WorldWideScience

Sample records for spot scanning cycle

  1. SU-E-T-266: Development of Evaluation System of Optimal Synchrotron Controlling Parameter for Spot Scanning Proton Therapy with Multiple Gate Irradiations in One Operation Cycle

    International Nuclear Information System (INIS)

    Yamada, T; Fujii, Y; Miyamoto, N; Matsuura, T; Takao, S; Matsuzaki, Y; Koyano, H; Shirato, H; Nihongi, H; Umezawa, M; Matsuda, K; Umegaki, K

    2015-01-01

    Purpose: We have developed a gated spot scanning proton beam therapy system with real-time tumor-tracking. This system has the ability of multiple-gated irradiation in a single synchrotron operation cycle controlling the wait-time for consecutive gate signals during a flat-top phase so that the decrease in irradiation efficiency induced by irregular variation of gate signal is reduced. Our previous studies have shown that a 200 ms wait-time is appropriate to increase the average irradiation efficiency, but the optimal wait-time can vary patient by patient and day by day. In this research, we have developed an evaluation system of the optimal wait-time in each irradiation based on the log data of the real-time-image gated proton beam therapy (RGPT) system. Methods: The developed system consists of logger for operation of RGPT system and software for evaluation of optimal wait-time. The logger records timing of gate on/off, timing and the dose of delivered beam spots, beam energy and timing of X-ray irradiation. The evaluation software calculates irradiation time in the case of different wait-time by simulating the multiple-gated irradiation operation using several timing information. Actual data preserved in the log data are used for gate on and off time, spot irradiation time, and time moving to the next spot. Design values are used for the acceleration and deceleration times. We applied this system to a patient treated with the RGPT system. Results: The evaluation system found the optimal wait-time of 390 ms that reduced the irradiation time by about 10 %. The irradiation time with actual wait-time used in treatment was reproduced with accuracy of 0.2 ms. Conclusion: For spot scanning proton therapy system with multiple-gated irradiation in one synchrotron operation cycle, an evaluation system of the optimal wait-time in each irradiation based on log data has been developed. Funding Support: Japan Society for the Promotion of Science (JSPS) through the FIRST

  2. Efficient Interplay Effect Mitigation for Proton Pencil Beam Scanning by Spot-Adapted Layered Repainting Evenly Spread out Over the Full Breathing Cycle.

    Science.gov (United States)

    Poulsen, Per Rugaard; Eley, John; Langner, Ulrich; Simone, Charles B; Langen, Katja

    2018-01-01

    To develop and implement a practical repainting method for efficient interplay effect mitigation in proton pencil beam scanning (PBS). A new flexible repainting scheme with spot-adapted numbers of repainting evenly spread out over the whole breathing cycle (assumed to be 4 seconds) was developed. Twelve fields from 5 thoracic and upper abdominal PBS plans were delivered 3 times using the new repainting scheme to an ion chamber array on a motion stage. One time was static and 2 used 4-second, 3-cm peak-to-peak sinusoidal motion with delivery started at maximum inhalation and maximum exhalation. For comparison, all dose measurements were repeated with no repainting and with 8 repaintings. For each motion experiment, the 3%/3-mm gamma pass rate was calculated using the motion-convolved static dose as the reference. Simulations were first validated with the experiments and then used to extend the study to 0- to 5-cm motion magnitude, 2- to 6-second motion periods, patient-measured liver tumor motion, and 1- to 6-fraction treatments. The effect of the proposed method was evaluated for the 5 clinical cases using 4-dimensional (4D) dose reconstruction in the planning 4D computed tomography scan. The target homogeneity index, HI = (D 2 - D 98 )/D mean , of a single-fraction delivery is reported, where D 2 and D 98 is the dose delivered to 2% and 98% of the target, respectively, and D mean is the mean dose. The gamma pass rates were 59.6% ± 9.7% with no repainting, 76.5% ± 10.8% with 8 repaintings, and 92.4% ± 3.8% with the new repainting scheme. Simulations reproduced the experimental gamma pass rates with a 1.3% root-mean-square error and demonstrated largely improved gamma pass rates with the new repainting scheme for all investigated motion scenarios. One- and two-fraction deliveries with the new repainting scheme had gamma pass rates similar to those of 3-4 and 6-fraction deliveries with 8 repaintings. The mean HI for the 5 clinical cases was 14.2% with no

  3. Copying of holograms by spot scanning approach.

    Science.gov (United States)

    Okui, Makoto; Wakunami, Koki; Oi, Ryutaro; Ichihashi, Yasuyuki; Jackin, Boaz Jessie; Yamamoto, Kenji

    2018-05-20

    To replicate holograms, contact copying has conventionally been used. In this approach, a photosensitive material is fixed together with a master hologram and illuminated with a coherent beam. This method is simple and enables high-quality copies; however, it requires a large optical setup for large-area holograms. In this paper, we present a new method of replicating holograms that uses a relatively compact optical system even for the replication of large holograms. A small laser spot that irradiates only part of the hologram is used to reproduce the hologram by scanning the spot over the whole area of the hologram. We report on the results of experiments carried out to confirm the copy quality, along with a guide to design scanning conditions. The results show the potential effectiveness of the large-area hologram replication technology using a relatively compact apparatus.

  4. Hot spots on Tc-99m MAA perfusion lung scan

    International Nuclear Information System (INIS)

    Lim, Seok Tae; Sohn, Myung Hee

    2001-01-01

    A 61 year-old woman underwent perfusion and inhalation lung scan for the evaluation of pulmonary thromboembolism. Tc-99m MAA perfusion lung scan showed multiple round hot spots in both lung fields. Tc-99m DTPA aerosol inhalation lung scan and chest radiography taken at the same time showed normal findings. A repeated perfusion lung scan taken 24 hours later demonstrated no abnormalities. Hot spots on perfusion lung scan can be caused by microsphere clumping due to faulty injection technique by radioactive embolization from upper extremity thrombophlebitis after injection. Focal hot spots can signify zones of atelectasis, where the hot spots probably represent a failure of hypoxic vasoconstriction. Artifactual hot spots due to microsphere clumping usually appear to be round and in peripheral location, and the lesions due to a loss of hypoxic vasoconstriction usually appear to be hot uptakes having linear borders. Although these artifactual hot spots have been well-known, we rarely encounter them. This report presents a case with artifactual hot spots due to microsphere clumping on Tc-99m MAA perfusion lung scan

  5. Technical Note: Spot characteristic stability for proton pencil beam scanning.

    Science.gov (United States)

    Chen, Chin-Cheng; Chang, Chang; Moyers, Michael F; Gao, Mingcheng; Mah, Dennis

    2016-02-01

    The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0-226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  6. SU-E-T-510: Interplay Between Spots Sizes, Spot / Line Spacing and Motion in Spot Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Lee, TK

    2015-01-01

    Purpose In proton beam configuration for spot scanning proton therapy (SSPT), one can define the spacing between spots and lines of scanning as a ratio of given spot size. If the spacing increases, the number of spots decreases which can potentially decrease scan time, and so can whole treatment time, and vice versa. However, if the spacing is too large, the uniformity of scanned field decreases. Also, the field uniformity can be affected by motion during SSPT beam delivery. In the present study, the interplay between spot/ line spacing and motion is investigated. Methods We used four Gaussian-shape spot sizes with 0.5cm, 1.0cm, 1.5cm, and 2.0cm FWHM, three spot/line spacing that creates uniform field profile which are 1/3*FWHM, σ/3*FWHM and 2/3*FWHM, and three random motion amplitudes within, +/−0.3mm, +/−0.5mm, and +/−1.0mm. We planned with 2Gy uniform single layer of 10×10cm2 and 20×20cm2 fields. Then, mean dose within 80% area of given field size, contrubuting MU per each spot assuming 1cGy/MU calibration for all spot sizes, number of spots and uniformity were calculated. Results The plans with spot/line spacing equal to or smaller than 2/3*FWHM without motion create ∼100% uniformity. However, it was found that the uniformity decreases with increased spacing, and it is more pronounced with smaller spot sizes, but is not affected by scanned field sizes. Conclusion It was found that the motion during proton beam delivery can alter the dose uniformity and the amount of alteration changes with spot size which changes with energy and spot/line spacing. Currently, robust evaluation in TPS (e.g. Eclipse system) performs range uncertainty evaluation using isocenter shift and CT calibration error. Based on presented study, it is recommended to add interplay effect evaluation to robust evaluation process. For future study, the additional interplay between the energy layers and motion is expected to present volumetric effect

  7. Advanced optical system for scanning-spot photorefractive keratectomy (PRK)

    Science.gov (United States)

    Mrochen, Michael; Wullner, Christian; Semchishen, Vladimir A.; Seiler, Theo

    1999-06-01

    Purpose: The goal of this presentation is to discuss the use of the Light Shaping Beam Homogenizer in an optical system for scanning-spot PRK. Methods: The basic principle of the LSBH is the transformation of any incident intensity distribution by light scattering on an irregular microlens structure z = f(x,y). The relief of this microlens structure is determined by a defined statistical function, i.e. it is defined by the mean root-squared tilt σ of the surface relief. Therefore, the beam evolution after the LSBH and in the focal plane of an imaging lens was measured for various root-squared tilts. Beside this, an optical setup for scanning-spot PRK was assembled according to the theoretical and experimental results. Results: The divergence, homogeneity and the Gaussian radius of the intensity distribution in the treatment plane of the scanning-spot PRK laser system is mainly characterized by dependent on root-mean-square tilt σ of the LSBH, as it will be explained by the theoretical description of the LSBH. Conclusions: The LSBH represents a simple, low cost beam homogenizer with low energy losses, for scanning-spot excimer laser systems.

  8. Technical Note: Spot characteristic stability for proton pencil beam scanning

    International Nuclear Information System (INIS)

    Chen, Chin-Cheng; Chang, Chang; Mah, Dennis; Moyers, Michael F.; Gao, Mingcheng

    2016-01-01

    Purpose: The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. Methods: A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0–226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Results: Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. Conclusions: For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter

  9. Technical Note: Spot characteristic stability for proton pencil beam scanning

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chin-Cheng, E-mail: chen.ccc@gmail.com; Chang, Chang; Mah, Dennis [ProCure Treatment Center, Somerset, New Jersey 08873 (United States); Moyers, Michael F. [ProCure Treatment Center, Somerset, New Jersey 08873 and Shanghai Proton and Heavy Ion Center, Shanghai 201321 (China); Gao, Mingcheng [CDH Proton Center, Warrenville, Illinois 60555 (United States)

    2016-02-15

    Purpose: The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. Methods: A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0–226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Results: Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. Conclusions: For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  10. Spot Weight Adaptation for Moving Target in Spot Scanning Proton Therapy.

    Science.gov (United States)

    Morel, Paul; Wu, Xiaodong; Blin, Guillaume; Vialette, Stéphane; Flynn, Ryan; Hyer, Daniel; Wang, Dongxu

    2015-01-01

    This study describes a real-time spot weight adaptation method in spot-scanning proton therapy for moving target or moving patient, so that the resultant dose distribution closely matches the planned dose distribution. The method proposed in this study adapts the weight (MU) of the delivering pencil beam to that of the target spot; it will actually hit during patient/target motion. The target spot that a certain delivering pencil beam may hit relies on patient monitoring and/or motion modeling using four-dimensional (4D) CT. After the adapted delivery, the required total weight [Monitor Unit (MU)] for this target spot is then subtracted from the planned value. With continuous patient motion and continuous spot scanning, the planned doses to all target spots will eventually be all fulfilled. In a proof-of-principle test, a lung case was presented with realistic temporal and motion parameters; the resultant dose distribution using spot weight adaptation was compared to that without using this method. The impact of the real-time patient/target position tracking or prediction was also investigated. For moderate motion (i.e., mean amplitude 0.5 cm), D95% to the planning target volume (PTV) was only 81.5% of the prescription (RX) dose; with spot weight adaptation PTV D95% achieves 97.7% RX. For large motion amplitude (i.e., 1.5 cm), without spot weight adaptation PTV D95% is only 42.9% of RX; with spot weight adaptation, PTV D95% achieves 97.7% RX. Larger errors in patient/target position tracking or prediction led to worse final target coverage; an error of 3 mm or smaller in patient/target position tracking is preferred. The proposed spot weight adaptation method was able to deliver the planned dose distribution and maintain target coverage when patient motion was involved. The successful implementation of this method would rely on accurate monitoring or prediction of patient/target motion.

  11. Spot Weight Adaptation for Moving Target in Spot Scanning Proton Therapy

    Directory of Open Access Journals (Sweden)

    Paul eMorel

    2015-05-01

    Full Text Available Purpose: This study describes a real-time spot weight adaptation method in spot-scanning proton therapy for moving target or moving patient, so that the resultant dose distribution closely matches the planned dose distribution. Materials and Methods: The method proposed in this study adapts the weight (MU of the delivering pencil beam to that of the target spot it will actually hit during patient/target motion. The target spot a certain delivering pencil beam may hit relies on patient monitoring and/or motion modeling using four-dimensional (4D CT. After the adapted delivery, the required total weight (MU for this target spot is then subtracted from the planned value. With continuous patient motion and continuous spot scanning, the planned doses to all target spots will eventually be all fulfilled. In a proof-of-principle test, a lung case was presented with realistic temporal and motion parameters; the resultant dose distribution using spot weight adaptation was compared to that without using this method. The impact of the real-time patient/target position tracking or prediction was also investigated.Results: For moderate motion (i.e., mean amplitude 0.5 cm, D95% to the planning target volume (PTV was only 81.5% of the prescription (RX dose; with spot weight adaptation PTV D95% achieves 97.7%RX. For large motion amplitude (i.e., 1.5 cm, without spot weight adaptation PTV D95% is only 42.9% of RX; with spot weight adaptation, PTV D95% achieves 97.7%RX. Larger errors in patient/target position tracking or prediction led to worse final target coverage; an error of 3mm or smaller in patient/target position tracking is preferred. Conclusion: The proposed spot weight adaptation method was able to deliver the planned dose distribution and maintain target coverage when patient motion was involved. The successful implementation of this method would rely on accurate monitoring or prediction of patient/target motion.

  12. Modelling of a proton spot scanning system using MCNP6

    International Nuclear Information System (INIS)

    Ardenfors, O; Gudowska, I; Dasu, A; Kopeć, M

    2017-01-01

    The aim of this work was to model the characteristics of a clinical proton spot scanning beam using Monte Carlo simulations with the code MCNP6. The proton beam was defined using parameters obtained from beam commissioning at the Skandion Clinic, Uppsala, Sweden. Simulations were evaluated against measurements for proton energies between 60 and 226 MeV with regard to range in water, lateral spot sizes in air and absorbed dose depth profiles in water. The model was also used to evaluate the experimental impact of lateral signal losses in an ionization chamber through simulations using different detector radii. Simulated and measured distal ranges agreed within 0.1 mm for R 90 and R 80 , and within 0.2 mm for R 50 . The average absolute difference of all spot sizes was 0.1 mm. The average agreement of absorbed dose integrals and Bragg-peak heights was 0.9%. Lateral signal losses increased with incident proton energy with a maximum signal loss of 7% for 226 MeV protons. The good agreement between simulations and measurements supports the assumptions and parameters employed in the presented Monte Carlo model. The characteristics of the proton spot scanning beam were accurately reproduced and the model will prove useful in future studies on secondary neutrons. (paper)

  13. Intercomparison of two dynamic treatment techniques, ring scan and spot scan, for head and neck tumors with the Piotron

    International Nuclear Information System (INIS)

    Takai, M.; Blattmann, H.; Pedroni, E.

    1988-01-01

    An evaluation of the ring scan and the spot scan was made for the pion irradiation of head and neck tumors with the Piotron. For the geometry of the Piotron, with its 60 radially converging beams, two scanning techniques have been developed, ring scan and spot scan. They have different characteristics concerning achievable dose distributions and sensitivity to tissue inhomogenities. The optimized 3-dimensional dose distributions for the treatment with ring scan and spot scan techniques were calculated for two examples of the target volume. The comparison of the dose distributions has shown that the ring scan is better in sparing normal tissues than the spot scan for a simple shape target volume but not for an irregular shape target volume with the present status of the technique. The irradiation time needed for the ring scan is longer, for the present examples three times, than for the spot scan. From the practical view point the spot scan is preferable to the ring scan for the treatment of head and neck tumors with the Piotron

  14. Spot-Scanning Proton Arc (SPArc) Therapy: The First Robust and Delivery-Efficient Spot-Scanning Proton Arc Therapy

    International Nuclear Information System (INIS)

    Ding, Xuanfeng; Li, Xiaoqiang; Zhang, J. Michele; Kabolizadeh, Peyman; Stevens, Craig; Yan, Di

    2016-01-01

    Purpose: To present a novel robust and delivery-efficient spot-scanning proton arc (SPArc) therapy technique. Methods and Materials: A SPArc optimization algorithm was developed that integrates control point resampling, energy layer redistribution, energy layer filtration, and energy layer resampling. The feasibility of such a technique was evaluated using sample patients: 1 patient with locally advanced head and neck oropharyngeal cancer with bilateral lymph node coverage, and 1 with a nonmobile lung cancer. Plan quality, robustness, and total estimated delivery time were compared with the robust optimized multifield step-and-shoot arc plan without SPArc optimization (Arc_m_u_l_t_i_-_f_i_e_l_d) and the standard robust optimized intensity modulated proton therapy (IMPT) plan. Dose-volume histograms of target and organs at risk were analyzed, taking into account the setup and range uncertainties. Total delivery time was calculated on the basis of a 360° gantry room with 1 revolutions per minute gantry rotation speed, 2-millisecond spot switching time, 1-nA beam current, 0.01 minimum spot monitor unit, and energy layer switching time of 0.5 to 4 seconds. Results: The SPArc plan showed potential dosimetric advantages for both clinical sample cases. Compared with IMPT, SPArc delivered 8% and 14% less integral dose for oropharyngeal and lung cancer cases, respectively. Furthermore, evaluating the lung cancer plan compared with IMPT, it was evident that the maximum skin dose, the mean lung dose, and the maximum dose to ribs were reduced by 60%, 15%, and 35%, respectively, whereas the conformity index was improved from 7.6 (IMPT) to 4.0 (SPArc). The total treatment delivery time for lung and oropharyngeal cancer patients was reduced by 55% to 60% and 56% to 67%, respectively, when compared with Arc_m_u_l_t_i_-_f_i_e_l_d plans. Conclusion: The SPArc plan is the first robust and delivery-efficient proton spot-scanning arc therapy technique, which could potentially be

  15. Spot-Scanning Proton Arc (SPArc) Therapy: The First Robust and Delivery-Efficient Spot-Scanning Proton Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xuanfeng, E-mail: Xuanfeng.ding@beaumont.org; Li, Xiaoqiang; Zhang, J. Michele; Kabolizadeh, Peyman; Stevens, Craig; Yan, Di

    2016-12-01

    Purpose: To present a novel robust and delivery-efficient spot-scanning proton arc (SPArc) therapy technique. Methods and Materials: A SPArc optimization algorithm was developed that integrates control point resampling, energy layer redistribution, energy layer filtration, and energy layer resampling. The feasibility of such a technique was evaluated using sample patients: 1 patient with locally advanced head and neck oropharyngeal cancer with bilateral lymph node coverage, and 1 with a nonmobile lung cancer. Plan quality, robustness, and total estimated delivery time were compared with the robust optimized multifield step-and-shoot arc plan without SPArc optimization (Arc{sub multi-field}) and the standard robust optimized intensity modulated proton therapy (IMPT) plan. Dose-volume histograms of target and organs at risk were analyzed, taking into account the setup and range uncertainties. Total delivery time was calculated on the basis of a 360° gantry room with 1 revolutions per minute gantry rotation speed, 2-millisecond spot switching time, 1-nA beam current, 0.01 minimum spot monitor unit, and energy layer switching time of 0.5 to 4 seconds. Results: The SPArc plan showed potential dosimetric advantages for both clinical sample cases. Compared with IMPT, SPArc delivered 8% and 14% less integral dose for oropharyngeal and lung cancer cases, respectively. Furthermore, evaluating the lung cancer plan compared with IMPT, it was evident that the maximum skin dose, the mean lung dose, and the maximum dose to ribs were reduced by 60%, 15%, and 35%, respectively, whereas the conformity index was improved from 7.6 (IMPT) to 4.0 (SPArc). The total treatment delivery time for lung and oropharyngeal cancer patients was reduced by 55% to 60% and 56% to 67%, respectively, when compared with Arc{sub multi-field} plans. Conclusion: The SPArc plan is the first robust and delivery-efficient proton spot-scanning arc therapy technique, which could potentially be implemented

  16. Full cycle rapid scan EPR deconvolution algorithm.

    Science.gov (United States)

    Tseytlin, Mark

    2017-08-01

    Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan

  17. Impact of spot size on plan quality of spot scanning proton radiosurgery for peripheral brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongxu, E-mail: dongxu-wang@uiowa.edu; Dirksen, Blake; Hyer, Daniel E.; Buatti, John M.; Sheybani, Arshin; Dinges, Eric; Felderman, Nicole; TenNapel, Mindi; Bayouth, John E.; Flynn, Ryan T. [Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242 (United States)

    2014-12-15

    Purpose: To determine the plan quality of proton spot scanning (SS) radiosurgery as a function of spot size (in-air sigma) in comparison to x-ray radiosurgery for treating peripheral brain lesions. Methods: Single-field optimized (SFO) proton SS plans with sigma ranging from 1 to 8 mm, cone-based x-ray radiosurgery (Cone), and x-ray volumetric modulated arc therapy (VMAT) plans were generated for 11 patients. Plans were evaluated using secondary cancer risk and brain necrosis normal tissue complication probability (NTCP). Results: For all patients, secondary cancer is a negligible risk compared to brain necrosis NTCP. Secondary cancer risk was lower in proton SS plans than in photon plans regardless of spot size (p = 0.001). Brain necrosis NTCP increased monotonically from an average of 2.34/100 (range 0.42/100–4.49/100) to 6.05/100 (range 1.38/100–11.6/100) as sigma increased from 1 to 8 mm, compared to the average of 6.01/100 (range 0.82/100–11.5/100) for Cone and 5.22/100 (range 1.37/100–8.00/100) for VMAT. An in-air sigma less than 4.3 mm was required for proton SS plans to reduce NTCP over photon techniques for the cohort of patients studied with statistical significance (p = 0.0186). Proton SS plans with in-air sigma larger than 7.1 mm had significantly greater brain necrosis NTCP than photon techniques (p = 0.0322). Conclusions: For treating peripheral brain lesions—where proton therapy would be expected to have the greatest depth-dose advantage over photon therapy—the lateral penumbra strongly impacts the SS plan quality relative to photon techniques: proton beamlet sigma at patient surface must be small (<7.1 mm for three-beam single-field optimized SS plans) in order to achieve comparable or smaller brain necrosis NTCP relative to photon radiosurgery techniques. Achieving such small in-air sigma values at low energy (<70 MeV) is a major technological challenge in commercially available proton therapy systems.

  18. Impact of spot size on plan quality of spot scanning proton radiosurgery for peripheral brain lesions

    International Nuclear Information System (INIS)

    Wang, Dongxu; Dirksen, Blake; Hyer, Daniel E.; Buatti, John M.; Sheybani, Arshin; Dinges, Eric; Felderman, Nicole; TenNapel, Mindi; Bayouth, John E.; Flynn, Ryan T.

    2014-01-01

    Purpose: To determine the plan quality of proton spot scanning (SS) radiosurgery as a function of spot size (in-air sigma) in comparison to x-ray radiosurgery for treating peripheral brain lesions. Methods: Single-field optimized (SFO) proton SS plans with sigma ranging from 1 to 8 mm, cone-based x-ray radiosurgery (Cone), and x-ray volumetric modulated arc therapy (VMAT) plans were generated for 11 patients. Plans were evaluated using secondary cancer risk and brain necrosis normal tissue complication probability (NTCP). Results: For all patients, secondary cancer is a negligible risk compared to brain necrosis NTCP. Secondary cancer risk was lower in proton SS plans than in photon plans regardless of spot size (p = 0.001). Brain necrosis NTCP increased monotonically from an average of 2.34/100 (range 0.42/100–4.49/100) to 6.05/100 (range 1.38/100–11.6/100) as sigma increased from 1 to 8 mm, compared to the average of 6.01/100 (range 0.82/100–11.5/100) for Cone and 5.22/100 (range 1.37/100–8.00/100) for VMAT. An in-air sigma less than 4.3 mm was required for proton SS plans to reduce NTCP over photon techniques for the cohort of patients studied with statistical significance (p = 0.0186). Proton SS plans with in-air sigma larger than 7.1 mm had significantly greater brain necrosis NTCP than photon techniques (p = 0.0322). Conclusions: For treating peripheral brain lesions—where proton therapy would be expected to have the greatest depth-dose advantage over photon therapy—the lateral penumbra strongly impacts the SS plan quality relative to photon techniques: proton beamlet sigma at patient surface must be small (<7.1 mm for three-beam single-field optimized SS plans) in order to achieve comparable or smaller brain necrosis NTCP relative to photon radiosurgery techniques. Achieving such small in-air sigma values at low energy (<70 MeV) is a major technological challenge in commercially available proton therapy systems

  19. Effects of spot parameters in pencil beam scanning treatment planning.

    Science.gov (United States)

    Kraan, Aafke Christine; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M

    2018-01-01

    Spot size σ (in air at isocenter), interspot spacing d, and spot charge q influence dose delivery efficiency and plan quality in Intensity Modulated Proton Therapy (IMPT) treatment planning. The choice and range of parameters varies among different manufacturers. The goal of this work is to demonstrate the influence of the spot parameters on dose quality and delivery in IMPT treatment plans, to show their interdependence, and to make practitioners aware of the spot parameter values for a certain facility. Our study could help as a guideline to make the trade-off between treatment quality and time in existing PBS centers and in future systems. We created plans for seven patients and a phantom, with different tumor sites and volumes, and compared the effect of small-, medium-, and large-spot widths (σ = 2.5, 5, and 10 mm) and interspot distances (1σ, 1.5σ, and 1.75σ) on dose, spot charge, and treatment time. Moreover, we quantified how postplanning charge threshold cuts affect plan quality and the total number of spots to deliver, for different spot widths and interspot distances. We show the effect of a minimum charge (or MU) cutoff value for a given proton delivery system. Spot size had a strong influence on dose: larger spots resulted in more protons delivered outside the target region. We observed dose differences of 2-13 Gy (RBE) between 2.5 mm and 10 mm spots, where the amount of extra dose was due to dose penumbra around the target region. Interspot distance had little influence on dose quality for our patient group. Both parameters strongly influence spot charge in the plans and thus the possible impact of postplanning charge threshold cuts. If such charge thresholds are not included in the treatment planning system (TPS), it is important that the practitioner validates that a given combination of lower charge threshold, interspot spacing, and spot size does not result in a plan degradation. Low average spot charge occurs for small spots, small interspot

  20. SU-E-J-72: Geant4 Simulations of Spot-Scanned Proton Beam Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, T; Sutherland, K; Matsuura, T; Umegaki, K; Shirato, H [Hokkaido University, Sapporo, Hokkaido (Japan)

    2014-06-01

    Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 × 0.98 × 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generated and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.

  1. Effects of spot size and spot spacing on lateral penumbra reduction when using a dynamic collimation system for spot scanning proton therapy

    International Nuclear Information System (INIS)

    Hyer, Daniel E; Hill, Patrick M; Wang, Dongxu; Smith, Blake R; Flynn, Ryan T

    2014-01-01

    The purpose of this work was to investigate the reduction in lateral dose penumbra that can be achieved when using a dynamic collimation system (DCS) for spot scanning proton therapy as a function of two beam parameters: spot size and spot spacing. This is an important investigation as both values impact the achievable dose distribution and a wide range of values currently exist depending on delivery hardware. Treatment plans were created both with and without the DCS for in-air spot sizes (σ air ) of 3, 5, 7, and 9 mm as well as spot spacing intervals of 2, 4, 6 and 8 mm. Compared to un-collimated treatment plans, the plans created with the DCS yielded a reduction in the mean dose to normal tissue surrounding the target of 26.2–40.6% for spot sizes of 3–9 mm, respectively. Increasing the spot spacing resulted in a decrease in the time penalty associated with using the DCS that was approximately proportional to the reduction in the number of rows in the raster delivery pattern. We conclude that dose distributions achievable when using the DCS are comparable to those only attainable with much smaller initial spot sizes, suggesting that the goal of improving high dose conformity may be achieved by either utilizing a DCS or by improving beam line optics. (note)

  2. Technical Note: Using experimentally determined proton spot scanning timing parameters to accurately model beam delivery time.

    Science.gov (United States)

    Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin

    2017-10-01

    To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (T BDT ) were compared with the BDTs recorded in the treatment delivery log files (T Log ): ∆t = T Log -T BDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may

  3. Formation of hot spots in a superconductor observed by low-temperature scanning electron microscopy

    International Nuclear Information System (INIS)

    Eichele, R.; Seifert, H.; Huebener, R.P.

    1981-01-01

    Low-temperature scanning electron microscopy can be used for the direct observation of hot spots in a superconductor. Experiments performed at 2.10 K with tim films demonstrating the method are reported

  4. Life-history tradeoffs and reproductive cycles in Spotted Owls

    Science.gov (United States)

    Stoelting, Ricka E.; Gutierrez, R.J.; Kendall, William L.; Peery, M. Zachariah

    2015-01-01

    The study of tradeoffs among life-history traits has long been key to understanding the evolution of life-history strategies. However, more recently, evolutionary ecologists have realized that reproductive costs have the potential to influence population dynamics. Here, we tested for costs of reproduction in the California Spotted Owl (Strix occidentalis occidentalis), and assessed whether costs of reproduction in year t − 1 on reproduction in year t could be responsible for regionally synchronized biennial cycles in reproductive output. Logistic regression analysis and multistate mark–recapture models with state uncertainty revealed that breeding reduced the likelihood of reproducing in the subsequent year by 16% to 38%, but had no influence on subsequent survival. We also found that costs of reproduction in year t − 1 were correlated with climatic conditions in year t, with evidence of higher costs during the dry phase of the El Niño–Southern Oscillation. Using a simulation-based population model, we showed that strong reproductive costs had the potential to create biennial cycles in population-level reproductive output; however, estimated costs of reproduction appeared to be too small to explain patterns observed in Spotted Owls. In the absence of strong reproductive costs, we hypothesize that observed natural cycles in the reproductive output of Spotted Owls are related to as-yet-unmeasured, regionally concordant fluctuations in environmental conditions or prey resources. Despite theoretical evidence for demographic effects, our analyses illustrate that linking tradeoffs to actual changes in population processes will be challenging because of the potential confounding effects of individual and environmental variation.

  5. Development of the compact proton beam therapy system dedicated to spot scanning with real-time tumor-tracking technology

    Science.gov (United States)

    Umezawa, Masumi; Fujimoto, Rintaro; Umekawa, Tooru; Fujii, Yuusuke; Takayanagi, Taisuke; Ebina, Futaro; Aoki, Takamichi; Nagamine, Yoshihiko; Matsuda, Koji; Hiramoto, Kazuo; Matsuura, Taeko; Miyamoto, Naoki; Nihongi, Hideaki; Umegaki, Kikuo; Shirato, Hiroki

    2013-04-01

    Hokkaido University and Hitachi Ltd. have started joint development of the Gated Spot Scanning Proton Therapy with Real-Time Tumor-Tracking System by integrating real-time tumor tracking technology (RTRT) and the proton therapy system dedicated to discrete spot scanning techniques under the "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)". In this development, we have designed the synchrotron-based accelerator system by using the advantages of the spot scanning technique in order to realize a more compact and lower cost proton therapy system than the conventional system. In the gated irradiation, we have focused on the issues to maximize irradiation efficiency and minimize the dose errors caused by organ motion. In order to understand the interplay effect between scanning beam delivery and target motion, we conducted a simulation study. The newly designed system consists of the synchrotron, beam transport system, one compact rotating gantry treatment room with robotic couch, and one experimental room for future research. To improve the irradiation efficiency, the new control function which enables multiple gated irradiations per synchrotron cycle has been applied and its efficacy was confirmed by the irradiation time estimation. As for the interplay effect, we confirmed that the selection of a strict gating width and scan direction enables formation of the uniform dose distribution.

  6. Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer

    Science.gov (United States)

    Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald

    2013-01-01

    Purpose Quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials 4D Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3cc) and motion amplitudes (3-30mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity and 2-year local control rate (2y-LC). Results Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ≈3mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor ~2.8 compared to a larger spot size (σ≈13mm). Using a smaller spot size to treat a tumor with 30mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V20 are interplay using a large spot size and conventional fractionation. For treatments employing smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the dose distribution and lower 2y-LC. PMID:23462423

  7. Measuring a narrow Bessel beam spot by scanning a charge-coupled device (CCD) pixel

    International Nuclear Information System (INIS)

    Tiwari, S K; Ram, S P; Jayabalan, J; Mishra, S R

    2010-01-01

    By scanning a charge-coupled device (CCD) camera transverse to the beam axis and observing the variation in counts on a marked pixel, we demonstrate that we can measure a laser beam spot size smaller than the size of the CCD-pixel. We find this method particularly attractive for measuring the size of central spot of a Bessel beam, for which the established scanning knife-edge method does not work appropriately because of the large contribution of the rings surrounding the central spot to the signal

  8. Scanning vs. single spot laser ablation (λ=213 nm) inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Gonzalez, Jhanis J.; Fernandez, Alberto; Mao Xianglei; Russo, Richard E.

    2004-01-01

    Sampling strategy is defined in this work as the interaction of a repetitively pulsed laser beam with a fixed position on a sample (single spot) or with a moving sample (scan). Analytical performance of these sampling strategies was compared by using 213 nm laser ablation ICP-MS. A geological rock (Tuff) was quantitatively analyzed based on NIST series 610-616 glass standard reference materials. Laser ablation data were compared to ICP-MS analysis of the dissolved samples. The scan strategy (50 μm/s) produced a flat, steady temporal ICP-MS response whereas the single spot strategy produced a signal that decayed with time (after 60 s). Single-spot sampling provided better accuracy and precision than the scan strategy when the first 15 s of the sampling time was eliminated from the data analysis. In addition, the single spot strategy showed less matrix dependence among the four NIST glasses

  9. Reducing Dose Uncertainty for Spot-Scanning Proton Beam Therapy of Moving Tumors by Optimizing the Spot Delivery Sequence

    International Nuclear Information System (INIS)

    Li, Heng; Zhu, X. Ronald; Zhang, Xiaodong

    2015-01-01

    Purpose: To develop and validate a novel delivery strategy for reducing the respiratory motion–induced dose uncertainty of spot-scanning proton therapy. Methods and Materials: The spot delivery sequence was optimized to reduce dose uncertainty. The effectiveness of the delivery sequence optimization was evaluated using measurements and patient simulation. One hundred ninety-one 2-dimensional measurements using different delivery sequences of a single-layer uniform pattern were obtained with a detector array on a 1-dimensional moving platform. Intensity modulated proton therapy plans were generated for 10 lung cancer patients, and dose uncertainties for different delivery sequences were evaluated by simulation. Results: Without delivery sequence optimization, the maximum absolute dose error can be up to 97.2% in a single measurement, whereas the optimized delivery sequence results in a maximum absolute dose error of ≤11.8%. In patient simulation, the optimized delivery sequence reduces the mean of fractional maximum absolute dose error compared with the regular delivery sequence by 3.3% to 10.6% (32.5-68.0% relative reduction) for different patients. Conclusions: Optimizing the delivery sequence can reduce dose uncertainty due to respiratory motion in spot-scanning proton therapy, assuming the 4-dimensional CT is a true representation of the patients' breathing patterns.

  10. Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer

    International Nuclear Information System (INIS)

    Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald

    2013-01-01

    Purpose: To quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials: Four-dimensional Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3 cc) and motion amplitudes (3-30 mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity, and 2-year local control rate (2y-LC). Results: Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ ≈ 3 mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor 2.8 compared with a larger spot size (σ ≈ 13 mm). Using a smaller spot size to treat a tumor with 30-mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V 20 are <0.6 Gy(RBE) and <1.7%, respectively. Conclusions: For the patients in this study, 2y-LC could be preserved in the presence of interplay using a large spot size and conventional fractionation. For treatments using smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the

  11. Quantitative analysis of treatment process time and throughput capacity for spot scanning proton therapy

    International Nuclear Information System (INIS)

    Suzuki, Kazumichi; Sahoo, Narayan; Zhang, Xiaodong; Poenisch, Falk; Mackin, Dennis S.; Liu, Amy Y.; Wu, Richard; Zhu, X. Ronald; Gillin, Michael T.; Palmer, Matthew B.; Frank, Steven J.; Lee, Andrew K.

    2016-01-01

    Purpose: To determine the patient throughput and the overall efficiency of the spot scanning system by analyzing treatment time, equipment availability, and maximum daily capacity for the current spot scanning port at Proton Therapy Center Houston and to assess the daily throughput capacity for a hypothetical spot scanning proton therapy center. Methods: At their proton therapy center, the authors have been recording in an electronic medical record system all treatment data, including disease site, number of fields, number of fractions, delivered dose, energy, range, number of spots, and number of layers for every treatment field. The authors analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the patient census, patient distribution as a function of the number of fields and total target volume, and equipment clinical availability. The duration of each treatment session from patient walk-in to patient walk-out of the spot scanning treatment room was measured for 64 patients with head and neck, central nervous system, thoracic, and genitourinary cancers. The authors retrieved data for total target volume and the numbers of layers and spots for all fields from treatment plans for a total of 271 patients (including the above 64 patients). A sensitivity analysis of daily throughput capacity was performed by varying seven parameters in a throughput capacity model. Results: The mean monthly equipment clinical availability for the spot scanning port in April 2012–March 2015 was 98.5%. Approximately 1500 patients had received spot scanning proton therapy as of March 2015. The major disease sites treated in September 2012–August 2014 were the genitourinary system (34%), head and neck (30%), central nervous system (21%), and thorax (14%), with other sites accounting for the remaining 1%. Spot scanning beam delivery time increased with total target volume and accounted for

  12. A method to select aperture margin in collimated spot scanning proton therapy

    International Nuclear Information System (INIS)

    Wang, Dongxu; Smith, Blake R; Gelover, Edgar; Flynn, Ryan T; Hyer, Daniel E

    2015-01-01

    The use of collimator or aperture may sharpen the lateral dose gradient for spot scanning proton therapy. However, to date, there has not been a standard method to determine the aperture margin for a single field in collimated spot scanning proton therapy. This study describes a theoretical framework to select the optimal aperture margin for a single field, and also presents the spot spacing limit required such that the optimal aperture margin exists. Since, for a proton pencil beam partially intercepted by collimator, the maximum point dose (spot center) shifts away from the original pencil beam central axis, we propose that the optimal margin should be equal to the maximum pencil beam center shift under the condition that spot spacing is small with respect to the maximum pencil beam center shift, which can be numerically determined based on beam modeling data. A test case is presented which demonstrates agreement with the prediction made based on the proposed methods. When apertures are applied in a commercial treatment planning system this method may be implemented. (note)

  13. SU-F-T-182: A Stochastic Approach to Daily QA Tolerances On Spot Properties for Proton Pencil Beam Scanning

    International Nuclear Information System (INIS)

    St James, S; Bloch, C; Saini, J

    2016-01-01

    Purpose: Proton pencil beam scanning is used clinically across the United States. There are no current guidelines on tolerances for daily QA specific to pencil beam scanning, specifically related to the individual spot properties (spot width). Using a stochastic method to determine tolerances has the potential to optimize tolerances on individual spots and decrease the number of false positive failures in daily QA. Individual and global spot tolerances were evaluated. Methods: As part of daily QA for proton pencil beam scanning, a field of 16 spots (corresponding to 8 energies) is measured using an array of ion chambers (Matrixx, IBA). Each individual spot is fit to two Gaussian functions (x,y). The spot width (σ) in × and y are recorded (32 parameters). Results from the daily QA were retrospectively analyzed for 100 days of data. The deviations of the spot widths were histogrammed and fit to a Gaussian function. The stochastic spot tolerance was taken to be the mean ± 3σ. Using these results, tolerances were developed and tested against known deviations in spot width. Results: The individual spot tolerances derived with the stochastic method decreased in 30/32 instances. Using the previous tolerances (± 20% width), the daily QA would have detected 0/20 days of the deviation. Using a tolerance of any 6 spots failing the stochastic tolerance, 18/20 days of the deviation would have been detected. Conclusion: Using a stochastic method we have been able to decrease daily tolerances on the spot widths for 30/32 spot widths measured. The stochastic tolerances can lead to detection of deviations that previously would have been picked up on monthly QA and missed by daily QA. This method could be easily extended for evaluation of other QA parameters in proton spot scanning.

  14. Ultrasonic C-scan Technique for Nondestructive Evaluation of Spot Weld Quality

    International Nuclear Information System (INIS)

    Park, Ik Gun

    1994-01-01

    This paper discusses the feasibility of ultrasonic C-scan technique for nondestructive evaluation of spot weld quality. Ultrasonic evaluation for spot weld quality was performed by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of the corona bond from nugget, preliminary infinitesimal gap experiment by newton ring is tried in order to set up the optimum ultrasonic test condition. Ultrasonic image data obtained were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be measured with the accuracy of 1.0mm, and voids included in nugget can be detected to 10μm extent with simplicity and accuracy. Finally, it was found that it is necessary to make a profound study of definite discrimination of corona bond from nugget and the approach of quantitative evaluation of nugget diameter by utilizing the various image processing techniques

  15. Treatment planning and verification of proton therapy using spot scanning: Initial experiences

    International Nuclear Information System (INIS)

    Lomax, Antony J.; Boehringer, Terence; Bolsi, Alessandra; Coray, Doelf; Emert, Frank; Goitein, Gudrun; Jermann, Martin; Lin, Shixiong; Pedroni, Eros; Rutz, Hanspeter; Stadelmann, Otto; Timmermann, Beate; Verwey, Jorn; Weber, Damien C.

    2004-01-01

    Since the end of 1996, we have treated more than 160 patients at PSI using spot-scanned protons. The range of indications treated has been quite wide and includes, in the head region, base-of-skull sarcomas, low-grade gliomas, meningiomas, and para-nasal sinus tumors. In addition, we have treated bone sarcomas in the neck and trunk - mainly in the sacral area - as well as prostate cases and some soft tissue sarcomas. PTV volumes for our treated cases are in the range 20-4500 ml, indicating the flexibility of the spot scanning system for treating lesions of all types and sizes. The number of fields per applied plan ranges from between 1 and 4, with a mean of just under 3 beams per plan, and the number of fluence modulated Bragg peaks delivered per field has ranged from 200 to 45 000. With the current delivery rate of roughly 3000 Bragg peaks per minute, this translates into delivery times per field of between a few seconds to 20-25 min. Bragg peak weight analysis of these spots has shown that over all fields, only about 10% of delivered spots have a weight of more than 10% of the maximum in any given field, indicating that there is some scope for optimizing the number of spots delivered per field. Field specific dosimetry shows that these treatments can be delivered accurately and precisely to within ±1 mm (1 SD) orthogonal to the field direction and to within 1.5 mm in range. With our current delivery system the mean widths of delivered pencil beams at the Bragg peak is about 8 mm (σ) for all energies, indicating that this is an area where some improvements can be made. In addition, an analysis of the spot weights and energies of individual Bragg peaks shows a relatively broad spread of low and high weighted Bragg peaks over all energy steps, indicating that there is at best only a limited relationship between pencil beam weighting and depth of penetration. This latter observation may have some consequences when considering strategies for fast re-scanning on

  16. Use of treatment log files in spot scanning proton therapy as part of patient-specific quality assurance

    International Nuclear Information System (INIS)

    Li Heng; Sahoo, Narayan; Poenisch, Falk; Suzuki, Kazumichi; Li Yupeng; Li Xiaoqiang; Zhang Xiaodong; Gillin, Michael T.; Zhu, X. Ronald; Lee, Andrew K.

    2013-01-01

    Purpose: The purpose of this work was to assess the monitor unit (MU) values and position accuracy of spot scanning proton beams as recorded by the daily treatment logs of the treatment control system, and furthermore establish the feasibility of using the delivered spot positions and MU values to calculate and evaluate delivered doses to patients. Methods: To validate the accuracy of the recorded spot positions, the authors generated and executed a test treatment plan containing nine spot positions, to which the authors delivered ten MU each. The spot positions were measured with radiographic films and Matrixx 2D ion-chambers array placed at the isocenter plane and compared for displacements from the planned and recorded positions. Treatment logs for 14 patients were then used to determine the spot MU values and position accuracy of the scanning proton beam delivery system. Univariate analysis was used to detect any systematic error or large variation between patients, treatment dates, proton energies, gantry angles, and planned spot positions. The recorded patient spot positions and MU values were then used to replace the spot positions and MU values in the plan, and the treatment planning system was used to calculate the delivered doses to patients. The results were compared with the treatment plan. Results: Within a treatment session, spot positions were reproducible within ±0.2 mm. The spot positions measured by film agreed with the planned positions within ±1 mm and with the recorded positions within ±0.5 mm. The maximum day-to-day variation for any given spot position was within ±1 mm. For all 14 patients, with ∼1 500 000 spots recorded, the total MU accuracy was within 0.1% of the planned MU values, the mean (x, y) spot displacement from the planned value was (−0.03 mm, −0.01 mm), the maximum (x, y) displacement was (1.68 mm, 2.27 mm), and the (x, y) standard deviation was (0.26 mm, 0.42 mm). The maximum dose difference between calculated dose to

  17. Comparison of surface doses from spot scanning and passively scattered proton therapy beams

    International Nuclear Information System (INIS)

    Arjomandy, Bijan; Sahoo, Narayan; Gillin, Michael; Cox, James; Lee, Andrew

    2009-01-01

    Proton therapy for the treatment of cancer is delivered using either passively scattered or scanning beams. Each technique delivers a different amount of dose to the skin, because of the specific feature of their delivery system. The amount of dose delivered to the skin can play an important role in choosing the delivery technique for a specific site. To assess the differences in skin doses, we measured the surface doses associated with these two techniques. For the purpose of this investigation, the surface doses in a phantom were measured for ten prostate treatment fields planned with passively scattered proton beams and ten patients planned with spot scanning proton beams. The measured doses were compared to evaluate the differences in the amount of skin dose delivered by using these techniques. The results indicate that, on average, the patients treated with spot scanning proton beams received lower skin doses by an amount of 11.8% ± 0.3% than did the patients treated with passively scattered proton beams. That difference could amount to 4 CGE per field for a prescribed dose of 76 CGE in 38 fractions treated with two equally weighted parallel opposed fields. (note)

  18. Simulation of eye-tracker latency, spot size, and ablation pulse depth on the correction of higher order wavefront aberrations with scanning spot laser systems.

    Science.gov (United States)

    Bueeler, Michael; Mrochen, Michael

    2005-01-01

    The aim of this theoretical work was to investigate the robustness of scanning spot laser treatments with different laser spot diameters and peak ablation depths in case of incomplete compensation of eye movements due to eye-tracker latency. Scanning spot corrections of 3rd to 5th Zernike order wavefront errors were numerically simulated. Measured eye-movement data were used to calculate the positioning error of each laser shot assuming eye-tracker latencies of 0, 5, 30, and 100 ms, and for the case of no eye tracking. The single spot ablation depth ranged from 0.25 to 1.0 microm and the spot diameter from 250 to 1000 microm. The quality of the ablation was rated by the postoperative surface variance and the Strehl intensity ratio, which was calculated after a low-pass filter was applied to simulate epithelial surface smoothing. Treatments performed with nearly ideal eye tracking (latency approximately 0) provide the best results with a small laser spot (0.25 mm) and a small ablation depth (250 microm). However, combinations of a large spot diameter (1000 microm) and a small ablation depth per pulse (0.25 microm) yield the better results for latencies above a certain threshold to be determined specifically. Treatments performed with tracker latencies in the order of 100 ms yield similar results as treatments done completely without eye-movement compensation. CONCWSIONS: Reduction of spot diameter was shown to make the correction more susceptible to eye movement induced error. A smaller spot size is only beneficial when eye movement is neutralized with a tracking system with a latency <5 ms.

  19. SU-F-T-173: One-Scan Protocol: Verifying the Delivery of Spot-Scanning Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Chan, M; Li, J [Memorial Sloan-Kettering Cancer Center, Basking Ridge, NJ (United States); Chen, C; Mah, D [Procure Treatment Center, Somerset, NJ (United States); Tang, X [Memorial Sloan Kettering Cancer Center, West Harrison, NY (United States); Li, X [Memorial Sloan Kettering Cancer Center, Rockville Centre, NY (United States); Tang, G [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: Radiochromic film for spot-scanning QA provides high spatial resolution and efficiency gains from one-shot irradiation for multiple depths. However, calibration can be a tedious procedure which may limit widespread use. Moreover, since there may be an energy dependence, which manifests as a depth dependence, this may require additional measurements for each patient. We present a one-scan protocol to simplify the procedure. Methods: We performed the calibration using an EBT3 film at depths of 18, 20, 24cm of Plastic Water exposed by a 6-level step-wedge plan on a Proteus Plus proton system (IBA, Belgium). The calibration doses ranged 65–250 cGy(RBE) for proton energies of 170–200MeV. A clinical prostate+nodes plan was used for validation. The planar doses at selected depths were measured with EBT3 films and analyzed using one-scan protocol (one-scan digitization of QA film and at least one film exposed to known dose). The Gamma passing rates, dose-difference maps, and profiles of 2D planar doses measured with EBT3 film, IBA MatriXX PT, versus TPS calculations were analyzed and compared. Results: The EBT3 film measurement results matched well with the TPS calculation data with an average passing rate of ∼95% for 2%/2mm and slightly lower passing rates were obtained from an ion chamber array detector. We were able to demonstrate that the use of a proton step-wedge provided clinically acceptable results and minimized variations between film-scanner orientation, inter-scan, and scanning conditions. Furthermore, it could be derived from no more than two films exposed to known doses (one could be zero) for rescaling the master calibration curve at each depth. Conclusion: The use of a proton step-wedge for calibration of EBT3 film increases efficiency. The sensitivity of the calibration to depth variations has been explored. One-scan protocol results appear to be comparable to that of the ion chamber array detector. One author has a research grant from

  20. Toward improved target conformity for two spot scanning proton therapy delivery systems using dynamic collimation

    Science.gov (United States)

    Moignier, Alexandra; Gelover, Edgar; Smith, Blake R.; Wang, Dongxu; Flynn, Ryan T.; Kirk, Maura L.; Lin, Liyong; Solberg, Timothy D.; Lin, Alexander; Hyer, Daniel E.

    2016-01-01

    Purpose: To quantify improvement in target conformity in brain and head and neck tumor treatments resulting from the use of a dynamic collimation system (DCS) with two spot scanning proton therapy delivery systems (universal nozzle, UN, and dedicated nozzle, DN) with median spot sizes of 5.2 and 3.2 mm over a range of energies from 100 to 230 MeV. Methods: Uncollimated and collimated plans were calculated with both UN and DN beam models implemented within our in-house treatment planning system for five brain and ten head and neck datasets in patients previously treated with spot scanning proton therapy. The prescription dose and beam angles from the clinical plans were used for both the UN and DN plans. The average reduction of the mean dose to the 10-mm ring surrounding the target between the uncollimated and collimated plans was calculated for the UN and the DN. Target conformity was analyzed using the mean dose to 1-mm thickness rings surrounding the target at increasing distances ranging from 1 to 10 mm. Results: The average reductions of the 10-mm ring mean dose for the UN and DN plans were 13.7% (95% CI: 11.6%–15.7%; p < 0.0001) and 11.5% (95% CI: 9.5%–13.5%; p < 0.0001) across all brain cases and 7.1% (95% CI: 4.4%–9.8%; p < 0.001) and 6.3% (95% CI: 3.7%–9.0%; p < 0.001), respectively, across all head and neck cases. The collimated UN plans were either more conformal (all brain cases and 60% of the head and neck cases) than or equivalent (40% of the head and neck cases) to the uncollimated DN plans. The collimated DN plans offered the highest conformity. Conclusions: The DCS added either to the UN or DN improved the target conformity. The DCS may be of particular interest for sites with UN systems looking for a more economical solution than upgrading the nozzle to improve the target conformity of their spot scanning proton therapy system. PMID:26936726

  1. Deciphering Solar Magnetic Activity: Spotting Solar Cycle 25

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Leamon, Robert J., E-mail: mscott@ucar.edu [Department of Astronomy, University of Maryland, College Park, MD (United States)

    2017-06-26

    We present observational signatures of solar cycle 25 onset. Those signatures are visibly following a migratory path from high to low latitudes. They had starting points that are asymmetrically offset in each hemisphere at times that are 21–22 years after the corresponding, same polarity, activity bands of solar cycle 23 started their migration. Those bands define the so-called “extended solar cycle.” The four magnetic bands currently present in the system are approaching a mutually cancelling configuration, and solar minimum conditions are imminent. Further, using a tuned analysis of the daily band latitude-time diagnostics, we are able to utilize the longitudinal wave number (m = 1) variation in the data to more clearly reveal the presence of the solar cycle 25 bands. This clarification illustrates that prevalently active longitudes (different in each hemisphere) exist at mid-latitudes presently, lasting many solar rotations, that can be used for detailed study over the next several years with instruments like the Spectrograph on IRIS, the Spectropolarimeter on Hinode, and, when they come online, similar instruments on the Daniel K. Inouye Solar Telescope (DKIST) as we watch those bands evolve following the cancellation of the solar cycle 24 activity bands at the equator late in 2019.

  2. Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation

    Science.gov (United States)

    Ma, Chaojie; Di, Jianglei; Li, Ying; Xiao, Fajun; Zhang, Jiwei; Liu, Kaihui; Bai, Xuedong; Zhao, Jianlin

    2018-06-01

    We demonstrate, for the first time, the rotational memory effect of a multimode fiber (MMF) based on digital optical phase conjugation (DOPC) to achieve multiple-spot focusing. An implementation interferometer is used to address the challenging alignments in DOPC. By rotating the acquired phase conjugate pattern, rotational scanning through a MMF could be achieved by recording a single off-axis hologram. The generation of two focal spots through a MMF is also demonstrated by combining the rotational memory effect with the superposition principle. The results may be useful for ultrafast scanning imaging and optical manipulation of multiple objects through a MMF.

  3. Pattern scan laser versus single spot laser in panretinal photocoagulation treatment for proliferative diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Shu Zhang

    2017-02-01

    Full Text Available AIM: To investigate the efficacy of 577-nm pattern scan laser in panretinal photocoagulation(PRPtreatment in newly diagnosed proliferative diabetic retinopathy(PDR.METHODS:Prospective and comparative observation was performed in totally 32 patients with high-risk PDR. They were randomly divided into group 1(using pattern scan laser, PSLand 2(using single spot laser, SSL, each containing 16 subjects to which totally 20 eyes received PRP. Non-perfusion region was identified with fundus fluorescein angiography(FFAbefore and 3mo after final PRP. The advantage of PSL was verified in terms of the number and the duration of PRP sessions needed for satisfactory outcomes, and the pain score.RESULTS: Three PRP sessions were needed for each eye to complete the treatment using PSL, while 4 sessions were needed using SSL. The duration of each session with PSL in group 1 was 7.3±2.3min, which was significantly shorter than that with SSL in group 2(13.2±4.1, t38=5.596, PPCONCLUSION: PSL showed clear advantages over SSL in the PRP treatment of PDR, not only in the improved efficacy, but also in the reduction of pain and the improvement of effectiveness.

  4. A dynamic collimation system for penumbra reduction in spot-scanning proton therapy: Proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Hyer, Daniel E., E-mail: daniel-hyer@uiowa.edu; Hill, Patrick M.; Wang, Dongxu; Smith, Blake R.; Flynn, Ryan T. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2014-09-15

    Purpose: In the absence of a collimation system the lateral penumbra of spot scanning (SS) dose distributions delivered by low energy proton beams is highly dependent on the spot size. For current commercial equipment, spot size increases with decreasing proton energy thereby reducing the benefit of the SS technique. This paper presents a dynamic collimation system (DCS) for sharpening the lateral penumbra of proton therapy dose distributions delivered by SS. Methods: The collimation system presented here exploits the property that a proton pencil beam used for SS requires collimation only when it is near the target edge, enabling the use of trimmers that are in motion at times when the pencil beam is away from the target edge. The device consists of two pairs of parallel nickel trimmer blades of 2 cm thickness and dimensions of 2 cm × 18 cm in the beam's eye view. The two pairs of trimmer blades are rotated 90° relative to each other to form a rectangular shape. Each trimmer blade is capable of rapid motion in the direction perpendicular to the central beam axis by means of a linear motor, with maximum velocity and acceleration of 2.5 m/s and 19.6 m/s{sup 2}, respectively. The blades travel on curved tracks to match the divergence of the proton source. An algorithm for selecting blade positions is developed to minimize the dose delivered outside of the target, and treatment plans are created both with and without the DCS. Results: The snout of the DCS has outer dimensions of 22.6 × 22.6 cm{sup 2} and is capable of delivering a minimum treatment field size of 15 × 15 cm{sup 2}. Using currently available components, the constructed system would weigh less than 20 kg. For irregularly shaped fields, the use of the DCS reduces the mean dose outside of a 2D target of 46.6 cm{sup 2} by approximately 40% as compared to an identical plan without collimation. The use of the DCS increased treatment time by 1–3 s per energy layer. Conclusions: The spread of

  5. A dynamic collimation system for penumbra reduction in spot-scanning proton therapy: Proof of concept

    International Nuclear Information System (INIS)

    Hyer, Daniel E.; Hill, Patrick M.; Wang, Dongxu; Smith, Blake R.; Flynn, Ryan T.

    2014-01-01

    Purpose: In the absence of a collimation system the lateral penumbra of spot scanning (SS) dose distributions delivered by low energy proton beams is highly dependent on the spot size. For current commercial equipment, spot size increases with decreasing proton energy thereby reducing the benefit of the SS technique. This paper presents a dynamic collimation system (DCS) for sharpening the lateral penumbra of proton therapy dose distributions delivered by SS. Methods: The collimation system presented here exploits the property that a proton pencil beam used for SS requires collimation only when it is near the target edge, enabling the use of trimmers that are in motion at times when the pencil beam is away from the target edge. The device consists of two pairs of parallel nickel trimmer blades of 2 cm thickness and dimensions of 2 cm × 18 cm in the beam's eye view. The two pairs of trimmer blades are rotated 90° relative to each other to form a rectangular shape. Each trimmer blade is capable of rapid motion in the direction perpendicular to the central beam axis by means of a linear motor, with maximum velocity and acceleration of 2.5 m/s and 19.6 m/s 2 , respectively. The blades travel on curved tracks to match the divergence of the proton source. An algorithm for selecting blade positions is developed to minimize the dose delivered outside of the target, and treatment plans are created both with and without the DCS. Results: The snout of the DCS has outer dimensions of 22.6 × 22.6 cm 2 and is capable of delivering a minimum treatment field size of 15 × 15 cm 2 . Using currently available components, the constructed system would weigh less than 20 kg. For irregularly shaped fields, the use of the DCS reduces the mean dose outside of a 2D target of 46.6 cm 2 by approximately 40% as compared to an identical plan without collimation. The use of the DCS increased treatment time by 1–3 s per energy layer. Conclusions: The spread of the lateral

  6. Prevalence and diagnostic performance of computed tomography angiography spot sign for intracerebral hematoma expansion depend on scan timing

    Energy Technology Data Exchange (ETDEWEB)

    Tsukabe, Akio; Watanabe, Yoshiyuki; Tanaka, Hisashi; Kunitomi, Yuki; Nishizawa, Mitsuo; Arisawa, Atsuko; Tomiyama, Noriyuki [Osaka University Graduate School of Medicine, Department of Diagnostic and Interventional Radiology, Suita, Osaka (Japan); Yoshiya, Kazuhisa; Shimazu, Takeshi [Osaka University Graduate School of Medicine, Department of Traumatology and Acute Critical Medicine, Suita, Osaka (Japan)

    2014-12-15

    The computed tomography angiography (CTA) spot sign correlates with intracerebral hemorrhage (ICH) expansion; however, various diagnostic performances for hematoma expansion, especially in sensitivity, have been reported. We aimed to assess the impact of scan timing of CTA on the diagnostic performance of the CTA spot sign for ICH expansion in two different arterial phases within patients. Eighty-three consecutive patients with primary ICH who received two sequential CTAs were recruited. Two neuroradiologists reviewed CTAs for CTA spot signs, while one reviewed initial and follow-up non-contrast CT for measuring ICH volume. The time interval between two phases was then calculated, and the diagnostic performance of CTA spot sign in each phase was evaluated. CTA spot signs were observed in 20/83 (24.1 %) patients in the early phase and 44/83 (53.0 %) patients in the late phase. The mean time interval between the two phases was 12.7 s. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy for hematoma progression of CTA spot sign were 48.1, 87.5, 65.0, 77.8, and 74.7 %, respectively, in early phase and 92.6, 66.1, 56.8, 94.9, and 74.7 %, respectively, in late phase. The CTA spot sign was significantly associated with ICH expansion in early (P < 0.001) and late (P < 0.00001) phases (Pearson's chi-square test). A mere 10-s difference in scan timing could make a difference on prevalence and diagnostic performance of the CTA spot sign, suggesting a need for the standardization of the CTA protocol to generalize the approach for effective clinical application. (orig.)

  7. More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI

    International Nuclear Information System (INIS)

    Lin Shixiong; Boehringer, Terence; Coray, Adolf; Grossmann, Martin; Pedroni, Eros

    2009-01-01

    Purpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning. Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. Results: The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. Conclusions: The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.

  8. More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Lin Shixiong; Boehringer, Terence; Coray, Adolf; Grossmann, Martin; Pedroni, Eros [Center for Proton Therapy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2009-11-15

    Purpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning. Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. Results: The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. Conclusions: The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.

  9. Impact of Spot Size and Beam-Shaping Devices on the Treatment Plan Quality for Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moteabbed, Maryam, E-mail: mmoteabbed@partners.org; Yock, Torunn I.; Depauw, Nicolas; Madden, Thomas M.; Kooy, Hanne M.; Paganetti, Harald

    2016-05-01

    Purpose: This study aimed to assess the clinical impact of spot size and the addition of apertures and range compensators on the treatment quality of pencil beam scanning (PBS) proton therapy and to define when PBS could improve on passive scattering proton therapy (PSPT). Methods and Materials: The patient cohort included 14 pediatric patients treated with PSPT. Six PBS plans were created and optimized for each patient using 3 spot sizes (∼12-, 5.4-, and 2.5-mm median sigma at isocenter for 90- to 230-MeV range) and adding apertures and compensators to plans with the 2 larger spots. Conformity and homogeneity indices, dose-volume histogram parameters, equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and integral dose were quantified and compared with the respective PSPT plans. Results: The results clearly indicated that PBS with the largest spots does not necessarily offer a dosimetric or clinical advantage over PSPT. With comparable target coverage, the mean dose (D{sub mean}) to healthy organs was on average 6.3% larger than PSPT when using this spot size. However, adding apertures to plans with large spots improved the treatment quality by decreasing the average D{sub mean} and EUD by up to 8.6% and 3.2% of the prescribed dose, respectively. Decreasing the spot size further improved all plans, lowering the average D{sub mean} and EUD by up to 11.6% and 10.9% compared with PSPT, respectively, and eliminated the need for beam-shaping devices. The NTCP decreased with spot size and addition of apertures, with maximum reduction of 5.4% relative to PSPT. Conclusions: The added benefit of using PBS strongly depends on the delivery configurations. Facilities limited to large spot sizes (>∼8 mm median sigma at isocenter) are recommended to use apertures to reduce treatment-related toxicities, at least for complex and/or small tumors.

  10. TU-FG-BRB-12: Real-Time Visualization of Discrete Spot Scanning Proton Therapy Beam for Quality Assurance

    International Nuclear Information System (INIS)

    Matsuzaki, Y; Jenkins, C; Yang, Y; Xing, L; Yoshimura, T; Fujii, Y; Umegaki, K

    2016-01-01

    Purpose: With the growing adoption of proton beam therapy there is an increasing need for effective and user-friendly tools for performing quality assurance (QA) measurements. The speed and versatility of spot-scanning proton beam (PB) therapy systems present unique challenges for traditional QA tools. To address these challenges a proof-of-concept system was developed to visualize, in real-time, the delivery of individual spots from a spot-scanning PB in order to perform QA measurements. Methods: The PB is directed toward a custom phantom with planar faces coated with a radioluminescent phosphor (Gd2O2s:Tb). As the proton beam passes through the phantom visible light is emitted from the coating and collected by a nearby CMOS camera. The images are processed to determine the locations at which the beam impinges on each face of the phantom. By so doing, the location of each beam can be determined relative to the phantom. The cameras are also used to capture images of the laser alignment system. The phantom contains x-ray fiducials so that it can be easily located with kV imagers. Using this data several quality assurance parameters can be evaluated. Results: The proof-of-concept system was able to visualize discrete PB spots with energies ranging from 70 MeV to 220 MeV. Images were obtained with integration times ranging from 20 to 0.019 milliseconds. If not limited by data transmission, this would correspond to a frame rate of 52,000 fps. Such frame rates enabled visualization of individual spots in real time. Spot locations were found to be highly correlated (R"2=0.99) with the nozzle-mounted spot position monitor indicating excellent spot positioning accuracy Conclusion: The system was shown to be capable of imaging individual spots for all clinical beam energies. Future development will focus on extending the image processing software to provide automated results for a variety of QA tests.

  11. TU-FG-BRB-12: Real-Time Visualization of Discrete Spot Scanning Proton Therapy Beam for Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Y [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Jenkins, C; Yang, Y; Xing, L [Stanford University, Stanford, California (United States); Yoshimura, T; Fujii, Y [Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan); Umegaki, K [Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: With the growing adoption of proton beam therapy there is an increasing need for effective and user-friendly tools for performing quality assurance (QA) measurements. The speed and versatility of spot-scanning proton beam (PB) therapy systems present unique challenges for traditional QA tools. To address these challenges a proof-of-concept system was developed to visualize, in real-time, the delivery of individual spots from a spot-scanning PB in order to perform QA measurements. Methods: The PB is directed toward a custom phantom with planar faces coated with a radioluminescent phosphor (Gd2O2s:Tb). As the proton beam passes through the phantom visible light is emitted from the coating and collected by a nearby CMOS camera. The images are processed to determine the locations at which the beam impinges on each face of the phantom. By so doing, the location of each beam can be determined relative to the phantom. The cameras are also used to capture images of the laser alignment system. The phantom contains x-ray fiducials so that it can be easily located with kV imagers. Using this data several quality assurance parameters can be evaluated. Results: The proof-of-concept system was able to visualize discrete PB spots with energies ranging from 70 MeV to 220 MeV. Images were obtained with integration times ranging from 20 to 0.019 milliseconds. If not limited by data transmission, this would correspond to a frame rate of 52,000 fps. Such frame rates enabled visualization of individual spots in real time. Spot locations were found to be highly correlated (R{sup 2}=0.99) with the nozzle-mounted spot position monitor indicating excellent spot positioning accuracy Conclusion: The system was shown to be capable of imaging individual spots for all clinical beam energies. Future development will focus on extending the image processing software to provide automated results for a variety of QA tests.

  12. SU-E-T-337: Treatment Planning Study of Craniospinal Irradiation with Spot Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Tasson, A; Beltran, C; Laack, N; Childs, S; Tryggestad, E; Whitaker, T

    2014-01-01

    Purpose: To develop a treatment planning technique that achieves optimal robustness against systematic position and range uncertainties, and interfield position errors for craniospinal irradiation (CSI) using spot scanning proton radiotherapy. Methods: Eighteen CSI patients who had previously been treated using photon radiation were used for this study. Eight patients were less than 10 years old. The prescription dose was 23.4Gy in 1.8Gy fractions. Two different field arrangement types were investigated: 1 posterior field per isocenter and 2 posterior oblique fields per isocenter. For each field type, two delivery configurations were used: 5cm bolus attached to the treatment table and a 4.5cm range shifter located inside the nozzle. The target for each plan was the whole brain and thecal sac. For children under the age of 10, all plan types were repeated with an additional dose of 21Gy prescribed to the vertebral bodies. Treatment fields were matched by stepping down the dose in 10% increments over 9cm. Robustness against 3% and 3mm uncertainties, as well as a 3mm inter-field error was analyzed. Dose coverage of the target and critical structure sparing for each plan type will be considered. Ease of planning and treatment delivery was also considered for each plan type. Results: The mean dose volume histograms show that the bolus plan with posterior beams gave the best overall plan, and all proton plans were comparable to or better than the photon plans. The plan type that was the most robust against the imposed uncertainties was also the bolus plan with posterior beams. This is also the plan configuration that is the easiest to deliver and plan. Conclusion: The bolus plan with posterior beams achieved optimal robustness against systematic position and range uncertainties, as well as inter-field position errors

  13. Impact of Spot Size and Beam-Shaping Devices on the Treatment Plan Quality for Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Moteabbed, Maryam; Yock, Torunn I.; Depauw, Nicolas; Madden, Thomas M.; Kooy, Hanne M.; Paganetti, Harald

    2016-01-01

    Purpose: This study aimed to assess the clinical impact of spot size and the addition of apertures and range compensators on the treatment quality of pencil beam scanning (PBS) proton therapy and to define when PBS could improve on passive scattering proton therapy (PSPT). Methods and Materials: The patient cohort included 14 pediatric patients treated with PSPT. Six PBS plans were created and optimized for each patient using 3 spot sizes (∼12-, 5.4-, and 2.5-mm median sigma at isocenter for 90- to 230-MeV range) and adding apertures and compensators to plans with the 2 larger spots. Conformity and homogeneity indices, dose-volume histogram parameters, equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and integral dose were quantified and compared with the respective PSPT plans. Results: The results clearly indicated that PBS with the largest spots does not necessarily offer a dosimetric or clinical advantage over PSPT. With comparable target coverage, the mean dose (D_m_e_a_n) to healthy organs was on average 6.3% larger than PSPT when using this spot size. However, adding apertures to plans with large spots improved the treatment quality by decreasing the average D_m_e_a_n and EUD by up to 8.6% and 3.2% of the prescribed dose, respectively. Decreasing the spot size further improved all plans, lowering the average D_m_e_a_n and EUD by up to 11.6% and 10.9% compared with PSPT, respectively, and eliminated the need for beam-shaping devices. The NTCP decreased with spot size and addition of apertures, with maximum reduction of 5.4% relative to PSPT. Conclusions: The added benefit of using PBS strongly depends on the delivery configurations. Facilities limited to large spot sizes (>∼8 mm median sigma at isocenter) are recommended to use apertures to reduce treatment-related toxicities, at least for complex and/or small tumors.

  14. Proton therapy with spot scanning: the Rinecker Proton Therapy Center in Munich. Part 2: Technical and physical aspects

    International Nuclear Information System (INIS)

    Borchert, H. J.; Mayr, M.; Schneider, R. A.; Arnold, M. R.; Geismar, D. E.; Wilms, M.; Wisser, L.; Herbst, M.

    2008-01-01

    The Rinecker Proton Therapy Center (RPTC) in Munich is about to introduce into clinical radiation therapy, a 2D scanning technique (spot scanning) of a single proton pencil beam. It will be available at four gantries and a fifth treatment room allocates a fixed beam unit for a scattering technique. A superconducting cyclotron extracts protons with a constant energy of 250 MeV. Far upstream of the patient follows modulation of the energy with a degrader according to the prescription of the patients treatment planning. A 10 mm pencil beam at full width of half maximum (FWHM) will enable scanning of individual tumour volumes at any depth i.e. 1 minute for a target volume of 1 litre and a dose of 2 Gy. Innovative solutions will be established for other important issues such as dosimetric monitoring, safety concepts and positioning of the patient. The physical characteristics of proton beam spot scanning offer exceptional possibilities in conformal radiation therapy. Together with intensity modulated proton therapy (IMPT) it significantly improves the sparing of organs at risk and of healthy tissues. (author)

  15. Spot Scanning Proton Therapy for Malignancies of the Base of Skull: Treatment Planning, Acute Toxicities, and Preliminary Clinical Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Grosshans, David R., E-mail: dgrossha@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhu, X. Ronald; Melancon, Adam [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Allen, Pamela K. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Poenisch, Falk; Palmer, Matthew [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); McAleer, Mary Frances; McGovern, Susan L. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gillin, Michael [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); DeMonte, Franco [Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chang, Eric L. [Department of Radiation Oncology, University of Southern California Keck School of Medicine, Los Angeles, California (United States); Brown, Paul D.; Mahajan, Anita [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-11-01

    Purpose: To describe treatment planning techniques and early clinical outcomes in patients treated with spot scanning proton therapy for chordoma or chondrosarcoma of the skull base. Methods and Materials: From June 2010 through August 2011, 15 patients were treated with spot scanning proton therapy for chordoma (n=10) or chondrosarcoma (n=5) at a single institution. Toxicity was prospectively evaluated and scored weekly and at all follow-up visits according to Common Terminology Criteria for Adverse Events, version 3.0. Treatment planning techniques and dosimetric data were recorded and compared with those of passive scattering plans created with clinically applicable dose constraints. Results: Ten patients were treated with single-field-optimized scanning beam plans and 5 with multifield-optimized intensity modulated proton therapy. All but 2 patients received a simultaneous integrated boost as well. The mean prescribed radiation doses were 69.8 Gy (relative biological effectiveness [RBE]; range, 68-70 Gy [RBE]) for chordoma and 68.4 Gy (RBE) (range, 66-70) for chondrosarcoma. In comparison with passive scattering plans, spot scanning plans demonstrated improved high-dose conformality and sparing of temporal lobes and brainstem. Clinically, the most common acute toxicities included fatigue (grade 2 for 2 patients, grade 1 for 8 patients) and nausea (grade 2 for 2 patients, grade 1 for 6 patients). No toxicities of grades 3 to 5 were recorded. At a median follow-up time of 27 months (range, 13-42 months), 1 patient had experienced local recurrence and a second developed distant metastatic disease. Two patients had magnetic resonance imaging-documented temporal lobe changes, and a third patient developed facial numbness. No other subacute or late effects were recorded. Conclusions: In comparison to passive scattering, treatment plans for spot scanning proton therapy displayed improved high-dose conformality. Clinically, the treatment was well tolerated, and

  16. TH-CD-209-10: Scanning Proton Arc Therapy (SPArc) - The First Robust and Delivery-Efficient Spot Scanning Proton Arc Therapy

    International Nuclear Information System (INIS)

    Ding, X; Li, X; Zhang, J; Kabolizadeh, P; Stevens, C; Yan, D

    2016-01-01

    Purpose: To develop a delivery-efficient proton spot-scanning arc therapy technique with robust plan quality. Methods: We developed a Scanning Proton Arc(SPArc) optimization algorithm integrated with (1)Control point re-sampling by splitting control point into adjacent sub-control points; (2)Energy layer re-distribution by assigning the original energy layers to the new sub-control points; (3)Energy layer filtration by deleting low MU weighting energy layers; (4)Energy layer re-sampling by sampling additional layers to ensure the optimal solution. A bilateral head and neck oropharynx case and a non-mobile lung target case were tested. Plan quality and total estimated delivery time were compared to original robust optimized multi-field step-and-shoot arc plan without SPArc optimization (Arcmulti-field) and standard robust optimized Intensity Modulated Proton Therapy(IMPT) plans. Dose-Volume-Histograms (DVH) of target and Organ-at-Risks (OARs) were analyzed along with all worst case scenarios. Total delivery time was calculated based on the assumption of a 360 degree gantry room with 1 RPM rotation speed, 2ms spot switching time, beam current 1nA, minimum spot weighting 0.01 MU, energy-layer-switching-time (ELST) from 0.5 to 4s. Results: Compared to IMPT, SPArc delivered less integral dose(−14% lung and −8% oropharynx). For lung case, SPArc reduced 60% of skin max dose, 35% of rib max dose and 15% of lung mean dose. Conformity Index is improved from 7.6(IMPT) to 4.0(SPArc). Compared to Arcmulti-field, SPArc reduced number of energy layers by 61%(276 layers in lung) and 80%(1008 layers in oropharynx) while kept the same robust plan quality. With ELST from 0.5s to 4s, it reduced 55%–60% of Arcmulti-field delivery time for the lung case and 56%–67% for the oropharynx case. Conclusion: SPArc is the first robust and delivery-efficient proton spot-scanning arc therapy technique which could be implemented in routine clinic. For modern proton machine with ELST close

  17. Spot Scanning and Passive Scattering Proton Therapy: Relative Biological Effectiveness and Oxygen Enhancement Ratio in Cultured Cells.

    Science.gov (United States)

    Iwata, Hiromitsu; Ogino, Hiroyuki; Hashimoto, Shingo; Yamada, Maho; Shibata, Hiroki; Yasui, Keisuke; Toshito, Toshiyuki; Omachi, Chihiro; Tatekawa, Kotoha; Manabe, Yoshihiko; Mizoe, Jun-etsu; Shibamoto, Yuta

    2016-05-01

    To determine the relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and contribution of the indirect effect of spot scanning proton beams, passive scattering proton beams, or both in cultured cells in comparison with clinically used photons. The RBE of passive scattering proton beams at the center of the spread-out Bragg peak (SOBP) was determined from dose-survival curves in 4 cell lines using 6-MV X rays as controls. Survival of 2 cell lines after spot scanning and passive scattering proton irradiation was then compared. Biological effects at the distal end region of the SOBP were also investigated. The OER of passive scattering proton beams and 6 MX X rays were investigated in 2 cell lines. The RBE and OER values were estimated at a 10% cell survival level. The maximum degree of protection of radiation effects by dimethyl sulfoxide was determined to estimate the contribution of the indirect effect against DNA damage. All experiments comparing protons and X rays were made under the same biological conditions. The RBE values of passive scattering proton beams in the 4 cell lines examined were 1.01 to 1.22 (average, 1.14) and were almost identical to those of spot scanning beams. Biological effects increased at the distal end of the SOBP. In the 2 cell lines examined, the OER was 2.74 (95% confidence interval, 2.56-2.80) and 3.08 (2.84-3.11), respectively, for X rays, and 2.39 (2.38-2.43) and 2.72 (2.69-2.75), respectively, for protons (Pcells between X rays and protons). The maximum degree of protection was significantly higher for X rays than for proton beams (P<.05). The RBE values of spot scanning and passive scattering proton beams were almost identical. The OER was lower for protons than for X rays. The lower contribution of the indirect effect may partly account for the lower OER of protons. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Severity of banana leaf spot in an intercropping system in two cycles of banana Prata Anã

    Directory of Open Access Journals (Sweden)

    Valdeir Dias Gonçalves

    2008-01-01

    Full Text Available Prata Anã is the most planted banana cultivar in northern Minas Gerais, Brazil. It is however susceptible toseveral pathogens. This study was carried out to evaluate the disease severity of banana leaf spot in the Prata Anã cv. in thefirst and second cycle under six different planting systems. The randomized block experimental design was used with sixtreatments and four replications. In an evaluation of the severity of banana leaf spot, no disease symptoms were found onThap Maeo and Caipira. The evolution curve of the disease indicated seasonal effects in the first and second cycles. Theseverity of banana leaf spot was highest soon after the regional rainy period from November to March. A comparison of themeans of the evaluations indicated a reduction in disease severity from the first to the second cycle.

  19. Technical Note: Validation of halo modeling for proton pencil beam spot scanning using a quality assurance test pattern

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Liyong, E-mail: linl@uphs.upenn.edu; Huang, Sheng; Kang, Minglei; Solberg, Timothy D.; McDonough, James E.; Ainsley, Christopher G. [Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104 (United States)

    2015-09-15

    Purpose: The purpose of this paper is to demonstrate the utility of a comprehensive test pattern in validating calculation models that include the halo component (low-dose tails) of proton pencil beam scanning (PBS) spots. Such a pattern has been used previously for quality assurance purposes to assess spot shape, position, and dose. Methods: In this study, a scintillation detector was used to measure the test pattern in air at isocenter for two proton beam energies (115 and 225 MeV) of two IBA universal nozzles (UN #1 and UN #2). Planar measurements were compared with calculated dose distributions based on the weighted superposition of location-independent (UN #1) or location-dependent (UN #2) spot profiles, previously measured using a pair-magnification method and between two nozzles. Results: Including the halo component below 1% of the central dose is shown to improve the gamma-map comparison between calculation and measurement from 94.9% to 98.4% using 2 mm/2% criteria for the 115 MeV proton beam of UN #1. In contrast, including the halo component below 1% of the central dose does not improve the gamma agreement for the 115 MeV proton beam of UN #2, due to the cutoff of the halo component at off-axis locations. When location-dependent spot profiles are used for calculation instead of spot profiles at central axis, the gamma agreement is improved from 98.0% to 99.5% using 2 mm/2% criteria. The two nozzles clearly have different characteristics, as a direct comparison of measured data shows a passing rate of 89.7% for the 115 MeV proton beam. At 225 MeV, the corresponding gamma comparisons agree better between measurement and calculation, and between measurements in the two nozzles. Conclusions: In addition to confirming the primary component of individual PBS spot profiles, a comprehensive test pattern is useful for the validation of the halo component at off-axis locations, especially for low energy protons.

  20. WE-D-17A-01: A Dynamic Collimation System for Spot Scanned Proton Therapy: Conceptual Overview

    International Nuclear Information System (INIS)

    Hyer, D; Hill, P; Wang, D; Smith, B; Flynn, R

    2014-01-01

    Purpose: In the absence of a collimation system, the lateral penumbra in pencil beam scanning (PBS) proton therapy delivered at low energies is highly dependent on the spot size. This dependence, coupled with the fact that spot sizes increase with decreasing energy, reduces the benefit of the PBS technique for treating shallow tumors such as those found in the head and neck region. In order to overcome this limitation, a dynamic collimation system (DCS) was developed for sharpening the lateral penumbra of low energy proton therapy dose distributions delivered by PBS. Methods: The proposed DCS consists of two pairs of orthogonal trimmer blades which intercept the edges of the proton beam near the target edge in the beam's eye view. Each trimmer blade is capable of rapid motion in the direction perpendicular to the central beam axis by means of a linear motor, with maximum velocity and acceleration of 2.5 m/s and 19.6 m/s 2 , respectively. Two-dimensional treatment plans were created both with and without the DCS for in-air spot sizes (σ-air) of 3, 5, 7, and 9 mm, representing a wide array of clinically available equipment. Results: In its current configuration, the snout of the DCS has outer dimensions of 22.6 × 22.6 cm 2 and is capable of delivering a minimum treatment field size of 15 × 15 cm 2 . Using off the shelf components, the constructed system would weigh less than 20 kg. The treatment plans created with the DCS yielded a reduction in the mean dose to normal tissue surrounding the target of 26.2–40.6% for spot sizes of 3–9 mm, respectively. Conclusion: The DCS can be integrated with current or future proton therapy equipment and we believe it will serve as a useful tool to further improve the next generation of proton therapy delivery

  1. SU-F-T-169: A Periodic Quality Assurance Program for a Spot-Scanning Proton Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, D; Tryggestad, E; Beltran, C; Furutani, K; Gilson, G; Ito, S; Johnson, J; Kruse, J; Remmes, N; Tasson, A; Whitaker, T; Herman, M [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To develop daily and monthly quality assurance (QA) programs in support of a new spot-scanning proton treatment facility using a combination of commercial and custom equipment and software. Emphasis was placed on efficiency and evaluation of key quality parameters. Methods: The daily QA program was developed to test output, spot size and position, proton beam energy, and image guidance using the Sun Nuclear Corporation rf-DQA™3 device and Atlas QA software. The program utilizes standard Atlas linear accelerator tests repurposed for proton measurements and a custom jig for indexing the device to the treatment couch. The monthly QA program was designed to test mechanical performance, image quality, radiation quality, isocenter coincidence, and safety features. Many of these tests are similar to linear accelerator QA counterparts, but many require customized test design and equipment. Coincidence of imaging, laser marker, mechanical, and radiation isocenters, for instance, is verified using a custom film-based device devised and manufactured at our facility. Proton spot size and position as a function of energy are verified using a custom spot pattern incident on film and analysis software developed in-house. More details concerning the equipment and software developed for monthly QA are included in the supporting document. Thresholds for daily and monthly tests were established via perturbation analysis, early experience, and/or proton system specifications and associated acceptance test results. Results: The periodic QA program described here has been in effect for approximately 9 months and has proven efficient and sensitive to sub-clinical variations in treatment delivery characteristics. Conclusion: Tools and professional guidelines for periodic proton system QA are not as well developed as their photon and electron counterparts. The program described here efficiently evaluates key quality parameters and, while specific to the needs of our facility

  2. SU-F-T-169: A Periodic Quality Assurance Program for a Spot-Scanning Proton Treatment Facility

    International Nuclear Information System (INIS)

    Mundy, D; Tryggestad, E; Beltran, C; Furutani, K; Gilson, G; Ito, S; Johnson, J; Kruse, J; Remmes, N; Tasson, A; Whitaker, T; Herman, M

    2016-01-01

    Purpose: To develop daily and monthly quality assurance (QA) programs in support of a new spot-scanning proton treatment facility using a combination of commercial and custom equipment and software. Emphasis was placed on efficiency and evaluation of key quality parameters. Methods: The daily QA program was developed to test output, spot size and position, proton beam energy, and image guidance using the Sun Nuclear Corporation rf-DQA™3 device and Atlas QA software. The program utilizes standard Atlas linear accelerator tests repurposed for proton measurements and a custom jig for indexing the device to the treatment couch. The monthly QA program was designed to test mechanical performance, image quality, radiation quality, isocenter coincidence, and safety features. Many of these tests are similar to linear accelerator QA counterparts, but many require customized test design and equipment. Coincidence of imaging, laser marker, mechanical, and radiation isocenters, for instance, is verified using a custom film-based device devised and manufactured at our facility. Proton spot size and position as a function of energy are verified using a custom spot pattern incident on film and analysis software developed in-house. More details concerning the equipment and software developed for monthly QA are included in the supporting document. Thresholds for daily and monthly tests were established via perturbation analysis, early experience, and/or proton system specifications and associated acceptance test results. Results: The periodic QA program described here has been in effect for approximately 9 months and has proven efficient and sensitive to sub-clinical variations in treatment delivery characteristics. Conclusion: Tools and professional guidelines for periodic proton system QA are not as well developed as their photon and electron counterparts. The program described here efficiently evaluates key quality parameters and, while specific to the needs of our facility

  3. SU-E-T-127: Application of TG-119 for Evaluation of Proton Spot Scanning Based Planning and Treatment Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Saini, J; Cao, N; Wong, T [SCCA Proton Therapy, A Procure Center, Seattle, WA (United States); Bowen, S; Bloch, C [University of Washington, School of Medicine, Seattle, WA (United States)

    2015-06-15

    Purpose: The clinical test cases presented in AAPM TG-119 are used to evaluate the accuracy of treatment planning and delivery through spot scanning proton beams. Methods: An IBA spot scanning delivery system has been commissioned to be used with the RayStation treatment planning system. Various test cases provided in TG-119 were used for planning and delivery verification. The CT dataset and structures as provided by TG-119 were imported into a mock patient. The plans were optimized using the multi field optimization (MFO) to achieve the desired goals. The planner was given the flexibility to achieve the given dose-volume goals by creating appropriate objectives and constraints. Beams were delivered to a phantom and measurements were performed at multiple depths using the MatrixxPT detector array. The analyses were performed on beam by beam basis and quantified using the gamma index. A tolerance of 3%/3 mm in 2D was used for gamma index analysis along with dose threshold of 10%. Results: The clinical goals for targets and critical structures were met or improved for all cases except the C-Shape target with difficult constraints. The minimum gamma index using the 3%/3mm as a criterion is 93.3% for one of the planes measured for C-Shape target. Using 2%/2mm as a criterion, the minimum gamma index drops to 70%. Only Prostate target has all the planes above >90% pass using the 2%/2mm criterion. Conclusion: The overall accuracy of the treatment planning and delivery is deemed clinically acceptable. The test cases with highly modulated beams can have steep gradients in the dose profiles that can reduce the gamma index pass rate. Gamma analysis based on 3D data may be needed for routine use of 2%/2mm criterion. In addition, improvements in modelling of spot profiles in dose engine may be required for further improving the gamma index pass rate.

  4. Focal hot spot induced by a central subclavian line on bone scan.

    Science.gov (United States)

    Moslehi, Masood; Cheki, Mohsen; Dehghani, Tohid; Eftekhari, Mansoureh

    2014-01-01

    The diagnostic accuracy of nuclear medicine reporting can be improved by awareness of these instrument-related artifacts. Both awareness and experience are also important when it comes to detecting and identifying normal (and abnormal) variants. We present a case of hot spot on the upper right chest in the region of right subclavicular region resulting from injection of radiotracer from central subclavian line. A 52-year-old woman with a history of left breast cancer and recent bone pain was referred to our nuclear medicine department for skeletal survey. Anterior views of chest show a focus of increased radiotracer uptake corresponding to anterior arch of one of the right second rib. The nuclear physician reported it as a focal rib bony lesion and recommended radiological evaluation. As technician later explained, physicians realized that injection site was a central subclavian line on the right side and hot spot on that region is due to injection site. The appearance of both skeletal and soft-tissue uptake depends heavily on imaging technique (such as the route of radiotracer administration) and the interpreting physicians should be aware of the impact of technical factors on image quality.

  5. Towards Effective and Efficient Patient-Specific Quality Assurance for Spot Scanning Proton Therapy

    Directory of Open Access Journals (Sweden)

    X. Ronald. Zhu

    2015-04-01

    Full Text Available An intensity-modulated proton therapy (IMPT patient-specific quality assurance (PSQA program based on measurement alone can be very time consuming due to the highly modulated dose distributions of IMPT fields. Incorporating independent dose calculation and treatment log file analysis could reduce the time required for measurements. In this article, we summarize our effort to develop an efficient and effective PSQA program that consists of three components: measurements, independent dose calculation, and analysis of patient-specific treatment delivery log files. Measurements included two-dimensional (2D measurements using an ionization chamber array detector for each field delivered at the planned gantry angles with the electronic medical record (EMR system in the QA mode and the accelerator control system (ACS in the treatment mode, and additional measurements at depths for each field with the ACS in physics mode and without the EMR system. Dose distributions for each field in a water phantom were calculated independently using a recently developed in-house pencil beam algorithm and compared with those obtained using the treatment planning system (TPS. The treatment log file for each field was analyzed in terms of deviations in delivered spot positions from their planned positions using various statistical methods. Using this improved PSQA program, we were able to verify the integrity of the data transfer from the TPS to the EMR to the ACS, the dose calculation of the TPS, and the treatment delivery, including the dose delivered and spot positions. On the basis of this experience, we estimate that the in-room measurement time required for each complex IMPT case (e.g., a patient receiving bilateral IMPT for head and neck cancer is less than 1 h using the improved PSQA program. Our experience demonstrates that it is possible to develop an efficient and effective PSQA program for IMPT with the equipment and resources available in the clinic.

  6. Fast beam cut-off method in RF-knockout extraction for spot-scanning

    CERN Document Server

    Furukawa, T

    2002-01-01

    An irradiation method with magnetic scanning has been developed in order to provide accurate irradiation even for an irregular target shape. The scanning method has strongly required a lower ripple of the beam spill and a faster response to beam-on/off in slow extraction from a synchrotron ring. At HIMAC, RF-knockout extraction has utilized a bunched beam to reduce the beam-spill ripple. Therefore, particles near the resonance can be spilled out from the separatrices by synchrotron oscillation as well as by a transverse RF field. From this point of view, a fast beam cut-off method has been proposed and verified by both simulations and experiments. The maximum delay from the beam cut-off signal to beam-off has been improved to around 60 mu s from 700 mu s by a usual method. Unwanted dose has been considerably reduced by around a factor of 10 compared with that by the usual method.

  7. SU-E-T-561: Development of Depth Dose Measurement Technique Using the Multilayer Ionization Chamber for Spot Scanning Method

    International Nuclear Information System (INIS)

    Takayanagi, T; Fujitaka, S; Umezawa, M; Ito, Y; Nakashima, C; Matsuda, K

    2014-01-01

    Purpose: To develop a measurement technique which suppresses the difference between profiles obtained with a multilayer ionization chamber (MLIC) and with a water phantom. Methods: The developed technique multiplies the raw MLIC data by a correction factor that depends on the initial beam range and water equivalent depth. The correction factor is derived based on a Bragg curve calculation formula considering range straggling and fluence loss caused by nuclear reactions. Furthermore, the correction factor is adjusted based on several integrated depth doses measured with a water phantom and the MLIC. The measured depth dose profiles along the central axis of the proton field with a nominal field size of 10 by 10 cm were compared between the MLIC using the new technique and the water phantom. The spread out Bragg peak was 20 cm for fields with a range of 30.6 cm and 6.9 cm. Raw MLIC data were obtained with each energy layer, and integrated after multiplying by the correction factor. The measurements were performed by a spot scanning nozzle at Nagoya Proton Therapy Center, Japan. Results: The profile measured with the MLIC using the new technique is consistent with that of the water phantom. Moreover, 97% of the points passed the 1% dose /1mm distance agreement criterion of the gamma index. Conclusion: We have demonstrated that the new technique suppresses the difference between profiles obtained with the MLIC and with the water phantom. It was concluded that this technique is useful for depth dose measurement in proton spot scanning method

  8. Spot-scanning proton therapy for malignant soft tissue tumors in childhood: First experiences at the Paul Scherrer Institute

    International Nuclear Information System (INIS)

    Timmermann, Beate; Schuck, Andreas; Niggli, Felix; Weiss, Markus; Lomax, Antony Jonathan; Pedroni, Eros; Coray, Adolf; Jermann, Martin; Rutz, Hans Peter; Goitein, Gudrun

    2007-01-01

    Purpose: Radiotherapy plays a major role in the treatment strategy of childhood sarcomas. Consequences of treatment are likely to affect the survivor's quality of life significantly. We investigated the feasibility of spot-scanning proton therapy (PT) for soft tissue tumors in childhood. Methods and Materials: Sixteen children with soft tissue sarcomas were included. Median age at PT was 3.3 years. In 10 children the tumor histology was embryonal rhabdomyosarcoma. All tumors were located in the head or neck, parameningeal, or paraspinal, or pelvic region. In the majority of children, the tumor was initially unresectable (Intergroup Rhabdomyosarcoma Study [IRS] Group III in 75%). In 50% of children the tumors exceeded 5 cm. Fourteen children had chemotherapy before and during PT. Median total dose of radiotherapy was 50 cobalt Gray equivalent (CGE). All 16 children were treated with spot-scanning proton therapy at the Paul Scherrer Institute, and in 3 children the PT was intensity-modulated (IMPT). Results: After median follow-up of 1.5 years, local control was achieved in 12 children. Four children failed locally, 1 at the border of the radiation field and 3 within the field. All 4 children died of tumor recurrence. All 4 showed unfavorable characteristic either of site or histopathology of the tumor. Acute toxicity was low, with Grade 3 or 4 side effects according to Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG/EORTC) criteria occurring in the bone marrow only. Conclusions: Proton therapy was feasible and well tolerated. Early local control rates are comparable to those being achieved after conventional radiotherapy. For investigations on late effect, longer follow-up is needed

  9. Dosimetry intercomparison of four proton therapy institutions in Germany employing spot scanning

    Energy Technology Data Exchange (ETDEWEB)

    Baeumer, Christian; Koska, Benjamin [Westdeutsches Protonentherapiezentrum, Essen (Germany); Ackermann, Benjamin; Latzel, Harald [Heidelberger Ionenstrahl-Therapiezentrum, Heidelberg (Germany); Heidelberg Institute for Radiation Oncology (Germany); Hillbrand, Martin; Kaiser, Franz-Joachim [Rinecker Proton Therapy Center, Muenchen (Germany); Luehr, Armin [German Cancer Consortium (DKTK), Heidelberg (Germany); Technische Univ. Dresden (Germany). OncoRay - National Center for Radiation Research in Oncology; German Cancer Research Center (DKFZ), Heidelberg (Germany); Menkel, Stefan [Technische Univ. Dresden (Germany). Dept. of Radiation Oncology; Timmermann, Beate [Westdeutsches Protonentherapiezentrum, Essen (Germany); German Cancer Consortium (DKTK), Heidelberg (Germany); Essen Univ. Hospital (Germany). West German Cancer Center (WTZ)

    2017-08-01

    To verify the consistency of dose and range measurement in an interinstitution comparison among proton therapy institutions in Germany which use the pencil-beam scanning technique. Following a peer-to-peer approach absorbed dose and range have been intercompared in several missions at two hosting centers with two or three visiting physics teams of participating institutions using their own dosimetry equipment. A meta-analysis has been performed integrating the results of the individual missions. Dose has been determined with ionization chambers according to the dosimetry protocol IAEA TRS-398. For determination of the depth of the distal 80% dose the teams used either a scanning water phantom, a variable water column or a multi-layer ionization chamber. The systematic deviation between measured doses of the participating institutions is less than 1%. Ranges differ systematically less than 0.4 mm. The match of measured dose and range is better than expected from the respective uncertainties. As all physics teams agree on the assessment of absorbed dose and range, an important prerequisite for a start of joint clinical studies is fulfilled.

  10. Online platform for applying space–time scan statistics for prospectively detecting emerging hot spots of dengue fever

    Directory of Open Access Journals (Sweden)

    Chien-Chou Chen

    2016-11-01

    Full Text Available Abstract Background Cases of dengue fever have increased in areas of Southeast Asia in recent years. Taiwan hit a record-high 42,856 cases in 2015, with the majority in southern Tainan and Kaohsiung Cities. Leveraging spatial statistics and geo-visualization techniques, we aim to design an online analytical tool for local public health workers to prospectively identify ongoing hot spots of dengue fever weekly at the village level. Methods A total of 57,516 confirmed cases of dengue fever in 2014 and 2015 were obtained from the Taiwan Centers for Disease Control (TCDC. Incorporating demographic information as covariates with cumulative cases (365 days in a discrete Poisson model, we iteratively applied space–time scan statistics by SaTScan software to detect the currently active cluster of dengue fever (reported as relative risk in each village of Tainan and Kaohsiung every week. A village with a relative risk >1 and p value <0.05 was identified as a dengue-epidemic area. Assuming an ongoing transmission might continuously spread for two consecutive weeks, we estimated the sensitivity and specificity for detecting outbreaks by comparing the scan-based classification (dengue-epidemic vs. dengue-free village with the true cumulative case numbers from the TCDC’s surveillance statistics. Results Among the 1648 villages in Tainan and Kaohsiung, the overall sensitivity for detecting outbreaks increases as case numbers grow in a total of 92 weekly simulations. The specificity for detecting outbreaks behaves inversely, compared to the sensitivity. On average, the mean sensitivity and specificity of 2-week hot spot detection were 0.615 and 0.891 respectively (p value <0.001 for the covariate adjustment model, as the maximum spatial and temporal windows were specified as 50% of the total population at risk and 28 days. Dengue-epidemic villages were visualized and explored in an interactive map. Conclusions We designed an online analytical tool for

  11. Environmental hot spot analysis in agricultural life-cycle assessments – three case studies

    Directory of Open Access Journals (Sweden)

    Gerhard Piringer

    2016-06-01

    Full Text Available Present-day agricultural technology is facing the challenge of limiting the environmental impacts of agricultural production – such as greenhouse gas emissions and demand for additional land – while meeting growing demands for agricultural products. Using the well-established method of life-cycle assessment (LCA, potential environmental impacts of agricultural production chains can be quantified and analyzed. This study presents three case studies of how the method can pinpoint environmental hot spots at different levels of agricultural production systems. The first case study centers on the tractor as the key source of transportation and traction in modern agriculture. A common Austrian tractor model was investigated over its life-cycle, using primary data from a manufacturer and measured load profiles for field work. In all but one of the impact categories studied, potential impacts were dominated by the operation phase of the tractor’s life-cycle (mainly due to diesel fuel consumption, with 84.4-99.6% of total impacts. The production phase (raw materials and final assembly caused between 0.4% and 12.1% of impacts, while disposal of the tractor was below 1.9% in all impact categories. The second case study shifts the focus to an entire production chain for a common biogas feedstock, maize silage. System boundaries incorporate the effect of auxiliary materials such as fertilizer and pesticides manufacturing and application. The operation of machinery in the silage production chain was found to be critical to its environmental impact. For the climate change indicator GWP100 (global warming potential, 100-year reference period, emissions from tractor operation accounted for 15 g CO2-eq per kg silage (64% of total GWP100, followed by field emissions during fertilizer (biogas digestate application with 6 g CO2-eq per kg silage (24% of total GWP100. At a larger system scale that includes a silage-fed biogas plant with electricity generated by

  12. Searching for biogeochemical hot spots in three dimensions: soil C and N cycling in hydropedologic settings in a northern hardwood forest

    Science.gov (United States)

    J.L. Morse; S.F. Werner; C.P. Gillin; C.L. Goodale; S.W. Bailey; K.J. McGuire; P.M. Groffman

    2014-01-01

    Understanding and predicting the extent, location, and function of biogeochemical hot spots at the watershed scale is a frontier in environmental science. We applied a hydropedologic approach to identify (1) biogeochemical differences among morphologically distinct hydropedologic settings and (2) hot spots of microbial carbon (C) and nitrogen (N) cycling activity in a...

  13. Implication of spot position error on plan quality and patient safety in pencil-beam-scanning proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Juan; Beltran, Chris J., E-mail: beltran.chris@mayo.edu; Herman, Michael G. [Division of Medical Physics, Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2014-08-15

    Purpose: To quantitatively and systematically assess dosimetric effects induced by spot positioning error as a function of spot spacing (SS) on intensity-modulated proton therapy (IMPT) plan quality and to facilitate evaluation of safety tolerance limits on spot position. Methods: Spot position errors (PE) ranging from 1 to 2 mm were simulated. Simple plans were created on a water phantom, and IMPT plans were calculated on two pediatric patients with a brain tumor of 28 and 3 cc, respectively, using a commercial planning system. For the phantom, a uniform dose was delivered to targets located at different depths from 10 to 20 cm with various field sizes from 2{sup 2} to 15{sup 2} cm{sup 2}. Two nominal spot sizes, 4.0 and 6.6 mm of 1 σ in water at isocenter, were used for treatment planning. The SS ranged from 0.5 σ to 1.5 σ, which is 2–6 mm for the small spot size and 3.3–9.9 mm for the large spot size. Various perturbation scenarios of a single spot error and systematic and random multiple spot errors were studied. To quantify the dosimetric effects, percent dose error (PDE) depth profiles and the value of percent dose error at the maximum dose difference (PDE [ΔDmax]) were used for evaluation. Results: A pair of hot and cold spots was created per spot shift. PDE[ΔDmax] is found to be a complex function of PE, SS, spot size, depth, and global spot distribution that can be well defined in simple models. For volumetric targets, the PDE [ΔDmax] is not noticeably affected by the change of field size or target volume within the studied ranges. In general, reducing SS decreased the dose error. For the facility studied, given a single spot error with a PE of 1.2 mm and for both spot sizes, a SS of 1σ resulted in a 2% maximum dose error; a SS larger than 1.25 σ substantially increased the dose error and its sensitivity to PE. A similar trend was observed in multiple spot errors (both systematic and random errors). Systematic PE can lead to noticeable hot

  14. The implication of hot spots on bone scans within the irradiated field of breast cancer patients treated with mastectomy followed by radiotherapy

    International Nuclear Information System (INIS)

    Park, Won; Huh, Seung-Jae; Yang, Jung-Hyun

    2008-01-01

    The objective of this study was to analyze the implication of abnormal hot spots in the irradiated field of patients treated with mastectomy followed by radiotherapy for breast cancer. We reviewed 1842 consecutive bone scans performed on 292 patients treated with a modified radical mastectomy and followed by radiotherapy. If abnormal hot spots at the irradiated sites were detected in the bone scans, we evaluated further studies to determine whether bone metastases were present. Radiation was given using 4 or 6 MV X-rays at a dosage of 50.4 Gy during 5.5 weeks with a dosage per fraction of 1.8 Gy. The follow-up period was 25-136 months (median 57 months). Sixty patients (20.6%) developed bone metastasis. Solitary rib metastases were identified in four patients; all were detected outside of the irradiated field. Of 232 patients who did not develop bone metastases, hot spots in the irradiated field were detected in 30 patients (12.9%). A simple rib facture at the site of a hot spot was demonstrated in four patients. The cumulative incidence of hot spots at 5 years was 12.9%. The cumulative incidence of hot spots was more common in postmenopausal women, patients who were less than 60 kg, patients who received adjuvant hormonal therapy and patients who had radiation that included the supraclavicular area. We confirmed that the hot spots within the irradiated fields might be benign, especially in patients who were postmenopause, had a low body weight, received adjuvant hormonal therapy and who had radiation that included the supraclavicular area. (author)

  15. Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations.

    Science.gov (United States)

    Saini, Jatinder; Maes, Dominic; Egan, Alexander; Bowen, Stephen R; St James, Sara; Janson, Martin; Wong, Tony; Bloch, Charles

    2017-09-12

    RaySearch Americas Inc. (NY) has introduced a commercial Monte Carlo dose algorithm (RS-MC) for routine clinical use in proton spot scanning. In this report, we provide a validation of this algorithm against phantom measurements and simulations in the GATE software package. We also compared the performance of the RayStation analytical algorithm (RS-PBA) against the RS-MC algorithm. A beam model (G-MC) for a spot scanning gantry at our proton center was implemented in the GATE software package. The model was validated against measurements in a water phantom and was used for benchmarking the RS-MC. Validation of the RS-MC was performed in a water phantom by measuring depth doses and profiles for three spread-out Bragg peak (SOBP) beams with normal incidence, an SOBP with oblique incidence, and an SOBP with a range shifter and large air gap. The RS-MC was also validated against measurements and simulations in heterogeneous phantoms created by placing lung or bone slabs in a water phantom. Lateral dose profiles near the distal end of the beam were measured with a microDiamond detector and compared to the G-MC simulations, RS-MC and RS-PBA. Finally, the RS-MC and RS-PBA were validated against measured dose distributions in an Alderson-Rando (AR) phantom. Measurements were made using Gafchromic film in the AR phantom and compared to doses using the RS-PBA and RS-MC algorithms. For SOBP depth doses in a water phantom, all three algorithms matched the measurements to within  ±3% at all points and a range within 1 mm. The RS-PBA algorithm showed up to a 10% difference in dose at the entrance for the beam with a range shifter and  >30 cm air gap, while the RS-MC and G-MC were always within 3% of the measurement. For an oblique beam incident at 45°, the RS-PBA algorithm showed up to 6% local dose differences and broadening of distal fall-off by 5 mm. Both the RS-MC and G-MC accurately predicted the depth dose to within  ±3% and distal fall-off to within 2

  16. Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations

    Science.gov (United States)

    Saini, Jatinder; Maes, Dominic; Egan, Alexander; Bowen, Stephen R.; St. James, Sara; Janson, Martin; Wong, Tony; Bloch, Charles

    2017-10-01

    RaySearch Americas Inc. (NY) has introduced a commercial Monte Carlo dose algorithm (RS-MC) for routine clinical use in proton spot scanning. In this report, we provide a validation of this algorithm against phantom measurements and simulations in the GATE software package. We also compared the performance of the RayStation analytical algorithm (RS-PBA) against the RS-MC algorithm. A beam model (G-MC) for a spot scanning gantry at our proton center was implemented in the GATE software package. The model was validated against measurements in a water phantom and was used for benchmarking the RS-MC. Validation of the RS-MC was performed in a water phantom by measuring depth doses and profiles for three spread-out Bragg peak (SOBP) beams with normal incidence, an SOBP with oblique incidence, and an SOBP with a range shifter and large air gap. The RS-MC was also validated against measurements and simulations in heterogeneous phantoms created by placing lung or bone slabs in a water phantom. Lateral dose profiles near the distal end of the beam were measured with a microDiamond detector and compared to the G-MC simulations, RS-MC and RS-PBA. Finally, the RS-MC and RS-PBA were validated against measured dose distributions in an Alderson-Rando (AR) phantom. Measurements were made using Gafchromic film in the AR phantom and compared to doses using the RS-PBA and RS-MC algorithms. For SOBP depth doses in a water phantom, all three algorithms matched the measurements to within  ±3% at all points and a range within 1 mm. The RS-PBA algorithm showed up to a 10% difference in dose at the entrance for the beam with a range shifter and  >30 cm air gap, while the RS-MC and G-MC were always within 3% of the measurement. For an oblique beam incident at 45°, the RS-PBA algorithm showed up to 6% local dose differences and broadening of distal fall-off by 5 mm. Both the RS-MC and G-MC accurately predicted the depth dose to within  ±3% and distal fall-off to within 2

  17. TH-C-BRD-07: Minimizing Dose Uncertainty for Spot Scanning Beam Proton Therapy of Moving Tumor with Optimization of Delivery Sequence

    International Nuclear Information System (INIS)

    Li, H; Zhang, X; Zhu, X; Li, Y

    2014-01-01

    Purpose: Intensity modulated proton therapy (IMPT) has been shown to be able to reduce dose to normal tissue compared to intensity modulated photon radio-therapy (IMRT), and has been implemented for selected lung cancer patients. However, respiratory motion-induced dose uncertainty remain one of the major concerns for the radiotherapy of lung cancer, and the utility of IMPT for lung patients was limited because of the proton dose uncertainty induced by motion. Strategies such as repainting and tumor tracking have been proposed and studied but repainting could result in unacceptable long delivery time and tracking is not yet clinically available. We propose a novel delivery strategy for spot scanning proton beam therapy. Method: The effective number of delivery (END) for each spot position in a treatment plan was calculated based on the parameters of the delivery system, including time required for each spot, spot size and energy. The dose uncertainty was then calculated with an analytical formula. The spot delivery sequence was optimized to maximize END and minimize the dose uncertainty. 2D Measurements with a detector array on a 1D moving platform were performed to validate the calculated results. Results: 143 2D measurements on a moving platform were performed for different delivery sequences of a single layer uniform pattern. The measured dose uncertainty is a strong function of the delivery sequence, the worst delivery sequence results in dose error up to 70% while the optimized delivery sequence results in dose error of <5%. END vs. measured dose uncertainty follows the analytical formula. Conclusion: With optimized delivery sequence, it is feasible to minimize the dose uncertainty due to motion in spot scanning proton therapy

  18. Whole-pelvic radiotherapy with spot-scanning proton beams for uterine cervical cancer: a planning study

    International Nuclear Information System (INIS)

    Hashimoto, Shingo; Shibamoto, Yuta; Iwata, Hiromitsu; Ogino, Hiroyuki; Shibata, Hiroki; Toshito, Toshiyuki; Sugie, Chikao; Mizoe, Jun-etsu

    2016-01-01

    The aim of this study was to compare the dosimetric parameters of whole-pelvic radiotherapy (WPRT) for cervical cancer among plans involving 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), or spot-scanning proton therapy (SSPT). The dose distributions of 3D-CRT-, IMRT-, and SSPT-based WPRT plans were compared in 10 patients with cervical cancer. All of the patients were treated with a prescribed dose of 50.4 Gy in 1.8-Gy daily fractions, and all of the plans involved the same planning target volume (PTV) constrictions. A 3D-CRT plan involving a four-field box, an IMRT plan involving seven coplanar fields, and an SSPT plan involving four fields were created. The median PTV D95% did not differ between the 3D-CRT, IMRT and SSPT plans. The median conformity index 95% and homogeneity index of the IMRT and SSPT were better than those of the 3D-CRT. The homogeneity index of the SSPT was better than that of the IMRT. SSPT resulted in lower median V20 values for the bladder wall, small intestine, colon, bilateral femoral heads, skin, and pelvic bone than IMRT. Comparing the Dmean values, SSPT spared the small intestine, colon, bilateral femoral heads, skin and pelvic bone to a greater extent than the other modalities. SSPT can reduce the irradiated volume of the organs at risk compared with 3D-CRT and IMRT, while maintaining excellent PTV coverage. Further investigations of SSPT are warranted to assess its role in the treatment of cervical cancer.

  19. Spot Scanning-Based Proton Therapy for Intracranial Meningioma: Long-Term Results From the Paul Scherrer Institute

    International Nuclear Information System (INIS)

    Weber, Damien C.; Schneider, Ralf; Goitein, Gudrun; Koch, Tamara; Ares, Carmen; Geismar, Jan H.; Schertler, Andreas; Bolsi, Alessandra; Hug, Eugen B.

    2012-01-01

    Background: To assess the long-term clinical results of spot scanning proton therapy (PT) in the treatment of intracranial meningiomas. Patients and Methods: Thirty-nine patients with meningioma (histologically proven 34/39) were treated with PT between July 1997 and January 2010. Thirty-two (82.1%) patients were treated as primary treatment (exclusive PT, n = 8; postoperative PT, n = 24). Mean age was 48.3 ± 17.9 years and 32 (82.1%) patients had skull base lesions. For patients undergoing surgery, 24 patients had a diagnosis of World Health Organization (WHO) Grade I and 10 of a WHO Grade II/III meningioma, respectively. The female-to-male ratio was 3.3. The median administered dose was 56.0 Gy (relative biologic effectiveness [RBE]) (range, 52.2–66.6) at 1.8–2.0 Gy (RBE) per fraction. Gross tumor volume (GTV) ranged from 0.76 to 546.5 cm 3 (median, 21.5). Late toxicity was assessed according to Common Terminology Criteria for Adverse Events version 3.0. Mean follow-up time was 62.0 months and all patients were followed for >6 months. Results: Six patients presented with tumor recurrence and 6 patients died during follow-up, of which 4 of tumor progression. Five-year actuarial local control and overall survival rates were 84.8% and 81.8%, respectively, for the entire cohort and 100% for benign histology. Cumulative 5-year Grade ≥3 late toxicity-free survival was 84.5%. On univariate analysis, LC was negatively influenced by WHO grade (p = 0.001), GTV (p = 0.013), and male gender (p = 0.058). Conclusions: PT is a safe and effective treatment for patients with untreated, recurrent, or incompletely resected intracranial meningiomas. WHO grade and tumor volume was an adverse prognostic factor for local control.

  20. Safety, efficacy, predictability and stability of laser in situ keratomileusis (LASIK) with a 1000-Hz scanning spot excimer laser.

    Science.gov (United States)

    Khoramnia, Ramin; Salgado, Josefina P; Wuellner, Christian; Donitzky, Christof; Lohmann, Chris P; Winkler von Mohrenfels, Christoph

    2012-09-01

    To evaluate the safety, efficacy, predictability and stability of laser in situ keratomileusis (LASIK) with a 1000-Hz scanning spot excimer laser (Concept System 1000; WaveLight GmbH, Erlangen, Germany). LASIK was performed on twenty eyes with myopia or myopic astigmatism (mean spherical equivalent refraction: -3.97±1.72 dioptres (D); mean cylinder: -0.84±0.77 D) using a microkeratome for flap creation and the Concept System 1000 for photoablation. Patients were examined preoperatively as well as 1, 3 and 6 months after the treatment. Manifest sphere and cylinder, uncorrected (UCDVA) and best corrected (BCDVA) distance visual acuity, corneal topography and pachymetry were analysed. We observed no adverse events that might have been associated with the use of a repetition rate of 1000 Hz. All eyes maintained or had improved BCDVA at 6 months after treatment when compared to preoperative values. Six months after LASIK, UCDVA was 20/20 or better in 85% and 20/25 or better in 100% of the eyes. The spherical equivalent refraction was within ±0.50 D in 95% of the eyes at 6 months after surgery. The refraction stayed stable over time; 95% of the eyes changedLASIK with the prototype 1000-Hz excimer laser was safe, efficient and predictable. The postoperative refraction was stable over time. There were no specific clinical side-effects that might be associated with the use of such a high repetition rate. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  1. Quality of Life and Toxicity From Passively Scattered and Spot-Scanning Proton Beam Therapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Pugh, Thomas J.; Munsell, Mark F.; Choi, Seungtaek; Nguyen, Quyhn Nhu; Mathai, Benson; Zhu, X. Ron; Sahoo, Narayan; Gillin, Michael; Johnson, Jennifer L.; Amos, Richard A.; Dong, Lei; Mahmood, Usama; Kuban, Deborah A.; Frank, Steven J.; Hoffman, Karen E.; McGuire, Sean E.; Lee, Andrew K.

    2013-01-01

    Purpose: To report quality of life (QOL)/toxicity in men treated with proton beam therapy for localized prostate cancer and to compare outcomes between passively scattered proton therapy (PSPT) and spot-scanning proton therapy (SSPT). Methods and Materials: Men with localized prostate cancer enrolled on a prospective QOL protocol with a minimum of 2 years' follow-up were reviewed. Comparative groups were defined by technique (PSPT vs SSPT). Patients completed Expanded Prostate Cancer Index Composite questionnaires at baseline and every 3-6 months after proton beam therapy. Clinically meaningful differences in QOL were defined as ≥0.5 × baseline standard deviation. The cumulative incidence of modified Radiation Therapy Oncology Group grade ≥2 gastrointestinal (GI) or genitourinary (GU) toxicity and argon plasma coagulation were determined by the Kaplan-Meier method. Results: A total of 226 men received PSPT, and 65 received SSPT. Both PSPT and SSPT resulted in statistically significant changes in sexual, urinary, and bowel Expanded Prostate Cancer Index Composite summary scores. Only bowel summary, function, and bother resulted in clinically meaningful decrements beyond treatment completion. The decrement in bowel QOL persisted through 24-month follow-up. Cumulative grade ≥2 GU and GI toxicity at 24 months were 13.4% and 9.6%, respectively. There was 1 grade 3 GI toxicity (PSPT group) and no other grade ≥3 GI or GU toxicity. Argon plasma coagulation application was infrequent (PSPT 4.4% vs SSPT 1.5%; P=.21). No statistically significant differences were appreciated between PSPT and SSPT regarding toxicity or QOL. Conclusion: Both PSPT and SSPT confer low rates of grade ≥2 GI or GU toxicity, with preservation of meaningful sexual and urinary QOL at 24 months. A modest, yet clinically meaningful, decrement in bowel QOL was seen throughout follow-up. No toxicity or QOL differences between PSPT and SSPT were identified. Long-term comparative results in a

  2. Spot Scanning-Based Proton Therapy for Intracranial Meningioma: Long-Term Results From the Paul Scherrer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Damien C., E-mail: damien.weber@unige.ch [Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Schneider, Ralf; Goitein, Gudrun; Koch, Tamara; Ares, Carmen; Geismar, Jan H.; Schertler, Andreas; Bolsi, Alessandra; Hug, Eugen B. [Center for Proton Therapy, Paul Scherrer Institute, Viligen (Switzerland)

    2012-07-01

    Background: To assess the long-term clinical results of spot scanning proton therapy (PT) in the treatment of intracranial meningiomas. Patients and Methods: Thirty-nine patients with meningioma (histologically proven 34/39) were treated with PT between July 1997 and January 2010. Thirty-two (82.1%) patients were treated as primary treatment (exclusive PT, n = 8; postoperative PT, n = 24). Mean age was 48.3 {+-} 17.9 years and 32 (82.1%) patients had skull base lesions. For patients undergoing surgery, 24 patients had a diagnosis of World Health Organization (WHO) Grade I and 10 of a WHO Grade II/III meningioma, respectively. The female-to-male ratio was 3.3. The median administered dose was 56.0 Gy (relative biologic effectiveness [RBE]) (range, 52.2-66.6) at 1.8-2.0 Gy (RBE) per fraction. Gross tumor volume (GTV) ranged from 0.76 to 546.5 cm{sup 3} (median, 21.5). Late toxicity was assessed according to Common Terminology Criteria for Adverse Events version 3.0. Mean follow-up time was 62.0 months and all patients were followed for >6 months. Results: Six patients presented with tumor recurrence and 6 patients died during follow-up, of which 4 of tumor progression. Five-year actuarial local control and overall survival rates were 84.8% and 81.8%, respectively, for the entire cohort and 100% for benign histology. Cumulative 5-year Grade {>=}3 late toxicity-free survival was 84.5%. On univariate analysis, LC was negatively influenced by WHO grade (p = 0.001), GTV (p = 0.013), and male gender (p = 0.058). Conclusions: PT is a safe and effective treatment for patients with untreated, recurrent, or incompletely resected intracranial meningiomas. WHO grade and tumor volume was an adverse prognostic factor for local control.

  3. SU-D-BRE-06: Modeling the Dosimetric Effects of Volumetric and Layer-Based Repainting Strategies in Spot Scanning Proton Treatment Plans

    International Nuclear Information System (INIS)

    Johnson, J E; Beltran, C; Herman, M G; Kruse, J J

    2014-01-01

    Purpose: To compare multiple repainting techniques as strategies for mitigating the interplay effect in free-breathing, spot scanning proton plans. Methods: An analytic routine modeled three-dimensional dose distributions of pencil-beam proton plans delivered to a moving target. The interplay effect was studied in subsequent calculations by modeling proton delivery from a clinical synchrotron based spot scanning system and respiratory target motion, patterned from surrogate breathing traces from clinical 4DCT scans and normalized to nominal 0.5 and 1 cm amplitudes. Two distinct repainting strategies were modeled. In idealized volumetric repainting, the plan is divided up and delivered multiple times successively, with each instance only delivering a fraction of the total MU. Maximum-MU repainting involves delivering a fixed number of MU per spot and repeating a given energy layer until the prescribed MU are reached. For each of 13 patient breathing traces, the dose was computed for up to four volumetric repaints and an array of maximum-MU values. Delivery strategies were inter-compared based on target coverage, dose homogeneity, and delivery time. Results: Increasing levels of repainting generally improved plan quality and reduced dosimetric variability at the expense of longer delivery time. Motion orthogonal to the scan direction yielded substantially greater dose deviations than motion parallel to the scan direction. For a fixed delivery time, maximum-MU repainting was most effective relative to idealized volumetric repainting at small maximum-MU values. For 1 cm amplitude motion orthogonal to the scan direction, the average homogeneity metric (D5 – D95)[%] of 23.4% was reduced to 7.6% with a 168 s delivery using volumetric repainting compared with 8.7% in 157.2 s for maximum-MU repainting. The associated static target homogeneity metric was 2.5%. Conclusion: Maximum-MU repainting can provide a reasonably effective alternative to volumetric repainting for

  4. Integrated beam orientation and scanning-spot optimization in intensity-modulated proton therapy for brain and unilateral head and neck tumors.

    Science.gov (United States)

    Gu, Wenbo; O'Connor, Daniel; Nguyen, Dan; Yu, Victoria Y; Ruan, Dan; Dong, Lei; Sheng, Ke

    2018-04-01

    Intensity-Modulated Proton Therapy (IMPT) is the state-of-the-art method of delivering proton radiotherapy. Previous research has been mainly focused on optimization of scanning spots with manually selected beam angles. Due to the computational complexity, the potential benefit of simultaneously optimizing beam orientations and spot pattern could not be realized. In this study, we developed a novel integrated beam orientation optimization (BOO) and scanning-spot optimization algorithm for intensity-modulated proton therapy (IMPT). A brain chordoma and three unilateral head-and-neck patients with a maximal target size of 112.49 cm 3 were included in this study. A total number of 1162 noncoplanar candidate beams evenly distributed across 4π steradians were included in the optimization. For each candidate beam, the pencil-beam doses of all scanning spots covering the PTV and a margin were calculated. The beam angle selection and spot intensity optimization problem was formulated to include three terms: a dose fidelity term to penalize the deviation of PTV and OAR doses from ideal dose distribution; an L1-norm sparsity term to reduce the number of active spots and improve delivery efficiency; a group sparsity term to control the number of active beams between 2 and 4. For the group sparsity term, convex L2,1-norm and nonconvex L2,1/2-norm were tested. For the dose fidelity term, both quadratic function and linearized equivalent uniform dose (LEUD) cost function were implemented. The optimization problem was solved using the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The IMPT BOO method was tested on three head-and-neck patients and one skull base chordoma patient. The results were compared with IMPT plans created using column generation selected beams or manually selected beams. The L2,1-norm plan selected spatially aggregated beams, indicating potential degeneracy using this norm. L2,1/2-norm was able to select spatially separated beams and achieve

  5. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy

    OpenAIRE

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2015-01-01

    Introduction: Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). Methods and Materials: In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autocla...

  6. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning

    International Nuclear Information System (INIS)

    Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J.; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.

    2016-01-01

    Purpose: Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials: For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)_5_0_G_y or PTV_6_2_._5_G_y (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results: SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D_9_8 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D_9_8 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D_9_8 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D_9_8 was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions: The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be

  7. Small bowel toxicity after high dose spot scanning-based proton beam therapy for paraspinal/retroperitoneal neoplasms

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, R.A.; Albertini, F.; Koch, T.; Ares, C.; Lomax, A.; Goitein, G. [Paul Scherrer Institute PSI, Villigen (Switzerland). Center for Proton Therapy; Vitolo, V. [Fondazione CNAO, Pavia (Italy); Hug, E.B. [Paul Scherrer Institute PSI, Villigen (Switzerland). Center for Proton Therapy; ProCure Proton Therapy Centers, New York, NY (United States)

    2013-12-15

    Purpose: Mesenchymal tumours require high-dose radiation therapy (RT). Small bowel (SB) dose constraints have historically limited dose delivery to paraspinal and retroperitoneal targets. This retrospective study correlated SB dose-volume histograms with side-effects after proton radiation therapy (PT). Patients and methods: Between 1997 and 2008, 31 patients (mean age 52.1 years) underwent spot scanning-based PT for paraspinal/retroperitoneal chordomas (81 %), sarcomas (16 %) and meningiom (3 %). Mean total prescribed dose was 72.3 Gy (relative biologic effectiveness, RBE) delivered in 1.8-2 Gy (RBE) fractions. Mean follow-up was 3.8 years. Based on the pretreatment planning CT, SB dose distributions were reanalysed. Results: Planning target volume (PTV) was defined as gross tumour volume (GTV) plus 5-7 mm margins. Mean PTV was 560.22 cm{sup 3}. A mean of 93.2 % of the PTV was covered by at least 90 % of the prescribed dose. SB volumes (cm{sup 3}) receiving doses of 5, 20, 30, 40, 50, 60, 70, 75 and 80 Gy (RBE) were calculated to give V5, V20, V30, V40, V50, V60, V70, V75 and V80 respectively. In 7/31 patients, PT was accomplished without any significant SB irradiation (V5 = 0). In 24/31 patients, mean maximum dose (Dmax) to SB was 64.1 Gy (RBE). Despite target doses of > 70 Gy (RBE), SB received > 50 and > 60 Gy (RBE) in only 61 and 54 % of patients, respectively. Mean SB volumes (cm{sup 3}) covered by different dose levels (Gy, RBE) were: V20 (n = 24): 45.1, V50 (n = 19): 17.7, V60 (n = 17): 7.6 and V70 (n = 12): 2.4. No acute toxicity {>=} grade 2 or late SB sequelae were observed. Conclusion: Small noncircumferential volumes of SB tolerated doses in excess of 60 Gy (RBE) without any clinically-significant late adverse effects. This small retrospective study has limited statistical power but encourages further efforts with higher patient numbers to define and establish high-dose threshold models for SB toxicity in modern radiation oncology. (orig.)

  8. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Samantha, E-mail: samantha.warren@oncology.ox.ac.uk [Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford (United Kingdom); Partridge, Mike [Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford (United Kingdom); Bolsi, Alessandra; Lomax, Anthony J. [Centre for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); Hurt, Chris [Wales Cancer Trials Unit, School of Medicine, Heath Park, Cardiff (United Kingdom); Crosby, Thomas [Velindre Cancer Centre, Velindre Hospital, Cardiff (United Kingdom); Hawkins, Maria A. [Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford (United Kingdom)

    2016-05-01

    Purpose: Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials: For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV){sub 50Gy} or PTV{sub 62.5Gy} (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results: SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D{sub 98} was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D{sub 98} was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D{sub 98} was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D{sub 98} was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions: The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup

  9. SU-E-T-286: Dose Verification of Spot-Scanning Proton Beam Using GafChromic EBT3 Film

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C; Tang, S; Mah, D [ProCure Proton Therapy Center, Somerset, NJ (United States); Chan, M [Memorial Sloan-Kettering Cancer Center, Basking Ridge, NJ (United States)

    2015-06-15

    Purpose: Dose verification of spot-scanning proton pencil beam is performed via planar dose measurements at several depths using an ionization-chamber array, requiring repeat irradiations of each field for each depth. Here we investigate film dosimetry which has two advantages: higher resolution and efficiency from one-shot irradiation for multiple depths. Methods: Film calibration was performed using an EBT3 film at 20-cm depth of Plastic Water (CIRS, Norfolk, VA) exposed by a 10-level step wedge on a Proteus Plus proton system (IBA, Belgium). The calibration doses ranged from 25–250 cGy(RBE) for proton energies of 170–200 MeV. A uniform 1000 cm{sup 3} dose cube and a clinical prostate combined with seminal-vesicle and pelvic-nodes plan were used for this study. All treatment plans were generated in the RayStation (RaySearch Lab, Sweden). The planar doses at different depths for both cases were measured with film using triple-channel dosimetry and the MatriXX PT (IBA Dosimetry, Germany). The Gamma passing rates, dose-difference maps, and profiles of 2D planar doses measured with EBT3 film and MatriXX, versus treatment planning system (TPS) calculations were analyzed and compared using the FilmQA Pro (Ashland Inc., Bridgewater, NJ). Results: The EBT3 film measurement results matched well with the TPS calculation data with an average passing rate >95% for 2%/2mm and are comparable with the MatriXX measurements (0.7%, 1.8%, 3.8% mean differences corresponding to 3%/3mm, 3%/2mm, 2%/2mm, respectively). Overall passing rates for EBT3 films appear higher than those with MatriXX detectors. Conclusion: The energy dependence of the film response could be minimized by calibration using proton beam with mixed energies. The greater efficiency of the dose verification using GafChromic EBT3 results in a potential cost trade-off between room capacity and film cost. EBT3 film may offer distinct advantages in highly intensity-modulated fields due to its higher resolution

  10. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy.

    Science.gov (United States)

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2016-01-01

    Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autoclave, 1 autoclave cycle, 5 autoclave cycles and 10 autoclave cycles) by SEM under 200× and 1000× magnifications. Data were analyzed using the SPSS software and the paired sample t-test, independent sample t-test and multifactorial repeated measures ANOVA. The level of significance was set at 0.05. New files had debris and pitting on their surfaces. When the autoclave cycles were increased, the mean of surface roughness also increased at both magnifications (Pautoclave increased the surface roughness of the files and this had was directly related to the number of autoclave cycles.

  11. Quantitation of size of myocardial infarctions by computerized transmission tomography. Comparison with hot-spot and cold-spot radionuclide scans

    International Nuclear Information System (INIS)

    Gerber, K.H.; Higgins, C.B.

    1983-01-01

    The current study evaluated the ability to quantitate the volume of myocardial infarctions when they are outlined by intravenously administered contrast media in the myocardial perfusion phase and in the phase of delayed contrast enhancement of the infarct. Quantitation by contrast media was assessed from computerized transmission tomography (CTT) scans of the ex situ heart and compared with quantitation by technetium-99m (/sup 99m/Tc)pyrophosphate (/sup 99m/Tc PYP) and thallium-201 (201Tl) scans of the same ex situ hearts. True volume was defined by histochemical morphometry. CTT during the contrast perfusion phase uniformly underestimated infarct size but had a good correlation with true volume. CTT during enhancement phase correlated closely with true volume (r . 0.98) and most precisely measured true size (y . 1.06 X 0.23). The /sup 99m/Tc PYP scan overestimated infarct volume (predictive overestimation of 6 to 199%) but had a good correlation with true volume. 201Tl underestimated infarct volume but correlated well with true volume. Thus, quantitation of infarct volume from CTT scans performed during either the perfusion or infarct enhancement phase after intravenous contrast media provides a good estimate of true infarct volume. Delineation of the infarct by contrast media in the ex situ heart is more precise during the phase of delayed enhancement of the infarct

  12. Optimization of GATE and PHITS Monte Carlo code parameters for spot scanning proton beam based on simulation with FLUKA general-purpose code

    Energy Technology Data Exchange (ETDEWEB)

    Kurosu, Keita [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Department of Radiology, Osaka University Hospital, Suita, Osaka 565-0871 (Japan); Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Moskvin, Vadim P. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105 (United States)

    2016-01-15

    Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm{sup 3}, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm{sup 3} voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation

  13. Optimization of GATE and PHITS Monte Carlo code parameters for spot scanning proton beam based on simulation with FLUKA general-purpose code

    International Nuclear Information System (INIS)

    Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.

    2016-01-01

    Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm 3 , which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm 3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique

  14. Analysis of hot spots in boilers of organic Rankine cycle units during transient operation

    DEFF Research Database (Denmark)

    Benato, A.; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    This paper is devoted to the investigation of critical dynamic events causing thermochemical decompositionof the working fluid in organic Rankine cycle power systems. The case study is the plant of an oiland gas platform where one of the three gas turbines is combined with an organic Rankine cycle...... and fluid decomposition. It is demonstrated thatthe use of a spray attemperator can mitigate the problems of local overheating of the organic compound.As a practical consequence, this paper provides guidelines for safe and reliable operation of organicRankine cycle power modules on offshore installations....

  15. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Science.gov (United States)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery

  16. Comparison of two methods for minimizing the effect of delayed charge on the dose delivered with a synchrotron based discrete spot scanning proton beam.

    Science.gov (United States)

    Whitaker, Thomas J; Beltran, Chris; Tryggestad, Erik; Bues, Martin; Kruse, Jon J; Remmes, Nicholas B; Tasson, Alexandria; Herman, Michael G

    2014-08-01

    Delayed charge is a small amount of charge that is delivered to the patient after the planned irradiation is halted, which may degrade the quality of the treatment by delivering unwarranted dose to the patient. This study compares two methods for minimizing the effect of delayed charge on the dose delivered with a synchrotron based discrete spot scanning proton beam. The delivery of several treatment plans was simulated by applying a normally distributed value of delayed charge, with a mean of 0.001(SD 0.00025) MU, to each spot. Two correction methods were used to account for the delayed charge. Method one (CM1), which is in active clinical use, accounts for the delayed charge by adjusting the MU of the current spot based on the cumulative MU. Method two (CM2) in addition reduces the planned MU by a predicted value. Every fraction of a treatment was simulated using each method and then recomputed in the treatment planning system. The dose difference between the original plan and the sum of the simulated fractions was evaluated. Both methods were tested in a water phantom with a single beam and simple target geometry. Two separate phantom tests were performed. In one test the dose per fraction was varied from 0.5 to 2 Gy using 25 fractions per plan. In the other test the number fractions were varied from 1 to 25, using 2 Gy per fraction. Three patient plans were used to determine the effect of delayed charge on the delivered dose under realistic clinical conditions. The order of spot delivery using CM1 was investigated by randomly selecting the starting spot for each layer, and by alternating per layer the starting spot from first to last. Only discrete spot scanning was considered in this study. Using the phantom setup and varying the dose per fraction, the maximum dose difference for each plan of 25 fractions was 0.37-0.39 Gy and 0.03-0.05 Gy for CM1 and CM2, respectively. While varying the total number of fractions, the maximum dose difference increased at a rate

  17. Comparison of two methods for minimizing the effect of delayed charge on the dose delivered with a synchrotron based discrete spot scanning proton beam

    International Nuclear Information System (INIS)

    Whitaker, Thomas J.; Beltran, Chris; Tryggestad, Erik; Kruse, Jon J.; Remmes, Nicholas B.; Tasson, Alexandria; Herman, Michael G.; Bues, Martin

    2014-01-01

    Purpose: Delayed charge is a small amount of charge that is delivered to the patient after the planned irradiation is halted, which may degrade the quality of the treatment by delivering unwarranted dose to the patient. This study compares two methods for minimizing the effect of delayed charge on the dose delivered with a synchrotron based discrete spot scanning proton beam. Methods: The delivery of several treatment plans was simulated by applying a normally distributed value of delayed charge, with a mean of 0.001(SD 0.00025) MU, to each spot. Two correction methods were used to account for the delayed charge. Method one (CM1), which is in active clinical use, accounts for the delayed charge by adjusting the MU of the current spot based on the cumulative MU. Method two (CM2) in addition reduces the planned MU by a predicted value. Every fraction of a treatment was simulated using each method and then recomputed in the treatment planning system. The dose difference between the original plan and the sum of the simulated fractions was evaluated. Both methods were tested in a water phantom with a single beam and simple target geometry. Two separate phantom tests were performed. In one test the dose per fraction was varied from 0.5 to 2 Gy using 25 fractions per plan. In the other test the number fractions were varied from 1 to 25, using 2 Gy per fraction. Three patient plans were used to determine the effect of delayed charge on the delivered dose under realistic clinical conditions. The order of spot delivery using CM1 was investigated by randomly selecting the starting spot for each layer, and by alternating per layer the starting spot from first to last. Only discrete spot scanning was considered in this study. Results: Using the phantom setup and varying the dose per fraction, the maximum dose difference for each plan of 25 fractions was 0.37–0.39 Gy and 0.03–0.05 Gy for CM1 and CM2, respectively. While varying the total number of fractions, the maximum dose

  18. Prevention of haematoma progression by tranexamic acid in intracerebral haemorrhage patients with and without spot sign on admission scan

    DEFF Research Database (Denmark)

    Ovesen, Christian; Jakobsen, Janus Christian; Gluud, Christian

    2018-01-01

    OBJECTIVE: We present the statistical analysis plan of a prespecified Tranexamic Acid for Hyperacute Primary Intracerebral Haemorrhage (TICH)-2 sub-study aiming to investigate, if tranexamic acid has a different effect in intracerebral haemorrhage patients with the spot sign on admission compared...... to spot sign negative patients. The TICH-2 trial recruited above 2000 participants with intracerebral haemorrhage arriving in hospital within 8 h after symptom onset. They were included irrespective of radiological signs of on-going haematoma expansion. Participants were randomised to tranexamic acid...... versus matching placebo. In this subgroup analysis, we will include all participants in TICH-2 with a computed tomography angiography on admission allowing adjudication of the participants' spot sign status. RESULTS: Primary outcome will be the ability of tranexamic acid to limit absolute haematoma...

  19. SU-G-TeP1-04: Deriving Spot Shape Criteria for Proton Pencil Beam Scanning

    International Nuclear Information System (INIS)

    Wulff, J; Huggins, A

    2016-01-01

    Purpose: The shape of a single beam in proton PBS influences the resulting dose distribution. Spot profiles are modelled as two-dimensional Gaussian (single/ double) distributions in treatment planning systems (TPS). Impact of slight deviations from an ideal Gaussian on resulting dose distributions is typically assumed to be small due to alleviation by multiple Coulomb scattering (MCS) in tissue and superposition of many spots. Quantitative limits are however not clear per se. Methods: A set of 1250 deliberately deformed profiles with sigma=4 mm for a Gaussian fit were constructed. Profiles and fit were normalized to the same area, resembling output calibration in the TPS. Depth-dependent MCS was considered. The deviation between deformed and ideal profiles was characterized by root-mean-squared deviation (RMSD), skewness/ kurtosis (SK) and full-width at different percentage of maximum (FWxM). The profiles were convolved with different fluence patterns (regular/ random) resulting in hypothetical dose distributions. The resulting deviations were analyzed by applying a gamma-test. Results were compared to measured spot profiles. Results: A clear correlation between pass-rate and profile metrics could be determined. The largest impact occurred for a regular fluence-pattern with increasing distance between single spots, followed by a random distribution of spot weights. The results are strongly dependent on gamma-analysis dose and distance levels. Pass-rates of >95% at 2%/2 mm and 40 mm depth (=70 MeV) could only be achieved for RMSD<10%, deviation in FWxM at 20% and root of quadratic sum of SK <0.8. As expected the results improve for larger depths. The trends were well resembled for measured spot profiles. Conclusion: All measured profiles from ProBeam sites passed the criteria. Given the fact, that beam-line tuning can result shape distortions, the derived criteria represent a useful QA tool for commissioning and design of future beam-line optics.

  20. [Scanning electron microscopic investigations of cutting edge quality in lamellar keratotomy using the Wavelight femtosecond laser (FS-200) : What influence do spot distance and an additional tunnel have?

    Science.gov (United States)

    Hammer, T; Höche, T; Heichel, J

    2018-01-01

    Femtosecond lasers (fs-lasers) are established cutting instruments for the creation of LASIK flaps. Previous studies often showed even rougher surfaces after application of fs-laser systems compared to lamellar keratotomy with mechanical microkeratomes. When cutting the cornea with fs-lasers, an intrastromal gas development occurs, which has a potentially negative influence on the cutting quality if the gas cannot be dissipated; therefore, manufacturers have chosen the way of gas assimilation in so-called pockets. The investigated system creates a tunnel which opens under the conjunctiva. The aim of this study was to investigate the effects of a tunnel as well as the influence of different spot distances on the quality of cut surfaces and edges. In this experimental study on freshly enucleated porcine eyes (n = 15), the following cuts were carried out with the FS-200 (Wavelight, Erlangen, Germany): 1. standard setting (spot and line separation 8 µm), 2. with tunnel for gas drainage, 3. without gas-conducting tunnel, 4. with increased spot spacing (spot and line separation 9 μm instead of 8 μm) and 5. with reduced spot spacing (spot and line separation 7 μm instead of 8 μm). Subsequently, scanning electron microscopy (FEI Quanta 650, Hillsboro, OR) of the cut edges and surfaces as well as the gas drain tunnel were performed. The evaluation was based on an established score. The current fs-laser system (200 Hz) is able to create smooth cutting surfaces and sharp edges. The changed density of laser pulses compared to the standard settings with a reduced or increased distance between the pulses, did not achieve any further improvement in the surface quality. The gas-conducting tunnel could be detected by scanning electron microscope. In the case of cutting without a tunnel, roughened surfaces and irregularities on the cutting edges were found. When the FS-200 fs-laser is used, LASIK cuts with very smooth cut surfaces and sharp cutting

  1. Effectiveness and Safety of Spot Scanning Proton Radiation Therapy for Chordomas and Chondrosarcomas of the Skull Base: First Long-Term Report

    International Nuclear Information System (INIS)

    Ares, Carmen; Hug, Eugen B.; Lomax, Antony J.; Bolsi, Alessandra; Timmermann, Beate; Rutz, Hans Peter; Schuller, Jan C.; Pedroni, Eros; Goitein, Gudrun

    2009-01-01

    Purpose: To evaluate effectiveness and safety of spot-scanning-based proton radiotherapy (PT) in skull-base chordomas and chondrosarcomas. Methods and Materials: Between October 1998 and November 2005, 64 patients with skull-base chordomas (n = 42) and chondrosarcomas (n = 22) were treated at Paul Scherrer Institute with PT using spot-scanning technique. Median total dose for chordomas was 73.5 Gy(RBE) and 68.4 Gy(RBE) for chondrosarcomas at 1.8-2.0 Gy(RBE) dose per fraction. Local control (LC), disease specific survival (DSS), and overall survival (OS) rates were calculated. Toxicity was assessed according to CTCAE, v. 3.0. Results: Mean follow-up period was 38 months (range, 14-92 months). Five patients with chordoma and one patient with chondrosarcoma experienced local recurrence. Actuarial 5-year LC rates were 81% for chordomas and 94% for chondrosarcomas. Brainstem compression at the time of PT (p = 0.007) and gross tumor volume >25 mL (p = 0.03) were associated with lower LC rates. Five years rates of DSS and OS were 81% and 62% for chordomas and 100% and 91% for chondrosarcomas, respectively. High-grade late toxicity consisted of one patient with Grade 3 and one patient with Grade 4 unilateral optic neuropathy, and two patients with Grade 3 central nervous system necrosis. No patient experienced brainstem toxicity. Actuarial 5-year freedom from high-grade toxicity was 94%. Conclusions: Our data indicate safety and efficacy of spot-scanning based PT for skull-base chordomas and chondrosarcomas. With target definition, dose prescription and normal organ tolerance levels similar to passive-scattering based PT series, complication-free, tumor control and survival rates are at present comparable.

  2. SU-F-I-11: Software Development for 4D-CBCT Research of Real-Time-Image Gated Spot Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T; Fujii, Y; Shimizu, S; Shirato, H [Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido (Japan); Matsuura, T; Umegaki, K [Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido (Japan); Takao, S; Miyamoto, N; Matsuzaki, Y [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: To acquire correct information for inside the body in patient positioning of Real-time-image Gated spot scanning Proton Therapy (RGPT), utilization of tomographic image at exhale phase of patient respiration obtained from 4-dimensional Cone beam CT (4D-CBCT) has been desired. We developed software named “Image Analysis Platform” for 4D-CBCT researches which has technique to segment projection-images based on 3D marker position in the body. The 3D marker position can be obtained by using two axes CBCT system at Hokkaido University Hospital Proton Therapy Center. Performance verification of the software was implemented. Methods: The software calculates 3D marker position retrospectively by using matching positions on pair projection-images obtained by two axes fluoroscopy mode of CBCT system. Log data of 3D marker tracking are outputted after the tracking. By linking the Log data and gantry-angle file of projection-image, all projection-images are equally segmented to spatial five-phases according to marker 3D position of SI direction and saved to specified phase folder. Segmented projection-images are used for CBCT reconstruction of each phase. As performance verification of the software, test of segmented projection-images was implemented for sample CT phantom (Catphan) image acquired by two axes fluoroscopy mode of CBCT. Dummy marker was added on the images. Motion of the marker was modeled to move in 3D space. Motion type of marker is sin4 wave function has amplitude 10.0 mm/5.0 mm/0 mm, cycle 4 s/4 s/0 s for SI/AP/RL direction. Results: The marker was tracked within 0.58 mm accuracy in 3D for all images, and it was confirmed that all projection-images were segmented and saved to each phase folder correctly. Conclusion: We developed software for 4D-CBCT research which can segment projection-image based on 3D marker position. It will be helpful to create high quality of 4D-CBCT reconstruction image for RGPT.

  3. Development and Clinical Implementation of a Universal Bolus to Maintain Spot Size During Delivery of Base of Skull Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Both, Stefan, E-mail: Stefan.Both@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Shen, Jiajian [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona (United States); Kirk, Maura; Lin, Liyong; Tang, Shikui; Alonso-Basanta, Michelle; Lustig, Robert; Lin, Haibo; Deville, Curtiland; Hill-Kayser, Christine; Tochner, Zelig; McDonough, James [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2014-09-01

    Purpose: To report on a universal bolus (UB) designed to replace the range shifter (RS); the UB allows the treatment of shallow tumors while keeping the pencil beam scanning (PBS) spot size small. Methods and Materials: Ten patients with brain cancers treated from 2010 to 2011 were planned using the PBS technique with bolus and the RS. In-air spot sizes of the pencil beam were measured and compared for 4 conditions (open field, with RS, and with UB at 2- and 8-cm air gap) in isocentric geometry. The UB was applied in our clinic to treat brain tumors, and the plans with UB were compared with the plans with RS. Results: A UB of 5.5 cm water equivalent thickness was found to meet the needs of the majority of patients. By using the UB, the PBS spot sizes are similar with the open beam (P>.1). The heterogeneity index was found to be approximately 10% lower for the UB plans than for the RS plans. The coverage for plans with UB is more conformal than for plans with RS; the largest increase in sparing is usually for peripheral organs at risk. Conclusions: The integrity of the physical properties of the PBS beam can be maintained using a UB that allows for highly conformal PBS treatment design, even in a simple geometry of the fixed beam line when noncoplanar beams are used.

  4. SU-F-T-172: A Method for Log File QA On An IBA Proteus System for Patient Specific Spot Scanning Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Tang, S; Ho, M; Chen, C; Mah, D [ProCure NJ, Somerset, NJ (United States); Rice, I; Doan, D; Mac Rae, B [IBA, Somerset, NJ (United States)

    2016-06-15

    Purpose: The use of log files to perform patient specific quality assurance for both protons and IMRT has been established. Here, we extend that approach to a proprietary log file format and compare our results to measurements in phantom. Our goal was to generate a system that would permit gross errors to be found within 3 fractions until direct measurements. This approach could eventually replace direct measurements. Methods: Spot scanning protons pass through multi-wire ionization chambers which provide information about the charge, location, and size of each delivered spot. We have generated a program that calculates the dose in phantom from these log files and compares the measurements with the plan. The program has 3 different spot shape models: single Gaussian, double Gaussian and the ASTROID model. The program was benchmarked across different treatment sites for 23 patients and 74 fields. Results: The dose calculated from the log files were compared to those generate by the treatment planning system (Raystation). While the dual Gaussian model often gave better agreement, overall, the ASTROID model gave the most consistent results. Using a 5%–3 mm gamma with a 90% passing criteria and excluding doses below 20% of prescription all patient samples passed. However, the degree of agreement of the log file approach was slightly worse than that of the chamber array measurement approach. Operationally, this implies that if the beam passes the log file model, it should pass direct measurement. Conclusion: We have established and benchmarked a model for log file QA in an IBA proteus plus system. The choice of optimal spot model for a given class of patients may be affected by factors such as site, field size, and range shifter and will be investigated further.

  5. Spot-Scanning Proton Radiation Therapy for Pediatric Chordoma and Chondrosarcoma: Clinical Outcome of 26 Patients Treated at Paul Scherrer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Rombi, Barbara [Center for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); ATreP (Provincial Agency for Proton Therapy), Trento (Italy); Ares, Carmen, E-mail: carmen.ares@psi.ch [Center for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); Hug, Eugen B. [Center for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); ProCure Proton Therapy Center, Somerset, New Jersey (United States); Schneider, Ralf; Goitein, Gudrun; Staab, Adrian; Albertini, Francesca; Bolsi, Alessandra; Lomax, Antony J. [Center for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); Timmermann, Beate [Center for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); WestGerman Proton Therapy Center Essen (Germany)

    2013-07-01

    Purpose: To evaluate the clinical results of fractionated spot-scanning proton radiation therapy (PT) in 26 pediatric patients treated at Paul Scherrer Institute for chordoma (CH) or chondrosarcoma (CS) of the skull base or axial skeleton. Methods and Materials: Between June 2000 and June 2010, 19 CH and 7 CS patients with tumors originating from the skull base (17) and the axial skeleton (9) were treated with PT. Mean age at the time of PT was 13.2 years. The mean prescribed dose was 74 Gy (relative biological effectiveness [RBE]) for CH and 66 Gy (RBE) for CS, at a dose of 1.8-2.0 Gy (RBE) per fraction. Results: Mean follow-up was 46 months. Actuarial 5-year local control (LC) rates were 81% for CH and 80% for CS. Actuarial 5-year overall survival (OS) was 89% for CH and 75% for CS. Two CH patients had local failures: one is alive with evidence of disease, while the other patient succumbed to local recurrence in the surgical pathway. One CS patient died of local progression of the disease. No high-grade late toxicities were observed. Conclusions: Spot-scanning PT for pediatric CH and CS patients resulted in excellent clinical outcomes with acceptable rates of late toxicity. Longer follow-up time and larger cohort are needed to fully assess tumor control and late effects of treatment.

  6. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat.

    Science.gov (United States)

    Hackley, Jason D; Kislitsyn, Dmitry A; Beaman, Daniel K; Ulrich, Stefan; Nazin, George V

    2014-10-01

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  7. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, Jason D.; Kislitsyn, Dmitry A.; Beaman, Daniel K.; Nazin, George V., E-mail: gnazin@uoregon.edu [Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403 (United States); Ulrich, Stefan [RHK Technology, Inc., 1050 East Maple Road, Troy, Michigan 48083 (United States)

    2014-10-15

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  8. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution.

    Directory of Open Access Journals (Sweden)

    Amanda Tse

    Full Text Available Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib and promiscuous (Bosutinib, Dasatinib kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations

  9. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution

    Science.gov (United States)

    Tse, Amanda; Verkhivker, Gennady M.

    2015-01-01

    Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating

  10. SU-E-T-189: Commission Range Shifter On a Spot Scanning Proton System Using Raystation Treatment Planning System

    International Nuclear Information System (INIS)

    Ding, X; Wu, H; Rosen, L

    2015-01-01

    Purpose: To treat superficial target e.g. chest wall, head&neck or cranial cases, we commissioned two range shifter(RS) in Raystation4.0 with 7.37cm(RS1) and 4.1cm(RS2) Water Equivalent Thickness(WET) respectively. However, current beam model has limitations due to the secondary scattered proton. This study provides a detailed and critical commission data and provides suggestions for using RS in clinic. Methods: RS’ WET was verified by Multi-Layer Ionization Chamber from 120MeV to 226.7MeV before TPS modeling. Spot characteristics were measured using 2D scintillate detector at ISO with different air gap. A 8×8×10cm3 cube is created in 8cm depth of water to verify the absolute dose accuracy. Plans were created with different air gap using both RS. Absolute dose verification was measured along the central axis from distal end to surface using PPC05. 10 clinical RS2 plans were measured using MatriXXPT in 3 planes (proximal, distal and midSOBP). Results: RS material’s proton stopping power is energy dependent(from 70MeV to 226.7MeV) ranging from 7.42 to 7.31cm and from 4.10 to 4.03cm respectively. We chose 7.37cm (RS1) and 4.10cm (RS2) to favor the low and median proton energy. With different air gap(3cm to 32cm), spot size expands from 3.2mm to 5.5mm(RS1) and from 3.1mm to 4.1mm(RS2) respectively(226.7MeV in air, 1-sigma). For the absolute dose verification, the larger air gap and shallower depth causes larger discrepancy between TPS and measurements. All 10 clinical plans with 5–10cm air gap passed gamma index 95% with 3%/3mm criteria and outputs differences were within 3%. Conclusion: We strongly recommend each institution to verify the WET independently and choose the value to fit the clinical needs. To minimize the output difference in Raystation4.0 while avoid potential collision to the patient, we recommend to use 5–10cm air gap to minimize the output difference within 2% and preferably use RS with smaller WET if possible

  11. Chlorophyll and its degradation products in the two-spotted spider mite, Tetranychus urticae: observations using epifluorescence and confocal laser scanning microscopy.

    Science.gov (United States)

    Occhipinti, Andrea; Maffei, Massimo E

    2013-10-01

    Chlorophyll and chlorophyll degradation products were observed in the two-spotted spider mite (Tetranychus urticae) using epifluorescence microscopy (EFM) and confocal laser scanning microscopy (CLSM). A clear red fluorescence (EFM) and a fluorescence induced by a laser wavelength of 650 nm (CLSM) were observed. In the lateral caeca, in the ventriculus and in the excretory organ, a bright light blue fluorescence was observed in close association with chlorophyll by using EFM. The same material can be localized with CLSM by using a laser with a wavelength of 488 nm. By comparison with synthetic guanine, this bright fluorescence is supposed to be guanine. The presence of guanine fluorescence in the mite pellets confirms this hypothesis. A possible mechanism for guanine formation is discussed.

  12. SU-F-T-189: Dosimetric Comparison of Spot-Scanning Proton Therapy Techniques for Liver Tumors Close to the Skin Surface

    International Nuclear Information System (INIS)

    Takao, S; Matsuzaki, Y; Matsuura, T; Umegaki, K; Fujii, Y; Fujii, T; Katoh, N; Shimizu, S; Shirato, H

    2016-01-01

    Purpose: Spot-scanning technique has been utilized to achieve conformal dose distribution to large and complicated tumors. This technique generally does not require patient-specific devices such as aperture and compensator. The commercially available spot-scanning proton therapy (SSPT) systems, however, cannot deliver proton beams to the region shallower than 4 g/cm2. Therefore some range compensation device is required to treat superficial tumors with SSPT. This study shows dosimetric comparison of the following treatment techniques: (i) with a tabletop bolus, (ii) with a nozzle-mounted applicator, and (iii) without any devices and using intensity-modulated proton therapy (IMPT) technique. Methods: The applicator composed of a combination of a mini-ridge filter and a range shifter has been manufactured by Hitachi, Ltd., and the tabletop bolus was made by .decimal, Inc. Both devices have been clinically implemented in our facility. Three patients with liver tumors close to the skin surface were examined in this study. Each treatment plan was optimized so that the prescription dose of 76 Gy(RBE) or 66 Gy(RBE) would be delivered to 99% of the clinical target volume in 20 fractions. Three beams were used for tabletop bolus plan and IMPT plan, whereas two beams were used in the applicator plan because the gantry angle available was limited due to potential collision to patient and couch. The normal liver, colon, and skin were considered as organs at risk (OARs). Results: The target heterogeneity index (HI = D_5/D_9_5) was 1.03 on average in each planning technique. The mean dose to the normal liver was considerably less than 20 Gy(RBE) in all cases. The dose to the skin could be reduced by 20 Gy(RBE) on average in the IMPT plan compared to the applicator plan. Conclusion: It has been confirmed that all treatment techniques met the dosimetric criteria for the OARs and could be implemented clinically.

  13. Safety, efficacy, and predictability of laser in situ keratomileusis to correct myopia or myopic astigmatism with a 750 Hz scanning-spot laser system.

    Science.gov (United States)

    Tomita, Minoru; Watabe, Miyuki; Yukawa, Satoshi; Nakamura, Nobuo; Nakamura, Tadayuki; Magnago, Thomas

    2014-02-01

    To evaluate the clinical outcomes of laser in situ keratomileusis (LASIK) to correct myopia or myopic astigmatism using the Amaris 750S 750 Hz excimer laser. Private LASIK center, Tokyo, Japan. Case series. Patients with myopia or myopic astigmatism (spherical equivalent -0.50 to -11.63 diopters [D]), a corrected distance visual acuity (CDVA) of 20/20 or better, and an estimated residual bed thickness of 300 μm or more had LASIK using the aspheric aberration-free ablation profile of the 750 Hz scanning-spot laser and the Femto LDV Crystal Line femtosecond laser for flap creation. Study parameters included uncorrected distance visual acuity (UDVA), CDVA, manifest refraction, astigmatism, and higher-order aberrations (HOAs). The study included 1280 eyes (685 patients). At 3 months, 96.6% of eyes had a UDVA of 20/20 or better and 99.1% had 20/32 or better; 94.1% of eyes were within ± 0.50 D of the intended correction and 98.9% were within ± 1.00 D; 89.7% of eyes had no residual cylinder and 96.0% had a postoperative astigmatism of less than 0.50 D. All eyes had a postoperative CDVA of 20/20 or better. The HOAs increased postoperatively (PLaser in situ keratomileusis with the 750 Hz scanning-spot laser was safe, effective, and predictable. No specific clinical side effects that might be associated with a high repetition rate occurred. Mr. Magnago is an employee of Schwind eye-tech-solutions GmbH. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. SU-E-T-321: The Effects of a Dynamic Collimation System On Proton Pencil Beams to Improve Lateral Tissue Sparing in Spot Scanned Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hill, P; Wang, D; Flynn, R; Hyer, D [University Of Iowa, Iowa City, IA (United States)

    2014-06-01

    Purpose: To evaluate the lateral beam penumbra in pencil beam scanning proton therapy delivered using a dynamic collimator device capable of trimming a portion of the primary beam in close proximity to the patient. Methods: Monte Carlo simulations of pencil beams were performed using MCNPX. Each simulation transported a 125 MeV proton pencil beam through a range shifter, past acollimator, and into a water phantom. Two parameters were varied among the simulations, the source beam size (sigma in air from 3 to 9 mm), and the position of the edge of the collimator (placed from 0 to 30 mm from the central axis of the beam). Proton flux was tallied at the phantom surface to determine the effective beam sizefor all combinations of source beam size and collimator edge position. Results: Quantifying beam size at the phantom surface provides a useful measure tocompare performance among varying source beam sizes and collimation conditions. For arelatively large source beam size (9 mm) entering the range shifter, sigma at thesurface was found to be 10 mm without collimation versus 4 mm with collimation. Additionally, sigma at the surface achievable with collimation was found to be smallerthan for any uncollimated beam, even for very small source beam sizes. Finally, thelateral penumbra achievable with collimation was determined to be largely independentof the source beam size. Conclusion: Collimation can significantly reduce proton pencil beam lateral penumbra.Given the known dosimetric disadvantages resulting from large beam spot sizes,employing a dynamic collimation system can significantly improve lateral tissuesparing in spot-scanned dose distributions.

  15. Technical Note: A treatment plan comparison between dynamic collimation and a fixed aperture during spot scanning proton therapy for brain treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Blake, E-mail: bsmith34@wisc.edu; Gelover, Edgar; Moignier, Alexandra; Wang, Dongxu; Flynn, Ryan T.; Hyer, Daniel E. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Lin, Liyong; Kirk, Maura; Solberg, Tim [Department of Radiation Oncology, University of Pennsylvania, TRC 2 West, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104 (United States)

    2016-08-15

    Purpose: To quantitatively assess the advantages of energy-layer specific dynamic collimation system (DCS) versus a per-field fixed aperture for spot scanning proton therapy (SSPT). Methods: Five brain cancer patients previously planned and treated with SSPT were replanned using an in-house treatment planning system capable of modeling collimated and uncollimated proton beamlets. The uncollimated plans, which served as a baseline for comparison, reproduced the target coverage and organ-at-risk sparing of the clinically delivered plans. The collimator opening for the fixed aperture-based plans was determined from the combined cross sections of the target in the beam’s eye view over all energy layers which included an additional margin equivalent to the maximum beamlet displacement for the respective energy of that energy layer. The DCS-based plans were created by selecting appropriate collimator positions for each row of beam spots during a Raster-style scanning pattern which were optimized to maximize the dose contributions to the target and limited the dose delivered to adjacent normal tissue. Results: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring surrounding the target, averaged 13.65% (range: 11.8%–16.9%) and 5.18% (2.9%–7.1%) for the DCS and fixed aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 21.35% (19.4%–22.6%) and 8.38% (4.7%–12.0%) for the DCS and fixed aperture plans, respectively. Conclusions: The ability of the DCS to provide collimation to each energy layer yielded better conformity in comparison to fixed aperture plans.

  16. Technical Note: A treatment plan comparison between dynamic collimation and a fixed aperture during spot scanning proton therapy for brain treatment

    International Nuclear Information System (INIS)

    Smith, Blake; Gelover, Edgar; Moignier, Alexandra; Wang, Dongxu; Flynn, Ryan T.; Hyer, Daniel E.; Lin, Liyong; Kirk, Maura; Solberg, Tim

    2016-01-01

    Purpose: To quantitatively assess the advantages of energy-layer specific dynamic collimation system (DCS) versus a per-field fixed aperture for spot scanning proton therapy (SSPT). Methods: Five brain cancer patients previously planned and treated with SSPT were replanned using an in-house treatment planning system capable of modeling collimated and uncollimated proton beamlets. The uncollimated plans, which served as a baseline for comparison, reproduced the target coverage and organ-at-risk sparing of the clinically delivered plans. The collimator opening for the fixed aperture-based plans was determined from the combined cross sections of the target in the beam’s eye view over all energy layers which included an additional margin equivalent to the maximum beamlet displacement for the respective energy of that energy layer. The DCS-based plans were created by selecting appropriate collimator positions for each row of beam spots during a Raster-style scanning pattern which were optimized to maximize the dose contributions to the target and limited the dose delivered to adjacent normal tissue. Results: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring surrounding the target, averaged 13.65% (range: 11.8%–16.9%) and 5.18% (2.9%–7.1%) for the DCS and fixed aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 21.35% (19.4%–22.6%) and 8.38% (4.7%–12.0%) for the DCS and fixed aperture plans, respectively. Conclusions: The ability of the DCS to provide collimation to each energy layer yielded better conformity in comparison to fixed aperture plans.

  17. Technical Note: A treatment plan comparison between dynamic collimation and a fixed aperture during spot scanning proton therapy for brain treatment

    Science.gov (United States)

    Smith, Blake; Gelover, Edgar; Moignier, Alexandra; Wang, Dongxu; Flynn, Ryan T.; Lin, Liyong; Kirk, Maura; Solberg, Tim; Hyer, Daniel E.

    2016-01-01

    Purpose: To quantitatively assess the advantages of energy-layer specific dynamic collimation system (DCS) versus a per-field fixed aperture for spot scanning proton therapy (SSPT). Methods: Five brain cancer patients previously planned and treated with SSPT were replanned using an in-house treatment planning system capable of modeling collimated and uncollimated proton beamlets. The uncollimated plans, which served as a baseline for comparison, reproduced the target coverage and organ-at-risk sparing of the clinically delivered plans. The collimator opening for the fixed aperture-based plans was determined from the combined cross sections of the target in the beam’s eye view over all energy layers which included an additional margin equivalent to the maximum beamlet displacement for the respective energy of that energy layer. The DCS-based plans were created by selecting appropriate collimator positions for each row of beam spots during a Raster-style scanning pattern which were optimized to maximize the dose contributions to the target and limited the dose delivered to adjacent normal tissue. Results: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring surrounding the target, averaged 13.65% (range: 11.8%–16.9%) and 5.18% (2.9%–7.1%) for the DCS and fixed aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 21.35% (19.4%–22.6%) and 8.38% (4.7%–12.0%) for the DCS and fixed aperture plans, respectively. Conclusions: The ability of the DCS to provide collimation to each energy layer yielded better conformity in comparison to fixed aperture plans. PMID:27487886

  18. SU-F-T-189: Dosimetric Comparison of Spot-Scanning Proton Therapy Techniques for Liver Tumors Close to the Skin Surface

    Energy Technology Data Exchange (ETDEWEB)

    Takao, S; Matsuzaki, Y [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Matsuura, T; Umegaki, K [Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido (Japan); Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan); Fujii, Y; Fujii, T [Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan); Katoh, N [Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Shimizu, S; Shirato, H [Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan); Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: Spot-scanning technique has been utilized to achieve conformal dose distribution to large and complicated tumors. This technique generally does not require patient-specific devices such as aperture and compensator. The commercially available spot-scanning proton therapy (SSPT) systems, however, cannot deliver proton beams to the region shallower than 4 g/cm2. Therefore some range compensation device is required to treat superficial tumors with SSPT. This study shows dosimetric comparison of the following treatment techniques: (i) with a tabletop bolus, (ii) with a nozzle-mounted applicator, and (iii) without any devices and using intensity-modulated proton therapy (IMPT) technique. Methods: The applicator composed of a combination of a mini-ridge filter and a range shifter has been manufactured by Hitachi, Ltd., and the tabletop bolus was made by .decimal, Inc. Both devices have been clinically implemented in our facility. Three patients with liver tumors close to the skin surface were examined in this study. Each treatment plan was optimized so that the prescription dose of 76 Gy(RBE) or 66 Gy(RBE) would be delivered to 99% of the clinical target volume in 20 fractions. Three beams were used for tabletop bolus plan and IMPT plan, whereas two beams were used in the applicator plan because the gantry angle available was limited due to potential collision to patient and couch. The normal liver, colon, and skin were considered as organs at risk (OARs). Results: The target heterogeneity index (HI = D{sub 5}/D{sub 95}) was 1.03 on average in each planning technique. The mean dose to the normal liver was considerably less than 20 Gy(RBE) in all cases. The dose to the skin could be reduced by 20 Gy(RBE) on average in the IMPT plan compared to the applicator plan. Conclusion: It has been confirmed that all treatment techniques met the dosimetric criteria for the OARs and could be implemented clinically.

  19. Evaluation of the influence of double and triple Gaussian proton kernel models on accuracy of dose calculations for spot scanning technique.

    Science.gov (United States)

    Hirayama, Shusuke; Takayanagi, Taisuke; Fujii, Yusuke; Fujimoto, Rintaro; Fujitaka, Shinichiro; Umezawa, Masumi; Nagamine, Yoshihiko; Hosaka, Masahiro; Yasui, Keisuke; Omachi, Chihiro; Toshito, Toshiyuki

    2016-03-01

    The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. The authors investigated the difference

  20. Spot-scanning beam proton therapy vs intensity-modulated radiation therapy for ipsilateral head and neck malignancies: A treatment planning comparison

    International Nuclear Information System (INIS)

    Kandula, Shravan; Zhu, Xiaorong; Garden, Adam S.; Gillin, Michael; Rosenthal, David I.; Ang, Kie-Kian; Mohan, Radhe; Amin, Mayankkumar V.; Garcia, John A.; Wu, Richard; Sahoo, Narayan; Frank, Steven J.

    2013-01-01

    Radiation therapy for head and neck malignancies can have side effects that impede quality of life. Theoretically, proton therapy can reduce treatment-related morbidity by minimizing the dose to critical normal tissues. We evaluated the feasibility of spot-scanning proton therapy for head and neck malignancies and compared dosimetry between those plans and intensity-modulated radiation therapy (IMRT) plans. Plans from 5 patients who had undergone IMRT for primary tumors of the head and neck were used for planning proton therapy. Both sets of plans were prepared using computed tomography (CT) scans with the goals of achieving 100% of the prescribed dose to the clinical target volume (CTV) and 95% to the planning TV (PTV) while maximizing conformity to the PTV. Dose-volume histograms were generated and compared, as were conformity indexes (CIs) to the PTVs and mean doses to the organs at risk (OARs). Both modalities in all cases achieved 100% of the dose to the CTV and 95% to the PTV. Mean PTV CIs were comparable (0.371 IMRT, 0.374 protons, p = 0.953). Mean doses were significantly lower in the proton plans to the contralateral submandibular (638.7 cGy IMRT, 4.3 cGy protons, p = 0.002) and parotid (533.3 cGy IMRT, 48.5 cGy protons, p = 0.003) glands; oral cavity (1760.4 cGy IMRT, 458.9 cGy protons, p = 0.003); spinal cord (2112.4 cGy IMRT, 249.2 cGy protons, p = 0.002); and brainstem (1553.52 cGy IMRT, 166.2 cGy protons, p = 0.005). Proton plans also produced lower maximum doses to the spinal cord (3692.1 cGy IMRT, 2014.8 cGy protons, p = 0.034) and brainstem (3412.1 cGy IMRT, 1387.6 cGy protons, p = 0.005). Normal tissue V 10 , V 30 , and V 50 values were also significantly lower in the proton plans. We conclude that spot-scanning proton therapy can significantly reduce the integral dose to head and neck critical structures. Prospective studies are underway to determine if this reduced dose translates to improved quality of life

  1. Characterizing the Hot Spots Involved in RON-MSPβ Complex Formation Using In Silico Alanine Scanning Mutagenesis and Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Omid Zarei

    2017-04-01

    Full Text Available Purpose: Implication of protein-protein interactions (PPIs in development of many diseases such as cancer makes them attractive for therapeutic intervention and rational drug design. RON (Recepteur d’Origine Nantais tyrosine kinase receptor has gained considerable attention as promising target in cancer therapy. The activation of RON via its ligand, macrophage stimulation protein (MSP is the most common mechanism of activation for this receptor. The aim of the current study was to perform in silico alanine scanning mutagenesis and to calculate binding energy for prediction of hot spots in protein-protein interface between RON and MSPβ chain (MSPβ. Methods: In this work the residues at the interface of RON-MSPβ complex were mutated to alanine and then molecular dynamics simulation was used to calculate binding free energy. Results: The results revealed that Gln193, Arg220, Glu287, Pro288, Glu289, and His424 residues from RON and Arg521, His528, Ser565, Glu658, and Arg683 from MSPβ may play important roles in protein-protein interaction between RON and MSP. Conclusion: Identification of these RON hot spots is important in designing anti-RON drugs when the aim is to disrupt RON-MSP interaction. In the same way, the acquired information regarding the critical amino acids of MSPβ can be used in the process of rational drug design for developing MSP antagonizing agents, the development of novel MSP mimicking peptides where inhibition of RON activation is required, and the design of experimental site directed mutagenesis studies.

  2. Liver spots

    Science.gov (United States)

    ... skin changes - liver spots; Senile or solar lentigines; Skin spots - aging; Age spots ... Liver spots are changes in skin color that occur in older skin. The coloring may be due to aging, exposure to the sun ...

  3. Laser scanning cytometry (LCS) allows detailed analysis of the cell cycle in PI stained human fibroblasts (TIG-7).

    Science.gov (United States)

    Kawasaki, M; Sasaki, K; Satoh, T; Kurose, A; Kamada, T; Furuya, T; Murakami, T; Todoroki, T

    1997-01-01

    We have demonstrated a method for the in situ determination of the cell cycle phases of TIG-7 fibroblasts using a laser scanning cytometer (LSC) which has not only a function equivalent to flow cytometry (FCM) but also has a capability unique in itself. LSC allows a more detailed analysis of the cell cycle in cells stained with propidium iodide (PI) than FCM. With LSC it is possible to discriminate between mitotic cells and G2 cells, between post-mitotic cells and G1 cells, and between quiescent cells and cycling cells in a PI fluorescence peak (chromatin condensation) vs. fluorescence value (DNA content) cytogram for cells stained with PI. These were amply confirmed by experiments using colcemid and adriamycin. We were able to identify at least six cell subpopulations for PI stained cells using LSC; namely G1, S, G2, M, postmitotic and quiescent cell populations. LSC analysis facilitates the monitoring of effects of drugs on the cell cycle.

  4. SU-D-BRE-03: Dosimetric Impact of In-Air Spot Size Variations for Commissioning a Room-Matched Beam Model for Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Zhang, Y; Giebeler, A; Mascia, A; Piskulich, F; Perles, L; Lepage, R; Dong, L

    2014-01-01

    Purpose: To quantitatively evaluate dosimetric consequence of spot size variations and validate beam-matching criteria for commissioning a pencil beam model for multiple treatment rooms. Methods: A planning study was first conducted by simulating spot size variations to systematically evaluate dosimetric impact of spot size variations in selected cases, which was used to establish the in-air spot size tolerance for beam matching specifications. A beam model in treatment planning system was created using in-air spot profiles acquired in one treatment room. These spot profiles were also acquired from another treatment room for assessing the actual spot size variations between the two treatment rooms. We created twenty five test plans with targets of different sizes at different depths, and performed dose measurement along the entrance, proximal and distal target regions. The absolute doses at those locations were measured using ionization chambers at both treatment rooms, and were compared against the calculated doses by the beam model. Fifteen additional patient plans were also measured and included in our validation. Results: The beam model is relatively insensitive to spot size variations. With an average of less than 15% measured in-air spot size variations between two treatment rooms, the average dose difference was −0.15% with a standard deviation of 0.40% for 55 measurement points within target region; but the differences increased to 1.4%±1.1% in the entrance regions, which are more affected by in-air spot size variations. Overall, our single-room based beam model in the treatment planning system agreed with measurements in both rooms < 0.5% within the target region. For fifteen patient cases, the agreement was within 1%. Conclusion: We have demonstrated that dosimetrically equivalent machines can be established when in-air spot size variations are within 15% between the two treatment rooms

  5. Assessment of cumulative damage by using ultrasonic C-scan on carbon fiber/epoxy composites under thermal cycling

    Directory of Open Access Journals (Sweden)

    Marcos Yutaka Shiino

    2012-08-01

    Full Text Available In recent years, structural composites manufactured by carbon fiber/epoxy laminates have been employed in large scale in aircraft industries. These structures require high strength under severe temperature changes of -56° until 80 °C. Regarding this scenario, the aim of this research was to reproduce thermal stress in the laminate plate developed by temperature changes and tracking possible cumulative damages on the laminate using ultrasonic C-scan inspection. The evaluation was based on attenuation signals and the C-scan map of the composite plate. The carbon fiber/epoxy plain weave laminate underwent temperatures of -60° to 80 °C, kept during 10 minutes and repeated for 1000, 2000, 3000 and 4000 times. After 1000 cycles, the specimens were inspected by C-scanning. A few changes in the laminate were observed using the inspection methodology only in specimens cycled 3000 times, or so. According to the found results, the used temperature range did not present enough conditions to cumulative damage in this type of laminate, which is in agreement with the macro - and micromechanical theory.

  6. Laser Pyrometer For Spot Temperature Measurements

    Science.gov (United States)

    Elleman, D. D.; Allen, J. L.; Lee, M. C.

    1988-01-01

    Laser pyrometer makes temperature map by scanning measuring spot across target. Scanning laser pyrometer passively measures radiation emitted by scanned spot on target and calibrated by similar passive measurement on blackbody of known temperature. Laser beam turned on for active measurements of reflectances of target spot and reflectance standard. From measurements, temperature of target spot inferred. Pyrometer useful for non-contact measurement of temperature distributions in processing of materials.

  7. Effect of the menstrual cycle on the optic nerve head in diabetes: analysis by confocal scanning laser ophthalmoscopy.

    Science.gov (United States)

    Akar, Munire Erman; Yucel, Iclal; Erdem, Uzeyir; Taskin, Omur; Ozel, Alper; Akar, Yusuf

    2005-04-01

    The purpose of this study was to examine and compare menstrual-cycle-dependent topographic changes in the optic nerve head of normally menstruating women with different grades of type 2 diabetes mellitus. We studied the right eyes of 123 normally menstruating women (36 with severe nonproliferative diabetic retinopathy [NPDR], 42 with mild NPDR and 45 healthy subjects). All subjects underwent a complete ocular examination at baseline. At 4 hormonally distinct phases of the menstrual cycle (early follicular, late follicular, mid-luteal and late luteal), we analysed the topography of the optic nerve head, using a confocal scanning laser ophthalmoscope, and measured the serum levels of estradiol, progesterone and luteinizing hormone. We excluded from analysis the data for 8 patients with severe NPDR, 10 patients with mild NPDR and 15 control subjects who were lost to follow-up examinations during the menstrual cycle. The mean age and optic disc area did not differ significantly among the 3 groups. The duration of diabetes was significantly longer in the patients with severe NPDR than in those with mild NPDR (p cup-shape measure, linear cup/disc ratio, cup/disc area ratio and cup area in the late luteal phase compared with the other phases of the menstrual cycle (p menstrual cycle. Severe NPDR is associated with significant topographic changes in the rim and cup of the optic nerve head during the menstrual cycle. This must be considered in the evaluation of women with both diabetes and glaucoma. The normal fluctuations in serum sex hormone levels during the menstrual cycle of diabetic women seem to affect the optic nerve head more when the disease is advanced.

  8. TH-CD-209-11: Simulation Study of Real-Time-Image Gating On Spot Scanning Proton Therapy for Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, T; Inoue, T; Katoh, N [Department of Radiation Oncology, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Matsuura, T; Umegaki, K [Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido (Japan); Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan); Takao, S; Matsuzaki, Y; Fujii, Y; Fujii, T; Miyamoto, N [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Shimizu, S; Shirato, H [Department of Radiation Oncology, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: To study the impact of a real-time-image gating on spot scanning proton therapy for lung tumors and to examine the suitable size of the gating window (GW). Methods: We investigated a real-time-image gated proton therapy (RGPT), in which two fluoroscopic units monitor a gold sphere fiducial in real-time, and the proton beam is irradiated only when the marker enters within the pre-assigned GW. We designed 5 treatment plans for 7 lung cancer patients: RGPT with a GW of ±1, 2, 5, and 8 mm and free-breathing proton therapy (FBPT) using the end-exhale and average images of 4-dimensional (4D) CT, respectively. 70 Gy(RBE)/10fr was prescribed to 99% of the targets. The time-series data of the three-dimensional marker positions (RTRT data) were grouped into 10 phases to associate with the phases of 4DCT. The 4D dose distributions were calculated using the plan information, RTRT Data, 4DCT, and modeled accelerator pattern. The dose distribution in each respiratory phase was deformed into the end-exhale CT. The D99 and D5-95 of CTV (with a criteria of D99>95% and D5-95<5%), V20 of Lung-GTV, and treatment times were evaluated. Results: GWs ≤ ±2 mm satisfied the criteria of CTV in all cases, whereas GWs ≥ ±5 mm did not satisfy the criteria in some cases. The V20 was reduced by more than 18.9% (relative to FBPT) for GW ≤ ±2 mm, but equaled or even surpassed the FBPT for GWs ≥ ±5 mm. The irradiation times for the ±1, 2, 5, and 8 mm GWs and FBPT were 372.4±208.3, 215.2±51.5, 180.9±31.6, 178.4±21.2, and 140.1±15.2 s, respectively. The GW of ±1 mm caused large variation in irradiation time among the patients. Conclusion: In RGPT for lung cancer, the most suitable GW, in terms of good dose preservation without prolonging the therapeutic beam delivery, is ±2 mm.

  9. Clinically Applicable Monte Carlo–based Biological Dose Optimization for the Treatment of Head and Neck Cancers With Spot-Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wan Chan Tseung, Hok Seum, E-mail: wanchantseung.hok@mayo.edu; Ma, Jiasen; Kreofsky, Cole R.; Ma, Daniel J.; Beltran, Chris

    2016-08-01

    Purpose: Our aim is to demonstrate the feasibility of fast Monte Carlo (MC)–based inverse biological planning for the treatment of head and neck tumors in spot-scanning proton therapy. Methods and Materials: Recently, a fast and accurate graphics processor unit (GPU)–based MC simulation of proton transport was developed and used as the dose-calculation engine in a GPU-accelerated intensity modulated proton therapy (IMPT) optimizer. Besides dose, the MC can simultaneously score the dose-averaged linear energy transfer (LET{sub d}), which makes biological dose (BD) optimization possible. To convert from LET{sub d} to BD, a simple linear relation was assumed. By use of this novel optimizer, inverse biological planning was applied to 4 patients, including 2 small and 1 large thyroid tumor targets, as well as 1 glioma case. To create these plans, constraints were placed to maintain the physical dose (PD) within 1.25 times the prescription while maximizing target BD. For comparison, conventional intensity modulated radiation therapy (IMRT) and IMPT plans were also created using Eclipse (Varian Medical Systems) in each case. The same critical-structure PD constraints were used for the IMRT, IMPT, and biologically optimized plans. The BD distributions for the IMPT plans were obtained through MC recalculations. Results: Compared with standard IMPT, the biologically optimal plans for patients with small tumor targets displayed a BD escalation that was around twice the PD increase. Dose sparing to critical structures was improved compared with both IMRT and IMPT. No significant BD increase could be achieved for the large thyroid tumor case and when the presence of critical structures mitigated the contribution of additional fields. The calculation of the biologically optimized plans can be completed in a clinically viable time (<30 minutes) on a small 24-GPU system. Conclusions: By exploiting GPU acceleration, MC-based, biologically optimized plans were created for

  10. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Directory of Open Access Journals (Sweden)

    Shams Bilal

    2017-08-01

    Full Text Available Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources.

  11. Bier spots

    OpenAIRE

    Ahu Yorulmaz,; Seray Kulcu Cakmak; Esra Ar?; Ferda Artuz

    2015-01-01

    Also called as physiologic anemic macules, Bier spots are small, hypopigmented irregularly shaped macules against a background of diffuse erythema, which creates an appearance of speckled vascular mottling of the skin. Bier spots most commonly appear on distal portions of the limbs though there are case reports describing diffuse involvement, which also affect trunk and mucous membranes of the patient. Although the exact pathophysiological mechanisms underlying Bier spots still need to be elu...

  12. A completed audit cycle of the lateral scan projection radiograph in CT pulmonary angiography (CTPA); the impact on scan length and radiation dose

    International Nuclear Information System (INIS)

    Rodrigues, J.C.L.; Negus, I.S.; Manghat, N.E.; Hamilton, M.C.K.

    2013-01-01

    Aim: To investigate the effect of incorporating a lateral scan projection radiograph (topogram) in addition to the standard frontal topogram on excess scan length in computed tomography pulmonary angiography (CTPA) and to quantify the impact on effective dose. Materials and methods: Fifty consecutive patients referred for exclusion of pulmonary embolism who had undergone a CTPA examination with conventional frontal topogram to plan scan length (protocol A) were compared with 50 consecutive patients who had undergone a CTPA study with frontal and additional lateral topogram for planning (protocol B) in a retrospective audit. Optimal scan length was defined from lung apex to lung base. Mean excess scan length beyond these landmarks was determined. The mean organ doses to the thyroid, liver, and stomach, as well as mean effective dose, were estimated using standard conversion factors. Results: The mean excess scan length was significantly lower in protocol B compared to the protocol A cohort (19.5 ± 17.4 mm [mean ± standard deviation] versus 39.1 ± 20.4 mm, p < 0.0001). The mean excess scan length below the lung bases was significantly lower in the protocol B cohort compared to the protocol A group (7.5 ± 12.7 mm versus 23 ± 16.6 mm, p < 0.0001), as were the mean organ doses to the stomach (4.24 ± 0.81 mGy versus 5.22 ± 1.06 mGy, p < 0.0001) and liver (5.60 ± 0.64 mGy versus 6.38 ± 0.81 mGy, p < 0.0001). A non-significant reduction in over-scanning above the apices in protocol B was observed compared with protocol A (12 ± 8.8 mm versus 16.2 ± 13.6 mm, p = 0.07), which equated to lower mean thyroid organ dose in (3.28 ± 1.76 mGy versus 4.11 ± 3.11 mGy, p = 0.104). Conclusion: The present audit indicates that incorporation of a lateral topogram into the CTPA protocol, together with radiographer education, reduces excess scan length, which significantly reduces the dose to the liver and stomach, and potentially lowers the dose to the thyroid. This simple

  13. Bier spots

    Directory of Open Access Journals (Sweden)

    Ahu Yorulmaz,

    2015-10-01

    Full Text Available Also called as physiologic anemic macules, Bier spots are small, hypopigmented irregularly shaped macules against a background of diffuse erythema, which creates an appearance of speckled vascular mottling of the skin. Bier spots most commonly appear on distal portions of the limbs though there are case reports describing diffuse involvement, which also affect trunk and mucous membranes of the patient. Although the exact pathophysiological mechanisms underlying Bier spots still need to be elucidated, Bier spots have been suggested to be a vascular anomaly caused by vasoconstriction of small vessels. In addition, several diseases have been proposed to be associated with Bier spots, including scleroderma renal crisis, cryoglobulinemia, Peutz-Jeghers syndrome, alopecia areata and hypoplasia of the aorta, although it has not been shown whether these associations are casual or coincidental. The clinical presentation of Bier spots is quite typical. These tiny whitish macules easily become prominent when the affected limb is placed in a dependent position and fade away when the limb is raised. Here we report a case of Bier spots in a 32-year-old male patient with characteristical clinical manifestations.

  14. Age Spots

    Science.gov (United States)

    ... for Every Season How to Choose the Best Skin Care Products In This Section Dermatologic Surgery What is dermatologic ... for Every Season How to Choose the Best Skin Care Products Age Spots Treatment Options Learn more about treatment ...

  15. Spotted inflation

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2010-01-01

    We describe new scenarios for generating curvature perturbations when inflaton (curvaton) has significant interactions. We consider a ''spot'', which arises from interactions associated with an enhanced symmetric point (ESP) on the trajectory. Our first example uses the spot to induce a gap in the field equation. We observe that the gap in the field equation may cause generation of curvature perturbation if it does not appear simultaneous in space. The mechanism is similar to the scenario of inhomogeneous phase transition. Then we observe that the spot interactions may initiate warm inflation in the cold Universe. Creation of cosmological perturbation is discussed in relation to the inflaton dynamics and the modulation associated with the spot interactions

  16. Solar 'hot spots' are still hot

    Science.gov (United States)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  17. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  18. Variable-spot ion beam figuring

    International Nuclear Information System (INIS)

    Wu, Lixiang; Qiu, Keqiang; Fu, Shaojun

    2016-01-01

    This paper introduces a new scheme of ion beam figuring (IBF), or rather variable-spot IBF, which is conducted at a constant scanning velocity with variable-spot ion beam collimated by a variable diaphragm. It aims at improving the reachability and adaptation of the figuring process within the limits of machine dynamics by varying the ion beam spot size instead of the scanning velocity. In contrast to the dwell time algorithm in the conventional IBF, the variable-spot IBF adopts a new algorithm, which consists of the scan path programming and the trajectory optimization using pattern search. In this algorithm, instead of the dwell time, a new concept, integral etching time, is proposed to interpret the process of variable-spot IBF. We conducted simulations to verify its feasibility and practicality. The simulation results indicate the variable-spot IBF is a promising alternative to the conventional approach.

  19. SPOT Program

    Science.gov (United States)

    Smith, Jason T.; Welsh, Sam J.; Farinetti, Antonio L.; Wegner, Tim; Blakeslee, James; Deboeck, Toni F.; Dyer, Daniel; Corley, Bryan M.; Ollivierre, Jarmaine; Kramer, Leonard; hide

    2010-01-01

    A Spacecraft Position Optimal Tracking (SPOT) program was developed to process Global Positioning System (GPS) data, sent via telemetry from a spacecraft, to generate accurate navigation estimates of the vehicle position and velocity (state vector) using a Kalman filter. This program uses the GPS onboard receiver measurements to sequentially calculate the vehicle state vectors and provide this information to ground flight controllers. It is the first real-time ground-based shuttle navigation application using onboard sensors. The program is compact, portable, self-contained, and can run on a variety of UNIX or Linux computers. The program has a modular objec-toriented design that supports application-specific plugins such as data corruption remediation pre-processing and remote graphics display. The Kalman filter is extensible to additional sensor types or force models. The Kalman filter design is also strong against data dropouts because it uses physical models from state and covariance propagation in the absence of data. The design of this program separates the functionalities of SPOT into six different executable processes. This allows for the individual processes to be connected in an a la carte manner, making the feature set and executable complexity of SPOT adaptable to the needs of the user. Also, these processes need not be executed on the same workstation. This allows for communications between SPOT processes executing on the same Local Area Network (LAN). Thus, SPOT can be executed in a distributed sense with the capability for a team of flight controllers to efficiently share the same trajectory information currently being computed by the program. SPOT is used in the Mission Control Center (MCC) for Space Shuttle Program (SSP) and International Space Station Program (ISSP) operations, and can also be used as a post -flight analysis tool. It is primarily used for situational awareness, and for contingency situations.

  20. Effect of Repeated Screw Joint Closing and Opening Cycles and Cyclic Loading on Abutment Screw Removal Torque and Screw Thread Morphology: Scanning Electron Microscopy Evaluation.

    Science.gov (United States)

    Arshad, Mahnaz; Mahgoli, Hosseinali; Payaminia, Leila

    To evaluate the effect of repeated screw joint closing and opening cycles and cyclic loading on abutment screw removal torque and screw thread morphology using scanning electron microscopy (SEM). Three groups (n = 10 in each group) of implant-abutment-abutment screw assemblies were created. There were also 10 extra abutment screws as new screws in group 3. The abutment screws were tightened to 12 Ncm with an electronic torque meter; then they were removed and removal torque values were recorded. This sequence was repeated 5 times for group 1 and 15 times for groups 2 and 3. The same screws in groups 1 and 2 and the new screws in group 3 were then tightened to 12 Ncm; this was also followed by screw tightening to 30 Ncm and retightening to 30 Ncm 15 minutes later. Removal torque measurements were performed after screws were subjected to cyclic loading (0.5 × 10⁶ cycles; 1 Hz; 75 N). Moreover, the surface topography of one screw from each group before and after cyclic loading was evaluated with SEM and compared with an unused screw. All groups exhibited reduced removal torque values in comparison to insertion torque in each cycle. However, there was a steady trend of torque loss in each group. A comparison of the last cycle of the groups before loading showed significantly greater torque loss value in the 15th cycle of groups 2 and 3 compared with the fifth cycle of group 1 (P abutment is definitively placed.

  1. A Micro-Scale Investigation on the Behaviors of Asphalt Mixtures under Freeze-Thaw Cycles Using Entropy Theory and a Computerized Tomography Scanning Technique

    Directory of Open Access Journals (Sweden)

    Huining Xu

    2018-01-01

    Full Text Available The thermodynamic behavior of asphalt mixtures is critical to the engineers since it directly relates to the damage in asphalt mixtures. However, most of the current research of the freeze-thaw damage of asphalt mixtures is focused on the bulk body from the macroscale and lacks a fundamental understanding of the thermodynamic behaviors of asphalt mixtures from the microscale perspective. In this paper, to identify the important thermodynamic behaviors of asphalt mixtures under freeze-thaw loading cycle, the information entropy theory, an X-ray computerized tomography (CT scanner and digital image processing technology are employed. The voids, the average size of the voids, the connected porosity, and the void number are extracted according to the scanned images. Based on the experiments and the CT scanned images, the information entropy evolution of the asphalt mixtures under different freeze-thaw cycles is calculated and the relationship between the change of information entropy and the pore structure characteristics is established. Then, the influences of different freezing and thawing conditions on the thermodynamic behaviors of asphalt mixtures are compared. The combination of information entropy theory and CT scanning technique proposed in this paper provides an innovative approach to investigate the thermodynamics behaviors of asphalt mixtures and a new way to analyze the freeze-thaw damage in asphalt mixtures.

  2. Prevention of haematoma progression by tranexamic acid in intracerebral haemorrhage patients with and without spot sign on admission scan: a statistical analysis plan of a pre-specified sub-study of the TICH-2 trial.

    Science.gov (United States)

    Ovesen, Christian; Jakobsen, Janus Christian; Gluud, Christian; Steiner, Thorsten; Law, Zhe; Flaherty, Katie; Dineen, Rob A; Bath, Philip M; Sprigg, Nikola; Christensen, Hanne

    2018-06-13

    We present the statistical analysis plan of a prespecified Tranexamic Acid for Hyperacute Primary Intracerebral Haemorrhage (TICH)-2 sub-study aiming to investigate, if tranexamic acid has a different effect in intracerebral haemorrhage patients with the spot sign on admission compared to spot sign negative patients. The TICH-2 trial recruited above 2000 participants with intracerebral haemorrhage arriving in hospital within 8 h after symptom onset. They were included irrespective of radiological signs of on-going haematoma expansion. Participants were randomised to tranexamic acid versus matching placebo. In this subgroup analysis, we will include all participants in TICH-2 with a computed tomography angiography on admission allowing adjudication of the participants' spot sign status. Primary outcome will be the ability of tranexamic acid to limit absolute haematoma volume on computed tomography at 24 h (± 12 h) after randomisation among spot sign positive and spot sign negative participants, respectively. Within all outcome measures, the effect of tranexamic acid in spot sign positive/negative participants will be compared using tests of interaction. This sub-study will investigate the important clinical hypothesis that spot sign positive patients might benefit more from administration of tranexamic acid compared to spot sign negative patients. Trial registration ISRCTN93732214 ( http://www.isrctn.com ).

  3. The effect of mechanical load cycling and polishing time on microleakage of class V glass-ionomer and composite restorations: A scanning electron microscopy evaluation

    Directory of Open Access Journals (Sweden)

    Mansoreh Mirzaie

    2014-01-01

    Full Text Available Background: Microleakage is one of the challenging concerns in direct filling restorations. Understanding of its related factors is important in clinical practice. The aim of this study was scanning electron microscopy (SEM evaluation of marginal integrity in three types of tooth-colored restorative materials in class V cavity preparations and the effect of load cycling and polishing time on the microleakage. Materials and Methods: In this in vitro experimental study, class V cavity preparations were prepared on the buccal and lingual surfaces of 60 bovine incisors. The specimens were divided into three groups each containing 20 teeth: group 1: Filtek Z350, Group 2: Fuji IX/G Coat Plus, Group 3: Fuji II LC/GC varnish. In each group, 2 subgroups (n = 20 were established based on finishing time (immediate or delayed by 24 h. All specimens were thermocycled (×2,000, 5-50°C. In each sub groups, half of the teeth were load cycled. Epoxy resin replicas of 24 specimens were evaluated under field emission-SEM and interfacial gaps were measured. All teeth were then immersed in 0.5% basic fuchsin dye for 24 h, sectioned and observed under stereomicroscope. Data were analyzed with Kruskal-Wallis′ test and Mann-Whitney U test and a comparison between incisal and cervical microleakage was made with Wilcoxon test. P < 0.05 was considered as significant. Results: Load cycling and filling material had a significant effect on microleakage, but polishing time did not. Cervical microleakage in Z350/load cycle/immediate polish and Fuji IX/load cycle/immediate or delayed polish and Fuji IX/no load cycle/immediate polish were significantly higher than incisal microleakage. Conclusion: It was concluded that the cervical sealing ability of Fuji IX under load cycling was better than Fuji II LC. Under load cycling and immediate polishing Z350 showed better marginal integrity than both Fuji II LC and Fuji IX. The immediate polishing didn′t cause a statistically

  4. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    Science.gov (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  5. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam - scanning electron microscopy

    Science.gov (United States)

    Lin, Na; Jia, Zhe; Wang, Zhihui; Zhao, Hui; Ai, Guo; Song, Xiangyun; Bai, Ying; Battaglia, Vincent; Sun, Chengdong; Qiao, Juan; Wu, Kai; Liu, Gao

    2017-10-01

    The structure degradation of commercial Lithium-ion battery (LIB) graphite anodes with different cycling numbers and charge rates was investigated by focused ion beam (FIB) and scanning electron microscopy (SEM). The cross-section image of graphite anode by FIB milling shows that cracks, resulted in the volume expansion of graphite electrode during long-term cycling, were formed in parallel with the current collector. The crack occurs in the bulk of graphite particles near the lithium insertion surface, which might derive from the stress induced during lithiation and de-lithiation cycles. Subsequently, crack takes place along grain boundaries of the polycrystalline graphite, but only in the direction parallel with the current collector. Furthermore, fast charge graphite electrodes are more prone to form cracks since the tensile strength of graphite is more likely to be surpassed at higher charge rates. Therefore, for LIBs long-term or high charge rate applications, the tensile strength of graphite anode should be taken into account.

  6. Crack imaging by pulsed laser spot thermography

    International Nuclear Information System (INIS)

    Li, T; Almond, D P; Rees, D A S; Weekes, B

    2010-01-01

    A surface crack close to a spot heated by a laser beam impedes lateral heat flow and produces alterations to the shape of the thermal image of the spot that can be monitored by thermography. A full 3D simulation has been developed to simulate heat flow from a laser heated spot in the proximity of a crack. The modelling provided an understanding of the ways that different parameters affect the thermal images of laser heated spots. It also assisted in the development of an efficient image processing strategy for extracting the scanned cracks. Experimental results show that scanning pulsed laser spot thermography has considerable potential as a remote, non-contact crack imaging technique.

  7. Rocky Mountain spotted fever

    Science.gov (United States)

    ... spotted fever on the foot Rocky Mountain spotted fever, petechial rash Antibodies Deer and dog tick References McElligott SC, Kihiczak GG, Schwartz RA. Rocky Mountain spotted fever and other rickettsial infections. In: Lebwohl MG, Heymann ...

  8. Spot weld arrangement effects on the fatigue behavior of multi-spot welded joints

    International Nuclear Information System (INIS)

    Hassanifard, Soran; Zehsaz, Mohammad; Esmaeili, Firooz

    2011-01-01

    In the present study, the effects of spot weld arrangements in multi-spot welded joints on the fatigue behavior of the joints are studied. Three different four-spot welded joints are considered: one-row four-spot parallel to the loading direction, one-row four-spot perpendicular to the loading direction and two-row four-spot weld specimens. The experimental fatigue test results reveal that the differences between the fatigue lives of three spot welded types in the low cycle regime are more considerable than those in the high cycle regime. However, all kinds of spot weld specimens have similar fatigue strength when approaching a million cycles. A non-linear finite element analysis is performed to obtain the relative stress gradients, effective distances and notch strength reduction factors based on the volumetric approach. The work here shows that the volumetric approach does a very good job in predicting the fatigue life of the multi-spot welded joints

  9. Ionospheric hot spot at high latitudes

    International Nuclear Information System (INIS)

    Schunk, R.W.; Sojka, J.J.

    1982-01-01

    A hot spot (or spots) can occur in the high-latitude ionosphere depending on the plasma convection pattern. The hot spot corresponds to a small magnetic local time-magnetic latitude region of elevated ion temperatures located near the dusk and/or dawn meridians. For asymmetric convection electric field patterns, with enhanced flow in either the dusk or dawn sector of the polar cap, a single hot spot should occur in association with the strong convection cell. However, on geomagnetically disturbed days, two strong convection cells can occur, and hence, two hot spots should exist. The hot spot should be detectable when the electric field in the strong convection cell exceeds about 40 mV m -1 . For electric fields of the order of 100 mV m -1 in the convection cell, the ion temperature in the hot spot is greatest at low altitudes, reaching 4000 0 K at 160 km, and decreases with altitude in the F-region. An ionospheric hot spot (or spots) can be expected at all seasons and for a wide range of solar cycle conditions

  10. SpotADAPT

    DEFF Research Database (Denmark)

    Kaulakiene, Dalia; Thomsen, Christian; Pedersen, Torben Bach

    2015-01-01

    by Amazon Web Services (AWS). The users aiming for the spot market are presented with many instance types placed in multiple datacenters in the world, and thus it is difficult to choose the optimal deployment. In this paper, we propose the framework SpotADAPT (Spot-Aware (re-)Deployment of Analytical...... of typical analytical workloads and real spot price traces. SpotADAPT's suggested deployments are comparable to the theoretically optimal ones, and in particular, it shows good cost benefits for the budget optimization -- on average SpotADAPT is at most 0.3% more expensive than the theoretically optimal...

  11. Rocky Mountain Spotted Fever

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Rocky Mountain Spotted Fever Credit: CDC A male cayenne tick, Amblyomma cajennense, ... and New Mexico. Why Is the Study of Rocky Mountain Spotted Fever a Priority for NIAID? Tickborne diseases are becoming ...

  12. The rise and fall of a human recombination hot spot.

    Science.gov (United States)

    Jeffreys, Alec J; Neumann, Rita

    2009-05-01

    Human meiotic crossovers mainly cluster into narrow hot spots that profoundly influence patterns of haplotype diversity and that may also affect genome instability and sequence evolution. Hot spots also seem to be ephemeral, but processes of hot-spot activation and their subsequent evolutionary dynamics remain unknown. We now analyze the life cycle of a recombination hot spot. Sperm typing revealed a polymorphic hot spot that was activated in cis by a single base change, providing evidence for a primary sequence determinant necessary, though not sufficient, to activate recombination. This activating mutation occurred roughly 70,000 y ago and has persisted to the present, most likely fortuitously through genetic drift despite its systematic elimination by biased gene conversion. Nonetheless, this self-destructive conversion will eventually lead to hot-spot extinction. These findings define a subclass of highly transient hot spots and highlight the importance of understanding hot-spot turnover and how it influences haplotype diversity.

  13. Scanning Terahertz Heterodyne Imaging Systems

    Science.gov (United States)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  14. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  15. Risks versus savings in the international spot market

    International Nuclear Information System (INIS)

    Karalus, J.L.

    1988-01-01

    This paper describes the international spot market, some of its risks and difficulties, and examples of the ways potential savings can be realized. Fuel cycle goods and services available in the international spot market include uranium as U 3 O 8 , natural UF 6 , enriched UF 6 , conversion services, and enriching services

  16. Spot market for uranium

    International Nuclear Information System (INIS)

    Colhoun, C.

    1982-01-01

    The spot market is always quoted for the price of uranium because little information is available about long-term contracts. A review of the development of spot market prices shows the same price curve swings that occur with all raw materials. Future long-term contracts will probably be lower to reflect spot market prices, which are currently in the real-value range of $30-$35. An upswing in the price of uranium could come in the next few months as utilities begin making purchases and trading from stockpiles. The US, unlike Europe and Japan, has already reached a supply and demand point where the spot market share is increasing. Forecasters cannot project the market price, they can only predict the presence of an oscillating spot or a secondary market. 5 figures

  17. Mononucleosis spot test

    Science.gov (United States)

    Monospot test; Heterophile antibody test; Heterophile agglutination test; Paul-Bunnell test; Forssman antibody test ... The mononucleosis spot test is done when symptoms of mononucleosis are ... Fatigue Fever Large spleen (possibly) Sore throat Tender ...

  18. Arc cathode spots

    International Nuclear Information System (INIS)

    Schrade, H.O.

    1989-01-01

    Arc spots are usually highly unstable and jump statistically over the cathode surface. In a magnetic field parallel to the surface, preferably they move in the retrograde direction; i.e., opposite to the Lorentzian rule. If the field is inclined with respect to the surface, the spots drift away at a certain angle with respect to the proper retrograde direction (Robson drift motion). These well-known phenomena are explained by one stability theory

  19. Renal scan

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003790.htm Renal scan To use the sharing features on this ... anaphylaxis . Alternative Names Renogram; Kidney scan Images Kidney anatomy Kidney - blood and urine flow References Chernecky CC, ...

  20. CT Scan

    Science.gov (United States)

    ... disease, lung nodules and liver masses Monitor the effectiveness of certain treatments, such as cancer treatment Detect ... scan done in a hospital or an outpatient facility. CT scans are painless and, with newer machines, ...

  1. Scanning by use of TV

    International Nuclear Information System (INIS)

    Drevermann, H.

    1981-01-01

    The use of TV read out for scanning and measuring holographic pictures seems to give less problems than the use of optical projection as is usual for conventional bubble chamber photos. Whereas the measuring of conventional bubble chamber pictures seems to give no problems, it is not clear whether scanning by use of TV is possible. Therefore scanning pictures from experiment NA16 (taken in LEBC) with TV only was tried using the TV system of ERASME, where the CRT system is used as a camera. It should be mentioned that this system, being a flying spot device, cannot be adapted for holography. (author)

  2. Impact of spot charge inaccuracies in IMPT treatments.

    Science.gov (United States)

    Kraan, Aafke C; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M

    2017-08-01

    Spot charge is one parameter of pencil-beam scanning dose delivery system whose accuracy is typically high but whose required value has not been investigated. In this work we quantify the dose impact of spot charge inaccuracies on the dose distribution in patients. Knowing the effect of charge errors is relevant for conventional proton machines, as well as for new generation proton machines, where ensuring accurate charge may be challenging. Through perturbation of spot charge in treatment plans for seven patients and a phantom, we evaluated the dose impact of absolute (up to 5× 10 6 protons) and relative (up to 30%) charge errors. We investigated the dependence on beam width by studying scenarios with small, medium and large beam sizes. Treatment plan statistics included the Γ passing rate, dose-volume-histograms and dose differences. The allowable absolute charge error for small spot plans was about 2× 10 6 protons. Larger limits would be allowed if larger spots were used. For relative errors, the maximum allowable error size for small, medium and large spots was about 13%, 8% and 6% for small, medium and large spots, respectively. Dose distributions turned out to be surprisingly robust against random spot charge perturbation. Our study suggests that ensuring spot charge errors as small as 1-2% as is commonly aimed at in conventional proton therapy machines, is clinically not strictly needed. © 2017 American Association of Physicists in Medicine.

  3. A case of Rocky Mountain spotted fever.

    Science.gov (United States)

    Rubel, Barry S

    2007-01-01

    Rocky Mountain spotted fever is a serious, generalized infection that is spread to humans through the bite of infected ticks. It can be lethal but it is curable. The disease gets its name from the Rocky Mountain region where it was first identified in 1896. The fever is caused by the bacterium Rickettsia rickettsii and is maintained in nature in a complex life cycle involving ticks and mammals. Humans are considered to be accidental hosts and are not involved in the natural transmission cycle of this pathogen. The author examined a 47-year-old woman during a periodic recall appointment. The patient had no dental problems other than the need for routine prophylaxis but mentioned a recent problem with swelling of her extremities with an accompanying rash and general malaise and soreness in her neck region. Tests were conducted and a diagnosis of Rocky Mountain spotted fever was made.

  4. Twin-spot laser welding of advanced high-strength multiphase microstructure steel

    Science.gov (United States)

    Grajcar, Adam; Morawiec, Mateusz; Różański, Maciej; Stano, Sebastian

    2017-07-01

    The study addresses the results concerning the laser welding of TRIP (TRansformation Induced Plasticity) steel using a beam focused at two spots (also referred to as twin-spot laser welding). The analysis involved the effect of variable welding thermal cycles on the properties and microstructure of welded joints. The tests were performed using a linear energy of 0.048 and 0.060 kJ/mm and the laser beam power distribution of 50%:50%, 60%:40% and 70%:30%. The tests also involved welding performed using a linear energy of 0.150 kJ/mm and the laser beam power distribution of 70%:30%. In addition, the research included observations of the microstructure of the fusion zone, heat affected zone and the transition zone using light microscopy and scanning electron microscopy. The fusion zone was composed of blocky-lath martensite whereas the HAZ (heat-affected zone) was characterised by the lath microstructure containing martensite, bainite and retained austenite. The distribution of twin-spot laser beam power significantly affected the microstructure and hardness profiles of welded joints. The highest hardness (480-505 HV), regardless of welding variants used, was observed in the HAZ.

  5. Cooperative scans

    NARCIS (Netherlands)

    M. Zukowski (Marcin); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2004-01-01

    textabstractData mining, information retrieval and other application areas exhibit a query load with multiple concurrent queries touching a large fraction of a relation. This leads to individual query plans based on a table scan or large index scan. The implementation of this access path in most

  6. Investigation of shinning Spot Defect on Hot-Dip Galvanized Steel Sheets

    International Nuclear Information System (INIS)

    Yonggang, Liu; Lei, Cui

    2014-01-01

    Shinning spot defects on galvanized steel sheets were studied by optical microscope, scanning electron microscope(SEM), Energy Dispersive Spectrometer (EDS) and Laser-Induced Breakdown Spectroscopy Original Position Statistic Distribution Analysis (LIBSOPA) in this study. The research shows that the coating thickness of shinning spot defects which caused by the substrate defect is much lower than normal area, and when skin passed, the shinning spot defect area can not touch with skin pass roll which result in the surface of shinning spot is flat while normal area is rough. The different coating morphologies have different effects on the reflection of light, which cause the shinning spot defects more brighter than normal area

  7. TV spots' impact.

    Science.gov (United States)

    El-bakly, S

    1994-09-01

    The Information, Education and Communication (IEC) Center of the State Information Service was established in 1979 for the purpose of providing information to the people on the population issue. The Ministry of Information has accorded the State Information Service free TV and radio air time for family planning dramas and spots. In the early years information campaigns were organized to make people aware of the population problem by slogans, songs, and cartoons. Around 1984 misconceptions about family planning and contraceptives were attacked through a number of TV and radio spots. A few years later 21 spots on specific contraceptive methods were broadcast which were aired for three years over 3000 times. They were extremely successful. The impact of these TV spots was one of the major reasons why the contraceptive prevalence rate increased from 30% in 1984 to 38% in 1988 and 47% in 1992. Spots were also broadcast about the social implications of large families. The TV soap opera "And The Nile Flows On", with the family planning message interwoven into it, was very well received by the target audience. A program entitled "Wedding of the Month" features couples who know family planning well. The most successful radio program is a 15-20 minute long quiz show for residents of the villages where the Select Villages Project is being implemented. The State Information Service has 60 local information centers in the 26 governorates of Egypt that make plans for the family planning campaign. In 1992 the Minya Initiative, a family planning project was implemented in the Minya Governorate. As a result, the contraceptive prevalence rate rose from 22% to 30% over 18 months. A new project, the Select Village Project, was developed in 1993 that replicates the Minya Initiative on the village level in other governorates. This new project that was implemented in sixteen governorates.

  8. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  9. Roth spots in pernicious anaemia

    OpenAIRE

    Macauley, Mavin; Nag, Satyajit

    2011-01-01

    Roth spots are white-centred retinal haemorrhages, previously thought to be pathognomonic for subacute bacterial endocarditis. A number of other conditions can be associated with Roth spots. In this case, the authors describe the association of Roth spots and pernicious anaemia. This association has been rarely described in the medical literature. Correct diagnosis and treatment with intramuscular vitamin B12 injections resulted in complete resolution of the anaemia and Roth spots. The author...

  10. Height Resolution of Antibody Spots Measured by Spinning-Disk Interferometry on the BioCD

    Directory of Open Access Journals (Sweden)

    Kevin O’Brien

    2016-02-01

    Full Text Available Spinning-disc interferometry (SDI is a high-speed laser scanning approach to surface metrology that uses common-path interferometry to measure protein spots on a BioCD disk. The measurement sensitivity depends on the scanning pitch and on the time-base. Based on high-resolution laser scanning images of printed antibody spots, we quantify the protein sensitivity as a function of the scan parameters. For smoothly printed antibody spots scanned with a transverse spatial resolution of 1 μm, the surface height precision for a single 100 μm diameter protein spot is approximately 1 pm. This detection sensitivity sets the fundamental limit of detection for label-free BioCD biosensors performing immunoassays.

  11. Poisson Spot with Magnetic Levitation

    Science.gov (United States)

    Hoover, Matthew; Everhart, Michael; D'Arruda, Jose

    2010-01-01

    In this paper we describe a unique method for obtaining the famous Poisson spot without adding obstacles to the light path, which could interfere with the effect. A Poisson spot is the interference effect from parallel rays of light diffracting around a solid spherical object, creating a bright spot in the center of the shadow.

  12. On the Spot: Oceans

    OpenAIRE

    Male, Alan; Butterfield, Moira

    2000-01-01

    This a children's non-fiction, knowledge bearing picture book that is part of a Reader's Digest series called 'On the Spot'. The series deals with a range of topics related to the natural world and this one introduces its young audience to the ecosystems of the oceans. \\ud The publication was illustrated and designed by the author (Alan Male) and is technically described as a board book with interactive 'pop up' features, specifically conceived to engage children's discovery and learning thro...

  13. El spot electoral negativo

    Directory of Open Access Journals (Sweden)

    Palma Peña-Jiménez

    2011-01-01

    Full Text Available l spot político tiene durante la campaña un objetivo final inequívoco: la consecución del voto favorable. Se dirige al cuerpo electoral a través de la televisión y de Internet, y presenta, en muchos casos, un planteamiento negativo, albergando mensajes destinados a la crítica frontal contra el adversario, más que a la exposición de propuestas propias. Este artículo se centra en el análisis del spot electoral negativo, en aquellas producciones audiovisuales construidas sin más causa que la reprobación del contrincante. Se trata de vídeos que, lejos de emplearse en difundir las potencialidades de la organización y las virtudes de su candidato –además de su programa electoral–, consumen su tiempo en descalificar al oponente mediante la transmisión de mensajes, muchas veces, ad hominem. Repasamos el planteamiento negativo del spot electoral desde su primera manifestación, que en España data de 1996, año de emisión del conocido como vídeo del dóberman, sin olvidar otros ejemplos que completan el objeto de estudio.

  14. Roth spots in pernicious anaemia.

    Science.gov (United States)

    Macauley, Mavin; Nag, Satyajit

    2011-04-19

    Roth spots are white-centred retinal haemorrhages, previously thought to be pathognomonic for subacute bacterial endocarditis. A number of other conditions can be associated with Roth spots. In this case, the authors describe the association of Roth spots and pernicious anaemia. This association has been rarely described in the medical literature. Correct diagnosis and treatment with intramuscular vitamin B(12) injections resulted in complete resolution of the anaemia and Roth spots. The authors hope to alert clinicians to think of various differentials of Roth spots, and initiate prompt investigation and management.

  15. Scanned proton radiotherapy for mobile targets-the effectiveness of re-scanning in the context of different treatment planning approaches and for different motion characteristics

    NARCIS (Netherlands)

    Knopf, Antje-Christin; Hong, Theodore S; Lomax, Antony

    2011-01-01

    The most advanced delivery technique for proton radiotherapy is active spot scanning. So far, predominantly static targets have been treated with active spot scanning, since mobile targets in combination with dynamic treatment delivery can lead to interplay effects, causing inhomogeneous dose

  16. The Spotting Distribution of Wildfires

    Directory of Open Access Journals (Sweden)

    Jonathan Martin

    2016-06-01

    Full Text Available In wildfire science, spotting refers to non-local creation of new fires, due to downwind ignition of brands launched from a primary fire. Spotting is often mentioned as being one of the most difficult problems for wildfire management, because of its unpredictable nature. Since spotting is a stochastic process, it makes sense to talk about a probability distribution for spotting, which we call the spotting distribution. Given a location ahead of the fire front, we would like to know how likely is it to observe a spot fire at that location in the next few minutes. The aim of this paper is to introduce a detailed procedure to find the spotting distribution. Most prior modelling has focused on the maximum spotting distance, or on physical subprocesses. We will use mathematical modelling, which is based on detailed physical processes, to derive a spotting distribution. We discuss the use and measurement of this spotting distribution in fire spread, fire management and fire breaching. The appendix of this paper contains a comprehensive review of the relevant underlying physical sub-processes of fire plumes, launching fire brands, wind transport, falling and terminal velocity, combustion during transport, and ignition upon landing.

  17. Scanning table

    CERN Multimedia

    1960-01-01

    Before the invention of wire chambers, particles tracks were analysed on scanning tables like this one. Today, the process is electronic and much faster. Bubble chamber film - currently available - (links can be found below) was used for this analysis of the particle tracks.

  18. Scan Statistics

    CERN Document Server

    Glaz, Joseph

    2009-01-01

    Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.

  19. The Hot Spot in Superior Vena Caval Obstruction Using 99m Technetium tin Colloid

    International Nuclear Information System (INIS)

    Kim, Byung Tae; Kwon, Kye Ik; Shin, Young Tae; Cho, Kyung Sam; Lee, Myung Chul; Cho, Bo Yeon; Koh, Chang Soon

    1981-01-01

    The hot spot on liver scan was demonstrated by many authors in various conditions such as SVC obstruction, Budd-Chiari syndrome, liver abscess, hemangioma of liver, hepatic venoocclusive diseases, IVC obstruction, and tricuspid insufficiency. And the appearance of hot spot in SVC obstruction is due to unusual collateral circulation. But there was no report of this hots pot on liver scan in our country. We have recently observed one patient with SVC obstruction who shows well-defined area of increased radioactivity between right and left lobe of liver on liver scan using 99m Tc-tin colloid, and demonstrated collateral circulations with RI venography using 99m Tc-O 4 . The injection site of radiocolloid was left antecubital vein. This hot spot did not appear when the radiocolloid was injected into right leg vein. We report here this hoe spot on liver scan in SVC obstruction with review of some literatures.

  20. The Hot Spot in Superior Vena Caval Obstruction Using {sup 99m} Technetium tin Colloid

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Tae; Kwon, Kye Ik; Shin, Young Tae; Cho, Kyung Sam; Lee, Myung Chul; Cho, Bo Yeon; Koh, Chang Soon [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1981-03-15

    The hot spot on liver scan was demonstrated by many authors in various conditions such as SVC obstruction, Budd-Chiari syndrome, liver abscess, hemangioma of liver, hepatic venoocclusive diseases, IVC obstruction, and tricuspid insufficiency. And the appearance of hot spot in SVC obstruction is due to unusual collateral circulation. But there was no report of this hots pot on liver scan in our country. We have recently observed one patient with SVC obstruction who shows well-defined area of increased radioactivity between right and left lobe of liver on liver scan using {sup 99m}Tc-tin colloid, and demonstrated collateral circulations with RI venography using {sup 99m}Tc-O{sub 4}. The injection site of radiocolloid was left antecubital vein. This hot spot did not appear when the radiocolloid was injected into right leg vein. We report here this hoe spot on liver scan in SVC obstruction with review of some literatures.

  1. Emerging hot spot analysis

    DEFF Research Database (Denmark)

    Reinau, Kristian Hegner

    Traditionally, focus in the transport field, both politically and scientifically, has been on private cars and public transport. Freight transport has been a neglected topic. Recent years has seen an increased focus upon congestion as a core issue across Europe, resulting in a great need for know...... speed data for freight. Secondly, the analytical methods used, space-time cubes and emerging hot spot analysis, are also new in the freight transport field. The analysis thus estimates precisely how fast freight moves on the roads in Northern Jutland and how this has evolved over time....

  2. Scanning For Hotspots In Lamp Filaments

    Science.gov (United States)

    Powers, Charles E.; Van Sant, Tim; Leidecker, Henning

    1993-01-01

    Scanning photometer designed for use in investigation of failures of incandescent lamp filaments. Maps brightness as function of position along each filament to identify bright (hot) spots, occurring at notches and signifying incipient breaks or rewelds. Also used to measure nonuniformity in outputs of such linear devices as light-emitting diodes, and to measure diffraction patterns of lenses.

  3. Scanning holograms

    International Nuclear Information System (INIS)

    Natali, S.

    1984-01-01

    This chapter reports on the scanning of 1000 holograms taken in HOBC at CERN. Each hologram is triggered by an interaction in the chamber, the primary particles being pions at 340 GeV/c. The aim of the experiment is the study of charm production. The holograms, recorded on 50 mm film with the ''in line'' technique, can be analyzed by shining a parallel expanded laser beam through the film, obtaining immediately above it the real image of the chamber which can then be scanned and measured with a technique half way between emulsions and bubble chambers. The results indicate that holograms can be analyzed as quickly and reliably as in other visual techniques and that to them is open the same order of magnitude of large scale experiments

  4. Bone scans

    International Nuclear Information System (INIS)

    Hetherington, V.J.

    1989-01-01

    Oftentimes, in managing podiatric complaints, clinical and conventional radiographic techniques are insufficient in determining a patient's problem. This is especially true in the early stages of bone infection. Bone scanning or imaging can provide additional information in the diagnosis of the disorder. However, bone scans are not specific and must be correlated with clinical, radiographic, and laboratory evaluation. In other words, bone scanning does not provide the diagnosis but is an important bit of information aiding in the process of diagnosis. The more useful radionuclides in skeletal imaging are technetium phosphate complexes and gallium citrate. These compounds are administered intravenously and are detected at specific time intervals postinjection by a rectilinear scanner with minification is used and the entire skeleton can be imaged from head to toe. Minification allows visualization of the entire skeleton in a single image. A gamma camera can concentrate on an isolated area. However, it requires multiple views to complete the whole skeletal image. Recent advances have allowed computer augmentation of the data received from radionucleotide imaging. The purpose of this chapter is to present the current radionuclides clinically useful in podiatric patients

  5. Laser induced single spot oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jwad, Tahseen, E-mail: taj355@bham.ac.uk; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-30

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  6. Laser induced single spot oxidation of titanium

    International Nuclear Information System (INIS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-01-01

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  7. Tuning temperature and size of hot spots and hot-spot arrays.

    Science.gov (United States)

    Saïdi, Elika; Babinet, Nicolas; Lalouat, Loïc; Lesueur, Jérôme; Aigouy, Lionel; Volz, Sébastian; Labéguerie-Egéa, Jessica; Mortier, Michel

    2011-01-17

    By using scanning thermal microscopy, it is shown that nanoscale constrictions in metallic microwires deposited on an oxidized silicon substrate can be tuned in terms of temperature and confinement size. High-resolution temperature maps indeed show that submicrometer hot spots and hot-spot arrays are obtained when the SiO(2) layer thickness decreases below 100 nm. When the SiO(2) thickness becomes larger, heat is less confined in the vicinity of the constrictions and laterally spreads all along the microwire. These results are in good agreement with numerical simulations, which provide dependences between silica-layer thickness and nanodot shape and temperature. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Models of spots and flares

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1983-01-01

    Laboratory experiments in recent years have shown that there are many more ways to drive a plasma out of equilibrium than to preserve equilibrium. In that sense, it is perhaps easier to understand why flares should occur in a stellar atmosphere than why a long-lived feature such as a dark spot should persist. The author summarizes work on the equilibrium structure of cool spots in the sun and stars. Since spots involve complex interactions between convective flows and magnetic fields, he needs to refer to observations for help in identifying the dominant processes which should enter into the modelling. His summary therefore begins by discussing certain relevant properties of spots in the solar atmosphere. The next sections deal with the magnetic fields in spots, the stability of spots, spot cooling and missing flux. The author concludes that spots should be viewed not simply as cool areas, but rather as engines which do the work of converting the energy of convective flows into flare-compatible form. (Auth.)

  9. Black-spot poison ivy.

    Science.gov (United States)

    Schram, Sarah E; Willey, Andrea; Lee, Peter K; Bohjanen, Kimberly A; Warshaw, Erin M

    2008-01-01

    In black-spot poison ivy dermatitis, a black lacquerlike substance forms on the skin when poison ivy resin is exposed to air. Although the Toxicodendron group of plants is estimated to be the most common cause of allergic contact dermatitis in the United States, black-spot poison ivy dermatitis is relatively rare.

  10. Rocky Mountain spotted fever, Colombia.

    Science.gov (United States)

    Hidalgo, Marylin; Orejuela, Leonora; Fuya, Patricia; Carrillo, Pilar; Hernandez, Jorge; Parra, Edgar; Keng, Colette; Small, Melissa; Olano, Juan P; Bouyer, Donald; Castaneda, Elizabeth; Walker, David; Valbuena, Gustavo

    2007-07-01

    We investigated 2 fatal cases of Rocky Mountain spotted fever that occurred in 2003 and 2004 near the same locality in Colombia where the disease was first reported in the 1930s. A retrospective serosurvey of febrile patients showed that > 21% of the serum samples had antibodies aaainst spotted fever group rickettsiae.

  11. Advances in spot curing technology

    International Nuclear Information System (INIS)

    Burga, R.

    1999-01-01

    A brief review of spot curing technology was presented. The process which a spot of energy of a specific wavelength bandwidth and irradiance is used to cause a coating, encapsulant or adhesive to change from a liquid to a solid state

  12. Spotting psychopaths using technology.

    Science.gov (United States)

    Hulbert, Sarah; Adeli, Hojjat

    2015-01-01

    For the past three and a half decades, the Psychopathy Checklist-Revised (PCL-R) and the self-report Psychopathic Personality Inventory-Revised (PPI-R) have been the standard measures for the diagnosis of psychopathy. Technological approaches can enhance these diagnostic methodologies. The purpose of this paper is to present a state-of-the-art review of various technological approaches for spotting psychopathy, such as electroencephalogram (EEG), magnetic resonance imaging (MRI), functional MRI (fMRI), transcranial magnetic stimulation (TMS), and other measures. Results of EEG event-related potential (ERP) experiments support the theory that impaired amygdala function may be responsible for abnormal fear processing in psychopathy, which can ultimately manifest as psychopathic traits, as outlined by the PCL-R or PPI-R. Imaging studies, in general, point to reduced fear processing capabilities in psychopathic individuals. While the human element, introduced through researcher/participant interactions, can be argued as unequivocally necessary for diagnosis, these purely objective technological approaches have proven to be useful in conjunction with the subjective interviewing and questionnaire methods for differentiating psychopaths from non-psychopaths. Furthermore, these technologies are more robust than behavioral measures, which have been shown to fail.

  13. A positive 111in-pentetreotide scan in a patient with a pancreatic polypeptide secreting tumour

    International Nuclear Information System (INIS)

    Stanton, K.; Cehic, G.

    2003-01-01

    Full text: A 55-year-old male presented to our department with a known polypeptide secreting pancreatic tumour. An 111 In-pentetreotide scan (OctreoScan) was performed to determine whether the tumour expressed somatostatin receptors (SR) and thereby aid in therapy planning. 120 MBq 111 In-pentetreotide was administered intravenously. Images were acquired at 4 and 30 hours. Whole body images were acquired with spot views and tomography of the liver at 30 hours. Images showed intense uptake of the tracer in the lobular midline pancreatic mass. There was also uptake in multiple liver metastases. 111 In-pentetreotide is a synthetic somatostatin analogue and its uptake demonstrates the presence of SR on tumour cells, especially those of a neuro-endocrine nature. A 123 I Metaiodobenzylguanidine (MIBG) scan was also performed to determine whether the more widely available MIBG therapy would be appropriate for this patient. This scan was negative. The patient has received 3 cycles of chemotherapy with Streptozotocin and 5-fluorouracil. He has had a good partial response to therapy as demonstrated on CT scan. The patient is currently clinically well, his symptoms have resolved and weight stabilised. Good biochemical response to chemotherapy is indicated by halved pancreatic peptide levels. To date chemotherapy has been the mainstay of therapy for neuroendocrine tumours. Radioimmunotherapy (targeted to SR positive tumours) is currently being investigated as a therapy alternative and may be a future treatment option. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  14. Spot Welding of Honeycomb Structures

    Science.gov (United States)

    Cohal, V.

    2017-08-01

    Honeycomb structures are used to prepare meals water jet cutting machines for textile. These honeycomb structures are made of stainless steel sheet thickness of 0.1-0.2 mm. Corrugated sheet metal strips are between two gears with special tooth profile. Hexagonal cells for obtaining these strips are welded points between them. Spot welding device is three electrodes in the upper part, which carries three welding points across the width of the strip of corrugated sheet metal. Spot welding device filled with press and advance mechanisms. The paper presents the values of the regime for spot welding.

  15. Scanning the periphery.

    Science.gov (United States)

    Day, George S; Schoemaker, Paul J H

    2005-11-01

    Companies often face new rivals, technologies, regulations, and other environmental changes that seem to come out of left field. How can they see these changes sooner and capitalize on them? Such changes often begin as weak signals on what the authors call the periphery, or the blurry zone at the edge of an organization's vision. As with human peripheral vision, these signals are difficult to see and interpret but can be vital to success or survival. Unfortunately, most companies lack a systematic method for determining where on the periphery they should be looking, how to interpret the weak signals they see, and how to allocate limited scanning resources. This article provides such a method-a question-based framework for helping companies scan the periphery more efficiently and effectively. The framework divides questions into three categories: learning from the past (What have been our past blind spots? What instructive analogies do other industries offer? Who in the industry is skilled at picking up weak signals and acting on them?); evaluating the present (What important signals are we rationalizing away? What are our mavericks, outliers, complainers, and defectors telling us? What are our peripheral customers and competitors really thinking?); and envisioning the future (What future surprises could really hurt or help us? What emerging technologies could change the game? Is there an unthinkable scenario that might disrupt our business?). Answering these questions is a good first step toward anticipating problems or opportunities that may appear on the business horizon. The article concludes with a self-test that companies can use to assess their need and capability for peripheral vision.

  16. NGA/Insulin receptor scanning

    International Nuclear Information System (INIS)

    Kurtaran, A.; Virgolini, I.

    1994-01-01

    Tc-99m-galactosyl-neoglycoalbumin (NGA) is one of the first receptor-based radiopharmaceuticals which specifically recognizes the hepatic binding protein (HBP) located on the surface of the hepatocytes. The exclusive interactin of NGA with HBP provided the basis for a kinetic model for the evaluation hepatocellular function. During the last years we have used NGA in more than 300 patients with various liver diseases including liver cirrhosis (Stages Child A to Child C), viral hepatitis, and carcinomas. In these studies, the calculated HBP densities, after i.v.-injection of Tc-99m-NGA, significantly correlated with the clinical course of the diseases. Furthermore, similar to conventional Tc-colloid, NGA provided excellent demonstration of 'cold spots' for hepatic masses. In a further approach we used another hepatocyte receptor-seeking radioligand, I-123-Tyr-A14- insulin, and found, that its in vitro-binding to hepatocellular carcinomas is greatly enhanced over normal hepatic tissue. On this basis, we developed a double-tracer method using NGA and insulin in a single study. Thus, areas of 'cold spots' identifying hepatic masses on NGA scans, take up I-123-Tyr-A14-insulin immediately after i.v.-injection. This was true for hepatocellular hepatomas, but not for adenocarcinomas. In conclusion, NGA/insulin receptor scanning could be a novel and save method for the demonstration of hepatocellular hepatomas. (author)

  17. NGA/Insulin receptor scanning

    Energy Technology Data Exchange (ETDEWEB)

    Kurtaran, A; Virgolini, I [Vienna Univ. (Austria). Abt. fuer Nuklearmedizin; Angelberger, P [Ludwig Boltzmann-Institut fuer Nuklearmedizin, Vienna (Austria)

    1994-10-01

    Tc-99m-galactosyl-neoglycoalbumin (NGA) is one of the first receptor-based radiopharmaceuticals which specifically recognizes the hepatic binding protein (HBP) located on the surface of the hepatocytes. The exclusive interactin of NGA with HBP provided the basis for a kinetic model for the evaluation hepatocellular function. During the last years we have used NGA in more than 300 patients with various liver diseases including liver cirrhosis (Stages Child A to Child C), viral hepatitis, and carcinomas. In these studies, the calculated HBP densities, after i.v.-injection of Tc-99m-NGA, significantly correlated with the clinical course of the diseases. Furthermore, similar to conventional Tc-colloid, NGA provided excellent demonstration of `cold spots` for hepatic masses. In a further approach we used another hepatocyte receptor-seeking radioligand, I-123-Tyr-A14- insulin, and found, that its in vitro-binding to hepatocellular carcinomas is greatly enhanced over normal hepatic tissue. On this basis, we developed a double-tracer method using NGA and insulin in a single study. Thus, areas of `cold spots` identifying hepatic masses on NGA scans, take up I-123-Tyr-A14-insulin immediately after i.v.-injection. This was true for hepatocellular hepatomas, but not for adenocarcinomas. In conclusion, NGA/insulin receptor scanning could be a novel and save method for the demonstration of hepatocellular hepatomas. (author).

  18. Head CT scan

    Science.gov (United States)

    ... scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... head size in children Changes in thinking or behavior Fainting Headache, when you have certain other signs ...

  19. Numerical optimisation in spot detector design

    NARCIS (Netherlands)

    van der Heijden, Ferdinand; Apperloo, W.; Spreeuwers, Lieuwe Jan

    1997-01-01

    Spots are image details resulting from objects, the projections of which are so small that the inner structure of these objects cannot be resolved from their image. Spot detectors are image operators aiming at the detection and localisation of spots in the image. Most spot detectors can be tuned

  20. Managing emerging threats to spotted owls

    Science.gov (United States)

    Ho Yi Wan; Joseph L. Ganey; Christina D. Vojta; Samuel A. Cushman

    2018-01-01

    The 3 spotted owl (Strix occidentalis) subspecies in North America (i.e., northern spotted owl [S. o. caurina], California spotted owl [S. o. occidentalis], Mexican spotted owl [S. o. lucida]) have all experienced population declines over the past century due to habitat loss and fragmentation from logging. Now, the emerging influences of climate change, high-severity...

  1. 9 CFR 149.4 - Spot audit.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Spot audit. 149.4 Section 149.4... LIVESTOCK IMPROVEMENT VOLUNTARY TRICHINAE CERTIFICATION PROGRAM § 149.4 Spot audit. (a) In addition to regularly scheduled site audits, certified production sites will be subject to spot audits. (1) Random spot...

  2. On the origin of delta spots

    International Nuclear Information System (INIS)

    Tang, F.

    1983-01-01

    Mount Wilson sunspot drawings from 1966 through 1980 were used in conjunction with Hα filtergrams from Big Bear Solar Observatory to examine the origin of delta spots, spots with bipolar umbrae within one penumbra. Of the six cases we studied, five were formed by the union of non-paired spots. They are either shoved into one another by two neighboring growing bipoles or by a new spot born piggy-back style on an existing spot of opposite polarity. Proper motions of the growing spots take on curvilinear paths around one another to avoid a collision. This is the shear motion observed in delta spots (Tanaka, 1979). In the remaining case, the delta spot was formed by spots that emerged as a pair. Our findings indicate no intrinsic differences in the formation or the behavior between delta spots of normal magnetic configuration. (orig.)

  3. En-face Flying Spot OCT/Ophthalmoscope

    Science.gov (United States)

    Rosen, Richard B.; Garcia, Patricia; Podoleanu, Adrian Gh.; Cucu, Radu; Dobre, George; Trifanov, Irina; van Velthoven, Mirjam E. J.; de Smet, Marc D.; Rogers, John A.; Hathaway, Mark; Pedro, Justin; Weitz, Rishard

    This is a review of a technique for high-resolution imaging of the eye that allows multiple sample sectioning perspectives with different axial resolutions. The technique involves the flying spot approach employed in confocal scanning laser ophthalmoscopy which is extended to OCT imaging via time domain en face fast lateral scanning. The ability of imaging with multiple axial resolutions stimulated the development of the dual en face OCT-confocal imaging technology. Dual imaging also allows various other imaging combinations, such as OCT with confocal microscopy for imaging the eye anterior segment and OCT with fluorescence angiography imaging.

  4. Scanning electron microscopy of superficial white onychomycosis*

    Science.gov (United States)

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  5. Poisson's spot and Gouy phase

    Science.gov (United States)

    da Paz, I. G.; Soldati, Rodolfo; Cabral, L. A.; de Oliveira, J. G. G.; Sampaio, Marcos

    2016-12-01

    Recently there have been experimental results on Poisson spot matter-wave interferometry followed by theoretical models describing the relative importance of the wave and particle behaviors for the phenomenon. We propose an analytical theoretical model for Poisson's spot with matter waves based on the Babinet principle, in which we use the results for free propagation and single-slit diffraction. We take into account effects of loss of coherence and finite detection area using the propagator for a quantum particle interacting with an environment. We observe that the matter-wave Gouy phase plays a role in the existence of the central peak and thus corroborates the predominantly wavelike character of the Poisson's spot. Our model shows remarkable agreement with the experimental data for deuterium (D2) molecules.

  6. Laser based spot weld characterization

    Science.gov (United States)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  7. Laser scanning of experimental solar cells

    Science.gov (United States)

    Plunkett, B. C.; Lasswell, P. G.

    1980-01-01

    A description is presented of a laser scanning instrument which makes it possible to display and measure the spatial response of a solar cell. Examples are presented to illustrate the use of generated micrographs in the isolation of flaws and features of the cell. The laser scanner system uses a 4 mW, CW helium-neon laser, operating a wavelength of 0.633 micrometers. The beam is deflected by two mirror galvanometers arranged to scan in orthogonal directions. After being focused on the solar cell by the beam focusing lens, the moving light spot raster scans the specimen. The current output of the photovoltaic device under test, as a function of the scan dot position, can be displayed in several modes. The laser scanner has proved to be a very useful diagnostic tool in optimizing the process design of transparent metal film photovoltaic devices on Zn3P2, a relatively new photovoltaic material.

  8. Multicolor Scanning Laser Imaging in Diabetic Retinopathy.

    Science.gov (United States)

    Ahmad, Mohammad S Z; Carrim, Zia Iqbal

    2017-11-01

    Diabetic retinopathy is a common cause of blindness in individuals younger than 60 years. Screening for retinopathy is undertaken using conventional color fundus photography and relies on the identification of hemorrhages, vascular abnormalities, exudates, and cotton-wool spots. These can sometimes be difficult to identify. Multicolor scanning laser imaging, a new imaging modality, may have a role in improving screening outcomes, as well as facilitating treatment decisions. Observational case series comprising two patients with known diabetes who were referred for further examination after color fundus photography revealed abnormal findings. Multicolor scanning laser imaging was undertaken. Features of retinal disease from each modality were compared. Multicolor scanning laser imaging provides superior visualization of retinal anatomy and pathology, thereby facilitating risk stratification and treatment decisions. Multicolor scanning laser imaging is a novel imaging technique offering the potential for improving the reliability of screening for diabetic retinopathy. Validation studies are warranted.

  9. Fly pollination of Gorteria diffusa (Asteraceae), and a possible mimetic function for dark spots on the capitulum

    International Nuclear Information System (INIS)

    Johnson, S.D.; Midgley, J.J.

    1997-01-01

    We investigated the functional significance of raised black spots on the ray florets of Gorteria diffusa (Asteraceae) in South Africa. Field observations showed that G. diffusa is pollinated by a small bee-fly, Megapalpus nitidus (Bombyliidae). which is strikingly similar to the raised spots that occur on some of the ray florets. Removal of the spots resulted in a significant decrease in the rate of fly visits to capitula, but did not significantly affect seed set. Replacement of the spots with simple ink spots also significantly reduced the rate of pollinator visits, suggesting that flies respond to details in the structure of the spots. Investigations using scanning electron microscopy showed that the spots of G. diffusa consist of a complex of different cell types. Differences in epidermal sculpturing may partly explain the UV reflectance pattern of these spots, which is similar to that of the flies. Mate flies are strongly attracted to the spots, as well as to other flies sitting in the capitula, although female flies also visit the capitula. We conclude that the spots of G. diffusa mimic resting flies, thereby eliciting mate-seeking and aggregation responses in fly pollinators. Similar dark spots have evolved in unrelated South African Gazania. Dimorphotheca, and Pelargonium species pollinated by bee-flies

  10. Is this Red Spot the Blue Spot (locus ceruleum)?

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Won Sick; Lee, Yu Kyung; Lee, Min Kyung; Hwang, Kyung Hoon [Gachon University Gil Hospital, Incheon (Korea, Republic of)

    2010-06-15

    The authors report brain images of 18F-FDG-PET in a case of schizophrenia. The images showed strikingly increased bilateral uptake in the locus ceruleum. The locus ceruleum is called the blue spot and known to be a center of the norepinephrinergic system.

  11. Is this Red Spot the Blue Spot (locus ceruleum)?

    International Nuclear Information System (INIS)

    Choe, Won Sick; Lee, Yu Kyung; Lee, Min Kyung; Hwang, Kyung Hoon

    2010-01-01

    The authors report brain images of 18F-FDG-PET in a case of schizophrenia. The images showed strikingly increased bilateral uptake in the locus ceruleum. The locus ceruleum is called the blue spot and known to be a center of the norepinephrinergic system.

  12. Statistical hot spot analysis of reactor cores

    International Nuclear Information System (INIS)

    Schaefer, H.

    1974-05-01

    This report is an introduction into statistical hot spot analysis. After the definition of the term 'hot spot' a statistical analysis is outlined. The mathematical method is presented, especially the formula concerning the probability of no hot spots in a reactor core is evaluated. A discussion with the boundary conditions of a statistical hot spot analysis is given (technological limits, nominal situation, uncertainties). The application of the hot spot analysis to the linear power of pellets and the temperature rise in cooling channels is demonstrated with respect to the test zone of KNK II. Basic values, such as probability of no hot spots, hot spot potential, expected hot spot diagram and cumulative distribution function of hot spots, are discussed. It is shown, that the risk of hot channels can be dispersed equally over all subassemblies by an adequate choice of the nominal temperature distribution in the core

  13. Long-term Spot-Coverage Variations of 13 BY Dra G-K Dwarfs

    Science.gov (United States)

    Alekseev, I. Yu.; Kozhevnikova, A. V.

    2018-06-01

    The results of spot-coverage modeling for 13 active G-K dwarf stars based on many-year photometric observations are presented. The results of UBV RI observations of eight stars performed at the Crimean Astrophysical Observatory were used together with data from the literature in this analysis. The spot-coverage parameters for 13 selected BY Dra active red dwarfs have been redetermined to improve the zonal spot-coverage model for the stellar photospheres, which currently allows for the presence of two active longitudes. Time variations of the spot-activity characteristics of these systems were analyzed with the aim of searching for possible cyclic variations. All the stars, with the exception of OU Gem and BE Cet, show fairly strong correlations between variations in the spot latitudes and spot areas, with absolute values of the correlation coefficients, R(, S), ranging from 0.38 to 0.92. For five stars, an anti-correlation between the mean latitude and area of the spots was found ( R(, S) from-0.24 to-0.73). This behavior may reflect the drift of spots toward the equator in the course of their development. Eight stars feature positive correlations, i.e. the spots drift towards the pole as their areas increase. Nine stars demonstrate activity cycles, which are reflected in photometric variations as well as variations of the spot areas and mean latitudes. The periods of the latitude drift of the spots are found for five stars; the magnitudes of the spot-latitude drift rates are lower than the corresponding value for sunspots by a factor of 1.5-3.

  14. Rocky Mountain spotted fever, Panama.

    Science.gov (United States)

    Estripeaut, Dora; Aramburú, María Gabriela; Sáez-Llorens, Xavier; Thompson, Herbert A; Dasch, Gregory A; Paddock, Christopher D; Zaki, Sherif; Eremeeva, Marina E

    2007-11-01

    We describe a fatal pediatric case of Rocky Mountain spotted fever in Panama, the first, to our knowledge, since the 1950s. Diagnosis was established by immunohistochemistry, PCR, and isolation of Rickettsia rickettsii from postmortem tissues. Molecular typing demonstrated strong relatedness of the isolate to strains of R. rickettsii from Central and South America.

  15. Brain PET scan

    Science.gov (United States)

    ... results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  16. A feature-based approach to modeling protein-protein interaction hot spots.

    Science.gov (United States)

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-05-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to pi-related interactions, especially pi . . . pi interactions.

  17. Microstructure Evolution during Friction Stir Spot Welding of TRIP Steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Pantleon, Karen; Somers, Marcel A. J.

    2010-01-01

    In this study, the feasibility of friction stir spot welding of TRIP steel is investigated. In addition to manufacturing successful welds, the present study aims at a fundamental understanding of the mechanisms occurring at the (sub)micron scale during friction stir spot welding. As one of the ma...... electron microscopy, and electron backscatter diffraction. Microhardness measurements and lap-shear tensile tests completed the investigations of the welded samples and allow evaluation of the quality of the welds.......In this study, the feasibility of friction stir spot welding of TRIP steel is investigated. In addition to manufacturing successful welds, the present study aims at a fundamental understanding of the mechanisms occurring at the (sub)micron scale during friction stir spot welding. As one of the main...... parameters to control friction stir welding, the influence of the rotational speed of the tool was investigated. Three different rotational speeds (500 rpm, 1000 rpm and 1500 rpm, respectively) were applied. The microstructure of the welded samples was investigated with reflected light microscopy, scanning...

  18. Simulations of Electron Transport in Laser Hot Spots

    International Nuclear Information System (INIS)

    Brunner, S.; Valeo, E.

    2001-01-01

    Simulations of electron transport are carried out by solving the Fokker-Planck equation in the diffusive approximation. The system of a single laser hot spot, with open boundary conditions, is systematically studied by performing a scan over a wide range of the two relevant parameters: (1) Ratio of the stopping length over the width of the hot spot. (2) Relative importance of the heating through inverse Bremsstrahlung compared to the thermalization through self-collisions. As for uniform illumination [J.P. Matte et al., Plasma Phys. Controlled Fusion 30 (1988) 1665], the bulk of the velocity distribution functions (VDFs) present a super-Gaussian dependence. However, as a result of spatial transport, the tails are observed to be well represented by a Maxwellian. A similar dependence of the distributions is also found for multiple hot spot systems. For its relevance with respect to stimulated Raman scattering, the linear Landau damping of the electron plasma wave is estimated for such VD Fs. Finally, the nonlinear Fokker-Planck simulations of the single laser hot spot system are also compared to the results obtained with the linear non-local hydrodynamic approach [A.V. Brantov et al., Phys. Plasmas 5 (1998) 2742], thus providing a quantitative limit to the latter method: The hydrodynamic approach presents more than 10% inaccuracy in the presence of temperature variations of the order delta T/T greater than or equal to 1%, and similar levels of deformation of the Gaussian shape of the Maxwellian background

  19. Morphology of the leather defect light flecks and spots.

    Science.gov (United States)

    Nafstad, O; Wisløff, H; Grønstøl, H

    2001-01-01

    The skin histology and the scanning electron microscope morphology of the hide defect light flecks and spots after tanning were studied in 11 steers infested with biting lice (Damalinia bovis). Nine steers from herds free of lice were used as controls. Skin biopsies from 6 of the animals in the lice infested group showed mild to moderate hyperkeratosis and moderate perivascular to diffuse dermatitis with infiltration of mainly mononuclear cells and some eosinophilic granulocytes. The steers were slaughtered at an age of 18 to 23 months. Light flecks and spots occurred on all examined hides from the infested group after tanning. No examined hides from the control group demonstrated similar damage. Both light microscopic examination of sections of tanned hide with light flecks and spots and scanning electron microscopy of the same defects showed superficial grain loss and craters with a irregular fibre base encircled by smooth and intact grain. The association between louse infestation at an early age and damage of hides following slaughter 6 to 15 months later, suggested that louse infestations lead to a prolonged or lifelong weakening in the dermis. This weakening may cause superficial grain loss during the tanning process.

  20. Morphology of the Leather Defect Light Flecks and Spots

    Directory of Open Access Journals (Sweden)

    Grønstøl H

    2001-03-01

    Full Text Available The skin histology and the scanning electron microscope morphology of the hide defect light flecks and spots after tanning were studied in 11 steers infested with biting lice (Damalinia bovis. Nine steers from herds free of lice were used as controls. Skin biopsies from 6 of the animals in the lice infested group showed mild to moderate hyperkeratosis and moderate perivascular to diffuse dermatitis with infiltration of mainly mononuclear cells and some eosinophilic granulocytes. The steers were slaughtered at an age of 18 to 23 months. Light flecks and spots occurred on all examined hides from the infested group after tanning. No examined hides from the control group demonstrated similar damage. Both light microscopic examination of sections of tanned hide with light flecks and spots and scanning electron microscopy of the same defects showed superficial grain loss and craters with a irregular fibre base encircled by smooth and intact grain. The association between louse infestation at an early age and damage of hides following slaughter 6 to 15 months later, suggested that louse infestations lead to a prolonged or lifelong weakening in the dermis. This weakening may cause superficial grain loss during the tanning process.

  1. Heart PET scan

    Science.gov (United States)

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  2. The spot market and the spot price: applicability and limitations

    International Nuclear Information System (INIS)

    White, G. Jr.

    1987-01-01

    The subject of spot prices and their relationship to long-term contracting is addressed. The author is associated with Nuexco, which originally was called the Nuclear Exchange Corporation. They use the term Exchange Value which originated in the idea that Nuexco operated an exchange 'bank' - those with too much uranium could 'bank it', those with short-term needs could borrow from the 'bank'. If the borrower repaid slightly more or less the difference was settled using the 'exchange value'. This became used for longer-term transactions and now settling the monthly value is an important part of Nuexco's activities. The exact nature of the Exchange Value is defined. Now more and more buyers are insisting on spot market related pricing even where this is not meaningfully related to uranium production costs. (U.K.)

  3. In anticipation of cycle 24

    Science.gov (United States)

    Kunches, Joseph; van der Linden, Ronald; Lundstedt, Henrik

    Anxious eyes are watching for the beginnings of new solar cycle 24. The watchers are many; scientists, engineers, academics, forecasters, end users. Their needs however vary, from the attraction of a better understanding of our nearest star, to how its increase in luminosity will affect particular aspects such as satellite orbits or the strength of the episodic storms that are most likely to occur during the height of the cycle. The first sign, however fleeting, occurred in January, 2008, when an ephemeral new cycle spot was numbered by NOAA as 10981. It was gone quickly but did mark the possible beginning of the new cycle. There has been great debate among solar physicists on how strong cycle 24 will be; and when it will start, reach maximum, and decline. This talk will give the status of the efforts to predict cycle 24, and the most recent projections.

  4. Laser Spot Detection Based on Reaction Diffusion

    OpenAIRE

    Alejandro Vázquez-Otero; Danila Khikhlukha; J. M. Solano-Altamirano; Raquel Dormido; Natividad Duro

    2016-01-01

    Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD) system as the main computational framework for robustly finding laser spot centers. The method presente...

  5. Phantom-based standardization of CT angiography images for spot sign detection.

    Science.gov (United States)

    Morotti, Andrea; Romero, Javier M; Jessel, Michael J; Hernandez, Andrew M; Vashkevich, Anastasia; Schwab, Kristin; Burns, Joseph D; Shah, Qaisar A; Bergman, Thomas A; Suri, M Fareed K; Ezzeddine, Mustapha; Kirmani, Jawad F; Agarwal, Sachin; Shapshak, Angela Hays; Messe, Steven R; Venkatasubramanian, Chitra; Palmieri, Katherine; Lewandowski, Christopher; Chang, Tiffany R; Chang, Ira; Rose, David Z; Smith, Wade; Hsu, Chung Y; Liu, Chun-Lin; Lien, Li-Ming; Hsiao, Chen-Yu; Iwama, Toru; Afzal, Mohammad Rauf; Cassarly, Christy; Greenberg, Steven M; Martin, Renee' Hebert; Qureshi, Adnan I; Rosand, Jonathan; Boone, John M; Goldstein, Joshua N

    2017-09-01

    The CT angiography (CTA) spot sign is a strong predictor of hematoma expansion in intracerebral hemorrhage (ICH). However, CTA parameters vary widely across centers and may negatively impact spot sign accuracy in predicting ICH expansion. We developed a CT iodine calibration phantom that was scanned at different institutions in a large multicenter ICH clinical trial to determine the effect of image standardization on spot sign detection and performance. A custom phantom containing known concentrations of iodine was designed and scanned using the stroke CT protocol at each institution. Custom software was developed to read the CT volume datasets and calculate the Hounsfield unit as a function of iodine concentration for each phantom scan. CTA images obtained within 8 h from symptom onset were analyzed by two trained readers comparing the calibrated vs. uncalibrated density cutoffs for spot sign identification. ICH expansion was defined as hematoma volume growth >33%. A total of 90 subjects qualified for the study, of whom 17/83 (20.5%) experienced ICH expansion. The number of spot sign positive scans was higher in the calibrated analysis (67.8 vs 38.9% p spot signs identified in the non-calibrated analysis remained positive after calibration. Calibrated CTA images had higher sensitivity for ICH expansion (76 vs 52%) but inferior specificity (35 vs 63%) compared with uncalibrated images. Normalization of CTA images using phantom data is a feasible strategy to obtain consistent image quantification for spot sign analysis across different sites and may improve sensitivity for identification of ICH expansion.

  6. Phantom-based standardization of CT angiography images for spot sign detection

    International Nuclear Information System (INIS)

    Morotti, Andrea; Rosand, Jonathan; Romero, Javier M.; Jessel, Michael J.; Vashkevich, Anastasia; Schwab, Kristin; Greenberg, Steven M.; Hernandez, Andrew M.; Boone, John M.; Burns, Joseph D.; Shah, Qaisar A.; Bergman, Thomas A.; Suri, M.F.K.; Ezzeddine, Mustapha; Kirmani, Jawad F.; Agarwal, Sachin; Hays Shapshak, Angela; Messe, Steven R.; Venkatasubramanian, Chitra; Palmieri, Katherine; Lewandowski, Christopher; Chang, Tiffany R.; Chang, Ira; Rose, David Z.; Smith, Wade; Hsu, Chung Y.; Liu, Chun-Lin; Lien, Li-Ming; Hsiao, Chen-Yu; Iwama, Toru; Afzal, Mohammad Rauf; Qureshi, Adnan I.; Cassarly, Christy; Hebert Martin, Renee; Goldstein, Joshua N.

    2017-01-01

    The CT angiography (CTA) spot sign is a strong predictor of hematoma expansion in intracerebral hemorrhage (ICH). However, CTA parameters vary widely across centers and may negatively impact spot sign accuracy in predicting ICH expansion. We developed a CT iodine calibration phantom that was scanned at different institutions in a large multicenter ICH clinical trial to determine the effect of image standardization on spot sign detection and performance. A custom phantom containing known concentrations of iodine was designed and scanned using the stroke CT protocol at each institution. Custom software was developed to read the CT volume datasets and calculate the Hounsfield unit as a function of iodine concentration for each phantom scan. CTA images obtained within 8 h from symptom onset were analyzed by two trained readers comparing the calibrated vs. uncalibrated density cutoffs for spot sign identification. ICH expansion was defined as hematoma volume growth >33%. A total of 90 subjects qualified for the study, of whom 17/83 (20.5%) experienced ICH expansion. The number of spot sign positive scans was higher in the calibrated analysis (67.8 vs 38.9% p < 0.001). All spot signs identified in the non-calibrated analysis remained positive after calibration. Calibrated CTA images had higher sensitivity for ICH expansion (76 vs 52%) but inferior specificity (35 vs 63%) compared with uncalibrated images. Normalization of CTA images using phantom data is a feasible strategy to obtain consistent image quantification for spot sign analysis across different sites and may improve sensitivity for identification of ICH expansion. (orig.)

  7. Phantom-based standardization of CT angiography images for spot sign detection

    Energy Technology Data Exchange (ETDEWEB)

    Morotti, Andrea; Rosand, Jonathan [Harvard Medical School, Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA (United States); Romero, Javier M. [Harvard Medical School, Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, Neuroradiology Service, Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Jessel, Michael J.; Vashkevich, Anastasia; Schwab, Kristin; Greenberg, Steven M. [Harvard Medical School, J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA (United States); Hernandez, Andrew M.; Boone, John M. [University of California Davis, Department of Radiology, Sacramento, CA (United States); Burns, Joseph D. [Lahey Hospital and Medical Center, Department of Neurology, Burlington, MA (United States); Shah, Qaisar A. [Abington Memorial Hospital, Abington, PA (United States); Bergman, Thomas A. [Hennepin County Medical Center, Minneapolis, MN (United States); Suri, M.F.K. [St. Cloud Hospital, St. Cloud, MN (United States); Ezzeddine, Mustapha [University of Minnesota, Minneapolis, MN (United States); Kirmani, Jawad F. [JFK Medical Center, Stroke and Neurovascular Center, Edison, NJ (United States); Agarwal, Sachin [Columbia University Medical Center, New York, NY (United States); Hays Shapshak, Angela [University of Alabama at Birmingham, Birmingham, AL (United States); Messe, Steven R. [University of Pennsylvania, Philadelphia, PA (United States); Venkatasubramanian, Chitra [Stanford University, Stanford, CA (United States); Palmieri, Katherine [The University of Kansas Health System, Kansas City, KS (United States); Lewandowski, Christopher [Henry Ford Hospital, Detroit, MI (United States); Chang, Tiffany R. [University of Texas Medical School, Houston, TX (United States); Chang, Ira [Colorado Neurological Institute, Swedish Medical Center, Englewood, CO (United States); Rose, David Z. [Tampa General Hospital, University of South Florida College of Medicine, Tampa, FL (United States); Smith, Wade [UCSF Medical Center, San Francisco, CA (United States); Hsu, Chung Y.; Liu, Chun-Lin [China Medical University Hospital, Taichung (China); Lien, Li-Ming; Hsiao, Chen-Yu [Shin Kong Wu Ho-Su Memorial Hospital, Taipei (China); Iwama, Toru [Gifu University Hospital, Gifu (Japan); Afzal, Mohammad Rauf; Qureshi, Adnan I. [University of Minnesota, Zeenat Qureshi Stroke Research Center, Minneapolis, MN (United States); Cassarly, Christy; Hebert Martin, Renee [Medical University of South Carolina, Department of Public Health Sciences, Charleston, SC (United States); Goldstein, Joshua N. [Harvard Medical School, Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA (United States); Collaboration: ATACH-II and NETT Investigators

    2017-09-15

    The CT angiography (CTA) spot sign is a strong predictor of hematoma expansion in intracerebral hemorrhage (ICH). However, CTA parameters vary widely across centers and may negatively impact spot sign accuracy in predicting ICH expansion. We developed a CT iodine calibration phantom that was scanned at different institutions in a large multicenter ICH clinical trial to determine the effect of image standardization on spot sign detection and performance. A custom phantom containing known concentrations of iodine was designed and scanned using the stroke CT protocol at each institution. Custom software was developed to read the CT volume datasets and calculate the Hounsfield unit as a function of iodine concentration for each phantom scan. CTA images obtained within 8 h from symptom onset were analyzed by two trained readers comparing the calibrated vs. uncalibrated density cutoffs for spot sign identification. ICH expansion was defined as hematoma volume growth >33%. A total of 90 subjects qualified for the study, of whom 17/83 (20.5%) experienced ICH expansion. The number of spot sign positive scans was higher in the calibrated analysis (67.8 vs 38.9% p < 0.001). All spot signs identified in the non-calibrated analysis remained positive after calibration. Calibrated CTA images had higher sensitivity for ICH expansion (76 vs 52%) but inferior specificity (35 vs 63%) compared with uncalibrated images. Normalization of CTA images using phantom data is a feasible strategy to obtain consistent image quantification for spot sign analysis across different sites and may improve sensitivity for identification of ICH expansion. (orig.)

  8. 7 CFR 1421.11 - Spot checks.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Spot checks. 1421.11 Section 1421.11 Agriculture... ASSISTANCE LOANS AND LOAN DEFICIENCY PAYMENTS FOR 2008 THROUGH 2012 General § 1421.11 Spot checks. (a) CCC... CCC access to the farm and storage facility as necessary to conduct collateral inspections, or “spot...

  9. 21 CFR 886.1435 - Maxwell spot.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Maxwell spot. 886.1435 Section 886.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1435 Maxwell spot. (a) Identification. A Maxwell spot is an AC...

  10. Evaluation of the Weldability in Spot Welding using Ultrasonic Technique

    International Nuclear Information System (INIS)

    Hong, Min Sung; Kim, No Hyu

    2005-01-01

    Spot welding is the most widely used in automotive and aerospace industries. The quality of weld depends upon the size of nugget between the overlapped steel plates. Recently, the thickness of the steel plates is much thinner and hence, it introduces the smaller size of nugget. Therefore, it is necessary not only to develop the criterion to evaluate the quality of weld but also to obtain the optimal welding conditions for the better performance. In this paper, the steel plates, 0.5 mm through 1.5 mm thickness, have been spot welded at different welding conditions and the nugget sizes are examined by ultrasonic technique (C-scan type). The relationships between the nugget sizes and the weldability have been investigated. The result of ultrasonic technique shows the good agreement with that of the tensile test

  11. Evaluation of the Weldability in Spot Welding using Ultrasonic Technique

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min Sung [Ajou University, Suwon (Korea, Republic of); Kim, No Hyu [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2005-06-15

    Spot welding is the most widely used in automotive and aerospace industries. The quality of weld depends upon the size of nugget between the overlapped steel plates. Recently, the thickness of the steel plates is much thinner and hence, it introduces the smaller size of nugget. Therefore, it is necessary not only to develop the criterion to evaluate the quality of weld but also to obtain the optimal welding conditions for the better performance. In this paper, the steel plates, 0.5 mm through 1.5 mm thickness, have been spot welded at different welding conditions and the nugget sizes are examined by ultrasonic technique (C-scan type). The relationships between the nugget sizes and the weldability have been investigated. The result of ultrasonic technique shows the good agreement with that of the tensile test

  12. Ultrasonic diagnosis of spot welding in thin plates

    International Nuclear Information System (INIS)

    Kim, No You; Hong, Min Sung

    2005-01-01

    Spot welding widely used in automotive and aerospace industries has made it possible to produce more precise and smaller electric part by robotization and systemization of welding process. The quality of welding depends upon the size of nugget between the overlapped steel plates. Recently, the thickness of the steel plates becomes much thinner and hence, it introduces the smaller size of nugget. Therefore, it is necessary to develop the criterion to evaluate the quality of weld in order to obtain the optimal welding conditions for the better performance. In this paper, a thin steel plates, 0.1 mm through 0.3 mm thickness, have been spot-welded at different welding conditions and the nugget sizes are examined by defocused scanning microscopy. The relationships between nugget sizes and weldability have been investigated experimentally. The result of ultrasonic technique shows the good agreement with that of the tensile test.

  13. Spot på samtalen:

    DEFF Research Database (Denmark)

    Danneris, Sophie; Jensen, Tanja Dall; Caswell, Dorte

    Spot på samtalen sætter fokus på det, der konkret foregår i samtaler mellem borgere og de beskæftigelsesfaglige medarbejdere i jobcentrene. Da de udsatte grupper i mange tilfælde er langt fra arbejdsmarkedet, er interessen rettet mod, hvilke forhold i kontakten med beskæftigelsessystemet, der...... har betydning hvilke indsatser ledige modtager, men også hvordan de modtager dem. Her rettes blikket mod den centrale del af den beskæftigelsespolitiske indsats som samtalerne udgør. I Spot på samtalen er blikket rettet mod de dynamikker, mønstre og mekanismer, der kommer i spil i samtalerne i...

  14. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  15. Managing Rocky Mountain spotted fever.

    Science.gov (United States)

    Minniear, Timothy D; Buckingham, Steven C

    2009-11-01

    Rocky Mountain spotted fever is caused by the tick-borne bacterium Rickettsia rickettsii. Symptoms range from moderate illness to severe illness, including cardiovascular compromise, coma and death. The disease is prevalent in most of the USA, especially during warmer months. The trademark presentation is fever and rash with a history of tick bite, although tick exposure is unappreciated in over a third of cases. Other signature symptoms include headache and abdominal pain. The antibiotic therapy of choice for R. rickettsii infection is doxycycline. Preventive measures for Rocky Mountain spotted fever and other tick-borne diseases include: wearing long-sleeved, light colored clothing; checking for tick attachment and removing attached ticks promptly; applying topical insect repellent; and treating clothing with permethrin.

  16. Measurement of laser spot quality

    Science.gov (United States)

    Milster, T. D.; Treptau, J. P.

    1991-01-01

    Several ways of measuring spot quality are compared. We examine in detail various figures of merit such as full width at half maximum (FWHM), full width at 1/(e exp 2) maximum, Strehl ratio, and encircled energy. Our application is optical data storage, but results can be applied to other areas like space communications and high energy lasers. We found that the optimum figure of merit in many cases is Strehl ratio.

  17. Sweet Spots and Door Stops

    Science.gov (United States)

    Thompson, Michael; Tsui, Stella; Leung, Chi Fan

    2011-01-01

    A sweet spot is referred to in sport as the perfect place to strike a ball with a racquet or bat. It is the point of contact between bat and ball where maximum results can be produced with minimal effort from the hand of the player. Similar physics can be applied to the less inspiring examples of door stops; the perfect position of a door stop is…

  18. Glare Spot Phase Doppler Anemometry

    OpenAIRE

    Hespel, Camille; Ren, Kuan Fang; Gréhan, Gérard; Onofri, Fabrice

    2006-01-01

    International audience; The Phase Doppler anemometry has been developed to measure simultaneously the velocity and the size of droplets. The measurement of the refractive index is also necessary since it depends on the temperature and the composition of the particle and its measurement permits both to increase the quality of the diameter measurement and to obtain information on the temperature and/or the composition of the droplets. In this paper, we introduce a Glare Spot Phase Doppler Anemo...

  19. Justifications shape ethical blind spots.

    Science.gov (United States)

    Pittarello, Andrea; Leib, Margarita; Gordon-Hecker, Tom; Shalvi, Shaul

    2015-06-01

    To some extent, unethical behavior results from people's limited attention to ethical considerations, which results in an ethical blind spot. Here, we focus on the role of ambiguity in shaping people's ethical blind spots, which in turn lead to their ethical failures. We suggest that in ambiguous settings, individuals' attention shifts toward tempting information, which determines the magnitude of their lies. Employing a novel ambiguous-dice paradigm, we asked participants to report the outcome of the die roll appearing closest to the location of a previously presented fixation cross on a computer screen; this outcome would determine their pay. We varied the value of the die second closest to the fixation cross to be either higher (i.e., tempting) or lower (i.e., not tempting) than the die closest to the fixation cross. Results of two experiments revealed that in ambiguous settings, people's incorrect responses were self-serving. Tracking participants' eye movements demonstrated that people's ethical blind spots are shaped by increased attention toward tempting information. © The Author(s) 2015.

  20. Resistance Spot Welding of dissimilar Steels

    Directory of Open Access Journals (Sweden)

    Ladislav Kolařík

    2012-01-01

    Full Text Available This paper presents an analysis of the properties of resistance spot welds between low carbon steel and austenitic CrNi stainless steel. The thickness of the welded dissimilar materials was 2 mm. A DeltaSpot welding gun with a process tape was used for welding the dissimilar steels. Resistance spot welds were produced with various welding parameters (welding currents ranging from 7 to 8 kA. Light microscopy, microhardness measurements across the welded joints, and EDX analysis were used to evaluate the quality of the resistance spot welds. The results confirm the applicability of DeltaSpot welding for this combination of materials.

  1. Spot formation of radiation particles by electrochemical etching

    International Nuclear Information System (INIS)

    Nozaki, Tetsuya

    1999-01-01

    An electrochemical etching (ECE) spot formation from the top of chemical etching (CE) spot was confirmed by a series of experiments. One of polycarbonate (Iupilon) could not make the spot, because ECE spot had grown up before the microscope confirming the CE spot. Clear CEC spots by α-ray and neutron were found on Harzlas and Baryotrak, both improvements of CR-39. Under the same etching conditions, the growth of ECE spot on Harzlas was more rapid than Baryotrak, but both spots were almost the same. All CE spot by α-ray produced the CEC spots, but a part of CE circle spot by neutron formed them. (S.Y.)

  2. Computational prediction of protein hot spot residues.

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2012-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues.

  3. Computational Prediction of Hot Spot Residues

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2013-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues. PMID:22316154

  4. ESA uncovers Geminga's `hot spot'

    Science.gov (United States)

    2004-07-01

    16 July 2004 Astronomers using ESA’s X-ray observatory XMM-Newton have detected a small, bright ‘hot spot’ on the surface of the neutron star called Geminga, 500 light-years away. The hot spot is the size of a football field and is caused by the same mechanism producing Geminga’s X-ray tails. This discovery identifies the missing link between the X-ray and gamma-ray emission from Geminga. hi-res Size hi-res: 1284 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot This figure shows the effects of charged particles accelerated in the magnetosphere of Geminga. Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of particles kicked out by Geminga’s strong magnetic field, trail the neutron star as it moves about in space. Panel (b) shows how electrically charged particles interact with Geminga’s magnetic field. For example, if electrons (blue) are kicked out by the star, positrons (in red) hit the star’s magnetic poles like in an ‘own goal’. Panel (c) illustrates the size of Geminga’s magnetic field (blue) compared to that of the star itself at the centre (purple). The magnetic field is tilted with respect to Geminga’s rotation axis (red). Panel (d) shows the magnetic poles of Geminga, where charged particles hit the surface of the star, creating a two-million degrees hot spot, a region much hotter than the surroundings. As the star spins on its rotation axis, the hot spot comes into view and then disappears, causing the periodic colour change seen by XMM-Newton. An animated version of the entire sequence can be found at: Click here for animated GIF [low resolution, animated GIF, 5536 KB] Click here for AVI [high resolution, AVI with DIVX compression, 19128 KB] hi-res Size hi-res: 371 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot, panel (a) Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of

  5. Material Characterization of Dissimilar Friction Stir Spot Welded Aluminium and Copper Alloy

    Science.gov (United States)

    Sanusi, K. O.; Akinlabi, E. T.

    2017-08-01

    In this research study, material characterization of dissimilar friction stir spot welded Aluminium and Copper was evaluated. Rotational speeds of 800 rpm and transverse speeds of 50 mm/min, 150 mm/min and 250 mm/min were used. The total numbers of samples evaluated were nine altogether. The spot welds were characterised by microstructure characterization using optical microscope (OEM) and scanning electron microscopy technique (SEM) by observing the evolution of the microstructure across the weld’s cross-section. lap-shear test of the of the spot weld specimens were also done. From the results, it shows that welding of metals and alloys using Friction stir spot welding is appropriate and can be use in industrial applications.

  6. A study of Ni-based WC composite coatings by laser induction hybrid rapid cladding with elliptical spot

    International Nuclear Information System (INIS)

    Zhou Shengfeng; Huang Yongjun; Zeng Xiaoyan

    2008-01-01

    Ni-based WC composite coatings by laser induction hybrid rapid cladding (LIHRC) with elliptical spot were investigated. Results indicate that the efficiency using the elliptical spot of 6 mm x 4 mm (the major and minor axis of laser beam are 6 mm and 4 mm, respectively, the major axis is parallel to the direction of laser scanning) is higher than that using the elliptical spot of 4 mm x 6 mm (the major axis is perpendicular to the direction of laser scanning). The precipitated carbides with the blocky and bar-like shape indicate that WC particles suffer from the heat damage of 'the disintegration pattern + the growth pattern', whichever elliptical spot is used at low laser scanning speed. However, at high laser scanning speed, the blocky carbides are only formed if the elliptical spot of 6 mm x 4 mm is adopted, showing that WC particles present the heat damage of 'the disintegration pattern', whereas the fine carbides are precipitated when the elliptical spot of 4 mm x 6 mm is used, showing that WC particles take on the heat damage of 'the radiation pattern'. Especially, the efficiency of LIHRC is increased much four times higher than that of the general laser cladding and crack-free ceramic-metal coatings can be obtained

  7. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.

    Science.gov (United States)

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-02-01

    To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.

  8. Auto-SCT induces a phenotypic shift from CMP to GMP progenitors, reduces clonogenic potential and enhances in vitro and in vivo cycling activity defined by (18)F-FLT PET scanning.

    Science.gov (United States)

    Woolthuis, C; Agool, A; Olthof, S; Slart, R H J A; Huls, G; Smid, W M; Schuringa, J J; Vellenga, E

    2011-01-01

    Autologous SCT (auto-SCT) introduces a reduced tolerance to chemotherapy even in patients with adequate engraftment, suggesting long-term effects of the transplantation procedure on the BM capacity. To study the hematopoietic cell compartment after auto-SCT, CD34(+) BM cells (n = 16) from patients at 6-9 months after auto-SCT were studied with regard to the progenitor subsets, colony frequency and cell cycle status. The BM compartments were studied in vivo using PET tracer 3-fluoro-3-deoxy-L-thymidine (¹⁸F-FLT PET). BM CD34(+) cells after auto-SCT were compared with normal CD34(+) cells and showed a phenotypic shift from common myeloid progenitor (CMP mean percentage 3.7 vs 19.4%, P=0.001) to granulocyte-macrophage progenitor (GMP mean percentage 51.8 vs 27.6%, P=0.01). In addition, a reduced clonogenic potential and higher cycling activity especially of the GMP fraction (41% ± 4 in G2/S phase vs 19% ± 2, P = 0.03) were observed in BM after auto-SCT compared with normal. The enhanced cycling activity was confirmed in vivo by showing a significantly higher uptake of the ¹⁸F-FLT PET tracer by the BM compartment. This study shows that auto-SCT results in defects of the hematopoietic compartment at least 6 months after auto-SCT, characterized by changes in the composition of progenitor subsets and enhanced in vitro and in vivo cycling activity.

  9. Watermarking spot colors in packaging

    Science.gov (United States)

    Reed, Alastair; Filler, TomáÅ.¡; Falkenstern, Kristyn; Bai, Yang

    2015-03-01

    In January 2014, Digimarc announced Digimarc® Barcode for the packaging industry to improve the check-out efficiency and customer experience for retailers. Digimarc Barcode is a machine readable code that carries the same information as a traditional Universal Product Code (UPC) and is introduced by adding a robust digital watermark to the package design. It is imperceptible to the human eye but can be read by a modern barcode scanner at the Point of Sale (POS) station. Compared to a traditional linear barcode, Digimarc Barcode covers the whole package with minimal impact on the graphic design. This significantly improves the Items per Minute (IPM) metric, which retailers use to track the checkout efficiency since it closely relates to their profitability. Increasing IPM by a few percent could lead to potential savings of millions of dollars for retailers, giving them a strong incentive to add the Digimarc Barcode to their packages. Testing performed by Digimarc showed increases in IPM of at least 33% using the Digimarc Barcode, compared to using a traditional barcode. A method of watermarking print ready image data used in the commercial packaging industry is described. A significant proportion of packages are printed using spot colors, therefore spot colors needs to be supported by an embedder for Digimarc Barcode. Digimarc Barcode supports the PANTONE spot color system, which is commonly used in the packaging industry. The Digimarc Barcode embedder allows a user to insert the UPC code in an image while minimizing perceptibility to the Human Visual System (HVS). The Digimarc Barcode is inserted in the printing ink domain, using an Adobe Photoshop plug-in as the last step before printing. Since Photoshop is an industry standard widely used by pre-press shops in the packaging industry, a Digimarc Barcode can be easily inserted and proofed.

  10. Collaboration spotting for dental science.

    Science.gov (United States)

    Leonardi, E; Agocs, A; Fragkiskos, S; Kasfikis, N; Le Goff, J M; Cristalli, M P; Luzzi, V; Polimeni, A

    2014-10-06

    The goal of the Collaboration Spotting project is to create an automatic system to collect information about publications and patents related to a given technology, to identify the key players involved, and to highlight collaborations and related technologies. The collected information can be visualized in a web browser as interactive graphical maps showing in an intuitive way the players and their collaborations (Sociogram) and the relations among the technologies (Technogram). We propose to use the system to study technologies related to Dental Science. In order to create a Sociogram, we create a logical filter based on a set of keywords related to the technology under study. This filter is used to extract a list of publications from the Web of Science™ database. The list is validated by an expert in the technology and sent to CERN where it is inserted in the Collaboration Spotting database. Here, an automatic software system uses the data to generate the final maps. We studied a set of recent technologies related to bone regeneration procedures of oro--maxillo--facial critical size defects, namely the use of Porous HydroxyApatite (HA) as a bone substitute alone (bone graft) or as a tridimensional support (scaffold) for insemination and differentiation ex--vivo of Mesenchymal Stem Cells. We produced the Sociograms for these technologies and the resulting maps are now accessible on--line. The Collaboration Spotting system allows the automatic creation of interactive maps to show the current and historical state of research on a specific technology. These maps are an ideal tool both for researchers who want to assess the state--of--the--art in a given technology, and for research organizations who want to evaluate their contribution to the technological development in a given field. We demonstrated that the system can be used for Dental Science and produced the maps for an initial set of technologies in this field. We now plan to enlarge the set of mapped

  11. Collaboration Spotting for oral medicine.

    Science.gov (United States)

    Leonardi, E; Agocs, A; Fragkiskos, S; Kasfikis, N; Le Goff, J M; Cristalli, M P; Luzzi, V; Polimeni, A

    2014-09-01

    The goal of the Collaboration Spotting project is to create an automatic system to collect information about publications and patents related to a given technology, to identify the key players involved, and to highlight collaborations and related technologies. The collected information can be visualized in a web browser as interactive graphical maps showing in an intuitive way the players and their collaborations (Sociogram) and the relations among the technologies (Technogram). We propose to use the system to study technologies related to oral medicine. In order to create a sociogram, we create a logical filter based on a set of keywords related to the technology under study. This filter is used to extract a list of publications from the Web of Science™ database. The list is validated by an expert in the technology and sent to CERN where it is inserted in the Collaboration Spotting database. Here, an automatic software system uses the data to generate the final maps. We studied a set of recent technologies related to bone regeneration procedures of oro-maxillo-facial critical size defects, namely the use of porous hydroxyapatite (HA) as a bone substitute alone (bone graft) or as a tridimensional support (scaffold) for insemination and differentiation ex vivo of mesenchymal stem cells. We produced the sociograms for these technologies and the resulting maps are now accessible on-line. The Collaboration Spotting system allows the automatic creation of interactive maps to show the current and historical state of research on a specific technology. These maps are an ideal tool both for researchers who want to assess the state-of-the-art in a given technology, and for research organizations who want to evaluate their contribution to the technological development in a given field. We demonstrated that the system can be used in oral medicine as is produced the maps for an initial set of technologies in this field. We now plan to enlarge the set of mapped technologies in

  12. Energy is not Coffee. An assessment of blind spots on energy spot-markets

    International Nuclear Information System (INIS)

    Jepma, C.J.; Spijker, E.; Van der Gaast, W.; De Jong, F.; Overmars, P.

    2006-01-01

    This study was to be the first in a series of studies on the title subject. It specifically focuses on the differences and similarities with a number of other spot-markets and aims to frame the energy spot markets and their potential development into a broader perspective. Main conclusion is that energy spot-markets differ from several other physical and non-physical spot-markets in many ways. This implies that 'perfect' energy spot-markets may inherently be (much) less perfect than other spot-markets that have approximated the stage of theoretical perfection

  13. Radiopharmaceutical scanning agents

    International Nuclear Information System (INIS)

    1976-01-01

    This invention is directed to dispersions useful in preparing radiopharmaceutical scanning agents, to technetium labelled dispersions, to methods for preparing such dispersions and to their use as scanning agents

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Scan and Uptake Thyroid scan and uptake uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  15. Nuclear Heart Scan

    Science.gov (United States)

    ... Home / Nuclear Heart Scan Nuclear Heart Scan Also known as Nuclear Stress Test , ... Learn More Connect With Us Contact Us Directly Policies Privacy Policy Freedom of Information Act (FOIA) Accessibility ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? Most thyroid scan and thyroid uptake ... you otherwise, you may resume your normal activities after your nuclear medicine scan. If any special instructions ...

  17. RBC nuclear scan

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  18. Spot and Runway Departure Advisor

    Science.gov (United States)

    Jung, Yoon Chul

    2013-01-01

    The Spot and Runway Departure Advisor (SARDA) is a research prototype of a decision support tool for ATC tower controllers to assist in manging and controlling traffic on the surface of an airport. SARDA employs a scheduler to generate an optimal runway schedule and gate push-back - spot release sequence and schedule that improves efficiency of surface operations. The advisories for ATC tower controllers are displayed on an Electronic Flight Strip (EFS) system. The human-in-the-loop simulation of the SARDA tool was conducted for east operations of Dallas-Ft. Worth International Airport (DFW) to evaluate performance of the SARDA tool and human factors, such as situational awareness and workload. The results indicates noticeable taxi delay reduction and fuel savings by using the SARDA tool. Reduction in controller workload were also observed throughout the scenario runs. The future plan includes modeling and simulation of the ramp operations of the Charlotte International Airport, and develop a decision support tool for the ramp controllers.

  19. X-ray spot filmer

    International Nuclear Information System (INIS)

    1975-01-01

    An X-ray apparatus is described which includes a spot filmer for feeding sheets of unexposed film one at a time into a vacuum evacuable cassette for exposure, and for returning exposed film sheets to an exposed film magazine. The spot filmer has a housing defining a light-tight enclosure. The film magazines are insertable through a door into the housing and into a film feed mechanism. The film feed mechanism unlatches, opens and positions the magazines; it then feeds a sheet of unexposed film into the vacuum evacuable cassette, releases the film sheet so the cassette can position the film sheet for exposure, and closes the film magazines. An orthogonal drive system positions the vacuum evacuable cassette to expose selected film sheet portions and returns the cassette to a retracted position. The film feed mechanism opens the magazines, feeds the exposed film sheet into the exposed film magazine, and closes the magazines. A film identification system is provided for forming an identifying image on a marginal portion of each film sheet

  20. Glare Spot Phase Doppler Anemometry

    Science.gov (United States)

    Hespel, Camille; Ren, Kuanfang; Gréhan, Gérard; Onofri, Fabrice

    2007-06-01

    The Phase Doppler anemometry has been developed to measure simultaneously the velocity and the size of droplets. The measurement of the refractive index would be also interesting since it depends on the temperature and the composition of the particle and its measurement permits both to increase the quality of the diameter measurement and to obtain information on the temperature and/or the composition of the droplets. In this paper, we introduce a Glare Spot Phase Doppler Anemometry which uses two large beams. In this case, the images of the particle formed by the reflected and refracted light, known as glare spots, are separated in space. When a particle passes in the probe volume, the two parts in a signal obtained by a detector in forward direction are then separated in time. If two detectors are used the phase differences between two signals, the distance and the intensity ratio of reflected and refracted parts can be obtained and they provide rich information about the particle diameter and its refractive index, as well as its velocity. This paper is devoted to the numerical study of such a configuration with two theoretical models: geometrical optics and rigorous electromagnetism solution.

  1. Oil futures and spot markets

    International Nuclear Information System (INIS)

    Samii, M.V.

    1992-01-01

    In the last decade, the oil futures market has risen to prominence and has become a major factor in influencing oil market psychology and the crude oil market. On a normal day, over 92 thousand contracts, the equivalent of 92 million barrels per day, change hands on the New York Mercantile Exchange, NYMEX. This market has provided a vehicle for hedging against risk. At the same time, it has also created opportunities for speculation. Those who previously were unable to participate in oil market transactions can now become involved through the futures market. The large number of participants in the future market and the availability of information has made this market more efficient and transparent, relative to the crude oil market. While there has been considerable in-depth analysis of other future markets, relatively little theoretical attention has focused on that of oil. This paper looks at the following issues. First, what is the relationship between futures and spot oil prices? And secondly, are futures prices a good predictor of spot crude prices in the future? (author)

  2. New scanning technique for the optical vortex microscope.

    Science.gov (United States)

    Augustyniak, Ireneusz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Drobczyński, Sławomir

    2012-04-01

    In the optical vortex microscopy the focused Gaussian beam with optical vortex scans a sample. An optical vortex can be introduced into a laser beam with the use of a special optical element--a vortex lens. When moving the vortex lens, the optical vortex changes its position inside the spot formed by a focused laser beam. This effect can be used as a new precise scanning technique. In this paper, we study the optical vortex behavior at the sample plane. We also estimate if the new scanning technique results in observable effects that could be used for a phase object detection.

  3. Integrating sustainable hunting in biodiversity protection in Central Africa: hot spots, weak spots, and strong spots.

    Directory of Open Access Journals (Sweden)

    John E Fa

    Full Text Available Wild animals are a primary source of protein (bushmeat for people living in or near tropical forests. Ideally, the effect of bushmeat harvests should be monitored closely by making regular estimates of offtake rate and size of stock available for exploitation. However, in practice, this is possible in very few situations because it requires both of these aspects to be readily measurable, and even in the best case, entails very considerable time and effort. As alternative, in this study, we use high-resolution, environmental favorability models for terrestrial mammals (N = 165 in Central Africa to map areas of high species richness (hot spots and hunting susceptibility. Favorability models distinguish localities with environmental conditions that favor the species' existence from those with detrimental characteristics for its presence. We develop an index for assessing Potential Hunting Sustainability (PHS of each species based on their ecological characteristics (population density, habitat breadth, rarity and vulnerability, weighted according to restrictive and permissive assumptions of how species' characteristics are combined. Species are classified into five main hunting sustainability classes using fuzzy logic. Using the accumulated favorability values of all species, and their PHS values, we finally identify weak spots, defined as high diversity regions of especial hunting vulnerability for wildlife, as well as strong spots, defined as high diversity areas of high hunting sustainability potential. Our study uses relatively simple models that employ easily obtainable data of a species' ecological characteristics to assess the impacts of hunting in tropical regions. It provides information for management by charting the geography of where species are more or less likely to be at risk of extinction from hunting.

  4. Isocitrate dehydrogenase mutation hot spots in acute lymphoblastic leukemia and oral cancer

    Directory of Open Access Journals (Sweden)

    Jen-Yang Tang

    2012-03-01

    Full Text Available Isocitrate dehydrogenase (IDH encodes a nicotinamide adenine dinucleotide phosphate+-dependent enzyme for oxidative decarboxylation of isocitrate and has an essential role in the tricarboxylic acid cycle. Mutations of IDH1 and IDH2 have been identified in patients with glioma, leukemia, and other cancers. However, the incidence of IDH mutations in acute myeloid leukemia in Taiwan is much lower than that reported in Western countries. The reason for the difference is unknown and its clinical implications remain unclear. Acute lymphoblastic leukemia (ALL is a heterogenous hematopoietic malignancy. Oral squamous cell carcinoma (OSCC results from chronic carcinogen exposures and is highly prevalent in trucking workers, especially in southern Taiwan. Subtypes of both diseases require specific treatments, and molecular markers for developing tailored treatments are limited. High-resolution melting (HRM analysis is now a widely used methodology for rapid, accurate, and low-cost mutation scanning. In this study, 90 adults with OSC and 31 children with ALL were scanned by HRM analysis for IDH1 and IDH2 mutation hot spots. In ALL, the allele frequency was 3.23% in both IDH1 and IDH2. In OSCC, the allele frequency was 2.22% in IDH2. A synonymous mutation over pG313 (c.939A > G of IDH2 was found in both pediatric ALL and adult OSCC. Therefore, we concluded that mutations of IDH are uncommon in ALL and OSCC and are apparently not a major consideration when selecting treatment modalities.

  5. Scanning gamma camera

    International Nuclear Information System (INIS)

    Engdahl, L.W.; Batter, J.F. Jr.; Stout, K.J.

    1977-01-01

    A scanning system for a gamma camera providing for the overlapping of adjacent scan paths is described. A collimator mask having tapered edges provides for a graduated reduction in intensity of radiation received by a detector thereof, the reduction in intensity being graduated in a direction normal to the scanning path to provide a blending of images of adjacent scan paths. 31 claims, 15 figures

  6. SU-E-T-755: Timing Characteristics of Proton and Carbon Ion Treatments Using a Synchrotron and Modulated Scanning

    International Nuclear Information System (INIS)

    Zhao, J; Li, Y; Huang, Z; Deng, Y; Sun, L; Moyers, M; Hsi, W; Wu, X

    2015-01-01

    Purpose: The time required to deliver a treatment impacts not only the number of patients that can be treated each day but also the accuracy of delivery due to potential movements of patient tissues. Both macroscopic and microscopic timing characteristics of a beam delivery system were studied to examine their impacts on patient treatments. Methods: 35 patients were treated during a clinical trial to demonstrate safety and efficacy of a Siemens Iontris system prior to receiving approval from the Chinese Food and Drug Administration. The system has a variable cycle time and can provide proton beams from 48 to 221 MeV/n and carbon ions from 86 to 430 MeV/n. A modulated scanning beam delivery technique is used where the beam remains stationary at each spot aiming location and is not turned off while the spot quickly moves from one aiming location to the next. The treatment log files for 28 of the trial patients were analyzed to determine several timing characteristics. Results: The average portal time per target dose was 172.5 s/Gy for protons and 150.7 s/Gy for carbon ions. The maximum delivery time for any portal was less than 300 s. The average dwell time per spot was 12 ms for protons and 3.0 ms for carbon ions. The number of aiming positions per energy layer varied from 1 to 258 for protons and 1 to 621 for carbon ions. The average spill time and cycle time per energy layer were 1.20 and 2.68 s for protons and 0.95 and 4.73 s for carbon ions respectively. For 3 of the patients, the beam was gated on and off to reduce the effects of respiration. Conclusion: For a typical target volume of 153 cc as used in this clinical trial, the portal delivery times were acceptable

  7. Time-series photometric spot modeling. 2: Fifteen years of photometry of the bright RS CVn binary HR 7275

    Science.gov (United States)

    Strassmeier, K. G.; Hall, D. S.; Henry, G. W.

    1994-01-01

    We present a time-dependent spot modeling analysis of 15 consecutive years of V-band photometry of the long-period (P(sub orb) = 28.6 days) RS CVn binary HR 7275. This baseline in time is one of the longest, uninterrupted intervals a spotted star has been observed. The spot modeling analysis yields a total of 20 different spots throughout the time span of our observations. The distribution of the observed spot migration rates is consistent with solar-type differential rotation and suggests a lower limit of the differential-rotation coefficient of 0.022 +/-0.004. The observed, maximum lifetime of a single spot (or spot group) is 4.5 years, the minimum lifetime is approximately one year, but an average spot lives for 2.2 years. If we assume that the mechanical shear by differential rotation sets the upper limit to the spot lifetime, the observed maximum lifetime in turn sets an upper limit to the differential-rotation coefficient, namely 0.04 +/- 0.01. This would be differential rotation just 5 to 8 times less than the solar value and one of the strongest among active binaries. We found no conclusive evidence for the existence of a periodic phenomenon that could be attributed to a stellar magnetic cycle.

  8. Resistance spot welding of AISI 430 ferritic stainless steel: Phase transformations and mechanical properties

    International Nuclear Information System (INIS)

    Alizadeh-Sh, M.; Marashi, S.P.H.; Pouranvari, M.

    2014-01-01

    Highlights: • Phase transformations during RSW of AISI430 are detailed. • Grain growth, martensite formation and carbide precipitation are dominant phase transformations. • Failure mode of AISI430 resistance spot welded joints are analyzed. • Larger FZ size provided improved load bearing capacity and energy absorption capability. - Abstract: The paper aims at investigating the process–microstructure–performance relationship in resistance spot welding of AISI 430 ferritic stainless steel. The phase transformations which occur during weld thermal cycle were analyzed in details, based on the physical metallurgy of welding of the ferritic stainless steels. It was found that the microstructure of the fusion zone and the heat affected zone is influenced by different phenomena including grain growth, martensite formation and carbide precipitation. The effects of welding cycle on the mechanical properties of the spot welds in terms of peak load, energy absorption and failure mode are discussed

  9. Investigation of Electron Transport Across Vertically Grown CNTs Using Combination of Proximity Field Emission Microscopy and Scanning Probe Image Processing Techniques

    KAUST Repository

    Kolekar, Sadhu

    2018-02-26

    Field emission from nanostructured films is known to be dominated by only small number of localized spots which varies with the voltage, electric field and heat treatment. It is important to develop processing methods which will produce stable and uniform emitting sites. In this paper we report a novel approach which involves analysis of Proximity Field Emission Microscopic (PFEM) images using Scanning Probe Image Processing technique. Vertically aligned carbon nanotube emitters have been deposited on tungsten foil by water assisted chemical vapor deposition. Prior to the field electron emission studies, these films were characterized by scanning electron microscopy, transmission electron microscopy, and Atomic Force Microscopy (AFM). AFM images of the samples show bristle like structure, the size of bristle varying from 80 to 300 nm. The topography images were found to exhibit strong correlation with current images. Current–Voltage (I–V) measurements both from Scanning Tunneling Microscopy and Conducting-AFM mode suggest that electron transport mechanism in imaging vertically grown CNTs is ballistic rather than usual tunneling or field emission with a junction resistance of ~10 kΩ. It was found that I–V curves for field emission mode in PFEM geometry vary initially with number of I–V cycles until reproducible I–V curves are obtained. Even for reasonably stable I–V behavior the number of spots was found to increase with the voltage leading to a modified Fowler–Nordheim (F–N) behavior. A plot of ln(I/V3) versus 1/V was found to be linear. Current versus time data exhibit large fluctuation with the power spectral density obeying 1/f2 law. It is suggested that an analogue of F–N equation of the form ln(I/Vα) versus 1/V may be used for the analysis of field emission data, where α may depend on nanostructure configuration and can be determined from the dependence of emitting spots on the voltage.Graphical Abstract

  10. Investigation of Electron Transport Across Vertically Grown CNTs Using Combination of Proximity Field Emission Microscopy and Scanning Probe Image Processing Techniques

    Science.gov (United States)

    Kolekar, Sadhu; Patole, Shashikant P.; Yoo, Ji-Beom; Dharmadhikari, Chandrakant V.

    2018-03-01

    Field emission from nanostructured films is known to be dominated by only small number of localized spots which varies with the voltage, electric field and heat treatment. It is important to develop processing methods which will produce stable and uniform emitting sites. In this paper we report a novel approach which involves analysis of Proximity Field Emission Microscopic (PFEM) images using Scanning Probe Image Processing technique. Vertically aligned carbon nanotube emitters have been deposited on tungsten foil by water assisted chemical vapor deposition. Prior to the field electron emission studies, these films were characterized by scanning electron microscopy, transmission electron microscopy, and Atomic Force Microscopy (AFM). AFM images of the samples show bristle like structure, the size of bristle varying from 80 to 300 nm. The topography images were found to exhibit strong correlation with current images. Current-Voltage (I-V) measurements both from Scanning Tunneling Microscopy and Conducting-AFM mode suggest that electron transport mechanism in imaging vertically grown CNTs is ballistic rather than usual tunneling or field emission with a junction resistance of 10 kΩ. It was found that I-V curves for field emission mode in PFEM geometry vary initially with number of I-V cycles until reproducible I-V curves are obtained. Even for reasonably stable I-V behavior the number of spots was found to increase with the voltage leading to a modified Fowler-Nordheim (F-N) behavior. A plot of ln(I/V3) versus 1/V was found to be linear. Current versus time data exhibit large fluctuation with the power spectral density obeying 1/f2 law. It is suggested that an analogue of F-N equation of the form ln(I/Vα) versus 1/V may be used for the analysis of field emission data, where α may depend on nanostructure configuration and can be determined from the dependence of emitting spots on the voltage.

  11. White spots on Smoke rings by Bruce Nauman: a case study on contemporary art conservation using microanalytical techniques.

    Science.gov (United States)

    Mafalda, Ana Cardeira; da Câmara, Rodrigo Bettencourt; Strzelec, Patrick; Schiavon, Nick; Mirão, José; Candeias, António; Carvalho, Maria Luísa; Manso, Marta

    2015-02-01

    The artwork "Smoke Rings: Two Concentric Tunnels, Non-Communicating" by Bruce Nauman represents a case study of corrosion of a black patina-coated Al-alloy contemporary artwork. The main concern over this artwork was the widespread presence of white spots on its surface. Alloy substrate, patina, and white spots were characterized by means of energy-dispersive X-ray fluorescence and scanning electron microscopy with energy-dispersive spectroscopy. Alloy substrate was identified as an aluminum alloy 6,000 series Al-Si-Mg. Patina's identified composition confirmed the documentation provided by the atelier. Concerning the white spots, zircon particles were found on patina surface as external elements.

  12. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  13. Cosmicflows-3: Cold Spot Repeller?

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, Hélène M.; Graziani, Romain; Dupuy, Alexandra [University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN, Lyon (France); Tully, R. Brent [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hoffman, Yehuda [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Pomarède, Daniel [Institut de Recherche sur les Lois Fondamentales de l’Univers, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-09-20

    The three-dimensional gravitational velocity field within z ∼ 0.1 has been modeled with the Wiener filter methodology applied to the Cosmicflows-3 compilation of galaxy distances. The dominant features are a basin of attraction and two basins of repulsion. The major basin of attraction is an extension of the Shapley concentration of galaxies. One basin of repulsion, the Dipole Repeller, is located near the anti-apex of the cosmic microwave background dipole. The other basin of repulsion is in the proximate direction toward the “Cold Spot” irregularity in the cosmic microwave background. It has been speculated that a vast void might contribute to the amplitude of the Cold Spot from the integrated Sachs–Wolfe effect.

  14. Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser Scanning Technology, and Collaborative Product Life-Cycle Management on Ship Maintenance and Modernization Cost Savings

    Science.gov (United States)

    2015-04-30

    ååì~ä=^Åèìáëáíáçå= oÉëÉ~êÅÜ=póãéçëáìã= tÉÇåÉëÇ~ó=pÉëëáçåë= sçäìãÉ=f= = Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser...COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser Scanning...Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW= `êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 182 - Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser

  15. A worm-like trace of cathode spots on Cu-Zr-Ti amorphous ribbons

    International Nuclear Information System (INIS)

    Zhang Chengyu; Yang Zhimao; Wang Yaping; Ding Bingjun

    2003-01-01

    On Cu-Zr-Ti amorphous ribbons, a lot of worm-like traces or quasi-continuous traces of cathode spots have been clearly observed using a scanning electron microscope (SEM). This kind of trace is eroded by the motion of a single spot step by step, and could not be observed on cathodes made of crystalline materials. Spot motion direction can be identified from the trace. The arc spreading velocity and spot lifetime can also be evaluated by these traces on SEM photographs, and they are 2.3 m s -1 for arc spreading velocity and (1.10 ± 0.32) μs for spot lifetime. Previously, these could only be measured using high-speed photographs. A linear relationship was found between the length of spot displacement and number of steps, which is quite different from that obtained by high-speed photographs, which fit Gaussian curves and a Rayleigh function. Possible reasons for this discrepancy are discussed

  16. An automated decision-tree approach to predicting protein interaction hot spots.

    Science.gov (United States)

    Darnell, Steven J; Page, David; Mitchell, Julie C

    2007-09-01

    Protein-protein interactions can be altered by mutating one or more "hot spots," the subset of residues that account for most of the interface's binding free energy. The identification of hot spots requires a significant experimental effort, highlighting the practical value of hot spot predictions. We present two knowledge-based models that improve the ability to predict hot spots: K-FADE uses shape specificity features calculated by the Fast Atomic Density Evaluation (FADE) program, and K-CON uses biochemical contact features. The combined K-FADE/CON (KFC) model displays better overall predictive accuracy than computational alanine scanning (Robetta-Ala). In addition, because these methods predict different subsets of known hot spots, a large and significant increase in accuracy is achieved by combining KFC and Robetta-Ala. The KFC analysis is applied to the calmodulin (CaM)/smooth muscle myosin light chain kinase (smMLCK) interface, and to the bone morphogenetic protein-2 (BMP-2)/BMP receptor-type I (BMPR-IA) interface. The results indicate a strong correlation between KFC hot spot predictions and mutations that significantly reduce the binding affinity of the interface. 2007 Wiley-Liss, Inc.

  17. 7 CFR 28.412 - Strict Middling Light Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Light Spotted Color. 28.412 Section 28... Light Spotted Color. Strict Middling Light Spotted Color is color which in spot or color, or both, is between Strict Middling Color and Strict Middling Spotted Color. ...

  18. 7 CFR 28.415 - Low Middling Light Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Low Middling Light Spotted Color. 28.415 Section 28... Spotted Color. Low Middling Light Spotted Color is color which in spot or color, or both, is between Low Middling Color and Low Middling Spotted Color. ...

  19. 7 CFR 28.411 - Good Middling Light Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Good Middling Light Spotted Color. 28.411 Section 28... Light Spotted Color. Good Middling Light Spotted Color is color which in spot or color, or both, is between Good Middling Color and Good Middling Spotted Color. ...

  20. 7 CFR 28.413 - Middling Light Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Middling Light Spotted Color. 28.413 Section 28.413... Spotted Color. Middling Light Spotted Color is color which in spot or color, or both, is between Middling Color and Middling Spotted Color. ...

  1. Hot Spot Removal System: System description

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  2. Rocky Mountain spotted fever in children.

    Science.gov (United States)

    Woods, Charles R

    2013-04-01

    Rocky Mountain spotted fever is typically undifferentiated from many other infections in the first few days of illness. Treatment should not be delayed pending confirmation of infection when Rocky Mountain spotted fever is suspected. Doxycycline is the drug of choice even for infants and children less than 8 years old. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Rocky Mountain Spotted Fever: Statistics and Epidemiology

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Rocky Mountain Spotted Fever (RMSF) Note: Javascript is disabled or is not ... message, please visit this page: About CDC.gov . Rocky Mountain Spotted Fever (RMSF) Transmission Signs and Symptoms Diagnosis and Testing ...

  4. Hot Spot Removal System: System description

    International Nuclear Information System (INIS)

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System''s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section

  5. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  6. Laser Spot Detection Based on Reaction Diffusion.

    Science.gov (United States)

    Vázquez-Otero, Alejandro; Khikhlukha, Danila; Solano-Altamirano, J M; Dormido, Raquel; Duro, Natividad

    2016-03-01

    Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD) system as the main computational framework for robustly finding laser spot centers. The method presented is compared with a conventional approach for locating laser spots, and the experimental results indicate that RD-based computation generates reliable and precise solutions. These results confirm the flexibility of the new computational paradigm based on RD systems for addressing problems that can be reduced to a set of geometric operations.

  7. Laser Spot Detection Based on Reaction Diffusion

    Directory of Open Access Journals (Sweden)

    Alejandro Vázquez-Otero

    2016-03-01

    Full Text Available Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD system as the main computational framework for robustly finding laser spot centers. The method presented is compared with a conventional approach for locating laser spots, and the experimental results indicate that RD-based computation generates reliable and precise solutions. These results confirm the flexibility of the new computational paradigm based on RD systems for addressing problems that can be reduced to a set of geometric operations.

  8. Rocky Mountain spotted fever in Argentina.

    Science.gov (United States)

    Paddock, Christopher D; Fernandez, Susana; Echenique, Gustavo A; Sumner, John W; Reeves, Will K; Zaki, Sherif R; Remondegui, Carlos E

    2008-04-01

    We describe the first molecular confirmation of Rickettsia rickettsii, the cause of Rocky Mountain spotted fever (RMSF), from a tick vector, Amblyomma cajennense, and from a cluster of fatal spotted fever cases in Argentina. Questing A. cajennense ticks were collected at or near sites of presumed or confirmed cases of spotted fever rickettsiosis in Jujuy Province and evaluated by polymerase chain reaction assays for spotted fever group rickettsiae. DNA of R. rickettsii was amplified from a pool of A. cajennense ticks and from tissues of one of four patients who died during 2003-2004 after illnesses characterized by high fever, severe headache, myalgias, and petechial rash. The diagnosis of spotted fever rickettsiosis was confirmed in the other patients by indirect immunofluorescence antibody and immunohistochemical staining techniques. These findings show the existence of RMSF in Argentina and emphasize the need for clinicians throughout the Americas to consider RMSF in patients with febrile rash illnesses.

  9. Early Chemotherapy Intensification With Escalated BEACOPP in Patients With Advanced-Stage Hodgkin Lymphoma With a Positive Interim Positron Emission Tomography/Computed Tomography Scan After Two ABVD Cycles: Long-Term Results of the GITIL/FIL HD 0607 Trial.

    Science.gov (United States)

    Gallamini, Andrea; Tarella, Corrado; Viviani, Simonetta; Rossi, Andrea; Patti, Caterina; Mulé, Antonino; Picardi, Marco; Romano, Alessandra; Cantonetti, Maria; La Nasa, Giorgio; Trentin, Livio; Bolis, Silvia; Rapezzi, Davide; Battistini, Roberta; Gottardi, Daniela; Gavarotti, Paolo; Corradini, Paolo; Cimminiello, Michele; Schiavotto, Corrado; Parvis, Guido; Zanotti, Roberta; Gini, Guido; Ferreri, Andrés J M; Viero, Piera; Miglino, Maurizio; Billio, Atto; Avigdor, Abraham; Biggi, Alberto; Fallanca, Federico; Ficola, Umberto; Gregianin, Michele; Chiaravalloti, Agostino; Prosperini, Giuseppe; Bergesio, Fabrizio; Chauvie, Stephane; Pavoni, Chiara; Gianni, Alessandro Massimo; Rambaldi, Alessandro

    2018-02-10

    Purpose To investigate the progression-free survival (PFS) of patients with advanced Hodgkin lymphoma (HL) after a risk-adapted treatment strategy that was based on a positive positron emission tomography scan performed after two doxorubicin, vinblastine, vincristine, and dacarbazine (ABVD) cycles (PET2). Patients and Methods Patients with advanced-stage (IIB to IVB) HL were consecutively enrolled. After two ABVD cycles, PET2 was performed and centrally reviewed according to the Deauville five-point scale. Patients with a positive PET2 were randomly assigned to four cycles of escalated bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone (BEACOPP) followed by four cycles of standard BEACOPP with or without rituximab. Patients with a negative PET2 continued ABVD, and those with a large nodal mass at diagnosis (≥ 5 cm) in complete remission with a negative PET at the end of chemotherapy were randomly assigned to radiotherapy or no further treatment. The primary end point was 3-year PFS. Results Of 782 enrolled patients, 150 (19%) had a positive and 630 (81%) a negative PET2. The 3-year PFS of all patients was 82%. The 3-year PFS of those with a positive and negative PET2 was 60% and 87%, respectively ( P < .001). The 3-year PFS of patients with a positive PET2 assigned to BEACOPP with or without rituximab was 63% versus 57% ( P = .53). In 296 patients with both interim and post-ABVD-negative PET who had a large nodal mass at diagnosis, radiotherapy was randomly added after chemotherapy without a significant PFS improvement (97% v 93%, respectively; P = .29). The 3-year overall survival of all 782 patients was 97% (99% and 89% for PET2 negative and positive, respectively). Conclusion The PET-driven switch from ABVD to escalated BEACOPP is feasible and effective in high-risk patients with advanced-stage HL.

  10. A feature-based approach to modeling protein–protein interaction hot spots

    Science.gov (United States)

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-01-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to π–related interactions, especially π · · · π interactions. PMID:19273533

  11. Lung PET scan

    Science.gov (United States)

    ... Chest PET scan; Lung positron emission tomography; PET - chest; PET - lung; PET - tumor imaging; ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, ...

  12. Scanning of bone metastases

    International Nuclear Information System (INIS)

    Robillard, J.

    1977-01-01

    The Centers against cancer of Caen, Angers, Montpellier, Strasbourg and 'the Curie Foundation' have confronted their experience in detection of bone metastases by total body scanning. From the investigation by this procedure, of 1,467 patients with cancer, it results: the confrontation between radio and scanning shows a rate of false positive and false negative identical to the literature ones; the countage scanning allows to reduce the number of false positive; scanning allows to direct bone biopsy and to improve efficiency of histological examination [fr

  13. Model PET Scan Activity

    Science.gov (United States)

    Strunk, Amber; Gazdovich, Jennifer; Redouté, Oriane; Reverte, Juan Manuel; Shelley, Samantha; Todorova, Vesela

    2018-05-01

    This paper provides a brief introduction to antimatter and how it, along with other modern physics topics, is utilized in positron emission tomography (PET) scans. It further describes a hands-on activity for students to help them gain an understanding of how PET scans assist in detecting cancer. Modern physics topics provide an exciting way to introduce students to current applications of physics.

  14. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ...

  16. Transverse section scanning mechanism

    International Nuclear Information System (INIS)

    Doherty, E.J.

    1978-01-01

    Apparatus is described for scanning a transverse, radionuclide scan-field using an array of focussed collimators. The collimators are movable tangentially on rails, driven by a single motor via a coupled screw. The collimators are also movable in a radial direction on rails driven by a step motor via coupled screws and bevel gears. Adjacent bevel gears rotate in opposite directions so adjacent collimators move in radially opposite directions. In use, the focal point of each collimator scans at least half of the scan-field, e.g. a human head located in the central aperture, and the electrical outputs of detectors associated with each collimator are used to determine the distribution of radioactive emission intensity at a number of points in the scan-field. (author)

  17. Volume higher; spot price ranges widen

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is the October 1994 uranium market summary. During this reporting period, volume on the spot concentrates market doubled. Twelve deals took place: three in the spot concentrates market, one in the medium and long-term market, four in the conversion market, and four in the enrichment market. The restricted price range widened due to higher prices at the top end of the range, while the unrestricted price range widened because of lower prices at the bottom end. Spot conversion prices were higher, and enrichment prices were unchanged

  18. Local annealing of shape memory alloys using laser scanning and computer vision

    Science.gov (United States)

    Hafez, Moustapha; Bellouard, Yves; Sidler, Thomas C.; Clavel, Reymond; Salathe, Rene-Paul

    2000-11-01

    A complete set-up for local annealing of Shape Memory Alloys (SMA) is proposed. Such alloys, when plastically deformed at a given low temperature, have the ability to recover a previously memorized shape simply by heating up to a higher temperature. They find more and more applications in the fields of robotics and micro engineering. There is a tremendous advantage in using local annealing because this process can produce monolithic parts, which have different mechanical behavior at different location of the same body. Using this approach, it is possible to integrate all the functionality of a device within one piece of material. The set-up is based on a 2W-laser diode emitting at 805nm and a scanner head. The laser beam is coupled into an optical fiber of 60(mu) in diameter. The fiber output is focused on the SMA work-piece using a relay lens system with a 1:1 magnification, resulting in a spot diameter of 60(mu) . An imaging system is used to control the position of the laser spot on the sample. In order to displace the spot on the surface a tip/tilt laser scanner is used. The scanner is positioned in a pre-objective configuration and allows a scan field size of more than 10 x 10 mm2. A graphical user interface of the scan field allows the user to quickly set up marks and alter their placement and power density. This is achieved by computer controlling X and Y positions of the scanner as well as the laser diode power. A SMA micro-gripper with a surface area less than 1 mm2 and an opening of the jaws of 200(mu) has been realized using this set-up. It is electrically actuated and a controlled force of 16mN can be applied to hold and release small objects such as graded index micro-lenses at a cycle time of typically 1s.

  19. LIDAR COMBINED SCANNING UNIT

    Directory of Open Access Journals (Sweden)

    V. V. Elizarov

    2016-11-01

    Full Text Available Subject of Research. The results of lidar combined scanning unit development for locating leaks of hydrocarbons are presented The unit enables to perform high-speed scanning of the investigated space in wide and narrow angle fields. Method. Scanning in a wide angular field is produced by one-line scanning path by means of the movable aluminum mirror with a frequency of 20Hz and amplitude of 20 degrees of swing. Narrowband scanning is performed along a spiral path by the deflector. The deflection of the beam is done by rotation of the optical wedges forming part of the deflector at an angle of ±50. The control function of the scanning node is performed by a specialized software product written in C# programming language. Main Results. This scanning unit allows scanning the investigated area at a distance of 50-100 m with spatial resolution at the level of 3 cm. The positioning accuracy of the laser beam in space is 15'. The developed scanning unit gives the possibility to browse the entire investigated area for the time not more than 1 ms at a rotation frequency of each wedge from 50 to 200 Hz. The problem of unambiguous definition of the beam geographical coordinates in space is solved at the software level according to the rotation angles of the mirrors and optical wedges. Lidar system coordinates are determined by means of GPS. Practical Relevance. Development results open the possibility for increasing the spatial resolution of scanning systems of a wide range of lidars and can provide high positioning accuracy of the laser beam in space.

  20. The Development of a Scanning Soft X-Ray Microscope.

    Science.gov (United States)

    Rarback, Harvey Miles

    We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.

  1. Dosimetric consequences of pencil beam width variations in scanned beam particle therapy

    International Nuclear Information System (INIS)

    Chanrion, M A; Ammazzalorso, F; Wittig, A; Engenhart-Cabillic, R; Jelen, U

    2013-01-01

    Scanned ion beam delivery enables the highest degree of target dose conformation attainable in external beam radiotherapy. Nominal pencil beam widths (spot sizes) are recorded during treatment planning system commissioning. Due to changes in the beam-line optics, the actual spot sizes may differ from these commissioning values, leading to differences between planned and delivered dose. The purpose of this study was to analyse the dosimetric consequences of spot size variations in particle therapy treatment plans. For 12 patients with skull base tumours and 12 patients with prostate carcinoma, scanned-beam carbon ion and proton treatment plans were prepared and recomputed simulating spot size changes of (1) ±10% to simulate the typical magnitude of fluctuations, (2) ±25% representing the worst-case scenario and (3) ±50% as a part of a risk analysis in case of fault conditions. The primary effect of the spot size variation was a dose deterioration affecting the target edge: loss of target coverage and broadening of the lateral penumbra (increased spot size) or overdosage and contraction of the lateral penumbra (reduced spot size). For changes ⩽25%, the resulting planning target volume mean 95%-isodose line coverage (CI-95%) deterioration was ranging from negligible to moderate. In some cases changes in the dose to adjoining critical structures were observed. (paper)

  2. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  3. Bone scan in pediatrics

    International Nuclear Information System (INIS)

    Gordon, I.; Peters, A.M.

    1987-01-01

    In 1984, a survey carried out in 21 countries in Europe showed that bone scintigraphy comprised 16% of all paediatric radioisotope scans. Although the value of bone scans in paediatrics is potentially great, their quality varies greatly, and poor-quality images are giving this valuable technique a bad reputation. The handling of children requires a sensitive staff and the provision of a few simple inexpensive items of distraction. Attempting simply to scan a child between two adult patients in a busy general department is a recipe for an unhappy, uncooperative child with the probable result of poor images. The intravenous injection of isotope should be given adjacent to the gamma camera room, unless dynamic scans are required, so that the child does not associate the camera with the injection. This injection is best carried out by someone competent in paediatric venipunture; the entire procedure should be explained to the child and parent, who should remain with child throughout. It is naive to think that silence makes for a cooperative child. The sensitivity of bone-seeking radioisotope tracers and the marked improvement in gamma camera resolution has allowed the bone scanning to become an integrated technique in the assessment of children suspected of suffering from pathological bone conditions. The tracer most commonly used for routine bone scanning is 99m Tc diphosphonate (MDP); other isotopes used include 99m Tc colloid for bone marrow scans and 67 Ga citrate and 111 In white blood cells ( 111 In WBC) for investigation of inflammatory/infective lesions

  4. Finding your innovation sweet spot.

    Science.gov (United States)

    Goldenberg, Jacob; Horowitz, Roni; Levav, Amnon; Mazursky, David

    2003-03-01

    Most new product ideas are either uninspired or impractical. So how can developers hit the innovation sweet spot--far enough from existing products to attract real interest but close enough that they are feasible to make and market? They can apply five innovation patterns that manipulate existing components of a product and its immediate environment to come up with something both ingenious and viable, say the authors. The subtraction pattern works by removing product components, particularly those that seem desirable or indispensable. Think of the legless high chair that attaches to the kitchen table. The multiplication pattern makes one or more copies of an existing component, then alters those copies in some important way. For example, the Gillette double-bladed razor features a second blade that cuts whiskers at a slightly different angle. By dividing an existing product into its component parts--the division pattern--you can see something that was an integrated whole in an entirely different light. Think of the modern home stereo--it has modular speakers, tuners, and CD and tape players, which allow users to customize their sound systems. The task unification pattern involves assigning a new task to an existing product element or environmental attribute, thereby unifying two tasks in a single component. An example is the defrosting filament in an automobile windshield that also serves as a radio antenna. Finally, the attribute dependency pattern alters or creates the dependent relationships between a product and its environment. For example, by creating a dependent relationship between lens color and external lighting conditions, eyeglass developers came up with a lens that changes color when exposed to sunlight.

  5. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Lesnjak, A.; Tusek, J.

    2002-01-01

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H 2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  6. A telemetry experiment on spotted grunter Pomadasys ...

    African Journals Online (AJOL)

    associated fish in South Africa was investigated by conducting a tracking experiment on spotted grunter Pomadasys commersonnii in the East Kleinemonde Estuary. The telemetry equipment comprised two VEMCO V8 transmitters and a ...

  7. Asparagus Beetle and Spotted Asparagus Beetle

    OpenAIRE

    Hodgson, Erin W.; Drost, Dan

    2007-01-01

    Asparagus beetle, Crioceris asparagi, and spotted asparagus beetle, C. duodecimpunctata are leaf beetles in the family Chrysomelidae. These beetles feed exclusively on asparagus and are native to Europe. Asparagus beetle is the more economically injurious of the two species.

  8. Detecting Blind Spot By Using Ultrasonic Sensor

    Directory of Open Access Journals (Sweden)

    T. S. Ajay

    2015-08-01

    Full Text Available Safety remains a top concern for automobile industries and new-car shoppers. Detection of Blind Spots is a major concern for safety issues. So automobiles have been constantly updating their products with new technologies to detect blind spots so that they can add more safety to the vehicle and also reduce the road accidents. Almost 1.5 million people die in road accidents each year. Blind spot of an automobile is the region of the vehicle which cannot be observed properly while looking either through side or rear mirror view. To meet the above requirements this paper describes detecting blind spot by using ultrasonic sensor and controlling the direction of car by automatic steering. The technology embedded in the system is capable of automatically steer the vehicle away from an obstacle if the system determines that a collision is impending or if the vehicle is in the vicinity of our car.

  9. How Many Spots Does a Cheetah Have?

    Science.gov (United States)

    Reed, Kristine M.

    2000-01-01

    Describes first grade students' mathematical investigation of the number of spots on a cheetah. The exploration of counting and estimation strategies that grew from the investigation gives evidence that mathematicians come in all ages. (ASK)

  10. SU-G-TeP1-12: Random Repainting as Mitigation for Scanned Ion Beam Interplay Effects

    International Nuclear Information System (INIS)

    Bach, M; Wulff, J

    2016-01-01

    Purpose: Interference of dose application in scanned beam particle therapy and organ motion may lead to interplay effects with distorted dose to target volumes. Interplay effects depend on the speed and direction of the scanning beam, leading to fringed field edges (scanning parallel to organ motion direction) or over- and under-dosed regions (both directions are orthogonal). Current repainting methods can mitigate interplay effects, but are susceptible to artefacts when only a limited number of repaints are applied. In this study a random layered-repainting strategy was investigated. Methods: Mono-energetic proton beams were irradiated to a 10 ×10 cm"2 scanned field at a Varian ProBeam facility. Applied dose was measured with a 2D amorphous silicon detector mounted on a motion platform (CIRS dynamic platform). Motion was considered with different cycles, directions and translations up to ±8 mm. Dose distributions were measured for a static case, regular repainting (repeated meander-like path) and random repainting. Latter was realized by randomly distributing single spot locations during irradiation for a given number of repaints. Efficiency of repainting was analyzed by comparison to the static case. A simulation tool based on treatment logs and motion information was developed to compare measurement results to expected dose distributions. Results: Regular repainting could reduce motion artefacts, but dose distortion was strongly dependent on motion direction. Random repainting with same number of repaints (N=4) showed superior results, independent of target movement direction, while introducing slight penalty on delivery times, caused by an increase of overall scanning travel distance. The simulation tool showed good agreement to measured results. Conclusion: The results demonstrate significant improvement in terms of dose conformity when layered repainting is applied in a randomized fashion. This allows for reduced target margins during treatment planning and

  11. SU-G-TeP1-12: Random Repainting as Mitigation for Scanned Ion Beam Interplay Effects

    Energy Technology Data Exchange (ETDEWEB)

    Bach, M; Wulff, J [Varian Medical Systems Particle Therapy GmbH, Troisdorf, NRW (Germany)

    2016-06-15

    Purpose: Interference of dose application in scanned beam particle therapy and organ motion may lead to interplay effects with distorted dose to target volumes. Interplay effects depend on the speed and direction of the scanning beam, leading to fringed field edges (scanning parallel to organ motion direction) or over- and under-dosed regions (both directions are orthogonal). Current repainting methods can mitigate interplay effects, but are susceptible to artefacts when only a limited number of repaints are applied. In this study a random layered-repainting strategy was investigated. Methods: Mono-energetic proton beams were irradiated to a 10 ×10 cm{sup 2} scanned field at a Varian ProBeam facility. Applied dose was measured with a 2D amorphous silicon detector mounted on a motion platform (CIRS dynamic platform). Motion was considered with different cycles, directions and translations up to ±8 mm. Dose distributions were measured for a static case, regular repainting (repeated meander-like path) and random repainting. Latter was realized by randomly distributing single spot locations during irradiation for a given number of repaints. Efficiency of repainting was analyzed by comparison to the static case. A simulation tool based on treatment logs and motion information was developed to compare measurement results to expected dose distributions. Results: Regular repainting could reduce motion artefacts, but dose distortion was strongly dependent on motion direction. Random repainting with same number of repaints (N=4) showed superior results, independent of target movement direction, while introducing slight penalty on delivery times, caused by an increase of overall scanning travel distance. The simulation tool showed good agreement to measured results. Conclusion: The results demonstrate significant improvement in terms of dose conformity when layered repainting is applied in a randomized fashion. This allows for reduced target margins during treatment

  12. White-centred retinal haemorrhages (Roth spots).

    OpenAIRE

    Ling, R.; James, B.

    1998-01-01

    Roth spots (white-centred retinal haemorrhages) were classically described as septic emboli lodged in the retina of patients with subacute bacterial endocarditis. Indeed many have considered Roth spots pathognomonic for this condition. More recent histological evidence suggests, however, that they are not foci of bacterial abscess. Instead, they are nonspecific and may be found in many other diseases. A review of the histology and the pathogenesis of these white-centred haemorrhages will be p...

  13. X-ray spot film device

    International Nuclear Information System (INIS)

    1981-01-01

    Improvements are described in an X-ray spot film device which is used in conjunction with an X-ray table to make a selected number of radiographic exposures on a single film and to perform fluoroscopic examinations. To date, the spot film devices consist of two X-ray field defining masks, one of which is moved manually. The present device is more convenient to use and speeds up the procedure. (U.K.)

  14. Fluorescence image excited by a scanning UV-LED light

    Science.gov (United States)

    Tsai, Hsin-Yi; Chen, Yi-Ju; Huang, Kuo-Cheng

    2013-03-01

    An optical scanning system using UV-LED light to induced fluorescence technology can enhance a fluorescence image significantly in a short period. It has several advantages such as lower power consumption, no scattering effect in skins, and multilayer images can be obtained to analyze skin disease. From the experiment results, the light intensity increases with increase spot size and decrease scanning speed, but the image resolution is oppositely. Moreover, the system could be widely used in clinical diagnosis and photodynamic therapy for skin disease because even the irradiated time of fluorescence substance is short but it will provide accurately positioning of fluorescence object.

  15. Modeling deflagration waves out of hot spots

    Science.gov (United States)

    Partom, Yehuda

    2017-01-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.

  16. Unblinding the dark matter blind spots

    International Nuclear Information System (INIS)

    Han, Tao; Kling, Felix

    2017-01-01

    The dark matter (DM) blind spots in the Minimal Supersymmetric Standard Model (MSSM) refer to the parameter regions where the couplings of the DM particles to the Z-boson or the Higgs boson are almost zero, leading to vanishingly small signals for the DM direct detections. In this paper, we carry out comprehensive analyses for the DM searches under the blind-spot scenarios in MSSM. Guided by the requirement of acceptable DM relic abundance, we explore the complementary coverage for the theory parameters at the LHC, the projection for the future underground DM direct searches, and the indirect searches from the relic DM annihilation into photons and neutrinos. We find that (i) the spin-independent (SI) blind spots may be rescued by the spin-dependent (SD) direct detection in the future underground experiments, and possibly by the indirect DM detections from IceCube and SuperK neutrino experiments; (ii) the detection of gamma rays from Fermi-LAT may not reach the desirable sensitivity for searching for the DM blind-spot regions; (iii) the SUSY searches at the LHC will substantially extend the discovery region for the blind-spot parameters. As a result, the dark matter blind spots thus may be unblinded with the collective efforts in future DM searches.

  17. Impact of Spot Size and Spacing on the Quality of Robustly Optimized Intensity Modulated Proton Therapy Plans for Lung Cancer.

    Science.gov (United States)

    Liu, Chenbin; Schild, Steven E; Chang, Joe Y; Liao, Zhongxing; Korte, Shawn; Shen, Jiajian; Ding, Xiaoning; Hu, Yanle; Kang, Yixiu; Keole, Sameer R; Sio, Terence T; Wong, William W; Sahoo, Narayan; Bues, Martin; Liu, Wei

    2018-06-01

    To investigate how spot size and spacing affect plan quality, robustness, and interplay effects of robustly optimized intensity modulated proton therapy (IMPT) for lung cancer. Two robustly optimized IMPT plans were created for 10 lung cancer patients: first by a large-spot machine with in-air energy-dependent large spot size at isocenter (σ: 6-15 mm) and spacing (1.3 σ), and second by a small-spot machine with in-air energy-dependent small spot size (σ: 2-6 mm) and spacing (5 mm). Both plans were generated by optimizing radiation dose to internal target volume on averaged 4-dimensional computed tomography scans using an in-house-developed IMPT planning system. The dose-volume histograms band method was used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effects with randomized starting phases for each field per fraction. Patient anatomy voxels were mapped phase-to-phase via deformable image registration, and doses were scored using in-house-developed software. Dose-volume histogram indices, including internal target volume dose coverage, homogeneity, and organs at risk (OARs) sparing, were compared using the Wilcoxon signed-rank test. Compared with the large-spot machine, the small-spot machine resulted in significantly lower heart and esophagus mean doses, with comparable target dose coverage, homogeneity, and protection of other OARs. Plan robustness was comparable for targets and most OARs. With interplay effects considered, significantly lower heart and esophagus mean doses with comparable target dose coverage and homogeneity were observed using smaller spots. Robust optimization with a small spot-machine significantly improves heart and esophagus sparing, with comparable plan robustness and interplay effects compared with robust optimization with a large-spot machine. A small-spot machine uses a larger number of spots to cover the same tumors compared with a large-spot

  18. Prediction of hot spots in protein interfaces using a random forest model with hybrid features.

    Science.gov (United States)

    Wang, Lin; Liu, Zhi-Ping; Zhang, Xiang-Sun; Chen, Luonan

    2012-03-01

    Prediction of hot spots in protein interfaces provides crucial information for the research on protein-protein interaction and drug design. Existing machine learning methods generally judge whether a given residue is likely to be a hot spot by extracting features only from the target residue. However, hot spots usually form a small cluster of residues which are tightly packed together at the center of protein interface. With this in mind, we present a novel method to extract hybrid features which incorporate a wide range of information of the target residue and its spatially neighboring residues, i.e. the nearest contact residue in the other face (mirror-contact residue) and the nearest contact residue in the same face (intra-contact residue). We provide a novel random forest (RF) model to effectively integrate these hybrid features for predicting hot spots in protein interfaces. Our method can achieve accuracy (ACC) of 82.4% and Matthew's correlation coefficient (MCC) of 0.482 in Alanine Scanning Energetics Database, and ACC of 77.6% and MCC of 0.429 in Binding Interface Database. In a comparison study, performance of our RF model exceeds other existing methods, such as Robetta, FOLDEF, KFC, KFC2, MINERVA and HotPoint. Of our hybrid features, three physicochemical features of target residues (mass, polarizability and isoelectric point), the relative side-chain accessible surface area and the average depth index of mirror-contact residues are found to be the main discriminative features in hot spots prediction. We also confirm that hot spots tend to form large contact surface areas between two interacting proteins. Source data and code are available at: http://www.aporc.org/doc/wiki/HotSpot.

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine ( ... for each thyroid uptake is five minutes or less. top of page What will I experience during ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... evaluate changes in the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should ... such as an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... abnormal was found, and should not be a cause of concern for you. If you had an ... abnormal was found, and should not be a cause of concern for you. Actual scanning time for ...

  2. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to a multiplexer slip ring means for receiving output from the detectors and enabling interfeed to the image reconstruction station. (U.K.)

  3. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are presented of a tomographic scanning apparatus, its rotational assembly, and the control and circuit elements, with particular reference to the amplifier and multiplexing circuits enabling detector signal calibration. (U.K.)

  4. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification relates to a tomographic scanning apparatus using a fan beam and digital output signal, and particularly to the design of the gas-pressurized ionization detection system. (U.K.)

  5. Pediatric CT Scans

    Science.gov (United States)

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... which are encased in metal and plastic and most often shaped like a box, attached to a ... will I experience during and after the procedure? Most thyroid scan and thyroid uptake procedures are painless. ...

  7. Heart CT scan

    Science.gov (United States)

    ... make to decrease the risk of heart disease. Risks Risks of CT scans include: Being exposed to ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... that help physicians diagnose and evaluate medical conditions. These imaging scans use radioactive materials called radiopharmaceuticals or ... or had thyroid cancer. A physician may perform these imaging tests to: determine if the gland is ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. The thyroid scan and thyroid uptake provide ...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Actual scanning time for each thyroid uptake is five minutes or less. top of page What will ... diagnostic procedures have been used for more than five decades, and there are no known long-term ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Head and Neck Cancer top ... Scan and Uptake Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information needed to make a diagnosis or to determine appropriate treatment, if any. Nuclear medicine is less expensive and ...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation ... high as with other imaging techniques, such as CT or MRI. However, nuclear medicine scans are more ...

  16. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... as an overactive thyroid gland, a condition called hyperthyroidism , cancer or other growths assess the nature of ... an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the last two ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... painless. However, during the thyroid scan, you may feel uncomfortable when lying completely still with your head ... When the radiotracer is given intravenously, you will feel a slight pin prick when the needle is ...

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... energy. top of page What are some common uses of the procedure? The thyroid scan is used ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is ... computer, create pictures offering details on both the structure and function of organs and tissues in your ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... found, and should not be a cause of concern for you. If you had an intravenous line ... found, and should not be a cause of concern for you. Actual scanning time for each thyroid ...

  2. Body CT (CAT Scan)

    Science.gov (United States)

    ... a CT scan can be reformatted in multiple planes, and can even generate three-dimensional images. These ... other medical conditions and whether you have a history of heart disease, asthma, diabetes, kidney disease or ...

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should I prepare? You ... You will receive specific instructions based on the type of scan you are undergoing. top of page ...

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Uptake? A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) ... of thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that ...

  5. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification describes a tomographic scanning apparatus, with particular reference to the adjustable fan beam and its collimator system, together with the facility for taking a conventional x-radiograph without moving the patient. (U.K.)

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... exam of any medications you are taking, including vitamins and herbal supplements. You should also inform them ... of scan you are undergoing. top of page What does the equipment look like? The special camera ...

  7. The Scanning Optical Microscope.

    Science.gov (United States)

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should I prepare? You ... but is often performed on hospitalized patients as well. Thyroid Scan You will be positioned on an ...

  9. Cathode spot movements along the carbon fibres in carbon/carbon composites

    International Nuclear Information System (INIS)

    Zhang Chengyu; Qiao Shengru; Yang Zhimao; Ding Bingjun

    2007-01-01

    The cathode spot movements on a polyacrilonitrile (PAN)-based carbon felt reinforced C/C composite and a three dimensional PAN-based carbon fibre reinforced C/C composite (3D-C/C) were investigated by a scanning electron microscope and a digital high-speed video camera. It was found that the carbon fibres have a higher ability to withstand the vacuum arc erosion than the carbon matrix. The cathode spot walks on the matrix, rather than on the carbon fibres. The cathode spot motion is controlled by the architecture of carbon fibres in C/C. The cathode spots move along the carbon fibres by a step-by-step manner rather than a random walk. The cathode spot tracks spread over a wide zone on the 3D-C/C surface parallel to the carbon fibre. The average arc spreading velocity is estimated to be about 0.9 m s -1 and the transient arc spreading velocity is in the range of 0.54-4.5 m s -1

  10. An investigation of the dynamic separation of spot welds under plane tensile pulses

    International Nuclear Information System (INIS)

    Ma, Bohan; Fan, Chunlei; Chen, Danian; Wang, Huanran; Zhou, Fenghua

    2014-01-01

    We performed ultra-high-speed tests for purely opening spot welds using plane tensile pulses. A gun system generated a parallel impact of a projectile plate onto a welded plate. Induced by the interactions of the release waves, the welded plate opened purely under the plane tensile pulses. We used the laser velocity interferometer system for any reflector to measure the velocity histories of the free surfaces of the free part and the spot weld of the welded plate. We then used a scanning electron microscope to investigate the recovered welded plates. We found that the interfacial failure mode was mainly a brittle fracture and the cracks propagated through the spot nugget, while the partial interfacial failure mode was a mixed fracture comprised ductile fracture and brittle fracture. We used the measured velocity histories to evaluate the tension stresses in the free part and the spot weld of the welded plate by applying the characteristic theory. We also discussed the different constitutive behaviors of the metals under plane shock loading and under uniaxial split Hopkinson pressure bar tests. We then compared the numerically simulated velocity histories of the free surfaces of the free part and the spot weld of the welded plate with the measured results. The numerical simulations made use of the fracture stress criteria, and then the computed fracture modes of the tests were compared with the recovered results

  11. The analysis of track chamber photographs using flying spot digitizers

    CERN Multimedia

    Powell, Brian W

    1966-01-01

    A vast quantity of data pours from the experiments on particle accelerators throughout the world. For example, over 300 000 photographs per week came from the three bubble chambers operating on the CERN PS at the end of 1965. The conventional method of processing these bubble chamber photographs is for each one of them to be examined ('scanned') to see whether it records an interesting particle interaction. The interesting photographs are then passed to hand operated measuring machines to obtain precise measurements of the particle trajectories recorded on the film. Similar measurements are carried out on photographs taken in film spark chamber experiments. This article on the Flying Spot Digitizers at CERN describes one of the most fruitful attempts to speed and make more accurate the process of analysis of bubble and spark chamber photographs. There are two types of Flying Spot Digitizer at CERN — the HPD or Hough Powell Device (named after Professor Hough and the author who, together, initiated the devel...

  12. 7 CFR 28.423 - Middling Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Middling Spotted Color. 28.423 Section 28.423... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Spotted Cotton § 28.423 Middling Spotted Color. Middling Spotted Color is color which is within the range represented by a set of samples in the custody of...

  13. A study of dynamic resistance during small scale resistance spot welding of thin Ni sheets

    International Nuclear Information System (INIS)

    Tan, W; Zhou, Y; Kerr, H W; Lawson, S

    2004-01-01

    The dynamic resistance has been investigated during small scale resistance spot welding (SSRSW) of Ni sheets. Electrical measurements have been correlated with scanning electron microscope images of joint development. The results show that the dynamic resistance curve can be divided into the following stages based on physical change in the workpieces: asperity heating, surface breakdown, asperity softening, partial surface melting, nugget growth and expulsion. These results are also compared and contrasted with dynamic resistance behaviour in large scale RSW

  14. Trace-fossil assemblages with a new ichnogenus in "spotted"

    Science.gov (United States)

    Šimo, Vladimír; Tomašových, Adam

    2013-10-01

    Highly-bioturbated "spotted" limestones and marls (Fleckenmergel-Fleckenkalk facies) of the Early Jurassic, which were deposited in broad and recurrent deep-shelf habitats of the Northern Tethys, are characterized by rare benthic carbonate-producing macroinvertebrates. To address this paradox, we analyse trace-fossil assemblages in a ~85 m-thick succession of Pliensbachian spotted deposits (Zliechov Basin, Western Carpathians). They are dominated by infaunal and semi-infaunal deposit-feeders, with 9 ichnogenera and pyritized tubes of the semi-infaunal foraminifer Bathysiphon, being dominated by Chondrites, Lamellaeichnus (new ichnogenus), and Teichichnus. Lamellaeichnus, represented by a horizontal basal cylindrical burrow and an upper row of stacked convex-up gutters, was produced by a mobile deposit-feeder inhabiting shallow tiers because it is crossed by most other trace fossils. We show that the spotty appearance of the deposits is generated by a mixture of (1) dark, organic-rich shallow- and deep-tier traces (TOC = 0.16-0.36), and (2) light grey, organic-poor mottled or structurless sediment (TOC = 0.09-0.22). The higher TOC in shallow-tier burrows of Lamellaeichnus demonstrates that uppermost sediment layers were affected by poor redox cycling. Such conditions imply a limited mixed-layer depth and inefficient nutrient recycling conditioned by hypoxic bottom-waters, allowed by poor circulation and high sedimentation rates in depocenters of the Zliechov Basin. Hypoxic conditions are further supported by (1) dominance of trace-fossils produced by infaunal deposit feeders, (2) high abundance of hypoxiatolerant agglutinated foraminifer Bathysiphon, and (3) high abundance of Chondrites with ~0.5 mm-sized branches. Oxygen-deficient bottom-conditions can thus simultaneously explain the rarity of benthic carbonate-producing macroinvertebrates and high standing abundance of tolerant soft-shell and agglutinated organisms in spotted deposits.

  15. Magnetically scanned proton therapy beams: rationales and techniques

    International Nuclear Information System (INIS)

    Jones, D.T.L.; Schreuder, A.N.

    2000-01-01

    Perhaps the most important advantages of beam scanning systems for proton therapy in comparison with conventional passive beam spreading systems are: (1) Intensity modulation and inverse planning are possible. (2) There is negligible reduction in the range of the beam. (3) Integral dose is reduced as dose conformation to the proximal edge of the lesion is possible. (4) In principle no field-specific modifying devices are required. (5) There is less activation of the surroundings. (6) Scanning systems axe almost infinitely flexible. The main disadvantages include: (1) Scanning systems are more complicated and therefore potentially less reliable and more dangerous. (2) The development of such systems is more demanding in terms of cost, time and manpower. (3) More stable beams are required. (4) Dose and beam position monitoring are more difficult. (5) The problems associated with patient and organ movement axe more severe. There are several techniques which can be used for scanning. For lateral beam spreading, circular scanning (wobbling) or linear scanning can be done. In the latter case the beam can be scanned continuously or in a discrete fashion (spot scanning). Another possibility is to undertake the fastest scan in one dimension (strip scanning) and translate the patient or the scanning magnet in the other dimension. Depth variation is achieved by interposing degraders in the beam (cyclotrons) or by changing the beam energy (synchrotrons). The aim of beam scanning is to deliver a predetermined dose at any point in the body. Special safety precautions must be taken because of the high instantaneous dose rates. The beam position and the dose delivered at each point must be accurately and redundantly determined. (author)

  16. SPOTTED STAR LIGHT CURVES WITH ENHANCED PRECISION

    International Nuclear Information System (INIS)

    Wilson, R. E.

    2012-01-01

    The nearly continuous timewise coverage of recent photometric surveys is free of the large gaps that compromise attempts to follow starspot growth and decay as well as motions, thereby giving incentive to improve computational precision for modeled spots. Due to the wide variety of star systems in the surveys, such improvement should apply to light/velocity curve models that accurately include all the main phenomena of close binaries and rotating single stars. The vector fractional area (VFA) algorithm that is introduced here represents surface elements by small sets of position vectors so as to allow accurate computation of circle-triangle overlap by spherical geometry. When computed by VFA, spots introduce essentially no noticeable scatter in light curves at the level of one part in 10,000. VFA has been put into the Wilson-Devinney light/velocity curve program and all logic and mathematics are given so as to facilitate entry into other such programs. Advantages of precise spot computation include improved statistics of spot motions and aging, reduced computation time (intrinsic precision relaxes needs for grid fineness), noise-free illustration of spot effects in figures, and help in guarding against false positives in exoplanet searches, where spots could approximately mimic transiting planets in unusual circumstances. A simple spot growth and decay template quantifies time profiles, and specifics of its utilization in differential corrections solutions are given. Computational strategies are discussed, the overall process is tested in simulations via solutions of synthetic light curve data, and essential simulation results are described. An efficient time smearing facility by Gaussian quadrature can deal with Kepler mission data that are in 30 minute time bins.

  17. Scanning-beam digital x-ray (SBDX) technology for interventional and diagnostic cardiac angiography

    International Nuclear Information System (INIS)

    Speidel, Michael A.; Wilfley, Brian P.; Star-Lack, Josh M.; Heanue, Joseph A.; Van Lysel, Michael S.

    2006-01-01

    The scanning-beam digital x-ray (SBDX) system is designed for x-ray dose reduction in cardiac angiographic applications. Scatter reduction, efficient detection of primary x-rays, and an inverse beam geometry are the main components of the entrance dose reduction strategy. This paper reports the construction of an SBDX prototype, image reconstruction techniques, and measurements of spatial resolution and x-ray output. The x-ray source has a focal spot that is electronically scanned across a large-area transmission target. A multihole collimator beyond the target defines a series of x-ray beams directed at a distant small-area detector array. The prototype has a 23 cmx23 cm target, 100x100 focal spot positions, and a 5 cmx5 cm CdTe detector positioned 150 cm from the target. With this nonmechanical method of beam scanning, patient images with low detected scatter are generated at up to 30 frame/s. SBDX data acquisition is tomosynthetic. The prototype simultaneously reconstructs 16 planes spaced throughout the cardiac volume using shift-and-add backprojection. Image frames analogous to conventional projection images are generated with a multiplane compositing algorithm. Single-plane versus multiplane reconstruction of contrast-filled coronary arteries is demonstrated with images of the porcine heart. Phantom and porcine imaging studies show multiplane reconstruction is practicable under clinically realistic levels of patient attenuation and cardiac motion. The modulation transfer function for an in-plane slit at mechanical isocenter measured 0.41-0.56 at 1 cycle/mm, depending on the detector element to image pixel interpolation technique. Modeling indicates that desired gains in spatial resolution are achievable by halving the detector element width. The x-ray exposure rate 15 cm below isocenter, without table or patient in the beam, measured 11.5 R/min at 120 kVp, 24.3 kWp and 3.42 R/min at 70 kVp, 14.2 kWp

  18. Low temperature–scanning electron microscopy to evaluate morphology and predation of Scolothrips sexmaculatus Pergande (Thysanoptera: Thripidae) against spider mites (Acari: Tetranychidae: Tetranychus species)

    Science.gov (United States)

    This paper evaluates the potential usefulness of low temperature-scanning electron microscopy (LT-SEM) to evaluate morphology and predation behavior of the six-spotted thrips (Scolothrips sexmaculatus Pergande) against the two-spotted spider mite (Tetranychus urticae (Koch)). Morphological features...

  19. Image-guided brachytherapy for cervical cancer: analysis of D2 cc hot spot in three-dimensional and anatomic factors affecting D2 cc hot spot in organs at risk.

    Science.gov (United States)

    Kim, Robert Y; Dragovic, Alek F; Whitley, Alexander C; Shen, Sui

    2014-01-01

    To analyze the D2 cc hot spot in three-dimensional CT and anatomic factors affecting the D2 cc hot spot in organs at risk (OARs). Thirty-one patients underwent pelvic CT scan after insertion of the applicator. High-dose-rate treatment planning was performed with standard loading patterns. The D2 cc structures in OARs were generated in three dimensional if the total equivalent dose in 2 Gy exceeded our defined dose limits (hot spot). The location of D2 cc hot spot was defined as the center of the largest D2 cc fragment. The relationship between the hot spot and the applicator position was reported in Digital Imaging and Communication in Medicine coordinates. The location of sigmoid, small bowel, and bladder D2 cc hot spots was around the endocervix: The mean location of sigmoid hot spot for lateral view was 1.6 cm posteriorly and 2.3 cm superiorly (Y, 1.6 and Z, 2.3), small bowel was 1.6 cm anteriorly and 2.7 cm superiorly (Y, -1.6 and Z, 2.7). The mean location of bladder hot spot was 1.6 cm anteriorly and 1.6 cm superiorly (Y, -1.6 and Z, 1.6). These hot spots were near the plane of Point A (X, 2.0 or -2.0; Y, 0; and Z, 2.0). The mean location of rectal hot spot was 1.6 cm posteriorly and 1.9 cm inferiorly (Y, 1.6 and Z, -1.9). D2 cc hot spot was affected by uterine wall thickness, uterine tandem position, fibroids, bladder fullness, bowel gas, and vaginal packing. Because of the location of the D2 cc hot spots, larger tumors present a challenge for adequate tumor coverage with a conventional brachytherapy applicator without an interstitial implant. Additionally, anatomic factors were identified which affect the D2 cc hot spot in OARs. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...... and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...... to simulate glacial cycles accurately. Also, results suggest that non-linear 10 dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles....

  1. Fuel cycles

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1983-05-01

    AECL publications, from the open literature, on fuels and fuel cycles used in CANDU reactors are listed in this bibliography. The accompanying index is by subject. The bibliography will be brought up to date periodically

  2. Are daily and weekly load and spot price dynamics in Australia's National Electricity Market governed by episodic nonlinearity?

    International Nuclear Information System (INIS)

    Wild, Phillip; Hinich, Melvin J.; Foster, John

    2010-01-01

    In this article, we use half hourly spot electricity prices and load data for the National Electricity Market (NEM) of Australia for the period from December 1998 to June 2009 to test for episodic nonlinearity in the dynamics governing daily and weekly cycles in load and spot price time series data. We apply the portmanteau correlation, bicorrelation and tricorrelation tests introduced in Hinich (1996) to the time series of half hourly spot prices and load demand from 7/12/1998 to 30/06/2009 using a FORTRAN 95 program. We find the presence of significant third and fourth-order (nonlinear) serial dependence in the weekly load and spot price data in particular, but to a much more marginal extent, in the daily data. (author)

  3. Attitudes and practice of couples regarding sexual relations during the menses and spotting.

    Science.gov (United States)

    Barnhart, K; Furman, I; Devoto, L

    1995-02-01

    To determine attitudes and practices regarding sexual relations during menstruation and vaginal spotting, a cross-sectional descriptive survey was performed at the Instituto de Investigaciones Materno Infantil, Universidad de Chile, Santiago, Chile. A total of 287 women and 206 men were randomly selected from an urban population. Attitudes, beliefs, and practices regarding sexual relations during vaginal bleeding were surveyed and stratified by educational level and other demographic characteristics. Overall, 70% of women and 72% of men were found to avoid sexual relations during menstruation. Fifty-four percent of women and 60% of men avoided sexual relations during vaginal spotting. Women with higher education (technical or university) were less likely to avoid sexual intercourse compared to those with a lower educational level (basic or secondary education) during menstruation (73% vs. 57%) and vaginal spotting (69% vs. 34%). Men with a higher educational level (university) avoided intercourse less frequently when their partner was spotting (48% vs. 64%). As many methods of contraception affect a woman's menstrual cycle, they therefore may affect the intimacy of a couple. Counseling and education regarding the menstrual cycle and expected alterations by a contraceptive method may reduce any negative impact of a contraceptive device on a couple's sexual life.

  4. Molecular and histological characterization of age spots

    Science.gov (United States)

    Choi, Wonseon; Yin, Lanlan; Smuda, Christoph; Batzer, Jan; Hearing, Vincent J.; Kolbe, Ludger

    2016-01-01

    Age spots, also called solar lentigines and lentigo senilis, are light brown to black pigmented lesions of various sizes that typically develop in chronically sun-exposed skin. It is well known that age spots are strongly related to chronic sun exposure and are associated with photodamage and an increased risk for skin cancer, however, the mechanism(s) underlying their development remain poorly understood. We used immunohistochemical analysis and microarray analysis to investigate the processes involved in their formation, focusing on specific markers associated with the functions and proliferation of melanocytes and keratinocytes. A total of 193 genes were differentially expressed in age spots but melanocyte pigment genes were not among them. The increased expression of keratins 5 and 10, markers of basal and suprabasal keratinocytes, respectively, in age spots suggests that the increased proliferation of basal keratinocytes combined with the decreased turnover of suprabasal keratinocytes leads to the exaggerated formation of rete ridges in lesional epidermis which in turn disrupts the normal processing of melanin upwards from the basal layer. Based on our results, we propose a model for the development of age spots that explains the accumulation of melanin and the development of extensive rete ridges in those hyperpigmented lesions. PMID:27621222

  5. Plutonium spot of mixed oxide fuel, 2

    International Nuclear Information System (INIS)

    Suzuki, Yukio; Maruishi, Yoshihiro; Satoh, Masaichi; Aoki, Toshimasa; Muto, Tadashi

    1974-01-01

    In a fast reactor, the specification for the homogeneity of plutonium in plutonium-uranium mixed-oxide fuel is mainly dependent on the nuclear characteristics, whereas in a thermal reactor, on thermal characteristics. This homogeneity is measured by autoradiography as the plutonium spot size of the specimens which are arbitrarily chosen fuel pellets from a lot. Although this is a kind of random sampling, it is difficult to apply this method to conventional digital standards including JIS standards. So a special sampling inspection method was studied. First, it is assumed that the shape of plutonium spots is spherical, the size distribution is logarithmic normal, and the standard deviation is constant. Then, if standard deviation and mean spot size are given, the logarithmic normal distribution is decided unitarily, and further if the total weight of plutonium spots for a lot of pellets is known, the number of the spots (No) which does not conform to the specification can be obtained. Then, the fraction defective is defined as No devided by the number of pellets per lot. As to the lot with such fraction defective, the acceptance coefficient of the lot was obtained through calculation, in which the number of sampling, acceptable diameter limit observed and acceptable conditions were used as parameters. (Tai, I.)

  6. Preoperative bone scans

    International Nuclear Information System (INIS)

    Charkes, N.D.; Malmud, L.S.; Caswell, T.; Goldman, L.; Hall, J.; Lauby, V.; Lightfoot, W.; Maier, W.; Rosemond, G.

    1975-01-01

    Strontium nitrate Sr-87m bone scans were made preoperatively in a group of women with suspected breast cancer, 35 of whom subsequently underwent radical mastectomy. In 3 of the 35 (9 percent), the scans were abnormal despite the absence of clinical or roentgenographic evidence of metastatic disease. All three patients had extensive axillary lymph node involvement by tumor, and went on to have additional bone metastases, from which one died. Roentgenograms failed to detect the metastases in all three. Occult bone metastases account in part for the failure of radical mastectomy to cure some patients with breast cancer. It is recommended that all candidates for radical mastectomy have a preoperative bone scan. (U.S.)

  7. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase......-shift. Experimental results inX-band, in good agreement with the theory, show that it is possible to scan the main lobe an angle ofpm30degby a variation of the frequencypm300MHz, and where the 3 dB beamwidth is less than10deg. The directivity was 14.7 dB, while the gain was 8.1 dB. The efficiency might be improved...

  8. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    Abele, M.

    1983-01-01

    A computerized tomographic scanning apparatus suitable for diagnosis and for improving target identification in stereotactic neurosurgery is described. It consists of a base, a source of penetrating energy, a detector which produces scanning signals and detector positioning means. A frame with top and bottom arms secures the detector and source to the top and bottom arms respectively. A drive mechanism rotates the frame about an axis along which the frame may also be moved. Finally, the detector may be moved relative to the bottom arm in a direction contrary to the rotation of the frame. (U.K.)

  9. Scanning the phenomenological MSSM

    CERN Document Server

    Wuerzinger, Jonas

    2017-01-01

    A framework to perform scans in the 19-dimensional phenomenological MSSM is developed and used to re-evaluate the ATLAS experiments' sensitivity to R-parity-conserving supersymmetry with LHC Run 2 data ($\\sqrt{s}=13$ TeV), using results from 14 separate ATLAS searches. We perform a $\\tilde{t}_1$ dedicated scan, only considering models with $m_{\\tilde{t}_1}<1$ TeV, while allowing both a neutralino ($\\tilde{\\chi}_1^0$) and a sneutrino ($\\tilde{\

  10. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  11. Adaptive Optical Scanning Holography

    Science.gov (United States)

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  12. Spots on AG Virginis - paradigm or panacea?

    International Nuclear Information System (INIS)

    Bell, S.A.; Rainger, P.P.; Hilditch, R.W.

    1990-01-01

    New photometric and spectroscopic observations of the eclipsing binary AG Vir are presented. Medium-resolution spectroscopy has allowed the measurement of velocities for the secondary component for the first time. The V light curve shows many of the features seen in previous studies of this system. A full analysis of the spectroscopic and photometric data has been made which suggests that the system is either in a marginal state of contact or a deep-contact configuration depending on the type of spot model invoked. AG Vir constitutes an excellent example of the expected manifestations of spot activity on a light curve. It also demonstrates the ease with which the spot phenomenon can be invoked to explain the appearance of a light curve and to provide conflicting results. (author)

  13. How much extra spot gas is there?

    International Nuclear Information System (INIS)

    Bros, Th.

    2007-01-01

    With the increase of European gas demand and the sharp decrease of local supply, security of supply is becoming an ever greater issue. However, liberalization tilts the traditional equilibrium based on long term 'take or pay' contracts between big suppliers and national distribution companies. Today, buying gas on the spot market is becoming more and more important to balance supply portfolio with a fast moving market share. But the way gas spot markets are operating is not well documented. It is very difficult to assess its impact on the European security of supply. Therefore, the aim of this article is to evaluate the amount of 'spot' liquefied natural gas (LNG) that could be found in case of a major supply disruption in pipe gas delivered to Europe

  14. Laser Spot Center Detection and Comparison Test

    Science.gov (United States)

    Zhu, Jun; Xu, Zhengjie; Fu, Deli; Hu, Cong

    2018-04-01

    High efficiency and precision of the pot center detection are the foundations of avionics instrument navigation and optics measurement basis for many applications. It has noticeable impact on overall system performance. Among them, laser spot detection is very important in the optical measurement technology. In order to improve the low accuracy of the spot center position, the algorithm is improved on the basis of the circle fitting. The pretreatment is used by circle fitting, and the improved adaptive denoising filter for TV repair technology can effectively improves the accuracy of the spot center position. At the same time, the pretreatment and de-noising can effectively reduce the influence of Gaussian white noise, which enhances the anti-jamming capability.

  15. PREDICTING RELEVANT EMPTY SPOTS IN SOCIAL INTERACTION

    Institute of Scientific and Technical Information of China (English)

    Yoshiharu MAENO; Yukio OHSAWA

    2008-01-01

    An empty spot refers to an empty hard-to-fill space which can be found in the records of the social interaction, and is the clue to the persons in the underlying social network who do not appear in the records. This contribution addresses a problem to predict relevant empty spots in social interaction. Homogeneous and inhomogeneous networks are studied as a model underlying the social interaction. A heuristic predictor function method is presented as a new method to address the problem. Simulation experiment is demonstrated over a homogeneous network. A test data set in the form of market baskets is generated from the simulated communication. Precision to predict the empty spots is calculated to demonstrate the performance of the presented method.

  16. [Rocky Mountain spotted fever in Brazil].

    Science.gov (United States)

    del Sá DelFiol, Fernando; Junqueira, Fábio Miranda; da Rocha, Maria Carolina Pereira; de Toledo, Maria Inês; Filho, Silvio Barberato

    2010-06-01

    Although the number of confirmed cases of spotted fever has been declining in Brazil since 2005, the mortality rate (20% to 30%) is still high in comparison to other countries. This high mortality rate is closely related to the difficulty in making the diagnosis and starting the correct treatment. Only two groups of antibiotics have proven clinical effectiveness against spotted fever: chloramphenicol and tetracyclines. Until recently, the use of tetracyclines was restricted to adults because of the associated bone and tooth changes in children. Recently, however, the American Academy of Pediatrics and various researchers have recommended the use of doxycycline in children. In more severe cases, chloramphenicol injections are often preferred in Brazil because of the lack of experience with injectable tetracycline. Since early diagnosis and the adequate drug treatment are key to a good prognosis, health care professionals must be better prepared to recognize and treat spotted fever.

  17. Dose error analysis for a scanned proton beam delivery system

    International Nuclear Information System (INIS)

    Coutrakon, G; Wang, N; Miller, D W; Yang, Y

    2010-01-01

    All particle beam scanning systems are subject to dose delivery errors due to errors in position, energy and intensity of the delivered beam. In addition, finite scan speeds, beam spill non-uniformities, and delays in detector, detector electronics and magnet responses will all contribute errors in delivery. In this paper, we present dose errors for an 8 x 10 x 8 cm 3 target of uniform water equivalent density with 8 cm spread out Bragg peak and a prescribed dose of 2 Gy. Lower doses are also analyzed and presented later in the paper. Beam energy errors and errors due to limitations of scanning system hardware have been included in the analysis. By using Gaussian shaped pencil beams derived from measurements in the research room of the James M Slater Proton Treatment and Research Center at Loma Linda, CA and executing treatment simulations multiple times, statistical dose errors have been calculated in each 2.5 mm cubic voxel in the target. These errors were calculated by delivering multiple treatments to the same volume and calculating the rms variation in delivered dose at each voxel in the target. The variations in dose were the result of random beam delivery errors such as proton energy, spot position and intensity fluctuations. The results show that with reasonable assumptions of random beam delivery errors, the spot scanning technique yielded an rms dose error in each voxel less than 2% or 3% of the 2 Gy prescribed dose. These calculated errors are within acceptable clinical limits for radiation therapy.

  18. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method.

    Science.gov (United States)

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-12-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor-Ag2S (0.9 eV) quantum dots (QDs)-in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

  19. Volume dips; spot price ranges narrow

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is the September 1994 uranium market summary. Volume in the spot concentrates market fell below 1 million lbs U3O8. In total, twelve deals took place compared to 28 deals in August. Of the twelve deals, three took place in the spot concentrates market, two took place in the medium and long-term market, three in the conversion market, and four in the enrichment market. Restricted prices weakened, but unrestricted prices firmed slightly. The enrichment price range narrowed a bit

  20. White-centred retinal haemorrhages (Roth spots).

    Science.gov (United States)

    Ling, R; James, B

    1998-10-01

    Roth spots (white-centred retinal haemorrhages) were classically described as septic emboli lodged in the retina of patients with subacute bacterial endocarditis. Indeed many have considered Roth spots pathognomonic for this condition. More recent histological evidence suggests, however, that they are not foci of bacterial abscess. Instead, they are nonspecific and may be found in many other diseases. A review of the histology and the pathogenesis of these white-centred haemorrhages will be provided, along with the work-up of the differential diagnosis.

  1. Sweet Spot Supersymmetry and Composite Messengers

    International Nuclear Information System (INIS)

    Ibe, Masahiro; Kitano, Ryuichiro

    2007-01-01

    Sweet spot supersymmetry is a phenomenologically and cosmologically perfect framework to realize a supersymmetric world at short distance. We discuss a class of dynamical models of supersymmetry breaking and its mediation whose low-energy effective description falls into this framework. Hadron fields in the dynamical models play a role of the messengers of the supersymmetry breaking. As is always true in the models of the sweet spot supersymmetry, the messenger scale is predicted to be 10 5 GeV ∼ mess ∼ 10 GeV. Various values of the effective number of messenger fields N mess are possible depending on the choice of the gauge group

  2. Observations spotted solar type stars in Pleiades

    International Nuclear Information System (INIS)

    Magnitskij, A.K.

    1987-01-01

    The september - october 1986 observations discovered periodic light variations in three solar type stars in the Pleiades cluster: Hz 296 (0.8 M Sun ), Hz152(0.91 M Sun ) and Hz739(1.15 M Sun ). Periods and amplitudes are accordingly 2 d and 0 m .11, 4 d .12 and 0 m .07, 2 d .70 and 0 m .05. Considerable light variations of these stars in Pleiades are due to the rotation of spotted stars. Contrast spots of solar type stars likely exist when stars are young and rapidly rotate

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... process that regulates the rate at which the body converts food to energy. top of page What are some common uses of the procedure? The thyroid scan is used to determine the size, shape and position of the thyroid gland. The ...

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake ...

  5. Dialogue scanning measuring systems

    International Nuclear Information System (INIS)

    Borodyuk, V.P.; Shkundenkov, V.N.

    1985-01-01

    The main developments of scanning measuring systems intended for mass precision processsing of films in nuclear physics problems and in related fields are reviewed. A special attention is paid to the problem of creation of dialogue systems which permit to simlify the development of control computer software

  6. Scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1970-05-15

    The JSM-11 scanning electron microscope at CRNL has been used extensively for topographical studies of oxidized metals, fracture surfaces, entomological and biological specimens. A non-dispersive X-ray attachment permits the microanalysis of the surface features. Techniques for the production of electron channeling patterns have been developed. (author)

  7. Scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Binnig, G.; Rohrer, H.

    1983-01-01

    Based on vacuum tunneling, a novel type of microscope, the scanning tunneling microscope (STM) was developed. It has an unprecedented resolution in real space on an atomic scale. The authors review the important technical features, illustrate the power of the STM for surface topographies and discuss its potential in other areas of science and technology. (Auth.)

  8. Bone scan in rheumatology

    International Nuclear Information System (INIS)

    Morales G, R.; Cano P, R.; Mendoza P, R.

    1993-01-01

    In this chapter a revision is made concerning different uses of bone scan in rheumatic diseases. These include reflex sympathetic dystrophy, osteomyelitis, spondyloarthropaties, metabolic bone diseases, avascular bone necrosis and bone injuries due to sports. There is as well some comments concerning pediatric pathology and orthopedics. (authors). 19 refs., 9 figs

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... information. The thyroid scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is a gland in the neck that controls metabolism , a chemical process that regulates the rate at which the body ...

  10. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to the means of adjusting the apparent gain of the signal processing means for receiving output signals from the detectors, to compensate for drift in the gain characteristics, including means for passing a reference signal. (U.K.)

  11. Stabilized radiographic scanning agent

    International Nuclear Information System (INIS)

    Fawzi, M.B.

    1979-01-01

    A stable composition useful in preparation of technetium-99m-based radiographic scanning agents has been developed. The composition contains a stabilizing amount of gentisate stabilizer selected from gentisic acid and its soluble pharmaceutically-acceptable salts and esthers. (E.G.)

  12. Scanning electron microscope

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The principle underlying the design of the scanning electron microscope (SEM), the design and functioning of SEM are described. Its applications in the areas of microcircuitry and materials science are outlined. The development of SEM in India is reviewed. (M.G.B.)

  13. Radiographic scanning agent

    International Nuclear Information System (INIS)

    Tofe, A.J.

    1976-01-01

    A stable radiographic scanning agent on a sup(99m)Tc basis has been developed. The substance contains a pertechnetate reduction agent, tin(II)-chloride, chromium(II)-chloride, or iron(II)-sulphate, as well as an organospecific carrier and ascorbic acid or a pharmacologically admissible salt or ester of ascorbic acid. (VJ) [de

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... you: have had any tests, such as an x-ray or CT scan, surgeries or treatments using iodinated ... page How does the procedure work? With ordinary x-ray examinations, an image is made by passing x- ...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine (I-123 or I-131) in liquid or capsule form to swallow. The thyroid uptake will begin several hours to 24 hours later. Often, two separate uptake ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the last two months. are taking medications or ingesting other substances that contain iodine , including kelp, seaweed, cough syrups, multivitamins or heart medications. have any ...

  17. Acoustic monitoring indicates a correlation between calling and spawning in captive spotted seatrout (Cynoscion nebulosus

    Directory of Open Access Journals (Sweden)

    Eric W. Montie

    2017-02-01

    Full Text Available Background Fish sound production is widespread throughout many families. Territorial displays and courtship are the most common reasons for fish sound production. Yet, there is still some questions on how acoustic signaling and reproduction are correlated in many sound-producing species. In the present study, our aim was to determine if a quantitative relationship exists between calling and egg deposition in captive spotted seatrout (Cynoscion nebulosus. This type of data is essential if passive acoustics is to be used to identify spawning aggregations over large spatial scales and monitor reproductive activity over annual and decadal timeframes. Methods Acoustic recorders (i.e., DSG-Oceans were placed in three laboratory tanks to record underwater sound over an entire, simulated reproductive season. We enumerated the number of calls, calculated the received sound pressure level, and counted the number of eggs every morning in each tank. Results Spotted seatrout produced three distinct call types characterized as “drums,” “grunts,” and “staccatos.” Spotted seatrout calling increased as the light cycle shifted from 13.5 to 14.5 h of light, and the temperature increased to 27.7 °C. Calling decreased once the temperature fell below 27.7 °C, and the light cycle shifted to 12 h of light. These temperature and light patterns followed the natural reproductive season observed in wild spotted seatrout in the Southeast United States. Spotted seatrout exhibited daily rhythms in calling. Acoustic signaling began once the lights turned off, and calling reached maximum activity approximately 3 h later. Eggs were released only on evenings in which spotted seatrout were calling. In all tanks, spotted seatrout were more likely to spawn when male fish called more frequently. A positive relationship between SPL and the number of eggs collected was found in Tanks 1 and 3. Discussion Our findings indicate that acoustic metrics can predict spawning

  18. The first human patient treatment on the PSI spot scanning gantry

    International Nuclear Information System (INIS)

    Munkel, G.; Bevan, A.; Blattmann, H.; Boehringer, T.; Coray, A.; Egger, E.; Lin, S.; Lomax, A.; Pedroni, E.; Schaffner, B.

    1997-01-01

    In November 1996, the first human patient was irradiated with protons on the new PSI facility. The technical and physical reliability of the device had been reviewed and tested extensively; in addition, several animal patients with spontaneous tumors had been treated before and followed up carefully in order to have a biological control and an early warning system for unexpected radiation effects. The first human patient received a boost therapy for a brain metastasis of a malignant melanoma. (author)

  19. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann, E-mail: hermann.fuchs@meduniwien.ac.at [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090, Austria and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Alber, Markus [Department for Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Schreiner, Thomas [PEG MedAustron, Wiener Neustadt 2700 (Austria); Georg, Dietmar [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria)

    2015-09-15

    Purpose: Helium ions ({sup 4}He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed and integrated into the treatment planning system Hyperion. Methods: Current knowledge on RBE of {sup 4}He together with linear energy transfer considerations motivated an empirical depth-dependent “zonal” RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2.8 at the Bragg-peak region, which was then kept constant over the fragmentation tail. To account for a variable proton RBE, the same model concept was also applied to protons with a maximum RBE of 1.6. Both RBE models were added to a previously developed pencil beam algorithm for physical dose calculation and included into the treatment planning system Hyperion. The implementation was validated against Monte Carlo simulations within a water phantom using γ-index evaluation. The potential benefits of {sup 4}He based treatment plans were explored in a preliminary treatment planning comparison (against protons) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and {sup 4}He. Results: Comparison of Monte Carlo and Hyperion calculated doses resulted in a γ{sub mean} of 0.3, with 3.4% of the values above 1 and γ{sub 1%} of 1.5 and better. Treatment plan evaluation showed comparable planning target volume coverage for both particles, with slightly increased coverage for {sup 4}He. Organ at risk (OAR) doses were generally reduced using {sup 4}He, some by more than to 30%. Improvements of {sup 4}He over protons were more pronounced for treatment plans taking biological effects into account. All OAR doses were within tolerances specified in the QUANTEC report. Conclusions: The biological {sup 4}He model proposed above is a first approach matching biological data published so far. The advantage of {sup 4}He seems to lie in the reduction of dose to surrounding tissue and to OARs. Nevertheless, additional biological experiments and treatment planning studies with larger patient numbers and more tumor indications are necessary to study the possible benefits of helium ion beam therapy in detail.

  20. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    DEFF Research Database (Denmark)

    Fuchs, Hermann; Alber, Markus; Schreiner, Thomas

    2015-01-01

    PURPOSE: Helium ions ((4)He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed...... published so far. The advantage of (4)He seems to lie in the reduction of dose to surrounding tissue and to OARs. Nevertheless, additional biological experiments and treatment planning studies with larger patient numbers and more tumor indications are necessary to study the possible benefits of helium ion...

  1. Newborn screening blood spot analysis in the UK: influence of spot size, punch location and haematocrit.

    Science.gov (United States)

    Lawson, A J; Bernstone, L; Hall, S K

    2016-03-01

    In dried blood spot analysis, punch location and variations in applied sample volume and haematocrit can produce different measured concentrations of analytes. We investigated the magnitude of these effects in newborn screening in the UK. Heparinized blood spiked with thyroid stimulating hormone (TSH), phenylalanine, tyrosine, leucine, methionine, octanoyl carnitine (C8), and immunoreactive trypsinogen (IRT) was spotted onto filter paper: (i) at a constant haematocrit of 50% at various volumes, and (ii) at a range of haematocrits using a constant volume. Subpunches (3.2 mm) of the dried blood spots were then analysed. Compared with a central punch from a 50 µL blood spot with 50% haematocrit, 10 µL spots can have significantly lower measured concentrations of all analytes, with decreases of 15% or more observed for leucine, methionine, phenylalanine, and tyrosine. Punching at the edge of a spot can increase measured concentrations up to 35%. Higher haematocrit decreased measured TSH and C8 yet increased amino acids and IRT by 15% compared with 50% haematocrit. Lower haematocrits had the opposite effect, but only with higher concentrations of some analytes. Differences in blood spot size, haematocrit and punch location substantially affect measured concentrations for analytes used in the UK newborn screening programme, and this could affect false positive and negative rates. To minimize analytical bias, these variables should be controlled or adjusted for where possible. © The Author(s) 2015.

  2. Spot sign as a predictor of rebleeding after endoscopic surgery for intracerebral hemorrhage.

    Science.gov (United States)

    Miki, Koichi; Yagi, Kenji; Nonaka, Masani; Iwaasa, Mitsutoshi; Abe, Hiroshi; Morishita, Takashi; Arima, Hisatomi; Inoue, Tooru

    2018-05-25

    OBJECTIVE In patients with spontaneous intracerebral hemorrhage (sICH), postoperative recurrent hemorrhage (PRH) is one of the most severe complications after endoscopic evacuation of hematoma (EEH). However, no predictors of this complication have been identified. In the present study, the authors retrospectively investigated whether PRH can be preoperatively predicted by the presence of the spot sign on CT scans. METHODS In total, 143 patients with sICH were treated by EEH between June 2009 and March 2017, and 127 patients who underwent preoperative CT angiography were included in this study. Significant correlations of PRH with the patients' baseline, clinical, and radiographic characteristics, including the spot sign, were evaluated using multivariable logistic regression models. RESULTS The incidence of and risk factors for PRH were assessed in 127 patients with available data. PRH occurred in 9 (7.1%) patients. Five (21.7%) cases of PRH were observed among 23 patients with the spot sign, whereas only 4 (3.8%) cases of PRH occurred among 104 patients without the spot sign. The spot sign was the only independent predictor of PRH (OR 5.81, 95% CI 1.26-26.88; p = 0.02). The following factors were not independently associated with PRH: age, hypertension, poor consciousness, antihemostatic factors (thrombocytopenia, coagulopathy, and use of antithrombotic drugs), the location and size of the sICH, other radiographic findings (black hole sign and blend sign), surgical duration and procedures, and early surgery. CONCLUSIONS The spot sign is likely to be a strong predictor of PRH after EEH among patients with sICH. Complete and careful control of bleeding in the operative field should be ensured when surgically treating such patients. New surgical strategies and procedures might be needed to improve these patients' outcomes.

  3. Ambitious Survey Spots Stellar Nurseries

    Science.gov (United States)

    2010-08-01

    Astronomers scanning the skies as part of ESO's VISTA Magellanic Cloud survey have now obtained a spectacular picture of the Tarantula Nebula in our neighbouring galaxy, the Large Magellanic Cloud. This panoramic near-infrared view captures the nebula itself in great detail as well as the rich surrounding area of sky. The image was obtained at the start of a very ambitious survey of our neighbouring galaxies, the Magellanic Clouds, and their environment. The leader of the survey team, Maria-Rosa Cioni (University of Hertfordshire, UK) explains: "This view is of one of the most important regions of star formation in the local Universe - the spectacular 30 Doradus star-forming region, also called the Tarantula Nebula. At its core is a large cluster of stars called RMC 136, in which some of the most massive stars known are located." ESO's VISTA telescope [1] is a new survey telescope at the Paranal Observatory in Chile (eso0949). VISTA is equipped with a huge camera that detects light in the near-infrared part of the spectrum, revealing a wealth of detail about astronomical objects that gives us insight into the inner workings of astronomical phenomena. Near-infrared light has a longer wavelength than visible light and so we cannot see it directly for ourselves, but it can pass through much of the dust that would normally obscure our view. This makes it particularly useful for studying objects such as young stars that are still enshrouded in the gas and dust clouds from which they formed. Another powerful aspect of VISTA is the large area of the sky that its camera can capture in each shot. This image is the latest view from the VISTA Magellanic Cloud Survey (VMC). The project will scan a vast area - 184 square degrees of the sky (corresponding to almost one thousand times the apparent area of the full Moon) including our neighbouring galaxies the Large and Small Magellanic Clouds. The end result will be a detailed study of the star formation history and three

  4. Fast IMRT with narrow high energy scanned photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, Bjoern; Straaring t, Sara Janek; Holmberg, Rickard; Naefstadius, Peder; Brahme, Anders [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm (Sweden); Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm, Sweden and Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)

    2011-08-15

    Purpose: Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Methods: Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with geant4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. Results: The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm{sup 2} field, the authors used a spot matrix of 100 equal intensity

  5. Transitional–turbulent spots and turbulent–turbulent spots in boundary layers

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre

    2017-01-01

    Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional–turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a Λ vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional–turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional–turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional–turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent–turbulent spots. These turbulent–turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional–turbulent spots, these turbulent–turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent–turbulent spots. PMID:28630304

  6. Transitional-turbulent spots and turbulent-turbulent spots in boundary layers.

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Wallace, James M; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre

    2017-07-03

    Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a [Formula: see text] vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.

  7. Scanning optical microscope with long working distance objective

    Science.gov (United States)

    Cloutier, Sylvain G.

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  8. Sustainable control of white spot disease

    DEFF Research Database (Denmark)

    Heinecke, Rasmus Demuth; Buchmann, Kurt

    White spot disease caused by the ciliate Ichthyophthirius multifiliis Fouquet, 1876 is a serious problem in freshwater aquaculture worldwide. This parasitosis is of frequent occurrence in both conventional earth pond fish farms and in fish farms using new high technology re-circulation systems...

  9. Dramatic Change in Jupiter's Great Red Spot

    Science.gov (United States)

    Simon, A. A.; Wong, M. H.; Rogers, J. H.; Orton, G. S.; de Pater, I.; Asay-Davis, X.; Carlson, R. W.; Marcus, P. S.

    2015-01-01

    Jupiter's Great Red Spot (GRS) is one of its most distinct and enduring features, having been continuously observed since the 1800's. It currently spans the smallest latitude and longitude size ever recorded. Here we show analyses of 2014 Hubble spectral imaging data to study the color, structure and internal dynamics of this long-live storm.

  10. Easy Demonstration of the Poisson Spot

    Science.gov (United States)

    Gluck, Paul

    2010-01-01

    Many physics teachers have a set of slides of single, double and multiple slits to show their students the phenomena of interference and diffraction. Thomas Young's historic experiments with double slits were indeed a milestone in proving the wave nature of light. But another experiment, namely the Poisson spot, was also important historically and…

  11. Triggered tremor sweet spots in Alaska

    Science.gov (United States)

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  12. Electricity spot price dynamics: Beyond financial models

    International Nuclear Information System (INIS)

    Guthrie, Graeme; Videbeck, Steen

    2007-01-01

    We reveal properties of electricity spot prices that cannot be captured by the statistical models, commonly used to model financial asset prices, that are increasingly used to model electricity prices. Using more than eight years of half-hourly spot price data from the New Zealand Electricity Market, we find that the half-hourly trading periods fall naturally into five groups corresponding to the overnight off-peak, the morning peak, daytime off-peak, evening peak, and evening off-peak. The prices in different trading periods within each group are highly correlated with each other, yet the correlations between prices in different groups are lower. Models, adopted from the modeling of security prices, that are currently applied to electricity spot prices are incapable of capturing this behavior. We use a periodic autoregression to model prices instead, showing that shocks in the peak periods are larger and less persistent than those in off-peak periods, and that they often reappear in the following peak period. In contrast, shocks in the off-peak periods are smaller, more persistent, and die out (perhaps temporarily) during the peak periods. Current approaches to modeling spot prices cannot capture this behavior either. (author)

  13. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...

  14. Rocky Mountain spotted fever in dogs, Brazil.

    Science.gov (United States)

    Labruna, Marcelo B; Kamakura, Orson; Moraes-Filho, Jonas; Horta, Mauricio C; Pacheco, Richard C

    2009-03-01

    Clinical illness caused by Rickettsia rickettsii in dogs has been reported solely in the United States. We report 2 natural clinical cases of Rocky Mountain spotted fever in dogs in Brazil. Each case was confirmed by seroconversion and molecular analysis and resolved after doxycycline therapy.

  15. The sweet spots in human communication.

    Science.gov (United States)

    Salem, Philip

    2011-07-01

    In baseball, the sweet spot is a special place on a bat where the batter can hit the ball with the most power. It is the place where the performances of the batter and pitcher collide with maximum effect. It is the place where the dynamic tension between opponents leads to transformation. The dynamic tension in all living systems is between similarity and difference. Chaos and complexity scholars recognized this tension as amounts of information. When the amounts of information were high, but not too high, the system moved to the edge of chaos, to the complexity regime, to strange attractors, or to chaos, depending on the model. The sweet spot is that range of relative variety, just the proper mix of similarity and difference, leading to transformation. This essay contains a model of human communication as an emergent social process with its own sweet spots. The essay also includes a description of current literature highlighting tensions between similarity and difference, and there is an exploration of the potential to move from one basin of attraction to another. The primary constraints on finding communication sweet spots are paradigmatic - adopting a process orientation, discovering the proper parameters, bracketing sequences to define initial conditions, and understanding the strengths and weaknesses of various modeling techniques.

  16. TSH IRMA of dried blood spots

    International Nuclear Information System (INIS)

    Tojinda, N.; Pattanachak, C.; Chongchirasiri, S.; Pattanachak, S.; Putrasreni, N.; Pleehachinda, R.; Suwanik, R.

    1990-01-01

    TSH determination is most useful for screening of neonatal hypothyroid in the population in iodine deficient areas. The NETRIA IRMA method for serum TSH was applied for blood-spot TSH. Cord blood on SS No. 903 filter paper was left dry overnight. The spot of 6 mm diameter, one/tube, was mixed with an assay buffer, diluted labelled m-anti-TSH, and diluted anti-TSH-solid phase. The mixture was rotated for 22-24 hours. After washing twice with wash buffer, it was counted for 1 minute. The standard curve with 0, 5, 10, 25, 50, 100, and 150 mIU/L whole blood was obtained with the maximum binding of 25%. The precision profile was satisfactory with %CV of 0 C) or 4 0 C or -20 0 C. The correlation between serum and blood-spot TSH values (n=120) showed r of 0.9541 and y=1.6123 (BS-TSH) +1.382. The mean of normal cord blood spot TSH (n=142) was 5.27 mIU/L. The technique was found to be precise, sensitive and easy to perform. Mass screening with this developed method is underway

  17. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    -, č. 274 (2005), s. 1-26 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : coordination * crises * cycles and fluctuations Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp274.pdf

  18. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  19. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    2008-01-01

    Roč. 63, č. 1 (2008), s. 308-327 ISSN 0899-8256 Institutional research plan: CEZ:AV0Z70850503 Keywords : global games * coordination * crises * cycles and fluctuations Subject RIV: AH - Economics Impact factor: 1.333, year: 2008

  20. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging

    NARCIS (Netherlands)

    Zhang, Ye; Knopf, A; Tanner, Colby; Boye, Dirk; Lomax, Antony J.

    2013-01-01

    Organ motion is a major problem for any dynamic radiotherapy delivery technique, and is particularly so for spot scanned proton therapy. On the other hand, the use of narrow, magnetically deflected proton pencil beams is potentially an ideal delivery technique for tracking tumour motion on-line. At

  1. Scanning probe microscopy

    International Nuclear Information System (INIS)

    Mainsbridge, B.

    1994-01-01

    In late 1959, Richard Feynman observed that manoeuvring atoms was something that could be done in principle but has not been done, 'because we are too big'. In 1982, the scanning tunnelling microscope (STM) was invented and is now a central tool for the construction of nanoscale devices in what was known as molecular engineering, and now, nanotechnology. The principles of the microscope are outlined and references are made to other scanning devices which have evolved from the original invention. The method of employment of the STM as a machine tool is described and references are made to current speculations on applications of the instrument in nanotechnology. A short bibliography on this topic is included. 27 refs., 7 figs

  2. Scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mainsbridge, B [Murdoch Univ., WA (Australia). School of Mathematical and Physical Sciences

    1994-12-31

    In late 1959, Richard Feynman observed that manoeuvring atoms was something that could be done in principle but has not been done, `because we are too big`. In 1982, the scanning tunnelling microscope (STM) was invented and is now a central tool for the construction of nanoscale devices in what was known as molecular engineering, and now, nanotechnology. The principles of the microscope are outlined and references are made to other scanning devices which have evolved from the original invention. The method of employment of the STM as a machine tool is described and references are made to current speculations on applications of the instrument in nanotechnology. A short bibliography on this topic is included. 27 refs., 7 figs.

  3. 67Ga lung scan

    International Nuclear Information System (INIS)

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.; Pick, R.

    1977-01-01

    Twenty-three patients with clinical signs of pulmonary embolic disease and lung infiltrates were studied to determine the value of gallium citrate 67 Ga lung scan in differentiating embolic from inflammatory lung disease. In 11 patients without angiographically proved embolism, only seven had corresponding ventilation-perfusion defects compatible with inflammatory disease. In seven of these 11 patients, the 67 Ga concentration indicated inflammatory disease. In the 12 patients with angiographically proved embolic disease, six had corresponding ventilation-perfusion defects compatible with inflammatory disease. None had an accumulation of 67 Ga in the area of pulmonary infiltrate. Thus, ventilation-perfusion lung scans are of limited value when lung infiltrates are present. In contrast, the accumulation of 67 Ga in the lung indicates an inflammatory process. Gallium imaging can help select those patients with lung infiltrates who need angiography

  4. Horizon Scanning for Pharmaceuticals

    DEFF Research Database (Denmark)

    Lepage-Nefkens, Isabelle; Douw, Karla; Mantjes, GertJan

    for a joint horizon scanning system (HSS).  We propose to create a central “horizon scanning unit” to perform the joint HS activities (a newly established unit, an existing HS unit, or a third party commissioned and financed by the collaborating countries). The unit will be responsible for the identification...... and filtration of new and emerging pharmaceutical products. It will maintain and update the HS database, organise company pipeline meetings, and disseminate the HSS’s outputs.  The HS unit works closely together with the designated national HS experts in each collaborating country. The national HS experts...... will collect country-specific information, liaise between the central HS unit and country-specific clinical and other experts, coordinate the national prioritization process (to select products for early assessment), and communicate the output of the HSS to national decision makers.  The outputs of the joint...

  5. Evaluation of actual vs expected photodynamic therapy spot size.

    Science.gov (United States)

    Ranchod, Tushar M; Brucker, Alexander J; Liu, Chengcheng; Cukras, Catherine A; Hopkins, Tim B; Ying, Gui-Shuang

    2009-05-01

    To determine the accuracy of the photodynamic therapy (PDT) laser spot size on the retina as generated by 2 Food and Drug Administration (FDA)-approved lasers. Prospective observational case series. Fundus photographs were taken of 1 eye of each of 10 subjects with the WinStation 4000 fundus photography system (OIS; Ophthalmic Imaging Systems, Sacramento, California, USA); disc size was calculated using OIS software. Slit-lamp photographs were taken of the PDT laser spot focused on the retina adjacent to the optic disc, using various spot sizes in combination with 3 different contact lenses and 2 different lasers. Spot size at the retina was determined by measuring the ratio of disc diameter to spot diameter in Adobe Photoshop (San Jose, California, USA) and applying this ratio to the OIS disc measurements. Spot size at the retina averaged 87% of expected spot size for the Coherent Opal laser (Coherent Inc, Santa Clara, California, USA) and 104% of expected spot size for the Zeiss Visulas laser (Carl Zeiss Meditec Inc, Dublin, California, USA)(P = .002). Multivariate analysis demonstrated that percentage of expected spot size decreased with larger spot diameter (P = .01 for Coherent laser; P = .02 for Zeiss laser). PDT spot size at the retina appears to be consistently smaller than expected for the Coherent laser while the spot size was consistently within 10% of expected size for the Zeiss laser. The deviation from expected size increased with larger spot size using the Coherent laser.

  6. Multichannel scanning spectrophotometer

    International Nuclear Information System (INIS)

    Lagutin, A.F.

    1979-01-01

    A spectrophotometer designed in the Crimea astrophysical observatory is described. The spectrophotometer is intended for the installation at the telescope to measure energy distribution in the star spectra in the 3100-8550 A range. The device is made according to the scheme with a fixed diffraction lattice. The choice of the optical kinematic scheme is explained. The main design elements are shown. Some singularities of the scanning drive kinematics are considered. The device performance is given

  7. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  8. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  9. IMEF gamma scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun; Jeon, Yong Bum

    1997-06-01

    The gamma scanning system which is installed in IMEF is the equipment obtaining the gamma ray spectrum from irradiated fuels. This equipment could afford the useful data relating spent fuels like as burn-up measurements. We describe the specifications of the equipment and its accessories, and also described its operation procedure so that an operator can use this report as the operation procedure. (author). 1 tab., 11 figs., 11 refs.

  10. IMEF gamma scanning system

    International Nuclear Information System (INIS)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun; Jeon, Yong Bum.

    1997-06-01

    The gamma scanning system which is installed in IMEF is the equipment obtaining the gamma ray spectrum from irradiated fuels. This equipment could afford the useful data relating spent fuels like as burn-up measurements. We describe the specifications of the equipment and its accessories, and also described its operation procedure so that an operator can use this report as the operation procedure. (author). 1 tab., 11 figs., 11 refs

  11. Usefulness of Thallium Scan for Differential Diagnosis of Breast Mass

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sang Kyun; Yum, Ha Yong; Lee, Chung Han; Choi, Kyung Hyun [Kosin University College of Medicine, Pusan (Korea, Republic of)

    1994-07-15

    The purpose of this study is to evaluate thallium scanning as a potential test in differentiating malignant from benign lesions of breast. Thirty-one female patients underwent thallium scan of the breast. After intravenous injection of 74-111 MBq(2-3 mCi)of thallium-201, anterior and lateral images were obtained. We compared thallium scans with pathological results. Of 11 patients with breast cancers, 10 cases (90.9%) were detected using thallium scan. Thallium scan obtained in one patient who had breast cancer but received several cycles of chemotherapy did not show thallium uptake. The smallest detectable cancer was 1.5 cm in diameter. In contrast, there is no thallium accumulation in breasts of 17 of 20 patients with benign disease (85%), Three cases of 13 fibrocystic disease show thallium uptake in their breast. In conclusion, thallium scan is an effective test in differentiating benign from malignant lesion.

  12. Usefulness of Thallium Scan for Differential Diagnosis of Breast Mass

    International Nuclear Information System (INIS)

    Bae, Sang Kyun; Yum, Ha Yong; Lee, Chung Han; Choi, Kyung Hyun

    1994-01-01

    The purpose of this study is to evaluate thallium scanning as a potential test in differentiating malignant from benign lesions of breast. Thirty-one female patients underwent thallium scan of the breast. After intravenous injection of 74-111 MBq(2-3 mCi)of thallium-201, anterior and lateral images were obtained. We compared thallium scans with pathological results. Of 11 patients with breast cancers, 10 cases (90.9%) were detected using thallium scan. Thallium scan obtained in one patient who had breast cancer but received several cycles of chemotherapy did not show thallium uptake. The smallest detectable cancer was 1.5 cm in diameter. In contrast, there is no thallium accumulation in breasts of 17 of 20 patients with benign disease (85%), Three cases of 13 fibrocystic disease show thallium uptake in their breast. In conclusion, thallium scan is an effective test in differentiating benign from malignant lesion.

  13. Scanning unit for collectrons

    International Nuclear Information System (INIS)

    Plaige, Yves.

    1976-01-01

    This invention concerns a measurement scanning assembly for collectron type detectors. It is used in measuring the neutron flux in nuclear reactors. As the number of these detectors in a reactor can be very great, they are not usually all connected permanently to the measuring facility but rather in turn by means of a scanning device which carries out, as it were, multiplexing between all the collectrons and the input of a single measuring system. The object of the invention is a scanning assembly which is of relative simplicity through an original organisation. Specifically, according to this organisation, the collectrons outputs are grouped together in bunches, each of these bunches being processed by a multiplexing sub-assembly belonging to a first stage, the different outputs of these multiplexing subassemblies of this first stage being grouped together yet again in bunches processed by multiplexors forming a new stage and so forth. Further, this structure is specially adapted for use with collectrons by utilising a current amplifier at each multiplexing level so that from one end to the other of the multiplexing system, the commutations are carried out on currents and not on voltages [fr

  14. Forensic Scanning Electron Microscope

    Science.gov (United States)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  15. SpotCaliper: fast wavelet-based spot detection with accurate size estimation.

    Science.gov (United States)

    Püspöki, Zsuzsanna; Sage, Daniel; Ward, John Paul; Unser, Michael

    2016-04-15

    SpotCaliper is a novel wavelet-based image-analysis software providing a fast automatic detection scheme for circular patterns (spots), combined with the precise estimation of their size. It is implemented as an ImageJ plugin with a friendly user interface. The user is allowed to edit the results by modifying the measurements (in a semi-automated way), extract data for further analysis. The fine tuning of the detections includes the possibility of adjusting or removing the original detections, as well as adding further spots. The main advantage of the software is its ability to capture the size of spots in a fast and accurate way. http://bigwww.epfl.ch/algorithms/spotcaliper/ zsuzsanna.puspoki@epfl.ch Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. SPOT: How good for geology? A comparison with LANDSAT MSS

    Science.gov (United States)

    Sesoeren, A.

    1986-12-01

    Geological interpretation possibilities of SPOT MSS and LANDSAT MSS positive prints enlarged to the same scale were compared, using as a test area part of the Jebel Amour (Algeria). The SPOT imagery offers many advantages, filling the gap between remote sensing from space and aerial photography. The best results by visual interpretation are obtained in combining SPOT for the required details with LANDSAT for the synoptic veiw. Further improvements are expected from the use of SPOT stereo-pairs.

  17. Hot spot manifestation in eclipsing dwarf nova HT Cassiopeiae

    OpenAIRE

    Bakowska, K.; Olech, A.

    2014-01-01

    We report the detection of the hot spot in light curves of the eclipsing dwarf nova HT Cassiopeiae during its superoutburst in 2010 November. Analysis of eight reconstructed light curves of the hot spot eclipses showed directly that the brightness of the hot spot was changing significantly during the superoutburst. Thereby, detected hot spot manifestation in HT Cas is the newest observational evidence for the EMT model for dwarf novae.

  18. Fuel cycle

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-01-01

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.) [de

  19. Plasma spot welding of ferritic stainless steels

    Directory of Open Access Journals (Sweden)

    Lešnjak, A.

    2002-06-01

    Full Text Available Plasma spot welding of ferritic stainless steels is studied. The study was focused on welding parameters, plasma and shielding gases and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared. Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas, i.e., a 98 % Ar/2 % H 2 gas mixture. Tension-shear strength of plasma-spot welded joints was compared to that of resistance-spot welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a larger weld spot diameter of the former. Strength of both types of welded joints is approximately the same.

    El artículo describe el proceso de soldeo de aceros inoxidables ferríticos por puntos con plasma. La investigación se centró en el establecimiento de los parámetros óptimos de la soldadura, la definición del gas de plasma y de protección más adecuado, así como del equipo óptimo para la realización de la soldadura. Las uniones de láminas de aceros inoxidables ferríticos de 0,8 mm de espesor, soldadas a solape por puntos con plasma, se inspeccionaron visualmente y se ensayaron mecánicamente mediante el ensayo de cizalladura por tracción. Se realizaron macro pulidos. Los resultados de la investigación demostraron que la solución más adecuada para el soldeo por puntos con plasma es elegir el mismo gas de plasma que de protección. Es decir, una mezcla de 98 % de argón y 2 % de hidrógeno. La resistencia a la cizalladura por tracción de las uniones soldadas por puntos con plasma fue comparada con la resistencia de las uniones soldadas por resistencia por puntos. Se llegó a la conclusión de que las uniones soldadas por resistencia soportan una carga algo mayor que la uniones

  20. Spot table - RPD | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...d_spot.zip File URL: ftp://ftp.biosciencedbc.jp/archive/rpd/LATEST/rpd_spot.zip F... cDNA. (multiple entries) About This Database Database Description Download License Update History of This Database Site Policy | Contact Us Spot table - RPD | LSDB Archive ...

  1. 7 CFR 28.426 - Strict Good Ordinary Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Good Ordinary Spotted Color. 28.426 Section 28.426 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Good Ordinary Spotted Color is color which is within the range represented by a set...

  2. 7 CFR 28.424 - Strict Low Middling Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Low Middling Spotted Color. 28.424 Section 28.424 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Low Middling Spotted Color is color which is within the range represented by a set...

  3. 7 CFR 28.421 - Good Middling Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Good Middling Spotted Color. 28.421 Section 28.421 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Good Middling Spotted Color is color which is better than Strict Middling Spotted Color. ...

  4. Sowing rates for reforestation by the seed-spotting method

    Science.gov (United States)

    Gilbert H. Schubert; Harry A. Fowells

    1964-01-01

    Presents guides to determine the number of seeds to sow per spot and the number of spots required per acre to obtain acceptable stocking. Based on theoretical probabilities, these guides were found to be reasonably close to actual field results When the probability-of-success was at least 55 percent. To compensate for lower actual stocking, increase the number of spots...

  5. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  6. Radiographic scanning agent

    International Nuclear Information System (INIS)

    Bevan, J.A.

    1983-01-01

    This invention relates to radiodiagnostic agents and more particularly to a composition and method for preparing a highly effective technetium-99m-based bone scanning agent. One deficiency of x-ray examination is the inability of that technique to detect skeletal metastases in their incipient stages. It has been discovered that the methanehydroxydiphosphonate bone mineral-seeking agent is unique in that it provides the dual benefits of sharp radiographic imaging and excellent lesion detection when used with technetium-99m. This agent can also be used with technetium-99m for detecting soft tissue calcification in the manner of the inorganic phosphate radiodiagnostic agents

  7. Spinal CT scan, 1

    International Nuclear Information System (INIS)

    Nakagawa, Hiroshi

    1982-01-01

    Methods of CT of the cervical and thoracic spines were explained, and normal CT pictures of them were described. Spinal CT was evaluated in comparison with other methods in various spinal diseases. Plain CT revealed stenosis due to spondylosis or ossification of posterior longitudinal ligament and hernia of intervertebral disc. CT took an important role in the diagnosis of spinal cord tumors with calcification and destruction of the bone. CT scan in combination with other methods was also useful for the diagnosis of spinal injuries, congenital anomalies and infections. (Ueda, J.)

  8. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  9. Scanning apparatus and method

    International Nuclear Information System (INIS)

    Brunnett, C.J.

    1980-01-01

    A novel method is described for processing the analogue signals from the photomultiplier tubes in a tomographic X-ray scanner. The system produces a series of pulses whose instantaneous frequency depends on the detected intensity of the X-radiation. A timer unit is used to determine the segment scan intervals and also to deduce the average radiation intensity detected during this interval. The overall system is claimed to possess the advantageous properties of low time delay, wide bandwidth and relative low cost. (U.K.)

  10. SPOT WELDING COPPER–1%Cr ELECTRODE TIPS PRODUCED VIA EQUAL CHANNEL ANGULAR PRESSING

    Directory of Open Access Journals (Sweden)

    Luay Bakir Hussain

    2010-09-01

    Full Text Available A sharp 120o Equal channel angular pressing (ECAP following rout Bc was applied at room temperature to refine the grains sizes of pure copper and copper-1%Chromium alloy for spot welding electrode tips application. Initially deformation behavior was investigated with the position using colorful plasticine as work piece followed by copper alloy. It was found the deformation at the central part of the work piece is heavily sheared than the outer part. Optical and Scanning electron microscopy were used to study the progress of grain refining under the influence of rotation and number of passes during pressing. The influnece of elongated fibrous nano graines on electrical conductivity and hardness were discussed. Shear test of spot welded 303 stainless steel indicated that nano structural Cu-1%Cr electrode tips used showed a superior results compared to commercial electrodes

  11. Experimental and simulated strength of spot welds

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bennedbæk, Rune A.K.; Larsen, Morten B.

    2014-01-01

    Weld strength testing of single spots in DP600 steel is presented for the three typical testing procedures, i.e. tensile-shear, cross-tension and peel testing. Spot welds are performed at two sets of welding parameters and strength testing under these conditions is presented by load......-elongation curves revealing the maximum load and the elongation at break. Welding and strength testing is simulated by SORPAS® 3D, which allows the two processes to be prepared in a combined simulation, such that the simulated welding properties are naturally applied to the simulation of strength testing. Besides...... the size and shape of the weld nugget, these properties include the new strength of the material in the weld and the heat affected zone based on the predicted hardness resulting from microstructural phase changes simulated during cooling of the weld before strength testing. Comparisons between overall...

  12. Dynamically variable spot size laser system

    Science.gov (United States)

    Gradl, Paul R. (Inventor); Hurst, John F. (Inventor); Middleton, James R. (Inventor)

    2012-01-01

    A Dynamically Variable Spot Size (DVSS) laser system for bonding metal components includes an elongated housing containing a light entry aperture coupled to a laser beam transmission cable and a light exit aperture. A plurality of lenses contained within the housing focus a laser beam from the light entry aperture through the light exit aperture. The lenses may be dynamically adjusted to vary the spot size of the laser. A plurality of interoperable safety devices, including a manually depressible interlock switch, an internal proximity sensor, a remotely operated potentiometer, a remotely activated toggle and a power supply interlock, prevent activation of the laser and DVSS laser system if each safety device does not provide a closed circuit. The remotely operated potentiometer also provides continuous variability in laser energy output.

  13. Spot på interaktive teknologier

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2014-01-01

    Spot på interaktive teknologier Af Anthony Lewis Brooks, PhD Associate Professor, Aalborg University & Director SensoramaLab Den verdensomspændende paraplyorganisation for it-foreninger IFIP har netop afholdt sin årlige ”International Conference on Entertainment Computing”. Se her, hvad tre af top...... fra hele verden for at sætte fokus på, hvordan de nyeste teknologier inden for digital underholdning, kan bruges i forskellige sammenhænge. Bag begivenheden står IFIP, som DANSK IT er repræsenteret i. I år var der blandt andet spot på wearables og andre interaktive teknologier. Leila Alem fra den...

  14. SPOT: the door to digital innovation

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    AREVA NP has opened in Lyon a small department, named SPOT, whose aim is to develop innovative digital technologies such as CAVE and MODOP'3D. CAVE, that is the acronym of Cave Automatic Virtual Environment, is a large screen that splits the room in half and shows the virtual copy of the Astrid reactor. Viewers can wander inside the reactor and its building through the screen and sees all the details of the design. CAVE represents a complete virtual 3-dimension prototype of the Astrid reactor whose aim is to help assessing any change in the design. MODOP'3D is a virtual maintenance tool that allows the operator to simulate reactor maintenance operations in a 3-dimensional way in order to assess their feasibility and optimize them. Exoskeletons whose purpose is to help operators to handle heavy loads are also tested at SPOT. (A.C.)

  15. Great red spot dependence on solar activity

    International Nuclear Information System (INIS)

    Schatten, K.H.

    1979-01-01

    A new inquiry has been made into the question of whether Jupiter's Great Red Spot shows a solar activity dependence. From 1892 to 1947 a clear correlation was present. A dearth of sightings in the seventeenth century, along with the Maunder Minimum, further supports the relation. An anticorrelation, however, from l948 to l967 removed support for such an effect. The old observations have reexamined and recent observations have also been studied. The author reexamines this difficult question and suggests a possible physical mechanism for a Sun-Jovian weather relation. Prinn and Lewis' conversion reaction of Phosphine gas to triclinic red phosphorous crystals is a reaction dependent upon solar radiation. It may explain the dependence found, as well as the striking appearance of the Great Red Spot in the UV

  16. spots de campaña

    Directory of Open Access Journals (Sweden)

    Julio Juárez Gámiz

    2007-01-01

    publicidad política en televisión. Ilustrado por los spots televisivos, el debate se ha centrado en el alto costo que representa para los contribuyentes, a través de los partidos políticos, la producción y transmisión de estos mensajes. El presente trabajo consiste en un análisis de contenido de una muestra de spots transmitidos por las tres principales fuerzas electorales en México durante la campaña presidencial de 2006. El objetivo es identificar, de manera sistemática, características particulares en el formato y contenido de estos mensajes a la luz de su función persuasiva e informativa.

  17. Mutagenicity studies with the mouse spot test

    Energy Technology Data Exchange (ETDEWEB)

    Gocke, E.; Wild, D.; Eckhardt, K.; King, M.T.

    1983-04-01

    The mammalian spot test, which detects somatic gene mutations in mouse embryos, was investigated with selected chemicals to (a) further validate this test system ethylnitrosourea, ethyl methanesulfonate, 2-acetylaminofluorene and colchicine (ENU, EMS, 2AAF), and (b) evaluate the mutagenic potential, in a whole-mammal system, of environmental compounds that had been previously recognized as mutagens in other mammalian or submammalian test systems (1,2-dichloroethane, hydroquinone, nitrofurantoin, o-phenylenediamine, fried sausage extract). Of these substances, ENU, EMS and 2AAF were significantly mutagenic, 1,2-dichloroethane was probably weakly mutagenic. The ENU data were used to estimate the number of pigment precursor cells present at the time of treatment (day 9.25). We also describe in this report the use of a fluorescence microscope for classification of hairs from spots on the coat of C57BL/6JHan X T hybrids.

  18. Rocky Mountain spotted fever: a clinician's dilemma.

    Science.gov (United States)

    Masters, Edwin J; Olson, Gary S; Weiner, Scott J; Paddock, Christopher D

    2003-04-14

    Rocky Mountain spotted fever is still the most lethal tick-vectored illness in the United States. We examine the dilemmas facing the clinician who is evaluating the patient with possible Rocky Mountain spotted fever, with particular attention to the following 8 pitfalls in diagnosis and treatment: (1) waiting for a petechial rash to develop before diagnosis; (2) misdiagnosing as gastroenteritis; (3) discounting a diagnosis when there is no history of a tick bite; (4) using an inappropriate geographic exclusion; (5) using an inappropriate seasonal exclusion; (6) failing to treat on clinical suspicion; (7) failing to elicit an appropriate history; and (8) failing to treat with doxycycline. Early diagnosis and proper treatment save lives.

  19. NEW SCANNING DEVICE FOR SCANNING TUNNELING MICROSCOPE APPLICATIONS

    NARCIS (Netherlands)

    SAWATZKY, GA; Koops, Karl Richard

    A small, single piezo XYZ translator has been developed. The device has been used as a scanner for a scanning tunneling microscope and has been tested successfully in air and in UHV. Its simple design results in a rigid and compact scanning unit which permits high scanning rates.

  20. Controlling successive ionic layer absorption and reaction cycles to optimize silver nanoparticle-induced localized surface plasmon resonance effects on the paper strip

    Science.gov (United States)

    Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin

    2017-03-01

    This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.

  1. Realization of a scanning ion beam monitor

    International Nuclear Information System (INIS)

    Pautard, C.

    2008-07-01

    During this thesis, a scanning ion beam monitor has been developed in order to measure on-line fluence spatial distributions. This monitor is composed of an ionization chamber, Hall Effect sensors and a scintillator. The ionization chamber set between the beam exit and the experiment measures the ion rate. The beam spot is localized thanks to the Hall Effect sensors set near the beam sweeping magnets. The scintillator is used with a photomultiplier tube to calibrate the ionization chamber and with an imaging device to calibrate the Hall Effect sensors. This monitor was developed to control the beam lines of a radiobiology dedicated experimentation room at GANIL. These experiments are held in the context of the research in hadron-therapy. As a matter of fact, this new cancer treatment technique is based on ion irradiations and therefore demands accurate knowledge about the relation between the dose deposit in biological samples and the induced effects. To be effective, these studies require an on-line control of the fluence. The monitor has been tested with different beams at GANIL. Fluence can be measured with a relative precision of ±4% for a dose rate ranging between 1 mGy/s and 2 Gy/s. Once permanently set on the beam lines dedicated to radiobiology at GANIL, this monitor will enable users to control the fluence spatial distribution for each irradiation. The scintillator and the imaging device are also used to control the position, the spot shape and the energy of different beams such as those used for hadron-therapy. (author)

  2. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  3. Spot på fysisk aktivitet

    DEFF Research Database (Denmark)

    Koch, Børge; Bertelsen, Katrine; Sørensen, Karsten

    Bogen henvender sig primært til det pædagogiske personale i skolen, som ønsker inspiration og viden til, hvordan man aktivt kan inddrage eleverne i en bevægelsesorden, som lægger op til, at eleverne lærer at forholde sig til deres forskellige bevægelsesareaner der fylder deres hverdag. "PlaySpot...

  4. Characterization of LIL laser UV focal spot

    International Nuclear Information System (INIS)

    Mangeant, M.; Dubois, J.L.; Behar, G.; Arroyo, P.; Durand, V.; Lahonde, C.

    2006-01-01

    One way to get the fusion of hydrogen in laboratory consists in heating and compressing a DT fuel capsule by using a laser. To reach this aim requires a new generation of high power laser facility. Cea (French board for atomic energy) is developing for this purpose a new 240 laser line facility, the LMJ facility. The LIL which is the prototype of four LMJ laser lines is operational now. In order to confirm the technical choices, a systematic characterization of LIL was carried out. A particular effort has been provided to measure the 3ω high energy focal spot (1.5 kJ/700 ps and 5 ns for one beam) and the synchronization of laser beams onto the target, which are key issues for the plasma production. An experimental device, SAT-3ω (a 3ω laser focal spot analysis) has been designed to perform these measures. That diagnostic which is located at the end of the laser lines delivered its first results during the 2004 quadruplet qualification campaigns. The near field imaging showed no diaphony and vignetting. Low power spots allowed us to control we had no ghost. The energy measurement quality showed the photometric transfer function was perfectly known. Our caustic image are given with an average dynamic range of 800, a spatial resolution of 10 μm and diameter accuracy about 1% for 50% and 3% for 90% of encircled energy. The high energy focal spot diameters are in agreement with low and very low energy diameters. The phase plate and 14 GHz effects are similar to what we had expected. For a laser shot completed with a continuous phase plate at 14 GHz, and for an energy level of 1.5 kJ per beam at 351 nm, the focal beam diameter at 3% of the peak level is (875 ± 45) μm

  5. Forecasting European thermal coal spot prices

    Directory of Open Access Journals (Sweden)

    Alicja Krzemień

    2015-01-01

    Finally, in order to analyse the time series model performance a Generalized Regression Neural Network (GRNN was used and its performance compared against the whole AR(2 process. Empirical results obtained confirmed that there is no statistically significant difference between both methods. The GRNN analysis also allowed pointing out the main drivers that move the European Thermal Coal Spot prices: crude oil, USD/CNY change and supply side drivers.

  6. Optimization of electrostatic lens systems for low-energy scanning microcolumn applications

    International Nuclear Information System (INIS)

    Oh, Tae-Sik; Kim, Dae-Wook; Ahn, Seungjoon; Kim, Young Chul; Kim, Ho-Seob; Ahn, Seong Joon

    2008-01-01

    The optimization of a low-energy scanning microcolumn is proposed by adopting a modified Einzel lens sandwiched between an aligner and a deflector. The modified Einzel lens is composed of four electrodes, and the two center electrodes are specially designed quadrupole lenses having keyhole type rather than circular apertures. The outer electrodes of the Einzel lens having circular apertures are grounded, and the quadrupole lens is operated by applying the quadrupole voltages. The effects of the separated deflector system and the static quadrupole lens were investigated by analyzing the scanning electron beam spot at the target, and the results show that the proposed system can improve the performance of the scanning microcolumn

  7. Scanning device for a spectrometer

    International Nuclear Information System (INIS)

    Ignat'ev, V.M.

    1982-01-01

    The invention belongs to scanning devices and is intended for spectrum scanning in spectral devices. The purpose of the invention is broadening of spectral scanning range. The device construction ensures the spectrum scanning range determined from revolution fractions to several revolutions of the monochromator drum head, any number of the drum head revolutions determined by integral number with addition of the drum revolution fractions with high degree of accuracy being possible

  8. Rapid age determination of oysters using LA-ICP-MS line scans of shell Mg/Ca ratios

    Science.gov (United States)

    Gillikin, D. P.; Durham, S. R.; Goodwin, D. H.

    2016-02-01

    Magnesium to calcium (Mg/Ca) ratios exhibit a strong temperature dependence in foraminifera and corals, but not in bivalve mollusks. Various studies have reported Mg/Ca-temperature relationships with R2 values ranging from 0.3 to 0.8 and significantly different relationships for bivalves growing at different salinities. However, this poor temperature correlation does not render Mg/Ca data useless. A weak temperature dependence would allow time (seasons and years) to be determined along the growth axis of shells. This would provide information about age, growth rate and also allow other proxies to be aligned with time. Typically, oxygen isotopes (δ18O) are used to age shells without clear periodic growth lines, which is time consuming and expensive. Line scans using laser ablation systems can cover several centimeters of shell in a few minutes. We test this method on the resilifer of two oyster species (Crassostrea gigas and C. virginica) using a 193 nm Laser-Ablation-ICP-MS. Living oysters were collected from San Francisco Bay, North Carolina, South Carolina, and the Gulf of Mexico; fossil shells (Pleistocene) were also collected in South Carolina. Shells were sampled for δ18O values and Mg/Ca ratios. We use annual cycles in δ18O values to confidently determine age, then apply the Mg/Ca technique. Shells of both species exhibit annual cyclicity in Mg/Ca ratios using spot and line scan laser sampling, which matche the seasonal cyclicity determined using δ18O values. Results show a good correlation between ages determined using the different methods. We conclude that LA-ICP-MS line scans offer a rapid and inexpensive technique for determining age, growth rate, and timing of shell growth in oyster reslifers.

  9. Safe cycling!

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    The HSE Unit will be running a cycling safety campaign at the entrances to CERN's restaurants on 14, 15 and 16 May. Pop along to see if they can persuade you to get back in the saddle!   With summer on its way, you might feel like getting your bike out of winter storage. Well, the HSE Unit has come up with some original ideas to remind you of some of the most basic safety rules. This year, the prevention campaign will be focussing on three themes: "Cyclists and their equipment", "The bicycle on the road", and "Other road users". This is an opportunity to think about the condition of your bike as well as how you ride it. From 14 to 16 May, representatives of the Swiss Office of Accident Prevention and the Touring Club Suisse will join members of the HSE Unit at the entrances to CERN's restaurants to give you advice on safe cycling (see box). They will also be organising three activity stands where you can test your knowle...

  10. Cycle 22

    International Nuclear Information System (INIS)

    Kappernman, J.G.; Albertson, V.D.

    1991-01-01

    This paper reports that for many electric utility systems, Solar Cycle 22 has been the first introduction to the phenomena of Geomagnetic Disturbances and the disrupting and damaging effects that they can have upon modern power systems. For all intents and purposes, Power Industry awareness of Cycle 22 started with a bang during the Great Geomagnetic Storm of March 13, 1989. This storm caused a blackout to the entire Province of Quebec, permanently damaged a large nuclear plant GSU transformer in New Jersey, and created enough havoc across the entire North American power grid to create the plausible threat of a massive power system blackout. The flurry of activity and investigation that followed has led many engineers to realize that their power systems are indeed vulnerable to this phenomena and if anything are becoming ever more vulnerable as the system grows to meet future requirements. As a result some organizations such as Hydro Quebec, PSE and G, and the PJM Pool now implement strategic measures as a remedial response to detection of geomagnetic storm conditions. Many more companies pay particularly close attention to storm forecasts and alerts, and the industry in general has accelerated research and monitoring activities through their own means of in concert with the Electric Power Research Institute (EPRI)

  11. Time Resolved X-Ray Spot Size Diagnostic

    CERN Document Server

    Richardson, Roger; Falabella, Steven; Guethlein, Gary; Raymond, Brett; Weir, John

    2005-01-01

    A diagnostic was developed for the determination of temporal history of an X-ray spot. A pair of thin (0.5 mm) slits image the x-ray spot to a fast scintillator which is coupled to a fast detector, thus sampling a slice of the X-Ray spot. Two other scintillator/detectors are used to determine the position of the spot and total forward dose. The slit signal is normalized to the dose and the resulting signal is analyzed to get the spot size. The position information is used to compensate for small changes due to spot motion and misalignment. The time resolution of the diagnostic is about 1 ns and measures spots from 0.5 mm to over 3 mm. The theory and equations used to calculate spot size and position are presented, as well as data. The calculations assume a symmetric, Gaussian spot. The spot data is generated by the ETA II accelerator, a 2kA, 5.5 MeV, 60ns electron beam focused on a Tantalum target. The spot generated is typically about 1 mm FWHM. Comparisons are made to an X-ray pinhole camera which images th...

  12. A novel word spotting method based on recurrent neural networks.

    Science.gov (United States)

    Frinken, Volkmar; Fischer, Andreas; Manmatha, R; Bunke, Horst

    2012-02-01

    Keyword spotting refers to the process of retrieving all instances of a given keyword from a document. In the present paper, a novel keyword spotting method for handwritten documents is described. It is derived from a neural network-based system for unconstrained handwriting recognition. As such it performs template-free spotting, i.e., it is not necessary for a keyword to appear in the training set. The keyword spotting is done using a modification of the CTC Token Passing algorithm in conjunction with a recurrent neural network. We demonstrate that the proposed systems outperform not only a classical dynamic time warping-based approach but also a modern keyword spotting system, based on hidden Markov models. Furthermore, we analyze the performance of the underlying neural networks when using them in a recognition task followed by keyword spotting on the produced transcription. We point out the advantages of keyword spotting when compared to classic text line recognition.

  13. Factors influencing bone scan quality

    International Nuclear Information System (INIS)

    Adams, F.G.; Shirley, A.W.

    1983-01-01

    A reliable subjective method of assessing bone scan quality is described. A large number of variables which theoretically could influence scan quality were submitted to regression and factor analysis. Obesity, age, sex and abnormality of scan were found to be significant but weak variables. (orig.)

  14. CT scans in encephalitis

    International Nuclear Information System (INIS)

    Imanishi, Masami; Morimoto, Tetsuya; Iida, Noriyuki; Hisanaga, Manabu; Kinugawa, Kazuhiko

    1980-01-01

    Generally, CT scans reveal a decrease in the volume of the ventricular system, sylvian fissures and cortical sulci in the acute stage of encephalitis, and softening of the cerebral lobes with dilatation of the lateral ventricles and subarachnoidian dilated spaces in the chronic stage. We encountered three cases of encephalitis: mumps (case 1), herpes simplex (case 2), and syphilis (case 3). In case 1, brain edema was seen in the acute stage and brain atrophy in the chronic stage. In case 2, necrosis of the temporal pole, which is pathognomonic in herpes simplex encephalitis, was recognized. And in case 3, multiple lesions whose CT appearance was enhanced by contrast materials were found scattered over the whole brain. These lesions were diagnosed as inflammatory granuloma by histological examination. (author)

  15. Scanning device for scintigraphy

    International Nuclear Information System (INIS)

    Casale, R.

    1975-01-01

    A device is described for the scintigraphic scanning according to a horizontal plane, comprising: (a) A support provided with two guides horizontally and longitudinally located, one of which is located in the upper part of the support, while the second guide is located in the lower part of the support; (b) A carriage, movable with respect to the support along the two guides, provided in its upper part, projecting above the support, with rolling means suitable to support and to cause to slide along its axis a support rod for the first detector, horizontally and transversely located, said carriage being further provided in its lower part with a recess with possible rolling means suitable to support and to cause to slide along its axis a second support rod for the second detector, said second rod being located parallel to the first rod and below it; (c) One or two support rods for the detectors, the first of said rods being supported above the support in a sliding way along its axis, by the rolling means located in the upper part of the carriage, and the second rod if present is supported slidingly along its axis by the possible rolling means contained in the suitable recess which is provided in the lower part of the carriage, and (d) A vertical shaft supported by said carriage on which is mounted a toothed wheel for each rod, each toothed wheel engaging a positive drive belt or the like, which is connected to each said rod so that rotation of the shaft determines the simultaneous displacement of the two rods along their axes; and single motor means for driving said shaft during a scanning operation. (U.S.)

  16. Improved simulation method of automotive spot weld failure with an account of the mechanical properties of spot welds

    Science.gov (United States)

    Wu, H.; Meng, X. M.; Fang, R.; Huang, Y. F.; Zhan, S.

    2017-12-01

    In this paper, the microstructure and mechanical properties of spot weld were studied, the hardness of nugget and heat affected zone (HAZ) were also tested by metallographic microscope and microhardness tester. The strength of the spot weld with the different parts' area has been characterized. According to the experiments result, CAE model of spot weld with HAZ structure was established, and simulation results of different lap-shear CAE models were analyzed. The results show that the spot weld model which contained the HAZ has good performance and more suitable for engineering application in spot weld simulation.

  17. Protein interaction networks by proteome peptide scanning.

    Directory of Open Access Journals (Sweden)

    Christiane Landgraf

    2004-01-01

    Full Text Available A substantial proportion of protein interactions relies on small domains binding to short peptides in the partner proteins. Many of these interactions are relatively low affinity and transient, and they impact on signal transduction. However, neither the number of potential interactions mediated by each domain nor the degree of promiscuity at a whole proteome level has been investigated. We have used a combination of phage display and SPOT synthesis to discover all the peptides in the yeast proteome that have the potential to bind to eight SH3 domains. We first identified the peptides that match a relaxed consensus, as deduced from peptides selected by phage display experiments. Next, we synthesized all the matching peptides at high density on a cellulose membrane, and we probed them directly with the SH3 domains. The domains that we have studied were grouped by this approach into five classes with partially overlapping specificity. Within the classes, however, the domains display a high promiscuity and bind to a large number of common targets with comparable affinity. We estimate that the yeast proteome contains as few as six peptides that bind to the Abp1 SH3 domain with a dissociation constant lower than 100 microM, while it contains as many as 50-80 peptides with corresponding affinity for the SH3 domain of Yfr024c. All the targets of the Abp1 SH3 domain, identified by this approach, bind to the native protein in vivo, as shown by coimmunoprecipitation experiments. Finally, we demonstrate that this strategy can be extended to the analysis of the entire human proteome. We have developed an approach, named WISE (whole interactome scanning experiment, that permits rapid and reliable identification of the partners of any peptide recognition module by peptide scanning of a proteome. Since the SPOT synthesis approach is semiquantitative and provides an approximation of the dissociation constants of the several thousands of interactions that are

  18. QTL for white spot syndrome virus resistance and the sex-determining locus in the Indian black tiger shrimp (Penaeus monodon).

    Science.gov (United States)

    Robinson, Nicholas A; Gopikrishna, Gopalapillay; Baranski, Matthew; Katneni, Vinaya Kumar; Shekhar, Mudagandur S; Shanmugakarthik, Jayakani; Jothivel, Sarangapani; Gopal, Chavali; Ravichandran, Pitchaiyappan; Gitterle, Thomas; Ponniah, Alphis G

    2014-08-28

    Shrimp culture is a fast growing aquaculture sector, but in recent years there has been a shift away from tiger shrimp Penaeus monodon to other species. This is largely due to the susceptibility of P. monodon to white spot syndrome virus disease (Whispovirus sp.) which has impacted production around the world. As female penaeid shrimp grow more rapidly than males, mono-sex production would be advantageous, however little is known about genes controlling or markers associated with sex determination in shrimp. In this study, a mapped set of 3959 transcribed single nucleotide polymorphisms were used to scan the P. monodon genome for loci associated with resistance to white-spot syndrome virus and sex in seven full-sibling tiger shrimp families challenged with white spot syndrome virus. Linkage groups 2, 3, 5, 6, 17, 18, 19, 22, 27 and 43 were found to contain quantitative trait loci significantly associated with hours of survival after white spot syndrome virus infection (P shrimp.

  19. Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots.

    Science.gov (United States)

    Kok, H Petra; Korshuize-van Straten, Linda; Bakker, Akke; de Kroon-Oldenhof, Rianne; Geijsen, Elisabeth D; Stalpers, Lukas J A; Crezee, Johannes

    2017-11-15

    Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to improve the heating quality. The aim of this study was to evaluate the clinical benefit of online treatment planning during treatment of pelvic tumors heated with the AMC-8 locoregional hyperthermia system. For online adaptive hyperthermia treatment planning, a graphical user interface was developed. Electric fields were calculated in a preprocessing step using our in-house-developed finite-difference-based treatment planning system. This allows instant calculation of the temperature distribution for user-selected phase-amplitude settings during treatment and projection onto the patient's computed tomographic scan for online visualization. Online treatment planning was used for 14 treatment sessions in 8 patients to reduce the patients' reports of hot spots while maintaining the same level of tumor heating. The predicted decrease in hot spot temperature should be at least 0.5°C, and the tumor temperature should decrease less than 0.2°C. These predictions were compared with clinical data: patient feedback about the hot spot and temperature measurements in the tumor region. In total, 17 hot spot reports occurred during the 14 sessions, and the alternative settings predicted the hot spot temperature to decrease by at least 0.5°C, which was confirmed by the disappearance of all 17 hot spot reports. At the same time, the average tumor temperature was predicted to change on average -0.01°C (range, -0.19°C to 0.34°C). The measured tumor temperature change was on average only -0.02°C (range, -0.26°C to 0.31°C). In only 2 cases the temperature decrease was slightly larger than 0.2°C, but at most it was 0.26°C. Online application of hyperthermia treatment planning is

  20. Corrosion resistance of a laser spot-welded joint of NiTi wire in simulated human body fluids.

    Science.gov (United States)

    Yan, Xiao-Jun; Yang, Da-Zhi

    2006-04-01

    The purpose of this study was to investigate corrosion resistance of a laser spot-welded joint of NiTi alloy wires using potentiodynamic tests in Hank's solution at different PH values and the PH 7.4 NaCl solution for different Cl- concentrations. Scanning electron microscope observations were carried out before and after potentiodynamic tests. The composition of a laser spot-welded joint and base metal were characterized by using an electron probe microanalyzer. The results of potentiodynamic tests showed that corrosion resistance of a laser spot-welded joint of NiTi alloy wire was better than that of base metal, which exhibited a little higher breakdown potential and passive range, and a little lower passive current density. Corrosion resistances of a laser spot-welded joint and base metal decreased with increasing of the Cl- concentration and PH value. The improvement of corrosion resistance of the laser spot-welded joint was due to the decrease of the surface defects and the increase of the Ti/Ni ratio. (c) 2005 Wiley Periodicals, Inc.

  1. Cold metal transfer spot plug welding of AA6061-T6-to-galvanized steel for automotive applications

    International Nuclear Information System (INIS)

    Cao, R.; Huang, Q.; Chen, J.H.; Wang, Pei-Chung

    2014-01-01

    Highlights: • Two Al-to-galvanized steel spot plug welding joints were studied by CMT method. • The optimum process variables for the two joints were gotten by orthogonal test. • Connection mechanism of the two joints were discussed. -- Abstract: In this study, cold metal transfer (CMT) spot plug joining of 1 mm thick Al AA6061-T6 to 1 mm thick galvanized steel (i.e., Q235) was studied. Welding variables were optimized for a plug weld in the center of a 25 mm overlap region with aluminum 4043 wire and 100% argon shielding gas. Microstructures and elemental distributions were characterized by scanning electron microscopy with energy dispersive X-ray spectrometer. Mechanical testing of CMT spot plug welded joints was conducted. It was found that it is feasible to join Al AA6061T6-to-galvanized steel by CMT spot plug welding method. The process variables for two joints with Al AA6061T6-to-galvanized mild steel and galvanized mild steel-to-Al AA6061T6 are optimized. The strength of CMT spot welded Al AA6061T6-to-galvanized mild steel is determined primarily by the strength and area of the brazed interface. While, the strength of the galvanized mild steel-to-Al AA6061T6 joint is mainly dependent upon the area of the weld metal

  2. TH-CD-209-08: Quantification of the Interplay Effect in Proton Pencil Beam Scanning Treatment of Lung

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M; Huang, S; Solberg, T; Teo, B; McDonough, J; Simone, C; Lin, L [University of Pennsylvania, Philadelphia, PA (United States); Mayer, R; Thomas, A [Walter Reed Military Hospital, Bethesda, MD (United States)

    2016-06-15

    Purpose: To quantify the dose degradation caused by the interplay effect based on a beam specific motion analysis in proton pencil beam scanning (PBS) treatment of lung tumors Methods: PBS plans were optimized on average CT using a beam-specific PTV method for 10 consecutive patients with locally advanced non-small-cell-lung-cancer (NSCLC) treated with proton therapy to 6660/180 cGy. End inhalation (CT0) and end exhalation (CT50) were selected as the two extreme scenarios to acquire the relative stopping power ratio difference (Δrsp) for a respiration cycle. The water equivalent difference (ΔWET) per radiological path was calculated from the surface of patient to the iCTV by integrating the Δrsp of each voxel. The motion magnitude of each voxel within the target follows a quasi-Gaussian distribution. A motion index (MI (>5mm WET)), defined as the percentage of target voxels with an absolute integral ΔWET larger than 5 mm, was adopted as a metric to characterize interplay. To simulate the treatment process, 4D dose was calculated by accumulating the spot dose on the corresponding respiration phase to the reference phase CT50 by deformable image registration based on spot timing and patient breathing phase. Results: The study indicated that the magnitude of target underdose in a single fraction plan is proportional to the MI (p<0.001), with larger motion equating to greater dose degradation and standard deviations. The target homogeneity, minimum, maximum and mean dose in the 4D dose accumulations of 37 fractions varied as a function of MI. Conclusion: The MI quantification metric can predict the level of dose degradation in PBS lung cancer treatment, which potentially serves as a clinical decision tool to assess whether patients are suitable to receive PBS treatment.

  3. TH-CD-209-08: Quantification of the Interplay Effect in Proton Pencil Beam Scanning Treatment of Lung

    International Nuclear Information System (INIS)

    Kang, M; Huang, S; Solberg, T; Teo, B; McDonough, J; Simone, C; Lin, L; Mayer, R; Thomas, A

    2016-01-01

    Purpose: To quantify the dose degradation caused by the interplay effect based on a beam specific motion analysis in proton pencil beam scanning (PBS) treatment of lung tumors Methods: PBS plans were optimized on average CT using a beam-specific PTV method for 10 consecutive patients with locally advanced non-small-cell-lung-cancer (NSCLC) treated with proton therapy to 6660/180 cGy. End inhalation (CT0) and end exhalation (CT50) were selected as the two extreme scenarios to acquire the relative stopping power ratio difference (Δrsp) for a respiration cycle. The water equivalent difference (ΔWET) per radiological path was calculated from the surface of patient to the iCTV by integrating the Δrsp of each voxel. The motion magnitude of each voxel within the target follows a quasi-Gaussian distribution. A motion index (MI (>5mm WET)), defined as the percentage of target voxels with an absolute integral ΔWET larger than 5 mm, was adopted as a metric to characterize interplay. To simulate the treatment process, 4D dose was calculated by accumulating the spot dose on the corresponding respiration phase to the reference phase CT50 by deformable image registration based on spot timing and patient breathing phase. Results: The study indicated that the magnitude of target underdose in a single fraction plan is proportional to the MI (p<0.001), with larger motion equating to greater dose degradation and standard deviations. The target homogeneity, minimum, maximum and mean dose in the 4D dose accumulations of 37 fractions varied as a function of MI. Conclusion: The MI quantification metric can predict the level of dose degradation in PBS lung cancer treatment, which potentially serves as a clinical decision tool to assess whether patients are suitable to receive PBS treatment.

  4. Ten cycles of solar and geomagnetic activity

    International Nuclear Information System (INIS)

    Legrand, J.P.

    1981-01-01

    Series of 110 years of sunspot numbers and indices of geomagnetic activity are used with 17 years of solar wind data in order to study through solar cycles both stream and shock event solar activity. According to their patterns on Bartels diagrams of geomagnetic indices, stable wind streams and transient solar activities are separated from each other. Two classes of stable streams are identified: equatorial streams occurring sporadically, for several months, during the main phase of sunspot cycles and both polar streams established, for several years, at each cycle, before sunspot minimum. Polar streams are the first activity of solar cycles. For study of the relationship between transient geomagnetic phenomena and sunspot activity, we raise the importance of the contribution, at high spot number, of severe storms and, at low spot number, of short lived and unstable streams. Solar wind data are used to check and complete the above results. As a conclusion, we suggest a unified scheme of solar activity evolution with a starting point every eleventh year, a total duration of 17 years and an overlapping of 6 years between the first and the last phase of both successive series of phenomena: first, from polar field reversal to sunspot minimum, a phase of polar wind activity of the beginning cycle is superimposed on the weak contribution of shock events of the ending cycle; secondly, an equatorial phase mostly of shock events is superimposed on a variable contribution of short lived and sporadic stable equatorial stream activities; and thirdly a phase of low latitude shock events is superimposed on the polar stream interval of the following cycle. (orig.)

  5. Fundamental radiological and geometric performance of two types of proton beam modulated discrete scanning systems.

    Science.gov (United States)

    Farr, J B; Dessy, F; De Wilde, O; Bietzer, O; Schönenberg, D

    2013-07-01

    The purpose of this investigation was to compare and contrast the measured fundamental properties of two new types of modulated proton scanning systems. This provides a basis for clinical expectations based on the scanned beam quality and a benchmark for computational models. Because the relatively small beam and fast scanning gave challenges to the characterization, a secondary purpose was to develop and apply new approaches where necessary to do so. The following performances of the proton scanning systems were investigated: beamlet alignment, static in-air beamlet size and shape, scanned in-air penumbra, scanned fluence map accuracy, geometric alignment of scanning system to isocenter, maximum field size, lateral and longitudinal field uniformity of a 1 l cubic uniform field, output stability over time, gantry angle invariance, monitoring system linearity, and reproducibility. A range of detectors was used: film, ionization chambers, lateral multielement and longitudinal multilayer ionization chambers, and a scintillation screen combined with a digital video camera. Characterization of the scanned fluence maps was performed with a software analysis tool. The resulting measurements and analysis indicated that the two types of delivery systems performed within specification for those aspects investigated. The significant differences were observed between the two types of scanning systems where one type exhibits a smaller spot size and associated penumbra than the other. The differential is minimum at maximum energy and increases inversely with decreasing energy. Additionally, the large spot system showed an increase in dose precision to a static target with layer rescanning whereas the small spot system did not. The measured results from the two types of modulated scanning types of system were consistent with their designs under the conditions tested. The most significant difference between the types of system was their proton spot size and associated resolution

  6. Fundamental radiological and geometric performance of two types of proton beam modulated discrete scanning systems

    Energy Technology Data Exchange (ETDEWEB)

    Farr, J. B.; Schoenenberg, D. [Westdeutsches Protonentherapiezentrum Essen, Universitaetsklinikum-Essen, Hufelandstrasse 55, 45147 Essen (Germany); Dessy, F.; De Wilde, O.; Bietzer, O. [Ion Beam Applications, Chemin du Cyclotron, 3, 1348 Louvain-la-Neuve (Belgium)

    2013-07-15

    Purpose: The purpose of this investigation was to compare and contrast the measured fundamental properties of two new types of modulated proton scanning systems. This provides a basis for clinical expectations based on the scanned beam quality and a benchmark for computational models. Because the relatively small beam and fast scanning gave challenges to the characterization, a secondary purpose was to develop and apply new approaches where necessary to do so.Methods: The following performances of the proton scanning systems were investigated: beamlet alignment, static in-air beamlet size and shape, scanned in-air penumbra, scanned fluence map accuracy, geometric alignment of scanning system to isocenter, maximum field size, lateral and longitudinal field uniformity of a 1 l cubic uniform field, output stability over time, gantry angle invariance, monitoring system linearity, and reproducibility. A range of detectors was used: film, ionization chambers, lateral multielement and longitudinal multilayer ionization chambers, and a scintillation screen combined with a digital video camera. Characterization of the scanned fluence maps was performed with a software analysis tool.Results: The resulting measurements and analysis indicated that the two types of delivery systems performed within specification for those aspects investigated. The significant differences were observed between the two types of scanning systems where one type exhibits a smaller spot size and associated penumbra than the other. The differential is minimum at maximum energy and increases inversely with decreasing energy. Additionally, the large spot system showed an increase in dose precision to a static target with layer rescanning whereas the small spot system did not.Conclusions: The measured results from the two types of modulated scanning types of system were consistent with their designs under the conditions tested. The most significant difference between the types of system was their proton

  7. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Klimenov, V. A., E-mail: klimenov@tpu.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Kurgan, K. A., E-mail: kirill-k2.777@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Chumaevskii, A. V., E-mail: tch7av@gmail.com [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii pr., Tomsk, 634021 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Gnyusov, S. F., E-mail: gnusov@rambler.ru [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  8. Studies of plasmonic hot-spot translation by a metal-dielectric layered superlens

    DEFF Research Database (Denmark)

    Thoreson, Mark D.; Nielsen, Rasmus Bundgaard; West, Paul R.

    2011-01-01

    at a wavelength of about 680 nm. Specifically, we discuss our recent experimental and simulation results on the translation of hot spots using a silver-silica layered superlens design. We compare the experimental results with our numerical simulations and discuss the perspectives and limitations of our approach....... optical nanoantennas as sources, we investigated the translation of these sources to the far side of a layered silver-silica superlens operating in the canalization regime. Using near-field scanning optical microscopy (NSOM), we have observed evidence of superlens-enabled enhanced-field translation...

  9. Comparison of Metallurgical and Ultrasonic Inspections of Galvanized Steel Resistance Spot Welds

    International Nuclear Information System (INIS)

    Potter, Timothy J.; Ghaffari, Bita; Mozurkewich, George; Reverdy, Frederic; Hopkins, Deborah

    2006-01-01

    Metallurgical examination of galvanized steel resistance spot welds was used to gauge the capabilities of two ultrasonic, non-destructive, scanning techniques. One method utilized the amplitude of the echo from the weld faying surface, while the other used the spectral content of the echo train to map the fused area. The specimens were subsequently sectioned and etched, to distinguish the fused, zinc-brazed, and non-fused areas. The spectral maps better matched the metallurgical maps, while the interface-amplitude method consistently overestimated the weld size

  10. IP-10 can be measured in dried plasma spots in patients with chronic hepatitis C infection

    DEFF Research Database (Denmark)

    Ruhwald, Morten; Andersen, Ellen Sloth; Christensen, Peer Brehm

    2012-01-01

    The chemokine IP-10 (CXCL10) is a candidate marker for hepatitis C virus (HCV) fibrosis monitoring. The aim of this proof-of-concept study is to assess if IP-10 measurements from dried plasma spots (DPS) are accurate in HCV-infected patients with either minimal or significant fibrosis. We measured...... IP-10 levels in plasma and DPS of 21 HCV-infected patients with cirrhosis and 19 patients with no/little fibrosis (determined with FibroScan). Cirrhotic patients had significantly higher levels of IP-10 compared to patients with minimal fibrosis. DPS and plasma measurements of IP-10 are comparable...

  11. A Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Lev, Benjamin

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (2 um), or 6 nT / Hz1 / 2 per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly one-hundred points with an effective field sensitivity of 600 pT / Hz1 / 2 each point during the same time as a point-by-point scanner would measure these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly two orders of magnitude improvement in magnetic flux sensitivity (down to 10- 6 Phi0 / Hz1 / 2) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are for the first time carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns and done so using samples that may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge transport images at temperatures from room to \\x9D4K in unconventional superconductors and topologically nontrivial materials.

  12. The fractal nature of vacuum arc cathode spots

    International Nuclear Information System (INIS)

    Anders, Andre

    2005-01-01

    Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f 2 , where f is frequency, supporting a fractal spot model associated with Brownian motion

  13. Splitting of turbulent spot in transitional pipe flow

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.

    2017-11-01

    Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition problem without the unphysical, axially periodic boundary condition. Here we use this approach to study the splitting of turbulent spot in transitional pipe flow, a feature first discovered by E.R. Lindgren (Arkiv Fysik 15, 1959). It has been widely believed that spot splitting is a mysterious stochastic process that has general implications on the lifetime and sustainability of wall turbulence. We address the following two questions: (1) What is the dynamics of turbulent spot splitting in pipe transition? Specifically, we look into any possible connection between the instantaneous strain rate field and the spot splitting. (2) How does the passive scalar field behave during the process of pipe spot splitting. In this study, the turbulent spot is introduced at the inlet plane through a sixty degree wide numerical wedge within which fully-developed turbulent profiles are assigned over a short time interval; and the simulation Reynolds numbers are 2400 for a 500 radii long pipe, and 2300 for a 1000 radii long pipe, respectively. Numerical dye is tagged on the imposed turbulent spot at the inlet. Splitting of the imposed turbulent spot is detected very easily. Preliminary analysis of the DNS results seems to suggest that turbulent spot slitting can be easily understood based on instantaneous strain rate field, and such spot splitting may not be relevant in external flows such as the flat-plate boundary layer.

  14. Advanced spot quality analysis in two-colour microarray experiments

    Directory of Open Access Journals (Sweden)

    Vetter Guillaume

    2008-09-01

    Full Text Available Abstract Background Image analysis of microarrays and, in particular, spot quantification and spot quality control, is one of the most important steps in statistical analysis of microarray data. Recent methods of spot quality control are still in early age of development, often leading to underestimation of true positive microarray features and, consequently, to loss of important biological information. Therefore, improving and standardizing the statistical approaches of spot quality control are essential to facilitate the overall analysis of microarray data and subsequent extraction of biological information. Findings We evaluated the performance of two image analysis packages MAIA and GenePix (GP using two complementary experimental approaches with a focus on the statistical analysis of spot quality factors. First, we developed control microarrays with a priori known fluorescence ratios to verify the accuracy and precision of the ratio estimation of signal intensities. Next, we developed advanced semi-automatic protocols of spot quality evaluation in MAIA and GP and compared their performance with available facilities of spot quantitative filtering in GP. We evaluated these algorithms for standardised spot quality analysis in a whole-genome microarray experiment assessing well-characterised transcriptional modifications induced by the transcription regulator SNAI1. Using a set of RT-PCR or qRT-PCR validated microarray data, we found that the semi-automatic protocol of spot quality control we developed with MAIA allowed recovering approximately 13% more spots and 38% more differentially expressed genes (at FDR = 5% than GP with default spot filtering conditions. Conclusion Careful control of spot quality characteristics with advanced spot quality evaluation can significantly increase the amount of confident and accurate data resulting in more meaningful biological conclusions.

  15. GPR scan assessment

    Directory of Open Access Journals (Sweden)

    Abbas M. Abbas

    2015-06-01

    Full Text Available Mekaad Radwan monument is situated in the neighborhood of Bab Zuweila in the historical Cairo, Egypt. It was constructed at the middle XVII century (1635 AD. The building has a rectangle shape plan (13 × 6 m with the longitudinal sides approximately WNW-ESE. It comprises three storages namely; the ground floor; the opened floor (RADWAN Bench and the living floor with a total elevation of 15 m above the street level. The building suffers from severe deterioration phenomena with patterns of damage which have occurred over time. These deterioration and damages could be attributed to foundation problems, subsoil water and also to the earthquake that affected the entire Greater Cairo area in October 1992. Ground Penetrating Radar (GPR scan was accomplished against the walls of the opened floor (RADWAN Bench to evaluate the hazard impact on the walls textures and integrity. The results showed an anomalous feature through the southern wall of RADWAN Bench. A mathematical model has been simulated to confirm the obtained anomaly and the model response exhibited a good matching with the outlined anomaly.

  16. Radionuclide brain scanning

    International Nuclear Information System (INIS)

    Abdel-Dayem, H.

    1992-01-01

    At one stage of medical imaging development, radionuclide brain scanning was the only technique available for imaging of the brain. Advent of CT and MRI pushed it to the background. It regained some of the grounds lost to ''allied advances'' with the introduction of brain perfusion radiopharmaceuticals. Positron emission tomography is a promising functional imaging modality that at present will remain as a research tool in special centres in developed countries. However, clinically useful developments will gradually percolate from PET to SPECT. The non-nuclear imaging methods are totally instrument dependent; they are somewhat like escalators, which can go that far and no further. Nuclear imaging has an unlimited scope for advance because of the new developments in radiopharmaceuticals. As the introduction of a radiopharmaceutical is less costly than buying new instruments, the recent advances in nuclear imaging are gradually perfusing through the developing countries also. Therefore, it is essential to follow very closely PET developments because what is research today might become routine tomorrow

  17. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  18. Gastrointestinal scanning agent

    International Nuclear Information System (INIS)

    Francis, M.D.

    1980-01-01

    An easily prepared radiolabeled gastrointestinal scanning agent is described. Technetium-99m has ideal characteristics for imaging the upper and lower GI tract and determining stomach emptying and intestinal transit time when used with an insoluble particulate material. For example, crystalline and amorphous calcium phosphate particles can be effectively labeled in a one-step process using sup(99m)TcO 4 and SnCl 2 . These labeled particles have insignificant mass and when administered orally pass through the GI tract unchanged, without affecting the handling and density of the intestinal contents. Visualization of the esophageal entry into the stomach, the greater and lesser curvatures of the stomach, ejection into the duodenum, and rates of passage through the upper and lower GI tract are obtained. The slurry of sup(99m)TC particulate can be given rectally by enema. Good images of the cecum and the ascending, transverse, and descending colon are obtained. Mucosal folds and the splenic and hepatic flexures are visualized. The resilience of the large intestine is also readily visualized by pneumocolonographic techniques. (author)

  19. Radionuclide brain scanning

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Dayem, H

    1993-12-31

    At one stage of medical imaging development, radionuclide brain scanning was the only technique available for imaging of the brain. Advent of CT and MRI pushed it to the background. It regained some of the grounds lost to ``allied advances`` with the introduction of brain perfusion radiopharmaceuticals. Positron emission tomography is a promising functional imaging modality that at present will remain as a research tool in special centres in developed countries. However, clinically useful developments will gradually percolate from PET to SPECT. The non-nuclear imaging methods are totally instrument dependent; they are somewhat like escalators, which can go that far and no further. Nuclear imaging has an unlimited scope for advance because of the new developments in radiopharmaceuticals. As the introduction of a radiopharmaceutical is less costly than buying new instruments, the recent advances in nuclear imaging are gradually perfusing through the developing countries also. Therefore, it is essential to follow very closely PET developments because what is research today might become routine tomorrow

  20. Laser spot detection based on reaction diffusion

    Czech Academy of Sciences Publication Activity Database

    Vázquez-Otero, Alejandro; Khikhlukha, Danila; Solano-Altamirano, J. M.; Dormido, R.; Duro, N.

    2016-01-01

    Roč. 16, č. 3 (2016), s. 1-11, č. článku 315. ISSN 1424-8220 R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : laser spot detection * laser beam detection * reaction diffusion models * Fitzhugh-Nagumo model * reaction diffusion computation * Turing patterns Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.677, year: 2016