vapor-deposited (PVD) beryllium foil gave highly uniform beams with no speckles. The PVD process eliminates the internal voids in principle and the PVD foil is the best for coherent x-ray applications

  10. A mammalian spot test: induction of genetic alterations in pigment cells or mouse embryos with X-rays and chemical mutagens

    International Nuclear Information System (INIS)

    Fahrig, R.

    1975-01-01

    Embryos heterozygous for five recessive coat-color genes from the cross C57 BL/6 J Han x T-stock were X-irradiated with 100 r or treated in utero with 50 mg/kg methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS), respectively. Controls consisted of irradiated embryos of C57 BL x C57 BL matings homozygous wild-type for the genes under study, and non-treated offspring of both types of mating. The colors of the spots observed in the adult fur were either due to expression of the recessive coat genes or were white. 1) Irradiated and mutagen-treated offspring of C57 BL x T-stock matings had almost exclusively nonwhite spots, distributed randomly over the mouse surface. 2) Irradiated offspring of C57 BL x C57 BL matings had only white spots which were always midventral. 3) In non-treated offspring of both types of mating no spot could be observed. It is discussed that the white midventral spots are preferentially the result of pigment cell killing, while the nonwhite spots are preferentially the result of gene mutations or recombinational processes like mitotic crossing over and mitotic gene conversion. (orig./BSC) [de

  11. Chest X-Ray

    Medline Plus

    Full Text Available ... Disorders Video: The Basketball Game: An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... also be useful to help diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  13. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray ... posted: How to Obtain and Share Your Medical Images Movement Disorders Video: The Basketball Game: An MRI ...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ... Inc. (RSNA). To help ensure current and accurate information, we do not permit copying but encourage linking ...

  16. Chest X-Ray

    Medline Plus

    Full Text Available ... Site Index A-Z Spotlight Recently posted: Pancreatic Cancer The Limitations of Online Dose Calculators Video: The ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  17. Chest X-Ray

    Medline Plus

    Full Text Available ... exams and use a very small dose of ionizing radiation to produce pictures of the inside of the ... chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. ...

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... June is Men's Health Month Recently posted: Pancreatic Cancer The Limitations of Online Dose Calculators Video: The ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  20. Optimizing Monocapillary Optics for Synchrotron X-ray Diffraction, Fluorescence Imaging, and Spectroscopy Applications

    International Nuclear Information System (INIS)

    Bilderback, Donald H.; Kazimirov, Alexander; Gillilan, Richard; Cornaby, Sterling; Woll, Arthur; Zha, Chang-Sheng; Huang Rong

    2007-01-01

    A number of synchrotron x-ray applications such as powder diffraction in diamond anvil cells, microbeam protein crystallography, x-ray fluorescence imaging, etc. can benefit from using hollow glass monocapillary optics to improve the flux per square micron on a sample. We currently draw glass tubing into the desired elliptical shape so that only one-bounce under total reflection conditions is needed to bring the x-ray beam to a focus at a 25 to 50 mm distance beyond the capillary tip. For modest focal spot sizes of 10 to 20 microns, we can increase the intensity per square micron by factors of 10 to 1000. We show some of the results obtained at CHESS and Hasylab with capillaries focusing 5 to 40 keV radiation, their properties, and how even better the experimental results could be if more ideal capillaries were fabricated in the future

  1. The selection criteria elements of X-ray optics system

    Science.gov (United States)

    Plotnikova, I. V.; Chicherina, N. V.; Bays, S. S.; Bildanov, R. G.; Stary, O.

    2018-01-01

    At the design of new modifications of x-ray tomography there are difficulties in the right choice of elements of X-ray optical system. Now this problem is solved by practical consideration, selection of values of the corresponding parameters - tension on an x-ray tube taking into account the thickness and type of the studied material. For reduction of time and labor input of design it is necessary to create the criteria of the choice, to determine key parameters and characteristics of elements. In the article two main elements of X-ray optical system - an x-ray tube and the detector of x-ray radiation - are considered. Criteria of the choice of elements, their key characteristics, the main dependences of parameters, quality indicators and also recommendations according to the choice of elements of x-ray systems are received.

  2. Evaluation of X-ray shielding performance of protective aprons

    International Nuclear Information System (INIS)

    Kumagai, Michitomo; Shintani, Mitsuo; Kuranishi, Makoto

    1999-01-01

    Lead equivalent, which offers protection against x-rays, is rated with a 100 kV tube voltage in Japanese Industrial Standard (JIS) Z 4501-1988, Testing method of lead equivalent for x-ray protective devices.'' However, the actual tube voltage in general diagnostic examinations (normal to special radiography; including computed tomography, CT) is 50 to 150 kV. Therefore, we measured whether the performance of current lead aprons (three products) and protective aprons using composite materials (two products) changes at 60 to 141 kV of tube voltage. Furthermore, we evaluated x-ray shielding performance by measuring the transmission ratio of scattered x-rays. The lead equivalent of two currently used lead aprons was almost the same at all voltages. However, in one currently used lead apron and both protective aprons made of composite materials, lead equivalent decreased rapidly when tube voltage exceeded 100 kV. The transmission ratio of scattered x-rays increased with increasing tube voltage in all of the protective aprons examined. Further, in all aprons examined, the transmission ratio of scattered x-rays declined with widening of the scatter angle. As mentioned above, the x-ray shielding performance of some x-ray protective aprons suddenly decreased at tube voltages over 100 kV. Thus the performance of x-ray protective aprons should be published, and JIS Z 4501 needs to be revised. (author)

  3. Evaluation of X-ray shielding performance of protective aprons

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Michitomo; Shintani, Mitsuo; Kuranishi, Makoto [Toyama Medical and Pharmaceutical Univ. (Japan). Hospital

    1999-04-01

    Lead equivalent, which offers protection against x-rays, is rated with a 100 kV tube voltage in Japanese Industrial Standard (JIS) Z 4501-1988, Testing method of lead equivalent for x-ray protective devices.`` However, the actual tube voltage in general diagnostic examinations (normal to special radiography; including computed tomography, CT) is 50 to 150 kV. Therefore, we measured whether the performance of current lead aprons (three products) and protective aprons using composite materials (two products) changes at 60 to 141 kV of tube voltage. Furthermore, we evaluated x-ray shielding performance by measuring the transmission ratio of scattered x-rays. The lead equivalent of two currently used lead aprons was almost the same at all voltages. However, in one currently used lead apron and both protective aprons made of composite materials, lead equivalent decreased rapidly when tube voltage exceeded 100 kV. The transmission ratio of scattered x-rays increased with increasing tube voltage in all of the protective aprons examined. Further, in all aprons examined, the transmission ratio of scattered x-rays declined with widening of the scatter angle. As mentioned above, the x-ray shielding performance of some x-ray protective aprons suddenly decreased at tube voltages over 100 kV. Thus the performance of x-ray protective aprons should be published, and JIS Z 4501 needs to be revised. (author)

  4. X-ray area monitor

    International Nuclear Information System (INIS)

    Nintrakit, N.

    1983-01-01

    The X-ray area monitor is a nuclear electronic device that is essential in radiation protection in high radiation laboratories, e.g. in medical diagnosis using X-rays and in industrial X-radiography. Accidentally the level of X-radiator may arise above the safe permissible level and in such a case the alarm system of the area monitor will work and disconnect the ac power supply form the X-ray unit. Principally the device is a radiation counter using G.M.tube as radiation detector with high voltage supply variable form 200 to 2,000 volts. The maximum count rate of the scaler is 1.5 MHz and the total count is displayed on 4 digit LED's. A time base is used to control the counting time, the frequency multiplier, radiation safety limit, comparator and the radiation hazard warning signal. The reliability of the instrument is further enhanced through the addition of the random correction circuit, and it is applicable both in X- and γ -radiation

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of knee x-rays. A portable x-ray machine is a compact apparatus that can be taken ... of the body being examined, an x-ray machine produces a small burst of radiation that passes ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations to ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray ( ... leg (shin), ankle or foot. top of page What are some common uses of the procedure? A ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  11. Electrical modeling of X-Ray tubes used in fluoroscopy systems with the objective of minimizing radiation transmitted to patients; Modelagem eletrica dos tubos de raios-X utilizados em sistemas de fluoroscopia com o objetivo de minimizar a radiacao transmitida ao paciente

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Raghunatha Faria; Oliveira, Bruno Andrade de; Souza, Euzebio de, E-mail: raghunathafaria@gmail.com, E-mail: brunodoliver90@hotmail.com, E-mail: euzebio.souza@prof.unibh.br [Centro Universitario de Belo Horizonte (UniBH), Belo Horizonte, MG (Brazil)

    2017-09-01

    The purpose of this article was to demonstrate the processes and parameters that are necessary for the operation of all X-rays in the use in fluoroscopy technique, the constructive part of the High Voltage Generator and the X-ray tube and how the X-ray release occurs to the patient during the examination, the condition of how the current and potential difference generates the X-rays incident to the patient during the procedure and what unnecessary exposure to such rays may be detrimental in amounts that do not add an image to the examination. In this way, a proposal was made for the electric modeling of an X-ray tube, in which it addressed an alternative to minimize the radiation that passes through the patient without generating useful images. (author)

  12. Fracture Mechanics Approach to X-Ray Diffraction Method for Spot Welded Lap Joint Structure of Rolled Steel Considered Residual Stress

    International Nuclear Information System (INIS)

    Baek, Seung Yeb; Bae, Dong Ho

    2011-01-01

    Cold and hot-rolled carbon steel sheets are commonly used in railroad cars or commercial vehicles such as the automobile. The sheets used in these applications are mainly fabricated by spot welding, which is a type of electric resistance welding. However, the fatigue strength of a spot-welded joint is lower than that of the base metal because of high stress concentration at the nugget edge of the spot-welded part. In particular, the fatigue strength of the joint is influenced by not only geometrical and mechanical factors but also the welding conditions for the spot-welded joint. Therefore, there is a need for establishing a reasonable criterion for a long-life design for spot-welded structures. In this thesis, ΔP-N f relation curves have been used to determine a long-life fatigue-design criterion for thin-sheet structures. However, as these curves vary under the influence of welding conditions, mechanical conditions, geometrical factors, etc. It is very difficult to systematically determine a fatigue-design criterion on the basis of these curves. Therefore, in order to eliminate such problems, the welding residual stresses generated during welding and the stress distributions around the weld generated by external forces were numerically and experimentally analyzed on the basis of the results, reassessed fatigue strength of gas welded joints

  13. X-ray Fluorescence Holography: Principles, Apparatus, and Applications

    Science.gov (United States)

    Hayashi, Kouichi; Korecki, Pawel

    2018-06-01

    X-ray fluorescence holography (XFH) is an atomic structure determination technique that combines the capabilities of X-ray diffraction and X-ray fluorescence spectroscopy. It provides a unique means of gaining fully three-dimensional information about the local atomic structure and lattice site positions of selected elements inside compound samples. In this work, we discuss experimental and theoretical aspects that are essential for the efficient recording and analysis of X-ray fluorescence holograms and review the most recent advances in XFH. We describe experiments performed with brilliant synchrotron radiation as well as with tabletop setups that employ conventional X-ray tubes.

  14. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  15. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Setti, G.

    1980-01-01

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  16. Optics for coherent X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Yabashi, Makina, E-mail: yabashi@spring8.or.jp [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Tono, Kensuke [Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Mimura, Hidekazu [The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Matsuyama, Satoshi; Yamauchi, Kazuto [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Ohashi, Haruhiko; Goto, Shunji [Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Ishikawa, Tetsuya [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan)

    2014-08-27

    Developments of optics for coherent X-ray applications and their role in diffraction-limited storage rings are described. Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.

  17. Flash x-ray

    International Nuclear Information System (INIS)

    Johnson, Q.; Pellinen, D.

    1976-01-01

    The complementary techniques of flash x-ray radiography (FXR) and flash x-ray diffraction (FXD) provide access to a unique domain in nondestructive materials testing. FXR is useful in studies of macroscopic properties during extremely short time intervals, and FXD, the newer technique, is used in studies of microscopic properties. Although these techniques are similar in many respects, there are some substantial differences. FXD generally requires low-voltage, line-radiation sources and extremely accurate timing; FXR is usually less demanding. Phenomena which can be profitably studied by FXR often can also be studied by FXD to permit a complete materials characterization

  18. X-ray astronomy

    International Nuclear Information System (INIS)

    Narayanan, M.S.

    1976-01-01

    The deployment of detectors outside the deleterious effects of the atmosphere by sending them in space vehicles, has been explained. This has thrown open the entire spectrum of the electromagnetic and particle radiation to direct observations, thus enlarging the vistas of the field of astronomy and astrophysics. The discovery of strong emitters of X-rays such as SCO X-1, NorX-2, transient sources such as Cen X-2, Cen X-4, Cen X-1, Supernova remnants Tan X-1, etc., are reported. The background of the X-ray spectrum as measured during two rocket flights over Thumba, India is presented. (K.B.)

  19. X-ray masks

    International Nuclear Information System (INIS)

    Greenwood, J.C.; Satchell, D.W.

    1984-01-01

    In semiconductor manufacture, where X-ray irradiation is used, a thin silicon membrane can be used as an X-ray mask. This membrane has areas on which are patterns to define the regions to be irradiated. These regions are of antireflection material. With the thin, in the order of 3 microns, membranes used, fragility is a problem. Hence a number of ribs of silicon are formed integral with the membrane, and which are relatively thick, 5 to 10 microns. The ribs may be formed by localised deeper boron deposition followed by a selective etch. (author)

  20. X-ray detector

    International Nuclear Information System (INIS)

    Houston, J.M.; Whetten, N.R.

    1981-01-01

    An ionization chamber for use in determining the spatial distribution of x-ray photons in tomography systems comprises a plurality of substantially parallel, planar anodes separated by parallel, planar cathodes and enclosed in a gas of high atomic weight at a pressure from approximately 10 atmospheres to approximately 50 atmospheres. The cathode and anode structures comprise metals which are substantially opaque to x-ray radiation and thereby tend to reduce the resolution limiting effects of xray fluoresence in the gas. In another embodiment of the invention the anodes comprise parallel conductive bars disposed between two planar cathodes. Guard rings eliminate surface leakage currents between adjacent electrodes

  1. X-ray diagnostic installation for X-ray tomographic images

    International Nuclear Information System (INIS)

    Haendle, J.; Sklebitz, H.

    1984-01-01

    An exemplary embodiment includes at least one x-ray tube for the generation of an x-ray beam, a patient support, an image detector, and a control generator-connected with the x-ray tube and the image detector-for the purpose of moving the x-ray beam, and in opposition thereto, the image field of the image detector. There is connected to the control generator a layer height computer which calculates the enlargement from the geometric data for the tomogram. The image detector has a circuit-connected with the layer height computer-for the purpose of fading-in a marking for the dimensions in the layer plane

  2. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  3. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  4. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: ... Ray Exam: Hip Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  5. X-Ray Exam: Forearm

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Forearm KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  6. X-Ray Exam: Foot

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Foot KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  7. X-Ray Exam: Wrist

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Wrist KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  8. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  9. X-Ray Exam: Finger

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  10. SU-F-J-52: A Novel Approach to X-Ray Tube Quality Assurance for CBCT Systems in Order to Better Assess the Patient Imaging Dose in a Large, Multi-Unit Treatment Facility

    International Nuclear Information System (INIS)

    Buckley, L; Lambert, C; Nyiri, B; Gerig, L; Webb, R

    2016-01-01

    Purpose: To standardize the tube calibration for Elekta XVI cone beam CT (CBCT) systems in order to provide a meaningful estimate of the daily imaging dose and reduce the variation between units in a large centre with multiple treatment units. Methods: Initial measurements of the output from the CBCT systems were made using a Farmer chamber and standard CTDI phantom. The correlation between the measured CTDI and the tube current was confirmed using an Unfors Xi detector which was then used to perform a tube current calibration on each unit. Results: Initial measurements showed measured tube current variations of up to 25% between units for scans with the same image settings. In order to reasonably estimate the imaging dose, a systematic approach to x-ray generator calibration was adopted to ensure that the imaging dose was consistent across all units at the centre and was adopted as part of the routine quality assurance program. Subsequent measurements show that the variation in measured dose across nine units is on the order of 5%. Conclusion: Increasingly, patients receiving radiation therapy have extended life expectancies and therefore the cumulative dose from daily imaging should not be ignored. In theory, an estimate of imaging dose can be made from the imaging parameters. However, measurements have shown that there are large differences in the x-ray generator calibration as installed at the clinic. Current protocols recommend routine checks of dose to ensure constancy. The present study suggests that in addition to constancy checks on a single machine, a tube current calibration should be performed on every unit to ensure agreement across multiple machines. This is crucial at a large centre with multiple units in order to provide physicians with a meaningful estimate of the daily imaging dose.

  11. SU-F-J-52: A Novel Approach to X-Ray Tube Quality Assurance for CBCT Systems in Order to Better Assess the Patient Imaging Dose in a Large, Multi-Unit Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, L; Lambert, C; Nyiri, B; Gerig, L [The Ottawa Hospital Cancer Ctr., Ottawa, ON (Canada); Webb, R [Elekta, Montreal, Quebec (Canada)

    2016-06-15

    Purpose: To standardize the tube calibration for Elekta XVI cone beam CT (CBCT) systems in order to provide a meaningful estimate of the daily imaging dose and reduce the variation between units in a large centre with multiple treatment units. Methods: Initial measurements of the output from the CBCT systems were made using a Farmer chamber and standard CTDI phantom. The correlation between the measured CTDI and the tube current was confirmed using an Unfors Xi detector which was then used to perform a tube current calibration on each unit. Results: Initial measurements showed measured tube current variations of up to 25% between units for scans with the same image settings. In order to reasonably estimate the imaging dose, a systematic approach to x-ray generator calibration was adopted to ensure that the imaging dose was consistent across all units at the centre and was adopted as part of the routine quality assurance program. Subsequent measurements show that the variation in measured dose across nine units is on the order of 5%. Conclusion: Increasingly, patients receiving radiation therapy have extended life expectancies and therefore the cumulative dose from daily imaging should not be ignored. In theory, an estimate of imaging dose can be made from the imaging parameters. However, measurements have shown that there are large differences in the x-ray generator calibration as installed at the clinic. Current protocols recommend routine checks of dose to ensure constancy. The present study suggests that in addition to constancy checks on a single machine, a tube current calibration should be performed on every unit to ensure agreement across multiple machines. This is crucial at a large centre with multiple units in order to provide physicians with a meaningful estimate of the daily imaging dose.

  12. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  13. Medical X-ray sources now and for the future

    Science.gov (United States)

    Behling, Rolf

    2017-11-01

    This paper focuses on the use of X-rays in their largest field of application: medical diagnostic imaging and image-guided therapy. For this purpose, vacuum electronics in the form of X-ray tubes as the source of bremsstrahlung (braking radiation) have been the number one choice for X-ray production in the range of photon energies between about 16 keV for mammography and 150 keV for general radiography. Soft tissue on one end and bony structures on the other are sufficiently transparent and the contrast delivered by difference of absorption is sufficiently high for this spectral range. The dominance of X-ray tubes holds even more than 120 years after Conrad Roentgen's discovery of the bremsstrahlung mechanism. What are the specifics of current X-ray tubes and their medical diagnostic applications? How may the next available technology at or beyond the horizon look like? Can we hope for substantial game changers? Will flat panel sources, less expensive X-ray "LED's", compact X-ray Lasers, compact synchrotrons or equivalent X-ray sources appear in medical diagnostic imaging soon? After discussing the various modalities of imaging systems and their sources of radiation, this overview will briefly touch on the physics of bremsstrahlung generation, key characteristics of X-ray tubes, and material boundary conditions, which restrict performance. It will discuss the deficits of the bremsstrahlung technology and try to sketch future alternatives and their prospects of implementation in medical diagnostics.

  14. Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xuepeng; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Yi, Longtao; Sun, Weiyuan; Li, Fangzuo; Jiang, Bowen [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-12-01

    Two combined optic systems based on polycapillary X-ray optics and single-bounce monocapillary optics (SBMO) were designed for focusing the X-rays from a conventional laboratory X-ray source. One was based on a polycapillary focusing X-ray lens (PFXRL) and a single-bounce ellipsoidal capillary (SBEC), in which the output focal spot with the size of tens of micrometers of the PFXRL was used as the “virtual” X-ray source for the SBEC. The other system was based on a polycapillary parallel X-ray lens (PPXRL) and a single-bounce parabolic capillary (SBPC), in which the PPXRL transformed the divergent X-ray beam from an X-ray source into a quasi-parallel X-ray beam with the divergence of sever milliradians as the incident illumination of the SBPC. The experiment results showed that the combined optic systems based on PFXRL and SBEC with a Mo rotating anode X-ray generator with the focal spot with a diameter of 300 μm could obtain a focal spot with the total gain of 14,300 and focal spot size of 37.4 μm, and the combined optic systems based on PPXRL and SBPC with the same X-ray source mentioned above could acquire a focal spot with the total gain of 580 and focal spot size of 58.3 μm, respectively. The two combined optic systems have potential applications in micro X-ray diffraction, micro X-ray fluorescence, micro X-ray absorption near edge structure, full field X-ray microscopes and so on.

  15. X-ray diffraction imaging of material microstructures

    KAUST Repository

    Varga, Laszlo; Varga, Bonbien; Calo, Victor

    2016-01-01

    Various examples are provided for x-ray imaging of the microstructure of materials. In one example, a system for non-destructive material testing includes an x-ray source configured to generate a beam spot on a test item; a grid detector configured

  16. The application of synchrotron radiation to X-ray lithography

    International Nuclear Information System (INIS)

    Spiller, E.; Eastman, D.E.; Feder, R.; Grobman, W.D.; Gudat, W.; Topalian, J.

    1976-06-01

    Synchrotron radiation from the German electron synchrotron DESY in Hamburg has been used for X-ray lithograpgy. Replications of different master patterns (for magnetic bubble devices, fresnel zone plates, etc.) were made using various wavelengths and exposures. High quality lines down to 500 A wide have been reproduced using very soft X-rays. The sensitivities of X-ray resists have been evaluated over a wide range of exposures. Various critical factors (heating, radiation damage, etc.) involved with X-ray lithography using synchrotron radiation have been studied. General considerations of storage ring sources designed as radiation sources for X-ray lithography are discussed, together with a comparison with X-ray tube sources. The general conclusion is that X-ray lithography using synchrotron radiation offers considerable promise as a process for forming high quality sub-micron images with exposure times as short as a few seconds. (orig.) [de

  17. Material Discriminated X-Ray CT System by Using New X-Ray Imager with Energy Discriminate Function

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2008-04-01

    Full Text Available Material discriminated X-ray CT system has been constructed by using conventional X-ray tube (white X-ray source and photon-counting X-ray imager as an application with energy band detection. We have already reported material identify X-ray CT using K-shell edge method elsewhere. In this report the principle of material discrimination was adapted the separation of electron-density and atomic number from attenuation coefficient mapping in X-ray CT reconstructed image in two wavelength X-ray CT method using white X-ray source and energy discriminated X-ray imager by using two monochrome X-ray source method. The measurement phantom was prepared as four kinds material rods (Carbon(C, Iron(Fe, Copper(Cu, Titanium(Ti rods of 3mm-diameter inside an aluminum(Al rod of 20mm-diameter. We could observed material discriminated X-ray CT reconstructed image, however, the discrimination properties were not good than two monochrome X-ray CT method. This results was could be explained because X-ray scattering, beam-hardening and so on based on white X-ray source, which could not observe in two monochrome X-ray CT method. However, since our developed CdTe imager can be detect five energy-bands at the same time, we can use multi-band analysis to decrease the least square error margin. We will be able to obtain more high separation in atomic number mapping in X-ray CT reconstructed image by using this system.

  18. Chest X-Ray

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos ... x-ray is used to evaluate the lungs, heart and chest wall and may be used to ...

  19. X-ray sources

    International Nuclear Information System (INIS)

    Bonse, U.

    1979-11-01

    The author describes several possibilities for the production of X-radiation. Especially he discusses the use of bremsstrahlung at electron impact on solid targets and the synchrotron radiation. He presents some equations for the calculation of X-ray intensities. Especially the X-radiation from the DORIS storage ring is discussed. (HSI)

  20. Medical x-ray

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli; Gui Ah Auu; Husaini Salleh; Idris Besar; Mohd Ashhar Khalid; Muhammad Jamal Md Isa; Shaharuddin Mohd; Siti Najila Mohd Janib; Mohamed Ali Abdul Khader; Mahalatchimi Dave; Mohd Fazly Abdul Rahim; Ng Chee Moon; Ram Piari; Teoh Hoon Heng; Lee Peter

    2004-01-01

    This book describes the fundamental subject about medical radiography. It is a multidisciplinary field that requires cross professional input from scientists, engineers and medical doctors. However, it is presented in simple language to suit different levels of readers from x-ray operators and radiographers to physists, general practitioners and radiology specialists.The book is written in accordance to the requirements of the standard syllabus approved by the Ministry of Health Malaysia for the training of medical x-ray operator and general practitioners. In general, the content is not only designed to provide relevant and essential subject for related professionals in medical radiological services such as x-ray operator, radiographer and radiologists, but also to address those in associated radiological services including nurses, medical technologists and physicists.The book is organized and arranged sequentially into 3 parts for easy reference: Radiation safety; X-ray equipment and associated facilities; Radiography practices. With proper grasping of all these parts, the radiological services could be provided with confident and the highest professional standard. Thus, medical imaging with highest quality that can provide useful diagnostic information at minimum doses and at cost effective could be assured

  1. Chest X-Ray

    Medline Plus

    Full Text Available ... change into a gown. You may have some concerns about chest x-rays. However, it’s important to ... You Sponsored by About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  2. Small Angle X-Ray Scattering Detector

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  3. Simulation in X-ray equipment manufacture

    International Nuclear Information System (INIS)

    Zhutyaev, S.G.; Martynov, E.E.; Mishkinis, B.Ya.; Chikirdin, Eh.G.

    1993-01-01

    Digital models for the overload and overheat protection of X-ray diagnostic are considered. The above models permit to account more correctly the tube performance peculiarities, to obtain the maximum efficiency and to prolong the service life. The models can be used in other feeding devices as well

  4. Device for congruent X-ray images of teeth

    International Nuclear Information System (INIS)

    Wegner, H.; Zeumer, H.

    1987-01-01

    This invention has to do with a device for congruent X-ray images of teeth by means of the long-tube parallel technique and the long-tube semi-angle technique. The aim is to have no disturbing lever forces in order to avoid mechanical tensions between patient and X-ray tube assembly and to achieve a true projection of teeth and jaw-bone part also under unfavourable anatomical conditions

  5. X-ray beam qualities for dental radiology purposes

    International Nuclear Information System (INIS)

    Santos, Marcus Aurelio P. dos; Fragoso, Maria da Conceicao de F.; Lima, Ricardo de A.; Hazim, Clovis A.

    2009-01-01

    In order to establish characteristics or properties of equipment for diagnostic radiology, e.g. ion chambers and semiconductor detectors, calibration laboratories offer a set of well-defined radiation conditions, called X-ray qualities, which can be used for many Physics studies and medical purposes. The standardization of radiation qualities has been carried out in several fields of study, but little attention has been given to the area of dental radiology, mainly for medical and physical applications using single-phase units with half-wave rectification. For this reason, a single-phase dental unit with adjustable peak voltage and tube current, called 'variable potential X-ray equipment', was developed aiming to define X-ray beam qualities for test and calibrations purposes. X-ray spectra at 50, 60 and 70 kVp were determined by using a CdTe detector and compared with those obtained for ten commercial X-ray dental units. As a result of this study, a set of X-ray qualities for the variable potential X-ray equipment was determined. The X-ray qualities spectra were utilized as reference for determination of a new set of X-ray qualities characterized for a constant potential X-ray equipment. Thus, sets of X-ray qualities were standardized and implemented in two X-ray laboratories: one with the variable potential X-ray equipment and other with constant potential X-ray equipment. These reference X-ray beam qualities should be used for test and calibration purposes involving scientific studies and services. (author)

  6. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, G. T., E-mail: seidler@uw.edu; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  7. Removal of a glowing spot from an image tube using laser radiation.

    Science.gov (United States)

    Gurski, T. R.

    1972-01-01

    A troublesome problem with the Kron electronograph has been the presence of a white glowing spot on the glass wall of the tube adjacent to the focus electrode. The procedure followed to eliminate the spot was to operate in the dark and apply voltage only to the focused electrode. Ruby laser radiation was unfocused, and its position was shifted on the electrode between laser shots until an effect was observed. This technique for removing the glowing spot should be applicable to other electronic image tubes.

  8. On the methods of determination of x-ray sources protection quality in x-ray diagnostic equipment

    International Nuclear Information System (INIS)

    Vladimirov, L.V.

    1973-01-01

    Existing procedures for assessing the quality of shielding of X-ray radiators are compared; these procedures are shown to have a number of shortcomings and to be very time-consuming. A procedure is offered in which shielding quality is tested in two stages: (1) X-ray tests aimed at determining the quality of protection of the X-ray tube unit; and (2) dosimeter tests proper. The results of measurements are compared with maximum permissible dosage rate

  9. X-ray calibration facility for plasma diagnostics of the MegaJoule laser

    International Nuclear Information System (INIS)

    Hubert, S.; Prevot, V.

    2013-01-01

    The Laser MegaJoule (LMJ) located at CEA-CESTA will be equipped with x-ray plasma diagnostics using different kinds of x-ray components such as filters, mirrors, crystals, detectors and cameras. To guarantee LMJ measurements, detectors such as x-ray cameras need to be regularly calibrated. An x-ray laboratory is devoted to this task and performs absolute x-ray calibrations for similar x-ray cameras running on Laser Integration Line (LIL). This paper presents the x-ray calibration bench with its x-ray tube based High Energy x-ray Source (HEXS) and some calibration results. By mean of an ingenious transposition system under vacuum absolute x-ray calibration of x-ray cameras, like streak and stripline ones, can be carried out. Coupled to a new collimation system with micrometric accuracy on aperture sensitivity quantum efficiency measurements can be achieved with reduced uncertainties. (authors)

  10. X-ray filter for x-ray powder diffraction

    Science.gov (United States)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  11. Capacity of X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Wobrauschek, P.; Kregsamer, P.

    1997-01-01

    X-Ray fluorescence analysis (XRF) is a powerful analytical tool for the qualitative and quantitative determination of chemical elements in a sample. Two different detection principles are accepted widely: wavelength dispersive and energy dispersive. Various sources for XRF are discussed: X-ray tubes, accelerators for particle induced XRF, radioactive isotopes, and the use of synchrotron radiation. Applications include environmental, technical, medical, fine art, and forensic studies. Due to the demands of research and application special techniques like total reflection XRF (TXRF) were developed with ultimately achievable detection limits in the femtogram region. The elements detectable by XRF range from Be to U. (author)

  12. X-ray refractometer

    International Nuclear Information System (INIS)

    Tur'yanskij, A.G.; Pirshin, I.V.

    2001-01-01

    Paper introduces a new circuit of X-ray refractometer to study angular and spectral features of refracted radiation within hard X-ray range. Refractometer incorporates two goniometers, two crystal-analyzers and three radiation detectors. The maximum distance between radiation source focal point and a receiving slit of the second goniometer is equal to 1.4 m. For the first time one obtained refraction patterns of fine-film specimens including C/Si stressed structure. Paper describes a new technique of refractometry via specimen oscillation at fixed position of a detecting device. Paper presents the measurement results of oscillation refraction patterns for specimens of melted quartz and ZnSe single crystal [ru

  13. X-ray radiotherapy

    International Nuclear Information System (INIS)

    Tronc, D.

    1995-01-01

    Full text: The most common form of radio therapy is X-ray therapy, where a beam of photons or their parent electrons break down hydrogen bonds within the body's cells and remove certain DNA information necessary for cell multiplication. This process can eradicate malignant cells leading to complete recovery, to the remission of some cancers, or at least to a degree of pain relief. The radiotherapy instrument is usually an electron linac, and the electrons are used either directly in 'electrotherapy' for some 10% of patients, or the electrons bombard a conversion target creating a broad beam of high energy photons or 'penetration X-rays'. The simplest machine consists of several accelerating sections at around 3 GHz, accelerating electrons to 6 MeV; a cooled tungsten target is used to produce a 4 Gray/min X-ray field which can be collimated into a rectangular shape at the patient position. This tiny linac is mounted inside a rotating isocentric gantry above the patient who must remain perfectly still. Several convergent beams can also be used to increase the delivered dose. More sophisticated accelerators operate at up to 18 MeV to increase penetration depths and decrease skin exposure. Alternatively, electrotherapy can be used with different energies for lower and variable penetration depths - approximately 0.5 cm per MeV. In this way surface tissue may be treated without affecting deeper and more critical anatomical regions. This type of linac, 1 to 2 metres long, is mounted parallel to the patient with a bending magnet to direct the beam to the radiotherapy system, which includes the target, thick movable collimator jaws, a beam field equalizer, dose rate and optical field simulation and energy controls. There are over 2000 acceleratorbased X-ray treatment units worldwide. Western countries have up to two units per million population, whereas in developing countries such as Bangladesh, the density is only one per 100 million. Several

  14. X-ray microtomography

    International Nuclear Information System (INIS)

    Dunsmuir, J.H.; Ferguson, S.R.; D'Amico, K.L.; Stokes, J.P.

    1991-01-01

    In this paper the authors describe the application of a new high-resolution X-ray tomographic microscope to the study of porous media. The microscope was designed to exploit the properties of a synchrotron X-ray source to perform three dimensional tomography on millimeter sized objects with micron resolution and has been used in materials science studies with both synchrotron and conventional and synchrotron sources will be compared. In this work the authors have applied the microscope to measure the three dimensional structure of fused bead packs and berea sandstones with micron resolution and have performed preliminary studies of flow in these media with the microscope operated in a digital subtraction radiography mode. Computer graphics techniques have been applied to the data to visually display the structure of the pore body system. Tomographic imaging after flow experiments should detect the structure of the oil-water interface in the pore network and this work is ongoing

  15. X-ray diffraction

    International Nuclear Information System (INIS)

    Einstein, J.R.; Wei, C.H.

    1982-01-01

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  16. X-ray apparatus

    International Nuclear Information System (INIS)

    Tomita, Chuji.

    1980-01-01

    A principal object of the present invention is to provide an X-ray apparatus which is such that the distance between the surface of the patient's table and the floor on which the apparatus is installed is sufficiently small in the horizontal position of the patient's table of the roentgenographical pedestal and that the rotation of the pedestal from the horizontal position to a tilted position and further to the vertical position of the table can be carried out smoothly. (auth)

  17. X-ray Ordinance

    International Nuclear Information System (INIS)

    Kramer, R.; Zerlett, G.

    1983-01-01

    This commentary, presented as volume 2 of the Deutsches Strahlenschutzrecht (German legislation on radiation protection) deals with the legal provisions of the ordinance on the protection against harmful effects of X-radiation (X-ray Ordinance - RoeV), of March 1, 1973 (announced in BGBl.I, page 173), as amended by the ordinance on the protection against harmful effects of ionizing radiation, of October 13, 1976 (announced in BGBl. I, page 2905). Thus volume 2 completes the task started with volume 1, namely to present a comprehensive view and account of the body of laws governing radiation protection, a task which was thought useful as developments in the FRG led to regulations being split up into the X-ray Ordinance, and the Radiation Protection Ordinance. In order to present a well-balanced commentary on the X-ray Ordinance, it was necessary to discuss the provisions both from the legal and the medical point of view. This edition takes into account the Fourth Public Notice of the BMA (Fed. Min. of Labour and Social Affairs) concerning the implementation of the X-ray Ordinance of January 4, 1982, as well as court decisions and literature published in this field, until September 1982. In addition, the judgment of the Federal Constitutional Court, dated October 19, 1982, concerning the voidness of the law on government liability, and two decisions by the Federal High Court, dated November 23, 1982, concerning the right to have insight into medical reports - of great significance in practice - have been considered. This commentary therefore is up to date with current developments. (orig.) [de

  18. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    Science.gov (United States)

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection

  19. Producing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Jung, R.G.; Applebaum, D.C.; Fairand, B.P.; Gallagher, W.J.

    1977-01-01

    A method of producing x-rays by directing radiant energy from a laser onto a target is described. Conversion efficiency of at least about 3 percent is obtained by providing the radiant energy in a low-power precursor pulse of approximately uniform effective intensity focused onto the surface of the target for about 1 to 30 nanoseconds so as to generate an expanding unconfined coronal plasma having less than normal solid density throughout and comprising a low-density (underdense) region wherein the plasma frequency is less than the laser radiation frequency and a higher-density (overdense) region wherein the plasma frequency is greater than the laser radiation frequency and, about 1 to 30 nanoseconds after the precursor pulse strikes the target, a higher-power main pulse focused onto the plasma for about 10 -3 to 30 nanoseconds and having such power density and total energy that the radiant energy is absorbed in the underdense region and conducted into the overdense region to heat it and thus to produce x-rays therefrom with the plasma remaining substantially below normal solid density and thus facilitating the substantial emission of x-rays in the form of spectral lines arising from nonequilibrium ionization states

  20. Dispersive liquid–liquid microextraction using diethyldithiocarbamate as a chelating agent and the dried-spot technique for the determination of Fe, Co, Ni, Cu, Zn, Se and Pb by energy-dispersive X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Kocot, Karina; Zawisza, Beata; Sitko, Rafal

    2012-01-01

    Dispersive liquid–liquid microextraction (DLLME) using sodium diethyldithiocarbamate (DDTC) as a chelating agent was investigated for the simultaneous determination of iron, cobalt, nickel, copper, zinc, selenium and lead ions in water samples. The procedure was performed using 5 mL of the sample, 100 μL of a 0.5% solution of DDTC, 30 μL of carbon tetrachloride (extraction phase) and 500 μL of methanol (disperser solvent). The experiments showed that Fe, Co, Ni, Cu, Zn and Pb can be simultaneously extracted at a pH of 5 and that Se can be extracted at a pH of 2–3. The results were compared with those obtained using ammonium pyrrolidine dithiocarbamate as a chelating agent. For all analytes, a linear range was observed up to 0.4 μg mL −1 . If Fe and Zn are present in concentrations 10 times higher than those of the other analytes, then the linearity is observed up to 0.2 μg mL −1 . In the present study, the organic phase that contained preconcentrated elements was deposited onto a Millipore filter and measured using energy-dispersive X-ray fluorescence spectrometry. The obtained detection limits were 2.9, 1.5, 2.0, 2.3, 2.5, 2.0 and 3.9 ng mL −1 for Fe, Co, Ni, Cu, Zn, Se and Pb, respectively. This combination of DLLME and the dried-spot technique is promising for multielement analyses using other spectroscopy techniques, such as laser ablation‐inductively coupled plasma‐mass spectrometry, laser-induced breakdown spectroscopy or total-reflection X-ray fluorescence spectrometry. - Highlights: ► Multielement trace analysis using dried-spot technique and dispersive liquid–liquid microextraction. ► Possibility of combination of LPME with EDXRF, LIBS or LA-ICP-MS. ► Comparison of APDC and DDTC as chelating agents.

  1. X-raying with low dose irradiation

    International Nuclear Information System (INIS)

    Malevich, E.E.; Kisel, E.M.; Shpita, I.D.; Lazovsky, A.S.

    2001-01-01

    With the purpose of the improvement of diagnostics quality and reduction of beam load on a patient in modern x-ray devices pulse x-raying is applied. It is based on the using of radiation pulses with various frequencies of intervals between them instead of continuous radiation. At pulse x-raying with the net control the principle of filling of an interval is used, when the information about the image, received with the last pulse, get into memory and is displayed before occurrence of other pulse. It creates impression of the continuous image even at low frequency of pulses. Due to the unique concept of the simultaneous (double) control, all of 3 parameters, which define the quality of the image (pressure(voltage), force of a current and length of a pulse), are adjusted automatically at each pulse, thus optimum adaptation to varied thickness of object during dynamic researches occurs. At x-raying pulse the presence of a free interval from x-ray radiation between two pulses results in the decrease of a radiation dose. Pulsing occurs some times per one second with equal intervals between pulses. Thus, the degree of decrease irradiation dose depends on duration of a pause between pulses. On the screen the image of last pulse before occurrence of the following is kept and repeats. The principle of x-raying pulse was realized in system Grid Controlled Fluoroscopy by the firm 'Philips Medi zin Systeme'. In the x-ray tube of this system inclusion and de energizing of radiation occurs directly on a source. Electron cloud is broken off by the special grid, which is located between the cathode and the anode and operates as a barrier. Thus the tube continues to be energized. In usual devices for pulses formation is used generator pulsation system, which at increase and attenuation of a x-ray pulse results in occurrence of the increasing and fading radiation which are not participating in the formation of the image, but creating beam load on the patient and the personnel. Thus

  2. Efficient lensing element for x-rays

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Smith, H.I.

    1977-01-01

    An efficient x-ray lens with an effective speed of order less than approximately f/50 for lambda greater than approximately 10 A x-rays is described. Fabrication of this lensing element appears feasible using existing microfabrication technology. Diffraction and refraction are coupled in a single element to achieve efficient x-ray concentration into a single order focal spot. Diffraction is used to produce efficient ray bending (without absorption) while refraction is used only to provide appropriate phase adjustment among the various diffraction orders to insure what is essentially a single order output. The mechanism for ray bending (diffraction) is decoupled from the absorption mechanism. Refraction is used only to achieve small shifts in phase so that the associated attenuation need not be prohibitive. The x-ray lens might be described as a Blazed Fresnel Phase Plate (BFPP) with a spatially distributed phase shift within each Fresnel zone. The spatial distribution of the phase shifts is chosen to concentrate essentially all of the unabsorbed energy into a single focal spot. The BFPP transforms the incident plane wave into a converging spherical wave having an amplitude modulation which is periodic in r 2 . As a result of the periodic amplitude modulation, the BFPP will diffract energy into foci other than the first order real focus. In cases of small absorption such effects are negligible and practically all the unabsorbed energy is directed into the first order real focus

  3. Coherent hard x-ray focusing optics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yun, W.B.; Viccaro, P.J.; Chrzas, J.; Lai, B.

    1991-01-01

    Coherent hard x-ray beams with a flux exceeding 10{sup 9} photons/second with a bandwidth of 0.1% will be provided by the undulator at the third generation synchrotron radiation sources such as APS, ESRF, and Spring-8. The availability of such high flux coherent x-ray beams offers excellent opportunities for extending the coherence-based techniques developed in the visible and soft x-ray part of the electromagnetic spectrum to the hard x-rays. These x-ray techniques (e.g., diffraction limited microfocusing, holography, interferometry, phase contrast imaging and signal enhancement), may offer substantial advantages over non-coherence-based x-ray techniques currently used. For example, the signal enhancement technique may be used to enhance an anomalous x-ray or magnetic x-ray scattering signal by several orders of magnitude. Coherent x-rays can be focused to a very small (diffraction-limited) spot size, thus allowing high spatial resolution microprobes to be constructed. The paper will discuss the feasibility of the extension of some coherence-based techniques to the hard x-ray range and the significant progress that has been made in the development of diffraction-limited focusing optics. Specific experimental results for a transmission Fresnel phase zone plate that can focus 8.2 keV x-rays to a spot size of about 2 microns will be briefly discussed. The comparison of measured focusing efficiency of the zone plate with that calculated will be made. Some specific applications of zone plates as coherent x-ray optics will be discussed. 17 refs., 4 figs.

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the body. X-rays are the oldest and most frequently used form of medical imaging. A bone ... bones. top of page How should I prepare? Most bone x-rays require no special preparation. You ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... can be taken to the patient in a hospital bed or the emergency room. The x-ray ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  8. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... changes seen in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... up in shades of gray and air appears black. Until recently, x-ray images were maintained on ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page ... the patient standing upright, as in cases of knee x-rays. A portable x-ray machine is ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... conditions. Imaging with x-rays involves exposing a part of the body to a small dose of ... body. Once it is carefully aimed at the part of the body being examined, an x-ray ...

  16. Position sensitive x-ray detector

    International Nuclear Information System (INIS)

    Macchione, E.L.A.

    1990-01-01

    A multi ware position sensitive gas counter for X-ray detection was developed in our laboratory, making use of commercial delay-lines for position sensing. Six delay-line chips (50 ns delay each, 40 Mhz cut-off frequency) cover a total sensitive length of 150 mm leading to a delay-risetime ratio that allows for a high-resolution position detection. Tests using the 5,9 keV X-ray line from a 55 Fe source and integral linearity better than 0,1% and a maximal differential linearity of ±4,0% were obtained operating the detector with an Ar-C H 4 (90%-10%) gas mixture at 700 torr. Similar tests were performed, using the 8,04 keV line from a Cu x-ray tube. A total resolution of 330 μm, and the same integral and differential linearities were obtained. (author)

  17. New intraoral x-ray fluorographic imaging for dentistry

    International Nuclear Information System (INIS)

    Higashi, T.; Osada, T.; Aoyama, W.; Iguchi, M.; Suzuki, S.; Kanno, M.; Moriya, K.; Yoshimura, M.; Tusuda, M.

    1983-01-01

    A new dental x-ray fluorographic unit has been developed. This unit is composed of small intraoral x-ray tube, a compact x-ray image intensifier, and a high-resolution TV system. The purposes for developing this equipment were to (1) directly observe the tooth during endodontic procedures and (2) reduce x-ray exposure to the patient and the dentist. The radiation exposure can be reduced to about 1/600 the exposure used with conventional dental film. In clinical trials, a satisfactory fluorographic dental image for endodontic treatment was obtained with this new device

  18. Low energy x-ray spectrometer

    International Nuclear Information System (INIS)

    Woodruff, W.R.

    1981-01-01

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni Lα 1 2 lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures

  19. X-Ray Exam: Hip

    Science.gov (United States)

    ... for Educators Search English Español X-Ray Exam: Hip KidsHealth / For Parents / X-Ray Exam: Hip What's in this article? What It Is Why ... You Have Questions Print What It Is A hip X-ray is a safe and painless test ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... X-rays are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  2. X-Ray Exam: Ankle

    Science.gov (United States)

    ... for Educators Search English Español X-Ray Exam: Ankle KidsHealth / For Parents / X-Ray Exam: Ankle What's in this article? What It Is Why ... You Have Questions Print What It Is An ankle X-ray is a safe and painless test ...

  3. Diagnostic X-ray sources-present and future

    Science.gov (United States)

    Behling, Rolf; Grüner, Florian

    2018-01-01

    This paper compares very different physical principles of X-ray production to spur ideation. Since more than 120 years, bremsstrahlung from X-ray tubes has been the workhorse of medical diagnostics. Generated by X-ray segments comprised of X-ray tubes and high-voltage generators in the various medical systems, X-ray photons in the spectral range between about 16 keV and 150 keV deliver information about anatomy and function of human patients and in pre-clinical animal studies. Despite of strides to employ the wave nature of X-rays as phase sensitive means, commercial diagnostic X-ray systems available until the time of writing still rely exclusively on measuring the attenuation and scattering of X-rays by matter. Significant activities in research aim at building highly brilliant short pulse X-ray sources, based on e.g. synchrotron radiation, free electron lasers and/or laser wake-field acceleration of electrons followed by wiggling with magnetic structures or Thomson scattering in bunches of light. While both approaches, non-brilliant and brilliant sources, have different scope of application, we speculate that a combination may expand the efficacy in medical application. At this point, however, severe technical and commercial difficulties hinder closing this gap. This article may inspire further development and spark innovation in this important field.

  4. X-ray diffractometry with spatial resolution

    International Nuclear Information System (INIS)

    Zeiner, K.

    1981-04-01

    X-ray diffractometry is one of the extensively used methods for investigation of the crystalline structure of materials. Line shape and position of a diffracted line are influenced by grain size, deformation and stress. Spatial resolution of one of these specimen characteristics is usually achieved by point-focused X-ray beams and subsequently analyzing different specimen positions. This work uses the method of image reconstruction from projections for the generation of distribution maps. Additional experimental requirements when using a conventional X-ray goniometer are a specimen scanning unit and a computer. The scanning unit repeatedly performs a number of translation steps followed by a rotation step in a fixed X-ray tube/detector (position sensitive detector) arrangement. At each specimen position a diffraction line is recorded using a line-shaped X-ray beam. This network of diffraction lines (showing line resolution) is mathematically converted to a distribution map of diffraction lines and going thus a point resolution. Specimen areas of up to several cm 2 may be analyzed with a linear resolution of 0.1 to 1 mm. Image reconstruction from projections must be modified for generation of ''function-maps''. This theory is discussed and demonstrated by computer simulations. Diffraction line analysis is done for specimen deformation using a deconvolution procedure. The theoretical considerations are experimentally verified. (author)

  5. X-ray target with substrate of molybdenum alloy

    International Nuclear Information System (INIS)

    Hirsch, H.H.

    1980-01-01

    Rotary targets for x-ray tubes are provided comprising a molybdenum base body alloyed with a stabilizing proportion of iron, silicon, cobalt, tantalum, niobium, hafnium, stable metal oxide, or a mixture of the preceding

  6. SMM x ray polychromator

    Science.gov (United States)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  7. Obstetric X-rays

    International Nuclear Information System (INIS)

    Mwachi, M.K.

    2006-01-01

    Radiography of the pelvis should never be taken to diagnose early pregnancy, because of potential hazards of radiation damage to the growing foetus. the only indication occurs in the last week of pregnancy (37 weeks). Obstetric X-ray will help you answer like confirmation of malposition,multiple pregnancies; fetal abnormalities e.g. hydrocephalus, foetal disposition. The choice of radiographic projection will help give foetal presentation, disposition as well as foetal maturity. The search pattern helps you determine maternal and spine deformity, foetal spine and head , foetal presentation and any other anomalies

  8. X-ray film

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.; Wonacott, A.J.

    1977-01-01

    The performance of film as an X-ray detector is discussed and its behaviour is compared with that of a perfect Poissonian detector. The efficiency of microdensitometry as a method of extracting the information recorded on the film is discussed. More emphasis is placed in the precision of microdensitometric measurements than on the more obvious characteristic of film speed. The effects of chemical fog and background on the precision of the measurements is considered and it is concluded that the final limit to precision is set by the chemical fog. (B.D.)

  9. X-ray diffraction

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of literature on X-ray diffraction begins with a list of conference proceedings on the subject, organised by the Philips' organisation at regular intervals in various European countries. This is followed by a list of bulletins. The bibliography is divided according to the equipment (cameras, diffractometers, monochromators) and its applications. The applications are subdivided into sections for high/low temperature and pressure, effects due to the equipment, small angle scattering and a part for stress, texture and phase analyses of metals and quantitative analysis of minerals

  10. Trends in x-ray photography and patient exposure dose

    International Nuclear Information System (INIS)

    Orito, Takeo; Sanada, Shigeru; Maekawa, Ryuichi; Koshida, Kichiro; Hiraki, Tatsunosuke

    1980-01-01

    The exposure doses of patients in X-ray photography are influenced by such technological factors as X-ray tube voltage, filter, sensitizing screen, film and grid. Survey by questionnnaire was made previously in 1973 on the above factors. The trends five years after were surveyed similarly, in connection with the exposure doses of patients. Questionnaires were sent to 200 radiation technicians, and 121 (60.5%) answered the survey in March, 1979. The results in the cases of simple X-ray photography and obstetric, infant and breast X-ray photographings are described. X-ray tube voltage is generally on the increase. In the sensitizing screens, exposure doses are fairly decreased due to the use of improved intensifying screen (LT-II). In the grid, the ratio 8 : 1 is used more than 5 : 1. In the usage of additional filters and in the distance of photography, improvements are desired. (J.P.N.)

  11. Soft x-ray lasers

    International Nuclear Information System (INIS)

    Matthews, D.L.; Rosen, M.D.

    1988-01-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs

  12. X-ray spectrometry

    International Nuclear Information System (INIS)

    Markowicz, A.A.; Van Grieken, R.E.

    1986-01-01

    In the period under review, i.e, through 1984 and 1985, some 600 articles on XRS (X-ray spectrometry) were published; most of these have been scanned and the most fundamental ones are discussed. All references will refer to English-language articles, unless states otherwise. Also general books have appeared on quantitative EPXMA (electron-probe X-ray microanalysis) and analytical electron microscopy (AEM) as well as an extensive review on the application of XRS to trace analysis of environmental samples. In the period under review no radically new developments have been seen in XRS. However, significant improvements have been made. Gain in intensities has been achieved by more efficient excitation, higher reflectivity of dispersing media, and better geometry. Better understanding of the physical process of photon- and electron-specimen interactions led to complex but more accurate equations for correction of various interelement effects. Extensive use of micro- and minicomputers now enables fully automatic operation, including qualitative analysis. However, sample preparation and presentation still put a limit to further progress. Although some authors find XRS in the phase of stabilization or even stagnation, further gradual developments are expected, particularly toward more dedicated equipment, advanced automation, and image analysis systems. Ways are outlined in which XRS has been improved in the 2 last years by excitation, detection, instrumental, methodological, and theoretical advances. 340 references

  13. High-energy x-ray detection of G359.89–0.08 (SGR A–E): magnetic flux tube emission powered by cosmic rays?

    DEFF Research Database (Denmark)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.

    2014-01-01

    of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A–E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps Te...

  14. The effect of angular and longitudinal tube current modulations on the estimation of organ and effective doses in x-ray computed tomography

    International Nuclear Information System (INIS)

    Straten, Marcel van; Deak, Paul; Shrimpton, Paul C.; Kalender, Willi A.

    2009-01-01

    Purpose: Tube current modulation (TCM) is one of the recent developments in multislice CT that has proven to reduce the patient radiation dose without affecting the image quality. Presently established methods and published coefficients for estimating organ doses from the dose measured free in air on the axis of rotation or in the CT dose index (CTDI) dosimetry phantoms do not take into account this relatively new development in CT scanner design and technology. Based on these organ dose coefficients effective dose estimates can be made. The estimates are not strictly valid for CT scanning protocols utilizing TCM. In this study, the authors investigated the need to take TCM into account when estimating organ and effective dose values. Methods: A whole-body adult anthropomorphic phantom (Alderson Rando) was scanned with a multislice CT scanner (Somatom Definition, Siemens, Forchheim, Germany) utilizing TCM (CareDose4D). Tube voltage was 120 kV, beam collimation 19.2 mm, and pitch 1. A voxelized patient model was used to define the tissues and organs in the phantom. Tube current values as a function of tube angle were obtained from the raw data for each individual tube rotation of the scan. These values were used together with the Monte Carlo dosimetry tool IMPACTMC (VAMP GmbH, Erlangen, Germany) to calculate organ dose values both with and without account of TCM. Angular and longitudinal modulations were investigated separately. Finally, corresponding effective dose conversion coefficients were determined for both cases according to the updated 2007 recommendations of the ICRP. Results: TCM amplitude was greatest in the shoulder and pelvic regions. Consequently, dose distributions and organ dose values for particular cross sections changed considerably when taking angular modulation into account. The effective dose conversion coefficients were up to 11% lower for a single rotation in the shoulder region and 17% lower in the pelvis when taking angular TCM into

  15. Experimental investigations of the dosimetric features of x-ray radiation used in x-ray diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Prostyakova, M A

    1975-10-01

    For radiation hygiene estimates of the extent of the irradiation of various organs and tissues in roentgenological investigations, the quality and quantity of the primary radiation beam and its behaviour in the irradiated medium are assessed. It is shown that the effective energy of x-rays generated at 50-100 kV and with different radiation field dimensions at different depths in a tissue-equivalent irradiated medium is more or less constant, varying within the range 25 to 32 keV. The constancy of effective x-ray energies in a tissue-equivalent medium enables one to use, for different x-ray tube regimes, constant values of the roentgen-rad conversion factor for soft tissue and bone tissue. The investigations confirm the desirability of using high voltages across the x-ray tube in practical x-ray work.

  16. Effects of tube potential and scatter rejection on image quality and effective dose in digital chest X-ray examination: An anthropomorphic phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, D.J., E-mail: daniel.shaw@christie.nhs.uk [Diagnostic Radiology, Department of Medical Physics and Engineering, Leeds Teaching Hospitals, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom); Crawshaw, I. [Diagnostic X-ray Department, York Teaching Hospital NHS Foundation Trust, The York Hospital, Wigginton Road, York YO31 8HE (United Kingdom); Rimmer, S. D. [Diagnostic Radiology, Department of Medical Physics and Engineering, Leeds Teaching Hospitals, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom)

    2013-11-15

    Objectives: The purpose of this study was to investigate the effects of tube potential and scatter rejection techniques on image quality of digital posteroanterior (PA) chest radiographs. Methods: An anthropomorphic phantom was imaged using a range of tube potentials (81–125 kV{sub p}) without scatter rejection, with an anti-scatter grid, and using a 10 cm air gap. Images were anonymised and randomised before being evaluated using a visual graded analysis (VGA) method. Results: The effects of tube potential on image quality were found to be negligible (p > 0.63) for the flat panel detector (FPD). Decreased image quality (p = 0.031) was noted for 125 kV{sub p} relative to 109 kV{sub p}, though no difference was noted for any of the other potentials (p > 0.398) for computed radiography (CR). Both scatter rejection techniques improved image quality (p < 0.01). For FPD imaging the anti-scatter grid offered slightly improved image quality relative to the air gap (p = 0.038) but this was not seen for CR (p = 0.404). Conclusions: For FPD chest imaging of the anthropomorphic phantom there was no dependence of image quality on tube potential. Scatter rejection improved image quality, with the anti-scatter grid giving greater improvements than an air-gap, but at the expense of increased effective dose. CR imaging of the chest phantom demonstrated negligible dependence on tube potential except at 125 kV{sub p}. Scatter rejection improved image quality, but with no difference found between techniques. The air-gap resulted in a smaller increase in effective dose than the anti-scatter grid and would be the preferred scatter rejection technique.

  17. The Effects on Absorbed Dose Distribution in Intraoral X-ray Imaging When Using Tube Voltages of 60 and 70 kV for Bitewing Imaging

    Directory of Open Access Journals (Sweden)

    Kristina Hellén-Halme

    2013-10-01

    Full Text Available Objectives: Efforts are made in radiographic examinations to obtain the best image quality with the lowest possible absorbed dose to the patient. In dental radiography, the absorbed dose to patients is very low, but exposures are relatively frequent. It has been suggested that frequent low-dose exposures can pose a risk for development of future cancer. It has previously been reported that there was no significant difference in the diagnostic accuracy of approximal carious lesions in radiographs obtained using tube voltages of 60 and 70 kV. The aim of this study was, therefore, to evaluate the patient dose resulting from exposures at these tube voltages to obtain intraoral bitewing radiographs.Material and Methods: The absorbed dose distributions resulting from two bitewing exposures were measured at tube voltages of 60 and 70 kV using Gafchromic® film and an anatomical head phantom. The dose was measured in the occlusal plane, and ± 50 mm cranially and caudally to evaluate the amount of scattered radiation. The same entrance dose to the phantom was used. The absorbed dose was expressed as the ratio of the maximal doses, the mean doses and the integral doses at tube voltages of 70 and 60 kV.Results: The patient receives approximately 40 - 50% higher (mean and integral absorbed dose when a tube voltage of 70 kV is used.Conclusions: The results of this study clearly indicate that 60 kV should be used for dental intraoral radiographic examinations for approximal caries detection.

  18. Characteristics of x-ray radiation from a gas-puff z-pinch plasma

    International Nuclear Information System (INIS)

    Akiyama, N.; Takasugi, K.

    2002-01-01

    Characteristics of x-ray radiation from Ar gas-puff z-pinch plasma have been investigated by changing delay time of discharge from gas puffing. Intense cloud structure of x-ray image was observed at small delay time region, but the total x-ray signal was not so intense. The x-ray signal increased with increasing the delay time, and hot spots of x-ray image also became intense. Electron temperature was evaluated from x-ray spectroscopic data, and no significant difference in temperature was observed. (author)

  19. Analysis of the 1980 November 18 limb flare observed by the hard X-ray imaging spectrometer (HXIS)

    NARCIS (Netherlands)

    Hoyng, P.; Haug, E.; Elwert, G.

    1984-01-01

    X-ray images of the 18 November 1980 limb flare taken by the HXIS instrument aboard SMM were analysed. The hard X-rays originated from three spots on the SW limb of the solar disk with different altitudes and time evolution. The locations of the brightest spots in hard and soft X-rays are compared

  20. 12-inch x-ray image intensifier with thin metal input window

    Energy Technology Data Exchange (ETDEWEB)

    Obata, Yoshiharu; Anno, Hidero; Harao, Norio [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1982-08-01

    Borosilicate glass has been used for X-ray input window of image intensifiers (I.I.) up to now. Now two new types of 12-inch metal I.I., RT12301C and RT12302C, have been developed. They use convex 1-mm aluminum (instead of 5-mm borosilicate glass) for the input window. Adopting a high-performance penta-electronic lens and a new type of light guide CsI film, these intensifiers have greatly improved contrast, quantum detection efficiency (QDE) and resolution capability. In spite of low dosage, image quality equivalent to that in the conventional direct radiograph is obtained through combined use of the new-type 12-inch metal I.I. with 0.3-mm small-focal-spot X-ray tube. Great contribution to digital radiography is expected of this I.I.

  1. Dedicated Stereophotogrammetric X-Ray System For Craniofacial Research And Treatment Planning

    Science.gov (United States)

    Baumrind, Sheldon; Moffitt, Francis; Curry, Sean; Isaacson, Robert J.

    1983-07-01

    We have constructed and brought into use what we believe to be the first dedicated coplanar craniofacial stereometric x-ray system for clinical use. Paired Machlett Dynamax 50/58 x-ray tubes with 0.3 mm focal spots are employed. Displacement between emitters is 16 inches. The focus film distance for both emitters is 66.5 inches. The mid-sagittal plane to focus distance is 60 inches. One film of each stereo pair conforms with the standards of the Second Roentgenocephalometric Workshop and can be used to make all standard two-dimensional orthodontic and cephalometric measurements. When supplemented by data from the conjugate film, a three-dimensional coordinate map can be generated as a machine operation. Specialized complementary software has been developed to increase the reliability of landmark location both in two and in three dimensions.

  2. Effects of tube potential and scatter rejection on image quality and effective dose in digital chest X-ray examination: An anthropomorphic phantom study

    International Nuclear Information System (INIS)

    Shaw, D.J.; Crawshaw, I.; Rimmer, S.D.

    2013-01-01

    Objectives: The purpose of this study was to investigate the effects of tube potential and scatter rejection techniques on image quality of digital posteroanterior (PA) chest radiographs. Methods: An anthropomorphic phantom was imaged using a range of tube potentials (81–125 kV p ) without scatter rejection, with an anti-scatter grid, and using a 10 cm air gap. Images were anonymised and randomised before being evaluated using a visual graded analysis (VGA) method. Results: The effects of tube potential on image quality were found to be negligible (p > 0.63) for the flat panel detector (FPD). Decreased image quality (p = 0.031) was noted for 125 kV p relative to 109 kV p , though no difference was noted for any of the other potentials (p > 0.398) for computed radiography (CR). Both scatter rejection techniques improved image quality (p p . Scatter rejection improved image quality, but with no difference found between techniques. The air-gap resulted in a smaller increase in effective dose than the anti-scatter grid and would be the preferred scatter rejection technique

  3. X-ray table

    International Nuclear Information System (INIS)

    Craig, J.R.; Otto, G.W.

    1980-01-01

    An X-ray radiographic or fluoroscopic table is described which includes a film holder with a frame attached to a cable running over end pulleys for positioning the holder longitudinally as desired under the table top. The holder has a front opening to receive a cassette-supporting tray which can be slid out on tracks to change the cassette. A reed switch on the frame is opened by a permanent magnet on the tray only when the tray is half-way out. When the switch is closed, an electromagnet locks the pulley and the holder in place. The holder is thus automatically locked in place not only during exposure (tray in) but when the tray is out for changing the cassette. To re-position the holder, the operator pulls the tray half-out and, using the tray itself, pushes the holder along the table, the holder being counterbalanced by a weight. (author)

  4. X-ray equipment

    International Nuclear Information System (INIS)

    Redmayne, I.G.B.

    1988-01-01

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.)

  5. X-ray equipment

    Energy Technology Data Exchange (ETDEWEB)

    Redmayne, I.G.B.

    1988-01-06

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.).

  6. The study on clinical conditions and skin dose of upper-gastrointestinal x-ray fluoroscopy

    International Nuclear Information System (INIS)

    Kim, Sung Chul; Ahn, Sung Min; Jang, Sang Sup

    2007-01-01

    This study examined present conditions of upper-gastrointestinal X-ray fluoroscopy and patient skin dose. The authors elected 21 equipment to check the X-ray equipment and exposure factor of fluoroscopy and spot exposure in university hospitals, hospitals, and clinics where perform upper-gastrointestinal X-ray fluoroscopy more than five times every day in Incheon areas. The amount of patient's skin dose during upper-gastrointestinal X-ray fluoroscopy was measured by ionization chamber

  7. Improvements in or relating to pulsed X-ray units

    International Nuclear Information System (INIS)

    Bichenkov, E.I.; Klypin, V.V.; Palchikov, E.I.

    1983-01-01

    A pulsed X-ray unit comprises a pulsed X-ray tube connected to a discharge capacitor. The discharge capacitor comprises two coaxially arranged cylinders. One cylinder of the discharge capacitor is connected to the X-ray tube and to the high-voltage end of the secondary winding of the pulsed transformer which is shaped as a truncated cone, and is arranged internally of this winding coaxially therewith. The other cylinder of the discharge capacitor is also connected to the X-ray tube and to the low-voltage end of the secondary winding of the pulsed transformer, and is arranged intermediate this winding and the primary winding of the pulsed transformer which is shaped as a hollow cylinder, and connected to the charging device. The cylinders of the discharge capacitor have ports made therein for the passage therethrough of the magnetic flux produced by the windings of the pulsed transformer. (author)

  8. Assembling x-ray sources by carbon nanotubes

    Science.gov (United States)

    Sessa, V.; Lucci, M.; Toschi, F.; Orlanducci, S.; Tamburri, E.; Terranova, M. L.; Ciorba, A.; Rossi, M.; Hampai, D.; Cappuccio, G.

    2007-05-01

    By the use of a chemical vapour deposition technique a series of metal wires (W, Ta, Steel ) with differently shaped tips have been coated by arrays of single wall carbon nanotubes (SWNT). The field emission properties of the SWNT deposits have been measured by a home made apparatus working in medium vacuum (10 -6- 10 -7 mbar) and the SWNT-coated wires have been used to fabricate tiny electron sources for X-ray tubes. To check the efficiency of the nanotube coated wires for X-ray generation has, a prototype X-ray tube has been designed and fabricated. The X-ray tube works at pressures about 10 -6 mbar. The target ( Al film) is disposed on a hole in the stainless steel sheath: this configuration makes unnecessary the usual Be window and moreover allows us to use low accelerating potentials (< 6 kV).

  9. A quality measurement study of a diagnostic x-ray

    International Nuclear Information System (INIS)

    Nishitani, Motohiro; Fujimoto, Nobuhisa; Yamada, Katsuhiko

    1982-01-01

    It is important to check periodically the quality and quantity of the X-rays emitted, in order to obtain the best possible performance from your diagnostic X-ray apparatus. The best way of checking the exact quality of the X-ray is to measure the spectrum of the X-ray, but it is not an easy task to carry out. The second way is to plot the attenuation curve of the X-rays. We have developed a method to plot the attenuation curve by a single exposure, utilizing J.r. Greening's empirical formula. The output of the three cavity ionization chambers, one with 7 mmAl filter, another with a 3 mmAl and the third without any filter, exposed to the same X-ray, were put into a microcomputer. The programming was arranged to display the attenuation curve of the X-rays, effective energy of the X-rays, the 1st HVL and the 2nd HVL on the CRT. The attenuation curves of the X-rays, emitted at a tube voltage at between 60 and 140 kV obtained by this method, agreed with the experimental results with an error of +-4 %. The effective energy obtained by this method agreed with the experimental data with an error of +-1 %. (author)

  10. Biological effect of ultrasoft x-ray, 1

    International Nuclear Information System (INIS)

    Narita, Noboru

    1985-01-01

    Biological effect on Escherichia coli by ultrasoft X-ray have been studied by comparing with that by uv light (2537 A) and by soft X-ray (40 kVp, 5 mA). Ultrasoft X-ray is aluminium characteristic X-ray (about 1.5 keV) produced by low energy electron collision on aluminium foil target and is obtained from Lea-type transmission target discharge tube. Escherichia coli used here are AB1157, AB1886 (uvrA6), JC1569 (recA), AB2470 (recB) and AB2480 (uvr rec) for inactivation experiment and WP2, WP2uvrA, WP2pKM101 and WP2uvrApKM101 for mutation induction experiment. These strains are all irradiated in buffer. Results obtained are summerized as follows : (i) inactivation by ultrasoft X-ray is located between ones by uv light and by soft X-ray, or ultrasoft X-ray gives a lethal damage that uvrA6 gene seems to contribute, and (ii) ultrasoft X-ray does not show the remarkable mutation induction like that induced by low dose irradiation of uv light or soft X-ray. (author)

  11. X-rays revolutionized the world

    International Nuclear Information System (INIS)

    Holmberg, P.

    1995-01-01

    This year marks the 100th anniversary of Professor Wilhelm Conrad Roentgen's accidental discovery of x-radiation. On 8 November 1895, Roentgen was conducting laboratory tests at the University of Wuertsburg in order to study cathode rays in a gasdischarge tube. He noticed that a fluorescence paper that happened to be near the tube began to glow even though the radiation should not have penetrated the shield of the gas-discharge tube. Less than two months later Roentgen reported the discovery of a new type of penetrating radiation, which he called x-rays. The discovery became an immediate worldwide sensation, and doctors realised that they could now see inside the human body without surgery. In Finland, the first x-ray equipment was acquired as early as 1900. The following year, Roentgen was awarded the Nobel prize in physics for his work. The health risks of x-radiation were noticed early on, but their severity was not always understood. The new x-ray examination methods were difficult to control and the exposure times then were quite long. It was therefore not uncommon that radiation damage eventually led to skin cancer and haematological diseases. (orig.) (7 figs.)

  12. Reduction of levels of radiation exposure over patients and medical staff by using additional filters of copper and aluminum on the outputs of X-ray tubes in hemodynamic equipment

    International Nuclear Information System (INIS)

    Weis, Guilherme L.; Müller, Felipe M.; Schuch, Luiz A.

    2013-01-01

    Radioprotection in hemodynamic services is extremely important. Decrease of total exposition time, better positioning of medical staff in the room, use of individual and collective protection equipment and shorter distance between the patient and the image intensifier tube are, among others, some ways to reduce the levels of radiation. It is noted that these possible forms of reducing the radiation exposition varies depending on the medical staff. Hence, the purpose of the present paper is to reduce such levels of radiation exposition in a way apart from medical staffs. It is proposed, therefore, the use of additional filters on the output of the X-ray tube in three hemodynamic equipment from different generations: detector with a flat panel of amorphous selenium, image intensifier tube with charge coupled device, and image intensifier tube with video camera. In order to quantify the quality of the images generated, a simulator made of aluminum plates and other devices was set up, so it was possible to measure and compare the acquired images. Methods of images analysis (threshold, histogram, 3D surface) were used to measure the signal/noise ratio, the spatial resolution, the contrast and the definition of the signal area, thus doubts regarding the analysis of the images among observers (inter-observers) and even for a single observer (intra-observer) can be avoided. Ionization chambers were also used in order to quantify the doses of radiation that penetrated the skin of the patients with and without the use of the filters. In all cases was found an arrangement of filters that combines quality of the images with a significant reduction of the levels of exposure to ionizing radiation, concerning both the patient and the medical staff. (author)

  13. X-Ray Lasers 2016

    CERN Document Server

    Bulanov, Sergei; Daido, Hiroyuki; Kato, Yoshiaki

    2018-01-01

    These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications.   The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

  14. A Study of the Resolution of Dental Intraoral X-Ray Machines

    International Nuclear Information System (INIS)

    Kim, Seon Ju; Chung, Hyon De

    1990-01-01

    The purpose of this study was to assess the resolution and focal spot size of dental X-ray machines. Fifty dental X-ray machines were selected for measuring resolution and focal spot size. These machines were used in general dental clinics. The time on installation of the X-ray machine varies from 1 years to 10 years. The resolution of these machines was measured with the test pattern. The focal spot size of these machines was measured with the star test pattern. The following results were obtained: 1. The resolution of dental intraoral X-ray machines was not significantly changed in ten years. 2. The focal spot size of dental intraoral X-ray machines was not significantly increased in ten years. The statistical analysis between the mean focal spot size and nominal focal spot size was significant at the 0.05 level about the more than 3 years used machines.

  15. X-ray instrumentation in astronomy

    International Nuclear Information System (INIS)

    Cuhlane, J.L.

    1985-01-01

    This book presents the proceedings of a conference devoted to x-ray instrumentation in astronomy. Special sections are: AXAF X-Ray Optical Systems; Specialized X-Ray Systems; X-Ray Optical Systems I; X-Ray Optical Systems II; Gas Filled X-Ray Detectors II; The NASA Advanced X-Ray Astrophysics Facility; X-Ray and EUV Spectrometers; Microchannel Plates; and Solid State Detectors

  16. Topological X-Rays Revisited

    Science.gov (United States)

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  17. X-ray penumbral imaging diagnostic developments at the National Ignition Facility

    Science.gov (United States)

    Bachmann, B.; Abu-Shawareb, H.; Alexander, N.; Ayers, J.; Bailey, C. G.; Bell, P.; Benedetti, L. R.; Bradley, D.; Collins, G.; Divol, L.; Döppner, T.; Felker, S.; Field, J.; Forsman, A.; Galbraith, J. D.; Hardy, C. M.; Hilsabeck, T.; Izumi, N.; Jarrot, C.; Kilkenny, J.; Kramer, S.; Landen, O. L.; Ma, T.; MacPhee, A.; Masters, N.; Nagel, S. R.; Pak, A.; Patel, P.; Pickworth, L. A.; Ralph, J. E.; Reed, C.; Rygg, J. R.; Thorn, D. B.

    2017-08-01

    X-ray penumbral imaging has been successfully fielded on a variety of inertial confinement fusion (ICF) capsule implosion experiments on the National Ignition Facility (NIF). We have demonstrated sub-5 μm resolution imaging of stagnated plasma cores (hot spots) at x-ray energies from 6 to 30 keV. These measurements are crucial for improving our understanding of the hot deuterium-tritium fuel assembly, which can be affected by various mechanisms, including complex 3-D perturbations caused by the support tent, fill tube or capsule surface roughness. Here we present the progress on several approaches to improve x-ray penumbral imaging experiments on the NIF. We will discuss experimental setups that include penumbral imaging from multiple lines-of-sight, target mounted penumbral apertures and variably filtered penumbral images. Such setups will improve the signal-to-noise ratio and the spatial imaging resolution, with the goal of enabling spatially resolved measurements of the hot spot electron temperature and material mix in ICF implosions.

  18. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    International Nuclear Information System (INIS)

    Sun, Weiyuan; Liu, Zhiguo; Sun, Tianxi; Peng, Song; Ma, Yongzhong; Ding, Xunliang

    2014-01-01

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays

  19. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-05-11

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays.

  20. 21 CFR 872.1810 - Intraoral source x-ray system.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a... structures. The x-ray source (a tube) is located inside the mouth. This generic type of device may include... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral source x-ray system. 872.1810 Section...

  1. Single-sided sheet-to-tube spot welding investigated by 3D numerical simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Chergui, Azeddine; Zhang, Wenqi

    The single-sided resistance spot welding process is analyzed by a 3D numerical study of sheet-to-tube joining. Finite element simulations are carried out in SORPAS® 3D. Two levels of electrode force and five levels of welding current are simulated. The overall effects of changing current and force...

  2. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  3. X-ray filtration apparatus

    International Nuclear Information System (INIS)

    Thompson, G.

    1992-01-01

    This invention relates to an X-ray shielding support device. In spite of considerable development in X-ray taking techniques, a need still exists for effective shielding, inter alia, to compensate for variations in the thickness, density and the absorption properties of the object being studied. By appropriate shielding, the X-ray image produced is of sufficient detail, contrast and intensity over its entire area to constitute a useful diagnostic aid. It is also desirable to subject the patient to the smallest possible X-ray dosage. 4 figs

  4. Characterization of a pulsed x-ray source for fluorescent lifetime measurements

    International Nuclear Information System (INIS)

    Blankespoor, S.C.; Derenzo, S.E.; Moses, W.W.; Rossington, C.S.; Ito, M.; Oba, K.

    1994-01-01

    To search for new, fast, inorganic scintillators, the authors have developed a bench-top pulsed x-ray source for determining fluorescent lifetimes and wavelengths of compounds in crystal or powdered form. This source uses a light-excited x-ray tube which produces x-rays when light from a laser diode strikes its photocathode. The x-ray tube has a tungsten anode, a beryllium exit window, a 30 kV maximum tube bias, and a 50 μA maximum average cathode current. The laser produces 3 x 10 7 photons at 650 nm per ∼100 ps pulse, with up to 10 7 pulses/sec. The time spread for the laser diode, x-ray tube, and a microchannel plate photomultiplier tube is less than 120 ps fwhm. The mean x-ray energy at tube biases of 20, 25, and 30 kV is 9.4, 10.3, and 11.1 keV, respectively. The authors measured 140, 230, and 330 x-ray photons per laser diode pulse per steradian, at tube biases of 20, 25, and 30 kV, respectively. Background x-rays due to dark current occur at a rate of 1 x 10 6 and 3 x 10 6 photons/sec/steradian at biases of 25 and 30 kV, respectively. Data characterizing the x-ray output with an aluminum filter in the x-ray beam are also presented

  5. X-ray emission spectroscopy. X-ray fluorescence

    International Nuclear Information System (INIS)

    Despujols, J.

    1992-01-01

    Principles of X-ray emission spectrometry are first recalled, then wave-length dispersive and energy dispersive X-ray fluorescence spectrometer are described. They are essentially designed for qualitative and quantitative analysis of elements (Z>10). Sample preparation, calibration, corrections, interferences, accuracy are reviewed. Examples of use in different industries are given. (71 refs.)

  6. Personnel Radiation Exposure Associated With X-Rays Emanating from U.S. Coast Guard LORAN High Voltage Vacuum Tube Transmitter Units

    Science.gov (United States)

    2011-07-01

    until LORAN was shut down at LORSTA Narrow Cape, LORSTA Shoal Cove, LORSTA Tok , and LORSTA Williams Lake. Fig. 5: 2nd IPA tube As shown in Table 1...use. Fig. 11: Vacuum switches at LORSTA Tok Antenna Coupler Room Fig. 12: Cooling Rack in AN/FPN-44/B Antenna Coupler Plenum Space...0.000 N/A 0.000 N/A Gesashi 02-10 N/A 8 2 0.000 1.722 0.000 3.444 Tok N/A 07-08 7 4 0.000 0.529 0.000 2.116 Attu N/A 07-08 10 4 0.001 0.259 0.010 1.036

  7. X-ray tests of microfocusing mono-capillary optic for protein crystallography

    CERN Document Server

    Bilderback, D H

    2001-01-01

    A single, borosilicate-glass capillary was drawn into a 30.5 cm long elliptical shape. The inside diameter was 0.40 mm at the large base end and 0.13 mm at the tip. With 12 keV X-rays from the CHESS D1 bending magnet, the single-bounce capillary produced a focus of better than 18 mu m in diameter (FHWM) at a 3 cm distance from the capillary tip. A flux gain of 110 in the focus position was observed along with a total flux in the spot of 4x10 sup 1 sup 0 X-rays/s (conditions: 5.3 GeV, 182 mA, 1.5% bandwidth multilayer, 12 keV X-rays). A measurement of the far field focus ring diameter yielded a divergence of 3.8 mrad, in good agreement with the 4 mrad design of the optic for protein crystallography. Using a small 25 mu m square beam, we measured the local reflectivity to be greater than 95% and the inner slope errors of the capillary to average about +-150 mu rad, both from raw and elliptically shaped tubing. Our conclusion is that more perfect starting tubing (i.e. one with lower slope errors) is needed to ma...

  8. The survey of the surface doses of the dental x-ray machines

    International Nuclear Information System (INIS)

    Lee, Jae Seo; Kang, Byung Cheol; Yoon, Suk Ja

    2005-01-01

    The purpose of this study was to investigate variability of doses with same exposure parameters and evaluate radiographic density according to the variability of doses. Twenty-eight MAX-GLS (Shinhung Co, Seoul, Korea), twenty-one D-60-S (DongSeo Med, Seoul, Korea), and eleven REX-601 (Yoshida Dental MFG, Tokyo, Japan) dental x-ray machines were selected for this study. Surface doses were measured under selected combinations of tube voltage, tube current, exposure time, and constant distance 42 cm from the focal spot to the surface of the Multi-O-meter (Unfors Instrument, Billdal, Sweden). Radiographic densities were measured on the films at maximum, minimum and mean surface doses of each brand of x-ray units. With MAX-GLS, the maximum surface doses were thirteen to fourteen times as much as the minimum surfaces doses. With D-60-S, the maximum surface doses were three to eight times as much as the minimum surface doses. With REX-601, the maximum surface doses were six to ten times as much as the minimum surface doses. The differences in radiographic densities among maximum, mean, and minimum doses were significant (p<0.01). The surface exposure doses of each x-ray machine at the same exposure parameters were different within the same manufacturer's machines.

  9. Secondary-source energy-dispersive x-ray spectrometer

    International Nuclear Information System (INIS)

    Larsen, R.P.; Tisue, G.T.

    1975-01-01

    A secondary-source energy-dispersive x-ray spectrometer has been built and tested. In this instrument the primary source of x rays is a tungsten-target tube powered by a high-voltage (75 kV), a high-power (3.7 kW) generator from a wavelength spectrometer (G.E. XRD-6). The primary polychromatic x rays irradiate an elemental foil, the secondary source. Its characteristic essentially monochromatic x rays are used to irradiate the sample. Fluorescent x rays from the sample are detected and resolved by a lithium-drifted silicon detector, multichannel-analyzer system. The design of the instrument provides a convenient means for changing the secondary, and hence, the energy of the excitation radiation

  10. Short irradiation time characteristics of the inverter type X-ray generator

    International Nuclear Information System (INIS)

    Miyazaki, Shigeru; Hara, Takamitu; Matutani, Kazuo; Saito, Kazuhiko.

    1994-01-01

    The linearity of the X-ray output is an important factor in radiography. It is a composite of the linearities of the X-ray tube voltage, the X-ray tube current, and the exposure time. This paper focuses on the linearity of exposure time. Non-linearity of the X-ray output for short-time exposure became a problem when the three-phase X-ray generator was introduced. This paper describes the inverter-type X-ray generator, which is expected to become predominant in the future. Previously, we investigated X-ray output linearity during short-time exposure using the technique of dynamic study. In this paper, we describe the application of a digital memory and a personal computer to further investigation. The non-linearity of the X-ray output was caused by irregular waveforms of the X-ray tube voltage found at the rise time and the fall time. When the rise time was about 0.6 ms, the non-linearity was about 2%, which is negligibly small. The non-linearity due to the fall time of the X-ray tube varied greatly according to the X-ray tube current. For the minimum irradiation time of 1 ms, 4% to 27% of the non-linearity was attributable to the fall time. The main cause was the stray capacitance of the X-ray high-voltage cables. When the X-ray tube current exceeded 400 mA, the rise time was almost equal to the fall time, and the problem did not occur. Consequently, the ideal generator should have a fall time which is equal to the rise time of the X-ray tube voltage. Strictly speaking, such a generator should have rectangular waveforms. (author)

  11. High Brightness, Laser-Driven X-ray Source for Nanoscale Metrology and Femtosecond Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Siders, C W; Crane, J K; Semenov, V; Betts, S; Kozioziemski, B; Wharton, K; Wilks, S; Barbee, T; Stuart, B; Kim, D E; An, J; Barty, C

    2007-02-26

    This project developed and demonstrated a new, bright, ultrafast x-ray source based upon laser-driven K-alpha generation, which can produce an x-ray flux 10 to 100 times greater than current microfocus x-ray tubes. The short-pulse (sub-picosecond) duration of this x-ray source also makes it ideal for observing time-resolved dynamics of atomic motion in solids and thin films.

  12. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study

    International Nuclear Information System (INIS)

    Shan, Jing; Lee, Yueh Z; Lu, Jianping; Zhou, Otto; Tucker, Andrew W; Heath, Michael D; Wang, Xiaohui; Foos, David H

    2015-01-01

    Chest tomosynthesis is a low-dose, quasi-3D imaging modality that has been demonstrated to improve the detection sensitivity for small lung nodules, compared to 2D chest radiography. The purpose of this study is to investigate the feasibility and system requirements of stationary chest tomosynthesis (s-DCT) using a spatially distributed carbon nanotube (CNT) x-ray source array, where the projection images are collected by electronically activating individual x-ray focal spots in the source array without mechanical motion of the x-ray source, detector, or the patient. A bench-top system was constructed using an existing CNT field emission source array and a flat panel detector. The tube output, beam quality, focal spot size, system in-plane and in-depth resolution were characterized. Tomosynthesis slices of an anthropomorphic chest phantom were reconstructed for image quality assessment. All 75 CNT sources in the source array were shown to operate reliably at 80 kVp and 5 mA tube current. Source-to-source consistency in the tube current and focal spot size was observed. The incident air kerma reading per mAs was measured as 74.47 uGy mAs −1 at 100 cm. The first half value layer of the beam was 3 mm aluminum. An average focal spot size of 2.5  ×  0.5 mm was measured. The system MTF was measured to be 1.7 cycles mm −1 along the scanning direction, and 3.4 cycles mm −1 perpendicular to the scanning direction. As the angular coverage of 11.6°–34°, the full width at half maximum of the artifact spread function improved greatly from 9.5 to 5.2 mm. The reconstructed tomosynthesis slices clearly show airways and pulmonary vascular structures in the anthropomorphic lung phantom. The results show the CNT source array is capable of generating sufficient dose for chest tomosynthesis imaging. The results obtained so far suggest an s-DCT using a distributed CNT x-ray source array is feasible. (paper)

  13. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Attekum, P.M.T.M. van.

    1979-01-01

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  14. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si0 2 . The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... over time. top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and easiest ... bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of Bone X-ray (Radiography)? ...

  17. Traditional x-ray imaging

    International Nuclear Information System (INIS)

    Hay, G.A.

    1982-01-01

    Methods of imaging x-rays, with particular reference to medicine, are reviewed. The history and nature of x-rays, their production and spectra, contrast, shapes and fine structure, image transducers, including fluorescent screens, radiography, fluoroscopy, and image intensifiers, image detection, perception and enhancement and clinical applications are considered. (U.K.)

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology Report ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x-rays in ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... clothing that might interfere with the x-ray images. Women should always inform their physician and x-ray ... lowest radiation dose possible while producing the best images for ... organizations continually review and update the technique standards used ...

  3. Advanced imaging technology using carbon nanotube x ray source

    International Nuclear Information System (INIS)

    Choi, Hae Young; Seol, Seung Kown; Kim, Jaehoon; Yoo, Seung Hoon; Kim, Jong Uk

    2008-01-01

    Recently, X ray imaging technology is a useful and leading medical diagnostic tool for healthcare professionals to diagnose disease in human body. CNTs(i.e. carbon nanotubes)are used in many applications like FED, Micro wave amplifier, X ray source, etc. because of its suitable electrical, chemical and physical properties. Specially, CNTs are well used electron emitters for x ray source. Conventionally, thermionic type of tungsten filament x ray tube is widely employed in the field of bio medical and industrial application fields. However, intrinsic problems such as, poor emission efficiency and low imaging resolution cause the limitation of use of the x ray tube. To fulfill the current market requirement specifically for medical diagnostic field, we have developed rather a portable and compact CNT based x ray source in which high imaging resolution is provided. Electron sources used in X ray tubes should be well focused to the anode target for generation of high quality x ray. In this study, Pierce type x ray generation module was tested based its simulation results using by OPERA 3D code. Pierce type module is composed of cone type electrical lens with its number of them and inner angles of them that shows different results with these parameters. And some preliminary images obtained using the CNT x ray source were obtained. The represented images are the finger bone and teeth in human body. It is clear that the trabeculation shape is observed in finger bone. To obtain the finger bone image, tube currents of 250A at 42kV tube voltage was applied. The human tooth image, however, is somewhat unclear because the supplied voltage to the tube was limited to max. 50kV in the system developed. It should be noted that normally 60∼70kV of tube voltage is supplied in dental imaging. Considering these it should be emphasized that if the tube voltage is over 60kV then clearer image is possible. In this paper, we are discussed comparing between these experiment results and

  4. X-ray imaging system

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    A novel, high-speed apparatus for use in X-ray computerised tomography is described in detail. It consists of a semi-circular array of X-ray sources, collimators and an ion chamber array for detection of the X-rays. The X-ray sources may be pulsed in salvos such that the corresponding detectors in the array are only illuminated by one source. The use of computer controlled salvos speeds up the image processing by at least a factor of two. The ion chamber array is designed to have a constant detection efficiency for varying angles of X-ray incidence. A detailed description of the detector construction and suggested gaseous fillings are given. It is claimed that the present tomographic system allows fast and accurate imaging of internal body organs and is insensitive to the blurring effects which motion of these organs tends to produce. (UK)

  5. Performance evaluation of X-ray CT using visible scintillation light

    International Nuclear Information System (INIS)

    Kodama, Kiyoyuki; Hamada, Minoru; Suzuki, Tamotsu; Hashimoto, Masatoshi; Hanada, Takashi; Ide, Tatsuya; Maruyama, Koichi

    2004-01-01

    We proposed a new method of performance evaluation for X-ray CT using visible scintillation light and examined its usefulness in this study. When we scanned a plastic scintillator disk in a gantry opening of the X-ray CT, we could observe visible scintillation light. The rotation of the light-emitting area of the disk corresponded to that of the X-ray tube. We were able to record the scintillation light by digital video camera. By analyzing the area of visible scintillation light, the rotation speed of the X-ray tube, angular spread of the X-ray beam, uniformity of the incident X-rays, and change in X-ray energy were measured. No other method is available to obtain the above parameters of X-ray CT during a single CT scan. In the measurements of the uniformity of incident X-rays and change of X-ray energy, our method showed good accuracy in detecting the attenuation caused by the couch between the X-ray tube and the plastic scintillator disc. The proposed method is inexpensive and easy-to-use. We conclude that the method is a useful tool for performance evaluation as well as a maintenance tool for X-ray CT. (author)

  6. X-ray energy selected imaging with Medipix II

    International Nuclear Information System (INIS)

    Ludwig, J.; Zwerger, A.; Benz, K.-W.; Fiederle, M.; Braml, H.; Fauler, A.; Konrath, J.-P.

    2004-01-01

    Two different X-ray tube accelerating voltages (60 and 70 kV) are used for diagnosis of front teeth and molars. Different energy ranges are necessary as function of tooth thickness to obtain similar contrast for imaging. This technique drives the costs for the X-ray tube up and allows for just two optimized settings. Energy range selection for the detection of the penetrating X-rays would overcome these severe setbacks. The single photon counting chip MEDIPIX2 http://www.cern.ch/medipix exhibits exactly this feature. First simulations and measurements have been carried out using a dental X-ray source. As a demonstrator a real tooth has been used with different cavities and filling materials. Simulations showed in general larger improvements as compared to measurements regarding SNR and contrast: A beneficial factor of 4% wrt SNR and 25% for contrast, measurements showed factors of 2.5 and up to 10%, respectively

  7. X-ray energy selected imaging with Medipix II

    Science.gov (United States)

    Ludwig, J.; Zwerger, A.; Benz, K.-W.; Fiederle, M.; Braml, H.; Fauler, A.; Konrath, J.-P.

    2004-09-01

    Two different X-ray tube accelerating voltages (60 and 70kV) are used for diagnosis of front teeth and molars. Different energy ranges are necessary as function of tooth thickness to obtain similar contrast for imaging. This technique drives the costs for the X-ray tube up and allows for just two optimized settings. Energy range selection for the detection of the penetrating X-rays would overcome these severe setbacks. The single photon counting chip MEDIPIX2 http://www.cern.ch/medipix exhibits exactly this feature.First simulations and measurements have been carried out using a dental X-ray source. As a demonstrator a real tooth has been used with different cavities and filling materials. Simulations showed in general larger improvements as compared to measurements regarding SNR and contrast: A beneficial factor of 4% wrt SNR and 25% for contrast, measurements showed factors of 2.5 and up to 10%, respectively.

  8. Feasibility study on X-ray source with pinhole imaging method

    International Nuclear Information System (INIS)

    Qiu Rui; Li Junli

    2007-01-01

    In order to verify the feasibility of study on X-ray source with pinhole imaging method, and optimize the design of X-ray pinhole imaging system, an X-ray pinhole imaging equipment was set up. The change of image due to the change of the position and intensity of X-ray source was estimated with mathematical method and validated with experiment. The results show that the change of the spot position and gray of the spot is linearly related with the change of the position and intensity of X-ray source, so it is feasible to study X-ray source with pinhole imaging method in this application. The results provide some references for the design of X-ray pinhole imaging system. (authors)

  9. X-ray diagnostics for TFTR

    International Nuclear Information System (INIS)

    von Goeler, S.; Hill, K.W.; Bitter, M.

    1982-12-01

    A short description of the x-ray diagnostic preparation for the TFTR tokamak is given. The x-ray equipment consists of the limiter x-ray monitoring system, the soft x-ray pulse-height-analysis-system, the soft x-ray imaging system and the x-ray crystal spectrometer. Particular attention is given to the radiation protection of the x-ray systems from the neutron environment

  10. X-ray filter for chest X-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    A description is given of an X-ray filter comprised of a sheet of radiation absorbing material with an opening corresponding to the spine and central portion of the heart. The upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter. This filter will permit an acceptable density level of x-ray exposure for the lungs while allowing a higher level of x-ray exposure for the mediastinum areas of the body. (author)

  11. X-ray filter for chest x-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    Filter for use in medical x-ray apparatus to permit higher intensity x-ray exposure in the heart and mediastinum area while maintaining a normal level of x-ray exposure in other areas of the body, particlarly in the lung area. The filter comprises a sheet of radiation absorbing material having an opening therein, said opening corresponding to the spine and central portion of the heart. Accordingly, the upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter

  12. Effect of reconstruction methods and x-ray tube current–time product on nodule detection in an anthropomorphic thorax phantom: A crossed-modality JAFROC observer study

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J. D., E-mail: j.d.thompson@salford.ac.uk [Directorate of Radiography, University of Salford, Frederick Road Campus, Salford, Greater Manchester M6 6PU, United Kingdom and Department of Radiology, Furness General Hospital, University Hospitals of Morecambe Bay NHS Foundation Trust, Dalton Lane, Barrow-in-Furness LA14 4LF (United Kingdom); Chakraborty, D. P. [Department of Radiology, University of Pittsburgh, FARP Building, Room 212, 3362 Fifth Avenue, Pittsburgh, Pennsylvania 15213 (United States); Szczepura, K.; Tootell, A. K. [Directorate of Radiography, University of Salford, Frederick Road Campus, Salford, Greater Manchester M6 6PU (United Kingdom); Vamvakas, I. [Department of Radiology, Christie Hospitals NHS Foundation Trust, 550 Wilmslow Road, Manchester M20 4BX (United Kingdom); Manning, D. J. [Faculty of Health and Medicine, Lancaster Medical School, Furness College, Lancaster University, Lancaster LA1 4YG (United Kingdom); Hogg, P. [Directorate of Radiography, University of Salford, Frederick Road Campus, Salford, Greater Manchester M6 6PU, United Kingdom and Department of Radiography, Karolinksa Institute, Solnavägen 1, Solna 171 77 (Sweden)

    2016-03-15

    Purpose: To evaluate nodule detection in an anthropomorphic chest phantom in computed tomography (CT) images reconstructed with adaptive iterative dose reduction 3D (AIDR{sup 3D}) and filtered back projection (FBP) over a range of tube current–time product (mAs). Methods: Two phantoms were used in this study: (i) an anthropomorphic chest phantom was loaded with spherical simulated nodules of 5, 8, 10, and 12 mm in diameter and +100, −630, and −800 Hounsfield units electron density; this would generate CT images for the observer study; (ii) a whole-body dosimetry verification phantom was used to ultimately estimate effective dose and risk according to the model of the BEIR VII committee. Both phantoms were scanned over a mAs range (10, 20, 30, and 40), while all other acquisition parameters remained constant. Images were reconstructed with both AIDR{sup 3D} and FBP. For the observer study, 34 normal cases (no nodules) and 34 abnormal cases (containing 1–3 nodules, mean 1.35 ± 0.54) were chosen. Eleven observers evaluated images from all mAs and reconstruction methods under the free-response paradigm. A crossed-modality jackknife alternative free-response operating characteristic (JAFROC) analysis method was developed for data analysis, averaging data over the two factors influencing nodule detection in this study: mAs and image reconstruction (AIDR{sup 3D} or FBP). A Bonferroni correction was applied and the threshold for declaring significance was set at 0.025 to maintain the overall probability of Type I error at α = 0.05. Contrast-to-noise (CNR) was also measured for all nodules and evaluated by a linear least squares analysis. Results: For random-reader fixed-case crossed-modality JAFROC analysis, there was no significant difference in nodule detection between AIDR{sup 3D} and FBP when data were averaged over mAs [F(1, 10) = 0.08, p = 0.789]. However, when data were averaged over reconstruction methods, a significant difference was seen between

  13. RI-60TK X-ray television introscope

    International Nuclear Information System (INIS)

    Zhdanov, A.V.; Shablov, S.V.; Morgunov, V.I.

    1985-01-01

    X-ray television introscope is briefly described. It is applied for remote viewing of welded joints and steel articles with up to 45 mm wall thickness, steel casting, articles of titanium and aluminium alloys. X-radiation penetrating the constrolled material is amplified by X-ray image converter and is passed to television camera tube. X-ray image is observed on the screen of picture monitor. Camera attachment is provided for document recording. The introscope possesses higher sensitivity and operates with lower dose rate of radiation as compared to earlier produced devices

  14. X-ray energy-dispersive diffractometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Buras, B.; Staun Olsen, J.; Gerward, L.

    1977-03-01

    In contrast to bremsstrahlung from X-ray tubes, synchrotron radiation is very intense, has a smooth spectrum, its polarization is well defined, and at DESY the range of useful photon energies can be extended to about 70 keV and higher. In addition the X-ray beam is very well collimated. Thus synchrotron radiation seems to be an ideal X-ray source for energy-dispersive diffractometry. This note briefly describes the experimental set up at DESY, shows examples of results, and presents the underlying 'philosophy' of the research programme. (Auth.)

  15. Survey on the parameters influencing X-ray picture quality

    International Nuclear Information System (INIS)

    Stender, H.S.

    1985-01-01

    Survey on factors influencing X-ray picture quality: 1) identification of patient and imaged body part. 2) Object properties - thickness, density, built; spatial expansion and arrangement of anatomical parts; object parts in a homogenic and an inhomogenic environment; object movements. 3) Examination technique - matching to medical issue; positioning and adjustment; projection; picture format in keeping with the medical issue; object-related fade-in; distance ratios; contrast medium distribution or deposition; compression. 4) Technical factors of picture production - radiation quality tube voltage; reproducible mAs and mR/mAs; automatic exposure equipment; focal spot size; scattered radiation grid; image intensifier and indirect radiography system; exposure time, dose-to-exposure-time ratio; film-screen combination; cassette with uniform pressure contact; film processing system; radiation safety and light safety. 5) Physical imaging parameters - mean optical density; resolution capacity; contrast reproduction; noise; modulation transmission function. 6) Perceptible picture properties - luminance density; picture contrast; recognizability of details; impression of grain structure; blurred picture structure; visually conspicuous elements. 7) Requirements on picture viewing - viewing device with high luminance density and equalized illumination; possible modification of brilliance; possible fade-in operations and prevention of ambient glare; spot light with iris diaphragm; possible viewing by magnifying lens; selection of correct viewing distances; repeated picture viewing or evaluation by two or more viewers. (orig./HP) [de

  16. Time switch for X-ray diagnosis apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Distler, G; Goetzl, H

    1977-04-07

    A time switch for dental X-rays consists of a knob to select exposure time. Two scales are concentrically mounted, one for time, and one with the various tooth symbols, in such a way that the various teeth are in correspondence with the usually recommended times. However, should the X-ray tube characteristics vary at some stage, by pressing the knob, then turning, the 'tooth scale' can be rotated for setting the exposure times at higher or lower levels.

  17. Advances in direct radiographic magnification technique: First studies with a 1μ focal spot tube

    International Nuclear Information System (INIS)

    Huettenbrink, K.B.; Schadel, A.

    1986-01-01

    A direct radiographic enlargement technique mainly depends on the size of the focal spot. Up to now, its reduction was limited for physical reasons; therefore only minor degrees of magnification were applicable. With the new 1 μ focal spot tube, structures of microscopic dimensions can be visualized for the first time in a direct radiographic magnification of up to 100 diameters. First studies in isolated middle ear ossicles and a phantom soft-tissue-skull are demonstrated. Clinical usefullness seems to be limited, whereas its application for experimental research looks promising. (orig.) [de

  18. X-ray emission as a diagnostic from pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, D., E-mail: david.bowes@strath.ac.uk [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H.; He, W.; Zhang, L.; Cross, A.W.; Ronald, K.; Phelps, A.D.R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Chen, D.; Zhang, P. [Computed Tomography Lab, School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Chen, X.; Li, D. [Department of Electronic Engineering, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-09-15

    X-ray emission has been achieved using an electron beam generated by a pseudospark low-pressure discharge and utilised as a diagnostic for beam detection. A 300 A, 34 kV PS-sourced electron beam pulse of 3 mm diameter impacting on a 0.1 mm-thick molybdenum target generated X-rays which were detected via the use of a small, portable X-ray detector. Clear X-ray images of a micro-sized object were captured using an X-ray photodetector. This demonstrates the inducement of proton induced X-ray emission (PIXE) not only as an indicator of beam presence but also as a future X-ray source for small-spot X-ray imaging of materials.

  19. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  20. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    International Nuclear Information System (INIS)

    Minami, K; Saito, Y; Kai, H; Shirota, K; Yada, K

    2009-01-01

    We have newly developed an open type fine-focus X-ray tube 'TX-510' to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The 'TX-510' employs a ZrO/W(100) Schottky emitter and an 'In-Lens Field Emission Gun'. The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  1. X-ray film calibration

    International Nuclear Information System (INIS)

    Stone, G.F.; Dittmore, C.H.; Henke, B.L.

    1986-01-01

    This paper discusses the use of silver halide x-ray films for imaging and spectroscopy which is limited by the range of intensities that can be recorded and densitometered. Using the manufacturers processing techniques can result in 10 2-3 range in intensity recorded over 0-5 density range. By modifying the chemistry and processing times, ranges of 10 5-6 can be recorded in the same density range. The authors report on x-ray film calibration work and dynamic range improvements. Changes to the processing chemistry and the resulting changes in dynamic range and x-ray sensitivity are discussed

  2. Women and x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Dunkley, P A; Stewart, J H

    1976-01-01

    When a woman comes to an X-Ray Department it is usually necessary to know the present stage of her menstrual cycle. X-Rays may have an adverse effect on the embryo, especially in early pregnancy. However, exposure to X-Rays at any stage may be associated with a slightly increased incidence of malignant disease in childhood. The International Commission on Radiological Protection recommends that in women of child-bearing age (in some cases as young as 11 years), non-urgent diagnostic radiography be confined to the preovulatory phase of the menstrual cycle: that is, 14 days following the first day of the last menstrual period.

  3. Upsurge of X-ray astronomy 230-

    International Nuclear Information System (INIS)

    Hudec, D.R.

    1978-01-01

    Instruments are described used for X-ray astronomy, namely X-ray detectors and X-ray telescopes. Unlike telescopes, the detectors do not comprise X-ray optics. A survey is given of the results obtained in solar and stellar X-ray astronomy and hypotheses are submitted on the origin of X radiation in the interstellar space. (J.B.)

  4. Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility

    Science.gov (United States)

    Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff

    2015-01-01

    Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.

  5. Comparing neutron and X-ray images from NIF implosions

    Directory of Open Access Journals (Sweden)

    Wilson D.C.

    2013-11-01

    Full Text Available Directly laser driven and X-radiation driven DT filled capsules differ in the relationship between neutron and X-ray images. Shot N110217, a directly driven DT-filled glass micro-balloon provided the first neutron images at the National Ignition Facility. As seen in implosions on the Omega laser, the neutron image can be enclosed inside time integrated X-ray images. HYDRA simulations show the X-ray image is dominated by emission from the hot glass shell while the neutron image arises from the DT fuel it encloses. In the absence of mix or jetting, X-ray images of a cryogenically layered THD fuel capsule should be dominated by emission from the hydrogen rather than the cooler plastic shell that is separated from the hot core by cold DT fuel. This cool, dense DT, invisible in X-ray emission, shows itself by scattering hot core neutrons. Germanium X-ray emission spectra and Ross pair filtered X-ray energy resolved images suggest that germanium doped plastic emits in the torus shaped hot spot, probably reducing the neutron yield.

  6. The Mapping X-ray Fluorescence Spectrometer (MapX)

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is taken ... and/or your insurance provider to get a better understanding of the possible charges you will incur. ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... is repeated. Two or three images (from different angles) will typically be taken. An x-ray may ... RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical questions or for ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... no special preparation. Tell your doctor and the technologist if there is any possibility you are pregnant. ... should always inform their physician and x-ray technologist if there is any possibility that they are ...

  10. X-ray guided biopsy

    International Nuclear Information System (INIS)

    Casanova, R.; Lezana, A.H.; Pedrosa, C.S.

    1980-01-01

    Fine needle aspiration biopsy (FNAB) is now a routine procedure in many X-ray Departments. This paper presents the authors' experience with this technique in chest, abdominal and skeletal lesions. (Auth.)

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Radiography) - Bone Bone x-ray uses a very small dose of ionizing radiation to produce pictures of ... exposing a part of the body to a small dose of ionizing radiation to produce pictures of ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in ... injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  14. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... technologist, an individual specially trained to perform radiology examinations, positions the patient on the x-ray table ... bone is forming), for comparison purposes. When the examination is complete, you may be asked to wait ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... in a known abnormality can be monitored over time. Follow-up examinations are sometimes the best way ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays ... information you were looking for? Yes No Please type your comment or suggestion into the following text ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pregnant. Many imaging tests are not performed during pregnancy so as not to expose the fetus to ... See the Safety page for more information about pregnancy and x-rays. top of page What does ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a large photographic negative). Today, most images are digital files that are stored electronically. These stored images ... and places the x-ray film holder or digital recording plate under the table in the area ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects in soft ... frequently compared to current x-ray images for diagnosis and disease management. top of page How is ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of any bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg ( ... Image Gallery Radiological technologist preparing to take an arm x-ray on a ... Images related ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... care is taken during x-ray examinations to use the lowest radiation dose possible while producing the best images for evaluation. National and international radiology protection organizations continually review ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ... radiation oncology provider in your community, you can search the ACR-accredited facilities database . This website does ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x-rays in varying degrees. Dense ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray machine is a compact apparatus that can be taken to the patient in a hospital ... so that any change in a known abnormality can be monitored over time. Follow-up examinations are ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? A bone x-ray examination itself ... available in emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... will analyze the images and send a signed report to your primary care or referring physician , who ... Medicine Radiation Safety How to Read Your Radiology Report Images related to X-ray (Radiography) - Bone Sponsored ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones ... x-rays involves exposing a part of the body to a small dose of ionizing radiation to ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... to X-ray (Radiography) - Bone Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the baby. See the Safety page for more information about pregnancy and x-rays. top of page ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in metabolic ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... imaged. When necessary, sandbags, pillows or other positioning devices will be used to help you maintain the ... here Images × Image Gallery Radiological technologist preparing to take an arm x-ray on a patient. View ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... foot. top of page What are some common uses of the procedure? A bone x-ray is ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ...

  17. Flash x-ray cinematography

    International Nuclear Information System (INIS)

    Stein, W.E.

    1976-01-01

    Experiments intended to provide an overview of the potential capabilities and limitations of flash x-ray cinematography as a diagnostic technique for a Fast Reactor Safety Test Facility are described. The results provide estimates of the x-ray pulse intensity required to obtain adequate radiographs of an array of fuel pins in a typical reactor configuration. An estimate of the upper limit on the pulse duration imposed by the reactor background radiation was also determined. X-ray cinematography has been demonstrated at a repetition rate limited only by the recording equipment on hand at the time of these measurements. These preliminary results indicate that flash x-ray cinematography of the motion of fuel in a Fast Reactor Test Facility is technically feasible

  18. X-ray screening materials

    International Nuclear Information System (INIS)

    Wardley, R.B.

    1981-01-01

    This invention relates to x-ray screening materials and especially to materials in sheet form for use in the production of, for example, protective clothing such as aprons and lower back shields, curtains, mobile screens and suspended shields. The invention is based on the observation that x-ray screening materials in sheet form having greater flexiblity than the hitherto known x-ray screening materials of the same x-ray absorber content can be produced if, instead of using a single sheet of filled sheet material of increased thickness, one uses a plurality of sheets of lesser thickness together forming a laminar material of the desired thickness and one bonds the individual sheets together at their edges and, optionally, at other spaced apart points away from the edges thereby allowing one sheet to move relative to another. (U.K.)

  19. X-ray luminescent glasses

    International Nuclear Information System (INIS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    X-ray luminescent glasses comprising a divalent cation such as an alkaline earth metal or other divalent cations such as pb, cd, or zn, and certain rare earth metaphosphates are suitable as vitreous, x-ray phosphors or x-ray luminescent glass fibers in an x-ray intensifying screen. The glasses have the composition n(Mo X p2o5)((1-y)tb2o3 X yce2o3 X 3p2o5) wherein N is greater than zero but less than or equal to 16, M is an alkaline earth metal or other divalent cation such as pb, cd, or zn, and Y is greater than or equal to zero but less than one

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray uses a very small dose of ionizing radiation to produce pictures of any bone in the ... of the body to a small dose of ionizing radiation to produce pictures of the inside of the ...