WorldWideScience

Sample records for sport motor learning

  1. Applying Serious Games to Motor Learning in Sport

    Science.gov (United States)

    Wiemeyer, Josef; Schneider, Philipp

    2012-01-01

    Considering the wide use of Serious Games in application fields like cognitive learning, health education and rehabilitation and the recent developments of sensor and interface technology it is surprising that applications to motor learning in sport are rare. The aim of this study is to examine whether a specific learning effect can be elicited by…

  2. Perspectives on learning styles in motor and sport skills.

    Science.gov (United States)

    Fuelscher, Ian Tobias; Ball, Kevin; Macmahon, Clare

    2012-01-01

    We present the perspective that while coaches and instructors commonly adapt learning styles to maximize training outcomes, there has been little to no empirical support for the efficacy of this practice. Learning styles is a learner's preferred mode (e.g., visual, verbal) of taking in and processing new information. Although it is a relevant topic for the learning of motor and sport skills, few studies have used an appropriate methodology to test the effectiveness of learning style-based instruction. We highlight the need for a learning style assessment tool specific to motor skills and call for a test of the learning style hypothesis, the claim that learners will benefit from instruction that is tailored to their individual learning style. To this end, we suggest methodological guidelines.

  3. Perspectives on learning styles in motor and sport skills

    Directory of Open Access Journals (Sweden)

    Ian Tobias Fuelscher

    2012-03-01

    Full Text Available We present the perspective that while coaches and instructors commonly adapt learning styles to maximise training outcomes, there has been little to no empirical support for the efficacy of this practice. Learning styles is a learner’s preferred mode (e.g. visual, verbal of taking in and processing new information. Although it is a relevant topic for the learning of motor and sport skills, few studies have used an appropriate methodology to test the effectiveness of learning style-based instruction. We highlight the need for a learning style assessment tool specific to motor skills and call for a test of the learning style hypothesis, the claim that learners will benefit from instruction that is tailored to their individual learning style. To this end, we suggest methodological guidelines.

  4. Not just petrol heads: men's learning in the communitythrough participation in motor sports

    Directory of Open Access Journals (Sweden)

    Barry Golding

    2011-04-01

    Full Text Available This paper examines the learning experienced through participation by men in twoquite different two motor sports organisations in Western Australia. It relies oninterview data from volunteers about what they do and what they learn as aconsequence of their participation in staging complex but safe, competitive, publicevents. The paper provides evidence of a deep well of learning and wide range of skillsproduced as a consequence of participation. This learning would rarely be recognisedas education or training, illustrating the need for caution when concluding that adulteducation is not taking place and learning outcomes are not being achieved other thanthrough courses where teaching occurs, or in contexts that are regarded as literary.What men skills men learnt, though significant as outcomes, were not the object of themotor sport activity, supporting Biesta's (2006 view that the amassing of knowledgeand skills can be achieved in other valuable ways aside from through education.

  5. Motor Learning and Aging.

    Science.gov (United States)

    Baumann, Hartmut

    Two recent conferences on the science of sport have focused on the topic of sports for older people. Investigations have been made on the special demand in motor learning, in table-tennis, family-tennis, gymnastics, and dancing. This paper summarizes some experiences and conclusions drawn from these studies, including special notes on isolated…

  6. Motor learning in Sport. A short stroll into a (unfamiliar world. [Aprendizaje motor en el deporte: Un corto paseo por un mundo (desconocido].

    Directory of Open Access Journals (Sweden)

    Luis Miguel Ruiz

    2015-01-01

    Full Text Available It was in 1990 when Quest published an issue about “Usefulness of motor learning research for physical educators”. Several scholars tried to give an answer to this question, while motor learning researchers were in favour of this kind of scientific knowledge (Singer, 1990, Magill, 1990 pedagogues were more sceptical (Locke, 1990; Hoffman, 1990. Is it still a question that needs an answer? Does motor learning and expertise research useful for coaches and teachers? To quote J. von Uexkül “perhaps it would be a good idea to give a short stroll into the world of this (unfamiliar world”. Recently the philosophy of mind and philosophy of sport has begun to focus on sport expertise (Breivik, 2007; Moe, 2005. Today we are witnessing a change of the explanatory model of motor skill acquisition. Computational and computer metaphor is rejected and dynamic, sensorimotor, extended and enactive positions are the fashionable approaches (Araujo, 2013; Aviles et al., 2014; Clark and Chalmers, 2011; Davids, 2015; Froese and Di Paolo, 2011; Noë, 2010. In some cases these positions are coincidences but not in others. All of the researchers are agree upon the need to consider the mutuality of human beings and their surroundings. The computer metaphor, which at the time was the paradigm of any explanation, is now beginning to be seen as an overcome idea(Moe, 2005; Varela, Thompson and Rosch, 2005.

  7. Successful Transfer of a Motor Learning Strategy to a Novel Sport.

    Science.gov (United States)

    Kearney, Philip E; Judge, Phil

    2017-10-01

    This study investigated whether secondary school students who were taught a motor learning strategy could transfer their knowledge of the strategy to learning a novel task. Twenty adolescents were randomly allocated to a strategy or control group. The strategy group was taught Singer's five-step learning strategy, while the control group received information on the evolution and biomechanics of the basketball free throw. Both groups received three 1-hour practice sessions on a modified basketball shooting task. After one month, participants were introduced to the transfer task, golf putting. Performance accuracy was recorded for all tasks, and participants completed questionnaires regarding strategy use during practice. Participants taught the five-step learning strategy successfully recalled and applied it after a 1-month interval, and they demonstrated superior performance on both acquisition and transfer tasks, relative to the control group. Physical education teachers and coaches should consider using this learning strategy to enhance the learning of closed motor skills.

  8. Motor learning.

    Science.gov (United States)

    Wolpert, Daniel M; Flanagan, J Randall

    2010-06-08

    Although learning a motor skill, such as a tennis stroke, feels like a unitary experience, researchers who study motor control and learning break the processes involved into a number of interacting components. These components can be organized into four main groups. First, skilled performance requires the effective and efficient gathering of sensory information, such as deciding where and when to direct one's gaze around the court, and thus an important component of skill acquisition involves learning how best to extract task-relevant information. Second, the performer must learn key features of the task such as the geometry and mechanics of the tennis racket and ball, the properties of the court surface, and how the wind affects the ball's flight. Third, the player needs to set up different classes of control that include predictive and reactive control mechanisms that generate appropriate motor commands to achieve the task goals, as well as compliance control that specifies, for example, the stiffness with which the arm holds the racket. Finally, the successful performer can learn higher-level skills such as anticipating and countering the opponent's strategy and making effective decisions about shot selection. In this Primer we shall consider these components of motor learning using as an example how we learn to play tennis. 2010 Elsevier Ltd. All rights reserved.

  9. Motor memory in sports success

    Directory of Open Access Journals (Sweden)

    Silvia GRĂDINARU

    2017-02-01

    Full Text Available The model of modern sports performance asks for certain graduation in the treatment of its efficiency. Besides the coaching model, what matters is the genetic potential of the child or junior, and particularly the selection of the young talented athlete identified at the proper time and included in a proper training system, in full harmony with the education process. The sports output is determined by the simultaneous action of several factors whose influences are different. At present, there is a tendency to improve those factors on which rely sports outcomes and that need to be analysed and selected. Psychic capacity is a major factor, and mental control – the power to focus, motor intelligence, motor memory, creativity, and tactical skills play a major role in an athlete’s style. This study aims at showing the measure in which motor memory allows early and reliable diagnosis of future performance. The subjects selected are components of the mini-basket team of the Sports Club “Sport Star” from Timisoara, little girls that have played basketball since 1st grade in their free time (some of the girls have played it for four years. The research was carried out during a competitive year; we monitored the subjects both during coach lessons and minibasketball championship. To assess motor memory, we used the “cerebral module” consisting in memorising a complex of technical and tactical elements and applying them depending on the situation in the field. The research also involved monitoring the subjects in four directions considered defining in the assessment of the young athletes: somatic data, physical features, basketball features and intellectual potential. Most parameters point out a medium homogeneity of the group, except for height and commitment (great homogeneity. Half of the athletes of the tested group are above the mean of the group, which allows guiding them towards higher coaching forms (allowing them to practice basketball

  10. Embodiment and fundamental motor skills in eSports

    OpenAIRE

    van Hilvoorde, I.M.; Pot, J.N.

    2016-01-01

    Electronic sports (eSports) and other variants of ‘digital sports’ have increased in popularity all over the world and may even come to challenge hegemonic concepts of sport. More relevant than the apparent opposition between ‘physical’ and ‘non-physical’ is the question what kind of embodiment is manifested within virtual environments. In this paper, we argue that eSports do require the learning and performance of motor skills and that embodiment within a virtual environment may be considere...

  11. The Influence of the Application of the Game on Improving Motor Skills and Student Learning Motivation in Learning Physical Sport and Health Education (PSHE

    Directory of Open Access Journals (Sweden)

    Ahmad Zuhrotilanwar

    2017-11-01

    Full Text Available This Research aimed to examine the effect of game implementation on improving motor skills and student learning motivation in PSHE learning in Seventh grade of 2nd semester student on SMPN 4 Lamongan.. This research used quantitative approach with research type of quasy experiment and using matching-only design. In this method the subject of research used two classes namely the seventh grade F, amounting to 28 students as an experimental group and the seventh grade I, amounting to 27 students as a control group. The data collection process was done by pretest and posttest stage using barrow motor ability test to measure motor ability and questionnaire to measure student’s learning motivation. The result of the research showed that there was a significant influence on the role of the game on the improvement of motor ability (7,56% and there was a significant effect on the improvement of student’s learning motivation (8,28% seen from t-test result. In addition there were differences in influence through the ANOVA test, as well as the role of the game was more influential than the control group in improving motor skills and student learning motivation. Based on the results of data analysis, it was concluded that learning by applying the game more effectively to improve motor skills and student learning motivation in learning PSHE but still need further development in subsequent research.

  12. Neuroplasticity & Motor Learning

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye

    is a measure of our ability to form and store a motor memory of the task. However, the initial memory of the task is labile and may be subject to interference. During and following motor learning plastic changes occur within the central nervous system. On one hand these changes are driven by motor practice......, on the other hand the changes underlie the formation of motor memory and the retention of improved motor performance. During motor learning changes may occur at many different levels within the central nervous system dependent on the type of task and training. Here, we demonstrate different studies from our...

  13. Circuit changes in motor cortex during motor skill learning.

    Science.gov (United States)

    Papale, Andrew E; Hooks, Bryan M

    2018-01-01

    Motor cortex is important for motor skill learning, particularly the dexterous skills necessary for our favorite sports and careers. We are especially interested in understanding how plasticity in motor cortex contributes to skill learning. Although human studies have been helpful in understanding the importance of motor cortex in learning skilled tasks, animal models are necessary for achieving a detailed understanding of the circuitry underlying these behaviors and the changes that occur during training. We review data from these models to try to identify sites of plasticity in motor cortex, focusing on rodents asa model system. Rodent neocortex contains well-differentiated motor and sensory regions, as well as neurons expressing similar genetic markers to many of the same circuit components in human cortex. Furthermore, rodents have circuit mapping tools for labeling, targeting, and manipulating these cell types as circuit nodes. Crucially, the projection from rodent primary somatosensory cortex to primary motor cortex is a well-studied corticocortical projection and a model of sensorimotor integration. We first summarize some of the descending pathways involved in making dexterous movements, including reaching. We then describe local and long-range circuitry in mouse motor cortex, summarizing structural and functional changes associated with motor skill acquisition. We then address which specific connections might be responsible for plasticity. For insight into the range of plasticity mechanisms employed by cortex, we review plasticity in sensory systems. The similarities and differences between motor cortex plasticity and critical periods of plasticity in sensory systems are discussed. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Learning through the Adventure of Youth Sport

    Science.gov (United States)

    Newman, Tarkington J.; Kim, Melissa; Tucker, Anita R.; Alvarez, M. Antonio G.

    2018-01-01

    Background: Participation in youth sport is often associated with a variety of positive development outcomes. In order to effectively utilize sport as a context of learning and development, the sport must be intentionally designed and programed. One often-used approach is known as sport-based positive youth development (PYD). Recently, to further…

  15. Short time sports exercise boosts motor imagery patterns: Implications of mental practice in rehabilitation programs

    Directory of Open Access Journals (Sweden)

    Selina Christin Wriessnegger

    2014-06-01

    Full Text Available Motor imagery (MI is a commonly used paradigm for the study of motor learning or cognitive aspects of action control. The rationale for using MI training to promote the relearning of motor function arises from research on the functional correlates that MI shares with the execution of physical movements. While most of the previous studies investigating MI were based on simple movements in the present study a more attractive mental practice was used to investigate cortical activation during MI. We measured cerebral responses with functional magnetic resonance imaging (fMRI in twenty three healthy volunteers as they imagined playing soccer or tennis before and after a short physical sports exercise. Our results demonstrated that only 10 minutes of training are enough to boost motor imagery patterns in motor related brain regions including premotor cortex and supplementary motor area (SMA but also fronto-parietal and subcortical structures. This supports previous findings that motor imagery has beneficial effects especially in combination with motor execution when used in motor rehabilitation or motor learning processes. We conclude that sports MI combined with an interactive game environment could be a promising additional tool in future rehabilitation programs aiming to improve upper or lower limb functions or support neuroplasticity.

  16. Motor skill learning in groups: Some proposals for applying implicit learning and self-controlled feedback

    NARCIS (Netherlands)

    van der Kamp, J.; Duivenvoorde, J.; Kok, M.G.M.; van Hilvoorde, I.M.

    2015-01-01

    Contrary to researchers' current focus on individual motor skill learning, in institutional settings such as physical education and sports motor skill learning is often taught in groups. In these settings, there is not only the interaction between teacher and learner (analogous to research), but

  17. Motor Learning as Young Gymnast's Talent Indicator.

    Science.gov (United States)

    di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio

    2014-12-01

    Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz's battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability.Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete's current performance.In this manner talent identification processes should be focused on the future performance capabilities of athletes.

  18. Participation in sports practice and motor competence in preschoolers

    Directory of Open Access Journals (Sweden)

    Daniel da Rocha Queiroz

    2014-03-01

    Full Text Available Recent theoretical model suggests that motor competence during early childhood is related to one's current and future health status and that practicing sports seems to be playing a special role in creating such competence. This study aimed to compare performance in gross motor skills among preschoolers participating in regular sports practice (SP and those not participating (NSP, including comparisons by gender. The study uses secondary data from a population-based study of performance regarding the locomotor and object control skills of preschoolers (3 to 5 years old. Preschoolers were assigned to groups SP or NSP, paired by age and sex according to skills: locomotor (n = 54; 30 boys or object control (n = 37; 17 boys. Analysis of variance showed that the SP group outperformed the NSP one, and there were gender differences only within SP group. Starting to practice sports during early childhood helps to build motor competence and benefits both genders.

  19. Sport context and the motor development of children

    Directory of Open Access Journals (Sweden)

    Patrik Felipe Nazario

    2013-12-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2014v16n1p86   Over the last 30 years there has been a considerable increase of research in the field of motor development. Although the first reports were based on biological factors, current discussions include the role of the environment in the process of motor develop-ment. The aim of this study was to compare the motor performance of children enrolled in sports centers to that of children only attending physical education classes. Eighty-seven children aged 8 to 10 years enrolled in centers offering training in rhythmic gymnastics (n=20, handball (n=26 and indoor soccer (n=16 and children attending only physi-cal education classes (n=25 participated in the study. Data were analyzed by inferential statistics using the Kruskal-Wallis test, Mann-Whitney U test and discriminant analysis, adopting a level of significance of α=0.05. The results showed differences between groups (p<0.001. Children attending only physical education classes showed lower performance, whereas children enrolled in sports centers performed better in the motor skills related to the requirements of each discipline. The statistical model also discriminated and classified correctly 79.3% of the children participating or not in some sports discipline. Finally, it is possible to conclude that the sport context influences the level of motor performance and motor skills according to the requirements of the sport practiced.

  20. Anthropometrical, physical, motor and sport psychological profile of ...

    African Journals Online (AJOL)

    This study determined whether anthropometrical, physical, motor and sport psychological differences exist between a group of male adolescents who show talent for sprinting and their less talented counterparts. Grade 8 boys (N=89; mean age: 13.25±0.46 years), from a high school in Potchefstroom voluntarily participated ...

  1. Neuroplasticity & Motor Learning

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye

    Practice of a new motor task is usually associated with an improvement in performance. Indeed, if we stop practicing and return the next day to the same task, we find that our performance has been maintained and may even be better than it was at the start of the first day. This improvement is a m...

  2. Movement sonification: Effects on motor learning beyond rhythmic adjustments

    Directory of Open Access Journals (Sweden)

    Alfred Oliver Effenberg

    2016-05-01

    Full Text Available Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities, but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicate an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation there is nearly no evidence about enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap movement sonification is used here in applied research on motor learning in sports.Based on the current knowledge on the multimodal organization of the perceptual system we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error feedback in motor learning settings we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting participants were asked to

  3. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments.

    Science.gov (United States)

    Effenberg, Alfred O; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed

  4. SPORT SCIENCE STUDENTS‟ BELIEFS ABOUT LANGUAGE LEARNING

    Directory of Open Access Journals (Sweden)

    Suvi Akhiriyah

    2017-04-01

    Full Text Available There are many reasons for students of Sport Science to use English. Yet, knowing the importance of learning English is sometimes not enough to encourage them to learn English well. Based on the experience in teaching them, erroneous belief seems to be held by many of them. It arouses curiosity about the beliefs which might be revealed to help the students to be successful in language learning. By investigating sport science students‘ beliefs about language learning, it is expected that types of the beliefs which they hold can be revealed. Understanding students‘ beliefs about language learning is essential because these beliefs can have possible consequences for second language learning and instruction. This study is expected to provide empirical evidence. The subjects of this study were 1st semester students majoring in Sport Science of Sport Science Faculty. There were 4 classes with 38 students in each class. There were approximately 152 students as the population of the study. The sample was taken by using random sampling. All members of the population received the questionnaire. The questionnaire which was later handed back to the researcher is considered as the sample. The instrument in this study is the newest version of Beliefs About Language Learning Inventory (BALLI, version 2.0, developed by Horwitz to asses the beliefs about learning a foreign language.

  5. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Prekoracka-Krawczyk, Anna; Jaskowski, Wojciech; van der Lubbe, Robert Henricus Johannes

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and

  6. Sport and Exercise Pedagogy and Questions about Learning

    Science.gov (United States)

    Quennerstedt, Mikael; Öhman, Marie; Armour, Kathleen

    2014-01-01

    One important challenge ahead for sport and exercise pedagogy (SEP) researchers is to consider afresh questions about learning. Learning in the fields of sport, physical activity and physical education (PE) is a particularly complex business. Most existing theories of learning are defined cognitively, yet learning in sport and physical activity…

  7. Learning motor skills from algorithms to robot experiments

    CERN Document Server

    Kober, Jens

    2014-01-01

    This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters, and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation, and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first author’s doctoral thesis, which wo...

  8. Interference in motor learning - is motor interference sensory?

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Petersen, Tue Hvass; Rothwell, John C

    learning of the primary task, no interference was observed. Previous studies have suggested that primary motor cortex (M1) may be involved in early motor memory consolidation. 1Hz Repetitive Transcranial Magnetic Stimulation (rTMS) of corticospinal motor output at intensities below ankle movement threshold......Skill gained after a short period of practice in one motor task can be abolished if a second task is learned shortly afterwards, but not all motor activities cause interference. After all it is not necessary to remain completely still after practicing a task for learning to occur. Here we ask which...... mechanisms determine whether or not interference occurs. We hypothesised that interference requires the same neural circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects learned a ballistic ankle plantarflexion task. Early motor memory...

  9. Interference in motor learning - is motor interference sensory?

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Petersen, Tue Hvass; Rothwell, John C

    mechanisms determine whether or not interference occurs. We hypothesised that interference requires the same neural circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects learned a ballistic ankle plantarflexion task. Early motor memory...... learning of the primary task, no interference was observed. Previous studies have suggested that primary motor cortex (M1) may be involved in early motor memory consolidation. 1Hz Repetitive Transcranial Magnetic Stimulation (rTMS) of corticospinal motor output at intensities below ankle movement threshold......Skill gained after a short period of practice in one motor task can be abolished if a second task is learned shortly afterwards, but not all motor activities cause interference. After all it is not necessary to remain completely still after practicing a task for learning to occur. Here we ask which...

  10. Travel medicine advice to UK based international motor sport teams.

    Science.gov (United States)

    Walters, A

    2000-01-01

    International motor sport teams travel extensively. Over the years, the design and build of racing cars has improved so that morbidity and mortality in motor sport has been lessened. Those team members supporting the competitors need to be physically and mentally fit to perform complicated tasks, despite having traveled. This group of travelers has not been studied to any extent previously. An anonymous questionnaire asking some basic travel medicine related questions was distributed to the support team members of a Rally team, and Formula One Grand Prix team. Both teams were based in the UK, and competed in all the rounds of their respective world championships. Ten Rally team members and 18 Formula One team members responded to the questionnaire. The results showed moderate coverage of commonly used vaccinations; appropriate use of antimalarials and insect repellents, but by no means by all team members; little or no problems with traveler's diarrhea; some tendencies to problems related to jet lag, but no real attempt to prevent the problem; and finally some attempt at skin protection against solar damage. Support teams are reasonably well prepared for the combination of, the rigors of frequent travel, and a demanding job. There is a deficit in vaccine coverage, especially of both hepatitis A and B, some education is needed in preventing skin problems later in life due to sun exposure, and further study of jet lag and its implications might be appropriate.

  11. Motor Learning as Young Gymnast’s Talent Indicator

    Science.gov (United States)

    di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio

    2014-01-01

    Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz’s battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time. Key points In talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability. Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete’s current performance. In this manner talent identification processes should be focused on the future performance capabilities of athletes. PMID:25435768

  12. Motor Learning in Lucid Dreams: Prevalence, Induction, and Effectiveness

    OpenAIRE

    Stumbrys, Tadas

    2015-01-01

    The purpose of the present investigation was to explore the potentials for motor learning in a special state of consciousness – so called lucid dreams (dreams in which the dreamers are aware that they are dreaming): its prevalence among athletes, facilitating methods and effectiveness. The contents of this dissertation are structured in the following way. The first chapter introduces the concept of mental practice in sports, reviews the evidence for its effectiveness and presents main theorie...

  13. Beer and Fast Cars: How Brewers Target Blue-collar Youth through Motor Sport Sponsorships.

    Science.gov (United States)

    Buchanan, David R.; Lev, Jane

    This study explored how motor sports sponsorships complement and amplify the brewers' media campaigns by joining masculinity, risk, excitement, and beer in the actual "lived" experiences of potential consumers. To document industry expenditures and justifications for motor sports sponsorship, trade journals and newsletters (N=25) and…

  14. PENGARUH BRAND IMAGE TERHADAP KEPUTUSAN PEMBELIAN MOBIL MEREK PAJERO SPORT PADA PT. BOSOWA BERLIAN MOTOR

    OpenAIRE

    FACHIRA, NURUL RIZKI

    2012-01-01

    Tujuan penelitian ini adalah : (i) untuk menganalisis pengaruh brand image meliputi kualitas merek, loyalitas merek dan asosiasi merek terhadap keputusan pembelian mobil Pajero Sport pada PT. Bosowa Berlian Motor, dan (ii) untuk menganalisis diantara brand image tersebut berpengaruh dominan terhadap keputusan pembelian mobil Pajero Sport pada PT. Bosowa Berlian Motor. Penelitian ini memakai metode deskriptif kuantitatif. Populasi dan sampel ...

  15. Observing motor learning produces somatosensory change.

    Science.gov (United States)

    Bernardi, Nicolò F; Darainy, Mohammad; Bricolo, Emanuela; Ostry, David J

    2013-10-01

    Observing the actions of others has been shown to affect motor learning, but does it have effects on sensory systems as well? It has been recently shown that motor learning that involves actual physical practice is also associated with plasticity in the somatosensory system. Here, we assessed the idea that observational learning likewise changes somatosensory function. We evaluated changes in somatosensory function after human subjects watched videos depicting motor learning. Subjects first observed video recordings of reaching movements either in a clockwise or counterclockwise force field. They were then trained in an actual force-field task that involved a counterclockwise load. Measures of somatosensory function were obtained before and after visual observation and also following force-field learning. Consistent with previous reports, video observation promoted motor learning. We also found that somatosensory function was altered following observational learning, both in direction and in magnitude, in a manner similar to that which occurs when motor learning is achieved through actual physical practice. Observation of the same sequence of movements in a randomized order did not result in somatosensory perceptual change. Observational learning and real physical practice appear to tap into the same capacity for sensory change in that subjects that showed a greater change following observational learning showed a reliably smaller change following physical motor learning. We conclude that effects of observing motor learning extend beyond the boundaries of traditional motor circuits, to include somatosensory representations.

  16. CORRELATIONS OF MOTOR DIMENSIONS OF STUDENTS OF THE FACULTY OF SPORT AND PHYSICAL EDUCATION WITH TEACHING CONTENTS OF SPORTS GYMNASTICS

    Directory of Open Access Journals (Sweden)

    Jovica Petković

    2013-07-01

    Full Text Available Sports gymnastics, as a basic sport discipline, has been largely neglected through the work with young people in primary and secondary school. This is one of the key reasons for the multitude of problems, with which students of the Faculty of Sport and Physical Education face, when it comes to mastering the content of sports gymnastics. Development of strength, speed, coordination, balance and flexibility are very important and dominant factor in mastering gymnastic skills and program contents, especially when it comes to gymnastics parterre, where a greater degree of motor preparedness also affects the breaking of fear as the disruptive factor in the training process.

  17. Relationship between sports participation and the level of motor coordination in childhood: a longitudinal approach.

    Science.gov (United States)

    Vandorpe, Barbara; Vandendriessche, Joric; Vaeyens, Roel; Pion, Johan; Matthys, Stijn; Lefevre, Johan; Philippaerts, Renaat; Lenoir, Matthieu

    2012-05-01

    This study examined the stability of motor coordination and the relationship between motor coordination and organized sports participation over time. Longitudinal design. A total of 371 children between six and nine years of age at initial testing completed a test battery measuring motor coordination in three consecutive years and a questionnaire on their club sports participation in year 1 and year 3 of testing. Correlation coefficients revealed the motor coordination of children to be a highly stable factor, ranging from 0.662 (6-8 years) to 0.873 (7-9 years). Results of the Repeated Measures ANOVA indicated that children who consistently practiced sports in a club environment over the three years of testing displayed better coordination levels than children who only partially participated or did not participate in a club environment at all. Moreover, stability was further indicated as consistent sports participation over time and changes or lack thereof did not substantially influence the development of motor coordination over time. In addition, the basic level of motor coordination and the amount of club sports participation significantly predicted sports participation two years later. The importance of the stability of motor coordination levels in childhood and its role in determining organized sports participation may have implications for talent identification purposes as well as potential health-related benefits in childhood and throughout the lifespan. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Visuomotor learning by passive motor experience

    Directory of Open Access Journals (Sweden)

    Takashi eSakamoto

    2015-05-01

    Full Text Available Humans can adapt to unfamiliar dynamic and/or kinematic transformations through the active motor experience. Recent studies of neurorehabilitation using robots or brain-computer interface (BCI technology suggest that passive motor experience would play a measurable role in motor recovery, however our knowledge of passive motor learning is limited. To clarify the effects of passive motor experience on human motor learning, we performed arm reaching experiments guided by a robotic manipulandum. The results showed that the passive motor experience had an anterograde transfer effect on the subsequent motor execution, whereas no retrograde interference was confirmed in the ABA paradigm experiment. This suggests that the passive experience of the error between visual and proprioceptive sensations leads to the limited but actual compensation of behavior, although it is fragile and cannot be consolidated as a persistent motor memory.

  19. Variation in sport participation, fitness and motor coordination with socioeconomic status among Flemish children.

    Science.gov (United States)

    Vandendriessche, Joric B; Vandorpe, Barbara F R; Vaeyens, Roel; Malina, Robert M; Lefevre, Johan; Lenoir, Matthieu; Philippaerts, Renaat M

    2012-02-01

    Socioeconomic status (SES) is often indicated as a factor that influences physical activity and associated health outcomes. This study examined the relationship between SES and sport participation, morphology, fitness and motor coordination in a sample of 1955 Flemish children 6-11 years of age. Gender, age and SES-specific values for morphologic dimensions, amount and type of sport participation and fitness and motor coordination tests were compared. SES was positively and significantly associated with sport participation and sports club membership in both sexes. Although differences were not consistently significant, morphologic dimensions and tests of fitness and motor coordination showed a trend in favor of children from higher SES. The results suggest that public and local authorities should consider providing equal opportunities for children in all social strata and especially those in the lower SES to experience the beneficial effects of sport participation through which they can enhance levels of physical fitness and motor coordination.

  20. Can proprioceptive training improve motor learning?

    NARCIS (Netherlands)

    Wong, J.D.; Kistemaker, D.A.; Chin, A; Gribble, P.L.

    2012-01-01

    Recent work has investigated the link between motor learning and sensory function in arm movement control. A number of findings are consistent with the idea that motor learning is associated with systematic changes to proprioception (Haith A, Jackson C, Mial R, Vijayakumar S. Adv Neural Inf Process

  1. NON-TRADITIONAL SPORTS AT SCHOOL. BENEFITS FOR PHYSICAL AND MOTOR DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    AMADOR J. LARA-SÁNCHEZ

    2010-12-01

    Full Text Available Physical Education teachers have been using some very classic team sports, like football, basketball, handball, volleyball, etc. for many years in order to develop their education work at school. As a consequence of this, the benefits of this kind of activities on Physical Education lessons have not been as notable as we mighthave expected, since, even if they are increasing, their development and application are still low. There are many and very varied new non-traditional sports that have emerged and extended across Spain in recent years. To mention an example, we could refer to a newly created non-traditional sport such as kin-ball. This sport wascreated for the purpose of achieving a way to combine several factors such as health, team-work and competitiveness. Three teams of four players each participate. This way, every player can participate to a great extent in all the moves of the match, for each of them must defend one area of their half in order to achieve a common objective. Besides, kin-ball helps to develop motor skills at school in an easy way; that is, coordination, balance and perception. There is a large variety of non-traditional games and sports that are similar to kin-ball, such as floorball, intercrosse, mazaball, tchoukball, ultimate, indiaca, shuttleball... All of them show many physical, psychic and social advantages, and can help us to make the Physical Education teaching-learning process more motivating, acquiring the recreational component that it showed some years ago and which hasnow disappeared

  2. Embodiment and fundamental motor skills in eSports

    NARCIS (Netherlands)

    van Hilvoorde, I.M.; Pot, J.N.

    2016-01-01

    Electronic sports (eSports) and other variants of ‘digital sports’ have increased in popularity all over the world and may even come to challenge hegemonic concepts of sport. More relevant than the apparent opposition between ‘physical’ and ‘non-physical’ is the question what kind of embodiment is

  3. Interference in ballistic motor learning - is motor interference really sensory?

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C

    Skill gained after a short period of practice in one motor task can be abolished if a second task is learned shortly afterwards. We hypothesised that interference requires the same circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects...... learned a ballistic ankle plantarflexion task. Interference was observed following subsequent learning of a precision tracking task with the same movement direction and agonist muscles, but not by learning involving the opposite movement and antagonist muscles or by voluntary agonist contractions that did...... not require learning. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below ankle movement threshold did not cause interference, whereas suprathreshold rTMS did. Furthermore, electrical stimulation of the peripheral nerve to the plantarflexors (but not extensors...

  4. Mentoring as a Formalized Learning Strategy with Community Sports Volunteers

    Science.gov (United States)

    Griffiths, Mark; Armour, Kathleen

    2012-01-01

    The aim of our study was to examine formalized mentoring as a learning strategy for volunteer sports coaches and to consider implications for other volunteer groups in the community. Despite the increasingly popular use of mentoring as a learning and support strategy across professional domains, and the sheer scale of volunteer sports coach…

  5. Sport students' perception of their learning experience: Amazing ...

    African Journals Online (AJOL)

    This study investigated the perceived learning experience regarding academic content-specific outcomes and learning of life skills as identified by sport curriculum students competing in an on-campus Ama-zing Race activity. The study was qualitative in nature and involved the participation of 99 undergraduate sport ...

  6. Motor Learning as Young Gymnast’s Talent Indicator

    Directory of Open Access Journals (Sweden)

    Alessandra di Cagno

    2014-12-01

    Full Text Available Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr. and juniors (aged 13.3 ± 0.5 years, competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz’s battery (1985, and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01 and ranking (p < 0.05 of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R2 = 0.26, p < 0.01. Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time.

  7. Cognitive aging affects motor performance and learning.

    Science.gov (United States)

    Ren, Jie; Wu, Yan D; Chan, John S Y; Yan, Jin H

    2013-01-01

    Substantial evidence indicates that declines in cognitive and motor functioning are often observed when we age. The interdependence of cognition and behavior has been reported in a wide range of studies. However, research on the cognitive-motor associations in aging has been lacking. We review behavioral and neural characteristics of cognitive aging in relation to motor aging and aim to elucidate their interrelationships in an aging context. From a developmental view, we propose an integrative concept focusing on the dynamics of cognitive functioning, motor performance and skill acquisition. In the framework, representations and motor learning potential are closely related. and supported by distributed neural systems, which are less susceptible to functional declines in the aging process. Mostly supported by high-level areas, control processes, motor learning efficiency and motor performance are closely related. As high-level areas are more vulnerable during aging, control processes, motor learning efficiency and motor performance are substantially affected when one approaches late adulthood. Practical implications and future research directions are discussed. © 2012 Japan Geriatrics Society.

  8. Are Gross Motor Skills and Sports Participation Related in Children with Intellectual Disabilities?

    Science.gov (United States)

    Westendorp, Marieke; Houwen, Suzanne; Hartman, Esther; Visscher, Chris

    2011-01-01

    This study compared the specific gross motor skills of 156 children with intellectual disabilities (ID) (50 less than or equal to IQ greater than or equal to 79) with that of 255 typically developing children, aged 7-12 years. Additionally, the relationship between the specific gross motor skills and organized sports participation was examined in…

  9. Motor Skill Performance and Sports Participation in Deaf Elementary School Children

    Science.gov (United States)

    Hartman, Esther; Houwen, Suzanne; Visscher, Chris

    2011-01-01

    This study aimed to examine motor performance in deaf elementary school children and its association with sports participation. The population studied included 42 deaf children whose hearing loss ranged from 80 to 120 dB. Their motor skills were assessed with the Movement Assessment Battery for Children, and a questionnaire was used to determine…

  10. Are gross motor skills and sports participation related in children with intellectual disabilities?

    NARCIS (Netherlands)

    Westendorp, Marieke; Houwen, Suzanne; Hartman, Esther; Visscher, Chris

    2011-01-01

    This study compared the specific gross motor skills of 156 children with intellectual disabilities (ID) (50 79) with that of 255 typically developing children, aged 7-12 years. Additionally, the relationship between the specific gross motor skills and organized sports participation was examined

  11. Interference in ballistic motor learning - is motor interference really sensory?

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C

    not require learning. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below ankle movement threshold did not cause interference, whereas suprathreshold rTMS did. Furthermore, electrical stimulation of the peripheral nerve to the plantarflexors (but not extensors......Skill gained after a short period of practice in one motor task can be abolished if a second task is learned shortly afterwards. We hypothesised that interference requires the same circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects......) caused interference. We conclude that interference is remarkably specific for circuits involved in a specific movement direction / activation of individual muscles and depends crucially on sensory error signals. One possible mechanism of interference may be disruption of early motor memory consolidation....

  12. Learning without knowing: subliminal visual feedback facilitates ballistic motor learning

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Leukel, Christian; Nielsen, Jens Bo

    received supraliminal as compared to subliminal feedback. In the 0 ms feedback group motor performance increased only slightly indicating an important role of augmented feedback in learning the ballistic task. In the two groups who received subliminal feedback none of the subjects were able to tell what...... by the learner, indeed facilitated ballistic motor learning. This effect likely relates to multiple (conscious versus unconscious) processing of visual feedback and to the specific neural circuitries involved in optimization of ballistic motor performance....

  13. The Representation of Motor (Interaction, States of Action, and Learning: Three Perspectives on Motor Learning by Way of Imagery and Execution

    Directory of Open Access Journals (Sweden)

    Cornelia Frank

    2017-05-01

    Full Text Available Learning in intelligent systems is a result of direct and indirect interaction with the environment. While humans can learn by way of different states of (interaction such as the execution or the imagery of an action, their unique potential to induce brain- and mind-related changes in the motor action system is still being debated. The systematic repetition of different states of action (e.g., physical and/or mental practice and their contribution to the learning of complex motor actions has traditionally been approached by way of performance improvements. More recently, approaches highlighting the role of action representation in the learning of complex motor actions have evolved and may provide additional insight into the learning process. In the present perspective paper, we build on brain-related findings and sketch recent research on learning by way of imagery and execution from a hierarchical, perceptual-cognitive approach to motor control and learning. These findings provide insights into the learning of intelligent systems from a perceptual-cognitive, representation-based perspective and as such add to our current understanding of action representation in memory and its changes with practice. Future research should build bridges between approaches in order to more thoroughly understand functional changes throughout the learning process and to facilitate motor learning, which may have particular importance for cognitive systems research in robotics, rehabilitation, and sports.

  14. Sport stacking motor intervention programme for children with ...

    African Journals Online (AJOL)

    The purpose of this study was to explore sport stacking as an alternative intervention approach with typically developing children and in addition to improve DCD. Sport stacking consists of participants stacking and unstacking 12 specially designed plastic cups in predetermined sequences in as little time as possible.

  15. Motor learning as a criterion for evaluating coordination motor abilities

    Directory of Open Access Journals (Sweden)

    Boraczynski Tomasz

    2011-10-01

    Full Text Available The aim of the study was to evaluate the ability of motor learning based on objective, metric criteria, in terms of pedagogical process aimed at improving the accuracy of hits a golf ball to the target. A group of 77 students of physical education participated in the study. Within 8 months there were performed 11 measurement sessions. In each session, subjects performed 10 hits a golf ball to the target from a distance of 9 m. Accuracy of hits was recorded. Effect of motor learning has been demonstrated in the progress of 10 consecutive hits a golf ball to the target in each session (operational control; in the dynamics of performance improvement between sessions (current control; as well as in the total result of eight-month experiment (stage control. There were developed norms for quantitative and qualitative assessment of accuracy of hits a golf ball to the target. Developed quantitative and qualitative criteria for assessing the speed of motor learning in various conditions of the educational process creates the possibility of organization the operational, current and stage control of the level of human coordination motor abilities, as required by leading process.

  16. Learning without knowing: subliminal visual feedback facilitates ballistic motor learning

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Leukel, Christian; Nielsen, Jens Bo

    by subconscious (subliminal) augmented visual feedback on motor performance. To test this, 45 subjects participated in the experiment, which involved learning of a ballistic task. The task was to execute simple ankle plantar flexion movements as quickly as possible within 200 ms and to continuously improve...... by the learner, indeed facilitated ballistic motor learning. This effect likely relates to multiple (conscious versus unconscious) processing of visual feedback and to the specific neural circuitries involved in optimization of ballistic motor performance.......). It is a well- described phenomenon that we may respond to features of our surroundings without being aware of them. It is also a well-known principle, that learning is reinforced by augmented feedback on motor performance. In the present experiment we hypothesized that motor learning may be facilitated...

  17. Using Sport to Engage and Motivate Students to Learn Mathematics

    Science.gov (United States)

    Robinson, Carol L.

    2012-01-01

    This article describes how technology has been used to motivate the learning of mathematics for students of Sports Technology at Loughborough University. Sports applications are introduced whenever appropriate and Matlab is taught to enable the students to solve realistic problems. The mathematical background of the students is varied and the…

  18. Neural Population Dynamics Underlying Motor Learning Transfer.

    Science.gov (United States)

    Vyas, Saurabh; Even-Chen, Nir; Stavisky, Sergey D; Ryu, Stephen I; Nuyujukian, Paul; Shenoy, Krishna V

    2018-03-07

    Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from "covert rehearsal" affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. MOTORIC STATUS RELATIONS IN MONTENEGRIN YUOTH POPULATION OF VARIOUS SPORT ORIENTATIONS

    Directory of Open Access Journals (Sweden)

    Duško Bjelica

    2010-09-01

    Full Text Available Volleyball and handball have become the most interesting sports disciplines from the very moment they became familiar to the Montenegrin population. The authors point out the fact that almost the whole Montenegrin young population practice these sports and that it would be of the greatest importance to pay a special attention to the psychological development of one part of the sensitive and peculiar Montenegrin population. The objective of the paper is to form an opinion about the motoric status of the handball and valleyball players, the students of the Faculty of Sports and Physical Education and the non- sportsmen and to compare it to the situation in the neighbouring countries as well as the comprehension of the issue how various sports activities influence the motoric development of the examinees.

  20. Robotic neurorehabilitation: a computational motor learning perspective

    Directory of Open Access Journals (Sweden)

    Krakauer John W

    2009-02-01

    Full Text Available Abstract Conventional neurorehabilitation appears to have little impact on impairment over and above that of spontaneous biological recovery. Robotic neurorehabilitation has the potential for a greater impact on impairment due to easy deployment, its applicability across of a wide range of motor impairment, its high measurement reliability, and the capacity to deliver high dosage and high intensity training protocols. We first describe current knowledge of the natural history of arm recovery after stroke and of outcome prediction in individual patients. Rehabilitation strategies and outcome measures for impairment versus function are compared. The topics of dosage, intensity, and time of rehabilitation are then discussed. Robots are particularly suitable for both rigorous testing and application of motor learning principles to neurorehabilitation. Computational motor control and learning principles derived from studies in healthy subjects are introduced in the context of robotic neurorehabilitation. Particular attention is paid to the idea of context, task generalization and training schedule. The assumptions that underlie the choice of both movement trajectory programmed into the robot and the degree of active participation required by subjects are examined. We consider rehabilitation as a general learning problem, and examine it from the perspective of theoretical learning frameworks such as supervised and unsupervised learning. We discuss the limitations of current robotic neurorehabilitation paradigms and suggest new research directions from the perspective of computational motor learning.

  1. Motor sequence learning and movement disorders.

    Science.gov (United States)

    Doyon, Julien

    2008-08-01

    New insights into the psychophysiological determinants of performance changes and brain plasticity associated with motor sequence learning have recently been gained through behavioral and imaging studies in healthy individuals. In addition, using a variety of motor sequential paradigms in groups of patients affected by a movement disorder, major advances have been achieved in our understanding of the pathophysiological mechanisms underlying Parkinson's and Huntington's diseases, as well as primary forms of dystonia. This review begins by describing the latest findings in normal participants with regards to the dynamic alterations in neural networks observed across the different phases of motor sequence learning. It then focuses on the hotly debated issue of motor memory consolidation, highlighting the results of novel studies that investigated the role of both day and night sleep, the neural substrates and the developmental evolution mediating this process. Finally, this paper addresses current work looking at motor sequence learning in movement disorders that helps to better comprehend the functional contribution of basal ganglia structures to this type of memory, to assess the impact of such diseases on related patterns of brain activation, as well as to identify the neuronal compensatory mechanisms educed by these basal ganglia disorders. Such advances have major implications, not only for optimizing ways to learn new skilled behaviors in real-life situations, but also for guiding therapeutic approaches in patients with movement disorders.

  2. Asymmetries in cerebellar plasticity and motor learning

    Science.gov (United States)

    Titley, Heather K.; Hansel, Christian

    2015-01-01

    Synaptic plasticity at the parallel fiber to Purkinje cell synapse has long been considered a cellular correlate for cerebellar motor learning. Functionally, long-term depression and long-term potentiation at these synapses seem to be the reverse of each other, with both pre- and post- synaptic expression occurring in both. However, different cerebellar motor learning paradigms have been shown to be asymmetric and not equally reversible. Here we discuss the asymmetric reversibility shown in the vestibulo-ocular reflex and eye-blink conditioning, and suggest that different cellular plasticity mechanisms might be recruited under different conditions leading to unequal reversibility. PMID:25578035

  3. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults

    NARCIS (Netherlands)

    Berghuis, K. M. M.; Veldman, M. P.; Solnik, S.; Koch, G.; Zijdewind, I.; Hortobagyi, T.

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation

  4. Learning Sports and Entertainment Marketing: "Apprentice" Style

    Science.gov (United States)

    Weidlich, Jon

    2008-01-01

    The sports and entertainment marketing program is a satellite program of Great Oaks Institute of Technology and Career Development in Cincinnati. Held in two area school districts, at Winton Woods High School and North College Hill High School, sports and entertainment marketing has been a popular choice for students for more than a decade. The…

  5. Workplace Learning of High Performance Sports Coaches

    Science.gov (United States)

    Rynne, Steven B.; Mallett, Clifford J.; Tinning, Richard

    2010-01-01

    The Australian coaching workplace (to be referred to as the State Institute of Sport; SIS) under consideration in this study employs significant numbers of full-time performance sport coaches and can be accurately characterized as a genuine workplace. Through a consideration of the interaction between what the workplace (SIS) affords the…

  6. Older Adults can Learn to Learn New Motor Skills

    OpenAIRE

    Seidler, Rachael D.

    2007-01-01

    Many studies have demonstrated that aging is associated with declines in skill acquisition. In the current study, we tested whether older adults could acquire general, transferable knowledge about skill learning processes. Older adult participants learned five different motor tasks. Two older adult control groups performed the same number of trials, but learned only one task. The experimental group exhibited faster learning than that seen in the control groups. These data demonstrate that old...

  7. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  8. The relationships between gross motor coordination and sport-specific skills in adolescent non-athletes

    Directory of Open Access Journals (Sweden)

    Chagas Daniel V

    2017-12-01

    Full Text Available Purpose. While the usefulness of gross motor coordination score as predictor of sports performance in young athletes has been demonstrated, practical applications in the settings where the focus is not on elite performance is limited. Further, little is known about the extent to which gross motor coordination score is associated with sport-specific skills among adolescent nonathletes. The aim of this study was to analyse the relationship between the degree of gross motor coordination and execution in specific volleyball tests among adolescent non-athletes. Methods. The total of 34 students (27 females and 7 males aged 13-14 years who regularly participated in volleyball during physical education classes were randomly recruited. Gross motor coordination was assessed with the Körperkoordinationstest für Kinder. Motor performance on volley-specific skills was indicated by two product-oriented tasks: volleyball under service and service reception. Correlation and linear regression analyses were applied to examine the associations between motor coordination scores and motor performance in volley-specific skills. Results. Motor coordination score was positively correlated with motor performance on specific skills (r = 0.503, p = 0.02. Linear regression analysis revealed that motor coordination score accounted for 23% of the variance in the motor performance on volleyball skills (R2 = 0.253, R2 adjusted = 0.230, F = 10.836, p = 0.02. Conclusions. The degree of gross motor coordination seems to play a significant role in the execution of specific volleyball tasks.

  9. Motor Skill Learning and Corticospinal Excitability

    DEFF Research Database (Denmark)

    Christiansen, Lasse

    Background Motor skill learning (MSL) is the persistent increase in performance of a skill obtained through practice. This process is associated with changes throughout the central nervous system. One of these is a change in corticospinal excitability (CSE) assessable with Transcranial Magnetic...... Stimulation. Prior work has demonstrated such a change to very different extents with and without causally linking it to the improvements in motor performance. Objectives The aim of this PhD project has been to explore the relation between changes in CSE and motor performance over the time course of learning...... point stimulation and magnetic stimulation in the same population. Results Six weeks of visuomotor practice with increasing task difficulty led to superior performance on a ‘skilled’ task level and equal performance on start-out task level. Correlated to this prolonged increases in CSE to the trained...

  10. Motor learning cannot explain stuttering adaptation.

    Science.gov (United States)

    Venkatagiri, Horabail S; Nataraja, Nuggehalli P; Deepthi, M

    2013-08-01

    When persons who stutter (PWS) read a text repeatedly, there is a progressive reduction in stutter frequency over the course of three to five readings. Recently, this phenomenon has been attributed by some researchers to motor learning-the acquisition of relatively permanent motor skills that facilitate fluency through practice in producing words. The current study tested this explanation. 23 PWS read prose passages five times in succession. The number of 'new' and 'old' stutters during repeated readings (words stuttered in the current reading but spoken fluently in the previous reading and words stuttered also in the previous reading) were analyzed. If motor learning facilitated fluency during repeated readings in PWS, words read fluently in a reading should not be stuttered in a later reading in significant numbers. Contrary to this prediction, there was no statistical difference in the number of new words stuttered across five readings. A plausible alternative explanation, which requires further study to verify, is offered.

  11. LEVEL OF ANTHROPOMETRIC CHARACTERISTICS AND MOTOR ABILITIES OF SEDENTARY AND CHILDREN WHO ARE IN TRAINING IN VARIOUS SPORTS ORIENTATION

    Directory of Open Access Journals (Sweden)

    Nela Tatar

    2011-09-01

    Full Text Available Whit the goal to describe anthropometric characteristic and motorical abilities in groups of non sports and children which have some sports training activities, to calculate quantitative and qualitative difference between these groups of children in anthropometric characteristic and motorical abilities, it is conduct survey with the sample of 150 entities, age from 11 to 13, different sports orientation (karate, judo, football and volleyball and non sports children (scholars. In analyze, it was used system of total 27 variables (12 morphological and 15 basic - motorical. Also, descriptive statistical procedures were done and in this paper we present only arithmetical means. For quantitative difference between combination per groups in anthropometric characteristic and motorical abilities it was used ANOVA. According to quantitative and qualitative differences in anthropometric characteristics and motorical abilities from survey, the best anthropometric characteristic were get in groups of volleyball players, and in motorical abilities the best performance shown group of children which train a karate.

  12. Gross Motor Skills and Sports Participation of Children with Visual Impairments

    Science.gov (United States)

    Houwen, Suzanne; Visscher, Chris; Hartman, Esther; Lemmink, Koen A. P. M.

    2007-01-01

    Gross motor skill performance of children with visual impairments and its association with the degree of visual impairment and sports participation was examined. Twenty children with visual impairments (M age = 9.2 years, SD = 1.5) and 100 sighted children (M age = 9.1 years, SD = 1.5) from mainstream schools participated. The results showed that…

  13. TESTING MOTOR SKILLS WITH CHILDREN AGED 4 AND 5 YEARS IN SPORT SCHOOL ”SPORTOMANIJA”

    Directory of Open Access Journals (Sweden)

    Vladimir Milošević

    2013-07-01

    Full Text Available Children aged 4 and 5 have great motor potential. Testing certain motor skills and measuring morphological characteristics are important steps in examining sport development of children. The subject of this paper is assessing motor skills and measuring morphological characteristics of students of sport school Sportomanija in Belgrade. The sample was made up of 16 male examinees aged 4 and 5. The battery of motor tests was composed of the following : deep reach (standing position, standing long jump, 20 metres running, 4x5 metres running, lying into sitting position in 20 seconds. Statistical analysis of results meant correlating results of motor tests and anthropometric measurment. The results show a statistically relevant negative correlation between body mass index (BMI and long jump results (r=-0,55, p<0,05. On the other hand, there is a high positive correlation (over r=0,70, p<0,05 between the results of motor tests: standing long jump, 20 metres running, 4x5 metres running, lying-sit in 20 seconds. These resultes are in the accordance with the similarity in the ways muscle strength is manifested under different conditions. Considering the correlation between these results provides the basis for testing the nature of this conection. Examining the connection between the anthropometric and motor scope during a targeted influence on a child’s body in sport school Sportomanija allows for gaining insight into some of the characteristics of the examinee’s age. Acquaitance with examinee’s model characteristics as well as structure of motor skills and longterm examining of anthropometric and motor scope are the basis of plan and action of the experts working with children and the young.

  14. Selective Maintenance of Motor Performance in Older Adults From Long-Lasting Sport Practice.

    Science.gov (United States)

    Dascal, Juliana Bayeux; Teixeira, Luis Augusto

    2016-09-01

    Decline of motor performance in older individuals affects their quality of life. Understanding the contribution of sport-related training in advanced ages might help to attenuate motor performance decay as one gets older. The purpose of our study was to evaluate the extent to which long-lasting training in running or sport-specific skills during old age preserves motor performance in different motor tasks. Older runners and tennis players with at least 10 years of training were assessed as were age-matched and young exercisers. Performance was evaluated for 6 motor tasks requiring different functions of sensorimotor control expected to decline with aging. Analysis revealed that runners had increased aerobic fitness in comparison with the other older participants and that they presented similar performance to older exercisers in the motor tasks. Tennis players outperformed the other groups of older participants on coincident timing and simple reaction time and achieved similar performance to the young group on the timing task. These results suggest selective maintenance of task-specific processing through extensive practice of tennis-related motor skills in older adults.

  15. Cross-limb interference during motor learning.

    Directory of Open Access Journals (Sweden)

    Benedikt Lauber

    Full Text Available It is well known that following skill learning, improvements in motor performance may transfer to the untrained contralateral limb. It is also well known that retention of a newly learned task A can be degraded when learning a competing task B that takes place directly after learning A. Here we investigate if this interference effect can also be observed in the limb contralateral to the trained one. Therefore, five different groups practiced a ballistic finger flexion task followed by an interfering visuomotor accuracy task with the same limb. Performance in the ballistic task was tested before the training, after the training and in an immediate retention test after the practice of the interference task for both the trained and the untrained hand. After training, subjects showed not only significant learning and interference effects for the trained limb but also for the contralateral untrained limb. Importantly, the interference effect in the untrained limb was dependent on the level of skill acquisition in the interfering motor task. These behavioural results of the untrained limb were accompanied by training specific changes in corticospinal excitability, which increased for the hemisphere ipsilateral to the trained hand following ballistic training and decreased during accuracy training of the ipsilateral hand. The results demonstrate that contralateral interference effects may occur, and that interference depends on the level of skill acquisition in the interfering motor task. This finding might be particularly relevant for rehabilitation.

  16. Attentional Focus in Motor Learning, the Feldenkrais Method, and Mindful Movement.

    Science.gov (United States)

    Mattes, Josef

    2016-08-01

    The present paper discusses attentional focus in motor learning and performance from the point of view of mindful movement practices, taking as a starting point the Feldenkrais method. It is argued that earlier criticism of the Feldenkrais method (and thereby implicitly of mindful movement practices more generally) because of allegedly inappropriate attentional focus turns out to be unfounded in light of recent developments in the study of motor learning and performance. Conversely, the examples of the Feldenkrais method and Ki-Aikido are used to illustrate how both Western and Eastern (martial arts derived) mindful movement practices might benefit sports psychology. © The Author(s) 2016.

  17. Modulating Motor Learning through Transcranial Direct-Current Stimulation: An Integrative View.

    Science.gov (United States)

    Ammann, Claudia; Spampinato, Danny; Márquez-Ruiz, Javier

    2016-01-01

    Motor learning consists of the ability to improve motor actions through practice playing a major role in the acquisition of skills required for high-performance sports or motor function recovery after brain lesions. During the last decades, it has been reported that transcranial direct-current stimulation (tDCS), consisting in applying weak direct current through the scalp, is able of inducing polarity-specific changes in the excitability of cortical neurons. This low-cost, painless and well-tolerated portable technique has found a wide-spread use in the motor learning domain where it has been successfully applied to enhance motor learning in healthy individuals and for motor recovery after brain lesion as well as in pathological states associated to motor deficits. The main objective of this mini-review is to offer an integrative view about the potential use of tDCS for human motor learning modulation. Furthermore, we introduce the basic mechanisms underlying immediate and long-term effects associated to tDCS along with important considerations about its limitations and progression in recent years.

  18. Reduced procedural motor learning in deaf individuals

    Directory of Open Access Journals (Sweden)

    Justine eLévesque

    2014-05-01

    Full Text Available Studies in the deaf suggest that cross-modal neuroplastic changes may vary across modalities. Only a handful of studies have examined motor capacities in the profoundly deaf. These studies suggest the presence of deficits in manual dexterity and delays in movement production. As of yet, the ability to learn complex sequential motor patterns has not been explored in deaf populations. The aim of the present study was to investigate the procedural learning skills of deaf adults. A serial reaction-time task (SRTT was performed by 18 deaf subjects and 18 matched controls to investigate possible motor alteration subsequent to auditory deprivation. Deaf participants had various degrees of hearing loss. Half of the experimental group were early-deaf adults mostly using hearing aids, the remaining half were late-deaf adults using a cochlear implant. Participants carried out a repeating 12-item sequence of key presses along with random blocks containing no repeating sequence. Non-specific and sequence-specific learning was analyzed in relation to individual features related to the hearing loss. The results revealed significant differences between groups in sequence-specific learning, with deaf subjects being less efficient than controls in acquiring sequence-specific knowledge. We interpret the results in light of cross-modal plasticity and the auditory scaffolding hypothesis.

  19. Footedness is associated with self-reported sporting performance and motor abilities in the general population

    Directory of Open Access Journals (Sweden)

    Ulrich S Tran

    2016-08-01

    Full Text Available Left-handers may have strategic advantages over right-handers in interactive sports and innate superior abilities that are beneficial for sports. Previous studies relied on differing criteria for handedness classification and mostly did not investigate mixed preferences and footedness. Footedness appears to be less influenced by external and societal factors than handedness. Utilizing latent class analysis and structural equation modeling, we investigated in a series of studies (total N > 15300 associations of handedness and footedness with self-reported sporting performance and motor abilities in the general population. Using a discovery and a replication sample (ns = 7658 and 5062, Study 1 revealed replicable beneficial effects of mixed-footedness and left-footedness in team sports, martial arts and fencing, dancing, skiing, and swimming. Study 2 (n = 2592 showed that footedness for unskilled bipedal movement tasks, but not for skilled unipedal tasks, was beneficial for sporting performance. Mixed- and left-footedness had effects on motor abilities that were consistent with published results on better brain interhemispheric communication, but also akin to testosterone-induced effects regarding flexibility, strength, and endurance. Laterality effects were only small. Possible neural and hormonal bases of observed effects need to be examined in future studies.

  20. Motor learning and general adaptation syndrome Aprendizaje motor y síndrome general de adaptación

    Directory of Open Access Journals (Sweden)

    E. M. Ordoño

    2010-09-01

    Full Text Available

    This work examines the General Adaptation Syndrome like a suitable framework to explain motor learning processes. Human motor behaviour is viewed like a complex system continuously interacting in the environment. Motor learning is proposed as an adaptation process to the tasks constraints. Training loads and practice load are also considered analogous. Practice is the vehicle of learning, but it must be applied with the enough amount of load to produce an adaptation to a new level of performance. The principles of sport training are presented related to motor learning topics. Common principles are proposed to explain the learning of motor skills, regardless of the level of complexity, and level of the performer, and providing basic criteria that should help to design learning tasks.
    Key Words:  Motor learning, adaptation, complex systems, training, motor skills.

     

    Este trabajo examina las posibilidades del Síndrome General de Adaptación como un marco de referencia para explicar y predecir los cambios producidos por el Aprendizaje Motor. Se parte de la consideración del ser humano como un sistema complejo en continua interacción con su entorno y el aprendizaje como un proceso de adaptación a las condiciones impuestas por la tarea. Se propone el concepto de carga de práctica análogo al de carga de entrenamiento, considerando que la práctica, vehículo del aprendizaje, debe aplicarse como una estimulación suficiente como para desencadenar en el aprendiz una adaptación a un nuevo nivel de rendimiento. En base a esta propuesta, se relacionan los principios del entrenamiento deportivo con el aprendizaje de habilidades motrices. Se formula una perspectiva teórica que trata de explicar de forma común los procesos de modificación de los patrones motores independientemente del nivel de complejidad, conllevando los mismos

  1. Conventional theories and modern views on the nature of the mental motor image used in sport

    Directory of Open Access Journals (Sweden)

    Igor V. Kaminsky

    2017-06-01

    Full Text Available The paper is devoted to the theoretical and practical aspects of motor imagery widely used by athletes in a variety of sports as an effective psychological training method. The research introduces basic approaches, theories and modern views on the issue. There are a wide variety of views on the mechanisms underlying mental practice of motor tasks. In particular, mental image can be considered from exclusively cognitive perspective or as a direct and essential background for producing movement. To signify the notion of mental image in specialist studies the terms «mental study» or «mental training» are used. The research devoted to this issue has significantly influenced the conceptual understanding of the motor image nature. There are opposing theories, who employ the mental image that is regarded as a basic cognitive component and does not consist in direct interaction with the executive link of the motor system. On the other hand, there are theories that view the mental image as the immediate basis of the movement that stores information about all its parameters. Modern studies, including neuroimaging methods, confirm inseparability of these approaches and central locale of trigger mechanism that modulates physiological reactions and also its generality for real and imaginary action. In conclusion, taking into account recent data on the nature of motor imagery, special attention is paid to practical aspects of using it in sports, which is different from conventional approaches and recommendations on motor imagery use.

  2. Media use, sports activities, and motor fitness in childhood and adolescence.

    Science.gov (United States)

    Kaiser-Jovy, Sebastian; Scheu, Anja; Greier, Klaus

    2017-07-01

    Physical activity is one of the key determinants of physical, mental, and social health of children and adolescents. Therefore, the early development of health-relevant behavior patterns is of high relevance. To examine the impact of selected socioeconomic factors as well as media consumption, on sports activities and the motor skills of 10- to 14-year-old secondary school students. Body height and body weight were measured. The motor skills were determined with the Deutschen Motorik Test (DMT 6‑18; German Motor Test). Information about media use, media equipment, recreational sports activities, migration status, and the parents' profession was collected by means of a standardized questionnaire. A total of 391 adolescents have been tested (male 235; female 156). Body mass index (BMI) types are evenly distributed on gender. On a weekday, the pupils spend 10.3 h using media (SD ± 9.1 h). On weekends, media use increases up to 12 h per day on average (SD ± 9.7 h). The number of available media is independent from the age of the respondents and the social status of their families. According to bivariate correlations, heavy media use, a high BMI as well as migration status correlate negatively with both sports activities and motor skills. BMI seems to have the strongest influence on athletic performance (b = 0.41). Media use is an important determinant of juvenile sports activity and motor performance, being part of a complex juvenile leisure behavior.

  3. Configurations of actual and perceived motor competence among children: Associations with motivation for sports and global self-worth.

    Science.gov (United States)

    Bardid, Farid; De Meester, An; Tallir, Isabel; Cardon, Greet; Lenoir, Matthieu; Haerens, Leen

    2016-12-01

    The present study used a person-centred approach to examine whether different profiles based on actual and perceived motor competence exist in elementary school children. Multilevel regression analyses were conducted to explore how children with different motor competence-based profiles might differ in their autonomous motivation for sports and global self-worth. Validated questionnaires were administered to 161 children (40% boys; age=8.82±0.66years) to assess their perceived motor competence, global self-worth, and motivation for sports. Actual motor competence was measured with the Körperkoordinationstest für Kinder. Cluster analyses identified four motor competence-based profiles: two groups were characterized by corresponding levels of actual and perceived motor competence (i.e., low-low and high-high) and two groups were characterized by divergent levels of actual and perceived motor competence (i.e., high-low and low-high). Children in the low-low and high-low group displayed significantly lower levels of autonomous motivation for sports and lower levels of global self-worth than children in the low-high and high-high group. These findings emphasize that fostering children's perceived motor competence might be crucial to improve their motivation for sports and their global self-worth. Teachers and instructors involved in physical education and youth sports should thus focus on both actual and perceived motor competence. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    Science.gov (United States)

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  5. Electroencephalographic identifiers of motor adaptation learning

    Science.gov (United States)

    Özdenizci, Ozan; Yalçın, Mustafa; Erdoğan, Ahmetcan; Patoğlu, Volkan; Grosse-Wentrup, Moritz; Çetin, Müjdat

    2017-08-01

    Objective. Recent brain-computer interface (BCI) assisted stroke rehabilitation protocols tend to focus on sensorimotor activity of the brain. Relying on evidence claiming that a variety of brain rhythms beyond sensorimotor areas are related to the extent of motor deficits, we propose to identify neural correlates of motor learning beyond sensorimotor areas spatially and spectrally for further use in novel BCI-assisted neurorehabilitation settings. Approach. Electroencephalographic (EEG) data were recorded from healthy subjects participating in a physical force-field adaptation task involving reaching movements through a robotic handle. EEG activity recorded during rest prior to the experiment and during pre-trial movement preparation was used as features to predict motor adaptation learning performance across subjects. Main results. Subjects learned to perform straight movements under the force-field at different adaptation rates. Both resting-state and pre-trial EEG features were predictive of individual adaptation rates with relevance of a broad network of beta activity. Beyond sensorimotor regions, a parieto-occipital cortical component observed across subjects was involved strongly in predictions and a fronto-parietal cortical component showed significant decrease in pre-trial beta-powers for users with higher adaptation rates and increase in pre-trial beta-powers for users with lower adaptation rates. Significance. Including sensorimotor areas, a large-scale network of beta activity is presented as predictive of motor learning. Strength of resting-state parieto-occipital beta activity or pre-trial fronto-parietal beta activity can be considered in BCI-assisted stroke rehabilitation protocols with neurofeedback training or volitional control of neural activity for brain-robot interfaces to induce plasticity.

  6. Sports genetics moving forward: lessons learned from medical research.

    Science.gov (United States)

    Mattsson, C Mikael; Wheeler, Matthew T; Waggott, Daryl; Caleshu, Colleen; Ashley, Euan A

    2016-03-01

    Sports genetics can take advantage of lessons learned from human disease genetics. By righting past mistakes and increasing scientific rigor, we can magnify the breadth and depth of knowledge in the field. We present an outline of challenges facing sports genetics in the light of experiences from medical research. Sports performance is complex, resulting from a combination of a wide variety of different traits and attributes. Improving sports genetics will foremost require analyses based on detailed phenotyping. To find widely valid, reproducible common variants associated with athletic phenotypes, study sample sizes must be dramatically increased. One paradox is that in order to confirm relevance, replications in specific populations must be undertaken. Family studies of athletes may facilitate the discovery of rare variants with large effects on athletic phenotypes. The complexity of the human genome, combined with the complexity of athletic phenotypes, will require additional metadata and biological validation to identify a comprehensive set of genes involved. Analysis of personal genetic and multiomic profiles contribute to our conceptualization of precision medicine; the same will be the case in precision sports science. In the refinement of sports genetics it is essential to evaluate similarities and differences between sexes and among ethnicities. Sports genetics to date have been hampered by small sample sizes and biased methodology, which can lead to erroneous associations and overestimation of effect sizes. Consequently, currently available genetic tests based on these inherently limited data cannot predict athletic performance with any accuracy. Copyright © 2016 the American Physiological Society.

  7. A Comparison between Learning Style Preferences, Gender, Sport and Achievement in Elite Team Sport Athletes

    Directory of Open Access Journals (Sweden)

    Andrea Braakhuis

    2015-11-01

    Full Text Available Athletes have preferences for the way in which they internalize and process information, whether that is visual, aural, by-doing (kinesthetic, reading or a mixture of preferences. Health professionals that interact with athletes rarely consider the individual learning style prior to any communication or education, despite mounting evidence for the benefits of learning-style tailored education. The aim of this study was to characterize athletes with regards to their preferred learning style. Athletes (n = 93 from 24 sports and various sport achievement levels completed a questionnaire, including the visual (V, auditory (A, reading/writing (R, kinesthetic (K/(VARK Questionnaire for Athletes. Questionnaire outcomes were analysed by X2 analysis on SPSS. The main findings were: (1 very few athletes have a visual learning-style preference; (2 there was a significant relationship between gender and VARK preference (X2 = 13.84, p = 0.003; (3 and between athletic status and VARK preference (X2 = 9.2, p = 0.025; (4 there was a trivial association between individual/ team sport athletes and assessed VARK preference (X2 = 3.95, p = 0.265. Our findings show significant variation in learning-style preference between males and females, and those of different athletic status. Health professionals should be aware of the inadequacy of visual information presentation when working with athletes. Furthermore, health professionals working with elite and female athletes should be comfortable using a mixture of learning styles (multi-modal.

  8. Somatosensory Contribution to the Initial Stages of Human Motor Learning.

    Science.gov (United States)

    Bernardi, Nicolò F; Darainy, Mohammad; Ostry, David J

    2015-10-21

    The early stages of motor skill acquisition are often marked by uncertainty about the sensory and motor goals of the task, as is the case in learning to speak or learning the feel of a good tennis serve. Here we present an experimental model of this early learning process, in which targets are acquired by exploration and reinforcement rather than sensory error. We use this model to investigate the relative contribution of motor and sensory factors to human motor learning. Participants make active reaching movements or matched passive movements to an unseen target using a robot arm. We find that learning through passive movements paired with reinforcement is comparable with learning associated with active movement, both in terms of magnitude and durability, with improvements due to training still observable at a 1 week retest. Motor learning is also accompanied by changes in somatosensory perceptual acuity. No stable changes in motor performance are observed for participants that train, actively or passively, in the absence of reinforcement, or for participants who are given explicit information about target position in the absence of somatosensory experience. These findings indicate that the somatosensory system dominates learning in the early stages of motor skill acquisition. The research focuses on the initial stages of human motor learning, introducing a new experimental model that closely approximates the key features of motor learning outside of the laboratory. The finding indicates that it is the somatosensory system rather than the motor system that dominates learning in the early stages of motor skill acquisition. This is important given that most of our computational models of motor learning are based on the idea that learning is motoric in origin. This is also a valuable finding for rehabilitation of patients with limited mobility as it shows that reinforcement in conjunction with passive movement results in benefits to motor learning that are as great

  9. A coaches' perspective on the contribution of anthropometry, physical performance, and motor coordination in racquet sports.

    Science.gov (United States)

    Robertson, Kamasha; Pion, Johan; Mostaert, Mireille; Norjali Wazir, Mohd Rozilee Wazir; Kramer, Tamara; Faber, Irene Renate; Vansteenkiste, Pieter; Lenoir, Matthieu

    2018-02-21

    Differences and similarities between table tennis and other racquet sports exist, but are not well documented in the literature, in spite of the relevance for talent identification. In this study we aimed at identifying the key characteristics of table tennis in comparison with tennis and badminton based upon a survey in coaches. A total of 177 licensed coaches from all across the world and with diverse professional backgrounds completed a survey on anthropometric measures, physical performance, and motor coordination skills. On a scale from 1 to 10, coaches indicated to what extent a talent characteristic was important for their sport. MANOVA identified key differences as well as similarities between all three racquet sports and a subsequent discriminant analysis allocated coaches correctly for table tennis, tennis, and badminton 81.01%, 55.6%, and 71.4% respectively. Our results show that table tennis and other racquet sport coaches are well aware of differences between the racquet sports and also the importance and value of testing and assortment of skill components. These findings can assist coaches in future talent orientation and transfer in racquet sports.

  10. Functionally-Specific Changes in Sensorimotor Networks following Motor Learning

    OpenAIRE

    David J Ostry

    2011-01-01

    The perceptual changes induced by motor learning are important in understanding the adaptive mechanisms and global functions of the human brain. In the present study, we document the neural substrates of this sensory plasticity by combining work on motor learning using a robotic manipulandum with resting-state fMRI measures of learning and psychophysical measures of perceptual function. We show that motor learning results in long-lasting changes to somatosensory areas of the brain. We have de...

  11. Changes in physical fitness and sports participation among children with different levels of motor competence: a 2-year longitudinal study.

    Science.gov (United States)

    Fransen, Job; Deprez, Dieter; Pion, Johan; Tallir, Isabel B; D'Hondt, Eva; Vaeyens, Roel; Lenoir, Matthieu; Philippaerts, Renaat M

    2014-02-01

    The goal of this study was to investigate differences in physical fitness and sports participation over 2 years in children with relatively high, average, and low motor competence. Physical fitness and gross motor coordination of 501 children between 6-10 years were measured at baseline and baseline+2 years. The sample compromised 2 age cohorts: 6.00-7.99 and 8.00-9.99 years. An age and sex-specific motor quotient at baseline testing was used to subdivide these children into low (MQ sports participation were obtained through a physical activity questionnaire in 278 of the same children. Repeated Measures MANCOVA and two separate ANOVAs were used to analyze differences in changes in physical fitness and measures of sports participation respectively. Children with high motor competence scored better on physical fitness tests and participated in sports more often. Since physical fitness levels between groups changed similarly over time, low motor competent children might be at risk for being less physically fit throughout their life. Furthermore, since low motor competent children participate less in sports, they have fewer opportunities of developing motor abilities and physical fitness and this may further prevent them from catching up with their peers with an average or high motor competence.

  12. Parent’s perception about motor-sport activity in Italian primary school

    OpenAIRE

    Gomez-Paloma, Filippo; Agrillo, Filomena; D'anna, Cristiana

    2013-01-01

    The educational value of motor-sport activity in Italia Primary School had its full acknowledgement through a historical development that has seen the legislative evolution and scientific research to carry on together. This increase has inevitably conditioned the school that had to adapt its educational proposals to the new cultural changes. The child with his needs and his personal needs becomes the pivot around which all educational interventions. Participation in activities polyhedral inve...

  13. Frequent feedback enhances complex motor skill learning.

    Science.gov (United States)

    Wulf, G; Shea, C H; Matschiner, S

    1998-06-01

    Feedback frequency effects on the learning of a complex motor skill, the production of slalom-type movements on a ski-simulator, were examined. In Experiment 1, a movement feature that characterizes expert performance was identified. Participants (N = 8) practiced the task for 6 days. Significant changes across practice were found for movement amplitude and relative force onset. Relative force onset is considered a measure of movement efficiency; relatively late force onsets characterize expert performance. In Experiment 2, different groups of participants (N = 27) were given concurrent feedback about force onset on either 100% or 50% of the practice trials; a control group was given no feedback. The following hypothesis was tested: Contrary to previous findings concerning relatively simple tasks, for the learning of a complex task such as the one used here, a high relative feedback frequency (100%) is more beneficial for learning than a reduced feedback frequency (50%). Participants practiced the task on 2 consecutive days and performed a retention test without feedback on Day 3. The 100% feedback group demonstrated later relative force onsets than the control group in retention; the 50% feedback group showed intermediate performance. The results provide support for the notion that high feedback frequencies are beneficial for the learning of complex motor skills, at least until a certain level of expertise is achieved. That finding suggests that there may be an interaction between task difficulty and feedback frequency similar to the interaction found in the summary-KR literature.

  14. Scaling the Equipment and Play Area in Children's Sport to improve Motor Skill Acquisition: A Systematic Review.

    Science.gov (United States)

    Buszard, Tim; Reid, Machar; Masters, Rich; Farrow, Damian

    2016-06-01

    This review investigated the influence of scaling sports equipment and play area (e.g., field size) on children's motor skill acquisition. Peer-reviewed studies published prior to February 2015 were searched using SPORTDiscus and MEDLINE. Studies were included if the research (a) was empirical, (b) involved participants younger than 18 years, (c) assessed the efficacy of scaling in relation to one or more factors affecting skill learning (psychological factors, skill performance and skill acquisition factors, biomechanical factors, cognitive processing factors), and (d) had a sport or movement skills context. Risk of bias was assessed in relation to selection bias, detection bias, attrition bias, reporting bias and other bias. Twenty-five studies involving 989 children were reviewed. Studies revealed that children preferred using scaled equipment over adult equipment (n = 3), were more engaged in the task (n = 1) and had greater self-efficacy to execute skills (n = 2). Eighteen studies demonstrated that children performed skills better when the equipment and play area were scaled. Children also acquired skills faster in such conditions (n = 2); albeit the practice interventions were relatively short. Five studies showed that scaling led to children adopting more desirable movement patterns, and one study associated scaling with implicit motor learning. Most of the studies reviewed provide evidence in support of equipment and play area scaling. However, the conclusions are limited by the small number of studies that examined learning (n = 5), poor ecological validity and skills tests of few trials.

  15. Central neuronal motor behaviour in skilled and less skilled novices - Approaching sports-specific movement techniques.

    Science.gov (United States)

    Vogt, Tobias; Kato, Kouki; Schneider, Stefan; Türk, Stefan; Kanosue, Kazuyuki

    2017-04-01

    Research on motor behavioural processes preceding voluntary movements often refers to analysing the readiness potential (RP). For this, decades of studies used laboratory setups with controlled sports-related actions. Further, recent applied approaches focus on athlete-non-athlete comparisons, omitting possible effects of training history on RP. However, RP preceding real sport-specific movements in accordance to skill acquisition remains to be elucidated. Therefore, after familiarization 16 right-handed males with no experience in archery volunteered to perform repeated sports-specific movements, i.e. 40 arrow-releasing shots at 60s rest on a 15m distant standard target. Continuous, synchronised EEG and right limb EMG recordings during arrow-releasing served to detect movement onsets for RP analyses over distinct cortical motor areas. Based on attained scores on target, archery novices were, a posteriori, subdivided into a skilled and less skilled group. EMG results for mean values revealed no significant changes (all p>0.05), whereas RP amplitudes and onsets differed between groups but not between motor areas. Arrow-releasing preceded larger RP amplitudes (psports-specific movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The power of auditory-motor synchronization in sports: Enhancing running performance by coupling cadence with the right beats

    NARCIS (Netherlands)

    Bood, R.J.; Nijssen, M; van der Kamp, J.; Roerdink, M.

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our

  17. A National Sports Institute as a Learning Culture

    Science.gov (United States)

    Lee, Jessica; Price, Nathan

    2016-01-01

    Background and purpose: The aim of this study was to describe the learning culture for elite athletes who resided at the Australian Institute of Sport (AIS) from the perspective of the athletes themselves. As a government entity, the AIS is highly regulated by policies and strategies concerning allocation of funding, facilities, services, and…

  18. Brain aerobic glycolysis and motor adaptation learning

    Science.gov (United States)

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  19. Functionally-Specific Changes in Sensorimotor Networks following Motor Learning

    Directory of Open Access Journals (Sweden)

    David J Ostry

    2011-10-01

    Full Text Available The perceptual changes induced by motor learning are important in understanding the adaptive mechanisms and global functions of the human brain. In the present study, we document the neural substrates of this sensory plasticity by combining work on motor learning using a robotic manipulandum with resting-state fMRI measures of learning and psychophysical measures of perceptual function. We show that motor learning results in long-lasting changes to somatosensory areas of the brain. We have developed a new technique for incorporating behavioral measures into resting-state connectivity analyses. The method allows us to identify networks whose functional connectivity changes with learning and specifically to dissociate changes in connectivity that are related to motor learning from those that are related perceptual changes that occur in conjunction with learning. Using this technique we identify a new network in motor learning involving second somatosensory cortex, ventral premotor and supplementary motor cortex whose activation is specifically related to sensory changes that occur in association with learning. The sensory networks that are strengthened in motor learning are similar to those involved in perceptual learning and decision making, which suggests that the process of motor learning engages the perceptual learning network.

  20. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    OpenAIRE

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2014-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it...

  1. Unravelling Motor Learning Processes in Theater Performers.

    Science.gov (United States)

    Jacobs, Emmanuel; Hallemans, Ann; Gielen, Jan; Van den Dries, Luc; Van Moorsel, Annouk; Rutgeerts, Jonas; Roussel, Nathalie A

    2018-04-01

    Theater performers, more than common actors, experience high physical loadings. This study aimed at analyzing the motor behavior of novice performers (dancers/actors who were introduced to the acting method of Jan Fabre) by investigating the kinematics of a physical acting exercise in a prospective study. Two measurement sessions were organized: before and after the novice performers (N = 13) took part in seven workshops. Total body kinematics were registered using a three-dimensional motion capture system. Using a principal component analysis, six factors were disseminated out of 30 kinematic parameters: Pelvic Motion, Speed of Progression, Lower Limb Position, Foot Motion, Lower Limb Motion, and Trunk Posture. Although no main effect of training was found for any of the factors (.429 performers and revealed recognizable features of motor learning.

  2. Enhancing motor learning through peer tutoring.

    Science.gov (United States)

    Feinberg, Judy R; Elkington, Sarah J; Dewey, Kimberly A; Dzielawa, Dawn M; Hayden, Nicky L; Blankenship, Staci L; Nahrwold, Christopher M; Smith, Jennifer L

    2002-01-01

    The purpose of this study was to examine the efficacy of incorporating mnemonic memory aids and having a subject teach another person a given task (peer tutoring) as a method of enhancing task acquisition and recall by the subject and to discuss the implications for occupational therapists who instruct clients in motor tasks such as therapeutic exercise programs. Sixty-seven college students were randomly assigned to one of three groups using different teaching methods for the purpose of learning a motor task, specifically the American Sign Language alphabet. Subjects who were taught using mnemonics and peer tutoring scored significantly better on post-testing two days following instruction than did the control groups. Use of these techniques did not increase direct teaching time by the instructor, nor did they incur additional costs. Thus, these techniques may be easily incorporated into client education to improve recall and performance.

  3. Cross-limb Interference during motor learning

    DEFF Research Database (Denmark)

    Lauber, Benedikt; Jensen, Jesper Lundbye; Keller, Martin

    2013-01-01

    the training, after the training and in an immediate retention test after the practice of the interference task for both the trained and the untrained hand. After training, subjects showed not only significant learning and interference effects for the trained limb but also for the contralateral untrained limb...... to the trained hand following ballistic training and decreased during accuracy training of the ipsilateral hand. The results demonstrate that contralateral interference effects may occur, and that interference depends on the level of skill acquisition in the interfering motor task. This finding might...... be particularly relevant for rehabilitation....

  4. Chronic Nicotine Mitigates Aberrant Inhibitory Motor Learning Induced by Motor Experience under Dopamine Deficiency.

    Science.gov (United States)

    Koranda, Jessica L; Krok, Anne C; Xu, Jian; Contractor, Anis; McGehee, Daniel S; Beeler, Jeff A; Zhuang, Xiaoxi

    2016-05-11

    Although dopamine receptor antagonism has long been associated with impairments in motor performance, more recent studies have shown that dopamine D2 receptor (D2R) antagonism, paired with a motor task, not only impairs motor performance concomitant with the pharmacodynamics of the drug, but also impairs future motor performance once antagonism has been relieved. We have termed this phenomenon "aberrant motor learning" and have suggested that it may contribute to motor symptoms in movement disorders such as Parkinson's disease (PD). Here, we show that chronic nicotine (cNIC), but not acute nicotine, treatment mitigates the acquisition of D2R-antagonist-induced aberrant motor learning in mice. Although cNIC mitigates D2R-mediated aberrant motor learning, cNIC has no effect on D1R-mediated motor learning. β2-containing nicotinic receptors in dopamine neurons likely mediate the protective effect of cNIC against aberrant motor learning, because selective deletion of β2 nicotinic subunits in dopamine neurons reduced D2R-mediated aberrant motor learning. Finally, both cNIC treatment and β2 subunit deletion blunted postsynaptic responses to D2R antagonism. These results suggest that a chronic decrease in function or a downregulation of β2-containing nicotinic receptors protects the striatal network against aberrant plasticity and aberrant motor learning induced by motor experience under dopamine deficiency. Increasingly, aberrant plasticity and aberrant learning are recognized as contributing to the development and progression of movement disorders. Here, we show that chronic nicotine (cNIC) treatment or specific deletion of β2 nicotinic receptor subunits in dopamine neurons mitigates aberrant motor learning induced by dopamine D2 receptor (D2R) blockade in mice. Moreover, both manipulations also reduced striatal dopamine release and blunt postsynaptic responses to D2R antagonists. These results suggest that chronic downregulation of function and/or receptor

  5. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  6. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  7. Professional development in sport psychology : relating learning experiences to learning outcomes

    NARCIS (Netherlands)

    Hutter, R. I. (Vana); Oldenhof-Veldman, Tanja; Pijpers, J. R. (Rob); Oudejans, Raôul R.D.

    2017-01-01

    To enhance the training of sport psychology consultants, it is important to know which learning experiences are useful for which components of professional development. We interviewed 15 novice consultants on their learning experiences related to 13 different topics. Traditional learning experiences

  8. Electroencephalographic connectivity measures predict learning of a motor sequencing task.

    Science.gov (United States)

    Wu, Jennifer; Knapp, Franziska; Cramer, Steven C; Srinivasan, Ramesh

    2018-02-01

    Individuals vary significantly with respect to rate and degree of improvement with motor practice. While the regions that underlie motor learning have been well described, neurophysiological factors underlying differences in response to motor practice are less well understood. The present study examined both resting-state and event-related EEG coherence measures of connectivity as predictors of response to motor practice on a motor sequencing task using the dominant hand. Thirty-two healthy young right-handed participants underwent resting EEG before motor practice. Response to practice was evaluated both across the single session of motor practice and 24 h later at a retention test of short-term motor learning. Behaviorally, the group demonstrated statistically significant gains both in single-session "motor improvement" and across-session "motor learning." A resting-state measure of whole brain coherence with primary motor cortex (M1) at baseline robustly predicted subsequent motor improvement (validated R 2 = 0.55) and motor learning (validated R 2 = 0.68) in separate partial least-squares regression models. Specifically, greater M1 coherence with left frontal-premotor cortex (PMC) at baseline was characteristic of individuals likely to demonstrate greater gains in both motor improvement and motor learning. Analysis of event-related coherence with respect to movement found the largest changes occurring in areas implicated in planning and preparation of movement, including PMC and frontal cortices. While event-related coherence provided a stronger prediction of practice-induced motor improvement (validated R 2 = 0.73), it did not predict the degree of motor learning (validated R 2 = 0.16). These results indicate that connectivity in the resting state is a better predictor of consolidated learning of motor skills. NEW & NOTEWORTHY Differences in response to motor training have significant societal implications across a lifetime of motor skill practice. By

  9. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  10. Mental practice and acquisition of motor skills: examples from sports training and surgical education.

    Science.gov (United States)

    Rogers, Rebecca G

    2006-06-01

    Learning surgical skills involves both fine and gross motor skills, and necessitates performance in stressful situations. This environment is similar to the environment in which an athlete performs. Mental imagery has been used successfully in training athletes of all levels of proficiency and enhances both motor skills and motivational skills of performing under stress. The literature of using mental imagery to train surgeons is limited to the teaching of simple surgical skills, but shows promise as another tool to teach technical skills.

  11. How do we learn to "kill" in volleyball?: The role of working memory capacity and expertise in volleyball motor learning.

    Science.gov (United States)

    Bisagno, Elisa; Morra, Sergio

    2018-03-01

    This study examines young volleyball players' learning of increasingly complex attack gestures. The main purpose of the study was to examine the predictive role of a cognitive variable, working memory capacity (or "M capacity"), in the acquisition and development of motor skills in a structured sport. Pascual-Leone's theory of constructive operators (TCO) was used as a framework; it defines working memory capacity as the maximum number of schemes that can be simultaneously activated by attentional resources. The role of expertise in motor learning was also considered. The expertise of each athlete was assessed in terms of years of practice and number of training sessions per week. The participants were 120 volleyball players, aged between 6 and 26 years, who performed both working memory tests and practical tests of volleyball involving the execution of the "third touch" by means of technical gestures of varying difficulty. We proposed a task analysis of these different gestures framed within the TCO. The results pointed to a very clear dissociation. On the one hand, M capacity was the best predictor of correct motor performance, and a specific capacity threshold was found for learning each attack gesture. On the other hand, experience was the key for the precision of the athletic gestures. This evidence could underline the existence of two different cognitive mechanisms in motor learning. The first one, relying on attentional resources, is required to learn a gesture. The second one, based on repeated experience, leads to its automatization. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Sensorimotor Integration During Motor Learning: Transcranial Magnetic Stimulation Studies.

    Science.gov (United States)

    Matur, Zeliha; Öge, A Emre

    2017-12-01

    The effect of sensory signals coming from skin and muscle afferents on the sensorimotor cortical networks is entitled as sensory-motor integration (SMI). SMI can be studied electrophysiologically by the motor cortex excitability changes in response to peripheral sensory stimulation. These changes include the periods of short afferent inhibition (SAI), afferent facilitation (AF), and late afferent inhibition (LAI). During the early period of motor skill acquisition, motor cortex excitability increases and changes occur in the area covered by the relevant zone of the motor cortex. In the late period, these give place to the morphological changes, such as synaptogenesis. SAI decreases during learning the motor skills, while LAI increases during motor activity. In this review, the role of SMI in the process of motor learning and transcranial magnetic stimulation techniques performed for studying SMI is summarized.

  13. Mild cognitive impairment affects motor control and skill learning.

    Science.gov (United States)

    Wu, Qiaofeng; Chan, John S Y; Yan, Jin H

    2016-02-01

    Mild cognitive impairment (MCI) is a transitional phase between normal cognitive aging and dementia. As the world population is aging rapidly, more MCI patients will be identified, posing significant problems to society. Normal aging is associated with cognitive and motor decline, and MCI brings additional impairments. Compared to healthy older adults, MCI patients show poorer motor control in a variety of tasks. Efficient motor control and skill learning are essential for occupational and leisure purposes; degradation of motor behaviors in MCI patients often adversely affects their health and quality of life. In this article, we first define MCI and describe its pathology and neural correlates. After this, we review cognitive changes and motor control and skill learning in normal aging. This section is followed by a discussion of MCI-related degradation of motor behaviors. Finally, we propose that multicomponent interventions targeting both cognitive and motor domains can improve MCI patients' motor functions. Future research directions are also raised.

  14. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.

    Science.gov (United States)

    McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L

    2016-04-04

    An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Auditory-perceptual learning improves speech motor adaptation in children.

    Science.gov (United States)

    Shiller, Douglas M; Rochon, Marie-Lyne

    2014-08-01

    Auditory feedback plays an important role in children's speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback; however, it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5- to 7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children's ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation.

  16. Learning from sensory and reward prediction errors during motor adaptation.

    Science.gov (United States)

    Izawa, Jun; Shadmehr, Reza

    2011-03-01

    Voluntary motor commands produce two kinds of consequences. Initially, a sensory consequence is observed in terms of activity in our primary sensory organs (e.g., vision, proprioception). Subsequently, the brain evaluates the sensory feedback and produces a subjective measure of utility or usefulness of the motor commands (e.g., reward). As a result, comparisons between predicted and observed consequences of motor commands produce two forms of prediction error. How do these errors contribute to changes in motor commands? Here, we considered a reach adaptation protocol and found that when high quality sensory feedback was available, adaptation of motor commands was driven almost exclusively by sensory prediction errors. This form of learning had a distinct signature: as motor commands adapted, the subjects altered their predictions regarding sensory consequences of motor commands, and generalized this learning broadly to neighboring motor commands. In contrast, as the quality of the sensory feedback degraded, adaptation of motor commands became more dependent on reward prediction errors. Reward prediction errors produced comparable changes in the motor commands, but produced no change in the predicted sensory consequences of motor commands, and generalized only locally. Because we found that there was a within subject correlation between generalization patterns and sensory remapping, it is plausible that during adaptation an individual's relative reliance on sensory vs. reward prediction errors could be inferred. We suggest that while motor commands change because of sensory and reward prediction errors, only sensory prediction errors produce a change in the neural system that predicts sensory consequences of motor commands.

  17. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    Science.gov (United States)

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  18. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    Directory of Open Access Journals (Sweden)

    Mengia-Seraina Rioult-Pedotti

    Full Text Available Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA, leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  19. The neural correlates of speech motor sequence learning.

    Science.gov (United States)

    Segawa, Jennifer A; Tourville, Jason A; Beal, Deryk S; Guenther, Frank H

    2015-04-01

    Speech is perhaps the most sophisticated example of a species-wide movement capability in the animal kingdom, requiring split-second sequencing of approximately 100 muscles in the respiratory, laryngeal, and oral movement systems. Despite the unique role speech plays in human interaction and the debilitating impact of its disruption, little is known about the neural mechanisms underlying speech motor learning. Here, we studied the behavioral and neural correlates of learning new speech motor sequences. Participants repeatedly produced novel, meaningless syllables comprising illegal consonant clusters (e.g., GVAZF) over 2 days of practice. Following practice, participants produced the sequences with fewer errors and shorter durations, indicative of motor learning. Using fMRI, we compared brain activity during production of the learned illegal sequences and novel illegal sequences. Greater activity was noted during production of novel sequences in brain regions linked to non-speech motor sequence learning, including the BG and pre-SMA. Activity during novel sequence production was also greater in brain regions associated with learning and maintaining speech motor programs, including lateral premotor cortex, frontal operculum, and posterior superior temporal cortex. Measures of learning success correlated positively with activity in left frontal operculum and white matter integrity under left posterior superior temporal sulcus. These findings indicate speech motor sequence learning relies not only on brain areas involved generally in motor sequencing learning but also those associated with feedback-based speech motor learning. Furthermore, learning success is modulated by the integrity of structural connectivity between these motor and sensory brain regions.

  20. Evaluation criteria of the individual motor predisposition of female sport gymnastics

    Directory of Open Access Journals (Sweden)

    Boraczynski T.

    2010-10-01

    Full Text Available In the paper were presented the results of research, aimed to improve criteria for assessing the motor predisposition of girls in sports gymnastics at the initial stage of training. The studies included 24 gymnasts divided into two age groups: A 6,0-7,5 years of age and B (8,3-13,0. The level of physical fitness was assessed with the use of the EUROFIT battery tests. easurements of the maximum moment of muscle strength in the bending forearm in the elbow joint in terms of isometric contraction were also performed. Assessment f the level of individual strengthspeed and coordination abilities and physical fitness structure including the pace of biological development were the basis for the development of objective criteria for assessing the sports predispositions of young gymnasts at the initial stage of training. Our results provide the basis for improving the control system and optimization of assessment criteria in women gymnastics, including age, training experience and sports level. The results presented in this paper demonstrated the usefulness of the research methodology used to assess the physical fitness and predispositions of gymnasts at the initial stage of training, what enables individualization of training process.

  1. Sensori-motor Learning With Movement Sonification: A Perspective From Recent Interdisciplinary Studies

    Directory of Open Access Journals (Sweden)

    Frederic Bevilacqua

    2016-08-01

    Full Text Available This article reports on an interdisciplinary research project on movement sonification for sensori-motor learning. First, we describe different research fields which have contributed to movement sonification, from music technology including gesture-controlled sound synthesis, sonic interaction design, to research on sensori-motor learning with auditory-feedback. In particular, we propose to distinguish between sound-oriented tasks and movement-oriented tasks in experiment involving interactive sound feedback.We describe several research questions and recently published results on movement control, learning and perception. In particular, we studied the effect of the auditory feedback on movements considering several cases: from experiments on pointing and visuo-motor tracking to more complex tasks where interactive sound feedback can guide movements, or cases of sensory substitution where the auditory feedback can inform on object shapes. We also developed specific methodologies and technologies for designing the sonic feedback and movement sonification. We conclude with a discussion on key future research challenges in sensori-motor learning with movement sonification. We also point out towards promising applications such as rehabilitation, sport training or product design.

  2. Motor-Skill Learning Is Dependent on Astrocytic Activity

    Directory of Open Access Journals (Sweden)

    Ragunathan Padmashri

    2015-01-01

    Full Text Available Motor-skill learning induces changes in synaptic structure and function in the primary motor cortex through the involvement of a long-term potentiation- (LTP- like mechanism. Although there is evidence that calcium-dependent release of gliotransmitters by astrocytes plays an important role in synaptic transmission and plasticity, the role of astrocytes in motor-skill learning is not known. To test the hypothesis that astrocytic activity is necessary for motor-skill learning, we perturbed astrocytic function using pharmacological and genetic approaches. We find that perturbation of astrocytes either by selectively attenuating IP3R2 mediated astrocyte Ca2+ signaling or using an astrocyte specific metabolic inhibitor fluorocitrate (FC results in impaired motor-skill learning of a forelimb reaching-task in mice. Moreover, the learning impairment caused by blocking astrocytic activity using FC was rescued by administration of the gliotransmitter D-serine. The learning impairments are likely caused by impaired LTP as FC blocked LTP in slices and prevented motor-skill training-induced increases in synaptic AMPA-type glutamate receptor in vivo. These results support the conclusion that normal astrocytic Ca2+ signaling during a reaching task is necessary for motor-skill learning.

  3. Motor-Skill Learning Is Dependent on Astrocytic Activity.

    Science.gov (United States)

    Padmashri, Ragunathan; Suresh, Anand; Boska, Michael D; Dunaevsky, Anna

    2015-01-01

    Motor-skill learning induces changes in synaptic structure and function in the primary motor cortex through the involvement of a long-term potentiation- (LTP-) like mechanism. Although there is evidence that calcium-dependent release of gliotransmitters by astrocytes plays an important role in synaptic transmission and plasticity, the role of astrocytes in motor-skill learning is not known. To test the hypothesis that astrocytic activity is necessary for motor-skill learning, we perturbed astrocytic function using pharmacological and genetic approaches. We find that perturbation of astrocytes either by selectively attenuating IP3R2 mediated astrocyte Ca(2+) signaling or using an astrocyte specific metabolic inhibitor fluorocitrate (FC) results in impaired motor-skill learning of a forelimb reaching-task in mice. Moreover, the learning impairment caused by blocking astrocytic activity using FC was rescued by administration of the gliotransmitter D-serine. The learning impairments are likely caused by impaired LTP as FC blocked LTP in slices and prevented motor-skill training-induced increases in synaptic AMPA-type glutamate receptor in vivo. These results support the conclusion that normal astrocytic Ca(2+) signaling during a reaching task is necessary for motor-skill learning.

  4. Moving into and out of High-Performance Sport: The Cultural Learning of an Artistic Gymnast

    Science.gov (United States)

    Barker-Ruchti, Natalie; Schubring, Astrid

    2016-01-01

    Background: High-performance sport has been described as a formative environment through which athletes learn sporting skills but also develop athletic selves. Within this process, career movements related to selection for and de-selection from representative teams constitute critical moments. Further, retirement from sport can be problematic as…

  5. Functional aging impairs the role of feedback in motor learning.

    Science.gov (United States)

    Liu, Yu; Cao, Chunmei; Yan, Jin H

    2013-10-01

    Optimal motor skill acquisition frequently requires augmented feedback or knowledge of results (KR). However, the effect of functional declines on the benefits of KR remains to be determined. The objective of this research was to examine how cognitive and motor deficits of older adults influence the use of KR for motor skill learning. A total of 57 older adults (mean 73.1 years; SD 4.2) received both cognitive and eye-hand coordination assessments, whereas 55 young controls (mean 25.8 years; SD 3.8) took only the eye-hand coordination test. All young and older participants learned a time-constrained arm movement through KR in three pre-KR and post-KR intervals. In the subsequent no-KR skill retests, absolute and variable time errors were not significantly reduced for the older learners who had KR during skill practice, especially for those with cognitive and motor dysfunctions. The finding suggests that KR results in no measureable improvement for older adults with cognitive and motor functional deficiencies. More importantly, for the older adults, longer post-KR intervals showed greater detrimental effects on feedback-based motor learning than shorter pauses after KR delivery. The findings support the hypothesis about the effects of cognitive and motor deficits on KR in motor skill learning of older adults. The dynamics of cognitive and motor aging, external feedback and internal control mechanisms collectively explain the deterioration in the sensory-motor learning of older adults. The theoretical implications and practical relevance of functional aging for motor skill learning are discussed. © 2013 Japan Geriatrics Society.

  6. Optimization of a motor learning attention-directing strategy based on an individual's motor imagery ability.

    Science.gov (United States)

    Sakurada, Takeshi; Hirai, Masahiro; Watanabe, Eiju

    2016-01-01

    Motor learning performance has been shown to be affected by various cognitive factors such as the focus of attention and motor imagery ability. Most previous studies on motor learning have shown that directing the attention of participants externally, such as on the outcome of an assigned body movement, can be more effective than directing their attention internally, such as on body movement itself. However, to the best of our knowledge, no findings have been reported on the effect of the focus of attention selected according to the motor imagery ability of an individual on motor learning performance. We measured individual motor imagery ability assessed by the Movement Imagery Questionnaire and classified the participants into kinesthetic-dominant (n = 12) and visual-dominant (n = 8) groups based on the questionnaire score. Subsequently, the participants performed a motor learning task such as tracing a trajectory using visuomotor rotation. When the participants were required to direct their attention internally, the after-effects of the learning task in the kinesthetic-dominant group were significantly greater than those in the visual-dominant group. Conversely, when the participants were required to direct their attention externally, the after-effects of the visual-dominant group were significantly greater than those of the kinesthetic-dominant group. Furthermore, we found a significant positive correlation between the size of after-effects and the modality-dominance of motor imagery. These results suggest that a suitable attention strategy based on the intrinsic motor imagery ability of an individual can improve performance during motor learning tasks.

  7. Rehearsal strategies during motor-sequence learning in old age : Execution vs motor imagery

    NARCIS (Netherlands)

    Stoter, Arjan J. R.; Scherder, Erik J. A.; Kamsma, Yvo P. T.; Mulder, Theo

    Motor imagery and action-based rehearsal were compared during motor sequence-learning by young adults (M = 25 yr., SD = 3) and aged adults (M = 63 yr., SD = 7). General accuracy of aged adults was lower than that of young adults (F-1,F-28 = 7.37, p = .01) even though working-memory capacity was

  8. Self-Concept in Adolescents—Relationship between Sport Participation, Motor Performance and Personality Traits

    Directory of Open Access Journals (Sweden)

    Markus Klein

    2017-04-01

    Full Text Available The relationship between sport participation, personality development, self-concept and self-esteem has been discussed repeatedly. In this research, a standardized written survey together with tests on motor performance were carried out with 1399 students (707 male; 692 female in school years 7 (12.9 ± 0.6 years and 10 (15.8 ± 0.6 years to measure the extent of a relationship between physical self-concept (self-developed short scale and sporting activity, measured motor performance (German motor performance test DMT (Deutscher Motorik-Test 6–18 and report mark in physical education. Relationships were also analyzed between physical self-concept and general personality traits (neuroticism, extraversion, openness to experiences, compatibility, and conscientiousness, measured with NEO Five Factor Inventory (NEO-FFI. The assessment of own physical attractiveness and own athleticism differs by sex (F(1, 962 = 35.21; p < 0.001, whereby girls assess themselves more critically. Weak significant relationships are displayed between motor performance and the assessment of own physical attractiveness (r(395 = 0.31; p < 0.01. Motor performance is given a higher predictive value with regard to a subject’s own self-concept, (physical attractiveness β = 0.37; t(249 = 5.24; p < 0.001; athleticism β = 0.40; t(248 = 6.81; p < 0.001 than the mark achieved in physical education (physical attractiveness β = −0.01; n.s.; athleticism β = −0.30; t(248 = 5.10; p < 0.001. Relationships were found overall between personality traits and physical self-concept. The influence of the ‘neuroticism’ trait is particularly strong (physical attractiveness β = −0.44; t(947 = −13.58; p < 0.001; athleticism β = −0.27; t(948 = −7.84; p < 0.001. The more pronounced this trait, the lower the assessment of own physical attractiveness and own athleticism.

  9. Video analysis of acute motor and convulsive manifestations in sport-related concussion.

    Science.gov (United States)

    McCrory, P R; Berkovic, S F

    2000-04-11

    To describe the motor and convulsive manifestations in acute sports-related head injury. A total of 234 cases of concussive injuries during the 1995 through 1997 football seasons were obtained from the Australian Football League Medical Officers Association injury survey. Of these, 102 cases were recorded adequately on television videotape and were analyzed by two independent observers using a standardized recording form detailing injury mechanics and clinical features of the episodes. Motor and convulsive features were correlated with mechanical variables and with duration of loss of consciousness using linear modeling techniques. Tonic posturing occurred in 25 subjects, clonic movements in 6, righting movement in 40, and gait unsteadiness in 42. In one subject the tonic and clonic features were sufficiently prolonged to be deemed a concussive convulsion. The only risk factor for tonic posturing using logistic regression was the presence of loss of consciousness (p = 0.0001). There was a trend toward facial impact being an independent predictor of tonic posturing but this did not reach significance. No other independent variable predicted the development of clonic movements, righting movements, or gait unsteadiness. Subtle motor manifestations such as tonic posturing and clonic movements commonly occur in concussion; the main predictive factor for tonic posturing is the presence of loss of consciousness. The authors speculate that these clinical features are due to brainstem dysfunction secondary to biomechanical forces inducing a transient functional decerebration.

  10. Sensomotor coordination, theoretical and physical (motor preparedness of first year students of higher educational institutions of physical education and sport

    Directory of Open Access Journals (Sweden)

    I.A. Tereshchenko

    2013-12-01

    Full Text Available Purpose - to examine the degree of relationship and interaction performance of semantic structure of motor action (level of theoretical preparation and indicators of sensomotor coordination (level of physical - motor - preparedness of students. The study involved 233 students (142 boys, 91 female aged 17 - 18 years. Were determined for sensory-motor coordination and academic performance of students, the factorial structure of the relationship indicators of theoretical and practical courses. It is established that the development of exercise training programs, sports and educational disciplines depends on the semantic structure of the motor action. It is noted that the semantic structure of the motor action is based on theoretical knowledge. Also - on perfecting the mechanisms of psychomotor and sensory-motor coordination. The parameters of the factor structure: the level of development of the vestibular apparatus - 25%; coordination abilities of - 18 %, static-dynamic stability of the body - 16%; proprioceptive sensitivity - 13%.

  11. Primary Motor Cortex Involvement in Initial Learning during Visuomotor Adaptation

    Science.gov (United States)

    Riek, Stephan; Hinder, Mark R.; Carson, Richard G.

    2012-01-01

    Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to…

  12. Sleep-Related Improvements in Motor Learning Following Mental Practice

    Science.gov (United States)

    Debarnot, Ursula; Creveaux, Thomas; Collet, Christian; Gemignani, Angelo; Massarelli, Raphael; Doyon, Julien; Guillot, Aymeric

    2009-01-01

    A wide range of experimental studies have provided evidence that a night of sleep may enhance motor performance following physical practice (PP), but little is known, however, about its effect after motor imagery (MI). Using an explicitly learned pointing task paradigm, thirty participants were assigned to one of three groups that differed in the…

  13. Impaired Visuo-Motor Sequence Learning in Developmental Coordination Disorder

    Science.gov (United States)

    Gheysen, Freja; Van Waelvelde, Hilde; Fias, Wim

    2011-01-01

    The defining feature of Developmental Coordination Disorder (DCD) is the marked impairment in the development of motor coordination (DSM-IV-TR, American Psychiatric Association, 2000). In the current study, we focused on one core aspect of motor coordination: learning to correctly sequence movements. We investigated the procedural, visuo-motor…

  14. Gender Expression and Homophobia: A Motor Development and Learning Perspective

    Science.gov (United States)

    Garcia, Clersida

    2011-01-01

    Homosexuality and homophobia are rarely discussed in schools, yet they are relevant in motor-development and motor-learning settings because people hold gender-stereotyped beliefs about movement and about lesbian, gay, bisexual, or transgendered individuals. This article addresses homophobia and related stereotypes in physical education settings…

  15. The Investigation of the Motor Skills of "U" Kategories Soccer Players Who Have Recreative Involvement in Other Sports

    Science.gov (United States)

    Göksu, Ömer Can; Yüksek, Selami; Ölmez, Cengiz

    2018-01-01

    This study was conducted to examine the effects of sports activities other than soccer on 10-15-year-old soccer players' motor skills. The sample included 146 registered soccer players in the U category (U10-U15) of the Turkish Football Federation's Aslantepe, Çeliktepe and Seyrantepe clubs. The players participated in this study on a voluntary…

  16. The scientific research methods applied from Physical Education Theory and Methodology contents at physical skills treatment and its relationship with the sport motor skills connected with the Teaching and Learning Process

    Directory of Open Access Journals (Sweden)

    Naivy Lanza-Escobar

    2015-06-01

    Full Text Available Within the current theoretical and methodological conceptions that approach the educational processes and phenomena of Physical Education in the Physical capabilities topic there are several levels that, with a systemic character, offer coherence and unity from their more general argumentation to the description of how they should be studied. However, this reality, that is implicit in the different theories, is usually unnoticed by the researchers and thus it brings about theoretical and methodological in-consequences in the investigation which damage the strictness of the research process. The aim of this article is to analyse each level in the theoretical foundation of investigations about the educational process of Physical Education in the Physical capabilities topic. The teaching learning process is valued on how different authors have approached methodological and theoretical levels; later, each of them are specified, highlighting new element which according to the author can enrich the personified work and the relationship among the content to be deal with the mentioned process.

  17. THE INFLUENCE OF CERTAIN TESTS FOR EVALUATING THE ANTROPOMETRIC, MOTOR AND SPECIFIC MOTOR DIMENSIONS ON THE ELEMENTS OF THE ATTACK IN SPORT KARATE FIGHTING

    Directory of Open Access Journals (Sweden)

    Žarko Kostovski

    2011-08-01

    Full Text Available The research involved 48 participants - top male karate competitors, juniors from karate clubs from Republic of Macedonia. The subject of this research are the defining elements of karate attack in sports karate fighting, and the basic aim is to establish the influence of anthropometric, motor and specific motor dimensions on the karate elements that use in sport karate fighting. In the research were used 36 variables: 4 antropomotorical variables, 4 variables for estimate on the explosive strength, 4 variables for estimate on the segmentary speed (movement frequency, 12 variables of the specific karate elements used in the sport karate fighting and 12 variables for estimate on the specifically karate abilities in 3 motor space: 4 variables for estimate on the specific karate coordination, 4 variables for estimate on the specific karate precision and 4 variables for estimate on the specific karate balance, which are predictive system of variables. The criterion set of variables of this research are represented by 4 karate elements which define the attack in sports karate fighting. From the received results was determined existing of groups in the different spaces of the treated variables and influence of the predictive system of variables on the criterion set of variables

  18. Motor learning through virtual reality in elderly - a systematic review

    OpenAIRE

    Ribeiro-Papa, Denise Cardoso; Massetti, Thais; Crocetta, Tânia Brusque; Menezes, Lilian Del Ciello de; Antunes, Thaiany Pedrozo Campos; Bezerra, Ítalla Maria Pinheiro; Monteiro, Carlos Bandeira de Mello

    2016-01-01

    INTRODUCTION: Decline in physical function is a common feature of older age and has important outcomes in terms of physical health as it relates to quality of life. Our capacity for motor learning allows us to flexibly adapt movements to an ever-changing environment. The term Virtual Reality refers to a wide variety of methods used to simulate an alternative or virtual world. OBJECTIVE: To analyze the results shown in previous studies on motor learning with Virtual Reality use in elderly par...

  19. Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning.

    OpenAIRE

    Jianwei Jiao; Akira Nakajima; William G M Janssen; Vytautas P Bindokas; Xiaoli Xiong; John H Morrison; James R Brorson; Ya-Ping Tang

    2008-01-01

    It is believed that gene/environment interaction (GEI) plays a pivotal role in the development of motor skills, which are acquired via practicing or motor training. However, the underlying molecular/neuronal mechanisms are still unclear. Here, we reported that the expression of NR2B, a subunit of NMDA receptors, in cerebellar granule cells specifically enhanced the effect of voluntary motor training on motor learning in the mouse. Moreover, this effect was characterized as motor learning-spec...

  20. Sports selection of volley-ball players: genetic criteria to define motor endowments (information 2

    Directory of Open Access Journals (Sweden)

    Alisa Ablikova

    2016-04-01

    Full Text Available Purpose: to define genetic criteria which can be used while selecting gifted volley-ball players. Material & Methods: the study involved 50 high class volley-ball players and 50 women at the age of 20–29 years old. There were used methods of theoretical analysis and general conclusion, systematic analysis, genealogic methods of genetics, methods of dermatoglyphic and serologic analyses. Results: family gift for going in for sport was detected. At was revealed that gifted volley-ball players had peculiar finger tips prints and distribution of blood groups: the system AB0 in comparison with the total population. Conclusions: the obtained quantitative characteristics of finger dermatoglyphic, some blood groups and rhesus-factor as genetic markers of motor endowments of volley-ball players are proposed.

  1. Effects of two different programs of modern sports dancing on motor coordination, strength, and speed.

    Science.gov (United States)

    Uzunovic, Slavoljub; Kostic, Radmila; Zivkovic, Dobrica

    2010-09-01

    This study aimed to determine the effects of two different programs of modern sports dancing on coordination, strength, and speed in 60 beginner-level female dancers, aged 13 and 14 yrs. The subjects were divided into two experimental groups (E1 and E2), each numbering 30 subjects, drawn from local dance clubs. In order to determine motor coordination, strength, and speed, we used 15 measurements. The groups were tested before and after the experimental programs. Both experimental programs lasted for 18 wks, with training sessions twice a week for 60 minutes. The subjects from the E1 group trained according to a new experimental program of disco dance (DD) modern sports dance, and the E2 group trained according to the classic DD program of the same kind for beginner selections. The obtained results were assessed by statistical analysis: a paired-samples t-test and MANCOVA/ANCOVA. The results indicated that following the experimental programs, both groups showed a statistically significant improvement in the evaluated skills, but the changes among the E1 group subjects were more pronounced. The basic assumption of this research was confirmed, that the new experimental DD program has a significant influence on coordination, strength, and speed. In relation to these changes, the application of the new DD program was recommended for beginner dancers.

  2. Feedback delays eliminate auditory-motor learning in speech production.

    Science.gov (United States)

    Max, Ludo; Maffett, Derek G

    2015-03-30

    Neurologically healthy individuals use sensory feedback to alter future movements by updating internal models of the effector system and environment. For example, when visual feedback about limb movements or auditory feedback about speech movements is experimentally perturbed, the planning of subsequent movements is adjusted - i.e., sensorimotor adaptation occurs. A separate line of studies has demonstrated that experimentally delaying the sensory consequences of limb movements causes the sensory input to be attributed to external sources rather than to one's own actions. Yet similar feedback delays have remarkably little effect on visuo-motor adaptation (although the rate of learning varies, the amount of adaptation is only moderately affected with delays of 100-200ms, and adaptation still occurs even with a delay as long as 5000ms). Thus, limb motor learning remains largely intact even in conditions where error assignment favors external factors. Here, we show a fundamentally different result for sensorimotor control of speech articulation: auditory-motor adaptation to formant-shifted feedback is completely eliminated with delays of 100ms or more. Thus, for speech motor learning, real-time auditory feedback is critical. This novel finding informs theoretical models of human motor control in general and speech motor control in particular, and it has direct implications for the application of motor learning principles in the habilitation and rehabilitation of individuals with various sensorimotor speech disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  4. Learning to track and identify players from broadcast sports videos.

    Science.gov (United States)

    Lu, Wei-Lwun; Ting, Jo-Anne; Little, James J; Murphy, Kevin P

    2013-07-01

    Tracking and identifying players in sports videos filmed with a single pan-tilt-zoom camera has many applications, but it is also a challenging problem. This paper introduces a system that tackles this difficult task. The system possesses the ability to detect and track multiple players, estimates the homography between video frames and the court, and identifies the players. The identification system combines three weak visual cues, and exploits both temporal and mutual exclusion constraints in a Conditional Random Field (CRF). In addition, we propose a novel Linear Programming (LP) Relaxation algorithm for predicting the best player identification in a video clip. In order to reduce the number of labeled training data required to learn the identification system, we make use of weakly supervised learning with the assistance of play-by-play texts. Experiments show promising results in tracking, homography estimation, and identification. Moreover, weakly supervised learning with play-by-play texts greatly reduces the number of labeled training examples required. The identification system can achieve similar accuracies by using merely 200 labels in weakly supervised learning, while a strongly supervised approach needs a least 20,000 labels.

  5. Motor skill learning, retention, and control deficits in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Lisa Katharina Pendt

    Full Text Available Parkinson's disease, which affects the basal ganglia, is known to lead to various impairments of motor control. Since the basal ganglia have also been shown to be involved in learning processes, motor learning has frequently been investigated in this group of patients. However, results are still inconsistent, mainly due to skill levels and time scales of testing. To bridge across the time scale problem, the present study examined de novo skill learning over a long series of practice sessions that comprised early and late learning stages as well as retention. 19 non-demented, medicated, mild to moderate patients with Parkinson's disease and 19 healthy age and gender matched participants practiced a novel throwing task over five days in a virtual environment where timing of release was a critical element. Six patients and seven control participants came to an additional long-term retention testing after seven to nine months. Changes in task performance were analyzed by a method that differentiates between three components of motor learning prominent in different stages of learning: Tolerance, Noise and Covariation. In addition, kinematic analysis related the influence of skill levels as affected by the specific motor control deficits in Parkinson patients to the process of learning. As a result, patients showed similar learning in early and late stages compared to the control subjects. Differences occurred in short-term retention tests; patients' performance constantly decreased after breaks arising from poorer release timing. However, patients were able to overcome the initial timing problems within the course of each practice session and could further improve their throwing performance. Thus, results demonstrate the intact ability to learn a novel motor skill in non-demented, medicated patients with Parkinson's disease and indicate confounding effects of motor control deficits on retention performance.

  6. Consolidation of human somatosensory memory during motor learning.

    Science.gov (United States)

    Cuppone, Anna Vera; Semprini, Marianna; Konczak, Jürgen

    2018-03-13

    Sensorimotor learning is a bidirectional process associated with concurrent neuroplastic changes in the motor and somatosensory system. While motor memory consolidation and retention have been extensively studied during skill acquisition, little is known about the formation and consolidation of somatosensory memory associated with motor learning. Using a robotic exoskeleton, we tracked markers of somatosensory and motor learning while healthy participants trained to make goal-directed wrist reaching movements over five days and evaluated retention for up to 10 days after practice. Markers of somatosensory learning were changes in wrist position sense bias (systematic error) and precision (random error). The main results are as follows: First, somatosensory (proprioceptive) memory consolidation shows signs of cost savings with repeated sensorimotor training - the same feature is known for motor memory formation. Moreover, somatosensory learning generalized to untrained workspace. Second, somatosensory learning over days can be characterized as an early improvement in sensory precision and a later improvement in sensory bias. Third, the time course of learning gains in position sense acuity coincided with improvements in spatial movement accuracy. Finally, the gains of somatosensory learning were retained for several days. Improvements in position sense bias were still visible up to 3 days after the end of practice for the trained workspace positions, but decayed faster in the untrained workspace. Improvements in position sense precision were retained for up to 10 days and were workspace independent. The findings are consistent with the view that an internal model of somatosensory joint space is formed during motor learning. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Using Mobile Devices for Motor-Learning Laboratory Exercises

    Science.gov (United States)

    Hill, Kory

    2014-01-01

    When teaching motor-learning concepts, laboratory experiments can be valuable tools for promoting learning. In certain circumstances, traditional laboratory exercises are often impractical due to facilities, time, or cost. Inexpensive or free applications (apps) that run on mobile devices can serve as useful alternatives. This article details…

  8. Sleep-Dependent Learning and Motor-Skill Complexity

    Science.gov (United States)

    Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.

    2004-01-01

    Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics…

  9. Improved children's motor learning of the basketball free shooting pattern by associating subjective error estimation and extrinsic feedback.

    Science.gov (United States)

    Silva, Leandro de Carvalho da; Pereira-Monfredini, Carla Ferro; Teixeira, Luis Augusto

    2017-09-01

    This study aimed at assessing the interaction between subjective error estimation and frequency of extrinsic feedback in the learning of the basketball free shooting pattern by children. 10- to 12-year olds were assigned to 1 of 4 groups combining subjective error estimation and relative frequency of extrinsic feedback (33% × 100%). Analysis of performance was based on quality of movement pattern. Analysis showed superior learning of the group combining error estimation and 100% feedback frequency, both groups receiving feedback on 33% of trials achieved intermediate results, and the group combining no requirement of error estimation and 100% feedback frequency had the poorest learning. Our results show the benefit of subjective error estimation in association with high frequency of extrinsic feedback in children's motor learning of a sport motor pattern.

  10. Review of the Status of Learning in Research on Sport Education: Future Research and Practice

    Science.gov (United States)

    Araújo, Rui; Mesquita, Isabel; Hastie, Peter A.

    2014-01-01

    Research concerning Sport Education’s educational impact has shown unequivocal results according to students’ personal and social development. Nevertheless, research is still sparse with respect to the model’s impact on student learning outcomes. The goal of the present review is to therefore scrutinize what is currently known regarding students’ learning during their participation in Sport Education. This research spans a variety of studies, cross various countries, school grades, the sports studied, as well as the methods applied and dimensions of student learning analyzed. While research on the impact of Sport Education on students’ learning, as well as teachers’ and students’ perceptions about student learning has shown students’ improvements during the participation in Sport Education seasons, there is still considerable variance in these results. For example, some studies report superior learning opportunities to boys and higher skill-level students while other studies have identified superior learning opportunities for girls and lower skill-level students. These inconsistent results can be explained by factors not considered in the Sport Education research, such as the effect of time on students’ learning and the control of the teaching-learning process within Sport Education units. In this review directions for future research and practice are also described. Future research should define, implement, and evaluate protocols for student-coaches’ preparation in order to understand the influence of this issue on students’ learning as well as consider the implementation of hybrid approaches. Moreover, future studies should consider the interaction of gender and skill level and a retention test in the analysis of students’ learning improvements in order to obtain a more realist and complete portrait of the impact of Sport Education. Finally, in order to reach an entirely understanding of the teaching-learning process, it is necessary to

  11. Review of the status of learning in research on sport education: future research and practice.

    Science.gov (United States)

    Araújo, Rui; Mesquita, Isabel; Hastie, Peter A

    2014-12-01

    Research concerning Sport Education's educational impact has shown unequivocal results according to students' personal and social development. Nevertheless, research is still sparse with respect to the model's impact on student learning outcomes. The goal of the present review is to therefore scrutinize what is currently known regarding students' learning during their participation in Sport Education. This research spans a variety of studies, cross various countries, school grades, the sports studied, as well as the methods applied and dimensions of student learning analyzed. While research on the impact of Sport Education on students' learning, as well as teachers' and students' perceptions about student learning has shown students' improvements during the participation in Sport Education seasons, there is still considerable variance in these results. For example, some studies report superior learning opportunities to boys and higher skill-level students while other studies have identified superior learning opportunities for girls and lower skill-level students. These inconsistent results can be explained by factors not considered in the Sport Education research, such as the effect of time on students' learning and the control of the teaching-learning process within Sport Education units. In this review directions for future research and practice are also described. Future research should define, implement, and evaluate protocols for student-coaches' preparation in order to understand the influence of this issue on students' learning as well as consider the implementation of hybrid approaches. Moreover, future studies should consider the interaction of gender and skill level and a retention test in the analysis of students' learning improvements in order to obtain a more realist and complete portrait of the impact of Sport Education. Finally, in order to reach an entirely understanding of the teaching-learning process, it is necessary to use research designs that

  12. Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning.

    Directory of Open Access Journals (Sweden)

    Jianwei Jiao

    2008-02-01

    Full Text Available It is believed that gene/environment interaction (GEI plays a pivotal role in the development of motor skills, which are acquired via practicing or motor training. However, the underlying molecular/neuronal mechanisms are still unclear. Here, we reported that the expression of NR2B, a subunit of NMDA receptors, in cerebellar granule cells specifically enhanced the effect of voluntary motor training on motor learning in the mouse. Moreover, this effect was characterized as motor learning-specific and developmental stage-dependent, because neither emotional/spatial memory was affected nor was the enhanced motor learning observed when the motor training was conducted starting at the age of 3 months old in these transgenic mice. These results indicate that changes in the expression of gene(s that are involved in regulating synaptic plasticity in cerebellar granule cells may constitute a molecular basis for the cerebellum to be involved in the GEI by facilitating motor skill learning.

  13. Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning.

    Science.gov (United States)

    Jiao, Jianwei; Nakajima, Akira; Janssen, William G M; Bindokas, Vytautas P; Xiong, Xiaoli; Morrison, John H; Brorson, James R; Tang, Ya-Ping

    2008-02-27

    It is believed that gene/environment interaction (GEI) plays a pivotal role in the development of motor skills, which are acquired via practicing or motor training. However, the underlying molecular/neuronal mechanisms are still unclear. Here, we reported that the expression of NR2B, a subunit of NMDA receptors, in cerebellar granule cells specifically enhanced the effect of voluntary motor training on motor learning in the mouse. Moreover, this effect was characterized as motor learning-specific and developmental stage-dependent, because neither emotional/spatial memory was affected nor was the enhanced motor learning observed when the motor training was conducted starting at the age of 3 months old in these transgenic mice. These results indicate that changes in the expression of gene(s) that are involved in regulating synaptic plasticity in cerebellar granule cells may constitute a molecular basis for the cerebellum to be involved in the GEI by facilitating motor skill learning.

  14. Review of the Status of Learning in Research on Sport Education: Future Research and Practice

    Directory of Open Access Journals (Sweden)

    Rui Araújo, Isabel Mesquita

    2014-12-01

    Full Text Available Research concerning Sport Education’s educational impact has shown unequivocal results according to students’ personal and social development. Nevertheless, research is still sparse with respect to the model’s impact on student learning outcomes. The goal of the present review is to therefore scrutinize what is currently known regarding students’ learning during their participation in Sport Education. This research spans a variety of studies, cross various countries, school grades, the sports studied, as well as the methods applied and dimensions of student learning analyzed. While research on the impact of Sport Education on students’ learning, as well as teachers’ and students’ perceptions about student learning has shown students’ improvements during the participation in Sport Education seasons, there is still considerable variance in these results. For example, some studies report superior learning opportunities to boys and higher skill-level students while other studies have identified superior learning opportunities for girls and lower skill-level students. These inconsistent results can be explained by factors not considered in the Sport Education research, such as the effect of time on students’ learning and the control of the teaching-learning process within Sport Education units. In this review directions for future research and practice are also described. Future research should define, implement, and evaluate protocols for student-coaches’ preparation in order to understand the influence of this issue on students’ learning as well as consider the implementation of hybrid approaches. Moreover, future studies should consider the interaction of gender and skill level and a retention test in the analysis of students’ learning improvements in order to obtain a more realist and complete portrait of the impact of Sport Education. Finally, in order to reach an entirely understanding of the teaching-learning process

  15. INFLUENCE OF MOTOR ABILITIES ON LEARNING OF ALPINE SKI TECHNIQUE

    OpenAIRE

    Igor Božić; Nikola Prlenda; Vjekoslav Cigrovski

    2012-01-01

    The research determined influence of motor abilities on alpine ski learning. Moreover, the aim was also to estimate the contribution of some morphological characteristics to acquisition of ski knowledge. At the beginning of the study, participants were tested by tests evaluating balance, agility, explosive and static strength, movement frequency and flexibility. After evaluation of motor abilities, basic morphological characteristics were noted and then participants entered a seven days alpin...

  16. Motor learning in animal models of Parkinson's disease: Aberrant synaptic plasticity in the motor cortex.

    Science.gov (United States)

    Xu, Tonghui; Wang, Shaofang; Lalchandani, Rupa R; Ding, Jun B

    2017-04-01

    In Parkinson's disease (PD), dopamine depletion causes major changes in the brain, resulting in the typical cardinal motor features of the disease. PD neuropathology has been restricted to postmortem examinations, which are limited to only a single time of PD progression. Models of PD in which dopamine tone in the brain is chemically or physically disrupted are valuable tools in understanding the mechanisms of the disease. The basal ganglia have been well studied in the context of PD, and circuit changes in response to dopamine loss have been linked to the motor dysfunctions in PD. However, the etiology of the cognitive dysfunctions that are comorbid in PD patients has remained unclear until now. In this article, we review recent studies exploring how dopamine depletion affects the motor cortex at the synaptic level. In particular, we highlight our recent findings on abnormal spine dynamics in the motor cortex of PD mouse models through in vivo time-lapse imaging and motor skill behavior assays. In combination with previous studies, a role of the motor cortex in skill learning and the impairment of this ability with the loss of dopamine are becoming more apparent. Taken together, we conclude with a discussion on the potential role for the motor cortex in PD, with the possibility of targeting the motor cortex for future PD therapeutics. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  17. Are children who play a sport or a musical instrument better at motor imagery than children who do not?

    Science.gov (United States)

    Dey, Abhishikta; Barnsley, Nadia; Mohan, Rahul; McCormick, Marianne; McAuley, James H; Moseley, G Lorimer

    2012-10-01

    Playing a sport or a musical instrument is presumed to improve motor ability. One would therefore predict that children who play a sport or music are better at motor imagery tasks, which rely on an intact cortical proprioceptive representation and precise motor planning, than children who do not. The authors tested this prediction. This study involved an online questionnaire and then a motor imagery task. The task measured the reaction time (RT) and the accuracy for left/right-hand judgements in children aged 5 to 17 years. Forty pictured hands (20 left), held in various positions and rotated zero, 90°, 180° or 270°, were displayed on a screen. Participants indicated whether the displayed hands were left or right by pressing keys on a keyboard. Fifty-seven children (30 boys; mean±SD age=10±3.3 years) participated. The mean±SD RT was 3015.4±1330.0 ms and the accuracy was 73.9±16.6%. There was no difference in RT between children who played sport, music, neither or both (four-level one-way analysis of variance, p=0.85). There was no difference in accuracy between groups either (Kruskal-Wallis, p=0.46). In a secondary analysis, participants whose parents rated them as being 'clumsy' were no slower (n.s.) but were about 25% less accurate than those rated coordinated or very coordinated (psport or music is associated with better cortical proprioceptive representation and motor planning. Secondary analyses suggest that parent-rated clumsiness is negatively related to motor imagery performance.

  18. Concurrent TMS to the primary motor cortex augments slow motor learning

    Science.gov (United States)

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L.; Fox, Peter T.

    2013-01-01

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H215O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy. PMID:23867557

  19. Anthropometric characteristics, physical fitness and motor coordination of 9 to 11 year old children participating in a wide range of sports.

    Science.gov (United States)

    Opstoel, Katrijn; Pion, Johan; Elferink-Gemser, Marije; Hartman, Esther; Willemse, Bas; Philippaerts, Renaat; Visscher, Chris; Lenoir, Matthieu

    2015-01-01

    The aim of this study was to investigate to what extent 9 to 11 year old children participating in a specific sport already exhibit a specific anthropometric, physical fitness and motor coordination profile, in line with the requirements of that particular sport. In addition, the profiles in children with a different training volume were compared and possible differences in training hours per week between children from a low, moderate, and high level of physical fitness and motor coordination were investigated. Data of 620 children, 347 boys and 273 girls, who participated in the Flemish Sports Compass were used. Only the primary sport of each child was considered and six groups of sports (Ball sports, Dance, Gymnastics, Martial arts, Racquet sports and Swimming) were formed based on common characteristics. Measurements consisted of 17 tests. Independent T-tests and Mann-Whitney U-tests revealed few differences between the groups of sports and the discriminant analyses with the moderate and low active group did not show any significant results (p > .05). However, when discriminating among the high active children, a 85.2 % correct classification between six groups of sports was found (Wilks' Λ = .137 and p children performing under average on the tests spent significantly fewer hours in sport per week (2.50 ± 1.84 hours) compared to the children performing best (3.25 ± 2.60 hours) (p = .016) and the children performing above average (2.90 ± 1.96 hours) (p = .029) on physical fitness and motor coordination. The study showed that in general, children at a young age do not exhibit sport-specific characteristics, except in children with a high training volume. It is possible that on the one hand, children have not spent enough time yet in their sport to develop sport-specific qualities. On the other hand, it could be possible that they do not take individual qualities into account when choosing a sport.

  20. Anthropometric Characteristics, Physical Fitness and Motor Coordination of 9 to 11 Year Old Children Participating in a Wide Range of Sports

    Science.gov (United States)

    Elferink-Gemser, Marije; Hartman, Esther; Willemse, Bas; Philippaerts, Renaat; Visscher, Chris; Lenoir, Matthieu

    2015-01-01

    Objectives The aim of this study was to investigate to what extent 9 to 11 year old children participating in a specific sport already exhibit a specific anthropometric, physical fitness and motor coordination profile, in line with the requirements of that particular sport. In addition, the profiles in children with a different training volume were compared and possible differences in training hours per week between children from a low, moderate, and high level of physical fitness and motor coordination were investigated. Methods and Results Data of 620 children, 347 boys and 273 girls, who participated in the Flemish Sports Compass were used. Only the primary sport of each child was considered and six groups of sports (Ball sports, Dance, Gymnastics, Martial arts, Racquet sports and Swimming) were formed based on common characteristics. Measurements consisted of 17 tests. Independent T-tests and Mann-Whitney U-tests revealed few differences between the groups of sports and the discriminant analyses with the moderate and low active group did not show any significant results (p > .05). However, when discriminating among the high active children, a 85.2 % correct classification between six groups of sports was found (Wilks’ Λ = .137 and p sport per week (2.50 ± 1.84 hours) compared to the children performing best (3.25 ± 2.60 hours) (p = .016) and the children performing above average (2.90 ± 1.96 hours) (p = .029) on physical fitness and motor coordination. Discussion The study showed that in general, children at a young age do not exhibit sport-specific characteristics, except in children with a high training volume. It is possible that on the one hand, children have not spent enough time yet in their sport to develop sport-specific qualities. On the other hand, it could be possible that they do not take individual qualities into account when choosing a sport. PMID:25978313

  1. AN INFLUENCE OF THE PROGRAM OF THE UNIVERSAL SPORTS SCHOOL DUBROVNIK ON THE MOTOR ABILITIES DEVELOPMENT OF SIXTH YEAR CHILDREN

    Directory of Open Access Journals (Sweden)

    Đivo Ban

    2010-03-01

    Full Text Available The aim of the research was to establish the effects of the diverse kinesiology program on the motor abilities development on a random sample of an unselected population of six-year old boys and girls, i.e. 34 regular attendants of the Universal Sports School Dubrovnik, within the period of 8 months (initial and final state. The variable sample consisted of 8 motor ability evaluation tests. Seriously changes positively established of tests of explosive and repetitive strength, coordination and frequency of movement hand.

  2. Sport-Specific Motor Fitness Tests in Water Polo: Reliability, Validity and Playing Position Differences

    Directory of Open Access Journals (Sweden)

    Ognjen Uljevic

    2013-12-01

    Full Text Available Sport-specific motor fitness tests are not often examined in water polo. In this study we examined the reliability, factorial and discriminative validity of 10 water-polo-specific motor-fitness tests, namely: three tests of in-water jumps (thrusts, two characteristic swimming sprints (10 and 20 metres from the water start, three ball-throws (shoots, one test of passing precision (accuracy, and a test of the dynamometric force produced while using the eggbeater kick. The sample of subjects consisted of 54 young male water polo players (15 to 17 years of age; 1.86 ± 0.07 m, and 83.1 ± 9.9 kg. All tests were applied over three testing trials. Reliability analyses included Cronbach Alpha coefficients (CA, inter-item- correlations (IIR and coefficients of the variation (CV, while an analysis of variance was used to define any systematic bias between the testing trials. All tests except the test of accuracy (precision were found to be reliable (CA ranged from 0.83 to 0.97; IIR from 0.62 to 0.91; CV from 2% to 21%; with small and irregular biases between the testing trials. Factor analysis revealed that jumping capacities as well as throwing and sprinting capacities should be observed as a relatively independent latent dimensions among young water polo players. Discriminative validity of the applied tests is partially proven since the playing positions significantly (p < 0.05 differed in some of the applied tests, with the points being superior in their fitness capacities in comparison to their teammates. This study included players from one of the world’s best junior National leagues, and reported values could be used as fitness standards for such an age. Further studies are needed to examine the applicability of the proposed test procedures to older subjects and females.

  3. Sleep Does Not Enhance Motor Sequence Learning

    Science.gov (United States)

    Rickard, Timothy C.; Cai, Denise J.; Rieth, Cory A.; Jones, Jason; Ard, M. Colin

    2008-01-01

    Improvements in motor sequence performance have been observed after a delay involving sleep. This finding has been taken as evidence for an active sleep consolidation process that enhances subsequent performance. In a review of this literature, however, the authors observed 4 aspects of data analyses and experimental design that could lead to…

  4. Modelling Ball Circulation in Invasion Team Sports: A Way to Promote Learning Games through Understanding

    Science.gov (United States)

    Grehaigne, Jean-Francis; Caty, Didier; Godbout, Paul

    2010-01-01

    Background: Sport Education and "Tactical decision learning model" (TDLM) are two curriculum models used by physical education teachers in France to help students in the development of a tactical intelligence of game play in the didactics of team sports. Purpose: Identify prototypic configurations of play in the sense that they represent…

  5. Applying a Conceptual Model in Sport Sector Work- Integrated Learning Contexts

    Science.gov (United States)

    Agnew, Deborah; Pill, Shane; Orrell, Janice

    2017-01-01

    This paper applies a conceptual model for work-integrated learning (WIL) in a multidisciplinary sports degree program. Two examples of WIL in sport will be used to illustrate how the conceptual WIL model is being operationalized. The implications for practice are that curriculum design must recognize a highly flexible approach to the nature of…

  6. Sports Business Unit Meets Cross-Curricular Learning Goals: Grades 9-12

    Science.gov (United States)

    Curriculum Review, 2006

    2006-01-01

    A new online learning tool called the eCommSports Kit links a seven-step sports marketing curriculum with a school team to give students real-life experience in developing and executing a plan to boost game attendance. The kit, available through http://www.ecommsports.com, takes teens on a cross-curricular journey through conducting business…

  7. Learning to Teach Sport Education in Russia: Factors Affecting Model Understanding and Intentions to Teach

    Science.gov (United States)

    Glotova, Olga Nikolaevna; Hastie, Peter Andrew

    2014-01-01

    While remarkably positive findings have been presented in research focusing on Sport Education in school settings, investigations on how preservice teachers learn to teach a new curriculum in physical education have been described as "the missing link" in curriculum research. The purpose of this study was to introduce Sport Education to…

  8. Teaching Sport Management Through Service-Learning: An Undergraduate Case Study.

    Science.gov (United States)

    Jackowski, Mick; Gullion, Laurie

    1998-01-01

    Students in an undergraduate sport management writing course experienced a service learning component via outreach with local sport organizations. Class instructors supported students and evaluated student logs, class presentations, student memorandums, product review, and interviews with agency personnel and students. Results indicated that…

  9. Motor-Manipulatory Behaviours and Learning: an Observational Study

    Directory of Open Access Journals (Sweden)

    Assunta Tavernise

    2008-07-01

    Full Text Available In this paper we investigated the role of motor-manipulatory behaviour in the learning modalities of thirty-five primary school children interacting with a Lego MindStorms kit. In particular, by means of an observational taxonomy of children’s behaviour, we analysed the video records of two observational sessions regarding the learning activities during the building of a small robot. Our results demonstrated that motor-manipulatory behaviours are strictly linked to cognitive processes, and that the acquisition of new knowledge can be considered as the result of a gradual experience of integration between both perceptual and manipulative behavioural routines.

  10. Exploring the Relationship between Participation in a Structured Sports Program and Development of Gross Motor Skills in Children Ages 3 to 6 Years

    Science.gov (United States)

    Jahagirdar, Ishanee; Venditti, Laura Anne; Duncan, Andrea; Reed, Nick; Fleming, Sean

    2017-01-01

    This study looked at the relationship between participation in a structured sports program and gross-motor-skills development in children aged 3 to 6 years. Twenty-seven children participated in the study, with 16 children receiving an eight-week sports program intervention. Children were assessed at pre- and postintervention using a modified…

  11. Anthropometric Characteristics, Physical Fitness and Motor Coordination of 9 to 11 Year Old Children Participating in a Wide Range of Sports

    NARCIS (Netherlands)

    Opstoel, Katrijn; Pion, Johan; Elferink-Gemser, Marije; Hartman, Esther; Willemse, Bas; Philippaerts, Renaat; Visscher, Chris; Lenoir, Matthieu

    2015-01-01

    Objectives The aim of this study was to investigate to what extent 9 to 11 year old children participating in a specific sport already exhibit a specific anthropometric, physical fitness and motor coordination profile, in line with the requirements of that particular sport. In addition, the profiles

  12. "Mushin": Learning in Technique-Intensive Sports as a Process of Uniting Mind and Body through Complex Learning Theory

    Science.gov (United States)

    Light, Richard L.; Kentel, Jeanne Adéle

    2015-01-01

    Background: Interest in the use of learning theory to inform sport and physical-education pedagogy over the past decade beyond games and team sports has been limited. Purpose: Following on from recent interest within the literature in Eastern philosophic traditions, this article draws on the Japanese concept of "mushin" and complex…

  13. Practice and nap schedules modulate children's motor learning.

    Science.gov (United States)

    Ren, Jie; Guo, Wei; Yan, Jin H; Liu, Guanmin; Jia, Fujun

    2016-01-01

    Night- or day-time sleep enhances motor skill acquisition. However, prominent issues remained about the circadian (time-of-day) and homeostatic (time since last sleep) effects of sleep on developmental motor learning. Therefore, we examined the effects of nap schedules and nap-test-intervals (NTIs) on the learning of finger tapping sequences on computer keyboards. Children aged 6-7, 8-9, and 10-11 years explicitly acquired the short and long tapping orders that share the same movement strings (4-2-3-1-4, 4-2-3-1-4-2-3-1-4). Following a constant 8- or 10-hr post-learning period in one of the four NTIs (2, 4, 5, 7 hr), children in the morning napping groups, the afternoon napping groups, or the waking group performed the original long sequence in retention test (4-2-3-1-4-2-3-1-4) and the mirrored-order sequence in transfer test (1-3-2-4-1-3-2-4-1). Age and treatment differences in the movement time (MT, ms) and sequence accuracy (SA, %) were compared during skill learning and in retrieval tests. Results suggest that practice or nap affects MT and SA in a greater extent for the younger learners than for the older learners. The circadian effects might not change nap-based skill learning. Importantly, the longer NTIs resulted in superior retention performance than the shorter ones, suggesting that children require a relatively longer post-nap period to form motor memory. Finally, nap-based motor learning was more marked in skill retention than in skill transfer. Brain development may play an important role in motor learning. Our discussion centers on memory consolidation and its relevance for skill acquisition from early to late childhood. © 2015 Wiley Periodicals, Inc.

  14. The role of plastic changes in the motor cortex and spinal cord for motor learning

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Lundbye-Jensen, Jesper

    2010-01-01

    are key players in the early stages of skill acquisition and consolidation of motor learning. Expansion of the cortical representation of the trained muscles, changes in corticomuscular coupling and changes in stretch reflex activity are thus all markers of neuroplastic changes accompanying early skill...... acquisition. We have shown in recent experiments that sensory feedback from the active muscles play a surprisingly specific role at this stage of learning. Following motor skill training, repeated activation of sensory afferents from the muscle that has been involved in a previous training session, interfered...... the consolidation of increased performance of a different previously trained task involving the same movement direction and muscle group, whereas training of other muscles had no effect. This emphasizes the role of specific sensory error signals in the acquisition of new motor skills and illustrates the functional...

  15. Motor Fundamentals : E-learning course

    OpenAIRE

    Genberg, Tom

    2017-01-01

    Målet med detta examensarbete var att göra en intern online kurs för ABB som förklarar hur en elektrisk motor fungerar. Förklaringen skulle vara så enkel som möjligt så att en icke ingenjör skulle förstå den. ABB:s personal kommer att ta del av denna kurs för att förstå hur deras egna produkter fungerar. Det finns många olika elektriska motorer, men detta examensarbete och kursen som skapades kommer för det mesta att fokusera sig på växelströmsinduktionsmotorn. växelströmsinduktionsmotorn ...

  16. Development of common principles for the evaluation of quality characteristics of motor activity in the fitness and sports aerobics aesthetic orientation

    Directory of Open Access Journals (Sweden)

    Galyna Artemyeva

    2015-12-01

    Full Text Available Purpose: to develop and validate methods for quantifying qualitative indicators special physical preparedness of sportsmen in fitness-aerobics and sports aesthetic orientation. Materials and Methods: an analytical synthesis of these scientific and methodical literature, the use of the theory of similarity and dimensionality, biomechanical analysis of motor activity, processing of video. Results: based on the use of similarity theory presents the methods of quantitative evaluation of qualitative characteristics of motor activity in special physical training, which allow an assessment of motor talent of the athlete and to provide objective guidance to training in particular sport. Conclusions: the presented methods quantify the qualitative indicators of the special motor preparation allow us to estimate a measure of motor gifted individual and his susceptibility to training in particular sport

  17. Identifying profiles of actual and perceived motor competence among adolescents: associations with motivation, physical activity, and sports participation.

    Science.gov (United States)

    De Meester, An; Maes, Jolien; Stodden, David; Cardon, Greet; Goodway, Jacqueline; Lenoir, Matthieu; Haerens, Leen

    2016-11-01

    The present study identified adolescents' motor competence (MC)-based profiles (e.g., high actual and low perceived MC), and accordingly investigated differences in motivation for physical education (PE), physical activity (PA) levels, and sports participation between profiles by using regression analyses. Actual MC was measured with the Körperkoordinationstest für Kinder. Adolescents (n = 215; 66.0% boys; mean age = 13.64 ± .58 years) completed validated questionnaires to assess perceived MC, motivation for PE, PA-levels, and sports participation. Actual and perceived MC were only moderately correlated and cluster analyses identified four groups. Two groups of overestimators (low - overestimation, average - overestimation) were identified (51%), who particularly displayed better motivation for PE when compared to their peers who accurately estimated themselves (low - accurate, average - accurate). Moreover, adolescents with low actual MC, but high perceived MC were significantly more active than adolescents with low actual MC who accurately estimated themselves. Results pointed in the same direction for organised sports participation. Underestimators were not found in the current sample, which is positive as underestimation might negatively influence adolescents' motivation to achieve and persist in PA and sports. In conclusion, results emphasise that developing perceived MC, especially among adolescents with low levels of actual MC, seems crucial to stimulate motivation for PE, and engagement in PA and sports.

  18. Sports in elementary school : Physical education specialists vs. group teachers

    NARCIS (Netherlands)

    de Groot, Wouter; Moolenaar, Ben; Mombarg, Remo

    2014-01-01

    Introduction In elementary school, children have to learn fundamental motor skills to ensure a lifetime participation in sports. An essential part of this learning process is organized in physical education lessons and other sport activities during or after school time. The quality and quantity of

  19. Why Do Athletes Drink Sports Drinks? A Learning Cycle to Explore the Concept of Osmosis

    Science.gov (United States)

    Carlsen, Brook; Marek, Edmund A.

    2010-01-01

    Why does an athlete reach for a sports drink after a tough game or practice? The learning cycle presented in this article helps students answer this question. Learning cycles (Marek 2009) are designed to guide students through direct experiences with a particular concept. In this article, students learn about "osmosis," or the moving of water into…

  20. Transformation of Cortex-wide Emergent Properties during Motor Learning.

    Science.gov (United States)

    Makino, Hiroshi; Ren, Chi; Liu, Haixin; Kim, An Na; Kondapaneni, Neehar; Liu, Xin; Kuzum, Duygu; Komiyama, Takaki

    2017-05-17

    Learning involves a transformation of brain-wide operation dynamics. However, our understanding of learning-related changes in macroscopic dynamics is limited. Here, we monitored cortex-wide activity of the mouse brain using wide-field calcium imaging while the mouse learned a motor task over weeks. Over learning, the sequential activity across cortical modules became temporally more compressed, and its trial-by-trial variability decreased. Moreover, a new flow of activity emerged during learning, originating from premotor cortex (M2), and M2 became predictive of the activity of many other modules. Inactivation experiments showed that M2 is critical for the post-learning dynamics in the cortex-wide activity. Furthermore, two-photon calcium imaging revealed that M2 ensemble activity also showed earlier activity onset and reduced variability with learning, which was accompanied by changes in the activity-movement relationship. These results reveal newly emergent properties of macroscopic cortical dynamics during motor learning and highlight the importance of M2 in controlling learned movements. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Motor learning and working memory in children born preterm: a systematic review.

    NARCIS (Netherlands)

    Jongbloed-Pereboom, M.; Janssen, A.J.W.M.; Steenbergen, B.; Nijhuis-Van der Sanden, M.W.G.

    2012-01-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has

  2. Motor learning and working memory in children born preterm: A systematic review

    NARCIS (Netherlands)

    Jongbloed-Pereboom, M.; Janssen, A.J.W.M.; Steenbergen, B.; Nijhuis-Van der Sanden, M.W.G.

    2012-01-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has

  3. Motor Speech Sequence Learning in Adults Who Stutter

    Directory of Open Access Journals (Sweden)

    Mahsa Aghazamani

    2018-04-01

    Conclusion The results of this study showed that PWS show improvement in accuracy, reaction time and sequence duration variables from day 1 to day 3. Also, PWS show more substantial number of errors compared to PNS, but this difference was not significant between the two groups. Similar results were obtained for the reaction time. Results of this study demonstrated that PWS show slower sequence duration compared to PNS. Some studies suggested that this could be because people who stutter use a control strategy to reduce the number of errors, although many studies suggested that this may indicate motor learning. According to speech motor skills hypothesis, it can be concluded that people who stutter have limitations in motor speech learning abilities. The findings of the present study could have clinical implication for the treatment of stuttering.

  4. Motor Skill Learning in Children with Developmental Coordination Disorder

    Science.gov (United States)

    Bo, Jin; Lee, Chi-Mei

    2013-01-01

    Children with Developmental Coordination Disorder (DCD) are characterized as having motor difficulties and learning impairment that may last well into adolescence and adulthood. Although behavioral deficits have been identified in many domains such as visuo-spatial processing, kinesthetic perception, and cross-modal sensory integration, recent…

  5. Reductive and Emergent Views on Motor Learning in Rehabilitation Practice

    NARCIS (Netherlands)

    van Dijk, Ludger; van der Sluis, Corry; Bongers, Raoul M.

    2017-01-01

    To allow different views on motor learning to inform rehabilitation research, the authors aimed to explicate a frequently missed yet fundamental difference in starting point of such views. By considering how rehabilitation in practice answers the question of what parts an activity consists of,

  6. Improving novel motor learning through prior high contextual interference training

    NARCIS (Netherlands)

    Kim, T.; Chen, J.; Verwey, W. B.; Wright, David L.

    2018-01-01

    The primary objective of the present experiment was to examine the influence of recent practice in a random and blocked format for future motor learning. First, individuals practiced three unique discrete sequence production tasks in either a blocked or random schedule. One day later, all

  7. Sleep Consolidates Motor Learning of Complex Movement Sequences in Mice.

    Science.gov (United States)

    Nagai, Hirotaka; de Vivo, Luisa; Bellesi, Michele; Ghilardi, Maria Felice; Tononi, Giulio; Cirelli, Chiara

    2017-02-01

    Sleep-dependent consolidation of motor learning has been extensively studied in humans, but it remains unclear why some, but not all, learned skills benefit from sleep. Here, we compared 2 different motor tasks, both requiring the mice to run on an accelerating device. In the rotarod task, mice learn to maintain balance while running on a small rod, while in the complex wheel task, mice run on an accelerating wheel with an irregular rung pattern. In the rotarod task, performance improved to the same extent after sleep or after sleep deprivation (SD). Overall, using 7 different experimental protocols (41 sleep deprived mice, 26 sleeping controls), we found large interindividual differences in the learning and consolidation of the rotarod task, but sleep before/after training did not account for this variability. By contrast, using the complex wheel, we found that sleep after training, relative to SD, led to better performance from the beginning of the retest session, and longer sleep was correlated with greater subsequent performance. As in humans, the effects of sleep showed large interindividual variability and varied between fast and slow learners, with sleep favoring the preservation of learned skills in fast learners and leading to a net offline gain in the performance in slow learners. Using Fos expression as a proxy for neuronal activation, we also found that complex wheel training engaged motor cortex and hippocampus more than the rotarod training. Sleep specifically consolidates a motor skill that requires complex movement sequences and strongly engages both motor cortex and hippocampus. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  8. Aging increases the susceptibility to motor memory interference and reduces off-line gains in motor skill learning

    DEFF Research Database (Denmark)

    Roig, Marc; Ritterband-Rosenbaum, Anina; Jensen, Jesper Lundbye

    2014-01-01

    Declines in the ability to learn motor skills in older adults are commonly attributed to deficits in the encoding of sensorimotor information during motor practice. We investigated whether aging also impairs motor memory consolidation by assessing the susceptibility to memory interference and off...... greater susceptibility to memory interference and no off-line gains in motor skill learning. Performing B produced memory interference and reduced off-line gains only in the older group. However, older adults also showed deficits in memory consolidation independent of the interfering effects of B. Age......-related declines in motor skill learning are not produced exclusively by deficits in the encoding of sensorimotor information during practice. Aging also increases the susceptibility to memory interference and reduces off-line gains in motor skill learning after practice....

  9. Fine motor function of school-aged children with dyslexia, learning disability and learning difficulties.

    Science.gov (United States)

    Capellini, Simone Aparecida; Coppede, Aline Cirelli; Valle, Talita Regina

    2010-01-01

    fine motor function of school-aged children with dyslexia, learning disabilities and learning difficulties. this study aimed to characterize the fine motor, sensory and perceptive function of school-aged children with dyslexia, learning disabilities and learning difficulties and to correlate these results with the analysis of the children's handwriting. participants were 80 2nd to 4th graders, ranging in age from 7 to 12 years, of both genders, divided as follows: GI: composed of 20 students with dyslexia, GII: composed of 20 students with learning disabilities, GIII: composed of 20 students with learning difficulties and GIV: composed of 20 good readers. All of the children were submitted to an assessment of the fine motor, sensorial and perceptive functions using the Dysgraphia Scale. the results indicated that most groups presented a poor performance in tests of FMF7 (fingers opposition), S8 (graphestesia) and P1 (body imitation). GI and GII were the groups that presented the worst performance in most of the tests when compared to GIII and GIV. Regarding handwriting, it was observed that all of the children in GII are dysgraphics. the presence of motor, sensorial and perceptive alterations is a characteristic of children with learning disabilities and dyslexia. However this characteristic may or may not be found in children with learning difficulties, therefore motor, sensorial and perceptive alterations are responsible for the dysgraphic behavior observed in the children with learning disabilities of the present study.

  10. Interactive Distance Learning Effectively Provides Winning Sports Nutrition Workshops.

    Science.gov (United States)

    Ricketts, Jennifer; Hoelscher-Day, Sharon; Begeman, Gale; Houtkooper, Linda

    2001-01-01

    Interactive distance-education (n=226) and face-to-face (n=129) continuing education workshops for health care and education professionals on sports nutrition were evaluated immediately and after 6 months. The well-designed distance-education format was as effective and acceptable as face to face and increased sports nutrition knowledge. (SK)

  11. Motor learning in children and adolescents institutionalized in shelters

    Directory of Open Access Journals (Sweden)

    Caroline Moreira Souza Santos

    Full Text Available Abstract Introduction: Children and adolescents living in shelters may present with impaired motor development, cognitive function, as well as speech and understanding; psychological alterations; and hyperactivity. All of these factors may be detrimental to motor learning. Objective: To investigate motor learning in children and adolescents living in shelters, and to compare it with that of individuals living in a family context. Methods: We assessed 36 individuals who were divided into groups: an experimental group, composed of institutionalized children and adolescents (EG, n=18, and a control group (CG, n = 18 that was matched by age and sex. Motor learning was assessed using a maze test in three stages: acquisition, retention and transfer. The data were analyzed using the Shapiro Wilk, Wilcoxon, Mann Whitney, Kruskal Wallis tests and Dunn’s post-test (p < 5%. Results: The EG had a longer task performance time than the CG. There was a significant reduction in task performance time between the first (EG = 11.05 [8.50-14.85]s; CG:7.65 [5.95-10.23]s and the last task performance block (EG:8.02 [6.86-10.23]s; GC: 5.50 [4.50-6.82]s in both groups. When comparing the variables of the last acquisition (GE:8.02[6.86-10.23]s; GC: 5.50[4.50-6.82]s, retention (GE:8.20[7.09-9.89]s;GC:5.35[4.50-6.22]s and transfer blocks (GE:8.30[6.28-11.43]s; GC:5.30[4.90-6.82]s in each group, we found no changes in task performance time between test batteries. Conclusion: Individuals living in shelters showed a motor learning deficit, as evidenced by longer task performance time when compared to their controls. Nevertheless, both groups performed the task in a similar manner.

  12. Development of a Portable Motor Learning Laboratory (PoMLab.

    Directory of Open Access Journals (Sweden)

    Ken Takiyama

    Full Text Available Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the

  13. Preferred 'Learning Styles' in Students Studying Sports Related Programmes in Higher Education in the United Kingdom.

    OpenAIRE

    Peters, D.M.; Jones, Gareth; Peters, John

    2008-01-01

    This article investigates the 'preferred learning styles' and their relationship with grades for students undertaking sports-related undergraduate programmes at a higher education institution in the UK. Preferred 'learning styles' in students in this discipline have been identified as auditory, kinaesthetic and group, although the vast majority of students are multimodal in their learning preferences. Only individual learning style preference was found to be positively related to higher grade...

  14. Flexible cognitive strategies during motor learning.

    Science.gov (United States)

    Taylor, Jordan A; Ivry, Richard B

    2011-03-01

    Visuomotor rotation tasks have proven to be a powerful tool to study adaptation of the motor system. While adaptation in such tasks is seemingly automatic and incremental, participants may gain knowledge of the perturbation and invoke a compensatory strategy. When provided with an explicit strategy to counteract a rotation, participants are initially very accurate, even without on-line feedback. Surprisingly, with further testing, the angle of their reaching movements drifts in the direction of the strategy, producing an increase in endpoint errors. This drift is attributed to the gradual adaptation of an internal model that operates independently from the strategy, even at the cost of task accuracy. Here we identify constraints that influence this process, allowing us to explore models of the interaction between strategic and implicit changes during visuomotor adaptation. When the adaptation phase was extended, participants eventually modified their strategy to offset the rise in endpoint errors. Moreover, when we removed visual markers that provided external landmarks to support a strategy, the degree of drift was sharply attenuated. These effects are accounted for by a setpoint state-space model in which a strategy is flexibly adjusted to offset performance errors arising from the implicit adaptation of an internal model. More generally, these results suggest that strategic processes may operate in many studies of visuomotor adaptation, with participants arriving at a synergy between a strategic plan and the effects of sensorimotor adaptation.

  15. Evaluar la Coordinación Motriz Global en Educación Secundaria: El Test Motor SportComp. [Motor co-ordination assessment in Secondary Education: The SportComp Test].

    Directory of Open Access Journals (Sweden)

    Luis Miguel Ruiz-Perez

    2017-07-01

    Full Text Available El objetivo de este estudio fue el desarrollo y evaluación métrica del Test Motor SportComp, instrumento diseñado para ayudar a los profesores de educación física en la evaluación de la coordinación motriz global de sus alumnos de Educación Secundaria. En la actualidad no existen tests que evalúen la coordinación motriz de forma válida y fiable y que puedan ser empleados por el profesorado de educación física en el contexto de sus clases de manera rápida y económica. El presente test se construyó a partir de una revisión de la literatura científica sobre medición motriz entre los 12 y 17 años. La validez de contenido de las pruebas empleadas fue evaluada por expertos y las pruebas seleccionadas fueron aplicadas a 5732 escolares de estas edades. Se analizaron los resultados mediante la técnica de componentes principales que permitió la extracción de un solo factor formado por 5 tareas motrices relacionadas con la coordinación motriz global. El Coeficiente de Correlación Intraclase (CCI permitió obtener una fiabilidad test-retest de (CCI=0,91. Asimismo, mostró una satisfactoria validez criterial con la batería MABC-2 uno de los más reconocidos para la detección de problemas de coordinación motriz. Las propiedades métricas del presente test son muy satisfactorias y ofrecen buenas posibilidades para ser empleado por los profesores de educación física en sus clases por su bajo coste económico, poco tiempo de aplicación reclamado y poseer normas ajustadas por edad y sexo. Asimismo, este test ofrece el potencial de poder servir para detectar a los alumnos con sospecha de poseer problemas de coordinación motriz y por lo tanto contribuir a la mejora de los programas de educación física que palíen esta condición. Abstract The purpose of this study was the development and metric evaluation of the SportComp Motor Test, an instrument designed to aid physical education teachers in the assessment of gross motor

  16. ACQUIRING SKILL IN SPORT: An Introduction

    Directory of Open Access Journals (Sweden)

    John Honeybourne

    2006-12-01

    Full Text Available The book is a user-friendly, highly accessible text for the students to understand the basic concepts of sport skills acquisition. Each chapter covers important theoretical background and shows how this theory can be applied through practical examples from the world of sport. The book also examines the ways in which skills can be most effectively and addresses issues such as: characteristics and classifications of abilities and skills in sport, information processing in sport, motor programmes and motor control, phases of learning and presentation of skills and practices. PURPOSE This textbook aims to help readers develop an understanding of the basic concepts of motor skills in sport, dealing initially with the technical terms and then on focusing on the theories related to the learning of these skills. AUDIENCE A valuable resource for students and teachers in physical education, sport studies and sports science courses as well as for coaches who want to develop their theoretical knowledge. FEATURES The book guides the readers through the science that underlies sport skills, using practical examples to explain the concepts discussed. It is composed of 9 chapters which present the information in an order that is considered logical and progressive as in most texts. Chapter headings are: 1. Characteristics and classification of skills in sport, 2. Characteristics and classification of abilities in sport, 3. Information processing in sport, 4. Motor programmes and motor control, 5. Individual differences, 6. Theories of learning, 7. Phase of learning and learning curves, 8. Presentation of skills and practices, 10. Guidance, teaching and learning styles. ASSESSMENT This is an excellent book for the students in the field. Clearly written and illustrated throughout, with questions to test knowledge and understanding, this is an ideal introductory text for students of physical education, sport, human movement science and kinesiology, as well as

  17. Substance P signalling in primary motor cortex facilitates motor learning in rats.

    Directory of Open Access Journals (Sweden)

    Benjamin Hertler

    Full Text Available Among the genes that are up-regulated in response to a reaching training in rats, Tachykinin 1 (Tac1-a gene that encodes the neuropeptide Substance P (Sub P-shows an especially strong expression. Using Real-Time RT-PCR, a detailed time-course of Tac1 expression could be defined: a significant peak occurs 7 hours after training ended at the first and second training session, whereas no up-regulation could be detected at a later time-point (sixth training session. To assess the physiological role of Sub P during movement acquisition, microinjections into the primary motor cortex (M1 contralateral to the trained paw were performed. When Sub P was injected before the first three sessions of a reaching training, effectiveness of motor learning became significantly increased. Injections at a time-point when rats already knew the task (i.e. training session ten and eleven had no effect on reaching performance. Sub P injections did not influence the improvement of performance within a single training session, but retention of performance between sessions became strengthened at a very early stage (i.e. between baseline-training and first training session. Thus, Sub P facilitates motor learning in the very early phase of skill acquisition by supporting memory consolidation. In line with these findings, learning related expression of the precursor Tac1 occurs at early but not at later time-points during reaching training.

  18. EFFECTS OF THE SCHOOL SUBJECT – SPORT FOR ATHLETES ON MOTORIC ABILITIES OF 8TH GRADE GIRLS

    Directory of Open Access Journals (Sweden)

    Milovan Ljubojević

    2011-08-01

    Full Text Available The place and importance of physical education in educational system is well known. Many researches have been done with the goal to determine influence of physical education on students. However, keep in mind that many of those researches had shown that women are generally not so interested in sports and that they are less included in physical activities (especially some forms of it, we have focused our work at possibilities of improvement of motoric abilities of girls inside chosen subject – sport for athletes, which is being conveyed in 8th grade with two classes per week, and chosen sport was basketball. Our sample consisted of 67 girls (37 in experimental and 30 in control group. Level of motoric abilities has been tracked by 14 test battery which measured levels of speed, coordination, precision, balance, flexibility and explosive strength. We concluded that subjects in experimental group improved levels of abilities in each test at final measuring. However, keep in mind that girls in control group had also show certain improvements in results of the t test for dependent samples at initial and final measurement of the following tests: horizontal wall bouncing for 15 seconds, hand and foot tapping, horizontal aiming and standing on one leg with eyes closed, we have compared by ANOVA measured results at final measurement of the each group. We concluded that there are statistically significant differences between groups in left hand basketball dribbling test, pull-through and jump-over tests, horizontal wall bouncing for 15 seconds, hand and foot tapping, standing on one leg with eyes closed, vertical jump – Sargent test, basketball throwing from chest from sitting position. Therefore, we can finally conclude that conveyed basketball programme had completely positive impact at motoric abilities of girls, as we expected

  19. Women's Leadership Development in Sport Settings: Factors Influencing the Transformational Learning Experience of Female Managers

    Science.gov (United States)

    Megheirkouni, Majd; Roomi, Muhammad Azam

    2017-01-01

    Purpose: This study explores the positive and negative factors influencing transformational learning experiences of female leaders in women's leadership development programmes in sports and examines the differences in learning/change factors cited by those who successfully addressed them and those who failed. Design/methodology/approach: The study…

  20. Support-vector-machine tree-based domain knowledge learning toward automated sports video classification

    Science.gov (United States)

    Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin

    2010-12-01

    We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.

  1. Construction of scientific knowledge in motor learning: history and perspectives

    Directory of Open Access Journals (Sweden)

    Cláudio Márcio Oliveira

    2008-06-01

    Full Text Available The present work aims to inquire the construction of scientific knowledge in the motor learning area. A necessary historical retrospective on this study field considers the epistemology of Francis Bacon, Karl Popper, Paul Feyerabend and Thomas Kuhn. Bacon and Popper’s conceptions show to be inadequate to explain the scientific progress of motor learning. Feyerabend’s ideas are also inadequate as they lack coherency, even though in some aspects they are adequate. The Kuhnian approach, however, seems more satisfactory, particularly with regard to the notion of “crisis of paradigm” between the ecological approach and the information-processing approach. A critique is offered from human and social sciences perspective. This leads us to reflect on the possible growth of a new paradigm and consider scientific practice as a social practice.

  2. The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model

    Science.gov (United States)

    Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma

    2015-01-01

    The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…

  3. Investigating Speech Motor Practice and Learning in People Who Stutter

    Science.gov (United States)

    Namasivayam, Aravind Kumar; van Lieshout, Pascal

    2008-01-01

    In this exploratory study, we investigated whether or not people who stutter (PWS) show motor practice and learning changes similar to those of people who do not stutter (PNS). To this end, five PWS and five PNS repeated a set of non-words at two different rates (normal and fast) across three test sessions (T1, T2 on the same day and T3 on a…

  4. Cluster analysis of activity-time series in motor learning

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Å; Futiger, Sally A

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel...... practice-related activity in a fronto-parieto-cerebellar network, in agreement with previous studies of motor learning. These voxels were separated from a group of voxels showing an unspecific time-effect and another group of voxels, whose activation was an artifact from smoothing...

  5. Synchrony and motor mimicking in chimpanzee observational learning.

    Science.gov (United States)

    Fuhrmann, Delia; Ravignani, Andrea; Marshall-Pescini, Sarah; Whiten, Andrew

    2014-06-13

    Cumulative tool-based culture underwrote our species' evolutionary success, and tool-based nut-cracking is one of the strongest candidates for cultural transmission in our closest relatives, chimpanzees. However the social learning processes that may explain both the similarities and differences between the species remain unclear. A previous study of nut-cracking by initially naïve chimpanzees suggested that a learning chimpanzee holding no hammer nevertheless replicated hammering actions it witnessed. This observation has potentially important implications for the nature of the social learning processes and underlying motor coding involved. In the present study, model and observer actions were quantified frame-by-frame and analysed with stringent statistical methods, demonstrating synchrony between the observer's and model's movements, cross-correlation of these movements above chance level and a unidirectional transmission process from model to observer. These results provide the first quantitative evidence for motor mimicking underlain by motor coding in apes, with implications for mirror neuron function.

  6. Synchrony and motor mimicking in chimpanzee observational learning

    Science.gov (United States)

    Fuhrmann, Delia; Ravignani, Andrea; Marshall-Pescini, Sarah; Whiten, Andrew

    2014-01-01

    Cumulative tool-based culture underwrote our species' evolutionary success, and tool-based nut-cracking is one of the strongest candidates for cultural transmission in our closest relatives, chimpanzees. However the social learning processes that may explain both the similarities and differences between the species remain unclear. A previous study of nut-cracking by initially naïve chimpanzees suggested that a learning chimpanzee holding no hammer nevertheless replicated hammering actions it witnessed. This observation has potentially important implications for the nature of the social learning processes and underlying motor coding involved. In the present study, model and observer actions were quantified frame-by-frame and analysed with stringent statistical methods, demonstrating synchrony between the observer's and model's movements, cross-correlation of these movements above chance level and a unidirectional transmission process from model to observer. These results provide the first quantitative evidence for motor mimicking underlain by motor coding in apes, with implications for mirror neuron function. PMID:24923651

  7. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats.

    Science.gov (United States)

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants' cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by auditory-motor

  8. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats.

    Directory of Open Access Journals (Sweden)

    Robert Jan Bood

    Full Text Available Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1 a control condition without acoustic stimuli, 2 a metronome condition with a sequence of beeps matching participants' cadence (synchronization, and 3 a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation. Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps. These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by

  9. The Power of Auditory-Motor Synchronization in Sports: Enhancing Running Performance by Coupling Cadence with the Right Beats

    Science.gov (United States)

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants’ cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants’ cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli –which was most salient during the metronome condition– helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner’s cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by

  10. Multidisciplinary Views on Applying Explicit and Implicit Motor Learning in Practice: An International Survey.

    Directory of Open Access Journals (Sweden)

    Melanie Kleynen

    Full Text Available A variety of options and techniques for causing implicit and explicit motor learning have been described in the literature. The aim of the current paper was to provide clearer guidance for practitioners on how to apply motor learning in practice by exploring experts' opinions and experiences, using the distinction between implicit and explicit motor learning as a conceptual departure point.A survey was designed to collect and aggregate informed opinions and experiences from 40 international respondents who had demonstrable expertise related to motor learning in practice and/or research. The survey was administered through an online survey tool and addressed potential options and learning strategies for applying implicit and explicit motor learning. Responses were analysed in terms of consensus (≥ 70% and trends (≥ 50%. A summary figure was developed to illustrate a taxonomy of the different learning strategies and options indicated by the experts in the survey.Answers of experts were widely distributed. No consensus was found regarding the application of implicit and explicit motor learning. Some trends were identified: Explicit motor learning can be promoted by using instructions and various types of feedback, but when promoting implicit motor learning, instructions and feedback should be restricted. Further, for implicit motor learning, an external focus of attention should be considered, as well as practicing the entire skill. Experts agreed on three factors that influence motor learning choices: the learner's abilities, the type of task, and the stage of motor learning (94.5%; n = 34/36. Most experts agreed with the summary figure (64.7%; n = 22/34.The results provide an overview of possible ways to cause implicit or explicit motor learning, signposting examples from practice and factors that influence day-to-day motor learning decisions.

  11. Stimulation of the human motor cortex alters generalization patterns of motor learning.

    Science.gov (United States)

    Orban de Xivry, Jean-Jacques; Marko, Mollie K; Pekny, Sarah E; Pastor, Damien; Izawa, Jun; Celnik, Pablo; Shadmehr, Reza

    2011-05-11

    It has been hypothesized that the generalization patterns that accompany learning carry the signatures of the neural systems that are engaged in that learning. Reach adaptation in force fields has generalization patterns that suggest primary engagement of a neural system that encodes movements in the intrinsic coordinates of joints and muscles, and lesser engagement of a neural system that encodes movements in the extrinsic coordinates of the task. Among the cortical motor areas, the intrinsic coordinate system is most prominently represented in the primary sensorimotor cortices. Here, we used transcranial direct current stimulation (tDCS) to alter mechanisms of synaptic plasticity and found that when it was applied to the motor cortex, it increased generalization in intrinsic coordinates but not extrinsic coordinates. However, when tDCS was applied to the posterior parietal cortex, it had no effects on learning or generalization in the force field task. The results suggest that during force field adaptation, the component of learning that produces generalization in intrinsic coordinates depends on the plasticity in the sensorimotor cortex.

  12. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles.

    Science.gov (United States)

    Levin, Mindy F; Weiss, Patrice L; Keshner, Emily A

    2015-03-01

    The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality-based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback-based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. © 2015 American Physical Therapy Association.

  13. Learning styles favoured by professional, amateur, and recreational athletes in different sports.

    Science.gov (United States)

    González-Haro, Carlos; Calleja-González, Julio; Escanero, Jesus F

    2010-06-01

    The aim of this study was to characterize the learning styles of different groups of athletes grouped according to level of performance and sport. Seventy-one male athletes completed a questionnaire on learning styles at the beginning of the 2008-2009 training season. Learning styles were assessed using the Honey-Alonso Learning Styles Questionnaire, and were also converted into learning styles described by Kolb. The Honey-Alonso learning styles were compared among the various groups using one-way analysis of variance, and the Kolb learning styles that were most favoured using a chi-square test. Pearson's correlation coefficient was used to verify the relationships between variables. No significant differences were observed in learning styles between different sports and physical activities. Years of experience did not correlate strongly with learning styles. With respect to level of performance, the pragmatic component was significantly lower in professional athletes than amateur and recreational athletes. These characteristics of learning styles preferred by the athletes should help coaches and physical trainers to reflect on their role as educators in the context of planning sports training.

  14. PKC in motorneurons underlies self-learning, a form of motor learning in Drosophila

    Directory of Open Access Journals (Sweden)

    Julien Colomb

    2016-04-01

    Full Text Available Tethering a fly for stationary flight allows for exquisite control of its sensory input, such as visual or olfactory stimuli or a punishing infrared laser beam. A torque meter measures the turning attempts of the tethered fly around its vertical body axis. By punishing, say, left turning attempts (in a homogeneous environment, one can train a fly to restrict its behaviour to right turning attempts. It was recently discovered that this form of operant conditioning (called operant self-learning, may constitute a form of motor learning in Drosophila. Previous work had shown that Protein Kinase C (PKC and the transcription factor dFoxP were specifically involved in self-learning, but not in other forms of learning. These molecules are specifically involved in various forms of motor learning in other animals, such as compulsive biting in Aplysia, song-learning in birds, procedural learning in mice or language acquisition in humans. Here we describe our efforts to decipher which PKC gene is involved in self-learning in Drosophila. We also provide evidence that motorneurons may be one part of the neuronal network modified during self-learning experiments. The collected evidence is reminiscent of one of the simplest, clinically relevant forms of motor learning in humans, operant reflex conditioning, which also relies on motorneuron plasticity.

  15. How transcranial direct current stimulation can modulate implicit motor sequence learning and consolidation: A brief review

    Directory of Open Access Journals (Sweden)

    Branislav eSavic

    2016-02-01

    Full Text Available The purpose of this review is to investigate how transcranial direct current stimulation (tDCS can modulate implicit motor sequence learning and consolidation. So far, most of the studies have focused on the modulating effect of tDCS for explicit motor learning. Here, we focus explicitly on implicit motor sequence learning and consolidation in order to improve our understanding about the potential of tDCS to affect this kind of unconscious learning. Specifically, we concentrate on studies with the serial reaction time task (SRTT, the classical paradigm for measuring implicit motor sequence learning. The influence of tDCS has been investigated for the primary motor cortex, the premotor cortex, the prefrontal cortex, and the cerebellum. The results indicate that tDCS above the primary motor cortex gives raise to the most consistent modulating effects for both implicit motor sequence learning and consolidation.

  16. Neurocognitive contributions to motor skill learning: the role of working memory.

    Science.gov (United States)

    Seidler, Rachael D; Bo, Jin; Anguera, Joaquin A

    2012-01-01

    Researchers have begun to delineate the precise nature and neural correlates of the cognitive processes that contribute to motor skill learning. The authors review recent work from their laboratory designed to further understand the neurocognitive mechanisms of skill acquisition. The authors have demonstrated an important role for spatial working memory in 2 different types of motor skill learning, sensorimotor adaptation and motor sequence learning. They have shown that individual differences in spatial working memory capacity predict the rate of motor learning for sensorimotor adaptation and motor sequence learning, and have also reported neural overlap between a spatial working memory task and the early, but not late, stages of adaptation, particularly in the right dorsolateral prefrontal cortex and bilateral inferior parietal lobules. The authors propose that spatial working memory is relied on for processing motor error information to update motor control for subsequent actions. Further, they suggest that working memory is relied on during learning new action sequences for chunking individual action elements together.

  17. Working Memory Capacity Limits Motor Learning When Implementing Multiple Instructions

    Directory of Open Access Journals (Sweden)

    Tim Buszard

    2017-08-01

    Full Text Available Although it is generally accepted that certain practice conditions can place large demands on working memory (WM when performing and learning a motor skill, the influence that WM capacity has on the acquisition of motor skills remains unsubstantiated. This study examined the role of WM capacity in a motor skill practice context that promoted WM involvement through the provision of explicit instructions. A cohort of 90 children aged 8 to 10 years were assessed on measures of WM capacity and attention. Children who scored in the lowest and highest thirds on the WM tasks were allocated to lower WM capacity (n = 24 and higher WM capacity (n = 24 groups, respectively. The remaining 42 participants did not participate in the motor task. The motor task required children to practice basketball shooting for 240 trials in blocks of 20 shots, with pre- and post-tests occurring before and after the intervention. A retention test was administered 1 week after the post-test. Prior to every practice block, children were provided with five explicit instructions that were specific to the technique of shooting a basketball. Results revealed that the higher WM capacity group displayed consistent improvements from pre- to post-test and through to the retention test, while the opposite effect occurred in the lower WM capacity group. This implies that the explicit instructions had a negative influence on learning by the lower WM capacity children. Results are discussed in relation to strategy selection for dealing with instructions and the role of attention control.

  18. Neural correlates of motor learning, transfer of learning, and learning to learn.

    Science.gov (United States)

    Seidler, Rachael D

    2010-01-01

    Recent studies on the neural bases of sensorimotor adaptation demonstrate that the cerebellar and striatal thalamocortical pathways contribute to early learning. Transfer of learning involves a reduction in the contribution of early learning networks and increased reliance on the cerebellum. The neural correlates of learning to learn remain to be determined but likely involve enhanced functioning of the general aspects of early learning.

  19. Teaching Sport Psychology to the XBox Generation: Further evidence for game-based learning

    OpenAIRE

    Manley, A; Whitaker, L; Patterson, L

    2012-01-01

    Objective: To extend recent research examining the impact of game-based activities on the learning experience of undergraduate psychology students. Design: A counterbalanced repeated measures design was employed to evaluate students’ learning experiences following their involvement in active game-based learning activities. Method: Students on a Level 5 sport psychology module (N=134) were asked to participate in four practical classes demonstrating the impact of psychological factors (e.g. an...

  20. THE IMPACT OF SPORT CLIMBING ON SOME MORPHOLOGICAL CHARACTERISTICS AND MOTOR ABILITIES IN CLIMBERS OF 14 YEARS OF AGE

    Directory of Open Access Journals (Sweden)

    Blaž Jereb

    2009-11-01

    Full Text Available The objective of our research was to identify the impact of sport climbing on some morphologic characteristics and motor abilities in climbers. The sample group consisted of 19 climbers, who trained climbing for one year beside their regular physical education after the initially survey was made, and 72 nonclimbers, who’s only sport activity was their regular physical education. At the time of the test, climbers as well as nonclimbers were 14 years of age. The measurement included all the variables from the Physical education chart. Data were processed with statistical programme package SPSS for Windows. The result of analysis of covariance show that after a year long period of sport climbing statistically significant differences were shown in the results of t he test Polygon backwards in favour of the experimental group. It is also possible to observe a trend towards better results of the experimental group in the tests Skin fold thickness of the upper arm and Bend and touch on bench. The nonclimbers achieved larger differences than climbers in torso lifting and 600 m run.

  1. Predicting athletic performance with self-confidence and somatic and cognitive anxiety as a function of motor and physiological requirements in six sports.

    Science.gov (United States)

    Taylor, J

    1987-03-01

    The purpose of the present study is to examine the ability of certain psychological attributes to predict performance in six National Collegiate Athletic Association Division I collegiate sports. Eighty-four athletes from the varsity sports teams of cross country running, alpine and nordic skiing, tennis, basketball, and track and field at the University of Colorado completed a questionnaire adapted from Martens (1977; Martens et al., 1983) that measured their trait levels of self-confidence (Bandura, 1977), somatic anxiety, and cognitive anxiety (Martens, 1977; Martens et al., 1983). In addition, at three to six competitions during the season, the members of the cross country running and tennis teams filled out a state measure (Martens et al., 1983) of the three attributes from one to two hours prior to the competition. Following each competition, subjective and objective ratings of performance were obtained, and, for all sports, coaches' ratings of performance and an overall seasonal team ranking were determined as seasonal performance measures. The sports were dichotomized along motor and physiological dimensions. Results indicate that all three psychological attributes were significant predictors of performance in both fine motor, anaerobic sports and gross motor, aerobic sports. Further, clear differences in these relationships emerged as a function of the dichotomization. In addition, unexpected sex differences emerged. The findings are discussed relative to prior research and their implications for future research.

  2. Why professional athletes need a prolonged period of warm-up and other peculiarities of human motor learning.

    Science.gov (United States)

    Ajemian, Robert; D'Ausilio, Alessandro; Moorman, Helene; Bizzi, Emilio

    2010-11-01

    Professional athletes involved in sports that require the execution of fine motor skills must practice for a considerable length of time before competing in an event. Why is such practice necessary? Is it merely to warm-up the muscles, tendons, and ligaments, or does the athlete's sensorimotor network need to be constantly recalibrated? In this article, the authors present a point of view in which the human sensorimotor system is characterized by: (a) a high noise level and (b) a high learning rate at the synaptic level (which, because of the noise, does not equate to a high learning rate at the behavioral level). They argue that many heuristics of human skill learning, including the need for a prolonged period of warm-up in experts, follow from these assumptions.

  3. CEREBELLUM: LINKS BETWEEN DEVELOPMENT, DEVELOPMENTAL DISORDERS AND MOTOR LEARNING

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2012-01-01

    Full Text Available The study of the links and interactions between development and motor learning has noticeable implications for the understanding and management of neurodevelopmental disorders. This is particularly relevant for the cerebellum which is critical for sensorimotor learning. The olivocerebellar pathway is a key pathway contributing to learning of motor skills. Its developmental maturation and remodelling are being unravelled. Advances in genetics have led to major improvements in our appraisal of the genes involved in cerebellar development, especially studies in mutant mice. Cerebellar neurogenesis is compartmentalized in relationship with neurotransmitter fate. The Engrailed-2 gene is a major actor of the specification of cerebellar cell types and late embryogenic morphogenesis. Math1, expressed by the rhombic lip (RL, is required for the genesis of glutamatergic neurons. Mutants deficient for the transcription factor Ptf1a display a lack of Purkinje cells and gabaergic interneurons. Rora gene contributes to the developmental signalling between granule cells and Purkinje neurons. The expression profile of SHH (Sonic hedgehog in postnatal stages determines the final size/shape of the cerebellum. Genes affecting the development impact upon the physiological properties of the cerebellar circuits. For instance, receptors are developmentally regulated and their action interferes directly with developmental processes. Another field of research which is expanding relates to very preterm neonates. They are at risk for cerebellar lesions, which may themselves impair the developmental events. Very preterm neonates often show sensori-motor deficits, highlighting another major link between impaired development and learning deficiencies. Pathways playing a critical role in cerebellar development are likely to become therapeutical targets for several neurodevelopmental disorders.

  4. Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.

    Science.gov (United States)

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.

  5. Parallel alterations of functional connectivity during execution and imagination after motor imagery learning.

    Science.gov (United States)

    Zhang, Hang; Xu, Lele; Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation

  6. Sleep and motor learning: Is there room for consolidation?

    Science.gov (United States)

    Pan, Steven C; Rickard, Timothy C

    2015-07-01

    It is widely believed that sleep is critical to the consolidation of learning and memory. In some skill domains, performance has been shown to improve by 20% or more following sleep, suggesting that sleep enhances learning. However, recent work suggests that those performance gains may be driven by several factors that are unrelated to sleep consolidation, inviting a reconsideration of sleep's theoretical role in the consolidation of procedural memories. Here we report the first comprehensive investigation of that possibility for the case of motor sequence learning. Quantitative meta-analyses involving 34 articles, 88 experimental groups and 1,296 subjects confirmed the empirical pattern of a large performance gain following sleep and a significantly smaller gain following wakefulness. However, the results also confirm strong moderating effects of 4 previously hypothesized variables: averaging in the calculation of prepost gain scores, build-up of reactive inhibition over training, time of testing, and training duration, along with 1 supplemental variable, elderly status. With those variables accounted for, there was no evidence that sleep enhances learning. Thus, the literature speaks against, rather than for, the enhancement hypothesis. Overall there was relatively better performance after sleep than after wakefulness, suggesting that sleep may stabilize memory. That effect, however, was not consistent across different experimental designs. We conclude that sleep does not enhance motor learning and that the role of sleep in the stabilization of memory cannot be conclusively determined based on the literature to date. We discuss challenges and opportunities for the field, make recommendations for improved experimental design, and suggest approaches to data analysis that eliminate confounds due to averaging over online learning. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  7. Motor learning in a complex balance task and associated neuroplasticity: a comparison between endurance athletes and nonathletes.

    Science.gov (United States)

    Seidel, Oliver; Carius, Daniel; Kenville, Rouven; Ragert, Patrick

    2017-09-01

    Studies suggested that motor expertise is associated with functional and structural brain alterations, which positively affect sensorimotor performance and learning capabilities. The purpose of the present study was to unravel differences in motor skill learning and associated functional neuroplasticity between endurance athletes (EA) and nonathletes (NA). For this purpose, participants had to perform a multimodal balance task (MBT) training on 2 sessions, which were separated by 1 wk. Before and after MBT training, a static balance task (SBT) had to be performed. MBT-induced functional neuroplasticity and neuromuscular alterations were assessed by means of functional near-infrared spectroscopy (fNIRS) and electromyography (EMG) during SBT performance. We hypothesized that EA would showed superior initial SBT performance and stronger MBT-induced improvements in SBT learning rates compared with NA. On a cortical level, we hypothesized that MBT training would lead to differential learning-dependent functional changes in motor-related brain regions [such as primary motor cortex (M1)] during SBT performance. In fact, EA showed superior initial SBT performance, whereas learning rates did not differ between groups. On a cortical level, fNIRS recordings (time × group interaction) revealed a stronger MBT-induced decrease in left M1 and inferior parietal lobe (IPL) for deoxygenated hemoglobin in EA. Even more interesting, learning rates were correlated with fNIRS changes in right M1/IPL. On the basis of these findings, we provide novel evidence for superior MBT training-induced functional neuroplasticity in highly trained athletes. Future studies should investigate these effects in different sports disciplines to strengthen previous work on experience-dependent neuroplasticity. NEW & NOTEWORTHY Motor expertise is associated with functional/structural brain plasticity. How such neuroplastic reorganization translates into altered motor learning processes remains elusive. We

  8. Perspectives on a Learning-Model for Innovating Game-Based Movement in Sports and Health

    DEFF Research Database (Denmark)

    Elbæk, Lars; Friis, Jørgen Jakob

    2017-01-01

    into innovative practice requires abilities best formed in a creative learning environment that also contains a production space, where physical prototypes creates realizations and insights. Learning is optimally done in project-based setups, and close contact with co-learners and mentors plays a central role...... an active lifestyle. Such digitally supported movement promote health and underlines a need for students to understand that movement design incorporates many aspects: technology, gamification, motivation and understanding of health. To support this, a movement innovation program was needed at our sports...... science and health education. We therefore ask: Which learning approach and educational factors does a learning model need to provide, in order to establish the best foundation for learning innovation and the design of game-based movement solutions within sport and health education? This paper suggests...

  9. The Effect of Motor Performance on Sportive Performance of Children in Different Sports Branches

    Science.gov (United States)

    Aktug, Zait Burak; Iri, Ruckan

    2018-01-01

    The aim of the study is to investigate the relationship between motor performances of children aged 10-14 years and ball striking speeds made by specific technique and to determine motor performance differences between the branches. A total of 64 children (football = 22, volleyball = 19, tennis = 23) aged 10-14 years participated in the study. The…

  10. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    Science.gov (United States)

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.

  11. Different Effects of Implicit and Explicit Motor Sequence Learning on Latency of Motor Evoked Potential Evoked by Transcranial Magnetic Stimulation on the Primary Motor Cortex.

    Science.gov (United States)

    Hirano, Masato; Kubota, Shinji; Koizume, Yoshiki; Tanaka, Shinya; Funase, Kozo

    2016-01-01

    Motor training induces plastic changes in the primary motor cortex (M1). However, it is unclear whether and how the latency of motor-evoked potentials (MEP) and MEP amplitude are affected by implicit and/or explicit motor learning. Here, we investigated the changes in M1 excitability and MEP latency induced by implicit and explicit motor learning. The subjects performed a serial reaction time task (SRTT) with their five fingers. In this task, visual cues were lit up sequentially along with a predetermined order. Through training, the subjects learned the order of sequence implicitly and explicitly. Before and after the SRTT, we recorded MEP at 25 stimulation points around the hot spot for the flexor pollicis brevis (FPB) muscle. Although no changes in MEP amplitude were observed in either session, we found increases in MEP latency and changes in histogram of MEP latency after implicit learning. Our results suggest that reorganization across the motor cortices occurs during the acquisition of implicit knowledge. In contrast, acquisition of explicit knowledge does not appear to induce the reorganization based on the measures we recorded. The fact that the above mentioned increases in MEP latency occurred without any alterations in MEP amplitude suggests that learning has different effects on different physiological signals. In conclusion, our results propose that analyzing a combination of some indices of M1 excitability, such as MEP amplitude and MEP latency, is encouraged in order to understand plasticity across motor cortices.

  12. Online feedback enhances early consolidation of motor sequence learning and reverses recall deficit from transcranial stimulation of motor cortex.

    Science.gov (United States)

    Wilkinson, Leonora; Steel, Adam; Mooshagian, Eric; Zimmermann, Trelawny; Keisler, Aysha; Lewis, Jeffrey D; Wassermann, Eric M

    2015-10-01

    Feedback and monetary reward can enhance motor skill learning, suggesting reward system involvement. Continuous theta burst (cTBS) transcranial magnetic stimulation (TMS) of the primary motor area (M1) disrupts processing, reduces excitability and impairs motor learning. To see whether feedback and reward can overcome the learning impairment associated with M1 cTBS, we delivered real or sham stimulation to two groups of participants before they performed a motor sequence learning task with and without feedback. Participants were trained on two intermixed sequences, one occurring 85% of the time (the "probable" sequence) and the other 15% of the time (the "improbable" sequence). We measured sequence learning as the difference in reaction time (RT) and error rate between probable and improbable trials (RT and error difference scores). Participants were also tested for sequence recall with the same indices of learning 60 min after cTBS. Real stimulation impaired initial sequence learning and sequence knowledge recall as measured by error difference scores and impaired sequence knowledge recall as measured by RT difference score. Relative to non-feedback learning, the introduction of feedback during sequence learning improved subsequent sequence knowledge recall indexed by RT difference score, in both real and sham stimulation groups and feedback reversed the RT difference score based sequence knowledge recall impairment from real cTBS that we observed in the non-feedback learning condition. Only the real cTBS group in the non-feedback condition showed no evidence of explicit sequence knowledge when tested at the end of the study. Feedback improves recall of implicit and explicit motor sequence knowledge and can protect sequence knowledge against the effect of M1 inhibition. Adding feedback and monetary reward/punishment to motor skill learning may help overcome retention impairments or accelerate training in clinical and other settings. Published by Elsevier Ltd.

  13. RELATIONS OF THE MORPHOLOGICAL CHARACTERISTICS AND MOTOR ABILITIES WITH JUMP FOWRARD AND TRIPLE JUMP OF STUDENTS AT THE FACULTY OF SCIENCE AND SPORT

    OpenAIRE

    Rashiti Naser; Ajvazi Vlora; Adem Nura; Fadil Nika

    2011-01-01

    In order to examine the impact of anthropometrical characteristics and motor skills during the tests’ implementation of the jump forward and triple jump from place, the experimental research was carried out on a sample of 100 second year students from the Faculty of Physical Education and Sport in Prishtine. For the purposes of this study were measured eight anthropometrical characteristics and ten tests for assessing motor skills, which made the predictor system of variables. To assess the e...

  14. EFFECTS OF THE SCHOOL SUBJECT – SPORT FOR ATHLETES ON MOTORIC ABILITIES OF 8TH GRADE BOYS

    Directory of Open Access Journals (Sweden)

    Milovan Ljubojević

    2011-09-01

    Full Text Available School curriculums in physical education are conceptualised that students are expected to overcome many motoric assignments and vast area of disciplines (athletics, gymnastics, sports games, rhythmic gymnastics, ethnic dances, etc. Drawbacks of this kind of curriculum are: students superficially adopt only basic elements of motions; there is no automatization and complete control of motoric motions. Teaching practice is mainly focused on development of technical elements in contrast to development of motoric and functional abilities of students. Physical education efficiency can be improved by realistic, expertly and economical planning and monitoring of the effects of the teaching, as well as by increase in weekly number of classes. Sports games are, among others, by nature of comprising motions, important factors and tools in teaching of physical education of students. It seems that all of this has been considered when school reform has been done in Montenegro. By this very kind of work the effects of the increment in weekly class number are meant to be checked out. Our sample consisted of 73 8th grade boys, 42 in experimental group involved in additional basketball programme, and 31 boys in control group without additional classes of physical education. Level of motoric abilities has been followed by 14 test battery which measured levels of speed, coordination, precision, balance, flexibility and explosive strength. We concluded that subjects in experimental group had shown improved levels of abilities in each test at final measurement, except at the test of vertical aiming – darts. However, keep in mind that boys in control group had also show certain improvements in results of the t test for dependent samples at initial and final measurement of the horizontal wall bouncing for 15 seconds test and hand and foot tapping test, by using ANOVA we compared measured results at final measurement of the each group. We concluded that there are

  15. A Combination of Machine Learning and Cerebellar-like Neural Networks for the Motor Control and Motor Learning of the Fable Modular Robot

    OpenAIRE

    Baira Ojeda, Ismael; Tolu, Silvia; Pacheco, Moises; Christensen, David Johan; Lund, Henrik Hautop

    2017-01-01

    We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, in the form of a Unit Learning Machine. The LWPR algorithm optimizes the input space and learns theinternal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar-like microcircuit refines the LWPR ou...

  16. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIX, LEARNING ABOUT CRANKING MOTORS.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF CRANKING MOTORS USED ON DIESEL POWERED EQUIPMENT, TOPICS ARE (1) CRANKING MOTORS. (2) MOTOR PINCIPLES, (3) CRANKING MOTOR CIRCUITS, (4) TYPES OF CRANKING MOTOR DRIVES, AND (5) CRANKING MOTOR SOLENOID CIRCUITS. THE MODULE CONSISTS OF A…

  17. Motor learning and working memory in children born preterm: a systematic review.

    Science.gov (United States)

    Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G

    2012-04-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has never been reviewed. The goal of this review was to provide an overview of motor learning, visual working memory and the role of working memory on motor learning in preterm children. A systematic review conducted in four databases identified 38 relevant articles, which were evaluated for methodological quality. Only 4 of 38 articles discussed motor learning in preterm children. Thirty-four studies reported on visual working memory; preterm birth affected performance on visual working memory tests. Information regarding motor learning and the role of working memory on the different components of motor learning was not available. Future research should address this issue. Insight in the relation between motor learning and visual working memory may contribute to the development of evidence based intervention programs for children born preterm. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults.

    Science.gov (United States)

    King, Bradley R; Fogel, Stuart M; Albouy, Geneviève; Doyon, Julien

    2013-01-01

    As the world's population ages, a deeper understanding of the relationship between aging and motor learning will become increasingly relevant in basic research and applied settings. In this context, this review aims to address the effects of age on motor sequence learning (MSL) and motor adaptation (MA) with respect to behavioral, neurological, and neuroimaging findings. Previous behavioral research investigating the influence of aging on motor learning has consistently reported the following results. First, the initial acquisition of motor sequences is not altered, except under conditions of increased task complexity. Second, older adults demonstrate deficits in motor sequence memory consolidation. And, third, although older adults demonstrate deficits during the exposure phase of MA paradigms, the aftereffects following removal of the sensorimotor perturbation are similar to young adults, suggesting that the adaptive ability of older adults is relatively intact. This paper will review the potential neural underpinnings of these behavioral results, with a particular emphasis on the influence of age-related dysfunctions in the cortico-striatal system on motor learning.

  19. Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults

    Directory of Open Access Journals (Sweden)

    Bradley R King

    2013-04-01

    Full Text Available As the world’s population ages, a deeper understanding of the relationship between aging and motor learning will become increasingly relevant in basic research and applied settings. In this context, this review aims to address the effects of age on motor sequence learning (MSL and motor adaptation (MA with respect to behavioral, neurological and neuroimaging findings. Previous behavioral research investigating the influence of aging on motor learning has consistently reported the following results. First, the initial acquisition of motor sequences is not altered, except under conditions of increased task complexity. Second, older adults demonstrate deficits in motor sequence memory consolidation. And, third, although older adults demonstrate deficits during the exposure phase of MA paradigms, the aftereffects following removal of the sensorimotor perturbation are similar to young adults, suggesting that the adaptive ability of older adults is relatively intact. This paper will review the potential neural underpinnings of these behavioral results, with a particular emphasis on the influence of age-related dysfunctions in the cortico-striatal system on motor learning.

  20. Motor learning in animal models of Parkinson’s Disease: Aberrant synaptic plasticity in the motor cortex

    Science.gov (United States)

    Xu, Tonghui; Wang, Shaofang; Lalchandani, Rupa R.; Ding, Jun B

    2017-01-01

    In Parkinson’s disease (PD), dopamine depletion causes dramatic changes in the brain resulting in debilitating cognitive and motor deficits. PD neuropathology has been restricted to postmortem examinations, which are limited to only a single time point of PD progression. Models of PD where dopamine tone in the brain are chemically or physically disrupted are valuable tools in understanding the mechanisms of the disease. The basal ganglia have been well studied in the context of PD, and circuit changes in response to dopamine loss have been linked to the motor dysfunctions in PD. However, the etiology of the cognitive dysfunctions that are comorbid in PD patients has remained unclear until now. In this paper, we review recent studies exploring how dopamine depletion affects the motor cortex at the synaptic level. In particular, we highlight our recent findings on abnormal spine dynamics in the motor cortex of PD mouse models through in vivo, time-lapse imaging and motor-skill behavior assays. In combination with previous studies, a role of the motor cortex in skill-learning, and the impairment of this ability with the loss of dopamine, is becoming more apparent. Taken together, we conclude with a discussion on the potential role for the motor cortex in the motor-skill learning and cognitive impairments of PD, with the possibility of targeting the motor cortex for future PD therapeutics. PMID:28343366

  1. Sleep modulates word-pair learning but not motor sequence learning in healthy older adults.

    Science.gov (United States)

    Wilson, Jessica K; Baran, Bengi; Pace-Schott, Edward F; Ivry, Richard B; Spencer, Rebecca M C

    2012-05-01

    Sleep benefits memory across a range of tasks for young adults. However, remarkably little is known of the role of sleep on memory for healthy older adults. We used 2 tasks, 1 assaying motor skill learning and the other assaying nonmotor/declarative learning, to examine off-line changes in performance in young (20-34 years), middle-aged (35-50 years), and older (51-70 years) adults without disordered sleep. During an initial session, conducted either in the morning or evening, participants learned a motor sequence and a list of word pairs. Memory tests were given twice, 12 and 24 hours after training, allowing us to analyze off-line consolidation after a break that included sleep or normal wake. Sleep-dependent performance changes were reduced in older adults on the motor sequence learning task. In contrast, sleep-dependent performance changes were similar for all 3 age groups on the word pair learning task. Age-related changes in sleep or networks activated during encoding or during sleep may contribute to age-related declines in motor sequence consolidation. Interestingly, these changes do not affect declarative memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Motor learning in individuals with autism spectrum disorder: activation in superior parietal lobule related to learning and repetitive behaviors.

    Science.gov (United States)

    Travers, Brittany G; Kana, Rajesh K; Klinger, Laura G; Klein, Christopher L; Klinger, Mark R

    2015-02-01

    Motor-linked implicit learning is the learning of a sequence of movements without conscious awareness. Although motor symptoms are frequently reported in individuals with autism spectrum disorder (ASD), recent behavioral studies have suggested that motor-linked implicit learning may be intact in ASD. The serial reaction time (SRT) task is one of the most common measures of motor-linked implicit learning. The present study used a 3T functional magnetic resonance imaging scanner to examine the behavioral and neural correlates of real-time motor sequence learning in adolescents and adults with ASD (n = 15) compared with age- and intelligence quotient-matched individuals with typical development (n = 15) during an SRT task. Behavioral results suggested less robust motor sequence learning in individuals with ASD. Group differences in brain activation suggested that individuals with ASD, relative to individuals with typical development, showed decreased activation in the right superior parietal lobule (SPL) and right precuneus (Brodmann areas 5 and 7, and extending into the intraparietal sulcus) during learning. Activation in these areas (and in areas such as the right putamen and right supramarginal gyrus) was found to be significantly related to behavioral learning in this task. Additionally, individuals with ASD who had more severe repetitive behavior/restricted interest symptoms demonstrated greater decreased activation in these regions during motor learning. In conjunction, these results suggest that the SPL may play an important role in motor learning and repetitive behavior in individuals with ASD. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.

  3. Visual Body Pedagogies: How Anti-Oppressive Education Informs the Teaching and Learning of Sporting Bodies

    Science.gov (United States)

    Owens, Robert E.; LeBlanc, Roger G.; Brown, Pam K.

    2016-01-01

    In this article, the authors borrow from anti-oppressive education theory for its potential to disrupt how students visually conceive sporting bodies and to problematize the teaching and learning of these bodies within undergraduate physical education (PE) programs. Fourteen photo stories produced by students enrolled in PE programs at two…

  4. Students' Attitudes towards Learning Mathematics: Impact of Teaching in a Sporting Context

    Science.gov (United States)

    Sanchal, Anantika; Sharma, Sashi

    2017-01-01

    This study investigated the impact on Year 10 students' attitudes towards mathematics when learning mathematics in a sporting context. A closed ended, self-reported questionnaire with Likert type statements was used to collect data. Individual statements were analysed by comparing the percentage of students agreeing or disagreeing pre-teaching and…

  5. Perceptual-motor learning benefits from increased stress and anxiety.

    Science.gov (United States)

    Hordacre, Brenton; Immink, Maarten A; Ridding, Michael C; Hillier, Susan

    2016-10-01

    The purpose of this study was to manipulate psychological stress and anxiety to investigate effects on ensuing perceptual-motor learning. Thirty-six participants attended two experimental sessions separated by 24h. In the first session, participants were randomized to either a mental arithmetic task known to increase stress and anxiety levels or a control condition and subsequently completed training on a speeded precision pinch task. Learning of the pinch task was assessed at the second session. Those exposed to the high stress-anxiety mental arithmetic task prior to training reported elevated levels of both stress and anxiety and demonstrated shorter movement times and improved retention of movement accuracy and movement variability. Response execution processes appear to benefit from elevated states of stress and anxiety immediately prior to training even when elicited by an unrelated task. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Cluster analysis of activity-time series in motor learning

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Årup; Frutiger, Sally A.

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel......-time series. The optimal number of clusters was chosen using a cross-validated likelihood method, which highlights the clustering pattern that generalizes best over the subjects. Data were acquired with PET at different time points during practice of a visuomotor task. The results from cluster analysis show...... practice-related activity in a fronto-parieto-cerebellar network, in agreement with previous studies of motor learning. These voxels were separated from a group of voxels showing an unspecific time-effect and another group of voxels, whose activation was an artifact from smoothing. Hum. Brain Mapping 15...

  7. Modified Delphi investigation of motor development and learning in physical education teacher education.

    Science.gov (United States)

    Ross, Susan; Metcalf, Amanda; Bulger, Sean M; Housner, Lynn D

    2014-09-01

    As the scope of motor development and learning knowledge has successfully broadened over the years, there is an increased need to identify the content and learning experiences that are essential in preparing preservice physical educators. The purpose of this study was to generate expert consensus regarding the most critical motor development and learning competencies that prospective physical educators need to learn within the physical education teacher education (PETE) curriculum and to identify learning environments and instructional methods for delivering core knowledge. The study employed a 2-round, modified Delphi procedure involving the repeated circulation of a questionnaire to a panel of motor development specialists, motor learning specialists, teacher educators, and K-12 physical education teachers. Panel members rated an initial list of theoretical and applied motor development and learning competencies derived from various curricular guidelines and textbook sources. An open-response question was incorporated into the 2nd round asking panel members to recommend specific instructional methods and settings for delivering core motor development and learning content to prospective physical educators within the PETE curriculum. Expert consensus determined that 64 out of the initial 159 motor development and learning competencies were critical in preparing preservice physical educators. Early field experiences and peer practice in a variety of settings were recommended by panelists for delivering the identified competencies. The Discussion section represents an important link between the motor development and learning body of knowledge and physical education teachers' role in promoting skillful movement, physical activity, and fitness among youth in the school setting.

  8. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing

    Science.gov (United States)

    McGregor, Heather R.

    2015-01-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153–160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493–1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289–2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989–994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400–404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526–2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769–771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. PMID:25995349

  9. Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning.

    Science.gov (United States)

    Wulf, Gabriele; Lewthwaite, Rebecca

    2016-10-01

    Effective motor performance is important for surviving and thriving, and skilled movement is critical in many activities. Much theorizing over the past few decades has focused on how certain practice conditions affect the processing of task-related information to affect learning. Yet, existing theoretical perspectives do not accommodate significant recent lines of evidence demonstrating motivational and attentional effects on performance and learning. These include research on (a) conditions that enhance expectancies for future performance, (b) variables that influence learners' autonomy, and (c) an external focus of attention on the intended movement effect. We propose the OPTIMAL (Optimizing Performance through Intrinsic Motivation and Attention for Learning) theory of motor learning. We suggest that motivational and attentional factors contribute to performance and learning by strengthening the coupling of goals to actions. We provide explanations for the performance and learning advantages of these variables on psychological and neuroscientific grounds. We describe a plausible mechanism for expectancy effects rooted in responses of dopamine to the anticipation of positive experience and temporally associated with skill practice. Learner autonomy acts perhaps largely through an enhanced expectancy pathway. Furthermore, we consider the influence of an external focus for the establishment of efficient functional connections across brain networks that subserve skilled movement. We speculate that enhanced expectancies and an external focus propel performers' cognitive and motor systems in productive "forward" directions and prevent "backsliding" into self- and non-task focused states. Expected success presumably breeds further success and helps consolidate memories. We discuss practical implications and future research directions.

  10. Motor learning in childhood reveals distinct mechanisms for memory retention and re-learning.

    Science.gov (United States)

    Musselman, Kristin E; Roemmich, Ryan T; Garrett, Ben; Bastian, Amy J

    2016-05-01

    Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted walking pattern in children aged 6-17 yr. We found that all children, regardless of age, showed adult-like patterns of retention of the adapted walking pattern. In contrast, children under 12 yr of age did not re-learn faster on the next day after washout had occurred-they behaved as if they had never adapted their walking before. Re-learning could be improved in younger children when the adaptation time on day 1 was increased to allow more practice at the plateau of the adapted pattern, but never to adult-like levels. These results show that the ability to store a separate, adapted version of the same general motor pattern does not fully develop until adolescence, and furthermore, that the mechanisms underlying the retention and rapid re-learning of adapted motor patterns are distinct. © 2016 Musselman et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Perceptual and Motor Performance of Combat-Sport Athletes Differs According to Specific Demands of the Discipline.

    Science.gov (United States)

    Chen, Wei-Ying; Wu, Sheng K; Song, Tai-Fen; Chou, Kuei-Ming; Wang, Kuei-Yuan; Chang, Yao-Ching; Goodbourn, Patrick T

    2016-12-07

    The specific demands of a combat-sport discipline may be reflected in the perceptual-motor performance of its athletes. Taekwondo, which emphasizes kicking, might require faster perceptual processing to compensate for longer latencies to initiate lower-limb movements and to give rapid visual feedback for dynamic postural control, while Karate, which emphasizes both striking with the hands and kicking, might require exceptional eye-hand coordination and fast perceptual processing. In samples of 38 Taekwondo athletes (16 females, 22 males; mean age = 19.9 years, SD = 1.2), 24 Karate athletes (9 females, 15 males; mean age = 18.9 years, SD = 0.9), and 35 Nonathletes (20 females, 15 males; mean age = 20.6 years, SD = 1.5), we measured eye-hand coordination with the Finger-Nose-Finger task, and both perceptual-processing speed and attentional control with the Covert Orienting of Visual Attention (COVAT) task. Eye-hand coordination was significantly better for Karate athletes than for Taekwondo athletes and Nonathletes, but reaction times for the upper extremities in the COVAT task-indicative of perceptual-processing speed-were faster for Taekwondo athletes than for Karate athletes and Nonathletes. In addition, we found no significant difference among groups in attentional control, as indexed by the reaction-time cost of an invalid cue in the COVAT task. The results suggest that athletes in different combat sports exhibit distinct profiles of perceptual-motor performance. © The Author(s) 2016.

  12. Preliminary use of the PANESS for detecting subtle motor signs in adolescents with sport-related concussion: a brief report.

    Science.gov (United States)

    Stephens, Jaclyn A; Denckla, Martha B; McCambridge, Teri; Slomine, Beth S; Mahone, E Mark; Suskauer, Stacy J

    2018-02-08

    Sensitive examination tools are needed to optimize evaluation after sport-related concussion (SRC). We preliminarily examined the Physical and Neurological Examination of Subtle Signs (PANESS) for sensitivity to motor changes in a pilot cohort of adolescents aged 13-17 with SRC. 15 Adolescents (5 females) with SRC were evaluated up to 3 times: within 2 weeks of injury, approximately 1 month later (mean 35 days between visits), and for those not recovered at the second visit, again following clinical recovery (mean 70 days between first and last visits for all participants). Comparison data were acquired from 20 age and sex-matched never-concussed healthy control athletes with no history of concussion who were evaluated twice (mean 32 days apart). Main effects of group, time, and interaction effects were evaluated with an analysis of covariance which controlled for socioeconomic status, times tested, and days between testing sessions. Adolescents with concussion had poorer PANESS performance than controls at all time points. Performance improved between visits within the concussion group with no change within the control group. These findings suggest that the PANESS merits additional study in larger cohorts and in combination with other markers of injury to facilitate an enhanced understanding of sports-related concussion and recovery.

  13. Sports selection of volley-ball players: genetic criteria to define motor endowments (information 2)

    OpenAIRE

    Ablikovа, Alisa; Serhiyenko, Leonid

    2016-01-01

    Purpose: to define genetic criteria which can be used while selecting gifted volley-ball players. Material & Methods: the study involved 50 high class volley-ball players and 50 women at the age of 20–29 years old. There were used methods of theoretical analysis and general conclusion, systematic analysis, genealogic methods of genetics, methods of dermatoglyphic and serologic analyses. Results: family gift for going in for sport was detected. At was revealed that gifted volley-ball playe...

  14. The relationship between gross motor skills and academic achievement in children with learning disabilities

    NARCIS (Netherlands)

    Westendorp, Marieke; Hartman, Esther; Houwen, Suzanne; Smith, Joanne; Visscher, Chris

    2011-01-01

    The present study compared the gross motor skills of 7- to 12-year-old children with learning disabilities (n = 104) with those of age-matched typically developing children (n = 104) using the Test of Gross Motor Development-2. Additionally, the specific relationships between subsets of gross motor

  15. Theories and control models and motor learning: clinical applications in neuro-rehabilitation.

    Science.gov (United States)

    Cano-de-la-Cuerda, R; Molero-Sánchez, A; Carratalá-Tejada, M; Alguacil-Diego, I M; Molina-Rueda, F; Miangolarra-Page, J C; Torricelli, D

    2015-01-01

    In recent decades there has been a special interest in theories that could explain the regulation of motor control, and their applications. These theories are often based on models of brain function, philosophically reflecting different criteria on how movement is controlled by the brain, each being emphasised in different neural components of the movement. The concept of motor learning, regarded as the set of internal processes associated with practice and experience that produce relatively permanent changes in the ability to produce motor activities through a specific skill, is also relevant in the context of neuroscience. Thus, both motor control and learning are seen as key fields of study for health professionals in the field of neuro-rehabilitation. The major theories of motor control are described, which include, motor programming theory, systems theory, the theory of dynamic action, and the theory of parallel distributed processing, as well as the factors that influence motor learning and its applications in neuro-rehabilitation. At present there is no consensus on which theory or model defines the regulations to explain motor control. Theories of motor learning should be the basis for motor rehabilitation. The new research should apply the knowledge generated in the fields of control and motor learning in neuro-rehabilitation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  16. Consolidating behavioral and neurophysiologic findings to explain the influence of contextual interference during motor sequence learning

    NARCIS (Netherlands)

    Wright, David; Verwey, Willem B.; Buchanen, John; Chen, Jing; Rhee, Joohyun; Immink, Maarten

    2016-01-01

    Motor sequence learning under high levels of contextual interference (CI) disrupts initial performance but supports delayed test and transfer performance when compared to learning under low CI. Integrating findings from early behavioral work and more recent experimental efforts that incorporated

  17. Neural model for learning-to-learn of novel task sets in the motor domain.

    Science.gov (United States)

    Pitti, Alexandre; Braud, Raphaël; Mahé, Sylvain; Quoy, Mathias; Gaussier, Philippe

    2013-01-01

    During development, infants learn to differentiate their motor behaviors relative to various contexts by exploring and identifying the correct structures of causes and effects that they can perform; these structures of actions are called task sets or internal models. The ability to detect the structure of new actions, to learn them and to select on the fly the proper one given the current task set is one great leap in infants cognition. This behavior is an important component of the child's ability of learning-to-learn, a mechanism akin to the one of intrinsic motivation that is argued to drive cognitive development. Accordingly, we propose to model a dual system based on (1) the learning of new task sets and on (2) their evaluation relative to their uncertainty and prediction error. The architecture is designed as a two-level-based neural system for context-dependent behavior (the first system) and task exploration and exploitation (the second system). In our model, the task sets are learned separately by reinforcement learning in the first network after their evaluation and selection in the second one. We perform two different experimental setups to show the sensorimotor mapping and switching between tasks, a first one in a neural simulation for modeling cognitive tasks and a second one with an arm-robot for motor task learning and switching. We show that the interplay of several intrinsic mechanisms drive the rapid formation of the neural populations with respect to novel task sets.

  18. Identification of the impact of using sports games’ elements on the development of motoric qualities in students of exercise therapy group

    Directory of Open Access Journals (Sweden)

    V.E. Kudelko

    2013-02-01

    Full Text Available The influence of sports on the development of motor qualities of students is researched. The study involved two groups of students by 12 people with various illnesses. They were asked to perform a set of exercises to develop their motoric qualities. The results of students' physical qualities testing before and after the teaching experiment are illustrated. The considerable improvement of the testing results after applying the set of exercises with elements of sports games for the motoric qualities development was marked. The results of the experiment confirmed that the level of students' physical fitness was increased and the development of the basic physical qualities: speed, dexterity and speed-force qualities was accelerated to the extent possible. To improve the working capacity of students who have limited physical activity it is necessary to use special means of physical education.

  19. Perspectives on a Learning-Model for Innovating Game-Based Movement in Sports and Health

    DEFF Research Database (Denmark)

    Elbæk, Lars; Friis, Jørgen Jakob

    2017-01-01

    an active lifestyle. Such digitally supported movement promote health and underlines a need for students to understand that movement design incorporates many aspects: technology, gamification, motivation and understanding of health. To support this, a movement innovation program was needed at our sports...... science and health education. We therefore ask: Which learning approach and educational factors does a learning model need to provide, in order to establish the best foundation for learning innovation and the design of game-based movement solutions within sport and health education? This paper suggests...... a model that covers three approaches; design ‘for’, ‘with’ and ‘of’ movement. From an innovation perspective, it is essential to sense needs and identify future opportunities. This includes understanding technologies and the lives of potential users. Being able to transform core knowledge and insights...

  20. Can a single session of motor imagery promote motor learning of locomotion in older adults? A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Nicholson VP

    2018-04-01

    Full Text Available Vaughan P Nicholson,1 Justin WL Keogh,2–4 Nancy L Low Choy1 1School of Physiotherapy, Australian Catholic University, Brisbane, QLD, Australia; 2Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia; 3Human Potential Centre, AUT University, Auckland, New Zealand; 4Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia Purpose: To investigate the influence of a single session of locomotor-based motor imagery training on motor learning and physical performance. Patients and methods: Thirty independent adults aged >65 years took part in the randomized controlled trial. The study was conducted within an exercise science laboratory. Participants were randomly divided into three groups following baseline locomotor testing: motor imagery training, physical training, and control groups. The motor imagery training group completed 20 imagined repetitions of a locomotor task, the physical training group completed 20 physical repetitions of a locomotor task, and the control group spent 25 minutes playing mentally stimulating games on an iPad. Imagined and physical performance times were measured for each training repetition. Gait speed (preferred and fast, timed-up-and-go, gait variability and the time to complete an obstacle course were completed before and after the single training session. Results: Motor learning occurred in both the motor imagery training and physical training groups. Motor imagery training led to refinements in motor planning resulting in imagined movements better matching the physically performed movement at the end of training. Motor imagery and physical training also promoted improvements in some locomotion outcomes as demonstrated by medium to large effect size improvements after training for fast gait speed and timed-up-and-go. There were no training effects on gait variability. Conclusion: A single session

  1. Motor learning in childhood reveals distinct mechanisms for memory retention and re-learning

    OpenAIRE

    Musselman, Kristin E.; Roemmich, Ryan T.; Garrett, Ben; Bastian, Amy J.

    2016-01-01

    Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted walking pattern in children aged 6–17 yr. We found that all children, regardless of age, showed adult-like patterns of retention of the adapted walking ...

  2. What surgeons can learn from athletes: mental practice in sports and surgery.

    Science.gov (United States)

    Cocks, Margaret; Moulton, Carol-Anne; Luu, Shelly; Cil, Tulin

    2014-01-01

    Mental practice has been successfully applied in professional sports for skills acquisition and performance enhancement. The goals of this review are to describe the literature on mental practice within sport psychology and surgery and to explore how the specific principles of mental practice can be applied to the improvement of surgical performance-both in novice and expert surgeons. The authors reviewed the sports psychology, education, and surgery literatures through Medline, PubMed, PsycINFO, and Embase. In sports, mental practice is a valuable tool for optimizing existing motor skill sets once core competencies have been mastered. These techniques have been shown to be more advantageous when used by elite athletes. Within surgery, mental practice studies have focused on skill acquisition among novices with little study of how expert surgeons use it to optimize surgical preparation. We propose that performance optimization and skills acquisition should be viewed as 2 separate domains of mental practice. Further understanding of this phenomenon has implications for changing how we teach and train not only novice surgeons but also how experienced surgeons continue to maintain their skills, acquire new ones, and excel in surgery. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  3. Multidisciplinary Views on Applying Explicit and Implicit Motor Learning in Practice : an International Survey

    NARCIS (Netherlands)

    Sascha Rasquin; Michel Bleijlevens; Jos Halfens; Mark Wilson; Rich Masters; Anna Beurskens; Melanie Kleynen; Monique Lexis; Susy Braun

    2015-01-01

    Background A variety of options and techniques for causing implicit and explicit motor learning have been described in the literature. The aim of the current paper was to provide clearer guidance for practitioners on how to apply motor learning in practice by exploring experts’ opinions and

  4. Motor Sequence Learning Performance in Parkinson's Disease Patients Depends on the Stage of Disease

    Science.gov (United States)

    Stephan, Marianne A.; Meier, Beat; Zaugg, Sabine Weber; Kaelin-Lang, Alain

    2011-01-01

    It is still unclear, whether patients with Parkinson's disease (PD) are impaired in the incidental learning of different motor sequences in short succession, although such a deficit might greatly impact their daily life. The aim of this study was thus to clarify the relation between disease parameters of PD and incidental motor learning of two…

  5. Reliability of the Motor Learning Strategy Rating Instrument for Children and Youth with Acquired Brain Injury

    Science.gov (United States)

    Kamath, Trishna; Pfeifer, Megan; Banerjee-Guenette, Priyanka; Hunter, Theresa; Ito, Julia; Salbach, Nancy M.; Wright, Virginia; Levac, Danielle

    2012-01-01

    Purpose: To evaluate reliability and feasibility of the Motor Learning Strategy Rating Instrument (MLSRI) in children with acquired brain injury (ABI). The MLSRI quantifies the extent to which motor learning strategies (MLS) are used within physiotherapy (PT) interventions. Methods: PT sessions conducted by ABI team physiotherapists with a…

  6. Learning to teach motor games with others: Of being able to play at intervening as a teacher of Physical Education

    Directory of Open Access Journals (Sweden)

    Ivana Verónica Rivero

    2010-11-01

    Full Text Available During their training, students of Physical Education construct theoretical and practical knowledge about already known corporal practices. They learn about already known concepts. They re-define practical knowledge in a higher level of complexity and abstraction, assigning them educational value that will be the basis of their professional intervention. When they are taught to propose 'games which are not games proper' [activities or sports that the teacher presents as games, though not everybody can play them, the student of Physical Education has theoretical elements that support the use of the game as a pedagogic resource [both as content of other axes or as methodological strategy for the teaching of sports or motor skills]. Nevertheless, when teachers teach them to suggest popular games to amuse themselves, they find it difficult to plan and to justify their future intervention. The final results of a qualitative research, presented as a thesis for a master's degree, show that in Physical Education various forms of motor games are taught but only one way to play them: the not ludic one. One teaches to subordinate the way of playing to the form of the games proposed by the teacher. One teaches to move within the frame of the rules of the game, and to put the body at the service of the game

  7. Interference in ballistic motor learning: specificity and role of sensory error signals

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C

    2011-01-01

    not antagonist) peripheral nerve caused interference. The present study is, to our knowledge, the first to demonstrate that peripheral nerve stimulation may cause interference. The finding underscores the importance of sensory feedback as error signals in motor learning. We conclude that interference requires......Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity...... in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non-learning...

  8. Physical-guidance benefits in learning a complex motor skill.

    Science.gov (United States)

    Wulf, G; Shea, C H; Whitacre, C A

    1998-12-01

    The effects of physical guidance on learning to perform slalom-type movements on a ski-simulator were examined in 22 participants (18 in Experiment 1, 4 in Experiment 2). In Experiment 1, 1 group of participants practiced the task with ski-poles whereas another group practiced without poles. Retention tests without poles were performed at the end of each of the 2 practice days and 1 day later. Although the use of poles produced more effective performance in terms of movement amplitude during practice, both conditions led to similar amplitudes in immediate and delayed retention. With regard to the efficiency of the movement pattern, the pole group demonstrated a more efficient coordination pattern than the no-pole group did, not only during practice but also in immediate (Day 2) and delayed retention. In Experiment 2, how the poles functioned to enhance the learning of a more efficient movement pattern was examined more closely. The results suggest that physical guidance can have beneficial effects not only on performance during practice but also-under certain conditions-on the learning of motor skills.

  9. The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning.

    Science.gov (United States)

    Popa, Laurentiu S; Streng, Martha L; Hewitt, Angela L; Ebner, Timothy J

    2016-04-01

    The cerebellum is essential for error-driven motor learning and is strongly implicated in detecting and correcting for motor errors. Therefore, elucidating how motor errors are represented in the cerebellum is essential in understanding cerebellar function, in general, and its role in motor learning, in particular. This review examines how motor errors are encoded in the cerebellar cortex in the context of a forward internal model that generates predictions about the upcoming movement and drives learning and adaptation. In this framework, sensory prediction errors, defined as the discrepancy between the predicted consequences of motor commands and the sensory feedback, are crucial for both on-line movement control and motor learning. While many studies support the dominant view that motor errors are encoded in the complex spike discharge of Purkinje cells, others have failed to relate complex spike activity with errors. Given these limitations, we review recent findings in the monkey showing that complex spike modulation is not necessarily required for motor learning or for simple spike adaptation. Also, new results demonstrate that the simple spike discharge provides continuous error signals that both lead and lag the actual movements in time, suggesting errors are encoded as both an internal prediction of motor commands and the actual sensory feedback. These dual error representations have opposing effects on simple spike discharge, consistent with the signals needed to generate sensory prediction errors used to update a forward internal model.

  10. The application of motor learning strategies within functionally based interventions for children with neuromotor conditions.

    Science.gov (United States)

    Levac, Danielle; Wishart, Laurie; Missiuna, Cheryl; Wright, Virginia

    2009-01-01

    To identify and describe the application of 3 motor learning strategies (verbal instructions, practice, and verbal feedback) within 4 intervention approaches (cognitive orientation to daily occupational performance, neuromotor task training, family-centered functional therapy, and activity-focused motor interventions). A scoping review of the literature was conducted. Two themes characterizing the application of motor learning strategies within the approaches are identified and described. Application of a motor learning strategy can be a defining component of the intervention or a means of enhancing generalization and transfer of learning beyond the intervention. Often, insufficient information limits full understanding of strategy application within the approach. A greater understanding of the application, and perceived nonapplication, of motor learning strategies within intervention approaches has important clinical and research implications.

  11. An investigation of motor learning during side-step cutting, design of a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Lemmink Koen APM

    2010-10-01

    Full Text Available Abstract Background Of all athletic knee injuries an anterior cruciate ligament (ACL rupture results in the longest time loss from sport. Regardless of the therapy chosen, conservative or reconstructive, athletes are often forced to reduce their level of physical activity and their involvement in sport. Moreover, a recent review reported prevalences of osteoarthritis ranging from 0% to 13% for patients with isolated ACL-deficient (ACL-D knees and respectively 21% to 48% in patients with combined injuries. The need for ACL injury prevention is clear. The identification of risk factors and the development of prevention strategies may therefore have widespread health and economic implications. The focus of this investigation is to assess the role of implicit and explicit motor learning in optimising the performance of a side-step-cutting task. Methods/design A randomized controlled laboratory study will be conducted. Healthy basketball players, females and males, 18 years and older, with no previous lower extremity injuries, playing at the highest recreational level will be included. Subjects will receive a dynamic feedback intervention. Kinematic and kinetic data of the hip, knee and ankle and EMG activity of the quadriceps, hamstrings and gastrocnemius will be recorded. Discussion Female athletes have a significantly higher risk of sustaining an ACL injury than male athletes. Poor biomechanical and neuromuscular control of the lower limb is suggested to be a primary risk factor of an ACL injury mechanism in females. This randomized controlled trial has been designed to investigate whether individual feedback on task performance appears to be an effective intervention method. Results and principles found in this study will be applied to future ACL injury prevention programs, which should maybe more focus on individual injury predisposition. Trial registration Trial registration number NTR2250.

  12. An investigation of motor learning during side-step cutting: design of a randomised controlled trial.

    Science.gov (United States)

    Benjaminse, Anne; Lemmink, Koen A P M; Diercks, Ron L; Otten, Bert

    2010-10-13

    Of all athletic knee injuries an anterior cruciate ligament (ACL) rupture results in the longest time loss from sport. Regardless of the therapy chosen, conservative or reconstructive, athletes are often forced to reduce their level of physical activity and their involvement in sport. Moreover, a recent review reported prevalences of osteoarthritis ranging from 0% to 13% for patients with isolated ACL-deficient (ACL-D) knees and respectively 21% to 48% in patients with combined injuries. The need for ACL injury prevention is clear. The identification of risk factors and the development of prevention strategies may therefore have widespread health and economic implications. The focus of this investigation is to assess the role of implicit and explicit motor learning in optimising the performance of a side-step-cutting task. A randomized controlled laboratory study will be conducted. Healthy basketball players, females and males, 18 years and older, with no previous lower extremity injuries, playing at the highest recreational level will be included. Subjects will receive a dynamic feedback intervention. Kinematic and kinetic data of the hip, knee and ankle and EMG activity of the quadriceps, hamstrings and gastrocnemius will be recorded. Female athletes have a significantly higher risk of sustaining an ACL injury than male athletes. Poor biomechanical and neuromuscular control of the lower limb is suggested to be a primary risk factor of an ACL injury mechanism in females. This randomized controlled trial has been designed to investigate whether individual feedback on task performance appears to be an effective intervention method. Results and principles found in this study will be applied to future ACL injury prevention programs, which should maybe more focus on individual injury predisposition. Trial registration number NTR2250.

  13. In sport and now in medical school: examining students’ well-being and motivations for learning

    Science.gov (United States)

    Mosewich, Amber

    2017-01-01

    Objectives To investigate relationships between students’ past level of involvement in physical activity/sport and their motivations for learning (achievement goals) and well-being in medical school. In doing so, we provide evidence to medical programs to inform admission processes and curriculum planning. Methods A cross-sectional study was conducted. Out of 640 medical students, 267 completed an online questionnaire with measures of: achievement goals, academic burnout, physical activity/sport involvement, and demographics. Data were analyzed using descriptive and inferential statistics (frequency, mean, standard deviation, chi-square test, Cronbach alpha, Spearman correlation). Results Students who had pursued physical activity/sport at higher levels of involvement had lower academic burnout scores and endorsed maladaptive achievement goals to a less degree. Specifically, the level of students’ involvement in physical activity/sport was negatively correlated with academic burnout (r=-0.15, p=0.014) and with achievement goals of performance approach (r=-0.15, p=0.014), performance avoidance (r=-0.21, p=0.001), and mastery avoidance (r=-0.24, pactivities such as sport appears to be associated with the desired quality of motivation and well-being of medical students. A school culture that fosters resilience of newly admitted students through extracurricular activities and raises students’ awareness of maladaptive and adaptive achievement goals is likely to be beneficial in addressing academic burnout and improving the mental health of medical students.   PMID:28968223

  14. Teaching and Learning Sport Education: A Self-Study Exploring the Experiences of a Teacher Educator and Pre-Service Teachers

    Science.gov (United States)

    Hordvik, Mats M.; MacPhail, Ann; Ronglan, Lars T.

    2017-01-01

    Purpose: In this study, we articulate and share our knowledge and understanding of teaching and learning Sport Education in physical education teacher education (PETE): (a) How did the PETE faculty member experience teaching about teaching Sport Education? and (b) How did the PSTs experience learning about teaching Sport Education? Method: One…

  15. THE EFFECT OF A LEISURE TIME SPORT ACTIVITY IN DEVELOPING MOTOR SKILLS OF YOUNG PEOPLE

    Directory of Open Access Journals (Sweden)

    Rodica PRODAN

    2016-05-01

    Full Text Available The research aimed to see how the family members’ involvement in the practice of leisure movement games (tennis raises the children’s movement wish and psychomotor skills: coordination, balance, rhythm, precision of movement. In conducting this research were used the survey method, the observation method, the measurement-evaluation method and the statistical-mathematical method. Data was collected during 10 months from 76 children, aged from 10 to 13 years (±3 months and enrolled in a leisure movement game program. Descriptive statistics indicate a significant effect of the variables: medicine ball throwing, speed running, endurance running and throwing target with the tennis ball. One can see a positive effect due to the Evaluation – Intervention interaction: medicine ball throwing η²=0.12, speed running η² = 0.13, endurance running η²=0.16, throwing target with the tennis ball η²=0.21. Educational leisure time sport movement games raise the level of driving skill development and psychomotor qualities, based on a greater involvement in the correct performance of sport activities.

  16. Sport: A Leap into Learning? A Study of Participation in Sport and Fitness Activities in Great Britain.

    Science.gov (United States)

    Aldridge, Fiona

    Participation in sport or fitness activities in Great Britain was examined through a survey of more than 6,000 adults throughout Great Britain. As of April 2001, 35% of adults surveyed were currently participating in sport or fitness activities. Those most likely to participate in sport or fitness activities were male, young, in high social…

  17. Rowing Sport in Learning Fractions of the Fourth Grade Students

    Directory of Open Access Journals (Sweden)

    Marhamah Fajriyah Nasution

    2017-06-01

    Full Text Available This study aimed to produce learning trajectory with rowing context that can help students understand addition and subtraction of fractions. Subject of the research were students IV MIN 2 Palembang. The method used was research design with three stages, those are preparing for the experiment, the design experiments, and the retrospective analysis. Learning trajectory was designed from in-formal stage to the formal stage. At the informal stage, Rowing was used as a starting point to explore the students’ knowledge of fractions. Data collection conducted through video recordings and photos to see the learning process in the classroom, written tests, observation and interviews during the learning process with the students which is the subject of research. Research produced learning trajectory consisting of a series of learning addition and subtraction of fractions dealing with the rowing. The results showed that the use of the rowing can be a bridge of students' thinking and help students in understanding the operation of addition and subtraction of fractions.

  18. Influence of visual observational conditions on tongue motor learning

    DEFF Research Database (Denmark)

    Kothari, Mohit; Liu, Xuimei; Baad-Hansen, Lene

    2016-01-01

    To investigate the impact of visual observational conditions on performance during a standardized tongue-protrusion training (TPT) task and to evaluate subject-based reports of helpfulness, disturbance, pain, and fatigue due to the observational conditions on 0-10 numerical rating scales. Forty...... feedback of their own TPT performance, Group 3: control group performed the TPT without any conditioning. There was no overall difference between groups but TPT performance increased over time. A significant group x time interaction indicated that the self-observation group performed significantly better...... regarding the level of disturbance, pain or fatigue. Self-observation of tongue-training facilitated behavioral aspects of tongue motor learning compared with model-observation but not compared with control....

  19. “INFLUENCE OF BASIC MOTOR ABILITIES AND CONOTIVE CRITERION ON RESULTS OF SUCCESS IN SOME SPORTS GAMES FOR STUDENTS OF TEACHING SCHOOL”

    Directory of Open Access Journals (Sweden)

    Midhat Mekić

    2008-08-01

    Full Text Available Upon the results of research it is possible to conclude that high level of influence of basic motor abilities and conotive criterion for successive results of sports games. Dominative predictions of values had conatice characteristic (A1,L17 and one test for judgment of explosiveness of lower extremities. For above mentioned results of this research, first of all, main values of defining hypothesis for further research, as well as promotion of education-teaching process of sports games in high schools.

  20. Sleep benefits consolidation of visuo-motor adaptation learning in older adults.

    Science.gov (United States)

    Mantua, Janna; Baran, Bengi; Spencer, Rebecca M C

    2016-02-01

    Sleep is beneficial for performance across a range of memory tasks in young adults, but whether memories are similarly consolidated in older adults is less clear. Performance benefits have been observed following sleep in older adults for declarative learning tasks, but this benefit may be reduced for non-declarative, motor skill learning tasks. To date, studies of sleep-dependent consolidation of motor learning in older adults are limited to motor sequence tasks. To examine whether reduced sleep-dependent consolidation in older adults is generalizable to other forms of motor skill learning, we examined performance changes over intervals of sleep and wake in young (n = 62) and older adults (n = 61) using a mirror-tracing task, which assesses visuo-motor adaptation learning. Participants learned the task either in the morning or in evening, and performance was assessed following a 12-h interval containing overnight sleep or daytime wake. Contrary to our prediction, both young adults and older adults exhibited sleep-dependent gains in visuo-motor adaptation. There was a correlation between performance improvement over sleep and percent of the night in non-REM stage 2 sleep. These results indicate that motor skill consolidation remains intact with increasing age although this relationship may be limited to specific forms of motor skill learning.

  1. Exploration of joint redundancy but not task space variability facilitates supervised motor learning.

    Science.gov (United States)

    Singh, Puneet; Jana, Sumitash; Ghosal, Ashitava; Murthy, Aditya

    2016-12-13

    The number of joints and muscles in a human arm is more than what is required for reaching to a desired point in 3D space. Although previous studies have emphasized how such redundancy and the associated flexibility may play an important role in path planning, control of noise, and optimization of motion, whether and how redundancy might promote motor learning has not been investigated. In this work, we quantify redundancy space and investigate its significance and effect on motor learning. We propose that a larger redundancy space leads to faster learning across subjects. We observed this pattern in subjects learning novel kinematics (visuomotor adaptation) and dynamics (force-field adaptation). Interestingly, we also observed differences in the redundancy space between the dominant hand and nondominant hand that explained differences in the learning of dynamics. Taken together, these results provide support for the hypothesis that redundancy aids in motor learning and that the redundant component of motor variability is not noise.

  2. Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise.

    Science.gov (United States)

    Therrien, Amanda S; Wolpert, Daniel M; Bastian, Amy J

    2016-01-01

    Reinforcement and error-based processes are essential for motor learning, with the cerebellum thought to be required only for the error-based mechanism. Here we examined learning and retention of a reaching skill under both processes. Control subjects learned similarly from reinforcement and error-based feedback, but showed much better retention under reinforcement. To apply reinforcement to cerebellar patients, we developed a closed-loop reinforcement schedule in which task difficulty was controlled based on recent performance. This schedule produced substantial learning in cerebellar patients and controls. Cerebellar patients varied in their learning under reinforcement but fully retained what was learned. In contrast, they showed complete lack of retention in error-based learning. We developed a mechanistic model of the reinforcement task and found that learning depended on a balance between exploration variability and motor noise. While the cerebellar and control groups had similar exploration variability, the patients had greater motor noise and hence learned less. Our results suggest that cerebellar damage indirectly impairs reinforcement learning by increasing motor noise, but does not interfere with the reinforcement mechanism itself. Therefore, reinforcement can be used to learn and retain novel skills, but optimal reinforcement learning requires a balance between exploration variability and motor noise. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  3. In sport and now in medical school: examining students’ well-being and motivations for learning

    OpenAIRE

    Babenko, Oksana; Mosewich, Amber

    2017-01-01

    Objectives To investigate relationships between students’ past level of involvement in physical activity/sport and their motivations for learning (achievement goals) and well-being in medical school. In doing so, we provide evidence to medical programs to inform admission processes and curriculum planning. Methods A cross-sectional study was conducted. Out of 640 medical students, 267 completed an online questionnaire with measures of: achievement goals, academic burnout, physical activity/sp...

  4. Self-organizing spiking neural model for learning fault-tolerant spatio-motor transformations.

    Science.gov (United States)

    Srinivasa, Narayan; Cho, Youngkwan

    2012-10-01

    In this paper, we present a spiking neural model that learns spatio-motor transformations. The model is in the form of a multilayered architecture consisting of integrate and fire neurons and synapses that employ spike-timing-dependent plasticity learning rule to enable the learning of such transformations. We developed a simple 2-degree-of-freedom robot-based reaching task which involves the learning of a nonlinear function. Computer simulations demonstrate the capability of such a model for learning the forward and inverse kinematics for such a task and hence to learn spatio-motor transformations. The interesting aspect of the model is its capacity to be tolerant to partial absence of sensory or motor inputs at various stages of learning. We believe that such a model lays the foundation for learning other complex functions and transformations in real-world scenarios.

  5. Physical Education Cultures in Sweden: Fitness, Sports, Dancing … Learning?

    Science.gov (United States)

    Larsson, Håkan; Karlefors, Inger

    2015-01-01

    In a significant article from 1993, Crum describes the purpose of physical education (PE) as a "planned introduction into movement culture". In broad terms, this purpose is tantamount to the stated purpose of Swedish PE in national steering documents. Crum contends, however, that physical educators do not prioritise learning, which is…

  6. Reversal of long-term potentiation-like plasticity processes after motor learning disrupts skill retention.

    Science.gov (United States)

    Cantarero, Gabriela; Lloyd, Ashley; Celnik, Pablo

    2013-07-31

    Plasticity of synaptic connections in the primary motor cortex (M1) is thought to play an essential role in learning and memory. Human and animal studies have shown that motor learning results in long-term potentiation (LTP)-like plasticity processes, namely potentiation of M1 and a temporary occlusion of additional LTP-like plasticity. Moreover, biochemical processes essential for LTP are also crucial for certain types of motor learning and memory. Thus, it has been speculated that the occlusion of LTP-like plasticity after learning, indicative of how much LTP was used to learn, is essential for retention. Here we provide supporting evidence of it in humans. Induction of LTP-like plasticity can be abolished using a depotentiation protocol (DePo) consisting of brief continuous theta burst stimulation. We used transcranial magnetic stimulation to assess whether application of DePo over M1 after motor learning affected (1) occlusion of LTP-like plasticity and (2) retention of motor skill learning. We found that the magnitude of motor memory retention is proportional to the magnitude of occlusion of LTP-like plasticity. Moreover, DePo stimulation over M1, but not over a control site, reversed the occlusion of LTP-like plasticity induced by motor learning and disrupted skill retention relative to control subjects. Altogether, these results provide evidence of a link between occlusion of LTP-like plasticity and retention and that this measure could be used as a biomarker to predict retention. Importantly, attempts to reverse the occlusion of LTP-like plasticity after motor learning comes with the cost of reducing retention of motor learning.

  7. A Combination of Machine Learning and Cerebellar-like Neural Networks for the Motor Control and Motor Learning of the Fable Modular Robot

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Pacheco, Moises

    2017-01-01

    We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, in the form of a Unit Learning Machine. The LWPR algorithm optimizes...... the input space and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar-like microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar-like circuits including analytical...

  8. The use of multimedia tools for improving movement notion and increasing the efficiency of motor learning in skiing

    Directory of Open Access Journals (Sweden)

    Ruzicka Ivan

    2016-01-01

    Full Text Available The aim of this paper is focused on the problem of improving movement notion and increasing the efficiency of motor learning in skiing using multimedia tools. The text approaches the system providing a targeted feedback in the process of the acquisition of skiing skills. The platform influencing the movement notion introduces innovative means of the acquisition of essential skiing skills in ski courses organized by the Department of PE and Sport of the Faculty of Education, University of Hradec Králové. The paper presents the selected results of the survey realized by an enquiring method, which was aimed to find out opinions on a monitored platform among students specializing in physical education and sport, who took part in this form of education. The research results indicate that the use of multimedia tools in providing visual feedback can effectively influence the process and the final effect of the acquisition of skiing skills. Positive opinions of the overwhelming majority of respondents illustrate that the use of video analysis in combination with verbal mistake correction is an effective support in skiing practice and it is an efficient platform that accelerates results in learning skiing technique, especially in the context of educational courses. Conclusions also point to some of the negative aspects related to the use of multimedia tools within the platform.

  9. The many facets of motor learning and their relevance for Parkinson's disease.

    Science.gov (United States)

    Marinelli, Lucio; Quartarone, Angelo; Hallett, Mark; Frazzitta, Giuseppe; Ghilardi, Maria Felice

    2017-07-01

    The final goal of motor learning, a complex process that includes both implicit and explicit (or declarative) components, is the optimization and automatization of motor skills. Motor learning involves different neural networks and neurotransmitters systems depending on the type of task and on the stage of learning. After the first phase of acquisition, a motor skill goes through consolidation (i.e., becoming resistant to interference) and retention, processes in which sleep and long-term potentiation seem to play important roles. The studies of motor learning in Parkinson's disease have yielded controversial results that likely stem from the use of different experimental paradigms. When a task's characteristics, instructions, context, learning phase and type of measures are taken into consideration, it is apparent that, in general, only learning that relies on attentional resources and cognitive strategies is affected by PD, in agreement with the finding of a fronto-striatal deficit in this disease. Levodopa administration does not seem to reverse the learning deficits in PD, while deep brain stimulation of either globus pallidus or subthalamic nucleus appears to be beneficial. Finally and most importantly, patients with PD often show a decrease in retention of newly learned skill, a problem that is present even in the early stages of the disease. A thorough dissection and understanding of the processes involved in motor learning is warranted to provide solid bases for effective medical, surgical and rehabilitative approaches in PD. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.

  10. Relationship between motor and cognitive learning abilities among ...

    African Journals Online (AJOL)

    Osama Abdelkarim

    2017-01-11

    Jan 11, 2017 ... c Research Unit (EM2S), High Institute of Sport and Physical Education, Sfax University, Tunisia d Institute of Sports Science, .... tors, participants, and their parents or guardians before the chil- dren entered into the ..... nent that played a key role in cognitive psychology research on information processing- ...

  11. Coordinate Representations for Interference Reduction in Motor Learning.

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Yeo

    Full Text Available When opposing force fields are presented alternately or randomly across trials for identical reaching movements, subjects learn neither force field, a behavior termed 'interference'. Studies have shown that a small difference in the endpoint posture of the limb reduces this interference. However, any difference in the limb's endpoint location typically changes the hand position, joint angles and the hand orientation making it ambiguous as to which of these changes underlies the ability to learn dynamics that normally interfere. Here we examine the extent to which each of these three possible coordinate systems--Cartesian hand position, shoulder and elbow joint angles, or hand orientation--underlies the reduction in interference. Subjects performed goal-directed reaching movements in five different limb configurations designed so that different pairs of these configurations involved a change in only one coordinate system. By specifically assigning clockwise and counter-clockwise force fields to the configurations we could create three different conditions in which the direction of the force field could only be uniquely distinguished in one of the three coordinate systems. We examined the ability to learn the two fields based on each of the coordinate systems. The largest reduction of interference was observed when the field direction was linked to the hand orientation with smaller reductions in the other two conditions. This result demonstrates that the strongest reduction in interference occurred with changes in the hand orientation, suggesting that hand orientation may have a privileged role in reducing motor interference for changes in the endpoint posture of the limb.

  12. ACHIEVING PERCEPTUAL-MOTOR EFFICIENCY, A SPACE-ORIENTED APPROACH TO LEARNING. PERCEPTUAL MOTOR CURRICULUM, VOLUME I.

    Science.gov (United States)

    BARSCH, RAY H.

    THE FIRST OF A 3-VOLUME PERCEPTUAL MOTOR CURRICULUM, THE BOOK DESCRIBES A PROGRAM BASED ON A THEORY OF MOVEMENT WHICH THE AUTHOR LABELS MOVIGENICS (THE STUDY OF THE ORIGIN AND DEVELOPMENT OF PATTERNS OF MOVEMENT IN MAN AND THE RELATIONSHIP OF THESE MOVEMENTS TO HIS LEARNING EFFICIENCY). TEN BASIC CONSTRUCTS OF MOVIGENICS ARE OUTLINED, AND THE…

  13. In sport and now in medical school: examining students' well-being and motivations for learning.

    Science.gov (United States)

    Babenko, Oksana; Mosewich, Amber

    2017-09-22

    To investigate relationships between students' past level of involvement in physical activity/sport and their motivations for learning (achievement goals) and well-being in medical school. In doing so, we provide evidence to medical programs to inform admission processes and curriculum planning. A cross-sectional study was conducted. Out of 640 medical students, 267 completed an online questionnaire with measures of: achievement goals, academic burnout, physical activity/sport involvement, and demographics. Data were analyzed using descriptive and inferential statistics (frequency, mean, standard deviation, chi-square test, Cronbach alpha, Spearman correlation). Students who had pursued physical activity/sport at higher levels of involvement had lower academic burnout scores and endorsed maladaptive achievement goals to a less degree. Specifically, the level of students' involvement in physical activity/sport was negatively correlated with academic burnout (r=-0.15, p=0.014) and with achievement goals of performance approach (r=-0.15, p=0.014), performance avoidance (r=-0.21, p=0.001), and mastery avoidance (r=-0.24, pmotivation and well-being of medical students. A school culture that fosters resilience of newly admitted students through extracurricular activities and raises students' awareness of maladaptive and adaptive achievement goals is likely to be beneficial in addressing academic burnout and improving the mental health of medical students.

  14. Relationship between motor and cognitive learning abilities among ...

    African Journals Online (AJOL)

    Background: The relationship between motor and cognitive development has already been proven in young children. However, in relation to the academic achievement the association between motor and cognitive performance still not well established. Therefore, the aim of this study was to examine the levels of motor and ...

  15. Quantitative motor unit action potential analysis of supraspinatus, infraspinatus, deltoideus and biceps femoris muscles in adult Royal Dutch sport horses.

    Science.gov (United States)

    Jose-Cunilleras, E; Wijnberg, I D

    2016-03-01

    Reference values for quantitative electromyography (QEMG) in shoulder and hindlimb muscles of horses are limited. To determine normative data on QEMG analysis of supraspinatus (SS), infraspinatus (IS), deltoideus (DT) and biceps femoris (BF) muscles. Experimental observational study and retrospective case series. Seven adult healthy Royal Dutch sport horses underwent quantitative motor unit action potential analysis of each muscle using commercial electromyography equipment. Measurements were made according to published methods. One-way ANOVA was used to compare quantitative motor unit action potential variables between muscles, with post hoc testing according to Bonferroni, with significance set at Paction potential were 8.7-10.4 ms, 651-867 μV, 3.2-3.7, 3.7-4.7, 1054-1457 μV·ms and 1.1-1.5 for SS, 9.6-11.0 ms, 779-1082 μV, 3.3-3.7, 3.8-4.7, 1349-2204 μV·ms and 1.4-1.9 for IS, 6.0-9.1 ms, 370-691 μV, 2.9-3.7, 2.8-4.5, 380-1374 μV·ms and 0.3-1.3 for DT and 5.7-7.8 ms, 265-385 μV, 2.7-3.2, 2.6-3.1, 296-484 μV·ms and 0.2-0.5 for BF, respectively. Mean duration, amplitude, number of phases and turns, area and size index were significantly (P15% polyphasic motor unit action potentials in SS and IS muscles. Differences between muscles should be taken into account when performing QEMG in order to be able to distinguish normal horses from horses with suspected neurogenic or myogenic disorders. These normal data provide the basis for objective QEMG assessment of shoulder and hindlimb muscles. Quantitative electromyography appears to be helpful in diagnosing neuropathies and discriminating these from myopathies. © 2015 EVJ Ltd.

  16. Age-related declines in visuospatial working memory correlate with deficits in explicit motor sequence learning.

    Science.gov (United States)

    Bo, J; Borza, V; Seidler, R D

    2009-11-01

    Numerous studies have shown that older adults exhibit deficits in motor sequence learning, but the mechanisms underlying this effect remain unclear. Our recent work has shown that visuospatial working-memory capacity predicts the rate of motor sequence learning and the length of motor chunks formed during explicit sequence learning in young adults. In the current study, we evaluate whether age-related deficits in working memory explain the reduced rate of motor sequence learning in older adults. We found that older adults exhibited a correlation between visuospatial working-memory capacity and motor sequence chunk length, as we observed previously in young adults. In addition, older adults exhibited an overall reduction in both working-memory capacity and motor chunk length compared with that of young adults. However, individual variations in visuospatial working-memory capacity did not correlate with the rate of learning in older adults. These results indicate that working memory declines with age at least partially explain age-related differences in explicit motor sequence learning.

  17. An analysis of using levels of learning strategies according to some variables in learning piano repertoire: example of fine arts and sports schools

    OpenAIRE

    Mehtap Aydıner Uygun; Özlem Kılınçer

    2012-01-01

    The purpose of this study is to examine the learning strategies, which fine arts and sports schools music department students’ use, in terms of some variables while learning piano repertoire. These variables are the opinions related with sex, the fine arts and sports school in which the training is done, the class, the weekly time period allocated for the study of piano course, type of planning the working time, the place where the piano studies are done, the situation of getting assist...

  18. NON-MUSCULOSKELETAL SPORTS MEDICINE LEARNING IN FAMILY MEDICINE RESIDENCY PROGRAMS

    Directory of Open Access Journals (Sweden)

    Pasqualino Caputo

    2008-06-01

    Full Text Available Despite the increasing popularity of primary care sports medicine fellowships, as evidenced by the more than two-fold increase in family medicine sports medicine fellowships from a total of 31 accredited programs during the 1998/1999 academic year (ACGME, 1998 to 63 during the 2003/2004 academic year (ACGME, 2006, there are few empirical studies to support the efficacy of such programs. To the best of our knowledge, no studies have been conducted to assess the impact of primary care sports medicine fellowships on family medicine residents' learning of non-musculoskeletal sports medicine topics. Rigorous evaluations of the outcomes of such programs are helpful to document the value of such programs to both the lay public and interested medical residents. In order to evaluate such programs, it is helpful to apply the same objective standards to residents trained across multiple programs. Hence, we would like to know if there is a learning effect with respect to non-musculoskeletal sports medicine topics identified on yearly administered American Board of Family Medicine (ABFM in-training exams (ITE to family medicine residents in family medicine residency programs in the United States with and without primary care sports medicine fellowship programs. Review and approval for the research proposal was granted by the ABFM, who also allowed access to the required data. Permission to study and report only non-musculoskeletal sports medicine topics excluding musculoskeletal topics was granted at the time due to other ongoing projects at the ABFM involving musculoskeletal topics. ABFM allowed us access to examinations from 1998 to 2003. We were given copies of each exam and records of responses to each item (correct or incorrect by each examinee (examinees were anonymous for each year.For each year, each examinee was classified by the ABFM as either (a belonging to a program that contained a sports medicine fellowship, or (b not belonging to a program

  19. Does Sleep Facilitate the Consolidation of Allocentric or Egocentric Representations of Implicitly Learned Visual-Motor Sequence Learning?

    Science.gov (United States)

    Viczko, Jeremy; Sergeeva, Valya; Ray, Laura B.; Owen, Adrian M.; Fogel, Stuart M.

    2018-01-01

    Sleep facilitates the consolidation (i.e., enhancement) of simple, explicit (i.e., conscious) motor sequence learning (MSL). MSL can be dissociated into egocentric (i.e., motor) or allocentric (i.e., spatial) frames of reference. The consolidation of the allocentric memory representation is sleep-dependent, whereas the egocentric consolidation…

  20. The Importance of Failure: Feedback-Related Negativity Predicts Motor Learning Efficiency

    NARCIS (Netherlands)

    Helden, J. van der; Boksem, M.A.S.; Blom, J.H.G.

    2010-01-01

    Learning from past mistakes is of prominent importance for successful future behavior. In the present study, we tested whether reinforcement learning signals in the brain are predictive of adequate learning of a sequence of motor actions. We recorded event-related potentials (ERPs) while subjects

  1. Improvement of Dance Composition Skills During the Study Process in the Perspective of the Newest Motor Learning Models

    Directory of Open Access Journals (Sweden)

    Spalva Rita

    2016-12-01

    Full Text Available In today’s dynamic world, where technologies have changed the understanding of time and space, the discussion about the body as a communicative performer in the new information field becomes a topic of interest. Different body techniques have become prevalent (sports, fitness, dance, which contribute to the scientific interest in the movement determination, inheritance, ergonomics and other aspects of movement quality. This article analyses recent motor learning models (Fitts, Posner, Gentile, etc and substantiates the usefulness to introduce the three-stage learning model in any field related to motor skills. The article analyses the effectiveness of the proposed model in practice as part of the study course Dance Composition at the Riga Teacher Training and Educational Management Academy. The research results show that the ability to transfer acquired movement skills into new situations and to use them for performing independent creative tasks is a testimony to a high level of application, what is the goal of the introduction of the proposed model.

  2. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism.

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-11-24

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism.

  3. Progressive practice promotes motor learning and repeated transient increases in corticospinal excitability across multiple days

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Madsen, Mads Alexander Just; Bojsen-Møller, Emil

    2018-01-01

    Background: A session of motor skill learning is accompanied by transient increases in corticospinal excitability (CSE), which are thought to reflect acute changes in neuronal connectivity associated with improvements in sensorimotor performance. Factors influencing changes in excitability...... and motor skill with continued practice remain however to be elucidated. Objective/Hypothesis: Here we investigate the hypothesis that progressive motor practice during consecutive days can induce repeated transient increases in corticospinal excitability and promote motor skill learning. Methods: Changes...... in motor performance and CSE were assessed during 4 consecutive days of skill learning and 8 days after the last practice session. CSE was assessed as area under recruitment curves (RC) using transcranial magnetic stimulation (TMS). Two groups of participants (n = 12) practiced a visuomotor tracking...

  4. Neural substrates underlying motor skill learning in chronic hemiparetic stroke patients

    Directory of Open Access Journals (Sweden)

    Stephanie eLefebvre

    2015-06-01

    Full Text Available Motor skill learning is critical in post-stroke motor recovery, but little is known about its underlying neural substrates. Recently, using a new visuomotor skill learning paradigm involving a speed/accuracy trade-off in healthy individuals we identified three subpopulations based on their behavioral trajectories: fitters (in whom improvement in speed or accuracy coincided with deterioration in the other parameter, shifters (in whom speed and/or accuracy improved without degradation of the other parameter, and non-learners. We aimed to identify the neural substrates underlying the first stages of motor skill learning in chronic hemiparetic stroke patients and to determine whether specific neural substrates were recruited in shifters versus fitters. During functional magnetic resonance imaging (fMRI, 23 patients learned the visuomotor skill with their paretic upper limb. In the whole-group analysis, correlation between activation and motor skill learning was restricted to the dorsal prefrontal cortex of the damaged hemisphere (DLPFCdamh: r=-0.82 and the dorsal premotor cortex (PMddamh: r=0.70; the correlations was much lesser (-0.160.25 in the other regions of interest. In a subgroup analysis, significant activation was restricted to bilateral posterior parietal cortices of the fitters and did not correlate with motor skill learning. Conversely, in shifters significant activation occurred in the primary sensorimotor cortexdamh and supplementary motor areadamh and in bilateral PMd where activation changes correlated significantly with motor skill learning (r=0.91. Finally, resting-state activity acquired before learning showed a higher functional connectivity in the salience network of shifters compared with fitters (qFDR<0.05. These data suggest a neuroplastic compensatory reorganization of brain activity underlying the first stages of motor skill learning with the paretic upper limb in chronic hemiparetic stroke patients, with a key role of

  5. Long lasting structural changes in primary motor cortex after motor skill learning: a behavioural and stereological study

    Directory of Open Access Journals (Sweden)

    PAOLA MORALES

    2008-12-01

    Full Text Available Many motor skills, once acquired, are stored over a long time period, probably sustained by permanent neuronal changes. Thus, in this paper we have investigated with quantitative stereology the generation and persistence of neuronal density changes in primary motor cortex (MI following motor skill learning (skilled reaching task. Rats were trained a lateralised reaching task during an "early" (22-31 days oíd or "late" (362-371 days oíd postnatal period. The trained and corresponding control rats were sacrificed at day 372, immediately after the behavioural testing. The "early" trained group preserved the learned skilled reaching task when tested at day 372, without requiring any additional training. The "late" trained group showed a similar capacity to that of the "early" trained group for learning the skilled reaching task. All trained animáis ("early" and "late" trained groups showed a significant Ínter hemispheric decrease of neuronal density in the corresponding motor forelimb representation área of MI (cortical layers II-III

  6. Reduced asymmetry in motor skill learning in left-handed compared to right-handed individuals.

    Science.gov (United States)

    McGrath, Robert L; Kantak, Shailesh S

    2016-02-01

    Hemispheric specialization for motor control influences how individuals perform and adapt to goal-directed movements. In contrast to adaptation, motor skill learning involves a process wherein one learns to synthesize novel movement capabilities in absence of perturbation such that they are performed with greater accuracy, consistency and efficiency. Here, we investigated manual asymmetry in acquisition and retention of a complex motor skill that requires speed and accuracy for optimal performance in right-handed and left-handed individuals. We further determined if degree of handedness influences motor skill learning. Ten right-handed (RH) and 10 left-handed (LH) adults practiced two distinct motor skills with their dominant or nondominant arms during separate sessions two-four weeks apart. Learning was quantified by changes in the speed-accuracy tradeoff function measured at baseline and one-day retention. Manual asymmetry was evident in the RH group but not the LH group. RH group demonstrated significantly greater skill improvement for their dominant-right hand than their nondominant-left hand. In contrast, for the LH group, both dominant and nondominant hands demonstrated comparable learning. Less strongly-LH individuals (lower EHI scores) exhibited more learning of their dominant hand. These results suggest that while hemispheric specialization influences motor skill learning, these effects may be influenced by handedness. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. An Activist Approach to Sport Meets Youth From Socially Vulnerable Backgrounds: Possible Learning Aspirations.

    Science.gov (United States)

    Luguetti, Carla; Oliver, Kimberly L; Dantas, Luiz Eduardo Pinto Basto Tourinho; Kirk, David

    2017-03-01

    This study was a 2-phase activist research project aimed at co-creating a prototype pedagogical model for working with youth from socially vulnerable backgrounds in a sport context. This article addresses the learning aspirations (learning outcomes) that emerged when we created spaces for youth to develop strategies to manage the risks they face in their community. This study took place in a socially and economically disadvantaged neighborhood in a Brazilian city where we worked with a group of 17 boys aged 13 to 15 years old, 4 coaches, a pedagogic coordinator, and a social worker. During a 6-month period, we collected multiple sources of data including field journal entries/observations (38) and audio records of youth work sessions (18), coaches' work sessions (16), combined coaches and youth work sessions (3), and meetings between the lead and the 2nd author for debriefing and planning sessions (36). By using an activist approach, 4 learning aspirations emerged: becoming responsible/committed, learning from mistakes, valuing each other's knowledge, and communicating with others. Findings suggest there is a need for more sports programs that start from young people's concrete needs and life situations and look to create places for youth to see alternative possibilities and take action.

  8. NASPE Sets the Standard: 35 Years of National Leadership in Sport and Physical Education

    Science.gov (United States)

    Zieff, Susan G.; Lumpkin, Angela; Guedes, Claudia; Eguaoje, Terry

    2009-01-01

    With 17,000 members, NASPE is the largest of the five national associations of the American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD) and comprises six Academy Committees (Biomechanics; Curriculum and Instruction; Exercise Physiology; Motor Development and Learning; Sport and Exercise Psychology; and Sport History,…

  9. Motor learning in lucid dreams – quantitative and qualitative investigations

    OpenAIRE

    Schädlich, Melanie

    2018-01-01

    In sports practice a well-established method is mental practice which is, for example, applied in elite sports to intensify practice and to offer additional practice sessions when opportunities for physical practice are limited (Erlacher, 2007). It is also used on other areas, such as surgery and music. There is a special way of mentally rehearsing movements without physical activity: in our dreams (Stumbrys, 2014). In so called lucid dreams, the dreamer is consciously aware that he or she is...

  10. T & I--Electric Motors. Kit No. 621. Instructor's Manual and Student Learning Activity Guide.

    Science.gov (United States)

    Bomar, William

    This instructor's manual and student learning activity guide comprise a kit for trade and industrial education (T & I) activities on electric motors. Purpose stated for the activities is to teach the student the four basic types of electric motors, the advantages and disadvantages of each, the types of jobs each can perform, and how to disassemble…

  11. Integrating Motor-Learning Concepts into Physical Education: Using Guided Discovery to Address NASPE Standard 2

    Science.gov (United States)

    Rukavina, Paul B.; Jeansonne, Jennifer J.

    2009-01-01

    K-12 students enter physical education with many naive conceptions or misconceptions of how motor skills are acquired. One goal of physical education is to teach concepts that will help students learn and perform motor skills, but many practitioners don't know how to provide experiences that will teach students to apply their knowledge…

  12. Self-Controlled Practice Enhances Motor Learning in Introverts and Extroverts

    Science.gov (United States)

    Kaefer, Angélica; Chiviacowsky, Suzete; Meira, Cassio de Miranda, Jr.; Tani, Go

    2014-01-01

    Purpose: The purpose of the present study was to investigate the effects of self-controlled feedback on the learning of a sequential-timing motor task in introverts and extroverts. Method: Fifty-six university students were selected by the Eysenck Personality Questionnaire. They practiced a motor task consisting of pressing computer keyboard keys…

  13. Feedback and intention during motor-skill learning: a connection with prospective memory.

    Science.gov (United States)

    Badets, Arnaud; Blandin, Yannick

    2012-09-01

    The intention to complete an action in the future can improve the learning of this action, but it is unknown whether this effect persists when feedback is manipulated during encoding. In experiment 1, participants were instructed to learn a motor skill with or without intending to reproduce this learning in the future, and feedback on their movements was administrated by self-decision, that is, participants asked for feedback whenever they wanted it. The results showed that intention increased the frequency with which feedback was requested, but did not improve motor performance. In experiment 2, participants had to learn the task with high or few feedbacks, which they could not control. In these conditions, intention was beneficial in promoting motor learning only for a low feedback schedule. We suggest that the beneficial effect of intention on learning can be overshadowed or emphasised by the feedback processing during encoding. These findings are discussed in light of theories surrounding prospective memory.

  14. Procedural learning: A developmental study of motor sequence learning and probabilistic classification learning in school-aged children.

    Science.gov (United States)

    Mayor-Dubois, Claire; Zesiger, Pascal; Van der Linden, Martial; Roulet-Perez, Eliane

    2016-01-01

    In this study, we investigated motor and cognitive procedural learning in typically developing children aged 8-12 years with a serial reaction time (SRT) task and a probabilistic classification learning (PCL) task. The aims were to replicate and extend the results of previous SRT studies, to investigate PCL in school-aged children, to explore the contribution of declarative knowledge to SRT and PCL performance, to explore the strategies used by children in the PCL task via a mathematical model, and to see whether performances obtained in motor and cognitive tasks correlated. The results showed similar learning effects in the three age groups in the SRT and in the first half of the PCL tasks. Participants did not develop explicit knowledge in the SRT task whereas declarative knowledge of the cue-outcome associations correlated with the performances in the second half of the PCL task, suggesting a participation of explicit knowledge after some time of exposure in PCL. An increasing proportion of the optimal strategy use with increasing age was observed in the PCL task. Finally, no correlation appeared between cognitive and motor performance. In conclusion, we extended the hypothesis of age invariance from motor to cognitive procedural learning, which had not been done previously. The ability to adopt more efficient learning strategies with age may rely on the maturation of the fronto-striatal loops. The lack of correlation between performance in the SRT task and the first part of the PCL task suggests dissociable developmental trajectories within the procedural memory system.

  15. A day awake attenuates motor learning-induced increases in corticomotor excitability.

    Directory of Open Access Journals (Sweden)

    Toon T de Beukelaar

    2016-03-01

    Full Text Available The ‘synaptic homeostasis hypothesis’ proposes that the brain’s capacity to exhibit synaptic plasticity is reduced during the day but restores when sleeping. While this prediction has been confirmed for declarative memories, it is currently unknown whether it is also the case for motor memories. We quantified practice-induced changes in corticomotor excitability in response to repetitive motor sequence training as an indirect marker of synaptic plasticity in the primary motor cortex. Subjects either practiced a motor sequence in the morning and a new motor sequence in the evening, i.e. after a 12h period of wakefulness (wake group; or they practiced a sequence in the evening and a new sequence in the morning, i.e. after a 12h period including sleep (sleep group. In both wake and sleep groups motor training improved movement performance irrespective of the time of day. Learning a new sequence in the morning triggered a clear increase in corticomotor excitability suggesting that motor training triggered synaptic adaptation in the primary motor cortex that was absent when a new sequence was learned in the evening. Thus, the magnitude of the practice-induced increase in corticomotor excitability was significantly influenced by time of day while the magnitude of motor performance improvements were not. These results suggest that the motor cortex’s potential to efficiently adapt to the environment by quickly adjusting synaptic strength in an activity-dependent manner is higher in the morning than in the evening.

  16. Daytime sleep has no effect on the time course of motor sequence and visuomotor adaptation learning.

    Science.gov (United States)

    Backhaus, Winifried; Braaß, Hanna; Renné, Thomas; Krüger, Christian; Gerloff, Christian; Hummel, Friedhelm C

    2016-05-01

    Sleep has previously been claimed to be essential for the continued learning processes of declarative information as well as procedural learning. This study was conducted to examine the importance of sleep, especially the effects of midday naps, on motor sequence and visuomotor adaptation learning. Thirty-five (27 females) healthy, young adults aged between 18 and 30years of age participated in the current study. Addressing potential differences in explicit sequence and motor adaptation learning participants were asked to learn both, a nine-element explicit sequence and a motor adaptation task, in a crossover fashion on two consecutive days. Both tasks were performed with their non-dominant left hand. Prior to learning, each participant was randomized to one of three interventions; (1) power nap: 10-20min sleep, (2) long nap: 50-80min sleep or (3) a 45-min wake-condition. Performance of the motor learning task took place prior to and after a midday rest period, as well as after a night of sleep. Both sleep conditions were dominated by Stage N2 sleep with embedded sleep spindles, which have been described to be associated with enhancement of motor performance. Significant performance changes were observed in both tasks across all interventions (sleep and wake) confirming that learning took place. In the present setup, the magnitude of motor learning was not sleep-dependent in young adults - no differences between the intervention groups (short nap, long nap, no nap) could be found. The effect of the following night of sleep was not influenced by the previous midday rest or sleep period. This finding may be related to the selectiveness of the human brain enhancing especially memory being thought of as important in the future. Previous findings on motor learning enhancing effects of sleep, especially of daytime sleep, are challenged. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    OpenAIRE

    Marchal-Crespo, Laura; Michels, Lars; Jaeger, Lukas; López-Olóriz, Jorge; Riener, Robert

    2017-01-01

    Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcome...

  18. Comparison of Loneliness and Social Skill Levels of Children with Specific Learning Disabilities in Terms of Participation in Sports

    Science.gov (United States)

    Yilmaz, Atike; Kirimoglu, Hüseyin; Soyer, Fikret

    2018-01-01

    This study was conducted in order to compare loneliness and social skill levels of children with specific learning disabilities in terms of participation in sports. For this study, a screening model was used. The study group was composed of 56 children who were aged between 7 and 14 years and diagnosed with a specific learning disability (30 boys…

  19. Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.

    Science.gov (United States)

    Trewartha, Kevin M; Garcia, Angeles; Wolpert, Daniel M; Flanagan, J Randall

    2014-10-01

    Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly-and that has been linked to explicit memory-and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines. Copyright © 2014 the authors 0270-6474/14/3413411-11$15.00/0.

  20. Brain activations underlying different patterns of performance improvement during early motor skill learning.

    Science.gov (United States)

    Lefebvre, Stéphanie; Dricot, Laurence; Gradkowski, Wojciech; Laloux, Patrice; Vandermeeren, Yves

    2012-08-01

    Motor learning plays a central role in daily life and in neurorehabilitation. Several forms of motor learning have been described, among which motor skill learning, i.e. reaching a superior level of performance (a skill) through a shift of the speed/accuracy trade-off. During the first stage of learning a visuomotor skill, we observed differential patterns of evolution of the speed/accuracy trade-off in normal subjects. Half of the subjects rapidly achieved successful motor skill learning with an early shift of the speed/accuracy trade-off leading to a superior level of performance (shift pattern). The other subjects attained only minimal global improvement due to a converse evolution of speed and accuracy (i.e. a respect of the speed/accuracy trade-off: fit pattern). Functional magnetic resonance imaging (fMRI) was used to explore the neural substrates underlying these differential patterns during the first stage of motor skill learning in normal subjects. Twenty right-handed normal subjects performed an implicit visuomotor learning task with their non-dominant hand. The task ("circuit game") consisted in learning to navigate a pointer along a circuit as quickly and accurately as possible using a fMRI-compatible mouse. Velocity, accuracy, and performance indexes were used to characterise the motor learning pattern (shift/fit) and to perform fMRI correlation analysis in order to find the neural substrate associated with the shift and fit patterns during early motor skill learning. Nine subjects showed a fit pattern (fitters), and eleven, a shift pattern ("shifters"). fMRI analyses at whole group level (ANOVA) and at sub-group level demonstrated that the supplementary motor area (SMA) was more activated in "shifters" than in the "fitters" groups and that the BOLD activation within the SMA correlated significantly with the on-line shift of the speed/accuracy trade-off in the "shifters" group. Despite identical instructions and experimental conditions, during the

  1. Effects of transcranial direct current stimulation on motor learning in healthy individuals: a systematic review

    Directory of Open Access Journals (Sweden)

    Águida Foerster

    Full Text Available Introduction Transcranial direct current stimulation (tDCS has been used to modify cortical excitability and promote motor learning. Objective To systematically review published data to investigate the effects of transcranial direct current stimulation on motor learning in healthy individuals. Methods Randomized or quasi-randomized studies that evaluated the tDCS effects on motor learning were included and the risk of bias was examined by Cochrane Collaboration’s tool. The following electronic databases were used: PubMed, Scopus, Web of Science, LILACS, CINAHL with no language restriction. Results It was found 160 studies; after reading the title and abstract, 17 of those were selected, but just 4 were included. All studies involved healthy, right-handed adults. All studies assessed motor learning by the Jebsen Taylor Test or by the Serial Finger Tapping Task (SFTT. Almost all studies were randomized and all were blinding for participants. Some studies presented differences at SFTT protocol. Conclusion The result is insufficient to draw conclusions if tDCS influences the motor learning. Furthermore, there was significant heterogeneity of the stimulation parameters used. Further researches are needed to investigate the parameters that are more important for motor learning improvement and measure whether the effects are long-lasting or limited in time.

  2. Using Video Game Telemetry Data to Research Motor Chunking, Action Latencies, and Complex Cognitive-Motor Skill Learning.

    Science.gov (United States)

    Thompson, Joseph J; McColeman, C M; Stepanova, Ekaterina R; Blair, Mark R

    2017-04-01

    Many theories of complex cognitive-motor skill learning are built on the notion that basic cognitive processes group actions into easy-to-perform sequences. The present work examines predictions derived from laboratory-based studies of motor chunking and motor preparation using data collected from the real-time strategy video game StarCraft 2. We examined 996,163 action sequences in the telemetry data of 3,317 players across seven levels of skill. As predicted, the latency to the first action (thought to be the beginning of a chunked sequence) is delayed relative to the other actions in the group. Other predictions, inspired by the memory drum theory of Henry and Rogers, received only weak support. Copyright © 2017 Cognitive Science Society, Inc.

  3. Effects of anodal transcranial direct current stimulation over lower limb primary motor cortex on motor learning in healthy individuals.

    Science.gov (United States)

    Foerster, Águida; Dutta, Anirban; Kuo, Min-Fang; Paulus, Walter; Nitsche, Michael A

    2018-02-14

    Transcranial direct current stimulation (tDCS) is a neuromodulatory technique which alters motor functions in healthy humans and in neurological patients. Most studies so far investigated the effects of tDCS on mechanisms underlying improvements in upper limb performance. To investigate the effect of anodal tDCS over the lower limb motor cortex (M1) on lower limb motor learning in healthy volunteers, we conducted a randomized, single-blind and sham-controlled study. Thirty-three (25.81 ± 3.85, 14 female) volunteers were included, and received anodal or sham tDCS over the left M1 (M1-tDCS); 0.0625 mA/cm 2 anodal tDCS was applied for 15 min during performance of a visuo-motor task (VMT) with the right leg. Motor learning was monitored for performance speed and accuracy based on electromyographic recordings. We also investigated the influence of electrode size and baseline responsivity to transcranial magnetic stimulation (TMS) on the stimulation effects. Relative to baseline measures, only M1-tDCS applied with small electrodes and in volunteers with high baseline sensitivity to TMS significantly improved VMT performance. The computational analysis showed that the small anode was more specific to the targeted leg motor cortex volume when compared to the large anode. We conclude that anodal M1-tDCS modulates VMT performance in healthy subjects. As these effects critically depend on sensitivity to TMS and electrode size, future studies should investigate the effects of intensified tDCS and/or model-based different electrode positions in low-sensitivity TMS individuals. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Structure of Plasticity in Human Sensory and Motor Networks Due to Perceptual Learning

    OpenAIRE

    Vahdat, Shahabeddin; Darainy, Mohammad; Ostry, David J.

    2014-01-01

    As we begin to acquire a new motor skill, we face the dual challenge of determining and refining the somatosensory goals of our movements and establishing the best motor commands to achieve our ends. The two typically proceed in parallel, and accordingly it is unclear how much of skill acquisition is a reflection of changes in sensory systems and how much reflects changes in the brain's motor areas. Here we have intentionally separated perceptual and motor learning in time so that we can asse...

  5. Motor-enriched learning activities can improve mathematical performance in preadolescent children

    DEFF Research Database (Denmark)

    Beck, Mikkel Malling; Lind, Rune Rasmussen; Geertsen, Svend Sparre

    2016-01-01

    .73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities......Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning...

  6. A Motor Learning Oriented, Compliant and Mobile Gait Orthosis

    Directory of Open Access Journals (Sweden)

    A. Calanca

    2012-01-01

    Full Text Available People affected by Cerebral Palsy suffer from physical disabilities due to irreversible neural impairment since the very beginning of their life. Difficulties in motor control and coordination often relegate these patients to the use of a wheelchair and to the unavoidable upcoming of disuse syndromes. As pointed out in recent literature Damiano [7] physical exercise, especially in young ages, can have a deep impact on the patient health and quality of life. For training purposes is very important to keep an upright position, although in some severe cases this is not trivial. Many commercial mobile orthoses are designed to facilitate the standing, but not all the patients are able to deploy them. ARGO, the Active Reciprocated Gait Orthosis we developed, is a device that overcomes some of the limitations of these devices. It is an active device that is realized starting from a commercial reciprocated Gait Orthosis applying sensors and actuators to it. With ARGO we aim to develop a device for helping limbs in a non-coercive way accordingly to user’s intention. In this way patients can drive the orthosis by themselves, deploying augmented biofeedback over movements. In fact Cerebral Palsy patients usually have weak biofeedback mechanisms and consequently are hardly inclined to learn movements. To achieve this behavior ARGO deploys a torque planning algorithm and a force control system. Data collected from a single case of study shows benefits of the orthosis. We will show that our test patient reaches complete autonomous walking after few hour of training with prototype.

  7. Consensus: "Can tDCS and TMS enhance motor learning and memory formation?"

    Science.gov (United States)

    Reis, Janine; Robertson, Edwin; Krakauer, John W; Rothwell, John; Marshall, Lisa; Gerloff, Christian; Wassermann, Eric; Pascual-Leone, Alvaro; Hummel, Friedhelm; Celnik, Pablo A; Classen, Joseph; Floel, Agnes; Ziemann, Ulf; Paulus, Walter; Siebner, Hartwig R; Born, Jan; Cohen, Leonardo G

    2008-10-01

    Noninvasive brain stimulation has developed as a promising tool for cognitive neuroscientists. Transcranial magnetic (TMS) and direct current (tDCS) stimulation allow researchers to purposefully enhance or decrease excitability in focal areas of the brain. The purpose of this paper is to review information on the use of TMS and tDCS as research tools to facilitate motor memory formation, motor performance and motor learning in healthy volunteers. Studies implemented so far have mostly focused on the ability of TMS and tDCS to elicit relatively short lasting motor improvements and the mechanisms underlying these changes have been only partially investigated. Despite limitations including the scarcity of data, work that has been already accomplished raises the exciting hypothesis that currently available noninvasive transcranial stimulation techniques could modulate motor learning and memory formation in healthy humans and potentially in patients with neurological and psychiatric disorders.

  8. Neuronal mechanisms of motor learning are age dependent

    NARCIS (Netherlands)

    Berghuis, Kelly M. M.; De Rond, Veerle; Zijdewind, Inge; Koch, Giacomo; Veldman, Menno P.; Hortobagyi, Tibor

    2016-01-01

    There is controversy whether age-related neuroanatomical and neurophysiological changes in the central nervous system affect healthy old adults' abilities to acquire and retain motor skills. We examined the effects of age on motor skill acquisition and retention and potential underlying mechanisms

  9. Speech Motor Sequence Learning: Effect of Parkinson Disease and Normal Aging on Dual-Task Performance.

    Science.gov (United States)

    Whitfield, Jason A; Goberman, Alexander M

    2017-06-22

    Everyday communication is carried out concurrently with other tasks. Therefore, determining how dual tasks interfere with newly learned speech motor skills can offer insight into the cognitive mechanisms underlying speech motor learning in Parkinson disease (PD). The current investigation examines a recently learned speech motor sequence under dual-task conditions. A previously learned sequence of 6 monosyllabic nonwords was examined using a dual-task paradigm. Participants repeated the sequence while concurrently performing a visuomotor task, and performance on both tasks was measured in single- and dual-task conditions. The younger adult group exhibited little to no dual-task interference on the accuracy and duration of the sequence. The older adult group exhibited variability in dual-task costs, with the group as a whole exhibiting an intermediate, though significant, amount of dual-task interference. The PD group exhibited the largest degree of bidirectional dual-task interference among all the groups. These data suggest that PD affects the later stages of speech motor learning, as the dual-task condition interfered with production of the recently learned sequence beyond the effect of normal aging. Because the basal ganglia is critical for the later stages of motor sequence learning, the observed deficits may result from the underlying neural dysfunction associated with PD.

  10. Mild Traumatic Brain Injury: Lessons Learned from Clinical, Sports, and Combat Concussions

    Directory of Open Access Journals (Sweden)

    Judy C. Kelly

    2012-01-01

    Full Text Available Over the past forty years, a tremendous amount of information has been gained on the mechanisms and consequences of mild traumatic brain injuries. Using sports as a laboratory to study this phenomenon, a natural recovery curve emerged, along with standards for managing concussions and returning athletes back to play. Although advances have been made in this area, investigation into recovery and return to play continues. With the increase in combat-related traumatic brain injuries in the military setting, lessons learned from sports concussion research are being applied by the Department of Defense to the assessment of blast concussions and return to duty decision making. Concussion management and treatment for military personnel can be complicated by additional combat related stressors not present in the civilian environment. Cognitive behavioral therapy is one of the interventions that has been successful in treating symptoms of postconcussion syndrome. While we are beginning to have an understanding of the impact of multiple concussions and subconcussive blows in the sports world, much is still unknown about the impact of multiple blast injuries.

  11. "Live, Learn and Play": building strategic alliances between professional sports and public health.

    Science.gov (United States)

    Yancey, Antronette; Winfield, David; Larsen, Judi; Anderson, Michele; Jackson, Portia; Overton, Jeff; Wilson, Shawn; Rossum, Allen; Kumanyika, Shiriki

    2009-10-01

    Public-private partnerships allow communities and corporate entities to pool resources to address a mission of relevance to their common constituency or consumer base. Collaborations between public health and professional sports may present unique opportunities to improve health outcomes related to physical activity since athletes are fitness icons, both for adults and children. There are many "win-win" opportunities, as sports venues regularly host huge numbers of spectators, offering food and entertainment, providing hours of exposure, and introducing new ideas for engaging fans in order to remain a competitive draw. In 2008, the San Diego Padres embarked on a communitywide fitness initiative, FriarFit, including incorporating 10-minute Instant Recess breaks during their Sunday homestand pre-game shows. Many lessons have been learned that may be useful to others mounting such initiatives, such as: there is more at stake in cost-benefit and risk-benefit assessment for sports executives, requiring greater caution and circumspection than is typical for public health projects; the core business of the corporate entity must be accommodated without undermining the health objectives; and health aims must be addressed in a way that is financially viable and delivers tangible value for profit-making concerns, in terms of marketing, revenues or brand enhancement.

  12. Mediating Peer Teaching for Learning Games: An Action Research Intervention Across Three Consecutive Sport Education Seasons.

    Science.gov (United States)

    Farias, Cláudio; Mesquita, Isabel; Hastie, Peter A; O'Donovan, Toni

    2018-03-01

    The purpose of this study was to provide an integrated analysis of a teacher's peer-teaching mediation strategies, the student-coaches' instruction, and the students' gameplay development across 3 consecutive seasons of sport education. Twenty-six 7th-grade students participated in 3 consecutive sport education seasons of invasion games (basketball, handball, and soccer). The research involved 3 action research cycles, 1 per season, and each cycle included the processes of planning, acting and monitoring, reflecting, and fact finding. Data collection consisted of videotape and audiotape records of all 47 lessons, a reflective field diary kept by the first author in the role of teacher-researcher, and a total of 24 semistructured focus-group interviews. Trustworthiness criteria for assuring the quality of qualitative research included extensive data triangulation, stakeholders' crosschecking, and collaborative interpretational analysis. Through the application of systematic preparation strategies, student-coaches were able to successfully conduct team instruction that resulted in students' tactical development and improved performance. Aspects such as the study of predominant configurations of players' gameplay and similar tactical principles across games within the same category prevented a setback in the complexity of the learning content addressed at the beginning of each season. Players also showed an increasing ability to adapt gameplay to game conditions. While sport education has the capacity to develop competent players, different levels of teacher guidance and learners' instructional responsibility are necessary when teaching tactics.

  13. Natural error patterns enable transfer of motor learning to novel contexts.

    Science.gov (United States)

    Torres-Oviedo, Gelsy; Bastian, Amy J

    2012-01-01

    Successful behavior demands motor learning to be transferable in some cases (e.g., adjusting walking patterns as we develop and age) and context specific in others (e.g., learning to walk in high heels). Here we investigated differences in motor learning transfer in people learning a new walking pattern on a split-belt treadmill, where the legs move at different speeds. We hypothesized that transfer of the newly acquired walking pattern on the treadmill to natural over ground walking might depend on the pattern of errors experienced during learning. Error patterns within a person's natural range might be experienced as endogenous (i.e., produced by the body), encouraging general adjustments that transfer across contexts. On the other hand, larger errors might be experienced as exogenous (i.e., produced by the environment), indicating unusual conditions requiring context-specific learning. To test this, we manipulated the distribution of errors experienced during learning to lie either within or outside the normal distribution of walking errors. We found that restriction of errors to the natural range produced transfer of the new walking pattern from the treadmill to natural walking off the treadmill, while larger errors prevented transfer. This result helps explain how transfer of motor learning is controlled, and it offers an important strategy for clinical rehabilitation, where transfer of motor learning to other contexts is essential.

  14. Graph network analysis of immediate motor-learning induced changes in resting state BOLD

    Directory of Open Access Journals (Sweden)

    Saber eSami

    2013-05-01

    Full Text Available Recent studies have demonstrated that following learning tasks, changes in the resting state activity of the brain shape regional connections in functionally specific circuits. Here we expand on these findings by comparing changes induced in the resting state immediately following four motor tasks. Two groups of participants performed a visuo-motor joystick task with one group adapting to a transformed relationship between joystick and cursor. Two other groups were trained in either explicit or implicit procedural sequence learning. Resting state BOLD data were collected immediately before and after the tasks. We then used graph theory-based approaches that include statistical measures of functional integration and segregation to characterise changes in biologically plausible brain connectivity networks within each group. Our results demonstrate that motor learning reorganizes resting brain networks with an increase in local information transfer, as indicated by local efficiency measures that affect the brain's small world network architecture. This was particularly apparent when comparing two distinct forms of explicit motor learning: procedural learning and the joystick learning task. Both groups showed notable increases in local efficiency. However changes in local efficiency in the inferior frontal and cerebellar regions also distinguishes between the two learning tasks. Additional graph analytic measures on the "non-learning" visuo-motor performance task revealed reversed topological patterns in comparison with the three learning tasks. These findings underscore the utility of graph-based network analysis as a novel means to compare both regional and global changes in functional brain connectivity in the resting state following motor learning tasks.

  15. Implicit motor sequence learning and working memory performance changes across the adult life span

    Directory of Open Access Journals (Sweden)

    Sarah Nadine Meissner

    2016-04-01

    Full Text Available Although implicit motor sequence learning is rather well understood in young adults, effects of aging on this kind of learning are controversial. There is first evidence that working memory (WM might play a role in implicit motor sequence learning in young adults as well as in adults above the age of 65. However the knowledge about the development of these processes across the adult life span is rather limited. As the average age of our population continues to rise, a better understanding of age-related changes in motor sequence learning and potentially mediating cognitive processes takes on increasing significance. Therefore, we investigated aging effects on implicit motor sequence learning and WM. Sixty adults (18-71 years completed verbal and visuospatial n-back tasks and were trained on a serial reaction time task. Randomly varying trials served as control condition. To further assess consolidation indicated by off-line improvement and reduced susceptibility to interference, reaction times (RTs were determined 1 h after initial learning. Young and older but not middle-aged adults showed motor sequence learning. Nine out of 20 older adults (compared to one young/one middle-aged exhibited some evidence of sequence awareness. After 1 h, young and middle-aged adults showed off-line improvement. However, RT facilitation was not specific to sequence trials. Importantly, susceptibility to interference was reduced in young and older adults indicating the occurrence of consolidation. Although WM performance declined in older participants when load was high, it was not significantly related to sequence learning. The data reveal a decline in motor sequence learning in middle-aged but not in older adults. The use of explicit learning strategies in older adults might account for the latter result.

  16. Implicit Motor Sequence Learning and Working Memory Performance Changes Across the Adult Life Span.

    Science.gov (United States)

    Meissner, Sarah Nadine; Keitel, Ariane; Südmeyer, Martin; Pollok, Bettina

    2016-01-01

    Although implicit motor sequence learning is rather well understood in young adults, effects of aging on this kind of learning are controversial. There is first evidence that working memory (WM) might play a role in implicit motor sequence learning in young adults as well as in adults above the age of 65. However, the knowledge about the development of these processes across the adult life span is rather limited. As the average age of our population continues to rise, a better understanding of age-related changes in motor sequence learning and potentially mediating cognitive processes takes on increasing significance. Therefore, we investigated aging effects on implicit motor sequence learning and WM. Sixty adults (18-71 years) completed verbal and visuospatial n-back tasks and were trained on a serial reaction time task (SRTT). Randomly varying trials served as control condition. To further assess consolidation indicated by off-line improvement and reduced susceptibility to interference, reaction times (RTs) were determined 1 h after initial learning. Young and older but not middle-aged adults showed motor sequence learning. Nine out of 20 older adults (compared to one young/one middle-aged) exhibited some evidence of sequence awareness. After 1 h, young and middle-aged adults showed off-line improvement. However, RT facilitation was not specific to sequence trials. Importantly, susceptibility to interference was reduced in young and older adults indicating the occurrence of consolidation. Although WM performance declined in older participants when load was high, it was not significantly related to sequence learning. The data reveal a decline in motor sequence learning in middle-aged but not in older adults. The use of explicit learning strategies in older adults might account for the latter result.

  17. Altered synaptic plasticity in Tourette's syndrome and its relationship to motor skill learning.

    Directory of Open Access Journals (Sweden)

    Valerie Cathérine Brandt

    Full Text Available Gilles de la Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics that can be considered motor responses to preceding inner urges. It has been shown that Tourette patients have inferior performance in some motor learning tasks and reduced synaptic plasticity induced by transcranial magnetic stimulation. However, it has not been investigated whether altered synaptic plasticity is directly linked to impaired motor skill acquisition in Tourette patients. In this study, cortical plasticity was assessed by measuring motor-evoked potentials before and after paired associative stimulation in 14 Tourette patients (13 male; age 18-39 and 15 healthy controls (12 male; age 18-33. Tic and urge severity were assessed using the Yale Global Tic Severity Scale and the Premonitory Urges for Tics Scale. Motor learning was assessed 45 minutes after inducing synaptic plasticity and 9 months later, using the rotary pursuit task. On average, long-term potentiation-like effects in response to the paired associative stimulation were present in healthy controls but not in patients. In Tourette patients, long-term potentiation-like effects were associated with more and long-term depression-like effects with less severe urges and tics. While motor learning did not differ between patients and healthy controls 45 minutes after inducing synaptic plasticity, the learning curve of the healthy controls started at a significantly higher level than the Tourette patients' 9 months later. Induced synaptic plasticity correlated positively with motor skills in healthy controls 9 months later. The present study confirms previously found long-term improvement in motor performance after paired associative stimulation in healthy controls but not in Tourette patients. Tourette patients did not show long-term potentiation in response to PAS and also showed reduced levels of motor skill consolidation after 9 months compared to healthy controls. Moreover

  18. Enhanced motor learning following task-concurrent dual transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Sophia Karok

    Full Text Available OBJECTIVE: Transcranial direct current stimulation (tDCS of the primary motor cortex (M1 has beneficial effects on motor performance and motor learning in healthy subjects and is emerging as a promising tool for motor neurorehabilitation. Applying tDCS concurrently with a motor task has recently been found to be more effective than applying stimulation before the motor task. This study extends this finding to examine whether such task-concurrent stimulation further enhances motor learning on a dual M1 montage. METHOD: Twenty healthy, right-handed subjects received anodal tDCS to the right M1, dual tDCS (anodal current over right M1 and cathodal over left M1 and sham tDCS in a repeated-measures design. Stimulation was applied for 10 mins at 1.5 mA during an explicit motor learning task. Response times (RT and accuracy were measured at baseline, during, directly after and 15 mins after stimulation. Motor cortical excitability was recorded from both hemispheres before and after stimulation using single-pulse transcranial magnetic stimulation. RESULTS: Task-concurrent stimulation with a dual M1 montage significantly reduced RTs by 23% as early as with the onset of stimulation (p<0.01 with this effect increasing to 30% at the final measurement. Polarity-specific changes in cortical excitability were observed with MEPs significantly reduced by 12% in the left M1 and increased by 69% in the right M1. CONCLUSION: Performance improvement occurred earliest in the dual M1 condition with a stable and lasting effect. Unilateral anodal stimulation resulted only in trendwise improvement when compared to sham. Therefore, task-concurrent dual M1 stimulation is most suited for obtaining the desired neuromodulatory effects of tDCS in explicit motor learning.

  19. Cerebral Activation During Initial Motor Learning Forecasts Subsequent Sleep-Facilitated Memory Consolidation in Older Adults.

    Science.gov (United States)

    King, Bradley R; Saucier, Philippe; Albouy, Genevieve; Fogel, Stuart M; Rumpf, Jost-Julian; Klann, Juliane; Buccino, Giovanni; Binkofski, Ferdinand; Classen, Joseph; Karni, Avi; Doyon, Julien

    2017-02-01

    Older adults exhibit deficits in motor memory consolidation; however, little is known about the cerebral correlates of this impairment. We thus employed fMRI to investigate the neural substrates underlying motor sequence memory consolidation, and the modulatory influence of post-learning sleep, in healthy older adults. Participants were trained on a motor sequence and retested following an 8-h interval including wake or diurnal sleep as well as a 22-h interval including a night of sleep. Results demonstrated that a post-learning nap improved offline consolidation across same- and next-day retests. This enhanced consolidation was reflected by increased activity in the putamen and the medial temporal lobe, including the hippocampus, regions that have previously been implicated in sleep-dependent neural plasticity in young adults. Moreover, for the first time in older adults, the neural substrates subserving initial motor learning, including the putamen, cerebellum, and parietal cortex, were shown to forecast subsequent consolidation depending on whether a post-learning nap was afforded. Specifically, sufficient activation in a motor-related network appears to be necessary to trigger sleep-facilitated consolidation in older adults. Our findings not only demonstrate that post-learning sleep can enhance motor memory consolidation in older adults, but also provide the system-level neural correlates of this beneficial effect. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. A Combination of Machine Learning and Cerebellar Models for the Motor Control and Learning of a Modular Robot

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Pacheco, Moises

    2017-01-01

    We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, forming a Unit Learning Machine. The LWPR optimizes the input space...... and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar circuits including analytical models and spiking models...

  1. Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning.

    Science.gov (United States)

    Klein, Julius; Spencer, Steven J; Reinkensmeyer, David J

    2012-05-01

    Training with haptic guidance has been proposed as a technique for learning complex movements in rehabilitation and sports, but it is unclear how to best deliver guidance-based training. Here, we hypothesized that breaking down a complex movement, similar to a tennis backhand, into simpler parts and then using haptic feedback from a robotic exoskeleton would help the motor system learn the movement. We also examined how the particular form of the decomposition affected learning. Three groups of unimpaired participants trained with the target arm movement broken down in three ways: 1) elbow flexion/extension and the unified shoulder motion independently ("anatomical" decomposition), 2) three component shoulder motions in Euler coordinates and elbow flexion/extension ("Euler" decomposition), or 3) the motion of the tip of the elbow and motion of the hand with respect to the elbow, independently ("visual" decomposition). A control group practiced the same number of movements, but experienced the target motion only, achieving eight times more direct practice with this motion. Despite less experience with the target motion, part training was better, but only when the arm trajectory was decomposed into anatomical components. Varying robotic movement training to include practice of simpler, anatomically-isolated motions may enhance its efficacy.

  2. Changes in Cerebral Hemodynamics during Complex Motor Learning by Character Entry into Touch-Screen Terminals.

    Directory of Open Access Journals (Sweden)

    Akira Sagari

    Full Text Available Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed.We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touch-screen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touch-screen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman's rank correlations.Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC and supplementary motor area (SMA showed negative correlations.We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress.

  3. Learning "How to Learn": Super Declarative Motor Learning Is Impaired in Parkinson's Disease.

    Science.gov (United States)

    Marinelli, Lucio; Trompetto, Carlo; Canneva, Stefania; Mori, Laura; Nobili, Flavio; Fattapposta, Francesco; Currà, Antonio; Abbruzzese, Giovanni; Ghilardi, Maria Felice

    2017-01-01

    Learning new information is crucial in daily activities and occurs continuously during a subject's lifetime. Retention of learned material is required for later recall and reuse, although learning capacity is limited and interference between consecutively learned information may occur. Learning processes are impaired in Parkinson's disease (PD); however, little is known about the processes related to retention and interference. The aim of this study is to investigate the retention and anterograde interference using a declarative sequence learning task in drug-naive patients in the disease's early stages. Eleven patients with PD and eleven age-matched controls learned a visuomotor sequence, SEQ1, during Day1; the following day, retention of SEQ1 was assessed and, immediately after, a new sequence of comparable complexity, SEQ2, was learned. The comparison of the learning rates of SEQ1 on Day1 and SEQ2 on Day2 assessed the anterograde interference of SEQ1 on SEQ2. We found that SEQ1 performance improved in both patients and controls on Day2. Surprisingly, controls learned SEQ2 better than SEQ1, suggesting the absence of anterograde interference and the occurrence of learning optimization, a process that we defined as "learning how to learn." Patients with PD lacked such improvement, suggesting defective performance optimization processes.

  4. RELATIONS OF THE MORPHOLOGICAL CHARACTERISTICS AND MOTOR ABILITIES WITH JUMP FOWRARD AND TRIPLE JUMP OF STUDENTS AT THE FACULTY OF SCIENCE AND SPORT

    Directory of Open Access Journals (Sweden)

    Rashiti Naser

    2011-09-01

    Full Text Available In order to examine the impact of anthropometrical characteristics and motor skills during the tests’ implementation of the jump forward and triple jump from place, the experimental research was carried out on a sample of 100 second year students from the Faculty of Physical Education and Sport in Prishtine. For the purposes of this study were measured eight anthropometrical characteristics and ten tests for assessing motor skills, which made the predictor system of variables. To assess the explosive force of the type of jumpiness, applied were tests long jump forward and triple jump from place. Data was processed with the basic descriptive statistical parameters and regression analysis. Based on the results of this research and the discussion ,can be concluded that the applied system of predictor motor tests, have significant influence on the manifestation of the explosive force of students at the Faculty of Physical Education and Sport in Prishtine, i.e., it is possible to predict (forecast the results of tests for explosive power based on the predictor system of respondents

  5. THE EFFECT OF MENTAL AND PHYSICAL PRACTICE ON THE LEARNING OF GROSS MOTOR SKILLS.

    Science.gov (United States)

    OXENDINE, JOSEPH B.

    THE PURPOSE OF THE STUDY WAS TO DETERMINE THE EFFECTS OF DIFFERENT SCHEDULES OF MENTAL AND PHYSICAL PRACTICE ON THE LEARNING AND RETENTION OF THREE MOTOR TASKS--USING THE PURSUIT ROTOR AND LEARNING THE SOCCER KICK, AND JUMP SHOT. THREE SEPARATE EXPERIMENTS WERE CONDUCTED IN THREE JUNIOR HIGH SCHOOLS USING 80, 72, AND 60 SEVENTH GRADE BOYS AS…

  6. A MOTOR PRESETTING STUDY IN HYPERACTIVE, LEARNING-DISABLED AND CONTROL CHILDREN

    NARCIS (Netherlands)

    VANDERMEERE, J; VREELING, HJ; SERGEANT, J

    1992-01-01

    Motor presetting was investigated in hyperactive children, learning disabled children and normal controls. The reaction time of the hyperactive group was more sensitive to increases in interstimulus interval (event rate) than was that of the learning disabled and the controls. This finding indicates

  7. Modified Delphi Investigation of Motor Development and Learning in Physical Education Teacher Education

    Science.gov (United States)

    Ross, Susan; Metcalf, Amanda; Bulger, Sean M.; Housner, Lynn D.

    2014-01-01

    Purpose: As the scope of motor development and learning knowledge has successfully broadened over the years, there is an increased need to identify the content and learning experiences that are essential in preparing preservice physical educators. The purpose of this study was to generate expert consensus regarding the most critical motor…

  8. A Literature Review on Observational Learning for Medical Motor Skills and Anesthesia Teaching

    Science.gov (United States)

    Cordovani, Ligia; Cordovani, Daniel

    2016-01-01

    Motor skill practice is very important to improve performance of medical procedures and could be enhanced by observational practice. Observational learning could be particularly important in the medical field considering that patients' safety prevails over students' training. The mechanism of observational learning is based on the mirror neuron…

  9. Speech Motor Sequence Learning: Acquisition and Retention in Parkinson Disease and Normal Aging

    Science.gov (United States)

    Whitfield, Jason A.; Goberman, Alexander M.

    2017-01-01

    Purpose: The aim of the current investigation was to examine speech motor sequence learning in neurologically healthy younger adults, neurologically healthy older adults, and individuals with Parkinson disease (PD) over a 2-day period. Method: A sequential nonword repetition task was used to examine learning over 2 days. Participants practiced a…

  10. The influence of errors during practice on motor learning in young individuals with cerebral palsy

    NARCIS (Netherlands)

    Abswoude, F. van; Santos-Vieira, B.; Kamp, J. van der; Steenbergen, B.

    2015-01-01

    The aim of this study was to investigate the effect of errors during practice on motor skill learning in young individuals with cerebral palsy (CP). Minimizing errors has been validated in typically developing children and children with intellectual disabilities as a method for implicit learning,

  11. Sleep and memory consolidation: motor performance and proactive interference effects in sequence learning.

    Science.gov (United States)

    Borragán, Guillermo; Urbain, Charline; Schmitz, Rémy; Mary, Alison; Peigneux, Philippe

    2015-04-01

    That post-training sleep supports the consolidation of sequential motor skills remains debated. Performance improvement and sensitivity to proactive interference are both putative measures of long-term memory consolidation. We tested sleep-dependent memory consolidation for visuo-motor sequence learning using a proactive interference paradigm. Thirty-three young adults were trained on sequence A on Day 1, then had Regular Sleep (RS) or were Sleep Deprived (SD) on the night after learning. After two recovery nights, they were tested on the same sequence A, then had to learn a novel, potentially competing sequence B. We hypothesized that proactive interference effects on sequence B due to the prior learning of sequence A would be higher in the RS condition, considering that proactive interference is an indirect marker of the robustness of sequence A, which should be better consolidated over post-training sleep. Results highlighted sleep-dependent improvement for sequence A, with faster RTs overnight for RS participants only. Moreover, the beneficial impact of sleep was specific to the consolidation of motor but not sequential skills. Proactive interference effects on learning a new material at Day 4 were similar between RS and SD participants. These results suggest that post-training sleep contributes to optimizing motor but not sequential components of performance in visuo-motor sequence learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Are individuals with Parkinson's disease capable of speech-motor learning? - A preliminary evaluation.

    Science.gov (United States)

    Kaipa, Ramesh; Jones, Richard D; Robb, Michael P

    2016-07-01

    The benefits of different practice conditions in limb-based rehabilitation of motor disorders are well documented. Conversely, the role of practice structure in the treatment of motor-based speech disorders has only been minimally investigated. Considering this limitation, the current study aimed to investigate the effectiveness of selected practice conditions in spatial and temporal learning of novel speech utterances in individuals with Parkinson's disease (PD). Participants included 16 individuals with PD who were randomly and equally assigned to constant, variable, random, and blocked practice conditions. Participants in all four groups practiced a speech phrase for two consecutive days, and reproduced the speech phrase on the third day without further practice or feedback. There were no significant differences (p > 0.05) between participants across the four practice conditions with respect to either spatial or temporal learning of the speech phrase. Overall, PD participants demonstrated diminished spatial and temporal learning in comparison to healthy controls. Tests of strength of association between participants' demographic/clinical characteristics and speech-motor learning outcomes did not reveal any significant correlations. The findings from the current study suggest that repeated practice facilitates speech-motor learning in individuals with PD irrespective of the type of practice. Clinicians need to be cautious in applying practice conditions to treat speech deficits associated with PD based on the findings of non-speech-motor learning tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Interactive mobile learning: a pilot study of a new approach for sport science and medical undergraduate students.

    Science.gov (United States)

    Bruce-Low, S S; Burnet, S; Arber, K; Price, D; Webster, L; Stopforth, M

    2013-12-01

    Mobile learning has increasingly become interwoven into the fabric of learning and teaching in the United Kingdom higher education sector, and as technological issues become addressed, this phenomena has accelerated. The aim of the study was to examine whether learning using a mobile learning device (Samsung NC10 Netbook) loaded with interactive exercises promoted learning compared with a traditional library exercise. Using a randomized trial, 55 students from an undergraduate sports science course (n = 28) and medical course (n = 27) volunteered to participate in this study. A mixed-model design ANOVA was used to examine the percent change in test score after a 3-wk intervention. Results showed that there was a significant difference between the two courses (P student knowledge and understanding in sports science and medical students. The sports science group demonstrated proportionally greater increases in test performance when exposed to the mobile interactive intervention compared with the traditional library approach. Qualitative data suggest an increased level of engagement with the Netbooks due to the stimulating interactive content. In conclusion, the Netbooks were an effective additional learning tool, significantly enhancing knowledge and understanding in students. Further research should ensure that participants are assessed for preferred learning styles, the subjective task value of expectancy value, and readiness for mobile learning to ascertain if this has an effect on the potential for using mobile learning and interactivity.

  14. Motor skill learning and offline-changes in TGA patients with acute hippocampal CA1 lesions.

    Science.gov (United States)

    Döhring, Juliane; Stoldt, Anne; Witt, Karsten; Schönfeld, Robby; Deuschl, Günther; Born, Jan; Bartsch, Thorsten

    2017-04-01

    Learning and the formation of memory are reflected in various memory systems in the human brain such as the hippocampus based declarative memory system and the striatum-cortex based system involved in motor sequence learning. It is a matter of debate how both memory systems interact in humans during learning and consolidation and how this interaction is influenced by sleep. We studied the effect of an acute dysfunction of hippocampal CA1 neurons on the acquisition (on-line condition) and off-line changes of a motor skill in patients with a transient global amnesia (TGA). Sixteen patients (68 ± 4.4 yrs) were studied in the acute phase and during follow-up using a declarative and procedural test, and were compared to controls. Acute TGA patients displayed profound deficits in all declarative memory functions. During the acute amnestic phase, patients were able to acquire the motor skill task reflected by increasing finger tapping speed across the on-line condition, albeit to a lesser degree than during follow-up or compared to controls. Retrieval two days later indicated a greater off-line gain in motor speed in patients than controls. Moreover, this gain in motor skill performance was negatively correlated to the declarative learning deficit. Our results suggest a differential interaction between procedural and declarative memory systems during acquisition and consolidation of motor sequences in older humans. During acquisition, hippocampal dysfunction attenuates fast learning and thus unmasks the slow and rigid learning curve of striatum-based procedural learning. The stronger gains in the post-consolidation condition in motor skill in CA1 lesioned patients indicate a facilitated consolidation process probably occurring during sleep, and suggest a competitive interaction between the memory systems. These findings might be a reflection of network reorganization and plasticity in older humans and in the presence of CA1 hippocampal pathology. Copyright © 2016

  15. Inter-individual differences in audio-motor learning of piano melodies and white matter fiber tract architecture

    NARCIS (Netherlands)

    Engel, Annerose; Hijmans, Brenda S; Cerliani, L.; Bangert, Marc; Nanetti, Luca; Keller, Peter E; Keysers, C.

    Humans vary substantially in their ability to learn new motor skills. Here, we examined inter-individual differences in learning to play the piano, with the goal of identifying relations to structural properties of white matter fiber tracts relevant to audio-motor learning. Non-musicians (n = 18)

  16. An exploration of motor learning concepts relevant to use of speech-generating devices.

    Science.gov (United States)

    Dukhovny, Elena; Thistle, Jennifer J

    2017-11-13

    For individuals who rely on speech-generating devices (SGDs) to complement and substitute for spoken language, speed, and accuracy of access to the device are paramount for effective communication. There is some evidence that application of motor memory principles may improve effectiveness of SGD-based communication. This article reviews motor learning models and principles, including learning stages, types of practice, and environmental factors that affect learning, and highlights the potential applications of these principles in dynamic display SGD design, intervention, and research.

  17. Hearing and sports: a bidirectional interaction. [Audición y Control motor: Una relación recíproca].

    Directory of Open Access Journals (Sweden)

    Johannes Vogel

    2014-10-01

    Full Text Available Introduction Motor control is crucially dependent on many sensory inputs that involve classically the proprioreceptors located in the tendons, joints and the muscle itself as well as inputs from the vestibular organ and eyes (Fitzpatrick and McCloskey, 1994. However, additional sensory input from the auditory system is often necessary to perform the sport-associated complex motor-tasks. This holds not only for team sports that requires continuous communication with the other players but also for others such as figure skating or gymnastics where the movements of the body need to be coordinated with music. In addition, hearing is also important for avoiding accidents e.g. during skiing to recognize other people on the same track. Conversely, specific sports wear used in these sports may negatively influence hearing as it was shown for ski helmets that reduce perception of safety-relevant frequencies (Ruedl, Kopp, Burtscher, Zorowka, Weichbold, Stephan, Koci and Seebacher, 2014; Tudor, Ruzic, Bencic, Sestan and Bonifacic, 2010. Moreover, the reaction time and force generated during voluntary contractions could be influenced by sound. For instance, runners closer to the starter's pistol at Olympic Games react sooner than runners farther away (Brown, Kenwell, Maraj and Collins, 2008. Finally, hearing could even influence the overall physical fitness as it might be reduced in deaf children (Hartman, Visscher and Houwen, 2007 although other studies could not confirm (Wierzbicka-Damska, Samolyk, Jethon, Wiercinska and Murawska-Cialowicz, 2005. In the elderly, sensory deficits such as poor vision and hearing may increase the risk of mobility decline (Viljanen, Kaprio, Pyykko, Sorri, Koskenvuo and Rantanen, 2009a; Viljanen, Kaprio, Pyykko, Sorri, Pajala, Kauppinen, Koskenvuo and Rantanen, 2009b.

  18. SPECIAL EDUCATIONAL NEEDS AND SPORT. PSYCHOLOGICAL ASPECTS OF THE INTERACTION BETWEEN COGNITIVE, AFFECTIVE-EMOTIONAL AND MOTOR AREA

    Directory of Open Access Journals (Sweden)

    Fedele Termini

    2017-04-01

    Full Text Available The practice of sport, intended not just as a physical activity performed exclusively for athletic competition, represents a key element for growth on an emotional and social level. Practicing sports can help to enhance one’s self- and body awareness through multidimensional dynamic and ludic activity. In this context, sport becomes an educational and training tool, and is often a forerunner of social change. Sports practice combining physical activity with recreational activity, can, in fact, promote health and longevity, as well as physical and psychological wellbeing. As highlighted by the European Union, sport is also a source of social inclusion, and an excellent tool for the integration of minorities and groups at risk of social exclusion.

  19. Brief periods of auditory perceptual training can determine the sensory targets of speech motor learning.

    Science.gov (United States)

    Lametti, Daniel R; Krol, Sonia A; Shiller, Douglas M; Ostry, David J

    2014-07-01

    The perception of speech is notably malleable in adults, yet alterations in perception seem to have little impact on speech production. However, we hypothesized that speech perceptual training might immediately influence speech motor learning. To test this, we paired a speech perceptual-training task with a speech motor-learning task. Subjects performed a series of perceptual tests designed to measure and then manipulate the perceptual distinction between the words head and had. Subjects then produced head with the sound of the vowel altered in real time so that they heard themselves through headphones producing a word that sounded more like had. In support of our hypothesis, the amount of motor learning in response to the voice alterations depended on the perceptual boundary acquired through perceptual training. The studies show that plasticity in adults' speech perception can have immediate consequences for speech production in the context of speech learning. © The Author(s) 2014.

  20. Motor Speech Sequence Learning in Adults Who Stutter

    OpenAIRE

    Mahsa Aghazamani; Mohammad Rahim Shahbodaghi; Elham Faghihzadeh

    2018-01-01

    Objective Developmental stuttering is a speech disorder characterized by repetition, prolongation, block and disruption of the smooth flow of speech. Environmental, physical, mental, and cognitive-linguistic factors were involved in the initiation and development of stuttering. There have been several theories about the development of stuttering. One of these theories suggests that stuttering is a speech motor control disorder. Based on the speech-motor skills hypothesis, speech production is...

  1. Effect of sensory experience on motor learning strategy.

    Science.gov (United States)

    Zhou, Shou-Han; Oetomo, Denny; Tan, Ying; Mareels, Iven; Burdet, Etienne

    2015-02-15

    It is well known that the central nervous system automatically reduces a mismatch in the visuomotor coordination. Can the underlying learning strategy be modified by environmental factors or a subject's learning experiences? To elucidate this matter, two groups of subjects learned to execute reaching arm movements in environments with task-irrelevant visual cues. However, one group had previous experience of learning these movements using task-relevant visual cues. The results demonstrate that the two groups used different learning strategies for the same visual environment and that the learning strategy was influenced by prior learning experience. Copyright © 2015 the American Physiological Society.

  2. Learning piano melodies in visuo-motor or audio-motor training conditions and the neural correlates of their cross-modal transfer.

    Science.gov (United States)

    Engel, Annerose; Bangert, Marc; Horbank, David; Hijmans, Brenda S; Wilkens, Katharina; Keller, Peter E; Keysers, Christian

    2012-11-01

    To investigate the cross-modal transfer of movement patterns necessary to perform melodies on the piano, 22 non-musicians learned to play short sequences on a piano keyboard by (1) merely listening and replaying (vision of own fingers occluded) or (2) merely observing silent finger movements and replaying (on a silent keyboard). After training, participants recognized with above chance accuracy (1) audio-motor learned sequences upon visual presentation (89±17%), and (2) visuo-motor learned sequences upon auditory presentation (77±22%). The recognition rates for visual presentation significantly exceeded those for auditory presentation (ppiano (motor-to-sound transformation). Copyright © 2012 Elsevier Inc. All rights reserved.

  3. High variability impairs motor learning regardless of whether it affects task performance.

    Science.gov (United States)

    Cardis, Marco; Casadio, Maura; Ranganathan, Rajiv

    2018-01-01

    Motor variability plays an important role in motor learning, although the exact mechanisms of how variability affects learning are not well understood. Recent evidence suggests that motor variability may have different effects on learning in redundant tasks, depending on whether it is present in the task space (where it affects task performance) or in the null space (where it has no effect on task performance). We examined the effect of directly introducing null and task space variability using a manipulandum during the learning of a motor task. Participants learned a bimanual shuffleboard task for 2 days, where their goal was to slide a virtual puck as close as possible toward a target. Critically, the distance traveled by the puck was determined by the sum of the left- and right-hand velocities, which meant that there was redundancy in the task. Participants were divided into five groups, based on both the dimension in which the variability was introduced and the amount of variability that was introduced during training. Results showed that although all groups were able to reduce error with practice, learning was affected more by the amount of variability introduced rather than the dimension in which variability was introduced. Specifically, groups with higher movement variability during practice showed larger errors at the end of practice compared with groups that had low variability during learning. These results suggest that although introducing variability can increase exploration of new solutions, this may adversely affect the ability to retain the learned solution. NEW & NOTEWORTHY We examined the role of introducing variability during motor learning in a redundant task. The presence of redundancy allows variability to be introduced in different dimensions: the task space (where it affects task performance) or the null space (where it does not affect task performance). We found that introducing variability affected learning adversely, but the amount of

  4. The role of motor learning in stuttering adaptation: repeated versus novel utterances in a practice-retention paradigm

    OpenAIRE

    Max, Ludo; Baldwin, Caitlin J.

    2010-01-01

    Most individuals who stutter become more fluent during repeated oral readings of the same material. This adaptation effect may reflect motor learning associated with repeated practice of speech motor sequences. We tested this hypothesis with a paradigm that used two integrated approaches to identify the role of motor learning in stuttering adaptation: to distinguish practice effects from situation effects, the texts contained both repeated and novel sentences; to differentiate learning effect...

  5. Task-specific contribution of the human striatum to perceptual-motor skill learning.

    Science.gov (United States)

    Cavaco, Sara; Anderson, Steven W; Correia, Manuel; Magalhaes, Marina; Pereira, Claudia; Tuna, Assuncao; Taipa, Ricardo; Pinto, Pedro; Pinto, Claudia; Cruz, Romeu; Lima, Antonio Bastos; Castro-Caldas, Alexandre; da Silva, Antonio Martins; Damasio, Hanna

    2011-01-01

    Acquisition of new perceptual-motor skills depends on multiple brain areas, including the striatum. However, the specific contribution of each structure to this type of learning is still poorly understood. Focusing on the striatum, we proposed (a) to replicate the finding of impaired rotary pursuit (RP) and preserved mirror tracing (MT) in Huntington's disease (HD); and (b) to further explore this putative learning dissociation with other human models of striatal dysfunction (i.e., Parkinson's disease and focal vascular damage) and two new paradigms (i.e., Geometric Figures, GF, and Control Stick, CS) of skill learning. Regardless of the etiology, participants with damage to the striatum showed impaired learning of visuomotor tracking skills (i.e., RP and GF), whereas the ability to learn skills that require motor adaptation (i.e., MT and CS) was not affected. These results suggest a task-specific involvement of the striatum in the early stages of skill learning.

  6. Motor Learning: An Analysis of 100 Trials of a Ski Slalom Game in Children with and without Developmental Coordination Disorder

    OpenAIRE

    Smits-Engelsman, Bouwien C M; Jelsma, Lemke Dorothee; Ferguson, Gillian D; Geuze, Reint H

    2015-01-01

    OBJECTIVE: Although Developmental Coordination Disorder (DCD) is often characterized as a skill acquisition deficit disorder, few studies have addressed the process of motor learning. This study examined learning of a novel motor task; the Wii Fit ski slalom game. The main objectives were to determine: 1) whether learning occurs over 100 trial runs of the game, 2) if the learning curve is different between children with and without DCD, 3) if learning is different in an easier or harder versi...

  7. Selective impairments of motor sequence learning in multiple sclerosis patients with minimal disability.

    Science.gov (United States)

    Tacchino, Andrea; Bove, Marco; Roccatagliata, Luca; Luigi Mancardi, Giovanni; Uccelli, Antonio; Bonzano, Laura

    2014-10-17

    Patients with Multiple Sclerosis (PwMS) with severe sensorimotor and cognitive deficits show reduced ability in motor sequence learning. Conversely, in PwMS with minimal disability (EDSS≤2), showing only subtle neurological impairments and no particular deficits in everyday life activities, motor sequence learning has been poorly addressed. Here, we investigated whether PwMS with minimal disability already show a specific impairment in motor sequence learning and which component of this process can be first affected in MS. We implemented a serial reaction time task based on thumb-to-finger opposition movements in response to visual stimuli. Each session included 14 blocks of 120 stimuli presented randomly or in ten repetitions of a 12-item sequence. Random (R) and sequence (S) blocks were temporally alternated (R1, R2, S1/S5, R3, S6/S10, R4). Random blocks were designed to evaluate the motor component; sequence blocks, beside the motor component, allowed to discriminate the procedural performance. Twenty-two PwMS and 22 control healthy subjects were asked to perform the task under implicit or explicit instructions (11 subjects for each experimental condition). PwMS with minimal disability improved motor performance in random blocks reducing response time with practice with a trend similar to control subjects, suggesting that short-term learning of simple motor tasks is nearly preserved at this disease stage. Conversely, they found difficulties in sequence-specific learning in implicit and explicit condition, with more pronounced impairment in the implicit condition. These findings could suggest an involvement of different circuits in implicit and explicit sequence learning that could deteriorate at different disease stages. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Variability and practice load in motor learning. [Variabilidad y carga de práctica en el aprendizaje motor].

    Directory of Open Access Journals (Sweden)

    Francisco Javier Moreno

    2015-01-01

    Full Text Available Previous studies have pointed out the convenience of taking the characteristics of the skill to be learned and the intrinsic characteristics of the learners into account when designing practice tasks. Nevertheless, few studies have manipulated the amount of variable practice. The ability to adapt, as an inherent feature of biological systems, can be an adequate framework to explain and predict motor learning processes. This paper is based on adaption processes explained under the theory of allostasis and the general adaption syndrome and shares the background of the Dynamic Systems Theory, to propose the concept of practice load as a useful tool to quantify variability of practice in motor learning. From this standpoint, the conditions of variable practice are reviewed to be a stimulus in an adequate magnitude and direction to take the learner to a higher level of performance and hence to optimize motor learning. Resumen Muchos autores han recomendado la conveniencia de ajustar los niveles de práctica variable teniendo en cuenta las características de la tarea y la variabilidad intrínseca que muestra el aprendiz en la ejecución de la habilidad. Sin embargo, no son numerosos los trabajos que han manipulado varios niveles de cantidad de variabilidad al practicar. La capacidad de adaptación, como rasgo de los sistemas biológicos puede resultar un marco adecuado para afrontar esta cuestión. En este trabajo, apoyado en los procesos de adaptación explicados bajo las teorías de alostasis y el síndrome general de adaptación (GAS, y bajo presupuestos compartidos por la Teoría General de Sistemas Dinámicos, propondrá el concepto de carga de práctica como una herramienta para cuantificar la práctica en el aprendizaje motor. Bajo esta perspectiva se revisan las condiciones en las que la práctica en variabilidad debe modularse, para suponer una estimulación que facilite al aprendiz una adaptación a un nivel de rendimiento superior y con

  9. Specific Deficit in Implicit Motor Sequence Learning following Spinal Cord Injury.

    Directory of Open Access Journals (Sweden)

    Ayala Bloch

    Full Text Available Physical and psychosocial rehabilitation following spinal cord injury (SCI leans heavily on learning and practicing new skills. However, despite research relating motor sequence learning to spinal cord activity and clinical observations of impeded skill-learning after SCI, implicit procedural learning following spinal cord damage has not been examined.To test the hypothesis that spinal cord injury (SCI in the absence of concomitant brain injury is associated with a specific implicit motor sequence learning deficit that cannot be explained by depression or impairments in other cognitive measures.Ten participants with SCI in T1-T11, unharmed upper limb motor and sensory functioning, and no concomitant brain injury were compared to ten matched control participants on measures derived from the serial reaction time (SRT task, which was used to assess implicit motor sequence learning. Explicit generation of the SRT sequence, depression, and additional measures of learning, memory, and intelligence were included to explore the source and specificity of potential learning deficits.There was no between-group difference in baseline reaction time, indicating that potential differences between the learning curves of the two groups could not be attributed to an overall reduction in response speed in the SCI group. Unlike controls, the SCI group showed no decline in reaction time over the first six blocks of the SRT task and no advantage for the initially presented sequence over the novel interference sequence. Meanwhile, no group differences were found in explicit learning, depression, or any additional cognitive measures.The dissociation between impaired implicit learning and intact declarative memory represents novel empirical evidence of a specific implicit procedural learning deficit following SCI, with broad implications for rehabilitation and adjustment.

  10. The effect of sleep on motor learning in the aging and stroke population - a systematic review.

    Science.gov (United States)

    Backhaus, W; Kempe, S; Hummel, F C

    2015-01-01

    There is extensive evidence for positive effects of sleep on motor learning in young individuals; however, the effects of sleep on motor learning in people with stroke and in healthy older individuals are not well understood. The aim of this systematic review was to quantify the association between sleep and procedural memory performance - a marker for motor learning - in healthy older people and people with stroke. After searches in PubMed, Medline and Embase fourteen studies, including 44 subjects after stroke and 339 healthy older participants were included. Overall, sleep was found to enhance motor performance in people after stroke in comparison to an equivalent time of wakefulness. In addition, although evidence is limited, sleep only enhanced motor performance in people after stroke and not in age-matched healthy older adults. In older adults the effect of a sleep intervention did - in general - not differ from equivalent periods of wakefulness. Tasks with whole hand or whole body movements could show significant changes. The results suggest a delayed retention effect after longer breaks including sleep, hinting towards a changed learning strategy as a result of aging. Current evidence for sleep dependent learning in people after stroke is promising, however sparse.

  11. Task-specific effect of transcranial direct current stimulation on motor learning

    Directory of Open Access Journals (Sweden)

    Cinthia Maria Saucedo Marquez

    2013-07-01

    Full Text Available Transcranial direct current stimulation (tDCS is a relatively new non-invasive brain stimulation technique that modulates neural processes. When applied to the human primary motor cortex (M1, tDCS has beneficial effects on motor skill learning and consolidation in healthy controls and in patients. However, it remains unclear whether tDCS improves motor learning in a general manner or whether these effects depend on which motor task is acquired. Here we compare whether the effect of tDCS differs when the same individual acquires (1 a Sequential Finger Tapping Task (SEQTAP and (2 a Visual Isometric Pinch Force Task (FORCE. Both tasks have been shown to be sensitive to tDCS applied over M1, however, the underlying processes mediating learning and memory formation might benefit differently from anodal-tDCS. Thirty healthy subjects were randomly assigned to an anodal-tDCS group or sham-group. Using a double-blind, sham-controlled cross-over design, tDCS was applied over M1 while subjects acquired each of the motor tasks over 3 consecutive days, with the order being randomized across subjects. We found that anodal-tDCS affected each task differently: The SEQTAP task benefited from anodal-tDCS during learning, whereas the FORCE task showed improvements only at retention. These findings suggest that anodal tDCS applied over M1 appears to have a task-dependent effect on learning and memory formation.

  12. Focus of Attention in Children's Motor Learning: Examining the Role of Age and Working Memory.

    Science.gov (United States)

    Brocken, J E A; Kal, E C; van der Kamp, J

    2016-01-01

    The authors investigated the relative effectiveness of different attentional focus instructions on motor learning in primary school children. In addition, we explored whether the effect of attentional focus on motor learning was influenced by children's age and verbal working memory capacity. Novice 8-9-year old children (n = 30) and 11-12-year-old children (n = 30) practiced a golf putting task. For each age group, half the participants received instructions to focus (internally) on the swing of their arm, while the other half was instructed to focus (externally) on the swing of the club. Children's verbal working memory capacity was assessed with the Automated Working Memory Assessment. Consistent with many reports on adult's motor learning, children in the external groups demonstrated greater improvements in putting accuracy than children who practiced with an internal focus. This effect was similar across age groups. Verbal working memory capacity was not found to be predictive of motor learning, neither for children in the internal focus groups nor for children in the external focus groups. In conclusion, primary school children's motor learning is enhanced by external focus instructions compared to internal focus instructions. The purported modulatory roles of children's working memory, attentional capacity, or focus preferences require further investigation.

  13. Role of Constant, Random and Blocked Practice in an Electromyography-Based Oral Motor Learning Task.

    Science.gov (United States)

    Kaipa, Ramesh; Mariam Kaipa, Roha

    2017-10-19

    The role of principles of motor learning (PMLs) in speech has received much attention in the past decade. Oral motor learning, however, has not received similar consideration. This study evaluated the role of three practice conditions in an oral motor tracking task. Forty-five healthy adult participants were randomly and equally assigned to one of three practice conditions (constant, blocked, and random) and participated in an electromyography-based task. The study consisted of four sessions, at one session a day for four consecutive days. The first three days sessions included a practice phase, with immediate visual feedback, and an immediate retention phase, without visual feedback. The fourth session did not include practice, but only delayed retention testing, lasting 10-15 minutes, without visual feedback. Random group participants performed better than participants in constant and blocked practice conditions on all the four days. Constant group participants demonstrated superior learning over blocked group participants only on day 4. Findings indicate that random practice facilitates oral motor learning, which is in line with limb/speech motor learning literature. Future research should systematically investigate the outcomes of random practice as a function of different oral and speech-based tasks.

  14. Sport and Children's Nutrition: What Can We Learn from the Junior Australian Football Setting?

    Science.gov (United States)

    Elliott, Sam; Velardo, Stefania; Drummond, Murray; Drummond, Claire

    2016-01-01

    There is a widely held belief that sport participation inherently enhances health among youth. Such a perception often motivates parents to encourage children's initial and ongoing involvement in organised sport and physical activity. While sport certainly comprises an important vehicle for accruing physical activity, the sport environment may not…

  15. EFFECTS OF SENSORI-MOTOR LEARNING ON MELODY PROCESSING ACROSS DEVELOPMENT

    Science.gov (United States)

    WAKEFIELD, Elizabeth M.; JAMES, Karin H.

    2014-01-01

    Actions influence perceptions, but how this occurs may change across the lifespan. Studies have investigated how object-directed actions (e.g., learning about objects through manipulation) affect subsequent perception, but how abstract actions affect perception, and how this may change across development, have not been well studied. In the present study, we address this question, teaching children (4–7 year-olds) and adults sung melodies, with or without an abstract motor component, and using functional Magnetic Resonance Imaging (fMRI) to determine how these melodies are subsequently processed. Results demonstrated developmental change in the motor cortices and Middle Temporal Gyrus. Results have implications for understanding sensori-motor integration in the developing brain, and may provide insight into motor learning use in some music education techniques. PMID:25653926

  16. The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System

    Science.gov (United States)

    Shadmehr, Reza

    2016-01-01

    When we experience an error during a movement, we update our motor commands to partially correct for this error on the next trial. How does experience of error produce the improvement in the subsequent motor commands? During the course of an erroneous reaching movement, proprioceptive and visual sensory pathways not only sense the error, but also engage feedback mechanisms, resulting in corrective motor responses that continue until the hand arrives at its goal. One possibility is that this feedback response is co-opted by the learning system and used as a template to improve performance on the next attempt. Here we used electromyography (EMG) to compare neural correlates of learning and feedback to test the hypothesis that the feedback response to error acts as a template for learning. We designed a task in which mixtures of error-clamp and force-field perturbation trials were used to deconstruct EMG time courses into error-feedback and learning components. We observed that the error-feedback response was composed of excitation of some muscles, and inhibition of others, producing a complex activation/deactivation pattern during the reach. Despite this complexity, across muscles the learning response was consistently a scaled version of the error-feedback response, but shifted 125 ms earlier in time. Across people, individuals who produced a greater feedback response to error, also learned more from error. This suggests that the feedback response to error serves as a teaching signal for the brain. Individuals who learn faster have a better teacher in their feedback control system. SIGNIFICANCE STATEMENT Our sensory organs transduce errors in behavior. To improve performance, we must generate better motor commands. How does the nervous system transform an error in sensory coordinates into better motor commands in muscle coordinates? Here we show that when an error occurs during a movement, the reflexes transform the sensory representation of error into motor

  17. Probabilistic Motor Sequence Yields Greater Offline and Less Online Learning than Fixed Sequence.

    Science.gov (United States)

    Du, Yue; Prashad, Shikha; Schoenbrun, Ilana; Clark, Jane E

    2016-01-01

    It is well acknowledged that motor sequences can be learned quickly through online learning. Subsequently, the initial acquisition of a motor sequence is boosted or consolidated by offline learning. However, little is known whether offline learning can drive the fast learning of motor sequences (i.e., initial sequence learning in the first training session). To examine offline learning in the fast learning stage, we asked four groups of young adults to perform the serial reaction time (SRT) task with either a fixed or probabilistic sequence and with or without preliminary knowledge (PK) of the presence of a sequence. The sequence and PK were manipulated to emphasize either procedural (probabilistic sequence; no preliminary knowledge (NPK)) or declarative (fixed sequence; with PK) memory that were found to either facilitate or inhibit offline learning. In the SRT task, there were six learning blocks with a 2 min break between each consecutive block. Throughout the session, stimuli followed the same fixed or probabilistic pattern except in Block 5, in which stimuli appeared in a random order. We found that PK facilitated the learning of a fixed sequence, but not a probabilistic sequence. In addition to overall learning measured by the mean reaction time (RT), we examined the progressive changes in RT within and between blocks (i.e., online and offline learning, respectively). It was found that the two groups who performed the fixed sequence, regardless of PK, showed greater online learning than the other two groups who performed the probabilistic sequence. The groups who performed the probabilistic sequence, regardless of PK, did not display online learning, as indicated by a decline in performance within the learning blocks. However, they did demonstrate remarkably greater offline improvement in RT, which suggests that they are learning the probabilistic sequence offline. These results suggest that in the SRT task, the fast acquisition of a motor sequence is driven

  18. Graph network analysis of immediate motor-learning induced changes in resting state BOLD

    OpenAIRE

    Sami, S.; Miall, R. C.

    2013-01-01

    Recent studies have demonstrated that following learning tasks, changes in the resting state activity of the brain shape regional connections in functionally specific circuits. Here we expand on these findings by comparing changes induced in the resting state immediately following four motor tasks. Two groups of participants performed a visuo-motor joystick task with one group adapting to a transformed relationship between joystick and cursor. Two other groups were trained in either explicit ...

  19. 5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke

    Directory of Open Access Journals (Sweden)

    Sonia M Brodie

    2014-03-01

    Full Text Available Sensory feedback is critical for motor learning, and thus to neurorehabilitation after stroke. Whether enhancing sensory feedback by applying excitatory repetitive transcranial magnetic stimulation (rTMS over the ipsilesional primary sensory cortex (IL-S1 might enhance motor learning in chronic stroke has yet to be investigated. The present study investigated the effects of 5 Hz rTMS over IL-S1 paired with skilled motor practice on motor learning, hemiparetic cutaneous somatosensation, and motor function. Individuals with unilateral chronic stroke were pseudo-randomly divided into either Active or Sham 5 Hz rTMS groups (n=11/group. Following stimulation, both groups practiced a Serial Tracking Task (STT with the hemiparetic arm; this was repeated for 5 days. Performance on the STT was quantified by response time, peak velocity, and cumulative distance tracked at baseline, during the 5 days of practice, and at a no-rTMS retention test. Cutaneous somatosensation was measured using two-point discrimination. Standardized sensorimotor tests were performed to assess whether the effects might generalize to impact hemiparetic arm function. The active 5Hz rTMS + training group demonstrated significantly greater improvements in STT performance [response time (F1,286.04=13.016, p< 0.0005, peak velocity (F1,285.95=4.111, p=0.044, and cumulative distance (F1,285.92=4.076, p=0.044] and cutaneous somatosensation (F1,21.15=8.793, p=0.007 across all sessions compared to the sham rTMS + training group. Measures of upper extremity motor function were not significantly different for either group. Our preliminary results suggest that, when paired with motor practice, 5Hz rTMS over IL-S1 enhances motor learning related change in individuals with chronic stroke, potentially as a consequence of improved cutaneous somatosensation, however no improvement in general upper extremity function was observed.

  20. Perceptions of sport science students on the potential applications and limitations of blended learning in their education: a qualitative study.

    Science.gov (United States)

    Keogh, Justin W L; Gowthorp, Lisa; McLean, Michelle

    2017-09-01

    This study sought to gain insight into blended learning-naive sports science students' understanding and perceptions of the potential benefits and limitations of blended (hybrid) learning, which has been defined as the thoughtful integration of face-to-face and online instructional approaches. Five focus groups, each comprising 3-4 students from either the undergraduate or postgraduate sports science programmes were conducted. The focus groups were facilitated by a researcher who was not involved in sports science. Audio recordings of the focus groups were transcribed verbatim. NVivo software was used to code the transcripts to identify the themes and subthemes. Students generally had little initial understanding of blended learning. When provided with a definition, they believed that blended learning could improve educational outcomes and assist those who were legitimately unable to attend a session. Their reservations about blended learning mainly related to some students not being sufficiently autonomous to undertake independent study, timetabling considerations and access to reliable Internet services. For blended learning to be effective, students felt the online material had to be interactive, engaging and complement the face-to-face sessions. Better understanding the perceptions of the students in the current study may assist educators who are considering implementing blended learning in their teaching.

  1. Comparison of Learning Disabled Children's Performance on Bender Visual-Motor Gestalt Test and Beery's Developmental Test of Visual Motor Integration.

    Science.gov (United States)

    Skeen, Judith A.; And Others

    1982-01-01

    A comparison was made of the performance of 30 learning-disabled students on the Bender Visual-Motor Gestalt Test and the Beery Developmental Test of Visual Motor Integration. A significant correlation of -.72 was obtained. No significant difference was found in estimations of age equivalents. (Author)

  2. Should Rehabilitation Specialists Use External Focus Instructions When Motor Learning Is Fostered? A Systematic Review

    Directory of Open Access Journals (Sweden)

    Tanja H. Kakebeeke

    2013-06-01

    Full Text Available According to the Constrained Action Hypothesis, motor learning is believed to be more efficient when an external focus (EF of motor control is given to the performer instead of an internal focus (IF of motor control. This systematic review investigated whether findings of studies focusing on the Constrained Action Hypothesis may be transferred to rehabilitation settings by assessing the methodological quality and risk of bias (ROB of available randomized controlled trials (RCTs. Of the 18 selected reports representing 20 RCTs, the methodological quality was rather low, and the majority of the reports appeared to have a high ROB. The 18 reports included 68 patients tested in a rehabilitation setting and 725 healthy participants. The time scale of the motor learning processes presented in the selected articles was heterogenic. The results of this systematic review indicate that the assumption that an external focus of control is to be preferred during motor learning processes is not sufficiently substantiated. The level of available evidence is not large enough to warrant transfer to patient populations (including children and the elderly and raises doubts about research with healthy individuals. This implies that based on the methodology used so far, there seems to be insufficient evidence for the superiority of an external focus of control, neither in healthy individuals nor in clinical populations. The relationship between EF instructions and motor learning research and its effect in both patient rehabilitation settings and healthy populations requires further exploration. Future adequately powered studies with low ROB and with rehabilitation populations that are followed over extended time periods should, therefore, be performed to substantiate or refute the assumption of the superiority of an EF in motor learning.

  3. Sleep enhances learning of a functional motor task in young adults.

    Science.gov (United States)

    Al-Sharman, Alham; Siengsukon, Catherine F

    2013-12-01

    Sleep has been demonstrated to enhance simple motor skill learning "offline" in young adults. "Offline learning" refers to either the stabilization or the enhancement of a memory through the passage of time without additional practice. It remains unclear whether a functional motor task will benefit from sleep to produce offline motor skill enhancement. Physical therapists often teach clients functional motor skills; therefore, it is important to understand how sleep affects learning of these skills. The purpose of this study was to determine whether sleep enhances the learning of a functional motor task. A prospective, cross-sectional, repeated-measures design was used. Young participants who were healthy (N=24) were randomly assigned to either a sleep group or a no-sleep group. The sleep group practiced a novel walking task in the evening and underwent retention testing the following morning, and the no-sleep group practiced the task in the morning and underwent retention testing in the evening. Outcome measures included time around the walking path and spatiotemporal gait parameters. Only participants who slept after practicing the novel walking task demonstrated a significant offline improvement in performance. Compared with the no-sleep group, participants in the sleep group demonstrated a significant decrease in the time around the walking path, an increase in tandem velocity, an increase in tandem step length, and a decline in tandem step time. Time-of-day effect and inability to ensure a certain amount of sleep quantity and quality of participants were limitations of the study. This study is the first to provide evidence that sleep facilitates learning clinically relevant functional motor tasks. Sleep is an important factor that physical therapists should consider when teaching clients motor skills.

  4. A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing

    Science.gov (United States)

    Shao, Si-Yu; Sun, Wen-Jun; Yan, Ru-Qiang; Wang, Peng; Gao, Robert X.

    2017-11-01

    Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.

  5. Understanding self-controlled motor learning protocols through the self determination theory

    Directory of Open Access Journals (Sweden)

    Elizabeth Ann Sanli

    2013-01-01

    Full Text Available The purpose of the present review was to provide a theoretical understanding of the learning advantages underlying a self-controlled practice context through the tenets of the self-determination theory (SDT. Three micro theories within the macro theory of SDT (Basic psychological needs theory, Cognitive Evaluation Theory & Organismic Integration Theory are used as a framework for examining the current self-controlled motor learning literature. A review of 26 peer-reviewed, empirical studies from the motor learning and medical training literature revealed an important limitation of the self-controlled research in motor learning: that the effects of motivation have been assumed rather than quantified. The SDT offers a basis from which to include measurements of motivation into explanations of changes in behavior. This review suggests that a self-controlled practice context can facilitate such factors as feelings of autonomy and competence of the learner, thereby supporting the psychological needs of the learner, leading to long term changes to behavior. Possible tools for the measurement of motivation and regulation in future studies are discussed. The SDT not only allows for a theoretical reinterpretation of the extant motor learning research supporting self-control as a learning variable, but also can help to better understand and measure the changes occurring between the practice environment and the observed behavioral outcomes.

  6. Understanding Self-Controlled Motor Learning Protocols through the Self-Determination Theory.

    Science.gov (United States)

    Sanli, Elizabeth A; Patterson, Jae T; Bray, Steven R; Lee, Timothy D

    2012-01-01

    The purpose of the present review was to provide a theoretical understanding of the learning advantages underlying a self-controlled practice context through the tenets of the self-determination theory (SDT). Three micro-theories within the macro-theory of SDT (Basic psychological needs theory, Cognitive Evaluation Theory, and Organismic Integration Theory) are used as a framework for examining the current self-controlled motor learning literature. A review of 26 peer-reviewed, empirical studies from the motor learning and medical training literature revealed an important limitation of the self-controlled research in motor learning: that the effects of motivation have been assumed rather than quantified. The SDT offers a basis from which to include measurements of motivation into explanations of changes in behavior. This review suggests that a self-controlled practice context can facilitate such factors as feelings of autonomy and competence of the learner, thereby supporting the psychological needs of the learner, leading to long term changes to behavior. Possible tools for the measurement of motivation and regulation in future studies are discussed. The SDT not only allows for a theoretical reinterpretation of the extant motor learning research supporting self-control as a learning variable, but also can help to better understand and measure the changes occurring between the practice environment and the observed behavioral outcomes.

  7. International Colloquium on Sports Science, Exercise, Engineering and Technology 2014

    CERN Document Server

    Ismail, Shariman; Sulaiman, Norasrudin

    2014-01-01

    The proceeding is a collection of research papers presented at the International Colloquium on Sports Science, Exercise, Engineering and Technology (ICoSSEET2014), a conference dedicated to address the challenges in the areas of sports science, exercise, sports engineering and technology including other areas of sports, thereby presenting a consolidated view to the interested researchers in the aforesaid fields. The goal of this conference was to bring together researchers and practitioners from academia and industry to focus on the scope of the conference and establishing new collaborations in these areas. The topics of interest are as follows but are not limited to:1. Sports and Exercise Science • Sports Nutrition • Sports Biomechanics • Strength and Conditioning • Motor Learning and Control • Sports Psychology • Sports Coaching • Sports and Exercise Physiology • Sports Medicine and Athletic Trainer • Fitness and Wellness • Exercise Rehabilitation • Adapted Physical Activity...

  8. Using virtual humans and computer animations to learn complex motor skills: a case study in karate

    Directory of Open Access Journals (Sweden)

    Spanlang Bernhard

    2011-12-01

    Full Text Available Learning motor skills is a complex task involving a lot of cognitive issues. One of the main issues consists in retrieving the relevant information from the learning environment. In a traditional learning situation, a teacher gives oral explanations and performs actions to provide the learner with visual examples. Using virtual reality (VR as a tool for learning motor tasks is promising. However, it raises questions about the type of information this kind of environments can offer. In this paper, we propose to analyze the impact of virtual humans on the perception of the learners. As a case study, we propose to apply this research problem to karate gestures. The results of this study show no significant difference on the after training performance of learners confronted to three different learning environments (traditional group, video and VR.

  9. Cooperative Learning and Dyadic Interactions: Two Modes of Knowledge Construction in Socio-Constructivist Settings for Team-Sport Teaching

    Science.gov (United States)

    Darnis, Florence; Lafont, Lucile

    2015-01-01

    Background: Within a socio-constructivist perspective, this study is situated at the crossroads of three theoretical approaches. First, it is based upon team sport and the tactical act model in games teaching. Second, it took place in dyadic or small group learning conditions with verbal interaction. Furthermore, these interventions were based on…

  10. The Impact of Work-Integrated Learning Experiences on Attaining Graduate Attributes for Exercise and Sports Science Students

    Science.gov (United States)

    Hall, Melinda; Pascoe, Deborah; Charity, Megan

    2017-01-01

    Exercise and Sports Science (E&SS) programs at Federation University Australia provide work-integrated learning (WIL) opportunities for students to develop, apply and consolidate theoretical knowledge in the workplace. This study aimed to determine the influence of WIL experiences on achieving common graduate attributes for E&SS students.…

  11. Teachers and Students' Perceptions of a Hybrid Sport Education and Teaching for Personal and Social Responsibility Learning Unit

    Science.gov (United States)

    Fernandez-Rio, Javier; Menendez-Santurio, Jose Ignacio

    2017-01-01

    Purpose: The purpose of this study was to assess students and teachers' perceptions concerning their participation in an educational kickboxing learning unit based on a hybridization of two pedagogical models: Sport Education and Teaching for Personal and Social Responsibility. Method: Seventy-one students and three physical education teachers…

  12. Learning trajectories for speech motor performance in children with specific language impairment.

    Science.gov (United States)

    Richtsmeier, Peter T; Goffman, Lisa

    2015-01-01

    Children with specific language impairment (SLI) often perform below expected levels, including on tests of motor skill and in learning tasks, particularly procedural learning. In this experiment we examined the possibility that children with SLI might also have a motor learning deficit. Twelve children with SLI and thirteen children with typical development (TD) produced complex nonwords in an imitation task. Productions were collected across three blocks, with the first and second blocks on the same day and the third block one week later. Children's lip movements while producing the nonwords were recorded using an Optotrak camera system. Movements were then analyzed for production duration and stability. Movement analyses indicated that both groups of children produced shorter productions in later blocks (corroborated by an acoustic analysis), and the rate of change was comparable for the TD and SLI groups. A nonsignificant trend for more stable productions was also observed in both groups. SLI is regularly accompanied by a motor deficit, and this study does not dispute that. However, children with SLI learned to make more efficient productions at a rate similar to their peers with TD, revealing some modification of the motor deficit associated with SLI. The reader will learn about deficits commonly associated with specific language impairment (SLI) that often occur alongside the hallmark language deficit. The authors present an experiment showing that children with SLI improved speech motor performance at a similar rate compared to typically developing children. The implication is that speech motor learning is not impaired in children with SLI. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Short-term motor learning of dynamic balance control in children with probable Developmental Coordination Disorder.

    Science.gov (United States)

    Jelsma, Dorothee; Ferguson, Gillian D; Smits-Engelsman, Bouwien C M; Geuze, Reint H

    2015-03-01

    To explore the differences in learning a dynamic balance task between children with and without probable Developmental Coordination Disorder (p-DCD) from different cultural backgrounds. Twenty-eight Dutch children with DCD (p-DCD-NL), a similar group of 17 South African children (p-DCD-SA) and 21 Dutch typically developing children (TD-NL) participated in the study. All children performed the Wii Fit protocol. The slope of the learning curve was used to estimate motor learning for each group. The protocol was repeated after six weeks. Level of motor skill was assessed with the Movement ABC-2. No significant difference in motor learning rate was found between p-DCD-NL and p-DCD-SA, but the learning rate of children with p-DCD was slower than the learning rate of TD children. Speed-accuracy trade off, as a way to improve performance by slowing down in the beginning was only seen in the TD children, indicating that TD children and p-DCD children used different strategies. Retention of the level of learned control of the game after six weeks was found in all three groups after six weeks. The learning slope was associated with the level of balance skill for all children. This study provides evidence that children with p-DCD have limitations in motor learning on a complex balance task. In addition, the data do not support the contention that learning in DCD differs depending on cultural background. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Parameters and Measures in Assessment of Motor Learning in Neurorehabilitation; A Systematic Review of the Literature.

    Science.gov (United States)

    Shishov, Nataliya; Melzer, Itshak; Bar-Haim, Simona

    2017-01-01

    Upper limb function, essential for daily life, is often impaired in individuals after stroke and cerebral palsy (CP). For an improved upper limb function, learning should occur, and therefore training with motor learning principles is included in many rehabilitation interventions. Despite accurate measurement being an important aspect for examination and optimization of treatment outcomes, there are no standard algorithms for outcome measures selection. Moreover, the ability of the chosen measures to identify learning is not well established. We aimed to review and categorize the parameters and measures utilized for identification of motor learning in stroke and CP populations. PubMed, Pedro, and Web of Science databases were systematically searched between January 2000 and March 2016 for studies assessing a form of motor learning following upper extremity training using motor control measures. Thirty-two studies in persons after stroke and 10 studies in CP of any methodological quality were included. Identified outcome measures were sorted into two categories, "parameters," defined as identifying a form of learning, and "measures," as tools measuring the parameter. Review's results were organized as a narrative synthesis focusing on the outcome measures. The included studies were heterogeneous in their study designs, parameters and measures. Parameters included adaptation ( n = 6), anticipatory control ( n = 2), after-effects ( n = 3), de-adaptation ( n = 4), performance ( n = 24), acquisition ( n = 8), retention ( n = 8), and transfer ( n = 14). Despite motor learning theory's emphasis on long-lasting changes and generalization, the majority of studies did not assess the retention and transfer parameters. Underlying measures included kinematic analyses in terms of speed, geometry or both ( n = 39), dynamic metrics, measures of accuracy, consistency, and coordination. There is no exclusivity of measures to a specific parameter. Many factors affect task performance

  15. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    Directory of Open Access Journals (Sweden)

    Laura Marchal-Crespo

    2017-09-01

    Full Text Available Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL, i.e., precuneus, and temporal cortex. These neuroimaging findings

  16. CHANGES IN MOTOR SKILLS OF CHILDREN WHO TRAIN SPORTS SWIMMING AT THE INITIAL STAGE OF SCHOOL EDUCATION (IN ANNUAL TRAINING CYCLE

    Directory of Open Access Journals (Sweden)

    Paul Eider

    2015-12-01

    Full Text Available Introduction: This is an empirical article aiming at defining the changes of motor fitness in children practicing swimming at early stage of training in year-long training cycle. Proper selection of candidates to practice certain sports is a very complex process. One needs to select from the very large population of children, girls and boys, characterized by certain features, including somatic and motor features, which developed in a longstanding process of training, will lead them to become champions. The purpose of the research: The purpose of the research was to define the changes of motor fitness in girls’ practicing swimming at early stage of training in year-long training cycle. Material and Methods: The subjects to the research were 85 girls aged 7 (1st year of primary school, including 36 girls in swimming group and 49 girls in control group. 36 of them belonged to swimmers’ group- all girls were members of the Municipal Swimming Club in Szczecin. Control group consisted of 49 girls, who attended the same elementary schools. The examinations were carried out twice in the 2009-2010 academic year. The most reliable and accurate indirect test- EUROFIT Test Battery-was used. Results : The research revealed changes in both groups (Sw, C in terms of all eight tests. Examination II proved statistically significant improvement of results in both groups (Sw, C in comparison to Examination I. The dynamics of changes in general balance, flexibility, static force, functional force, running agility, was bigger in the girls who practiced swimming. As the speed of movement of upper limb, explosive force and thorax force are concerned; the differences of results in both examinations were similar in both groups (swimming group and control group. Progressive changes in motor fitness of the examined groups are a positive phenomenon in the development of child’s young organism. Conclusions: Swimming training significantly affected the dynamics of

  17. Motor proficiency in normal children and with learning difficulty: a comparative and correlational study based on the motor proficiency test of Bruininks-Oseretsky

    Directory of Open Access Journals (Sweden)

    Nilson Roberto Moreira

    2008-06-01

    Full Text Available The aim of this investigation is to verify the difference between children with learning disabilities and children without learning disabilities through motor proficiency test of Bruininks and Ozeretsky (1978. The sample was constituted by 30 children, with 8-year average age, 15 males and 15 females, subdivided into two groups of 15 children from both sexes: children without learning disabilities attending 3rd grade and children with learning disabilities attending 2nd grade having failed a term once. All of them came from a middle class background, according to Grafar scale (adapted by Fonseca, 1991. All children presenting any other disabilities were excluded from the sample. Intelligence factor “G” was controlled by using a percentile, higher or equal to 50 (middle and high level, measured by Raven’s (1974 progressive combinations test. In motor proficiency, children with learning disabilities showed significant differences when compared with normal children of the same age, in all components of global, composed and fine motricity. The tests administered showed a strong correlation between the variables of the motor proficiency components. The results lead to the conclusion that there were significant differences in motor proficiency between normal children and children with learning disabilities, who showed specific motor difficulties evincing a more vulnerable motor profile and not the presence of neurological dysfunction signs.

  18. Study of somatic, motor and functional effects of practicing initiation programs in water gymnastics and swimming by students of physical education and sports

    Directory of Open Access Journals (Sweden)

    Adela Badau

    2017-08-01

    Full Text Available Introduction: The implementing within the academic physical education and sports curricula of a new discipline such as water gymnastics falls within the current trends of curriculum modernization. Purpose: The purpose of the study aims at evaluating the effects of driving, exercise-induced functional and somatic programs initiation of the gymnasts in the water compared to the effects specific to the initiation swimming. Material and Methods: research duration: two semesters / 14 practical courses. In the first semester the water gymnastics initiation program was implemented and in the second semester the swimming initiation program was implemented. Research Tests: Pretest in the first practical lesson of each semester and posttest in the last lesson of each semester. Participants: 34 male students, specializing in physical education and sport. Somatic, motor and functional assessment: weight, height, BMI, basal metabolism; H2O%, fat%, 2km UKK test, VO2max, fitness index. Statistical processing SPPS 20: arithmetic mean, standard deviation, t-test, probability threshold. Results: improvements relevant to the aqua-gymnastics group: VO2max 7.07 ml/min/kg; Test duration 2km UKK 1.049 minutes; BMI 0.255; and the group of swimming VO2max 0.43 ml/min/kg; Duration 2km UKK 0.44 minutes; BMI 0.139. Conclusions: effects on the functional motor and exercise-induced somatic programs initiation water gymnastics are significantly superior to those of initiation in swimming. We recommend conducting further studies to assess the effects of gymnastics on water through differentiated programs on levels of physical training, age, and the use of various sporting materials.

  19. Effects of a 6-Month Conditioning Program on Motor and Sport Performance in The Group of Children’s Fitness Competitors

    Directory of Open Access Journals (Sweden)

    Mlsnová Gabriela

    2016-11-01

    Full Text Available The aim of our study was to determine changes in sport and motor performance of competitors in the category of children’s fitness as a result of conditioning training intervention. We conducted a two-group simultaneous experiment. Experimental group (EG and control group (CG consisted of 18 girls competing in the 12 to 15 years old age categories. EG performed supervised conditioning program over a period of 25 weeks with training frequency 3 times per week. Based on the results of physical tests, competitive and expert assessments of sport performance in the children’s fitness category we found significant effect of our conditioning program to increase sport and motor performance in the experimental group. Subsequently, these improvements could lead to success in domestic and international competitions where they occupied the leading positions. Significant relationships (EG = 19; CG = 10 were found between competitive and expert assessments as well as physical tests results, between expert and competitive assessments of physiques and routines. These changes manifested positively not only in the competitive assessment of the physique but also in the expert “blind“ assessment in the competitive discipline of the physique presentation in quarter turns where we observed significant improvements in the EG. Based on the obtained results we recommend to increase the ratio of conditioning training to gymnastic-dance training to 50 %, inclusion of strengthening and plyometric exercises into the training process and monitor regularly the level of general and specific abilities of the competitors in the individual mezocycles of the annual training cycle.

  20. Modeling speech imitation and ecological learning of auditory-motor maps

    Directory of Open Access Journals (Sweden)

    Claudia eCanevari

    2013-06-01

    Full Text Available Classical models of speech consider an antero-posterior distinction between perceptive and productive functions. However, the selective alteration of neural activity in speech motor centers, via transcranial magnetic stimulation, was shown to affect speech discrimination. On the automatic speech recognition (ASR side, the recognition systems have classically relied solely on acoustic data, achieving rather good performance in optimal listening conditions. The main limitations of current ASR are mainly evident in the realistic use of such systems. These limitations can be partly reduced by using normalization strategies that minimize inter-speaker variability by either explicitly removing speakers’ peculiarities or adapting different speakers to a reference model. In this paper we aim at modeling a motor-based imitation learning mechanism in ASR. We tested the utility of a speaker normalization strategy that uses motor representations of speech and compare it with strategies that ignore the motor domain. Specifically, we first trained a regressor through state-of-the-art machine learning techniques to build an auditory-motor mapping, in a sense mimicking a human learner that tries to reproduce utterances produced by other speakers. This auditory-motor mapping maps the speech acoustics of a speaker into the motor plans of a reference speaker. Since, during recognition, only speech acoustics are available, the mapping is necessary to recover motor information. Subsequently, in a phone classification task, we tested the system on either one of the speakers that was used during training or a new one. Results show that in both cases the motor-based speaker normalization strategy almost always outperforms all other strategies where only acoustics is taken into account.

  1. Motor learning induces plastic changes in Purkinje cell dendritic spines in the rat cerebellum.

    Science.gov (United States)

    González-Tapia, D; González-Ramírez, M M; Vázquez-Hernández, N; González-Burgos, I

    2017-12-14

    The paramedian lobule of the cerebellum is involved in learning to correctly perform motor skills through practice. Dendritic spines are dynamic structures that regulate excitatory synaptic stimulation. We studied plastic changes occurring in the dendritic spines of Purkinje cells from the paramedian lobule of rats during motor learning. Adult male rats were trained over a 6-day period using an acrobatic motor learning paradigm; the density and type of dendritic spines were determined every day during the study period using a modified version of the Golgi method. The learning curve reflected a considerable decrease in the number of errors made by rats as the training period progressed. We observed more dendritic spines on days 2 and 6, particularly more thin spines on days 1, 3, and 6, fewer mushroom spines on day 3, fewer stubby spines on day 1, and more thick spines on days 4 and 6. The initial stage of motor learning may be associated with fast processing of the underlying synaptic information combined with an apparent "silencing" of memory consolidation processes, based on the regulation of the neuronal excitability. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.

    Science.gov (United States)

    O'Neil, Rochelle L; Skeel, Reid L; Ustinova, Ksenia I

    2013-01-01

    Virtual reality games and simulations have been utilized successfully for motor rehabilitation of individuals with traumatic brain injury (TBI). Little is known, however, how TBI-related cognitive decline affects learning of motor tasks in virtual environments. To fill this gap, we examined learning within a virtual reality game involving various reaching motions in 14 patients with TBI and 15 healthy individuals with different cognitive abilities. All participants practiced ten 90-second gaming trials to assess various aspects of motor learning. Cognitive abilities were assessed with a battery of tests including measures of memory, executive functioning, and visuospatial ability. Overall, participants with TBI showed both reduced performance and a slower learning rate in the virtual reality game compared to healthy individuals. Numerous correlations between overall performance and several of the cognitive ability domains were revealed for both the patient and control groups, with the best predictor being overall cognitive ability. The results may provide a starting point for rehabilitation programs regarding which cognitive domains interact with motor learning.

  3. Analysis of previous perceptual and motor experience in breaststroke kick learning

    Directory of Open Access Journals (Sweden)

    Ried Bettina

    2015-12-01

    Full Text Available One of the variables that influence motor learning is the learner’s previous experience, which may provide perceptual and motor elements to be transferred to a novel motor skill. For swimming skills, several motor experiences may prove effective. Purpose. The aim was to analyse the influence of previous experience in playing in water, swimming lessons, and music or dance lessons on learning the breaststroke kick. Methods. The study involved 39 Physical Education students possessing basic swimming skills, but not the breaststroke, who performed 400 acquisition trials followed by 50 retention and 50 transfer trials, during which stroke index as well as rhythmic and spatial configuration indices were mapped, and answered a yes/no questionnaire regarding previous experience. Data were analysed by ANOVA (p = 0.05 and the effect size (Cohen’s d ≥0.8 indicating large effect size. Results. The whole sample improved their stroke index and spatial configuration index, but not their rhythmic configuration index. Although differences between groups were not significant, two types of experience showed large practical effects on learning: childhood water playing experience only showed major practically relevant positive effects, and no experience in any of the three fields hampered the learning process. Conclusions. The results point towards diverse impact of previous experience regarding rhythmic activities, swimming lessons, and especially with playing in water during childhood, on learning the breaststroke kick.

  4. Striatal and hippocampal involvement in motor sequence chunking depends on the learning strategy.

    Science.gov (United States)

    Lungu, Ovidiu; Monchi, Oury; Albouy, Geneviève; Jubault, Thomas; Ballarin, Emanuelle; Burnod, Yves; Doyon, Julien

    2014-01-01

    Motor sequences can be learned using an incremental approach by starting with a few elements and then adding more as training evolves (e.g., learning a piano piece); conversely, one can use a global approach and practice the whole sequence in every training session (e.g., shifting gears in an automobile). Yet, the neural correlates associated with such learning strategies in motor sequence learning remain largely unexplored to date. Here we used functional magnetic resonance imaging to measure the cerebral activity of individuals executing the same 8-element sequence after they completed a 4-days training regimen (2 sessions each day) following either a global or incremental strategy. A network comprised of striatal and fronto-parietal regions was engaged significantly regardless of the learning strategy, whereas the global training regimen led to additional cerebellar and temporal lobe recruitment. Analysis of chunking/grouping of sequence elements revealed a common prefrontal network in both conditions during the chunk initiation phase, whereas execution of chunk cores led to higher mediotemporal activity (involving the hippocampus) after global than incremental training. The novelty of our results relate to the recruitment of mediotemporal regions conditional of the learning strategy. Thus, the present findings may have clinical implications suggesting that the ability of patients with lesions to the medial temporal lobe to learn and consolidate new motor sequences may benefit from using an incremental strategy.

  5. Differences in Learning Styles and Satisfaction between Traditional Face-to-Face and Online Web-Based Sport Management Studies Students

    Science.gov (United States)

    West, Ellen Jo

    2010-01-01

    Each student has a unique learning style or individual way of perceiving, interacting, and responding to a learning environment. The purpose of this study was to identify and compare the prevalence of learning styles among undergraduate Sport Management Studies (SMS) students at California University of Pennsylvania (Cal U). Learning style…

  6. Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning.

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Shimoda, Shingo

    2014-01-01

    A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.

  7. Configural Response Learning: The Acquisition of a Nonpredictive Motor Skill

    Science.gov (United States)

    Hazeltine, Eliot; Aparicio, Paul; Weinstein, Andrea; Ivry, Richard B.

    2007-01-01

    This study examined the representational nature of configural response learning using a task that required simultaneous keypresses with 2 or 3 fingers, similar to the production of chords on the piano. If the benefits of learning are related to the retrieval of individual stimulus-response mappings, performance should depend on the frequencies of…

  8. Business Model Design: Lessons Learned from Tesla Motors

    OpenAIRE

    Chen , Yurong; Perez , Yannick

    2015-01-01

    International audience; Electric vehicle (EV) industry is still in the introduction stage in product life cycle, and dominant design remains unclear. EV companies, both incumbent from the car industry and new comers, have long taken numerous endeavors to promote EV in the niche market by providing innovative products and business models. While most carmakers still take 'business as usual' approach for developing their EV production and offers, Tesla Motors, an EV entrepreneurial firm, stands ...

  9. Examining the Potential of Web-Based Multimedia to Support Complex Fine Motor Skill Learning: An Empirical Study

    Science.gov (United States)

    Papastergiou, Marina; Pollatou, Elisana; Theofylaktou, Ioannis; Karadimou, Konstantina

    2014-01-01

    Research on the utilization of the Web for complex fine motor skill learning that involves whole body movements is still scarce. The aim of this study was to evaluate the impact of the introduction of a multimedia web-based learning environment, which was targeted at a rhythmic gymnastics routine consisting of eight fine motor skills, into an…

  10. Motor Learning : An Analysis of 100 Trials of a Ski Slalom Game in Children with and without Developmental Coordination Disorder

    NARCIS (Netherlands)

    Smits-Engelsman, Bouwien C M; Jelsma, Lemke Dorothee; Ferguson, Gillian D; Geuze, Reint H

    2015-01-01

    OBJECTIVE: Although Developmental Coordination Disorder (DCD) is often characterized as a skill acquisition deficit disorder, few studies have addressed the process of motor learning. This study examined learning of a novel motor task; the Wii Fit ski slalom game. The main objectives were to

  11. Learning flexible sensori-motor mappings in a complex network.

    Science.gov (United States)

    Vasilaki, Eleni; Fusi, Stefano; Wang, Xiao-Jing; Senn, Walter

    2009-02-01

    Given the complex structure of the brain, how can synaptic plasticity explain the learning and forgetting of associations when these are continuously changing? We address this question by studying different reinforcement learning rules in a multilayer network in order to reproduce monkey behavior in a visuomotor association task. Our model can only reproduce the learning performance of the monkey if the synaptic modifications depend on the pre- and postsynaptic activity, and if the intrinsic level of stochasticity is low. This favored learning rule is based on reward modulated Hebbian synaptic plasticity and shows the interesting feature that the learning performance does not substantially degrade when adding layers to the network, even for a complex problem.

  12. Influence of self-controlled feedback on learning a serial motor skill.

    Science.gov (United States)

    Lim, Soowoen; Ali, Asif; Kim, Wonchan; Kim, Jingu; Choi, Sungmook; Radlo, Steven J

    2015-04-01

    Self-controlled feedback on a variety of tasks are well established as effective means of facilitating motor skill learning. This study assessed the effects of self-controlled feedback on the performance of a serial motor skill. The task was to learn the sequence of 18 movements that make up the Taekwondo Poomsae Taegeuk first, which is the first beginner's practice form learned in this martial art. Twenty-four novice female participants (M age=27.2 yr., SD=1.8) were divided into two groups. All participants performed 16 trials in 4 blocks of the acquisition phase and 20 hr. later, 8 trials in 2 blocks of the retention phase. The self-controlled feedback group had significantly higher performance compared to the yoked-feedback group with regard to acquisition and retention. The results of this study may contribute to the literature regarding feedback by extending the usefulness of self-controlled feedback for learning a serial skill.

  13. Engaging Environments Enhance Motor Skill Learning in a Computer Gaming Task.

    Science.gov (United States)

    Lohse, Keith R; Boyd, Lara A; Hodges, Nicola J

    2016-01-01

    Engagement during practice can motivate a learner to practice more, hence having indirect effects on learning through increased practice. However, it is not known whether engagement can also have a direct effect on learning when the amount of practice is held constant. To address this question, 40 participants played a video game that contained an embedded repeated sequence component, under either highly engaging conditions (the game group) or mechanically identical but less engaging conditions (the sterile group). The game environment facilitated retention over a 1-week interval. Specifically, the game group improved in both speed and accuracy for random and repeated trials, suggesting a general motor-related improvement, rather than a specific influence of engagement on implicit sequence learning. These data provide initial evidence that increased engagement during practice has a direct effect on generalized learning, improving retention and transfer of a complex motor skill.

  14. Interacting adaptive processes with different timescales underlie short-term motor learning.

    Directory of Open Access Journals (Sweden)

    Maurice A Smith

    2006-06-01

    Full Text Available Multiple processes may contribute to motor skill acquisition, but it is thought that many of these processes require sleep or the passage of long periods of time ranging from several hours to many days or weeks. Here we demonstrate that within a timescale of minutes, two distinct fast-acting processes drive motor adaptation. One process responds weakly to error but retains information well, whereas the other responds strongly but has poor retention. This two-state learning system makes the surprising prediction of spontaneous recovery (or adaptation rebound if error feedback is clamped at zero following an adaptation-extinction training episode. We used a novel paradigm to experimentally confirm this prediction in human motor learning of reaching, and we show that the interaction between the learning processes in this simple two-state system provides a unifying explanation for several different, apparently unrelated, phenomena in motor adaptation including savings, anterograde interference, spontaneous recovery, and rapid unlearning. Our results suggest that motor adaptation depends on at least two distinct neural systems that have different sensitivity to error and retain information at different rates.

  15. Random practice - one of the factors of the motor learning process

    Directory of Open Access Journals (Sweden)

    Petr Valach

    2012-01-01

    Full Text Available BACKGROUND: An important concept of acquiring motor skills is the random practice (contextual interference - CI. The explanation of the effect of contextual interference is that the memory has to work more intensively, and therefore it provides higher effect of motor skills retention than the block practice. Only active remembering of a motor skill assigns the practical value for appropriate using in the future. OBJECTIVE: The aim of this research was to determine the difference in how the motor skills in sport gymnastics are acquired and retained using the two different teaching methods - blocked and random practice. METHODS: The blocked and random practice on the three selected gymnastics tasks were applied in the two groups students of physical education (blocked practice - the group BP, random practice - the group RP during two months, in one session a week (totally 80 trials. At the end of the experiment and 6 months after (retention tests the groups were tested on the selected gymnastics skills. RESULTS: No significant differences in a level of the gymnastics skills were found between BP group and RP group at the end of the experiment. However, the retention tests showed significantly higher level of the gymnastics skills in the RP group in comparison with the BP group. CONCLUSION: The results confirmed that a retention of the gymnastics skills using the teaching method of the random practice was significantly higher than with use of the blocked practice.

  16. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.

    Science.gov (United States)

    Chadderdon, George L; Neymotin, Samuel A; Kerr, Cliff C; Lytton, William W

    2012-01-01

    Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint "forearm" to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1), no learning (0), or punishment (-1), corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.

  17. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.

    Directory of Open Access Journals (Sweden)

    George L Chadderdon

    Full Text Available Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint "forearm" to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1, no learning (0, or punishment (-1, corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.

  18. Changes in corticospinal drive to spinal motoneurones following visuo-motor skill learning in humans

    DEFF Research Database (Denmark)

    Perez, Monica A.; Jensen, Jesper Lundbye; Nielsen, Jens Bo

    2006-01-01

    learning. Here we investigated the effect of visuo-motor skill training involving the ankle muscles on the coupling between electroencephalographic (EEG) activity recorded from the motor cortex (Cz) and electromyographic (EMG) activity recorded from the left tibialis anterior (TA) muscle in 11 volunteers....... Coupling in the time (cumulant density function) and frequency domains (coherence) between EEG-EMG and EMG-EMG activity were calculated during tonic isometric dorsiflexion before and after 32 min of training a visuo-motor tracking task involving the ankle muscles or performing alternating dorsi......- and plantarflexion movements without visual feedback. A significant increase in EEG-EMG coherence around 15-35 Hz was observed following the visuo-motor skill session in nine subjects and in only one subject after the control task. Changes in coherence were specific to the trained muscle as coherence...

  19. Eliminating Direction Specificity in Visuomotor Learning.

    Science.gov (United States)

    Yin, Cong; Bi, Yuqing; Yu, Cong; Wei, Kunlin

    2016-03-30

    The generalization of learning offers a unique window for investigating the nature of motor learning. Error-based motor learning reportedly cannot generalize to distant directions because the aftereffects are direction specific. This direction specificity is often regarded as evidence that motor adaptation is model-based learning, and is constrained by neuronal tuning characteristics in the primary motor cortices and the cerebellum. However, recent evidence indicates that motor adaptation also involves model-free learning and explicit strategy learning. Using rotation paradigms, here we demonstrate that savings (faster relearning), which is closely related to model-free learning and explicit strategy learning, is also direction specific. However, this new direction specificity can be abolished when the participants receive exposure to the generalization directions via an irrelevant visuomotor gain-learning task. Control evidence indicates that this exposure effect is weakened when direction error signals are absent during gain learning. Therefore, the direction specificity in visuomotor learning is not solely related to model-based learning; it may also result from the impeded expression of model-free learning and explicit strategy learning with untrained directions. Our findings provide new insights into the mechanisms underlying motor learning, and may have important implications for practical applications such as motor rehabilitation. Motor learning is more useful if it generalizes to untrained scenarios when needed, especially for sports training and motor rehabilitation. However, as a form of motor learning, motor adaptation is typically direction specific. Here we first show that savings with motor adaptation, an index for model-free learning and explicit strategy learning in motor learning, is also direction specific. However, the participants' additional exposure to untrained directions via an irrelevant gain-learning task can enable the complete

  20. How fit are children and adolescents with haemophilia in Germany? Results of a prospective study assessing the sport-specific motor performance by means of modern test procedures of sports science.

    Science.gov (United States)

    Seuser, A; Boehm, P; Ochs, S; Trunz-Carlisi, E; Halimeh, S; Klamroth, R

    2015-07-01

    There are a lot of publications on the physical fitness of patients with haemophilia (PWH), however, most studies only reflect individual sport-specific motor capacities or focus on a single fitness ability. They involve small patient populations. In this respect principal objective of this study was to compare the physical fitness in all respects and the body composition of young PWH to healthy peers based on the most valid data we could get. Twenty-one German haemophilia treatment centres were visited from 2002 to 2009. PWH between 8 and 25 years were included. They performed a five-stage fitness test covering the sport-specific motor capacities for coordination, measured by one leg stand, strength, aerobic fitness and mobility as well as body composition. The patients' results were compared with age- and gender-specific reference values of healthy subjects. Two hundred and eighty-five PWH (mean age 13.2 ± 4.5 years, 164 PWH with severe disease) were included prospectively in the study. PWH are significantly below the reference values of healthy subjects in the one-leg stand test, the mobility of the lower extremity, the strength ratio of chest and back muscles and the endurance test. In body composition, the back strength and the mobility of the upper extremity PWH are significantly above the reference values. There are no significant differences in abdominal strength. In conclusion we found specific differences in different fitness abilities between PWH and healthy subjects. Knowing this, we are able to work out exercise programmes to compensate the diminished fitness abilities for our PWH. © 2015 John Wiley & Sons Ltd.

  1. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children.

    Science.gov (United States)

    Beck, Mikkel M; Lind, Rune R; Geertsen, Svend S; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children ( n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) ( p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers ( p = 0.04) and FMM 2.14 ± 0.72 correct answers ( p = 0.008). These effects were not observed in low math-performers. The effects were

  2. Evidence of alterations in transcallosal motor inhibition as a possible long-term consequence of concussions in sports: A transcranial magnetic stimulation study.

    Science.gov (United States)

    Davidson, Travis W; Tremblay, François

    2016-10-01

    Growing evidence suggests that long-term structural and physiological alterations are present in the brain of previously concussed athletes. In this study, we sought to further explore the long-term consequences of concussions with transcranial magnetic stimulation (TMS) by examining excitability changes both within and between hemispheres. Participants (32 young adults with and without a history of concussions (HxC)) first underwent testing to assess cognitive and motor performance using standardized tests. Then, the following TMS measures were derived bilaterally: (1) resting motor threshold and motor evoked potentials (MEP), (2) afferent-induced modulation, (3) contralateral silent period (cSP) and MEP facilitation, and, (4) ipsilateral silent period (iSP). Multivariate analyses of performance data revealed no major group differences. For TMS data, no "hemisphere" effects were detected for all measures. Group differences were detected only for iSP derived measures owing to alterations in the onset latency and duration of transcallosal inhibition in the HxC group. While no major asymmetries were found between hemispheres, participants in the HxC group showed evidence of impaired transcallosal inhibition. Results provide one of the first piece of evidence pointing to alterations in transcallosal inhibition as a potential neurophysiological marker of long-term consequences of concussions in sports. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Transfer of Motor Learning Is More Pronounced in Proximal Compared to Distal Effectors in Upper Extremities

    Directory of Open Access Journals (Sweden)

    Tore K. Aune

    2017-09-01

    Full Text Available The current experiment investigated generalizability of motor learning in proximal versus distal effectors in upper extremities. Twenty-eight participants were divided into three groups: training proximal effectors, training distal effectors, and no training control group (CG. Performance was tested pre- and post-training for specific learning and three learning transfer conditions: (1 bilateral learning transfer between homologous effectors, (2 lateral learning transfer between non-homologous effectors, and (3 bilateral learning transfer between non-homologous effectors. With respect to specific learning, both training groups showed significant, similar improvement for the trained proximal and distal effectors, respectively. In addition, there was significant learning transfer to all three transfer conditions, except for bilateral learning transfer between non-homologous effectors for the distal training group. Interestingly, the proximal training group showed significantly larger learning transfer to other effectors compared to the distal training group. The CG did not show significant improvements from pre- to post-test. These results show that learning is partly effector independent and generalizable to different effectors, even though transfer is suboptimal compared to specific learning. Furthermore, there is a proximal-distal gradient in generalizability, in that learning transfer from trained proximal effectors is larger than from trained distal effectors, which is consistent with neuroanatomical differences in activation of proximal and distal muscles.

  4. Does (Non-)Meaningful Sensori-Motor Engagement Promote Learning With Animated Physical Systems?

    NARCIS (Netherlands)

    Pouw, Wim T J L; Eielts, Charly; van Gog, Tamara; Zwaan, Rolf A.; Paas, Fred

    2016-01-01

    Previous research indicates that sensori-motor experience with physical systems can have a positive effect on learning. However, it is not clear whether this effect is caused by mere bodily engagement or the intrinsically meaningful information that such interaction affords in performing the

  5. Learning to balance on one leg: motor strategy and sensory weighting.

    NARCIS (Netherlands)

    van Dieen, J.H.; van Leeuwen, M.; Faber, G.S.

    2015-01-01

    We investigated motor and sensory changes underlying learning of a balance task. Fourteen participants practiced balancing on one leg on a board that could freely rotate in the frontal plane. They performed six, 16-s trials standing on one leg on a stable surface (2 trials without manipulation, 2

  6. Motor Learning of a Bimanual Task in Children with Unilateral Cerebral Palsy

    Science.gov (United States)

    Hung, Ya-Ching; Gordon, Andrew M.

    2013-01-01

    Children with unilateral cerebral palsy (CP) have been shown to improve their motor performance with sufficient practice. However, little is known about how they learn goal-oriented tasks. In the current study, 21 children with unilateral CP (age 4-10 years old) and 21 age-matched typically developed children (TDC) practiced a simple bimanual…

  7. The influence of errors during practice on motor learning in young individuals with cerebral palsy.

    Science.gov (United States)

    van Abswoude, Femke; Santos-Vieira, Beatriz; van der Kamp, John; Steenbergen, Bert

    2015-01-01

    The aim of this study was to investigate the effect of errors during practice on motor skill learning in young individuals with cerebral palsy (CP). Minimizing errors has been validated in typically developing children and children with intellectual disabilities as a method for implicit learning, because it reduces working memory involvement during learning. The present study assessed whether a practice protocol that aims at minimizing errors can induce implicit learning in young individuals with CP as well. Accordingly, we hypothesized that reducing errors during practice would lead to enhanced learning and a decrease in the dependency of performance on working memory. Young individuals with CP practiced an aiming task following either an error-minimizing (N=20) or an error-strewn (N=18) practice protocol. Aiming accuracy was assessed in pre-, post- and retention test. Dual task performance was assessed to establish dependency on working memory. The two practice protocols did not invoke different amounts or types of learning in the participants with CP. Yet, participants improved aiming accuracy and showed stable motor performance after learning, irrespective of the protocol they followed. Across groups the number of errors made during practice was related to the amount of learning, and the degree of conscious monitoring of the movement. Only participants with relatively good working memory capacity and a poor initial performance showed a rudimentary form of (most likely, explicit) learning. These new findings on the effect of the amount of practice errors on motor learning in children of CP are important for designing interventions for children and adolescents with CP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Premature return to play and return to learn after a sport-related concussion: physician's chart review.

    Science.gov (United States)

    Carson, James D; Lawrence, David W; Kraft, Sari A; Garel, Alisha; Snow, Catherine L; Chatterjee, Ananda; Libfeld, Paula; MacKenzie, Heather M; Thornton, Jane S; Moineddin, Rahim; Frémont, Pierre

    2014-06-01

    To determine what proportion of patients experience an exacerbation of their symptoms as a result of premature return to play (RTP) and return to learn (RTL) following sport-related concussions. Retrospective study of electronic medical records from the office-based practice of one family and sport medicine physician who had systematically provided recommendations for cognitive and physical rest based on existing consensus recommendations. Two blinded authors independently reviewed each chart, which included Sport Concussion Assessment Tool (SCAT) and SCAT2 symptom self-report forms to determine whether an athlete had returned to play or learn prematurely. If there was a discrepancy between the 2 reviewers then a third author reviewed the charts. A sport medicine and family practice in Ontario. The physician assessed sport-related concussions after self-referral or referral from other primary care physicians, teams, and schools. A total of 170 charts of 159 patients were assessed for sport-related concussion during a 5-year period (April 2006 to March 2011). All participants were students who were participating in sports at the time of injury. There were 41 concussions in elementary students, 95 concussions in high school students, and 34 concussions in college or university students. Premature RTP and RTL were defined as chart records documenting the recurrence or worsening of symptoms that accompanied the patients' RTP or RTL. Measures were compared using the earliest available SCAT forms and self-reporting. In 43.5% of concussion cases, the patient returned to sport too soon and in 44.7% of concussion cases, the patient returned to school too soon. Patients with a history of previous concussion required more days of rest before being permitted to participate in any physical activity than those patients without a previous history of concussion. Elementary school students required fewer days of rest before being permitted to return to any physical activity

  9. Sport Education as a Curriculum Approach to Student Learning of Invasion Games: Effects on Game Performance and Game Involvement.

    Science.gov (United States)

    Farias, Cláudio; Valério, Carla; Mesquita, Isabel

    2018-03-01

    The teaching and learning of games and sport-based activities has historically been the dominant form of the physical education curricula. With an interest in providing to students meaningful and culturally situated sporting experiences, Sport Education is probably the most implemented and researched pedagogical model worldwide. However, although there is considerable evidence that the model as a curriculum approach can benefit the development of social goals and healthy sport behaviors, not a single study as to date examined students' game-play development beyond participation in single and isolated teaching units. Therefore, the purpose of this study was to examine students' development of Game Performance and Game Involvement during participation in three consecutive Sport Education seasons of invasion games. The participants were an experienced physical education teacher and one seventh-grade class totaling 26 students (10 girls and 16 boys). Using the Game Performance Assessment Instrument (Oslin et al., 1998), pre-test to post-tests measures of students' Game Performance and Game Involvement were collected during their participation in basketball (20 lessons), handball (16 lessons), and football (18 lessons) units. Inter-group differences and pre-test to post-test improvements within each season were analyzed through 2 (time) x group (sport) repeated measures ANOVA tests. There were found significant pre-test to post-test improvements in Game Performance and Game Involvement in the second (handball) and third (football) seasons, but not in the first season (basketball). Students' Game Performance and Involvement scores of handball and football were significantly higher than their scores while playing basketball. The opportunity for an extended engagement in game-play activities and prolonged membership of students in the same teams throughout three consecutive seasons of Sport Education were key to the outcomes found. The specific configurations of the game

  10. Sport Education as a Curriculum Approach to Student Learning of Invasion Games: Effects on Game Performance and Game Involvement

    Directory of Open Access Journals (Sweden)

    Cláudio Farias, Carla Valério, Isabel Mesquita

    2018-03-01

    Full Text Available The teaching and learning of games and sport-based activities has historically been the dominant form of the physical education curricula. With an interest in providing to students meaningful and culturally situated sporting experiences, Sport Education is probably the most implemented and researched pedagogical model worldwide. However, although there is considerable evidence that the model as a curriculum approach can benefit the development of social goals and healthy sport behaviors, not a single study as to date examined students’ game-play development beyond participation in single and isolated teaching units. Therefore, the purpose of this study was to examine students’ development of Game Performance and Game Involvement during participation in three consecutive Sport Education seasons of invasion games. The participants were an experienced physical education teacher and one seventh-grade class totaling 26 students (10 girls and 16 boys. Using the Game Performance Assessment Instrument (Oslin et al., 1998, pre-test to post-tests measures of students’ Game Performance and Game Involvement were collected during their participation in basketball (20 lessons, handball (16 lessons, and football (18 lessons units. Inter-group differences and pre-test to post-test improvements within each season were analyzed through 2 (time x group (sport repeated measures ANOVA tests. There were found significant pre-test to post-test improvements in Game Performance and Game Involvement in the second (handball and third (football seasons, but not in the first season (basketball. Students’ Game Performance and Involvement scores of handball and football were significantly higher than their scores while playing basketball. The opportunity for an extended engagement in game-play activities and prolonged membership of students in the same teams throughout three consecutive seasons of Sport Education were key to the outcomes found. The specific

  11. Neuronal mechanisms of motor learning are age dependent.

    Science.gov (United States)

    Berghuis, Kelly M M; De Rond, Veerle; Zijdewind, Inge; Koch, Giacomo; Veldman, Menno P; Hortobágyi, Tibor

    2016-10-01

    There is controversy whether age-related neuroanatomical and neurophysiological changes in the central nervous system affect healthy old adults' abilities to acquire and retain motor skills. We examined the effects of age on motor skill acquisition and retention and potential underlying mechanisms by measuring corticospinal and intracortical excitability, using transcranial magnetic stimulation. Healthy young (n = 24, 22 years) and old (n = 22, 71 years) adults practiced a wrist flexion-extention visuomotor task or only watched the templates as an attentional control for 20 minutes. Old compared with young adults performed less well at baseline. Although the absolute magnitude of skill acquisition and retention was similar in the 2 age groups (age × intervention × time, p = 0.425), a comparison of baseline-similar age sub-groups revealed impaired skill acquisition but not retention in old versus young. Furthermore, the neuronal mechanisms differed as revealed by an opposite direction of associations in the age-groups between relative skill acquisition and intracortical facilitation during the task, and opposite changes during skill retention in corticospinal excitability at rest and during the task and intracortical inhibition during the task. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A gait paradigm reveals different patterns of abnormal cerebellar motor learning in primary focal dystonias.

    Science.gov (United States)

    Hoffland, B S; Veugen, L C; Janssen, M M H P; Pasman, J W; Weerdesteyn, V; van de Warrenburg, B P

    2014-12-01

    Accumulating evidence points to a role of the cerebellum in the pathophysiology of primary dystonia. The aim of this study was to investigate whether the abnormalities of cerebellar motor learning in primary dystonia are solely detectable in more pure forms of cerebellum-dependent associative motor learning paradigms, or whether these are also present in other motor learning paradigms that rely heavily on the cerebellum but in addition require a more widespread sensorimotor network. Twenty-six patients with various forms of focal dystonia and 10 age-matched healthy controls participated in a motor learning paradigm on a split-belt treadmill. By using reflective markers, three-dimensional kinematics were recorded using a 6-camera motion analysis system. Adaptation walking parameters were analyzed offline, comparing the different dystonia groups and healthy controls. Patients with blepharospasm and writer's cramp were significantly impaired on various adaptation walking parameters. Whereas results of cervical dystonia patients did not differ from healthy controls in terms of adaptation walking parameters, differences in parameters of normal gait were found. We have here demonstrated abnormal sensorimotor adaptation with the split-belt paradigm in patients with blepharospasm and writer's cramp. This reinforces the current concept of cerebellar dysfunction in primary dystonia, and that this extends beyond more pure forms of cerebellum-dependent associative motor learning paradigms. However, the finding of normal adaptation in cervical dystonia patients indicates that the pattern of cerebellar dysfunction may be slightly different for the various forms of primary focal dystonia, suggesting that actual cerebellar pathology may not be a primary driving force in dystonia.

  13. Active Learning to Develop Motor Skills and Teamwork

    Directory of Open Access Journals (Sweden)

    Johanna Lorena Aristizabal-Almanza

    2017-12-01

    Full Text Available This action-research project was conducted to determine how the use of principles of active learning, specifically collaboration, had an effect on psychomotor performance and achievement in teamwork. The research setting included 20 students of first grade from a private school located in Bogota, Colombia. The students were selected through not randomized sampling based on criteria. The methodological process included observation, interviews, and a scale based on standardized tests to measure skills; the latter was applied before and after the intervention. Data analysis was performed using a triangulation of qualitative data, and through comparative analysis of the initial and final student profile for quantitative inputs. The results showed that, after the intervention with collaborative techniques based on action learning, students achieved a positive variation in their performance. Being part of a team positively affected the achievement of the objectives. Systematical reflection on their practices fostered their capacity to identify strengths and weaknesses to build knowledge in interaction with others. Knowledge construction was nurtured based in their previous experiences. Students showed more accountability and self-directed learning behaviors, according to their age. Overall the experience showed the importance of research and innovation in the classroom in order to provide meaningful data, so teachers and researchers can engage in providing learning experiences based in active learning.

  14. [Use of nondeclarative and automatic memory processes in motor learning: how to mitigate the effects of aging].

    Science.gov (United States)

    Chauvel, Guillaume; Maquestiaux, François; Didierjean, André; Joubert, Sven; Dieudonné, Bénédicte; Verny, Marc

    2011-12-01

    Does normal aging inexorably lead to diminished motor learning abilities? This article provides an overview of the literature on the question, with particular emphasis on the functional dissociation between two sets of memory processes: declarative, effortful processes, and non-declarative, automatic processes. There is abundant evidence suggesting that aging does impair learning when past memories of former actions are required (episodic memory) and recollected through controlled processing (working memory). However, other studies have shown that aging does not impair learning when motor actions are performed non verbally and automatically (tapping procedural memory). These findings led us to hypothesize that one can minimize the impact of aging on the ability to learn new motor actions by favouring procedural learning. Recent data validating this hypothesis are presented. Our findings underline the importance of developing new motor learning strategies, which "bypass" declarative, effortful memory processes.

  15. Sports Physicals

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Sports Physicals KidsHealth / For Teens / Sports Physicals What's in ... beginning of your sports season. What Is a Sports Physical? In the sports medicine field, the sports ...

  16. Motor-related signals in the auditory system for listening and learning.

    Science.gov (United States)

    Schneider, David M; Mooney, Richard

    2015-08-01

    In the auditory system, corollary discharge signals are theorized to facilitate normal hearing and the learning of acoustic behaviors, including speech and music. Despite clear evidence of corollary discharge signals in the auditory cortex and their presumed importance for hearing and auditory-guided motor learning, the circuitry and function of corollary discharge signals in the auditory cortex are not well described. In this review, we focus on recent developments in the mouse and songbird that provide insights into the circuitry that transmits corollary discharge signals to the auditory system and the function of these signals in the context of hearing and vocal learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-01-01

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414

  18. Impaired short-term motor learning in multiple sclerosis: evidence from virtual reality.

    Science.gov (United States)

    Leocani, Letizia; Comi, Eleonora; Annovazzi, Pietro; Rovaris, Marco; Rossi, Paolo; Cursi, Marco; Comola, Mauro; Martinelli, Vittorio; Comi, Giancarlo

    2007-01-01

    Virtual reality (VR) has been proposed as a potentially useful tool for motor assessment and rehabilitation. The objective of this study was to investigate the usefulness of VR in the assessment of short-term motor learning in multiple sclerosis (MS). Twelve right-handed MS patients and 12 control individuals performed a motor-tracking task with their right upper limb, following the trajectory of an object projected on a screen along with online visual feedback on hand position from a sensor on the index finger. A pretraining test (3 trials), a training phase (12 trials), and a posttraining test (3 trials) were administered. Distances between performed and required trajectory were computed. Both groups performed worse in depth planes compared to the frontal (x,z) plane (P plane at both evaluations (P planes only (P = .03). The authors' VR system detected impaired motor learning in MS patients, especially for task features requiring a complex integration of sensory information (movement in the depth planes). These findings stress the need for careful customization of rehabilitation strategies, which must take into account the patients' motor, sensory, and cognitive limitations.

  19. Effects of attentional focus on motor learning in children with autism spectrum disorder.

    Science.gov (United States)

    Tse, Andy Cy

    2017-12-01

    Inability to acquire a new motor skill is a common motor difficulty in children with autism spectrum disorder. The purpose of this study is to examine whether the motor learning benefits of an external focus of attention for typically developing children and children with intellectual disabilities could also be applied to children with autism spectrum disorder. Children ( N = 65; mean age = 10.01 years) diagnosed with high-functioning autism spectrum disorder were randomly assigned into one of the three groups: external focus ( n = 22), internal focus ( n = 22), and control ( n = 21). They were required to throw beanbags at a static target for 50 acquisition trials, 10 retention trials, and 10 transfer trials. While all three groups learnt the skills in a similar manner during the acquisition phase, the internal focus group demonstrated more robust motor performance than the external focus group and the control group in both retention and transfer tests, while there was no difference between the external focus group and the control group in both retention and transfer tests. The findings provide evidence that internal focus of attention may be more effective for facilitating motor learning in children with autism spectrum disorder. However, further study is needed to determine the factors contributing to this finding.

  20. A case study of mediated learning, delayed auditory feedback, and motor repatterning to reduce stuttering.

    Science.gov (United States)

    Radford, Nola T; Tanguma, Jesus; Gonzalez, Marcia; Nericcio, Mary Anne; Newman, Denis G

    2005-08-01

    A case study of DW, an 11-yr. old monolingual, English-speaking boy who exhibits stuttering, language delay, and ADHD is presented. DW experienced only limited improvement during stuttering therapy received in public schools, according to parents and the public school clinician. The purpose of this case study was to assess whether fluency treatment which incorporated Mediated Learning, Delayed Auditory Feedback, and Speech Motor Repatterning would enhance progress. Therapy was delivered in two treatments, with each treatment being 5 wk. of intense therapy, separated by one year. Treatment 1 of combined Mediated Learning and Delayed Auditory Feedback yielded improvement in fluency, judged by parents and the teacher to be clinically significant. The improved fluency was maintained for one year when DW was pretested for participation in Treatment 2, which combined Mediated Learning, Delayed Auditory Feedback, and Speech Motor Repatterning Exercises. As no conclusions are possible, further study is needed.

  1. Physical assistance devices in complex motor skill learning: benefits of a self-controlled practice schedule.

    Science.gov (United States)

    Wulf, G; Toole, T

    1999-09-01

    This study examines the effects of a self-controlled use of physical assistance devices on learning a complex motor skill (i.e., producing slalom-type movements on a ski simulator). Physical assistance was provided by ski poles. One group of learners (self-control) was provided with the poles whenever they requested them, whereas another (yoked) group had no influence on the pole/no-pole schedule. While there were no group differences during the practice phase (Days 1 and 2), clear group differences emerged in the retention test without poles (Day 3). The self-control group produced significantly larger amplitudes than the yoked group. These results extend previous findings by showing learning advantages of the self-controlled use of physical assistance devices in complex motor skill learning.

  2. Intact Procedural Motor Sequence Learning in Developmental Coordination Disorder

    Science.gov (United States)

    Lejeune, Caroline; Catale, Corinne; Willems, Sylvie; Meulemans, Thierry

    2013-01-01

    The purpose of the present study was to explore the possibility of a procedural learning deficit among children with developmental coordination disorder (DCD). We tested 34 children aged 6-12 years with and without DCD using the serial reaction time task, in which the standard keyboard was replaced by a touch screen in order to minimize the impact…

  3. Researching Sport Education Appreciatively

    Science.gov (United States)

    Pill, Shane; Hastie, Peter

    2016-01-01

    In order to plan and enact appropriate learning environments in physical education (PE) teachers are increasingly directed to models based practice. The Sport Education model is one of these models for PE curriculum and teaching design that informs the content and pedagogical direction of sport teaching in PE. Despite Sport Education being well…

  4. Cerebellar motor learning: when is cortical plasticity not enough?

    Directory of Open Access Journals (Sweden)

    John Porrill

    2007-10-01

    Full Text Available Classical Marr-Albus theories of cerebellar learning employ only cortical sites of plasticity. However, tests of these theories using adaptive calibration of the vestibulo-ocular reflex (VOR have indicated plasticity in both cerebellar cortex and the brainstem. To resolve this long-standing conflict, we attempted to identify the computational role of the brainstem site, by using an adaptive filter version of the cerebellar microcircuit to model VOR calibration for changes in the oculomotor plant. With only cortical plasticity, introducing a realistic delay in the retinal-slip error signal of 100 ms prevented learning at frequencies higher than 2.5 Hz, although the VOR itself is accurate up to at least 25 Hz. However, the introduction of an additional brainstem site of plasticity, driven by the correlation between cerebellar and vestibular inputs, overcame the 2.5 Hz limitation and allowed learning of accurate high-frequency gains. This "cortex-first" learning mechanism is consistent with a wide variety of evidence concerning the role of the flocculus in VOR calibration, and complements rather than replaces the previously proposed "brainstem-first" mechanism that operates when ocular tracking mechanisms are effective. These results (i describe a process whereby information originally learnt in one area of the brain (cerebellar cortex can be transferred and expressed in another (brainstem, and (ii indicate for the first time why a brainstem site of plasticity is actually required by Marr-Albus type models when high-frequency gains must be learned in the presence of error delay.

  5. Motor learning and cross-limb transfer rely upon distinct neural adaptation processes

    Science.gov (United States)

    Carroll, Timothy J.; Summers, Jeffery J.; Hinder, Mark R.

    2016-01-01

    Performance benefits conferred in the untrained limb after unilateral motor practice are termed cross-limb transfer. Although the effect is robust, the neural mechanisms remain incompletely understood. In this study we used noninvasive brain stimulation to reveal that the neural adaptations that mediate motor learning in the trained limb are distinct from those that underlie cross-limb transfer to the opposite limb. Thirty-six participants practiced a ballistic motor task with their right index finger (150 trials), followed by intermittent theta-burst stimulation (iTBS) applied to the trained (contralateral) primary motor cortex (cM1 group), the untrained (ipsilateral) M1 (iM1 group), or the vertex (sham group). After stimulation, another 150 training trials were undertaken. Motor performance and corticospinal excitability were assessed before motor training, pre- and post-iTBS, and after the second training bout. For all groups, training significantly increased performance and excitability of the trained hand, and performance, but not excitability, of the untrained hand, indicating transfer at the level of task performance. The typical facilitatory effect of iTBS on MEPs was reversed for cM1, suggesting homeostatic metaplasticity, and prior performance gains in the trained hand were degraded, suggesting that iTBS interfered with learning. In stark contrast, iM1 iTBS facilitated both performance and excitability for the untrained hand. Importantly, the effects of cM1 and iM1 iTBS on behavior were exclusive to the hand contralateral to stimulation, suggesting that adaptations within the untrained M1 contribute to cross-limb transfer. However, the neural processes that mediate learning in the trained hemisphere vs. transfer in the untrained hemisphere appear distinct. PMID:27169508

  6. Biomechanical procedure to assess sleep restriction on motor control and learning.

    Science.gov (United States)

    Umemura, G S; Noriega, C L; Soares, D F; Forner-Cordero, A

    2017-07-01

    The analysis of sleep quality during long periods and its impact on motor control and learning performance are crucial aspects for human health. The aim of this study is to analyze effects of chronic sleep restriction on motor performance. It is intended to establish motor control indicators in sleep quality analysis. A wearable actigraphy that records accelerometry, ambient light, and body temperature was used to monitor the sleep habits of 12 healthy subjects for two weeks before performing motor control and learning tests. The day of the motor test, the subjects filled two questionnaires about the quality of sleep (Pittsburgh Sleep Quality Index - PSQI) and sleepiness (Epworth Sleepiness Scale - ESS). Afterwards they performed a coincident timing task that consisted of hitting a virtual target falling on the screen with the hand. An elbow flexion in the horizontal plane had to be performed on the correct time to reach the real target on a table at the same time as the virtual target on the screen. The subjects performed three sets of acquisition and transfer blocks of the coincident timing task. The subjects were clustered in two groups based on the PSQI and ESS scores. Actigraphy and motor control parameters (L5, correct responses, time variance) were compared between groups and experimental sets. The group with better sleep parameters did show a constant performance across blocks of task acquisition while the bad sleeper group improved from the first to the second acquisition block. Despite of this improvement, their performance is not better than the one of the good sleepers group. Although the number of subjects is low and it should be increased, these results indicate that the subjects with better sleep converged rapidly to a high level of performance, while the worse sleepers needed more trials to learn the task and their performance was not superior to the other group.

  7. Auditory-motor learning during speech production in 9-11-year-old children.

    Directory of Open Access Journals (Sweden)

    Douglas M Shiller

    Full Text Available BACKGROUND: Hearing ability is essential for normal speech development, however the precise mechanisms linking auditory input and the improvement of speaking ability remain poorly understood. Auditory feedback during speech production is believed to play a critical role by providing the nervous system with information about speech outcomes that is used to learn and subsequently fine-tune speech motor output. Surprisingly, few studies have directly investigated such auditory-motor learning in the speech production of typically developing children. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we manipulated auditory feedback during speech production in a group of 9-11-year old children, as well as in adults. Following a period of speech practice under conditions of altered auditory feedback, compensatory changes in speech production and perception were examined. Consistent with prior studies, the adults exhibited compensatory changes in both their speech motor output and their perceptual representations of speech sound categories. The children exhibited compensatory changes in the motor domain, with a change in speech output that was similar in magnitude to that of the adults, however the children showed no reliable compensatory effect on their perceptual representations. CONCLUSIONS: The results indicate that 9-11-year-old children, whose speech motor and perceptual abilities are still not fully developed, are nonetheless capable of auditory-feedback-based sensorimotor adaptation, supporting a role for such learning processes in speech motor development. Auditory feedback may play a more limited role, however, in the fine-tuning of children's perceptual representations of speech sound categories.

  8. [Motor capacities involved in the psychomotor skills of the cardiopulmonary resuscitation technique: recommendations for the teaching-learning process].

    Science.gov (United States)

    Miyadahira, A M

    2001-12-01

    It is a bibliographic study about the identification of the motor capacities involved in the psychomotor skills of the cardiopulmonary resuscitation (CPR) which aims to obtain subsidies to the planning of the teaching-learning process of this skill. It was found that: the motor capacities involved in the psychomotor skill of the CPR technique are predominantly cognitive and motor, involving 9 perceptive-motor capacities and 8 physical proficiency capacities. The CPR technique is a psychomotor skill classified as open, done in series and categorized as a thin and global skill and the teaching-learning process of the CPR technique has an elevated degree of complexity.

  9. Age effects shrink when motor learning is predominantly supported by nondeclarative, automatic memory processes: evidence from golf putting.

    Science.gov (United States)

    Chauvel, Guillaume; Maquestiaux, François; Hartley, Alan A; Joubert, Sven; Didierjean, André; Masters, Rich S W

    2012-01-01

    Can motor learning be equivalent in younger and older adults? To address this question, 48 younger (M = 23.5 years) and 48 older (M = 65.0 years) participants learned to perform a golf-putting task in two different motor learning situations: one that resulted in infrequent errors or one that resulted in frequent errors. The results demonstrated that infrequent-error learning predominantly relied on nondeclarative, automatic memory processes whereas frequent-error learning predominantly relied on declarative, effortful memory processes: After learning, infrequent-error learners verbalized fewer strategies than frequent-error learners; at transfer, a concurrent, attention-demanding secondary task (tone counting) left motor performance of infrequent-error learners unaffected but impaired that of frequent-error learners. The results showed age-equivalent motor performance in infrequent-error learning but age deficits in frequent-error learning. Motor performance of frequent-error learners required more attention with age, as evidenced by an age deficit on the attention-demanding secondary task. The disappearance of age effects when nondeclarative, automatic memory processes predominated suggests that these processes are preserved with age and are available even early in motor learning.

  10. The Impact of Feedback Frequency on Performance in a Novel Speech Motor Learning Task.

    Science.gov (United States)

    Lowe, Mara Steinberg; Buchwald, Adam

    2017-06-22

    This study investigated whether whole nonword accuracy, phoneme accuracy, and acoustic duration measures were influenced by the amount of feedback speakers without impairment received during a novel speech motor learning task. Thirty-two native English speakers completed a nonword production task across 3 time points: practice, short-term retention, and long-term retention. During practice, participants received knowledge of results feedback according to a randomly assigned schedule (100%, 50%, 20%, or 0%). Changes in nonword accuracy, phoneme accuracy, nonword duration, and initial-cluster duration were compared among feedback groups, sessions, and stimulus properties. All participants improved phoneme and whole nonword accuracy at short-term and long-term retention time points. Participants also refined productions of nonwords, as indicated by a decrease in nonword duration across sessions. The 50% group exhibited the largest reduction in duration between practice and long-term retention for nonwords with native and nonnative clusters. All speakers, regardless of feedback schedule, learned new speech motor behaviors quickly with a high degree of accuracy and refined their speech motor skills for perceptually accurate productions. Acoustic measurements may capture more subtle, subperceptual changes that may occur during speech motor learning. https://doi.org/10.23641/asha.5116324.

  11. Intact Acquisition and Short-Term Retention of Non-Motor Procedural Learning in Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Muriel T N Panouillères

    Full Text Available Procedural learning is a form of memory where people implicitly acquire a skill through repeated practice. People with Parkinson's disease (PD have been found to acquire motor adaptation, a form of motor procedural learning, similarly to healthy older adults but they have deficits in long-term retention. A similar pattern of normal learning on initial exposure with a deficit in retention seen on subsequent days has also been seen in mirror-reading, a form of non-motor procedural learning. It is a well-studied fact that disrupting sleep will impair the consolidation of procedural memories. Given the prevalence of sleep disturbances in PD, the lack of retention on following days seen in these studies could simply be a side effect of this well-known symptom of PD. Because of this, we wondered whether people with PD would present with deficits in the short-term retention of a non-motor procedural learning task, when the test of retention was done the same day as the initial exposure. The aim of the present study was then to investigate acquisition and retention in the immediate short term of cognitive procedural learning using the mirror-reading task in people with PD. This task involved two conditions: one where triads of mirror-inverted words were always new that allowed assessing the learning of mirror-reading skill and another one where some of the triads were presented repeatedly during the experiment that allowed assessing the word-specific learning. People with PD both ON and OFF their normal medication were compared to healthy older adults and young adults. Participants were re-tested 50 minutes break after initial exposure to probe for short-term retention. The results of this study show that all groups of participants acquired and retained the two skills (mirror-reading and word-specific similarly. These results suggest that neither healthy ageing nor the degeneration within the basal ganglia that occurs in PD does affect the mechanisms

  12. Overnight Motor Skill Learning Outcomes in Obstructive Sleep Apnea: Effect of Continuous Positive Airway Pressure.

    Science.gov (United States)

    Landry, Shane; O'Driscoll, Denise M; Hamilton, Garun S; Conduit, Russell

    2016-05-15

    To determine the effectiveness of continuous positive airway pressure (CPAP) therapy in alleviating known impairments in the overnight consolidation of motor skill learning in patients with obstructive sleep apnea (OSA). Twenty-five patients with untreated moderate-severe OSA, 13 first-night CPAP users, 17 compliant CPAP users, and 14 healthy control patients were trained on a motor sequence learning task (Sequential Finger Tapping Task, SFTT) and were subsequently tested prior to and after polysomnographic recorded sleep. Measures of subjective sleepiness (Karolinska Sleepiness Scale) and sustained attention (Psychomotor Vigilance Task) were also completed before and after sleep. Typical analyses of overnight improvement on the SFTT show significantly greater overnight gains in motor task speed in controls (+11.6 ± 4.7%, p = 0.007) and compliant CPAP users (+8.9 ± 4.3%, p = 0.008) compared to patients with OSA (-4.86 ± 4.5%). Additional analyses suggest that these improvements in motor performance occurred prior to the sleep episode, as all groups significantly improved (15% to 22%) over a 10-min presleep rest period. Thereafter, performance in all groups significantly deteriorated over sleep (6% to 16%) with trends toward patients with OSA showing greater losses in performance compared to control patients and compliant CPAP users. No between-group differences in subjective sleepiness and sustained attention were found presleep and postsleep. The current data suggest impairments in overnight motor learning in patients with OSA may be a combination of deficient stabilization of memory over a sleep episode as well as increased vulnerability to time on task fatigue effects. Compliant CPAP usage possibly offsets both of these impediments to learning outcomes by improving both sleep quality and subsequent daytime function. © 2016 American Academy of Sleep Medicine.

  13. Sports Specialization, Part II

    Science.gov (United States)

    Myer, Gregory D.; Jayanthi, Neeru; DiFiori, John P.; Faigenbaum, Avery D.; Kiefer, Adam W.; Logerstedt, David; Micheli, Lyle J.

    2016-01-01

    Context: Many coaches, parents, and children believe that the best way to develop elite athletes is for them to participate in only 1 sport from an early age and to play it year-round. However, emerging evidence to the contrary indicates that efforts to specialize in 1 sport may reduce opportunities for all children to participate in a diverse year-round sports season and can lead to lost development of lifetime sports skills. Early sports specialization may also reduce motor skill development and ongoing participation in games and sports as a lifestyle choice. The purpose of this review is to employ the current literature to provide evidence-based alternative strategies that may help to optimize opportunities for all aspiring young athletes to maximize their health, fitness, and sports performance. Evidence Acquisition: Nonsystematic review with critical appraisal of existing literature. Study Design: Clinical review. Level of Evidence: Level 4. Conclusion: Based on the current evidence, parents and educators should help provide opportunities for free unstructured play to improve motor skill development and youth should be encouraged to participate in a variety of sports during their growing years to influence the development of diverse motor skills. For those children who do choose to specialize in a single sport, periods of intense training and specialized sport activities should be closely monitored for indicators of burnout, overuse injury, or potential decrements in performance due to overtraining. Last, the evidence indicates that all youth should be involved in periodized strength and conditioning (eg, integrative neuromuscular training) to help them prepare for the demands of competitive sport participation, and youth who specialize in a single sport should plan periods of isolated and focused integrative neuromuscular training to enhance diverse motor skill development and reduce injury risk factors. Strength of Recommendation Taxonomy (SORT): B. PMID

  14. Dual-tDCS Enhances Online Motor Skill Learning and Long-Term Retention in Chronic Stroke Patients

    Science.gov (United States)

    Lefebvre, S.; Laloux, P.; Peeters, A.; Desfontaines, P.; Jamart, J.; Vandermeeren, Y.

    2013-01-01

    Background: Since motor learning is a key component for stroke recovery, enhancing motor skill learning is a crucial challenge for neurorehabilitation. Transcranial direct current stimulation (tDCS) is a promising approach for improving motor learning. The aim of this trial was to test the hypothesis that dual-tDCS applied bilaterally over the primary motor cortices (M1) improves online motor skill learning with the paretic hand and its long-term retention. Methods: Eighteen chronic stroke patients participated in a randomized, cross-over, placebo-controlled, double bind trial. During separate sessions, dual-tDCS or sham dual-tDCS was applied over 30 min while stroke patients learned a complex visuomotor skill with the paretic hand: using a computer mouse to move a pointer along a complex circuit as quickly and accurately as possible. A learning index involving the evolution of the speed/accuracy trade-off was calculated. Performance of the motor skill was measured at baseline, after intervention and 1 week later. Results: After sham dual-tDCS, eight patients showed performance worsening. In contrast, dual-tDCS enhanced the amount and speed of online motor skill learning compared to sham (p dual-tDCS (n = 10) than after sham (n = 3). More importantly, 1 week later, online enhancement under dual-tDCS had translated into superior long-term retention (+44%) compared to sham (+4%). The improvement generalized to a new untrained circuit and to digital dexterity. Conclusion: A single-session of dual-tDCS, applied while stroke patients trained with the paretic hand significantly enhanced online motor skill learning both quantitatively and qualitatively, leading to successful long-term retention and generalization. The combination of motor skill learning and dual-tDCS is promising for improving post-stroke neurorehabilitation. PMID:23316151

  15. The Effect of an Acute Bout of Moderate-Intensity Aerobic Exercise on Motor Learning of a Continuous Tracking Task

    Science.gov (United States)

    Snow, Nicholas J.; Mang, Cameron S.; Roig, Marc; Boyd, Lara A.

    2016-01-01

    Introduction There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone. Materials and Methods Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice). Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention). We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline). Tracking error was separated into indices of temporal precision and spatial accuracy. Results There were no differences between conditions in the timing of movements during practice (p = 0.066), at retention (p = 0.761), or offline (p = 0.966). However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477); whereas, following rest performance diminished (p = 0.050). There were no significant differences between conditions at retention (p = 0.532) or offline (p = 0.246). Discussion An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between

  16. The Effect of an Acute Bout of Moderate-Intensity Aerobic Exercise on Motor Learning of a Continuous Tracking Task.

    Science.gov (United States)

    Snow, Nicholas J; Mang, Cameron S; Roig, Marc; McDonnell, Michelle N; Campbell, Kristin L; Boyd, Lara A

    2016-01-01

    There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone. Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice). Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention). We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline). Tracking error was separated into indices of temporal precision and spatial accuracy. There were no differences between conditions in the timing of movements during practice (p = 0.066), at retention (p = 0.761), or offline (p = 0.966). However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477); whereas, following rest performance diminished (p = 0.050). There were no significant differences between conditions at retention (p = 0.532) or offline (p = 0.246). An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between aerobic exercise and motor learning.

  17. The Effect of an Acute Bout of Moderate-Intensity Aerobic Exercise on Motor Learning of a Continuous Tracking Task.

    Directory of Open Access Journals (Sweden)

    Nicholas J Snow

    Full Text Available There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone.Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice. Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention. We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline. Tracking error was separated into indices of temporal precision and spatial accuracy.There were no differences between conditions in the timing of movements during practice (p = 0.066, at retention (p = 0.761, or offline (p = 0.966. However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477; whereas, following rest performance diminished (p = 0.050. There were no significant differences between conditions at retention (p = 0.532 or offline (p = 0.246.An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between aerobic exercise and motor learning.

  18. The effect of self-regulated and experimenter-imposed practice schedules on motor learning for tasks of varying difficulty.

    Science.gov (United States)

    Keetch, Katherine M; Lee, Timothy D

    2007-12-01

    Research suggests that allowing individuals to control their own practice schedule has a positive effect on motor learning. In this experiment we examined the effect of task difficulty and self-regulated practice strategies on motor learning. The task was to move a mouse-operated cursor through pattern arrays that differed in two levels of difficulty. Participants learned either four easy or hard patterns after assignment to one of four groups that ordered practice in blocked, random, self-regulated, and yoked-to-self-regulated schedules. Although self-regulation provided no special benefit in acquisition, these groups showed the most improved performance in retention, irrespective of task difficulty. Although individual switch strategies for members of the self-regulated groups were quite variable, the impact of self-regulation on motor learning remained similar. These findings add to the growing body of literature suggesting that self-regulated practice is an important variable for motor learning.

  19. Motor learning versus standard walking exercise in older adults with subclinical gait dysfunction: a randomized clinical trial.

    Science.gov (United States)

    Brach, Jennifer S; Van Swearingen, Jessie M; Perera, Subashan; Wert, David M; Studenski, Stephanie

    2013-11-01

    To compare the effect of motor learning with that of standard exercise on measures of mobility and perceived function and disability. Single-blind randomized trial. University research center. Older adults (n = 40) with a mean age of 77.1 ± 6.0, normal walking speed (≥ 1.0 m/s), and impaired motor skills (Figure of 8 walk time >8 seconds). The motor learning program incorporated goal-oriented stepping and walking to promote timing and coordination within the phases of the gait cycle. The standard program employed endurance training by treadmill walking. Both included strength training and were offered twice weekly for 1 hour for 12 weeks. Primary outcomes were mobility performance (gait efficiency, motor skill in walking, gait speed, walking endurance); secondary outcomes were perceived function and disability (Late-Life Function and Disability Instrument). Thirty-eight of 40 participants completed the trial (motor learning, n = 18; standard, n = 20). The motor learning group improved more than the standard group in gait speed (0.13 vs 0.05 m/s, P = .008) and motor skill (-2.2 vs -0.89 seconds, P endurance (28.3 and 22.9 m, P = .14). Changes in gait efficiency and perceived function and disability were not different between the groups (P > .10). In older adults with subclinical gait dysfunction, motor learning exercise improved some parameters of mobility performance more than standard exercise. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.

  20. Transferring an Analytical Technique from Ecology to the Sport Sciences.

    Science.gov (United States)

    Woods, Carl T; Robertson, Sam; Collier, Neil French; Swinbourne, Anne L; Leicht, Anthony S

    2018-03-01

    Learning transfer is defined as an individual's capability to apply prior learnt perceptual, motor, or conceptual skills to a novel task or performance environment. In the sport sciences, learning transfers have been investigated from an athlete-specific perspective. However, sport scientists should also consider the benefits of cross-disciplinary learning to aid critical thinking and metacognitive skill gained through the interaction with similar quantitative scientific disciplines. Using team sports performance analysis as an example, this study aimed to demonstrate the utility of a common analytical technique in ecology in the sports sciences, namely, nonmetric multidimensional scaling. To achieve this aim, three novel research examples using this technique are presented, each of which enables the analysis and visualization of athlete (organism), team (aggregation of organisms), and competition (ecosystem) behaviors. The first example reveals the technical behaviors of Australian Football League Brownlow medalists from the 2001 to 2016 seasons. The second example delineates dissimilarity in higher and lower ranked National Rugby League teams within the 2016 season. Lastly, the third example shows the evolution of game play in the basketball tournaments between the 2004 and 2016 Olympic Games. In addition to the novel findings of each example, the collective results demonstrate that, by embracing cross-disciplinary learning and drawing upon an analytical technique common to ecology, novel solutions to pertinent research questions within sports performance analysis could be addressed in a practically meaningful way. Cross-disciplinary learning may subsequently assist sport scientists in the analysis and visualization of multivariate datasets.

  1. Effects of acute sleep deprivation on motor and reversal learning in mice.

    Science.gov (United States)

    Varga, Andrew W; Kang, Mihwa; Ramesh, Priyanka V; Klann, Eric

    2014-10-01

    Sleep supports the formation of a variety of declarative and non-declarative memories, and sleep deprivation often impairs these types of memories. In human subjects, natural sleep either during a nap or overnight leads to long-lasting improvements in visuomotor and fine motor tasks, but rodent models recapitulating these findings have been scarce. Here we present evidence that 5h of acute sleep deprivation impairs mouse skilled reach learning compared to a matched period of ad libitum sleep. In sleeping mice, the duration of total sleep time during the 5h of sleep opportunity or during the first bout of sleep did not correlate with ultimate gain in motor performance. In addition, we observed that reversal learning during the skilled reaching task was also affected by sleep deprivation. Consistent with this observation, 5h of sleep deprivation also impaired reversal learning in the water-based Y-maze. In conclusion, acute sleep deprivation negatively impacts subsequent motor and reversal learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A neural network-based exploratory learning and motor planning system for co-robots

    Directory of Open Access Journals (Sweden)

    Byron V Galbraith

    2015-07-01

    Full Text Available Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or learning by doing, an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  3. Effects of Acute Sleep Deprivation on Motor and Reversal Learning in Mice

    Science.gov (United States)

    Varga, Andrew W.; Kang, Mihwa; Ramesh, Priyanka V.; Klann, Eric

    2014-01-01

    Sleep supports the formation of a variety of declarative and non-declarative memories, and sleep deprivation often impairs these types of memories. In human subjects, natural sleep either during a nap or overnight leads to long-lasting improvements in visuomotor and fine motor tasks, but rodent models recapitulating these findings have been scarce. Here we present evidence that 5 hours of acute sleep deprivation impairs mouse skilled reach learning compared to a matched period of ad libitum sleep. In sleeping mice, the duration of total sleep time during the 5 hours of sleep opportunity or during the first bout of sleep did not correlate with ultimate gain in motor performance. In addition, we observed that reversal learning during the skilled reaching task was also affected by sleep deprivation. Consistent with this observation, 5 hours of sleep deprivation also impaired reversal learning in the water-based Y-maze. In conclusion, acute sleep deprivation negatively impacts subsequent motor and reversal learning and memory. PMID:25046627

  4. Neurotoxicity induced by alkyl nitrites: Impairment in learning/memory and motor coordination.

    Science.gov (United States)

    Cha, Hye Jin; Kim, Yun Ji; Jeon, Seo Young; Kim, Young-Hoon; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Park, Hye-Kyung; Kim, Hyung Soo

    2016-04-21

    Although alkyl nitrites are used as recreational drugs, there is only little research data regarding their effects on the central nervous system including their neurotoxicity. This study investigated the neurotoxicity of three representative alkyl nitrites (isobutyl nitrite, isoamyl nitrite, and butyl nitrite), and whether it affected learning/memory function and motor coordination in rodents. Morris water maze test was performed in mice after administrating the mice with varying doses of the substances in two different injection schedules of memory acquisition and memory retention. A rota-rod test was then performed in rats. All tested alkyl nitrites lowered the rodents' capacity for learning and memory, as assessed by both the acquisition and retention tests. The results of the rota-rod test showed that isobutyl nitrite in particular impaired motor coordination in chronically treated rats. The mice chronically injected with isoamyl nitrite also showed impaired function, while butyl nitrite had no significant effect. The results of the water maze test suggest that alkyl nitrites may impair learning and memory. Additionally, isoamyl nitrite affected the rodents' motor coordination ability. Collectively, our findings suggest that alkyl nitrites may induce neurotoxicity, especially on the aspect of learning and memory function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Motor learning characterization in people with autism spectrum disorder: A systematic review

    Directory of Open Access Journals (Sweden)

    Íbis Ariana Peña de Moraes

    Full Text Available ABSTRACT Autism Spectrum Disorder (ASD is a neurodevelopmental disorder primarily characterized by deficits in social interaction, communication and implicit skill learning. OBJECTIVE: To analyse the results of research on "motor learning" and the means used for measuring "autistic disorder". METHODS: A systematic literature search was done using Medline/PubMed, Web of Science, BVS (virtual health library, and PsycINFO. We included articles that contained the keywords "autism" and "motor learning". The variables considered were the methodological aspects; results presented, and the methodological quality of the studies. RESULTS: A total of 42 studies were identified; 33 articles were excluded because they did not meet the inclusion criteria. Data were extracted from nine eligible studies and summarized. CONCLUSION: We concluded that although individuals with ASD showed performance difficulties in different memory and motor learning tasks, acquisition of skills still takes place in this population; however, this skill acquisition is related to heterogeneous events, occurring without the awareness of the individual.

  6. A neural network-based exploratory learning and motor planning system for co-robots.

    Science.gov (United States)

    Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano

    2015-01-01

    Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  7. Lack of Motor Inhibition as a Marker of Learning Difficulties of Bimanual Coordination in Teenagers With Developmental Coordination Disorder.

    Science.gov (United States)

    Blais, Mélody; Baly, Charlène; Biotteau, Maëlle; Albaret, Jean-Michel; Chaix, Yves; Tallet, Jessica

    2017-01-01

    This study tested the learning of a new bimanual coordination in teenagers with and without Developmental Coordination Disorder (DCD). Both groups improved accuracy of the new coordination. No difference was found on stability. But DCD teenagers exhibited an overall higher number of additional taps, suggesting a persistent lack of motor inhibition during learning. Moreover, teenagers with the lowest scores of motor abilities present the highest number of additional taps. All these results suggest that this number of additional taps (rather than traditional measures of accuracy and stability) could be a good marker of perceptual-motor learning deficit in DCD.

  8. Comparison of Loneliness and Social Skill Levels of Children with Specific Learning Disabilities in Terms of Participation in Sports

    Directory of Open Access Journals (Sweden)

    Atike Yılmaz

    2018-03-01

    Full Text Available This study was conducted in order to compare loneliness and social skill levels of children with specific learning disabilities in terms of participation in sports. For this study, a screening model was used. The study group was composed of 56 children who were aged between 7 and 14 years and diagnosed with a specific learning disability (30 boys and 26 girls. “Personal Information Form”, “Children’s Loneliness Scale”, “Matson Evaluation of Social Skills with Youngsters (MESSY” were used in this study. For the data processes and data analyses, SPSS 22 was used. According to the test of normality, non-parametric tests were employed for those data that did not follow a normal distribution and the correlations among variables were tested with correlation analysis at p < 0.05 while differences among variables were tested with Mann–Whitney U and Kruskal–Wallis tests at p < 0.05. According to the findings obtained in this study, there were no significant differences in terms of sex, the number of family members and the number of brothers and sisters while there were significant correlations in terms of age, sports status, MESSY-subscales and loneliness. In sum, it may be concluded that sports played a positive role in social skill and loneliness levels among children with specific learning disabilities.

  9. Return to Learn: A review of cognitive rest versus rehabilitation after sports concussion.

    Science.gov (United States)

    Eastman, Amelia; Chang, Douglas G

    2015-01-01

    Cognitive rest is the recommendation for all patients with acute sports concussion. A comprehensive literature search was conducted for the research question "What is the optimal cognitive load for patients with a sports concussion?" Seven studies met the inclusion criteria. The optimal cognitive load for patients after sports concussion is yet to be determined. Additional controlled trials of cognitive rehabilitation are needed to establish best clinical practice. The authors suggest memory training, cognitive behavioral therapy, and environmental interventions as areas of future research for sports concussion injuries.

  10. Cluster analysis of activity-time series in motor learning

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Å; Futiger, Sally A

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel......-time series. The optimal number of clusters was chosen using a cross-validated likelihood method, which highlights the clustering pattern that generalizes best over the subjects. Data were acquired with PET at different time points during practice of a visuomotor task. The results from cluster analysis show...

  11. Gender differences in young children's interactions when learning fundamental motor skills.

    Science.gov (United States)

    Garcia, C

    1994-09-01

    The purpose of the study was to examine how young children interact in the context of learning fundamental motor skills. Twenty-nine preschool children were observed during a period of six consecutive months while they were participating in their daily motor skills program. Fieldwork research methodology was used and data were collected using participant observation techniques. During data analysis, emerging patterns were identified and cross-referenced against data collected from other sources (triangulation). Girls were found to interact in a cooperative, caring, and sharing manner. Boys were found to interact in a competitive, individualized, and egocentric manner. A cultural pattern of cooperative interaction among Asian children was found. In addition, both boys and girls tried to maintain their gender style of interaction when dealing with the opposite sex. This study reveals several aspects of the social environment that may need to be considered when teaching motor skills to young children.

  12. Specialized motor-driven dusp1 expression in the song systems of multiple lineages of vocal learning birds.

    Directory of Open Access Journals (Sweden)

    Haruhito Horita

    Full Text Available Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1 was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.

  13. The Importance of Visual Feedback Design in BCIs; from Embodiment to Motor Imagery Learning.

    Directory of Open Access Journals (Sweden)

    Maryam Alimardani

    Full Text Available Brain computer interfaces (BCIs have been developed and implemented in many areas as a new communication channel between the human brain and external devices. Despite their rapid growth and broad popularity, the inaccurate performance and cost of user-training are yet the main issues that prevent their application out of the research and clinical environment. We previously introduced a BCI system for the control of a very humanlike android that could raise a sense of embodiment and agency in the operators only by imagining a movement (motor imagery and watching the robot perform it. Also using the same setup, we further discovered that the positive bias of subjects' performance both increased their sensation of embodiment and improved their motor imagery skills in a short period. In this work, we studied the shared mechanism between the experience of embodiment and motor imagery. We compared the trend of motor imagery learning when two groups of subjects BCI-operated different looking robots, a very humanlike android's hands and a pair of metallic gripper. Although our experiments did not show a significant change of learning between the two groups immediately during one session, the android group revealed better motor imagery skills in the follow up session when both groups repeated the task using the non-humanlike gripper. This result shows that motor imagery skills learnt during the BCI-operation of humanlike hands are more robust to time and visual feedback changes. We discuss the role of embodiment and mirror neuron system in such outcome and propose the application of androids for efficient BCI training.

  14. The Importance of Visual Feedback Design in BCIs; from Embodiment to Motor Imagery Learning.

    Science.gov (United States)

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-01-01

    Brain computer interfaces (BCIs) have been developed and implemented in many areas as a new communication channel between the human brain and external devices. Despite their rapid growth and broad popularity, the inaccurate performance and cost of user-training are yet the main issues that prevent their application out of the research and clinical environment. We previously introduced a BCI system for the control of a very humanlike android that could raise a sense of embodiment and agency in the operators only by imagining a movement (motor imagery) and watching the robot perform it. Also using the same setup, we further discovered that the positive bias of subjects' performance both increased their sensation of embodiment and improved their motor imagery skills in a short period. In this work, we studied the shared mechanism between the experience of embodiment and motor imagery. We compared the trend of motor imagery learning when two groups of subjects BCI-operated different looking robots, a very humanlike android's hands and a pair of metallic gripper. Although our experiments did not show a significant change of learning between the two groups immediately during one session, the android group revealed better motor imagery skills in the follow up session when both groups repeated the task using the non-humanlike gripper. This result shows that motor imagery skills learnt during the BCI-operation of humanlike hands are more robust to time and visual feedback changes. We discuss the role of embodiment and mirror neuron system in such outcome and propose the application of androids for efficient BCI training.

  15. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.

    Directory of Open Access Journals (Sweden)

    Marika T Leving

    Full Text Available It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process.17 Participants received visual feedback-based practice (feedback group and 15 participants received regular practice (natural learning group. Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block and optimize it in the prescribed direction (2nd 4-min block. To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability.The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group.These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not

  16. Acquisition and improvement of human motor skills: Learning through observation and practice

    Science.gov (United States)

    Iba, Wayne

    1991-01-01

    Skilled movement is an integral part of the human existence. A better understanding of motor skills and their development is a prerequisite to the construction of truly flexible intelligent agents. We present MAEANDER, a computational model of human motor behavior, that uniformly addresses both the acquisition of skills through observation and the improvement of skills through practice. MAEANDER consists of a sensory-effector interface, a memory of movements, and a set of performance and learning mechanisms that let it recognize and generate motor skills. The system initially acquires such skills by observing movements performed by another agent and constructing a concept hierarchy. Given a stored motor skill in memory, MAEANDER will cause an effector to behave appropriately. All learning involves changing the hierarchical memory of skill concepts to more closely correspond to either observed experience or to desired behaviors. We evaluated MAEANDER empirically with respect to how well it acquires and improves both artificial movement types and handwritten script letters from the alphabet. We also evaluate MAEANDER as a psychological model by comparing its behavior to robust phenomena in humans and by considering the richness of the predictions it makes.

  17. A computational framework for constructing interactive feedback for assisting motor learning.

    Science.gov (United States)

    Sundaram, Hari; Chen, Yinpeng; Rikakis, Thanassis

    2011-01-01

    New motion capture technologies are allowing detailed, precise and complete monitoring of movement through real-time kinematic analysis. However, a clinically relevant understanding of movement impairment through kinematic analysis requires the development of computational models that integrate clinical expertise in the weighing of the kinematic parameters. The resulting kinematics based measures of movement impairment would further need to be integrated with existing clinical measures of activity disability. This is a challenging process requiring computational solutions that can extract correlations within and between three diverse data sets: human driven assessment of body function, kinematic based assessment of movement impairment and human driven assessment of activity. We propose to identify and characterize different sensorimotor control strategies used by normal individuals and by hemiparetic stroke survivors acquiring a skilled motor task. We will use novel quantitative approaches to further our understanding of how human motor function is coupled to multiple and simultaneous modes of feedback. The experiments rely on a novel interactive tasks environment developed by our team in which subjects are provided with rich auditory and visual feedback of movement variables to drive motor learning. Our proposed research will result in a computational framework for applying virtual information to assist motor learning for complex tasks that require coupling of proprioception, vision audio and haptic cues. We shall use the framework to devise a computational tool to assist with therapy of stroke survivors. This tool will utilize extracted relationships in a pre-clinical setting to generate effective and customized rehabilitation strategies.

  18. Motor learning interference is proportional to occlusion of LTP-like plasticity.

    Science.gov (United States)

    Cantarero, Gabriela; Tang, Byron; O'Malley, Rebecca; Salas, Rachel; Celnik, Pablo

    2013-03-13

    Learning interference occurs when learning something new causes forgetting of an older memory (retrograde interference) or when learning a new task disrupts learning of a second subsequent task (anterograde interference). This phenomenon, described in cognitive, sensory, and motor domains, limits our ability to learn multiple tasks in close succession. It has been suggested that the source of interference is competition of neural resources, although the neuronal mechanisms are unknown. Learning induces long-term potentiation (LTP), which can ultimately limit the ability to induce further LTP, a phenomenon known as occlusion. In humans we quantified the magnitude of occlusion of anodal transcranial direct current stimulation-induced increased excitability after learning a skill task as an index of the amount of LTP-like plasticity used. We found that retention of a newly acquired skill, as reflected by performance in the second day of practice, is proportional to the magnitude of occlusion. Moreover, the degree of behavioral interference was correlated with the magnitude of occlusion. Individuals with larger occlusion after learning the first skill were (1) more resilient to retrograde interference and (2) experienced larger anterograde interference when training a second task, as expressed by decreased performance of the learned skill in the second day of practice. This effect was not observed if sufficient time elapsed between training the two skills and LTP-like occlusion was not present. These findings suggest competition of LTP-like plasticity is a factor that limits the ability to remember multiple tasks trained in close succession.

  19. Motor-response learning at a process control panel by an autonomous robot

    Energy Technology Data Exchange (ETDEWEB)

    Spelt, P.F.; de Saussure, G.; Lyness, E.; Pin, F.G.; Weisbin, C.R.

    1988-01-01

    The Center for Engineering Systems Advanced Research (CESAR) was founded at Oak Ridge National Laboratory (ORNL) by the Department of Energy's Office of Energy Research/Division of Engineering and Geoscience (DOE-OER/DEG) to conduct basic research in the area of intelligent machines. Therefore, researchers at the CESAR Laboratory are engaged in a variety of research activities in the field of machine learning. In this paper, we describe our approach to a class of machine learning which involves motor response acquisition using feedback from trial-and-error learning. Our formulation is being experimentally validated using an autonomous robot, learning tasks of control panel monitoring and manipulation for effect process control. The CLIPS Expert System and the associated knowledge base used by the robot in the learning process, which reside in a hypercube computer aboard the robot, are described in detail. Benchmark testing of the learning process on a robot/control panel simulation system consisting of two intercommunicating computers is presented, along with results of sample problems used to train and test the expert system. These data illustrate machine learning and the resulting performance improvement in the robot for problems similar to, but not identical with, those on which the robot was trained. Conclusions are drawn concerning the learning problems, and implications for future work on machine learning for autonomous robots are discussed. 16 refs., 4 figs., 1 tab.

  20. Emergence of motor synergy in vertical reaching task via tacit learning.

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Shimoda, Shingo

    2013-01-01

    The dynamics of multijoint limbs often causes complex dynamic interaction torques which are the inertial effect of other joints motion. It is known that Cerebellum takes important role in a motor learning by developing the internal model. In this paper, we propose a novel computational control paradigm in vertical reaching task which involves the management of interaction torques and gravitational effect. The obtained results demonstrate that the proposed method is valid for acquiring motor synergy in the system with actuation redundancy and resulted in the energy efficient solutions. It is highlighted that the tacit learning in vertical reaching task can bring computational adaptability and optimality with model-free and cost-function-free approach differently from previous studies.

  1. Older adults learn less, but still reduce metabolic cost, during motor adaptation

    Science.gov (United States)

    Huang, Helen J.

    2013-01-01

    The ability to learn new movements and dynamics is important for maintaining independence with advancing age. Age-related sensorimotor changes and increased muscle coactivation likely alter the trial-and-error-based process of adapting to new movement demands (motor adaptation). Here, we asked, to what extent is motor adaptation to novel dynamics maintained in older adults (≥65 yr)? We hypothesized that older adults would adapt to the novel dynamics less well than young adults. Because older adults often use muscle coactivation, we expected older adults to use greater muscle coactivation during motor adaptation than young adults. Nevertheless, we predicted that older adults would reduce muscle activity and metabolic cost with motor adaptation, similar to young adults. Seated older (n = 11, 73.8 ± 5.6 yr) and young (n = 15, 23.8 ± 4.7 yr) adults made targeted reaching movements while grasping a robotic arm. We measured their metabolic rate continuously via expired gas analysis. A force field was used to add novel dynamics. Older adults had greater movement deviations and compensated for just 65% of the novel dynamics compared with 84% in young adults. As expected, older adults used greater muscle coactivation than young adults. Last, older adults reduced muscle activity with motor adaptation and had consistent reductions in metabolic cost later during motor adaptation, similar to young adults. These results suggest that despite increased muscle coactivation, older adults can adapt to the novel dynamics, albeit less accurately. These results also suggest that reductions in metabolic cost may be a fundamental feature of motor adaptation. PMID:24133222

  2. Inter-individual differences in audio-motor learning of piano melodies and white matter fiber tract architecture.

    Science.gov (United States)

    Engel, Annerose; Hijmans, Brenda S; Cerliani, Leonardo; Bangert, Marc; Nanetti, Luca; Keller, Peter E; Keysers, Christian

    2014-05-01

    Humans vary substantially in their ability to learn new motor skills. Here, we examined inter-individual differences in learning to play the piano, with the goal of identifying relations to structural properties of white matter fiber tracts relevant to audio-motor learning. Non-musicians (n = 18) learned to perform three short melodies on a piano keyboard in a pure audio-motor training condition (vision of their own fingers was occluded). Initial learning times ranged from 17 to 120 min (mean ± SD: 62 ± 29 min). Diffusion-weighted magnetic resonance imaging was used to derive the fractional anisotropy (FA), an index of white matter microstructural arrangement. A correlation analysis revealed that higher FA values were associated with faster learning of piano melodies. These effects were observed in the bilateral corticospinal tracts, bundles of axons relevant for the execution of voluntary movements, and the right superior longitudinal fasciculus, a tract important for audio-motor transformations. These results suggest that the speed with which novel complex audio-motor skills can be acquired may be determined by variability in structural properties of white matter fiber tracts connecting brain areas functionally relevant for audio-motor learning. Copyright © 2013 Wiley Periodicals, Inc.

  3. Mediating Peer Teaching for Learning Games: An Action Research Intervention across Three Consecutive Sport Education Seasons

    Science.gov (United States)

    Farias, Cláudio; Mesquita, Isabel; Hastie, Peter A.; O'Donovan, Toni

    2018-01-01

    Purpose: The purpose of this study was to provide an integrated analysis of a teacher's peer-teaching mediation strategies, the student-coaches' instruction, and the students' gameplay development across 3 consecutive seasons of sport education. Method: Twenty-six 7th-grade students participated in 3 consecutive sport education seasons of invasion…

  4. Technology-Enhanced Learning in Sports Education Using Clickers: Satisfaction, Performance and Immediacy

    Science.gov (United States)

    Constantinou, Vaso; Ioannou, Andri

    2016-01-01

    The article addresses ICT in Education by describing an empirical investigation of technology-enhanced sports education. The study examines the use of clickers by 162 Judo athletes during seminars on the rules and regulations of the sport. Results are based on quantitative data collected on athletes' performances and attitudes and qualitative data…

  5. Basal ganglia-dependent processes in recalling learned visual-motor adaptations.

    Science.gov (United States)

    Bédard, Patrick; Sanes, Jerome N

    2011-03-01

    Humans learn and remember motor skills to permit adaptation to a changing environment. During adaptation, the brain develops new sensory-motor relationships that become stored in an internal model (IM) that may be retained for extended periods. How the brain learns new IMs and transforms them into long-term memory remains incompletely understood since prior work has mostly focused on the learning process. A current model suggests that basal ganglia, cerebellum, and their neocortical targets actively participate in forming new IMs but that a cerebellar cortical network would mediate automatization. However, a recent study (Marinelli et al. 2009) reported that patients with Parkinson's disease (PD), who have basal ganglia dysfunction, had similar adaptation rates as controls but demonstrated no savings at recall tests (24 and 48 h). Here, we assessed whether a longer training session, a feature known to increase long-term retention of IM in healthy individuals, could allow PD patients to demonstrate savings. We recruited PD patients and age-matched healthy adults and used a visual-motor adaptation paradigm similar to the study by Marinelli et al. (2009), doubling the number of training trials and assessed recall after a short and a 24-h delay. We hypothesized that a longer training session would allow PD patients to develop an enhanced representation of the IM as demonstrated by savings at the recall tests. Our results showed that PD patients had similar adaptation rates as controls but did not demonstrate savings at both recall tests. We interpret these results as evidence that fronto-striatal networks have involvement in the early to late phase of motor memory formation, but not during initial learning.

  6. Virtual Reality Rehabilitation from Social Cognitive and Motor Learning Theoretical Perspectives in Stroke Population

    OpenAIRE

    Imam, Bita; Jarus, Tal

    2014-01-01

    Objectives. To identify the virtual reality (VR) interventions used for the lower extremity rehabilitation in stroke population and to explain their underlying training mechanisms using Social Cognitive (SCT) and Motor Learning (MLT) theoretical frameworks. Methods. Medline, Embase, Cinahl, and Cochrane databases were searched up to July 11, 2013. Randomized controlled trials that included a VR intervention for lower extremity rehabilitation in stroke population were included. The Physiothera...

  7. Somatic and Reinforcement-Based Plasticity in the Initial Stages of Human Motor Learning

    OpenAIRE

    Sidarta, Ananda; Vahdat, Shahabeddin; Bernardi, Nicolò F.; Ostry, David J.

    2016-01-01

    As one learns to dance or play tennis, the desired somatosensory state is typically unknown. Trial and error is important as motor behavior is shaped by successful and unsuccessful movements. As an experimental model, we designed a task in which human participants make reaching movements to a hidden target and receive positive reinforcement when successful. We identified somatic and reinforcement-based sources of plasticity on the basis of changes in functional connectivity using resting-stat...

  8. Effects of Acute Sleep Deprivation on Motor and Reversal Learning in Mice

    OpenAIRE

    Varga, Andrew W.; Kang, Mihwa; Ramesh, Priyanka V.; Klann, Eric

    2014-01-01

    Sleep supports the formation of a variety of declarative and non-declarative memories, and sleep deprivation often impairs these types of memories. In human subjects, natural sleep either during a nap or overnight leads to long-lasting improvements in visuomotor and fine motor tasks, but rodent models recapitulating these findings have been scarce. Here we present evidence that 5 hours of acute sleep deprivation impairs mouse skilled reach learning compared to a matched period of ad libitum s...

  9. Transfer of Short-Term Motor Learning across the Lower Limbs as a Function of Task Conception and Practice Order

    Science.gov (United States)

    Stockel, Tino; Wang, Jinsung

    2011-01-01

    Interlimb transfer of motor learning, indicating an improvement in performance with one limb following training with the other, often occurs asymmetrically (i.e., from non-dominant to dominant limb or vice versa, but not both). In the present study, we examined whether interlimb transfer of the same motor task could occur asymmetrically and in…

  10. Motor learning in healthy humans is associated to gray matter changes: a tensor-based morphometry study.

    Science.gov (United States)

    Filippi, Massimo; Ceccarelli, Antonia; Pagani, Elisabetta; Gatti, Roberto; Rossi, Alice; Stefanelli, Laura; Falini, Andrea; Comi, Giancarlo; Rocca, Maria Assunta

    2010-04-15

    We used tensor-based morphometry (TBM) to: 1) map gray matter (GM) volume changes associated with motor learning in young healthy individuals; 2) evaluate if GM changes persist three months after cessation of motor training; and 3) assess whether the use of different schemes of motor training during the learning phase could lead to volume modifications of specific GM structures. From 31 healthy subjects, motor functional assessment and brain 3D T1-weighted sequence were obtained: before motor training (time 0), at the end of training (two weeks) (time 2), and three months later (time 3)